Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Supporting Information for

Copper-catalyzed one-pot synthesis of

2-(2,2,2-trifluoroethyl)-substituted benzofused heterocycles

Wei Wu,[‡] Beibei Luo,[‡] Yi You,* and Zhiqiang Weng*

Key Laboratory of Molecule Synthesis and Function Discovery, and Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou, 350108, China. Corresponding authors: <u>zweng@fzu.edu.cn</u>

Table of Contents

General information	S2
General procedure of copper-catalyzed one-pot synthesis of	83
2-(2,2,2-trifluoroethyl)-substituted benzofused heterocycles	55
The effect of the amount of base DBU for the reaction	S4
Procedure for gram scale reaction	S5
Unsuccessful reaction with other salicylaldehyde <i>p</i> -tosylhydrazone substrate	S6
Data for compounds	S7
Crystal structure analyses	S22
References	S24
Copies of ¹ H NMR, ¹⁹ F NMR and ¹³ C NMR spectra	S25

General information

¹H NMR, ¹⁹F NMR and ¹³C NMR spectra were recorded using Bruker AVIII 400 spectrometer. ¹H NMR and ¹³C NMR chemical shifts were reported in parts per million (ppm) downfield from tetramethylsilane and ¹⁹F NMR chemical shifts were determined relative to CFCl₃ as the external standard and low field is positive. Coupling constants (*J*) are reported in Hertz (Hz). The residual solvent peak was used as an internal reference: ¹H NMR (CDCl₃ δ 7.26) and ¹³C NMR (CDCl₃ δ 77.0). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. Salicylaldehyde *p*-tosylhydrazones **2**¹ and 2-aminobenzaldehyde *p*-tosylhydrazones **4**^{2,3} were prepared according to the published procedures. Other reagents were received from commercial sources. Solvents were freshly dried and degassed according to the published procedures prior to use. Column chromatography purifications were performed by flash chromatography using Merck silica gel 60.

General procedure of copper-catalyzed one-pot synthesis of 2-(2,2,2-trifluoroethyl)-substituted benzofused heterocycles

In a glove box filled with nitrogen, to an oven-dried 25 mL pressure tube equipped with a stir bar were added CuCl (10 mg, 0.10 mmol, 0.10 equiv), **2a** (1.0 mmol, 1.0 equiv), 2-bromo-3,3,3-trifluoro-1-propene **1** (0.26 g, 1.5 mmol, 1.5 equiv), DBU (0.53 g, 3.5 mmol, 3.5 equiv) and DMF (4.0 mL). The tube was sealed with Teflon screw cap and the solution was stirred at 100 °C for 16 h. The reaction mixture was cooled to room temperature and diluted with ethyl acetate (60 mL). The solution was washed with saturated NH₄Cl (3 × 100 mL) and saturated brine (3 × 100 mL) in turn. The solvent was removed by rotary evaporation and the resulting product was purified by column chromatography on silica gel with *n*-pentane/dichloromethane or *n*-pentane/ethyl acetate.

The effect of the amount of base DBU for the reaction

Procedure for gram scale reaction for synthesis of 2-(2,2,2-trifluoroethyl)benzofuran (3a)

In a glove box filled with nitrogen, to an oven-dried 100 mL pressure tube equipped with a stir bar were added CuCl (0.10 g, 1.0 mmol, 0.10 equiv), N-(2-hydroxybenzylidene)-4-methylbenzenesulfonohydrazide **2a** (2.90 g, 10 mmol, 1.0 equiv), 2-bromo-3,3,3-trifluoro-1-propene **1** (2.62 g, 15 mmol, 1.5 equiv), DBU (5.31 g, 35 mmol, 3.5 equiv) and DMF (40 mL). The tube was sealed with Teflon screw cap and the solution was stirred at 100 °C for 16 h. The reaction mixture was cooled to room temperature, diluted with ethyl acetate (200 mL). The solution was washed with saturated NH₄Cl (3 × 300 mL) and saturated brine (3 × 200 mL) in turn. The solvent was removed by rotary evaporation and the resulting product was purified by column chromatography on silica gel with *n*-pentane to give 1.10 g of product **3a** (55% yield).

