Supplementary Information

Visible Light-Induced Aerobic Dioxygenation of α , β unsaturated amides/Alkenes toward Selective Synthesis of β -Oxy Alcohols Using Rose Bengal as a Photosensitizer

Ming-Zhong Zhang,^{*a} Jing Tian,^a Min Yuan,^a Wan-Qi Peng,^a Yu-Zhu Wang,^a Peng Wang,^a Long Liu,^b Quan Gou,^a Huisheng Huang,^a and Tieqiao Chen^{*b}

[†]Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China.

*E-mail: mzzhang@yznu.edu.cn

[‡]Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan University, Haikou, 570228, China.

*E-mail: chentieqiao@hnu.edu.cn

Table of Contents

1. General information	S2
2. General procedures for the synthesis of substrates	S2-S3
3. Determine the structure of <i>6</i> -oxy alcohol 3aa	S3-S6
4. Table S1. Screening of the solvents	S6
5. Conversion from product 3ta to α -oxygenated ketones 3ta'	S7- S8
6. General procedures for the selective dioxygenation reaction	S8
7. Synthesis applications	S8-S11
8. Preliminary mechanistic studies	S11-S17
9. Characterization data of products	S17-S40
10. Reference	S40- S41
11. ¹ H and ¹³ C NMR spectra	S41-S79

1. General information

All reagents were used in analytical grades and were obtained from common commercial sources. Rose bengal catalyst was purchased from Adamas (high purity) and ¹⁸O₂ was purchased from Wuhan Isotope Technology Co., Ltd. (¹⁸O atom \geq 97%). Solvents were purified by standard methods. Products were purified by flash chromatography on silica gel (300-400 mesh, *Qingdao Haiyang Chemical Co. Ltd. Gel*). ¹H and ¹³C NMR spectra were recorded on 400 MHz and 500 MHz spectrometer (Bruker ADVANCE III). Chemical shifts are reported relative to the residual solvent peak (CHCl₃). High-resolution mass spectra (HRMS) were obtained by the ESI model from an ab sciex 500R QTOF or micrOTOF-Q II instrument.

2. General procedures for the synthesis of substrates

The α,β -unsaturated amides **1a-1r** and **1t**^[1,2] were synthesized according to previously described methods.

Scheme S1. Synthesis of α,β -unsaturated amides 1a-1r and 1t

According to the literature,^[3] substrate 1s was prepared easily as described below:

Scheme S2. Synthesis of substrate 1s

3. Determine the structure of **6**-oxy alcohol 3aa

After careful analysis by NMR, HRMS and references,^[4] the new product was confirmed as a β -oxy alcohol **3aa** (see below).

NMR analysis of β -oxy alcohol (**3aa**)^[4]

HRMS analysis of β -oxy alcohol (**3aa**)

Spectrum from 20200811ZMZ.wiff2 (sample 1) - ZMZ-...-1, +TOF MS (50 - 1000) from 0.167 to 0.246 min]

4. Table S1. Screening of the solvents

+ NO + 1a	NHPI 1 mol% rose bengal 10 mol% pyridine air, MeCN, rt, 24 h 2a 18 W white LED corn light	Ph OH N PINO O 3aa
Entry	Solvent	Yield of 3aa (%) ^b
1	MeCN	92
2	PhCN	88
3	THF	Trace
4	Benzene	38
5	DCE	15
6	DMSO	Trace
7	DMF	Trace

^{*a*}Reaction conditions: **1a** (0.24 mmol), **2a** (0.2 mmol), rose bengal (1 mol%), pyridine (10 mol%), solvent (3 mL), open to air, irradiation under a 18 W white LED corn light at room temperature for 24 h. ^{*b*}Isolated yields based on NHPI, and the excess **1a** was recovered.

5. Conversion from product 3ta to α -oxygenated ketones

3ta'

6. General procedures for the selective dioxygenation reaction

A mixture of alkenes **1** or **4** (1.2 euqiv.), *N*-hydroxy compound **2** (0.2 or 0.3 mmol), rose bengal (1 mol%), and pyridine (10 mol%) was stirred in anhydrous MeCN (3.0 mL) at room temperature under air with 18 W white LED corn light irradiation for 24 h. When the reaction was completed (monitored by TLC), water (6 mL) was added to the reaction mixture, and the resulting mixture was extracted with dichloromethane. The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and then concentrated in a vacuum. The residue was purified by flash chromatography on silica gel to afford the corresponding product **3** or **5** (using the mixture of petroleum ether and acetone as eluents).

7. Synthesis applications

7.1 1.0 mmol-scale dioxygenation reaction

To an oven-dried 50 mL Schlenk tube were added *N*-phenylmethacrylamide **1d** (0.193 g, 1.2 mmol), NHPI **2a** (0.163 g, 1 mmol), Rose bengal (0.013 g, 1 mol%), pyridine (0.008 g, 10 mol%), and anhydrous MeCN (10 mL). Then the tube was stirred at room temperature under open air with 18 W white LED corn light irradiation for 24 h. Upon completion, the solvent was evaporated under vacuum. Then, the residue was diluted by dichloromethane and washed with H₂O. The organic phase was separated, dried over anhydrous Na₂SO₄, filtered, and the solvent was then removed under vacuum. The resulting residue was purified by silica gel column chromatography (petroleum ether/acetone, 10:1 to 6:1) to afford the desired product **3da** in 83% yield (0.282 g).

7.2 Synthetic transformations

Preparation of 2,3-dihydroxy-2-methyl-N-phenylpropanamide (6):

To a 100 mL Schlenk tube were added **3da** (0.282 g, 0.83 mmol), AcOH (4 mL), Zn powder (0.54 g 8.3 mmol), and H_2O (4 mL). Then the tube was stirred at 40 °C for 5 h. Upon completion, the reaction mixture was filtered through Celite and was further extracted with CH_2Cl_2 (3 × 30 mL). The combined organic layers were washed with brine (30 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuum. The resulting residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate; 4:1 to 2:1) to afford the desired product **6** in 62% yield (0.1 g).

Preparation of 2-methyl-5,6-dioxo-N-phenyl-1,4-dioxane-2-carboxamide (7):^[5]

The mixture of **6** (0.05 g, 0.256 mmol) and Et₃N (0.037 g, 0.33 mmol) were placed in a 25 mL Schlenk tube with 5 mL of anhydrous THF and put into an ice bath, oxalyl dichloride (0.03 mL, 0.33 mmol) was added dropwise, the resulting mixture was allowed to warm to room temperature and stirred overnight. Upon completion, the solvent was evaporated under vacuum. Then, the residue was diluted by dichloromethane and washed with brine. The organic phase was separated, dried over anhydrous Na₂SO₄, filtered, and the solvent was then removed under vacuum. The resulting residue was purified by silica gel column chromatography (petroleum ether/acetone, 6:1) to afford the desired product **7** in 70% yield (0.0447 g).

Preparation of 2-methyl-*N*-phenyl-1,4-dioxane-2-carboxamide (8):^[6]

To a 25 mL Schlenk tube were added **6** (0.05 g, 0.256 mmol), tetrabutylammonium bromide (TBAB: 0.09 g, 0.256 mmol), 50% NaOH aqueous solution (1.6 mL), and 1,2-dichloroethane (DCE, 3.0 mL). Then the reaction mixture was stirred at 50 °C for 48 h, cooled to rt, and diluted with H₂O and dichloromethane. The layers were separated, and the aqueous layer was extracted with dichloromethane (3×30 mL). The combined organic layers were washed with brine, dried over anhydrous Na_2SO_4 , filtered, and the solvent was then removed under vacuum. The resulting residue was purified by silica gel column chromatography (petroleum ether/acetone, 5:1) to afford the desired product **8** in 75% yield (0.0425 g).