Unsuccessful reaction with other salicylaldehyde *p*-tosylhydrazone substrate

Data for compounds

2-(2,2,2-trifluoroethyl)benzofuran (3a)

Obtained as a colorless liquid in 66% yield (132 mg). R_f (*n*-pentane) = 0.71. ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 7.6 Hz, 1H), 7.53 (d, J = 8.2 Hz, 1H), 7.35 (t, J = 7.7 Hz, 1H), 7.29 (t, J = 7.3 Hz, 1H), 6.76 (s, 1H), 3.65 (q, J = 10.1 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.2 (t, J = 10.1 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 155.1 (s), 147.1 (q, J = 3.6 Hz), 128.1 (s), 124.6 (s), 124.5 (q, J = 277.1 Hz), 123.0 (s), 121.0 (s), 111.3 (s), 106.8 (s), 34.0 (q, J = 32.3 Hz). IR (KBr): v 2928, 1607, 1588, 1454, 1366, 1288, 1264, 1133, 1080, 1009, 956, 915, 833, 806, 738, 663, 555 cm⁻¹. GC-MS m/z 200 (M⁺). HRMS (EI) m/z: calcd. for C₁₀H₇F₃O: 200.0449; found: 200.0452.

6-methyl-2-(2,2,2-trifluoroethyl)benzofuran (3b)

Obtained as a white solid in 70% yield (149 mg). M.p. 45–46 °C. R_f (*n*-pentane) = 0.70. ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 7.6 Hz, 1H), 7.32 (s, 1H), 7.10 (d, J = 7.8 Hz, 1H), 6.69 (s, 1H), 3.62 (q, J = 10.1 Hz, 2H), 2.50 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.3 (t, J = 9.9 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 155.5 (s), 146.4 (q, J = 3.7 Hz), 134.9 (s), 125.6 (s), 124.6 (q, J = 277.1 Hz), 124.4 (s), 120.4 (s), 111.4 (s), 106.6 (s), 34.0 (q, J = 32.2 Hz), 21.7 (s). IR (KBr): v 2189, 1364, 1265, 1247, 1199, 1138, 1119, 1083, 963, 904, 820, 727, 648, 508, 458, 432 cm⁻¹. GC-MS m/z 214 (M⁺). HRMS (EI) m/z: calcd. for C₁₁H₉F₃O: 214.0605; found: 214.0610.

5-methyl-2-(2,2,2-trifluoroethyl)benzofuran (3c)

Obtained as a colorless liquid in 85% yield (181 mg). R_f (*n*-pentane) = 0.71. ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 8.4 Hz, 1H), 7.38 (s, 1H), 7.15 (d, J = 8.4 Hz, 1H),

6.67 (s, 1H), 3.63 (q, J = 10.1 Hz, 2H), 2.48 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.2 (t, J = 10.1 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 153.5 (s), 147.1 (q, J = 3.6 Hz), 132.5 (s), 128.2 (s), 125.8 (s), 124.6 (q, J = 277.1 Hz), 120.8 (s), 110.7 (s), 106.6 (s), 34.1 (q, J = 32.2 Hz), 21.3 (s). IR (KBr): v 2925, 1603, 1475, 1420, 1363, 1323, 1243, 1161, 1081, 958, 873, 838, 799, 740, 665, 585, 476 cm⁻¹. GC-MS m/z 214 (M⁺). HRMS (EI) m/z: calcd. for C₁₁H₉F₃O: 214.0605; found: 214.0612.

5-(*tert*-butyl)-2-(2,2,2-trifluoroethyl)benzofuran (3d)

Obtained as a white solid in 80% yield (204 mg). M.p. 44–45 °C. R_f (*n*-pentane) = 0.70. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (s, 1H), 7.47 – 7.37 (m, 2H), 6.72 (s, 1H), 3.63 (q, J = 10.1 Hz, 2H), 1.41 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.3 (t, J = 10.1 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 153.3 (s), 147.1 (q, J = 3.7 Hz), 146.2 (s), 127.8 (s), 124.6 (q, J = 277.3 Hz), 122.6 (s), 117.2 (s), 110.5 (s), 107.0 (q, J = 0.9 Hz), 34.7 (s), 34.1 (q, J = 32.2 Hz), 31.8 (s). IR (KBr): v 2964, 1603, 1478, 1364, 1258, 1189, 1136, 1085, 958, 881, 731, 664, 538, 455 cm⁻¹. GC-MS m/z 256 (M⁺). HRMS (EI) m/z: calcd. for C₁₄H₁₅F₃O: 256.1075; found: 256.1077.

5,7-di-*tert*-butyl-2-(2,2,2-trifluoroethyl)benzofuran (3e)

Obtained as a white solid in 50% yield (156 mg). M.p. 66–67 °C. $R_f(n\text{-pentane}) = 0.69$. ¹H NMR (400 MHz, CDCl₃) δ 7.43 (s, 1H), 7.29 (s, 1H), 6.68 (s, 1H), 3.64 (q, J = 10.1 Hz, 2H), 1.53 (s, 9H), 1.40 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.3 (t, J = 10.1 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 151.7 (s), 146.1 (q, J = 3.7 Hz), 145.8 (s), 133.9 (s), 128.2 (s), 124.6 (q, J = 277.5 Hz), 119.2 (s), 114.9 (s), 106.9 (q, J = 0.6 Hz), 34.9 (s), 34.5 (s), 34.2 (q, J = 32.1 Hz), 31.9 (s), 29.8 (s). IR (KBr): v 2960, 1481,

1364, 1262, 1149, 1084, 963, 904, 871, 839, 728, 672, 650 cm⁻¹. GC-MS m/z 312 (M⁺). HRMS (EI) m/z: calcd. for C₁₈H₂₃F₃O: 312.1701; found: 312.1707.

5-methoxy-2-(2,2,2-trifluoroethyl)benzofuran (3f)

Obtained as a colorless liquid in 93% yield (213 mg). R_f (*n*-pentane/ethyl acetate = 15:1) = 0.65. ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 8.9 Hz, 1H), 7.04 (d, J = 2.0 Hz, 1H), 6.94 (dd, J = 8.9, 2.3 Hz, 1H), 6.68 (s, 1H), 3.87 (s, 3H), 3.62 (q, J = 10.1 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.2 (t, J = 10.1 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 156.1 (s), 150.1 (s), 147.8 (q, J = 3.7 Hz), 128.7 (s), 124.7 (q, J = 277.5 Hz), 113.4 (s), 111.7 (s), 106.9 (q, J = 0.8 Hz), 103.4 (s), 55.9 (s), 34.1 (q, J = 32.2 Hz). IR (KBr): v 2939, 1607, 1478, 1439, 1322, 1246, 1205, 1168, 1128, 1082, 961, 838, 731, 650, 536 cm⁻¹. GC-MS m/z 230 (M⁺). HRMS (EI) m/z: calcd. for C₁₁H₉F₃O₂: 230.0555; found: 230.0566.

6-methoxy-2-(2,2,2-trifluoroethyl)benzofuran (3g)

Obtained as a colorless liquid in 60% yield (138 mg). R_f (*n*-pentane/ethyl acetate = 15:1) = 0.65. ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 8.5 Hz, 1H), 7.04 (s, 1H), 6.91 (dd, J = 8.6, 2.0 Hz, 1H), 6.66 (s, 1H), 3.88 (s, 3H), 3.60 (q, J = 10.1 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.4 (t, J = 10.1 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 158.2 (s), 156.1 (s), 145.9 (q, J = 3.5 Hz), 130.3 (s), 124.6 (q, J = 277.2 Hz), 121.1 (s), 112.2 (s), 106.6 (s), 95.8 (s), 55.7 (s), 33.9 (q, J = 32.2 Hz). IR (KBr): v 2943, 1630, 1589, 1493, 1439, 1294, 1273, 1245, 1191, 1108, 966, 821, 665, 535, 439 cm⁻¹. GC-MS m/z 230 (M⁺). HRMS (EI) m/z: calcd. for C₁₁H₉F₃O₂: 230.0555; found: 230.0550.