8. Preliminary mechanistic studies

8.1¹⁸O₂-labeling experiment

HRMS with ¹⁸O₂ labeling

¹⁶O-labeled product 3da: HRMS m/z (ESI) Calcd for $C_{18}H_{17}N_2O_5^+$ (M + H)⁺ 341.1137, <u>found 341.1138</u>; ¹⁸O-labeled product 3da-¹⁸O: HRMS m/z (ESI) Calcd

for $C_{18}H_{17}N_2O_4^{18}O^+$ (M + H)⁺ 343.1180, <u>found 343.1167</u>.

Mass/Char	Area	Height	Width	Width at 50%	Resolution
148.0396	60.69912	8405.833	0.034752	0.006573758	22519.78
163.039	572.6187	72429.5	0.069033	0.006643882	24539.72
164.0427	60.18452	7225.333	0.037889	0.007170586	22877.17
191.0354	47.81233	5369.167	0.052166	0.007257169	26323.69
222.065	128.0859	12400.67	0.076006	0.008660822	25640.18
279.094	177.4818	13613.83	0.069871	0.010701906	26078.9
282.0866	105.0961	8417.333	0.056539	0.010458204	26972.76
341.1138	326.8022	20361	0.090434	0.013384953	25484.87
342.1177	134.7412	8548	0.073586	0.013225777	25867.49
343.1167	4391.068	367437.7	0.105817	0.009981826	34374.14
344.121	889.4607	58827.83	0.130568	0.012735023	27021.62
345.1239	120.5829	7578.5	0.085278	0.013279291	25989.63

8.2 Intermediate verification experiments

When the reaction was performed under the reaction conditions similar to a TBHP/acid-mediated dioxygenation, a mixture of hydroperoxide (**3da'**) and alcohol (**3da**) was given (the ratio of **3da'/3da** was ca. 2.54:1).

NMR analysis of hydroperoxide (3da')^[4a,7] and alcohol (3da)^[4]

We synthesized hydroperoxides^[4a] **3da'**, **3ga'**, **3pa'** and **5i'** and found that these compounds could be converted into the corresponding alcohols **3da**, **3ga**, **3pa** and **5i** in excellent yields under our standard reaction conditions in the presence of 1.0 equiv. of NHPI and 10 mol% of pyridine.

NMR Spectra of hydroperoxide 3da'[4a,7]

S14

NMR Spectra of hydroperoxide $3ga'^{[4a,7]}$

NMR Spectra of hydroperoxide **3pa'**^[4a,7]

NMR Spectra of hydroperoxide 5i'^[4a,7]

9. Characterization data of products

Ph **3-((1,3-dioxoisoindolin-2-yl)oxy)-2-hydroxy-***N***,2-dimethyl-***N***-phenylpropanamide (3aa):** By following the typical procedure, the product was obtained as a white solid (65.2 mg, 92% yield); ¹H NMR (400 MHz, CDCl₃, ppm) δ : 7.80 (d, *J* = 3.8 Hz, 2H), 7.72 (d, *J* = 3.8 Hz, 2H), 7.40-7.32 (m, 5H), 4.52 (d, *J* = 79.6 Hz, CH-H + O-H), 3.86 (d, *J* = 10.8 Hz, 1H), 3.27 (s, 3H), 1.24 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ : 172.5, 163.3, 144.0, 134.4, 129.3, 128.6, 127.9, 127.7, 123.5, 83.5, 75.5, 40.8, 23.6; HRMS *m/z* (ESI) Calcd for C₁₉H₁₉N₂O₅⁺ (M + H)⁺ 355.1294, found 355.1282.

3-((1,3-Dioxoisoindolin-2-yl)oxy)-2-hydroxy-N-methyl-N-phenylpropanamide

(**3ba**): By following the typical procedure, the product was obtained as a white solid (59.2 mg, 87% yield); ¹H NMR (400 MHz, CDCl₃, ppm) δ: 7.81-7.75 (m, 4H), 7.34-7.28 (m, 4H), 7.12 (t, *J* = 7.3 Hz, 1H), 4.53 (d, *J* = 6.4 Hz, 1H), 4.15 (d, *J* = 10.8 Hz, 1H), 4.03 (dd, *J* = 11.2, 6.3 Hz, 1H), 3.98 (s, 1H), 3.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ: 170.0, 163.1, 141.8, 134.5, 129.9, 128.7, 128.3, 127.3, 123.5, 79.6, 67.5, 38.2; HRMS *m/z* (ESI) Calcd for C₁₈H₁₇N₂O₅⁺ (M + H)⁺ 341.1137, found 341.1132.

3-((1,3-dioxoisoindolin-2-yl)oxy)-2-hydroxy-2-methyl-N,N-diphenylpropanamid

(3ca): By following the typical procedure, the product was obtained as a white solid (77.5 mg, 93% yield); ¹H NMR (400 MHz, CDCl₃, ppm) δ: 7.88-7.83 (m, 2H), 7.78-7.73 (m, 2H), 7.45-7.35 (m, 8H), 7.28-7.25 (m, 2H), 4.66 (d, *J* = 10.8 Hz, 1H), 4.45 (s, 1H), 3.98 (d, *J* = 10.8 Hz, 1H), 1.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ: 173.6, 163.5, 143.4, 134.6, 129.3, 128.8, 128.1, 127.5, 123.7, 83.9, 76.3, 24.2; HRMS *m/z* (ESI) Calcd for C₂₄H₂₁N₂O₅⁺ (M + H)⁺ 417.1450, found 417.1448.

3-((1,3-dioxoisoindolin-2-yl)oxy)-2-hydroxy-2-methyl-N-phenylpropanamide

(**3da**): By following the typical procedure, the product was obtained as a white solid (65.3 mg, 96% yield); ¹H NMR (400 MHz, CDCl₃, ppm) δ: 8.75 (s, 1H), 7.73-7.66 (m, 4H), 7.43 (d, *J* = 8.0 Hz, 2H), 7.22 (t, *J* = 7.6 Hz, 2H), 7.04 (t, *J* = 7.4 Hz, 1H), 4.97 (d, *J* = 11.6 Hz, 1H), 4.94 (s, 1H), 4.12 (d, *J* = 11.6 Hz, 1H), 1.50 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ: 171.5, 163.8, 137.1, 134.7, 128.8, 128.3, 124.3, 123.8, 119.4, 82.6, 74.8, 23.2; HRMS *m/z* (ESI) Calcd for C₁₈H₁₇N₂O₅⁺ (M + H)⁺ 341.1137, found 341.1138.

3-((1,3-dioxoisoindolin-2-yl)oxy)-N-(4-fluorophenyl)-2-hydroxy-2-

methylpropanamide (3ea): By following the typical procedure, the product was obtained as a white solid (63.1 mg, 88% yield); ¹H NMR (400 MHz, CDCl₃, ppm) δ : 8.75 (s, 1H), 7.74-7.68 (m, 4H), 7.40 (dd, J = 8.1, 5.0 Hz, 2H), 6.91 (t, J = 8.4 Hz, 2H), 4.97 (d, J = 11.6 Hz, 1H), 4.11 (d, J = 11.6 Hz, 1H), 1.49 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ : 171.5, 163.8, 159.3 (d, J = 242.2 Hz), 134.8, 133.2 (d, J = 2.8 Hz), 128.3, 123. 8, 121.1 (d, J = 7.8 Hz), 115.4 (d, J = 22.3 Hz), 82.6, 74.7, 23.2; HRMS *m/z* (ESI) Calcd for C₁₈H₁₆FN₂O₅⁺ (M + H)⁺ 359.1043, found 359.1047.