4-methoxy-2-(2,2,2-trifluoroethyl)benzofuran (3h)

Obtained as a colorless liquid in 45% yield (103 mg). R_f (*n*-pentane/ethyl acetate = 15:1) = 0.65. ¹H NMR (400 MHz, CDCl₃) δ 7.25 (t, J = 8.1 Hz, 1H), 7.13 (d, J = 8.3 Hz, 1H), 6.84 (s, 1H), 6.69 (d, J = 8.0 Hz, 1H), 3.96 (s, 3H), 3.62 (q, J = 10.0 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.3 (t, J = 10.0 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 156.3 (s), 153.4 (s), 145.6 (q, J = 3.4 Hz), 126.9 (q, J = 277.2 Hz), 125.3 (s), 118.4 (s), 104.4 (s), 104.3 (s), 103.4 (s), 55.6 (s), 33.9 (q, J = 32.3 Hz). IR (KBr): v 2946, 2841, 2323, 2168, 1979, 1609, 1592, 1499, 1361, 1258, 1215, 1088, 957, 815, 770, 701, 645, 487 cm⁻¹. GC-MS m/z 230 (M⁺). HRMS (EI) m/z: calcd. for C₁₁H₉F₃O₂: 230.0555; found: 230.0563.

2-(2,2,2-trifluoroethyl)benzofuran-5-ol (3i)

Obtained as a colorless liquid in 60% yield (129 mg). R_f (*n*-pentane) = 0.51. ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, J = 8.8 Hz, 1H), 6.99 (d, J = 2.2 Hz, 1H), 6.84 (dd, J = 8.8, 2.5 Hz, 1H), 6.63 (s, 1H), 5.11 (br s, 1H), 3.60 (q, J = 10.1 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.2 (t, J = 10.1 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 151.6 (s), 150.2 (s), 148.1 (q, J = 3.7 Hz), 128.9 (s), 124.5 (q, J = 277.1 Hz), 113.3 (s), 111.7 (s), 106.7 (q, J = 0.9 Hz), 105.9 (s), 34.1 (q, J = 32.3 Hz). IR (KBr): v 2189, 1474, 1261, 1167, 1147, 1084, 903, 789, 725, 649, 432 cm⁻¹. GC-MS m/z 216 (M⁺). HRMS (EI) m/z: calcd. for C₁₀H₇F₃O₂: 216.0398; found: 216.0400.

Methyl 2-(2,2,2-trifluoroethyl)benzofuran-5-carboxylate (3j)

Obtained as a white solid in 58% yield (140 mg). M.p. 67-68 °C. R_f(n-pentane/ethyl

acetate = 15:1) = 0.63. ¹H NMR (400 MHz, CDCl₃) δ 8.31 (s, 1H), 8.05 (d, J = 8.7 Hz, 1H), 7.51 (d, J = 8.7 Hz, 1H), 6.80 (s, 1H), 3.96 (s, 3H), 3.65 (q, J = 10.0 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.1 (t, J = 10.0 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 167.1 (s), 157.6 (s), 148.6 (q, J = 3.7 Hz), 128.1 (s), 126.4 (s), 125.5 (s), 124.4 (q, J = 277.2 Hz), 123.5 (s), 111.1 (s), 107.3 (s), 52.1 (s), 33.9 (q, J = 32.4 Hz). IR (KBr): v 2889, 2256, 1715, 1606, 1455, 1366, 1289, 1193, 1116, 1089, 984, 905, 839, 808, 769, 649, 579, 434 cm⁻¹. GC-MS m/z 258 (M⁺). HRMS (EI) m/z: calcd. for C₁₂H₉F₃O₃: 258.0504; found: 258.0503.

2-(2,2,2-trifluoroethyl)-5-(trifluoromethoxy)benzofuran (3k)

Obtained as a colorless liquid in 56% yield (159 mg). $R_f(n\text{-pentane}) = 0.55$. ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 9.0 Hz, 1H), 7.45 (s, 1H), 7.20 (d, J = 9.0 Hz, 1H), 6.76 (s, 1H), 3.65 (q, J = 10.0 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -58.3 (s, 3F), -65.1 (t, J = 10.0 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 153.1 (s), 149.2 (q, J = 3.5 Hz), 145.1 (q, J = 2.1 Hz), 128.8 (s), 124.3 (q, J = 277.1 Hz), 120.6 (q, J = 256.3 Hz), 118.3 (s), 113.7 (s), 112.0 (s), 107.0 (s), 34.1 (q, J = 32.4 Hz). IR (KBr): v 2212, 1606, 1469, 1420, 1366, 1249, 1189, 1144, 1083, 960, 906, 873, 804, 787, 664, 612, 434 cm⁻¹. GC-MS m/z 284 (M⁺). HRMS (EI) m/z: calcd. for C₁₁H₆F₆O₂: 284.0272; found: 284.0266.

6-fluoro-2-(2,2,2-trifluoroethyl)benzofuran (3l)

Obtained as a colorless liquid in 60% yield (130 mg). R_f (*n*-pentane) = 0.70. ¹H NMR (400 MHz, CDCl₃) δ 7.50 (dd, J = 8.5, 5.4 Hz, 1H), 7.23 (d, J = 8.7 Hz, 1H), 7.10 – 6.98 (m, 1H), 6.72 (s, 1H), 3.63 (q, J = 10.0 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.3 (t, J = 10.0 Hz, 3F), -116.9 (td, J = 9.2, 5.4 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 161.0 (d, J = 243.6 Hz), 154.9 (d, J = 13.6 Hz), 147.8 (q, J = 3.7 Hz), 129.8 (s), 124.4 (q, J = 277.0 Hz), 121.3 (d, J = 10.0 Hz), 111.5 (d, J = 24.1 Hz), 106.6 (s), 99.1 (d, J = 26.8 Hz), 33.9 (q, J = 32.3 Hz). IR (KBr): v 2919, 1621, 1599, 1487, 1435, 1366, 1255, 1191, 1101, 1081, 969, 896, 819, 776, 665, 595, 481, 437 cm⁻¹. GC-MS m/z 218 (M⁺). HRMS (EI) m/z: calcd. for C₁₀H₆F₄O: 218.0355; found: 218.0361.

5-fluoro-2-(2,2,2-trifluoroethyl)benzofuran (3m)

Obtained as a colorless liquid in 60% yield (130 mg). R_f (*n*-pentane) = 0.71. ¹H NMR (400 MHz, CDCl₃) δ 7.43 (dd, J = 8.9, 4.1 Hz, 1H), 7.24 (d, J = 8.4 Hz, 1H), 7.05 (t, J = 9.1 Hz, 1H), 6.72 (s, 1H), 3.64 (q, J = 10.0 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.1 (t, J = 10.0 Hz, 3F), -120.7 (td, J = 8.8, 4.0 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 159.3 (d, J = 239.4 Hz), 151.3 (d, J = 0.6 Hz), 148.9 (q, J = 3.7 Hz), 128.9 (d, J = 10.9 Hz), 124.4 (q, J = 277.1 Hz), 112.3 (d, J = 26.6 Hz), 111.8 (d, J = 9.6 Hz), 107.0 (m), 106.5 (d, J = 25.1 Hz), 34.1 (q, J = 32.4 Hz). IR (KBr): v 1626, 1607, 1471, 1449, 1419, 1365, 1283, 1188, 1168, 1117, 1081, 953, 905, 839, 797, 734, 616, 534, 478 cm⁻¹. GC-MS m/z 218 (M⁺). HRMS (EI) m/z: calcd. for C₁₀H₆F₄O: 218.0355; found: 218.0358.