N-(4-chlorophenyl)-3-((1,3-dioxoisoindolin-2-yl)oxy)-2-hydroxy-2-

methylpropanamide (3fa): By following the typical procedure, the product was obtained as a white solid (68.2 mg, 91% yield); ¹H NMR (400 MHz, CDCl₃, ppm) δ : 8.79 (s, 1H), 7.69 (t, J = 5.8 Hz, 4H), 7.39 (d, J = 8.4 Hz, 2H), 7.17 (d, J = 8.4 Hz, 2H), 4.96 (d, J = 11.5 Hz, 1H), 4.10 (d, J = 11.5 Hz, 1H), 1.49 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ : 171.6, 163.8, 135.7, 134.8, 129.3, 128.8, 128.3, 123.8, 120.6,

82.5, 74.8, 23.1; HRMS m/z (ESI) Calcd for $C_{18}H_{16}CIN_2O_5^+$ (M + H)⁺ 375.0747,

found 375.0741.

N-(4-bromophenyl)-3-((1,3-dioxoisoindolin-2-yl)oxy)-2-hydroxy-2-

methylpropanamide (3ga): By following the typical procedure, the product was obtained as a white solid (80.5 mg, 96% yield); ¹H NMR (400 MHz, CDCl₃, ppm) δ : 8.76 (s, 1H), 7.74-7.69 (m, 4H), 7.36-7.31 (m, 4H), 4.98 (d, *J* = 11.6 Hz, 1H), 4.93 (s, 1H), 4.11 (d, *J* = 11.6 Hz, 1H), 1.50 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ : 171.7, 163.8, 136.3, 134.9, 131.8, 128.3, 123.8, 120.9, 117.0, 82.5, 74.8, 23.2; HRMS *m/z* (ESI) Calcd for C₁₈H₁₆BrN₂O₅⁺ (M + H)⁺ 419.0242, found 419.0237.

3-((1,3-dioxoisoindolin-2-yl)oxy)-2-hydroxy-N-(4-iodophenyl)-2-

methylpropanamide (3ha): By following the typical procedure, the product was obtained as a white solid (86.7 mg, 93% yield); ¹H NMR (400 MHz, CDCl₃, ppm) δ : 8.77 (s, 1H), 7.72-7.68 (m, 4H), 7.50 (d, J = 8.0 Hz, 2H), 7.23 (d, J = 8.2 Hz, 2H), 4.95 (d, J = 11.2 Hz, 2H), 4.10 (d, J = 11.6 Hz, 1H), 1.48 (s, 3H); ¹³C NMR (100

MHz, CDCl₃, ppm) δ: 171.7, 163.7, 137.7, 136.9, 134.8, 128.3, 123.8, 121.2, 87.6, 82.5, 74.8, 23.1; HRMS *m/z* (ESI) Calcd for C₁₈H₁₆IN₂O₅⁺ (M + H)⁺ 467.0104, found 467.0108.

3-((1,3-Dioxoisoindolin-2-yl)oxy)-2-hydroxy-2-methyl-N-(4-

(trifluoromethyl)phenyl)propenamide (3ia): By following the typical procedure, the product was obtained as a white solid (62.9 mg, 77% yield); ¹H NMR (400 MHz, CDCl₃, ppm) δ : 8.95 (s, 1H), 7.71-7.65 (m, 4H), 7.57 (d, J = 8.4 Hz, 2H), 7.46 (d, J = 8.4 Hz, 2H), 5.01 (d, J = 11.6 Hz, 1H), 4.99 (s, 1H), 4.11 (d, J = 11.6 Hz, 1H), 1.50 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ : 172.1, 163.8, 140.1, 134.9, 128.2, 126.1 (q, J = 32.5 Hz), 126.1 (q, J = 3.8 Hz), 124.0 (q, J = 270.0 Hz), 123.8, 119.0, 82.4, 74.9, 23.1; HRMS *m/z* (ESI) Calcd for C₁₉H₁₆F₃N₂O₅⁺ (M + H)⁺ 409.1011, found 409.1015.

Ethyl-4-(3-((1,3-dioxoisoindolin-2-yl)oxy)-2-hydroxy-2-

methylpropanamido)benzoate (3ja): By following the typical procedure, the

product was obtained as a white solid (61 mg, 74% yield); ¹H NMR (400 MHz, CDCl₃, ppm) δ : 8.92 (s, 1H), 7.92 (d, J = 8.4 Hz, 2H), 7.74-7.67 (m, 4H), 7.52 (d, J = 8.4 Hz, 2H), 4.99 (d, J = 11.6 Hz, 1H), 4.35 (q, J = 7.1 Hz, 2H), 4.12 (d, J = 11.6 Hz, 1H), 1.51 (s, 3H), 1.38 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ : 171.9, 164.2, 163.8, 141.1, 134.9, 130.6, 128.3, 126.1, 123.8, 118.6, 82.6, 74.9, 60.9, 23.2, 14.3; HRMS *m*/*z* (ESI) Calcd for C₂₁H₂₁N₂O₇⁺ (M + H)⁺ 413.1349, found 413.1346.

3-((1,3-Dioxoisoindolin-2-yl)oxy)-2-hydroxy-2-methyl-N-(4-

nitrophenyl)propanamide (3ka): By following the typical procedure, the product was obtained as a yellow solid (53.2 mg, 69% yield); ¹H NMR (400 MHz, CDCl₃, ppm) δ : 9.15 (s, 1H), 8.15-8.12 (m, 2H), 7.76-7.65 (m, 6H), 5.04 (s, 1H), 4.98 (d, J = 11.6 Hz, 1H), 4.12 (d, J = 11.6 Hz, 1H), 1.51 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ : 172.3, 163.8, 143.6, 142.9, 135.0, 128.2, 124.9, 123.9, 119.0, 82.7, 75.0, 23.1; HRMS *m/z* (ESI) Calcd for C₁₈H₁₆N₃O₇⁺ (M + H)⁺ 386.0988, found 386.0991.

3-((1,3-Dioxoisoindolin-2-yl)oxy)-2-hydroxy-N-(4-methoxyphenyl)-2-

methylpropanamide (3la): By following the typical procedure, the product was obtained as a white solid (59.3 mg, 80% yield); ¹H NMR (400 MHz, CDCl₃, ppm) δ : 8.68 (s, 1H), 7.74-7.67 (m, 4H), 7.30 (d, J = 8.0 Hz, 2H), 7.02 (d, J = 8.0 Hz, 2H), 4.97 (d, J = 11.6 Hz, 1H), 4.12 (d, J = 11.6 Hz, 1H), 2.27 (s, 3H), 1.50 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ : 171.3, 163.8, 134.7, 134.6, 133.9, 129.3, 128.4, 123.8, 119.4, 82.7, 74.7, 23.2, 20.8; HRMS *m/z* (ESI) Calcd for C₁₉H₁₉N₂O₆⁺ (M + H)⁺ 371.1243, found 371.1239.

3-((1,3-Dioxoisoindolin-2-yl)oxy)-2-hydroxy-N-(3-methoxyphenyl)-2-

methylpropanamide (3ma): By following the typical procedure, the product was obtained as a colorless oil (49.6 mg, 67% yield); ¹H NMR (400 MHz, CDCl₃, ppm) δ : 8.73 (s, 1H), 7.74-7.67 (m, 4H), 7.20 (t, J = 2.2 Hz, 1H), 7.12 (t, J = 8.0 Hz, 1H), 6.90 (ddd, J = 8.0, 2.0, 0.9 Hz, 1H), 6.60 (ddd, J = 8.3, 2.6, 1.0 Hz, 1H), 5.00 (d, J = 11.2

Hz, 1H), 4.11 (d, J = 11.6 Hz, 1H), 3.72 (s, 3H), 1.50 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ : 171.6, 163.8, 160.0, 138.3, 134.8, 129.5, 128.3, 123.8, 111.5, 110.6, 104.5, 82.6, 74.8, 55.2, 23.2; HRMS *m*/*z* (ESI) Calcd for C₁₉H₁₉N₂O₆⁺ (M + H)⁺ 371.1243, found 371.1237.

3-((1,3-Dioxoisoindolin-2-yl)oxy)-2-hydroxy-N-(2-methoxyphenyl)-2-

methylpropanamide (3na): By following the typical procedure, the product was obtained as a colorless oil (43 mg, 58% yield); ¹H NMR (400 MHz, CDCl₃, ppm) δ : 9.33 (s, 1H), 8.07 (dd, J = 8.1, 1.6 Hz, 1H), 7.74-7.67 (m, 4H), 6.98 (td, J = 7.9, 1.6 Hz, 1H), 6.85 (dd, J = 8.2, 1.2 Hz, 1H), 6.77 (td, J = 7.8, 1.2 Hz, 1H), 5.01 (d, J = 11.2 Hz, 1H), 4.93 (s, 1H), 4.13 (d, J = 11.6 Hz, 1H), 3.92 (s, 3H), 1.51 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ : 171.3, 163.8, 148.3, 134.7, 128.3, 126.9, 123.9, 123.7, 120.7, 119.0, 109.9, 83.0, 75.1, 55.8, 23.2; HRMS *m/z* (ESI) Calcd for C₁₉H₁₉N₂O₆⁺ (M + H)⁺ 371.1243, found 371.1240.

3-((1,3-Dioxoisoindolin-2-yl)oxy)-2-hydroxy-2-methyl-N-(pyridin-2-

yl)propanamide (30a): By following the typical procedure, the product was obtained

as a white solid (49.8 mg, 73% yield); ¹H NMR (400 MHz, CDCl₃, ppm) δ : 9.35 (s, 1H), 8.30 (ddd, J = 4.9, 2.0, 0.9 Hz, 1H), 7.99 (dt, J = 8.4, 1.0 Hz, 1H), 7.79-7.68 (m, 4H), 7.57 (ddd, J = 8.3, 7.3, 1.9 Hz, 1H), 7.01 (ddd, J = 7.4, 4.9, 1.0 Hz, 1H), 4.99 (d, J = 11.4 Hz, 1H), 4.13 (d, J = 11.4 Hz, 1H), 1.52 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ : 172.3, 163.7, 150.6, 147.9, 138.1, 134.8, 128.4, 123.8, 120.0, 113.5, 83.1, 74.9, 23.0; HRMS *m*/*z* (ESI) Calcd for C₁₇H₁₆N₃O₅⁺(M + H)⁺ 342.1090, found 342.1088.

N-Cyclohexyl-3-((1,3-dioxoisoindolin-2-yl)oxy)-2-hydroxy-2-

methylpropanamide(3pa): By following the typical procedure, the product was obtained as a colorless oil (45.7 mg, 66% yield); ¹H NMR (400 MHz, CDCl₃, ppm) δ : 7.84-7.80 (m, 2H), 7.78-7.73 (m, 2H), 6.81 (d, J = 8.4 Hz, 1H), 4.84 (d, J = 11.6 Hz, 1H), 4.66 (s, 1H), 4.05 (d, J = 11.2 Hz, 1H), 3.57-3.47 (m, 1H), 1.70-1.54 (m, 4H), 1.39 (s, 3H), 1.34-1.04 (m, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ : 172.4, 163.8, 134.8, 128.6, 123.8, 82.6, 74.0, 48.1, 32.9, 25.4, 24.7, 23.5; HRMS *m/z* (ESI) Calcd for $C_{18}H_{23}N_2O_5^+$ (M + H)⁺ 347.1607, found 347.1603.

N-Butyl-3-((1,3-dioxoisoindolin-2-yl)oxy)-2-hydroxy-2-methylpropanamide (3qa): By following the typical procedure, the product was obtained as a colorless oil (54.5 mg, 85% yield); ¹H NMR (400 MHz, CDCl₃, ppm) δ : 7.85-7.80 (m, 2H), 7.78-7.74 (m, 2H), 6.96 (s, 1H), 4.83 (d, *J* = 11.2 Hz, 1H), 4.05 (d, *J* = 11.6 Hz, 1H), 3.18-3.04 (m, 2H), 2.13 (s, 1H), 1.45-1.37 (m, 2H), 1.41 (s, 3H), 1.34-1.24 (m, 3H), 0.87 (t, *J* = 7.7 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ : 173.3, 163.8, 134.8, 128.5, 123.8, 82.9, 74.3, 39.0, 31.5, 23.3, 19.9, 13.7; HRMS *m/z* (ESI) Calcd for C₁₆H₂₁N₂O₅+(M + H)⁺ 321.1450, found 321.1448.

N-Benzyl-3-((1,3-dioxoisoindolin-2-yl)oxy)-2-hydroxy-2-methylpropanamide

(**3ra**): By following the typical procedure, the product was obtained as a white solid (25.5 mg, 36% yield); ¹H NMR (400 MHz, CDCl₃, ppm) δ: 7.78-7.74 (m, 2H), 7.72-7.68 (m, 2H), 7.27-7.17 (m, 5H), 4.80 (d, *J* = 11.2 Hz, 1H), 4.64 (s, 1H), 4.33 (dd, *J* = 14.8, 6.0 Hz, 1H), 4.21 (dd, *J* = 14.8, 5.6 Hz, 1H), 4.05 (d, *J* = 11.2 Hz, 1H), 1.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ: 173.3, 163.8, 137.8, 134.9, 128.7, 128.5, 127.6, 127.5, 123.9, 83.3, 74.5, 43.3, 23.3; HRMS *m/z* (ESI) Calcd for C₁₉H₁₉N₂O₅+ (M + H)⁺ 355.1294, found 355.1296.

3-((1,3-Dioxoisoindolin-2-yl)oxy)-2-hydroxy-*N***,3-diphenylpropanamide** and **2-**((**1,3-Dioxoisoindolin-2-yl)oxy)-3-hydroxy-***N***,3-diphenylpropanamide** (**3sa** + **3sa'**): By following the typical procedure, the product was obtained as a white solid (65.2 mg, 81% yield); ¹H NMR (400 MHz, CDCl₃, ppm) δ : 9.49 (s, 1.34H), 7.91 (td, *J* = 5.2, 4.7, 1.9 Hz, 1.92H), 7.87-7.77 (m, 3.71H), 7.67-7.61 (m, 2.81H), 7.52 (dd, *J* = 15.5, 7.3 Hz, 2.89H), 7.38-7.30 (m, 5.85H), 7.30-7.26 (m, 1.1H), 7.18-7.12 (m, 1.43H), 5.62 (dd, *J* = 9.3, 2.8 Hz, 1H), 5.55 (dd, *J* = 7.6, 4.6 Hz, 0.48H), 5.30 (s, 0.89H), 5.00-4.98 (m, 1.89H), 4.95 (s, 0.45), 4.27 (d, *J* = 8.0 Hz, 0.47H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ : 166.4, 164.7, 164.7, 163.8, 138.7, 137.7, 137.0, 136.8, 135.6, 135.2, 129.0, 129.0, 128.4, 128.3, 128.2, 128.1, 126.9, 126.8, 125.0, 124.9, 124.5, 124.2, 120.3, 120.2, 93.8, 89.1, 73.6, 73.6; HRMS *m*/*z* (ESI) Calcd for C₂₃H₁₉N₂O₅+(M + H)⁺ 403.1294, found 403.1291.

3-((1,3-Dioxoisoindolin-2-yl)oxy)-2-hydroxy-*N***-methyl-***N***-phenylbutanamide (3ta):** By following the typical procedure, the product was obtained as a white solid (42.5 mg, 60% yield); ¹H NMR (400 MHz, CDCl₃, ppm) δ : 7.78-7.72 (m, 4H), 7.11-7.09 (m, 2H), 7.05-7.01 (m, 2H), 6.61 (tt, *J* = 7.4, 1.3 Hz, 1H), 4.61 (dd, *J* = 7.5, 1.8 Hz,

1H), 4.11 (qd, J = 6.5, 1.7 Hz, 1H), 3.54 (d, J = 7.6 Hz, 1H), 3.26 (s, 3H), 1.33 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ : 170.6, 163.3, 141.5, 134.4, 129.7, 128.8, 127.9, 127.3, 123.4, 84.0, 68.7, 38.1, 11.6; HRMS *m/z* (ESI) Calcd for C₁₉H₁₉N₂O₅⁺(M + H)⁺ 355.1294, found 355.1292.