4-fluoro-2-(2,2,2-trifluoroethyl)benzofuran (3n)

Obtained as a colorless liquid in 50% yield (109 mg). R_f (*n*-pentane) = 0.70. ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.23 (m, 2H), 6.96 (t, J = 8.2 Hz, 1H), 6.84 (s, 1H), 3.65 (q, J = 10.0 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.2 (t, J = 10.0 Hz, 3F), -119.6 (dd, J = 9.4, 5.1 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 156.8 (s), 155.7 (d, J = 250.9 Hz), 147.7 (q, J = 3.7 Hz), 125.2 (d, J = 7.6 Hz), 124.4 (q, J = 277.2 Hz), 117.3 (d, J = 21.9 Hz), 108.6 (d, J = 18.8 Hz), 107.5 (d, J = 4.2 Hz), 103.1 (s), 33.9 (q, J = 32.5 Hz). IR (KBr): v 2926, 1593, 1496, 1437, 1366, 1259, 1213, 1148, 1086, 1027, 904, 776, 727, 650 cm⁻¹. GC-MS m/z 218 (M⁺). HRMS (EI) m/z: calcd. for C₁₀H₆F₄O:

6-chloro-2-(2,2,2-trifluoroethyl)benzofuran (30)

Obtained as a white solid in 60% yield (140 mg). M.p. 66–67 °C. R_f (*n*-pentane) = 0.69. ¹H NMR (400 MHz, CDCl₃) δ 7.52 (s, 1H), 7.48 (d, J = 8.3 Hz, 1H), 7.26 (d, J = 8.3 Hz, 1H), 6.72 (s, 1H), 3.63 (q, J = 10.0 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.2 (t, J = 10.0 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 155.1 (s), 147.9 (q, J = 3.7 Hz), 130.5 (s), 126.7 (s), 124.4 (q, J = 277.2 Hz), 123.8 (s), 121.5 (s), 111.9 (s), 106.7 (q, J = 0.9 Hz), 33.9 (q, J = 32.4 Hz). IR (KBr): v 1606, 1468, 1424, 1312, 1246, 1189, 1150, 1081, 959, 927, 905, 845, 728, 650, 577, 469 cm⁻¹. GC-MS m/z 234 (M⁺). HRMS (EI) m/z: calcd. for C₁₀H₆ClF₃O: 234.0059; found: 234.0057.

5-chloro-2-(2,2,2-trifluoroethyl)benzofuran (3p)

Obtained as a white solid in 62% yield (145 mg). M.p. 34–35 °C. R_f (*n*-pentane) = 0.70. ¹H NMR (400 MHz, CDCl₃) δ 7.55 (s, 1H), 7.42 (d, J = 8.6 Hz, 1H), 7.28 (d, J = 8.6 Hz, 1H), 6.70 (s, 1H), 3.64 (q, J = 10.0 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.1 (t, J = 10.0 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 153.4 (s), 148.7 (q, J = 3.6 Hz), 129.4 (s), 128.7 (s), 124.9 (s), 124.6 (q, J = 275.1 Hz), 120.6 (s), 112.2 (s), 106.5 (s), 34.1 (q, J = 32.4 Hz). IR (KBr): v 2208, 1447, 1255, 1186, 1151, 1085, 903, 803, 726, 653, 649, 429 cm⁻¹. GC-MS m/z 234 (M⁺). HRMS (EI) m/z: calcd. for C₁₀H₆ClF₃O: 234.0059; found: 234.0056.