3-((1,3-dioxoisoindolin-2-yl)oxy)-*N*-methyl-2-oxo-*N*-phenylbutanamide (3ta'): The product was obtained as a white solid (18.7 mg, 53% yield); ¹H NMR (400 MHz, CDCl₃, ppm) δ : 7.86-7.82 (m, 2H), 7.79-7.75 (m, 2H), 7.43-7.34 (m, 4H), 7.28-7.24 (m, 1H), 5.22 (q, *J* = 6.8 Hz, 1H), 3.40 (s, 3H), 1.44 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ : 196.3, 165.8, 163.2, 141.1, 134.6, 129.6, 128.8, 128.3, 127.0, 123.7, 85.0, 36.6, 15.5; HRMS *m*/*z* (ESI) Calcd for C₁₉H₁₇N₂O₅⁺ (M + H)⁺ 353.1137, found 353.1133.

3-((2,5-Dioxopyrrolidin-1-yl)oxy)-2-hydroxy-2-methyl-N-phenylpropanamide

(3db): By following the typical procedure, the product was obtained as a white solid (53.2 mg, 91% yield); ¹H NMR (400 MHz, CDCl₃, ppm) δ: 8.69 (s, 1H), 7.57 (d, J = 8.0 Hz, 2H), 7.33 (t, J = 7.6 Hz, 2H), 7.13 (t, J = 7.4 Hz, 1H), 4.98 (d, J = 12.0 Hz, 1H), 3.93 (d, J = 12.0 Hz, 1H), 2.64-2.56 (m, 2H), 2.52-2.43 (m, 2H), 1.45 (s, 3H);
¹³C NMR (100 MHz, CDCl₃, ppm) δ: 172.0, 171.6, 137.2, 129.1, 124.7, 119.4, 80.6,

74.5, 25.1, 23.3; HRMS *m*/*z* (ESI) Calcd for $C_{14}H_{17}N_2O_5^+$ (M + H)⁺ 293.1137, found 293.1131.

3-((1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)oxy)-2-hydroxy-2-methyl-N-

phenylpropanamide (3dc): By following the typical procedure, the product was obtained as a white solid (70.3 mg, 90% yield); ¹H NMR (400 MHz, CDCl₃, ppm) δ : 8.94 (s, 1H), 8.55 (d, J = 7.6 Hz, 2H), 8.21 (d, J = 8.0 Hz, 2H), 7.71 (t, J = 7.7 Hz, 2H), 7.42 (d, J = 8.0 Hz, 2H), 7.17 (t, J = 7.6 Hz, 2H), 7.00 (t, J = 7.4 Hz, 1H), 6.04 (s, 1H), 5.12 (d, J = 11.2 Hz, 1H), 4.15 (d, J = 11.2 Hz, 1H), 1.52 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ : 172.0, 161.6, 137.4, 135.1, 132.2, 131.6, 128.7, 127.2, 127.1, 124.1, 121.9, 119.3, 82.7, 75.0, 23.2; HRMS *m/z* (ESI) Calcd for C₂₂H₁₉N₂O₅⁺ (M + H)⁺ 391.1294, found 391.1290.

3-((3H-[1,2,3]triazolo[4,5-b]pyridin-3-yl)oxy)-2-hydroxy-2-methyl-N-

phenylpropanamide (3dd): By following the typical procedure, the product was obtained as a white solid (25 mg, 40% yield); ¹H NMR (400 MHz, CDCl₃, ppm) δ: 8.88 (s, 1H), 8.68 (d, J = 4.0 Hz, 1H), 8.38 (d, J = 8.0 Hz, 1H), 7.51 (d, J = 8.0 Hz, 2H), 7.40 (m, 1H), 7.29 (m, 2H), 7.10 (t, J = 8.0 Hz, 1H), 5.21 (d, J = 12.0 Hz, 1H), 4.64 (d, J = 8.0 Hz, 1H), 1.64 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ: 170.7,

150.7, 139.4, 137.1, 135.2, 130.1, 128.9, 124.6, 120.9, 119.6, 86.0, 75.4, 23.3; HRMS *m/z* (ESI) Calcd for C₁₅H₁₆N₅O₃⁺ (M + H)⁺ 314.1253, found 314.1251.

3-((((3aR,7aS)-1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2H-4,7-methanoisoindol-2-

yl)oxy)-2-hydroxy-2-methyl-*N*-phenylpropanamide (3de): By following the typical procedure, the product was obtained as a white solid (59.2 mg, 83% yield); ¹H NMR (400 MHz, CDCl₃, ppm) δ : 8.77 (s, 1H), 7.58 (d, *J* = 8.0 Hz, 2H), 7.33 (t, *J* = 7.6 Hz, 2H), 7.12 (t, *J* = 7.4 Hz, 1H), 6.13 (t, *J* = 6.8 Hz, 2H), 5.07 (s, 1H), 4.71 (d, *J* = 11.2 Hz, 1H), 3.87 (d, *J* = 11.2 Hz, 1H), 3.38 (d, *J* = 13.6 Hz, 2H), 3.17 (dd, *J* = 7.0, 4.6 Hz, 1H), 3.01 (dd, *J* = 7.0, 4.6 Hz, 1H), 1.73 (d, *J* = 8.8 Hz, 1H), 1.44 (d, *J* = 6.3 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ : 173.0, 172.1, 171.5, 137.3, 134.7, 134.4, 129.0, 124.5, 119.4, 82.5, 74.5, 51.4, 44.6, 44.6, 42.5, 42.3, 23.1; HRMS *m/z* (ESI) Calcd for C₁₉H₂₁N₂O₅⁺ (M + H)⁺ 357.1450, found 357.1445.

2-(2-Hydroxy-2-phenylethoxy)isoindoline-1,3-dione (5a): By following the typical procedure, the product was obtained as a white solid (60.3 mg, 71% yield); ¹H NMR (400 MHz, CDCl₃, ppm) δ: 7.84 – 7.79 (m, 2H), 7.75 – 7.70 (m, 2H), 7.33 – 7.19 (m, 5H), 4.94 (dd, *J* = 9.9, 2.5 Hz, 1H), 4.31 (dd, *J* = 11.7, 2.5 Hz, 1H), 4.17 (s, 1H), 4.05 (dd, *J* = 11.7, 9.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ: 164.3, 138.1, 134.9,

128.7, 128.5, 128.1, 126.2, 123.9, 83.7, 70.8; HRMS *m*/*z* (ESI) Calcd for C₁₆H₁₄NO₄⁺ (M + H)⁺ 284.0923, found 284.0925.

2-(2-Hydroxy-2-(p-tolyl)ethoxy)isoindoline-1,3-dione (**5b**): By following the typical procedure, the product was obtained as a white solid (67.8 mg, 76% yield); ¹H NMR (400 MHz, CDCl₃, ppm) δ : 7.90 – 7.86 (m, 2H), 7.81 – 7.77 (m, 2H), 7.26 (d, *J* = 8.0 Hz, 2H), 7.15 (d, *J* = 8.0 Hz, 2H), 4.97 (dd, *J* = 9.9, 2.5 Hz, 1H), 4.35 (dd, *J* = 11.7, 2.5 Hz, 1H), 4.11 (dd, *J* = 11.7, 9.9 Hz, 1H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ : 164.3, 137.8, 135.0, 134.8, 129.2, 128.7, 126.1, 123.9, 83.6, 70.6, 21.1; HRMS *m/z* (ESI) Calcd for C₁₇H₁₆NO₄⁺ (M + H)⁺ 298.1079, found 298.1083.

2-(2-(4-(*Tert***-butyl)phenyl)-2-hydroxyethoxy)isoindoline-1,3-dione (5c):** By following the typical procedure, the product was obtained as a white solid (84.5 mg, 83% yield); ¹H NMR (400 MHz, CDCl₃, ppm) δ : 7.90 – 7.86 (m, 2H), 7.82 – 7.77 (m, 2H), 7.38 – 7.35 (m, 2H), 7.31 – 7.29 (m, 2H), 4.98 (dd, J = 9.8, 2.5 Hz, 1H), 4.37 (dd, J = 11.7, 2.5 Hz, 1H), 4.15 (dd, J = 11.7, 9.8 Hz, 2H), 1.29 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ : 164.3, 151.1, 135.0, 134.8, 128.8, 125.9, 125.5, 123.9, 83.6, 70.5, 34.5, 31.3; HRMS *m/z* (ESI) Calcd for C₂₀H₂₂NO₄⁺ (M + H)⁺ 340.1549, found 340.1551.

2-(2-([1,1'-Biphenyl]-4-yl)-2-hydroxyethoxy)isoindoline-1,3-dione (5d): By following the typical procedure, the product was obtained as a white solid (86.3 mg, 80% yield); ¹H NMR (400 MHz, CDCl₃, ppm) δ : 7.92 – 7.87 (m, 2H), 7.83 – 7.78 (m, 2H), 7.59 – 7.55 (m, 4H), 7.47 – 7.41 (m, 4H), 7.36 – 7.32 (m, 1H), 5.06 (d, *J* = 9.7 Hz, 1H), 4.43 (dd, *J* = 11.7, 2.5 Hz, 1H), 4.28 (s, 1H), 4.17 (dd, *J* = 11.7, 9.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ : 164.4, 141.1, 140.6, 137.0, 134.9, 128.7, 127.4, 127.3, 127.1, 126.6, 123.9, 83.6, 70.5; HRMS *m/z* (ESI) Calcd for C₂₂H₁₈NO₄⁺ (M + H)⁺ 360.1236, found 360.1239.

2-(2-(4-Chlorophenyl)-2-hydroxyethoxy)isoindoline-1,3-dione (5e): By following the typical procedure, the product was obtained as a white solid (65.8 mg, 69% yield); ¹H NMR (400 MHz, CDCl₃, ppm) δ : 7.90 – 7.86 (m, 2H), 7.82 – 7.77 (m, 2H), 7.34 – 7.29 (m, 4H), 4.98 (dd, J = 9.8, 2.5 Hz, 1H), 4.34 (dd, J = 11.7, 2.5 Hz, 2H), 4.06 (dd, J = 11.7, 9.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ : 164.3, 136.6, 134.9, 133.9, 128.7, 128.7, 127.5, 124.0, 83.4, 70.1; HRMS *m/z* (ESI) Calcd for C₁₆H₁₃ClNO₄⁺ (M + H)⁺ 318.0533, found 318.0537.

2-(2-(4-Bromophenyl)-2-hydroxyethoxy)isoindoline-1,3-dione (5f): By following

the typical procedure, the product was obtained as a white solid (79.3 mg, 73% yield); ¹H NMR (400 MHz, CDCl₃, ppm) δ : 7.90 – 7.85 (m, 2H), 7.81 – 7.77 (m, 2H), 7.26 (d, *J* = 8.0 Hz, 2H), 7.15 (d, *J* = 8.0 Hz, 2H), 4.97 (dd, *J* = 9.9, 2.5 Hz, 1H), 4.35 (dd, *J* = 11.6, 2.5 Hz, 1H), 4.18 (s, 1H), 4.11 (dd, *J* = 11.7, 9.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ : 164.3, 137.8, 135.0, 134.8, 129.2, 128.7, 126.1, 123.9, 83.6, 70.5; HRMS *m/z* (ESI) Calcd for C₁₆H₁₃BrNO₄⁺ (M + H)⁺ 362.0028, found 362.0031.

2-(2-Hydroxy-2-(4-(trifluoromethyl)phenyl)ethoxy)isoindoline-1,3-dione (5g): By following the typical procedure, the product was obtained as a white solid (58 mg, 55% yield); ¹H NMR (400 MHz, CDCl₃, ppm) δ : 7.91 – 7.87 (m, 2H), 7.83 – 7.78 (m, 2H), 7.61 (d, *J* = 8.4 Hz, 2H), 7.52 (d, *J* = 8.4 Hz, 2H), 5.06 (dd, *J* = 9.7, 2.5 Hz, 1H), 4.40 (dd, *J* = 11.7, 2.6 Hz, 2H), 4.10 (dd, *J* = 11.7, 9.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ : 164.3, 142.1, 135.0, 130.3 (q, *J* = 32.4 Hz), 128.7, 126.5, 125.5 (q, *J* = 3.7 Hz), 124.0 (q, *J* = 270.4 Hz), 124.0, 83.3, 70.2; HRMS *m/z* (ESI) Calcd for C₁₇H₁₃F₃NO₄⁺ (M + H)⁺ 352.0796, found 352.0799.

2-(2-(2-Chlorophenyl)-2-hydroxyethoxy)isoindoline-1,3-dione (5h): By following the typical procedure, the product was obtained as a white solid (60.1 mg, 63% yield); ¹H NMR (400 MHz, CDCl₃, ppm) δ: 7.92 – 7.87 (m, 2H), 7.82 – 7.78 (m, 2H), 7.70 (dd, *J* = 7.7, 1.6 Hz, 1H), 7.34 – 7.29 (m, 2H), 7.25 – 7.21 (m, 1H), 5.37 (dd, *J* = 9.7, 2.2 Hz, 1H), 4.51 (dd, J = 11.8, 2.2 Hz, 1H), 4.41 (s, 1H), 3.96 (dd, J = 11.8, 9.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ: 164.4, 135.6, 134.9, 131.6, 129.2, 129.1, 128.7, 127.8, 127.3, 124.0, 81. 9, 67.7; HRMS *m/z* (ESI) Calcd for C₁₆H₁₃ClNO₄⁺ (M + H)⁺ 318.0533, found 318.0535.

2-(2-Hydroxy-2,2-diphenylethoxy)isoindoline-1,3-dione (5i): By following the typical procedure, the product was obtained as a white solid (69 mg, 64% yield); ¹H NMR (400 MHz, CDCl₃, ppm) δ : 7.80 – 7.76 (m, 2H), 7.74 – 7.69 (m, 2H), 7.54 – 7.51 (m, 4H), 7.32 – 7.28 (m, 4H), 7.22 – 7.18 (m, 2H), 4.83 (s, 2H), 4.75 (s, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ : 163.6, 142.9, 134.6, 128.4, 128.2, 127.4, 126.4, 123.6, 84.4, 77.3; HRMS *m/z* (ESI) Calcd for C₂₂H₁₈NO₄⁺ (M + H)⁺ 360.1236, found 360.1238.

2-((3-Chloro-1-hydroxy-1-phenylpropan-2-yl)oxy)isoindoline-1,3-dione (5j): By following the typical procedure, the product was obtained as a white solid (52.7 mg, 53% yield); ¹H NMR (400 MHz, CDCl₃, ppm) δ : 7.89 – 7.84 (m, 2H), 7.81 – 7.77 (m, 2H), 7.49 – 7.46 (m, 2H), 7.36 – 7.27 (m, 3H), 5.20 (dd, J = 7.8, 2.9 Hz, 1H), 4.42 – 4.37 (m, 2H), 4.13 (dd, J = 12.4, 3.6 Hz, 1H), 3.41 (dd, J = 12.4, 3.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ : 164.2, 138.2, 135.0, 128.7, 128.6, 128.5, 126.9,

124.0, 92.5, 72.7, 43.3; HRMS *m/z* (ESI) Calcd for C₁₇H₁₅ClNO₄⁺ (M + H)⁺ 332.0689, found 332.0693.

2-((3-Hydroxytetrahydrofuran-2-yl)oxy)isoindoline-1,3-dione (5k): By following the typical procedure, the product was obtained as a white solid (50 mg, 67% yield); ¹H NMR (500 MHz, CDCl₃, ppm) δ : 7.81 – 7.78 (m, 2H), 7.73 – 7.69 (m, 2H), 5.76 (d, J = 4.8 Hz, 1H), 4.35 – 4.30 (m, 1H), 4.01 – 3.97 (m, 1H), 2.30 – 2.18 (m, 2H), 2.12 – 2.05 (m, 1H), 1.97 – 1.89 (m, 1H); ¹³C NMR (125 MHz, CDCl₃, ppm) δ : 163.8, 134.2, 129.0, 123.3, 108.7, 69.0, 30.7, 22.5; HRMS *m/z* (ESI) Calcd for C₁₂H₁₂NO₅⁺ (M + H)⁺ 250.0715, found 250.0719.

2-((2-Hydroxy-2,3-dimethylbut-3-en-1-yl)oxy)isoindoline-1,3-dione (51): By following the typical procedure, the product was obtained as a white solid (47.8 mg, 61% yield); ¹H NMR (500 MHz, CDCl₃, ppm) δ : 7.85 – 7.82 (m, 2H), 7.78 – 7.74 (m, 2H), 5.20 (d, J = 1.0 Hz, 1H), 4.93 (t, J = 1.5 Hz, 1H), 4.49 (d, J = 10.5 Hz, 1H), 4.04 (d, J = 10.5 Hz, 1H), 3.75 (s, 1H), 1.84 (d, J = 0.7 Hz, 3H), 1.35 (s, 3H); ¹³C NMR (125 MHz, CDCl₃, ppm) δ : 163.8, 147.1, 134.7, 128.6, 123.7, 111.6, 84.9, 74.2, 23.7, 19.4; HRMS m/z (ESI) Calcd for C₁₄H₁₆NO₄⁺ (M + H)⁺ 262.1079, found 262.1083.

2,3-Dihydroxy-2-methyl-*N***-phenylpropanamide (6):** The product was obtained as a white solid (100 mg, 62% yield); ¹H NMR (400 MHz, CDCl₃, ppm) δ: 8.71 (s, 1H), 7.57 (d, *J* = 7.6 Hz, 2H), 7.34 (t, *J* = 8.0 Hz, 2H), 7.13 (t, *J* = 7.4 Hz, 1H), 4.15 (d, *J* = 11.0 Hz, 1H), 3.54 (d, *J* = 11.0 Hz, 1H), 3.37 (s, 1H), 2.04 (s, 1H), 1.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ: 173.1, 137.2, 129.1, 124.6, 119.6, 76.4, 67.7, 22.6; HRMS *m/z* (ESI) Calcd for C₁₀H₁₄NO₃⁺ (M + H)⁺ 196.0973, found 196.0969.

2-Methyl-5,6-dioxo-*N*-**phenyl-1,4-dioxane-2-carboxamide (7):** The product was obtained as a white solid (44.7 mg, 70% yield); ¹H NMR (400 MHz, CDCl₃, ppm) δ: 8.24 (s, 1H), 7.56 (dt, *J* = 8.8, 1.7 Hz, 2H), 7.38-7.33 (m, 2H), 7.21-7.16 (m, 1H), 4.82 (d, *J* = 9.2 Hz, 1H), 4.34 (d, *J* = 9.2 Hz, 1H), 1.81 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ: 167.9, 153.0, 136.1, 129.1, 125.5, 120.3, 82.1, 73.3, 23.7; HRMS *m/z* (ESI) Calcd for C₁₂H₁₂NO₅⁺ (M + H)⁺ 250.0715, found 250.0713.

2-Methyl-N-phenyl-1,4-dioxane-2-carboxamide (8): The product was obtained as a white solid (42.5 mg, 75% yield); ¹H NMR (400 MHz, CDCl₃, ppm) δ: 8.40 (s, 1H), 7.61-7.58 (m, 2H), 7.37-7.32 (m, 2H), 7.15-7.11 (m, 1H), 4.05 (d, J = 11.6 Hz, 1H),

3.94 (ddd, J = 11.9, 6.7, 3.1 Hz, 1H), 3.83 (ddd, J = 11.8, 5.4, 3.3 Hz, 1H), 3.76-3.67 (m, 2H), 3.63 (d, J = 11.6 Hz, 1H), 1.52 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ : 170.9, 137.4, 129.0, 124.4, 119.5, 75.8, 71.1, 66.2, 62.4, 20.4; HRMS *m/z* (ESI) Calcd for C₁₂H₁₆NO₃⁺ (M + H)⁺ 222.1130, found 222.1127.

3-((1,3-Dioxoisoindolin-2-yl)oxy)-2-hydroperoxy-2-methyl-N-

phenylpropanamide (3da') and 3-((1,3-dioxoisoindolin-2-yl)oxy)-2-hydroxy-2methyl-*N*- phenylpropanamide (3da): The product was obtained as a white solid (43.7 mg, 61% yield); ¹H NMR (500 MHz, CDCl₃, ppm) δ : 10.71 (s, 1H), 8.75 (s, 0.33H), 8.50 (s, 1H), 7.87 (dd, J = 5.4, 3.1 Hz, 2H), 7.79 (dd, J = 5.5, 3.1 Hz, 2H), 7.72 (dd, J = 5.4, 3.1 Hz, 0.75H), 7.67 (dd, J = 5.5, 3.1 Hz, 0.74H), 7.59 (d, J = 7.7Hz, 2H), 7.43 (d, J = 7.7 Hz, 0.72H), 7.33 (t, J = 7.9 Hz, 2H), 7.22 (t, J = 7.9 Hz, 0.77H), 7.13 (t, J = 7.4 Hz, 1H), 7.04 (t, J = 7.0 Hz, 0.39H), 4.98 (d, J = 11.5 Hz, 0.43H), 4.82 (d, J = 10.2 Hz, 1H), 4.58 (d, J = 10.2 Hz, 1H), 4.12 (d, J = 11.5 Hz, 0.38H), 1.64 (s, 3H), 1.51 (s, 1H); ¹³C NMR (126 MHz, CDCl₃, ppm) δ : 171.5, 168.9, 163.9, 163.8, 137.1, 135.0, 134.8, 129.00, 128.8, 128.5, 128.3, 124.7, 124.4, 124.0, 123.8, 120.0, 119.4, 85.6, 82.6, 77.6, 74.8, 23.2, 19.2. HRMS *m/z* (ESI) Calcd for C₁₈H₁₆N₂NaO₆⁺ (M + Na)⁺ 379.0906, found 379.0904; HRMS *m/z* (ESI) Calcd for C₁₈H₁₆N₂NaO₆⁺ (M + H)⁺ 341.1137, found 341.1133.

3-((1,3-Dioxoisoindolin-2-yl)oxy)-2-hydroperoxy-2-methyl-N-

phenylpropanamide (3da'): ¹H NMR (400 MHz, CDCl₃, ppm) δ : 10.74 (s, 1H), 8.49 (s, 1H), 7.88-7.78 (m, 4H), 7.59 (d, J = 8.0 Hz, 2H), 7.34 (t, J = 7.7 Hz, 2H), 7.13 (t, J = 7.4 Hz, 1H), 4.82 (d, J = 10.2 Hz, 1H), 4.58 (d, J = 10.2 Hz, 1H), 1.64 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ : 168.9, 163.9, 137.1, 135.0, 129.0, 128.5, 124.7, 124.0, 120.0, 85.6, 77.6, 19.3; HRMS *m*/*z* (ESI) Calcd for C₁₈H₁₆N₂NaO₆⁺ (M + Na)⁺ 379.0906, found 379.0904.

N-(4-Bromophenyl)-3-((1,3-dioxoisoindolin-2-yl)oxy)-2-hydroperoxy-2-

methylpropanamide (3ga'): ¹H NMR (400 MHz, CDCl₃, ppm) δ: 10.71 (s, 1H), 8.55 (s, 1H), 7.86 (dt, J = 7.5, 3.7 Hz, 2H), 7.79 (dd, J = 5.5, 3.1 Hz, 2H), 7.50 (d, J = 8.9 Hz, 2H), 7.44 (d, J = 8.9 Hz, 2H), 4.78 (d, J = 10.3 Hz, 1H), 4.56 (d, J = 10.3 Hz, 1H), 1.62 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ: 169.0, 163.9, 136.3, 135.0, 132.0, 128.5, 124.0, 121.6, 117.3, 85.7, 77.6, 19.1; HRMS *m/z* (ESI) Calcd for $C_{18}H_{15}BrN_2NaO_6^+$ (M + Na)⁺ 457.0011, found 457.0009.

N-Cyclohexyl-3-((1,3-dioxoisoindolin-2-yl)oxy)-2-hydroperoxy-2-

methylpropanamide (**3pa'**): ¹H NMR (400 MHz, CDCl₃, ppm) δ: 10.55 (s, 1H), 7.87-7.77 (m, 4H), 4.74 (d, J = 10.0 Hz, 1H), 4.48 (d, J = 10.0 Hz, 1H), 3.75 (tdd, J =10.4, 7.3, 4.0 Hz, 1H), 1.91 (dt, J = 12.4, 4.1 Hz, 2H), 1.72 (dt, J = 12.6, 4.1 Hz, 2H), 1.60 (dt, J = 12.6, 3.8 Hz, 1H), 1.53 (s, 3H), 1.41-1.18 (m, 5H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ: 169.7, 163.9, 134.9, 128.6, 123.9, 85.1, 77.8, 48.0, 32.8, 25.5, 24.7, 19.4; HRMS *m/z* (ESI) Calcd for C₁₈H₂₂N₂NaO₆⁺ (M + Na)⁺ 385.1376, found 385.1373.

2-(2-Hydroperoxy-2,2-diphenylethoxy)isoindoline-1,3-dione (5i'): ¹H NMR (400 MHz, CDCl₃, ppm) δ: 10.30 (s, 1H), 7.89-7.84 (m, 2H), 7.83-7.77 (m, 2H), 7.51 (d, *J* = 7.7 Hz, 3H), 7.38-7.27 (m, 7H), 5.13 (s, 2H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ: 163.8, 139.9, 134.9, 128.6, 128.4, 128.18, 126.8, 123.9, 88.3, 79.2; HRMS *m/z* (ESI) Calcd for C₂₂H₁₇NNaO₅⁺ (M + Na)⁺ 398.1005, found 398.1002.

10. Reference

 [1] Fabry, D. C.; Stodulski, M.; Hoerner, S.; Gulder T. Chem.-Eur. J. 2012, 18, 10834-10838.

[2] Mai, W.-P.; Wang, J.-T.; Yang, L.-R.; Yuan, J.-W.; Xiao, Y.-M.; Mao, P.; Qu, L.-

- B. Org. Lett. 2014, 16, 204-207.
- [3] Mai, W.-P.; Sun, G.-C.; Wang, J.-T.; Song, G.; Mao, P.; Yang, L.-R.; Yuan, J.-W.;
 Xiao, Y.-M.; Qu, L.-B. *J. Org. Chem.* 2014, *79*, 8094-8102.
- [4] (a) Bag, R.; Sar, D.; Punniyamurthy, T. Org. Biomol. Chem. 2016, 14, 3246-3255.
- (b) Giglio, B. C.; Schmidt, V. A.; Alexanian, E. J. J. Am. Chem. Soc. 2011, 133,
- 13320-13322. (c) Xue, Q.; Xie, J.; Xu, P.; Hu, K.; Cheng, Y.; Zhu, C. ACS Catal.
- **2013**, *3*, 1365-1368.
- [5] Itaya, T.; Iida, T.; Eguchi, Hi. Chem. Pharm. Bull. 1993, 41, 408-410.
- [6] Wang, H.; Zhu, Y.; Shang, X.; Zhang, J.; Hu, Y.; He, W.; Zhang, H.; Zhang, S.;
- Hou, D.; Liu, Q.; Peng, Y.; Han, Y. Pat. 2018041248A1, 2018.
- [7] Luo, J.; Zhang, J. J. Org. Chem. 2016, 81, 9131-9137.

11. ¹H and ¹³C NMR Spectra

100 MHz $^{13}\mathrm{C}$ NMR of **3ba** in CDCl_3

100 MHz ¹³C NMR of **3ca** in CDCl₃

100 MHz $^{13}\mathrm{C}$ NMR of $\mathbf{3da}$ in CDCl_3

100 MHz ¹³C NMR of **3ea** in CDCl₃

100 MHz $^{13}\mathrm{C}$ NMR of **3fa** in CDCl_3

100 MHz $^{13}\mathrm{C}$ NMR of 3ga in CDCl_3

100 MHz $^{13}\mathrm{C}$ NMR of **3ha** in CDCl_3

100 MHz ¹³C NMR of **3ia** in CDCl₃

100 MHz ^{13}C NMR 3ja in CDCl_3

100 MHz $^{13}\mathrm{C}$ NMR of 3ka in CDCl_3

100 MHz ¹³C NMR of **3la** in CDCl₃

100 MHz $^{13}\mathrm{C}$ NMR of **3ma** in CDCl₃

100 MHz $^{13}\mathrm{C}$ NMR of **3na** in CDCl_3

100 MHz $^{13}\mathrm{C}$ NMR of **30a** in CDCl₃

100 MHz ¹³C NMR of **3pa** in CDCl₃

100 MHz $^{13}\mathrm{C}$ NMR of 3qa in CDCl_3

100 MHz ¹³C NMR of **3ra** in CDCl₃

100 MHz ^{13}C NMR of 3sa and 3sa' in CDCl_3

станарана стана станарана станарана станарана стана ста

100 MHz ¹³C NMR of **3ta** in CDCl₃

100 MHz $^{13}\mathrm{C}$ NMR of $\mathbf{3db}$ in CDCl_3

100 MHz ^{13}C NMR of 3dc in CDCl_3

100 MHz $^{13}\mathrm{C}$ NMR of $\mathbf{3dd}$ in CDCl_3

-170.66 -150.72 -150.72 -119.57 -119.5

100 MHz ¹³C NMR of **3de** in CDCl₃

100 MHz ^{13}C NMR of 5a in CDCl_3

100 MHz ^{13}C NMR of 5b in CDCl_3

100 MHz ^{13}C NMR of 5c in CDCl_3

100 MHz ^{13}C NMR of 5d in CDCl_3

100 MHz ¹³C NMR of **5e** in CDCl₃

100 MHz ^{13}C NMR of 5f in CDCl_3

100 MHz ^{13}C NMR of 5g in CDCl_3

100 MHz ^{13}C NMR of **5h** in CDCl_3

100 MHz $^{13}\mathrm{C}$ NMR of **5i** in CDCl_3

100 MHz $^{13}\mathrm{C}$ NMR of 5j in CDCl_3

125 MHz ^{13}C NMR of 5k in CDCl_3

125 MHz ^{13}C NMR of **51** in CDCl₃

100 MHz ^{13}C NMR of **6** in CDCl_3

100 MHz ^{13}C NMR of 7 in CDCl_3

100 MHz ^{13}C NMR of ${\bf 8}$ in CDCl_3