4-chloro-2-(2,2,2-trifluoroethyl)benzofuran (3q)

Obtained as a colorless liquid in 53% yield (124 mg). R_f (*n*-pentane) = 0.70. ¹H NMR

(400 MHz, CDCl₃) δ 7.44 – 7.37 (m, 1H), 7.28 – 7.22 (m, 2H), 6.85 (s, 1H), 3.66 (q, *J* = 10.0 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.1 (t, *J* = 10.0 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 155.3 (s), 147.8 (q, *J* = 3.7 Hz), 127.6 (s), 125.9 (s), 125.2 (s), 124.3 (q, *J* = 277.2 Hz), 123.1 (s), 109.9 (s), 105.5 (s), 34.0 (q, *J* = 32.4 Hz). IR (KBr): v 2928, 1602, 1584, 1477, 1365, 1321, 1253, 1173, 1082, 957, 942, 897, 860, 767, 731, 681, 575, 488 cm⁻¹. GC-MS m/z 234 (M⁺). HRMS (EI) m/z: calcd. for C₁₀H₆ClF₃O: 234.0059; found: 234.0063.

6-bromo-2-(2,2,2-trifluoroethyl)benzofuran (3r)

Obtained as a white solid in 67% yield (185 mg). M.p. 54–55 °C. R_f (*n*-pentane) = 0.70. ¹H NMR (400 MHz, CDCl₃) δ 7.68 (s, 1H), 7.44 (d, J = 8.2 Hz, 1H), 7.39 (d, J = 8.2 Hz, 1H), 6.72 (s, 1H), 3.63 (q, J = 10.0 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.1 (t, J = 10.0 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 155.3 (s), 147.8 (q, J = 3.7 Hz), 127.1 (s), 126.5 (s), 124.3 (q, J = 277.2 Hz), 121.9 (s), 117.9 (s), 114.8 (s), 106.7 (q, J = 0.8 Hz), 33.9 (q, J = 32.4 Hz). IR (KBr): v 2156, 1606, 1463, 1450, 1362, 1311, 1246, 1149, 1077, 1047, 955, 879, 822, 728, 664, 591, 570, 431 cm⁻¹. GC-MS m/z 277 (M⁺). HRMS (EI) m/z: calcd. for C₁₀H₆BrF₃O: 277.9554; found: 277.9559.

5-bromo-2-(2,2,2-trifluoroethyl)benzofuran (3s)

Obtained as a white solid in 66% yield (182 mg). M.p. 46–47 °C. R_f (*n*-pentane) = 0.70. ¹H NMR (400 MHz, CDCl₃) δ 7.71 (s, 1H), 7.42 (d, J = 8.3 Hz, 1H), 7.37 (d, J = 8.3 Hz, 1H), 6.69 (s, 1H), 3.64 (q, J = 10.0 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.1 (t, J = 10.0 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 153.8 (s), 148.5 (q, J = 3.6 Hz), 130.0 (s), 127.6 (s), 124.4 (q, J = 277.2 Hz), 123.7 (s), 116.1 (s), 112.7 (s), 106.3 (q, J = 0.9 Hz), 34.0 (q, J = 32.4 Hz). IR (KBr): v 3094, 2930, 1876, 1743, 1605, 1461, 1416, 1361, 1263, 1183, 1084, 952, 917, 881, 807, 739, 607, 534, 464 cm⁻¹.

GC-MS m/z 277 (M⁺). HRMS (EI) m/z: calcd. for $C_{10}H_6BrF_3O$: 277.9554; found: 277.9561.

4-bromo-2-(2,2,2-trifluoroethyl)benzofuran (3t)

Obtained as a white solid in 55% yield (152 mg). M.p. 62–63 °C. R_f (*n*-pentane) = 0.68. ¹H NMR (400 MHz, CDCl₃) δ 7.44 (t, J = 8.9 Hz, 2H), 7.20 (t, J = 8.0 Hz, 1H), 6.80 (s, 1H), 3.65 (q, J = 10.0 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.1 (t, J = 10.0 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 154.8 (s), 147.7 (q, J = 3.7 Hz), 129.7 (s), 126.1 (s), 125.6 (s), 124.3 (q, J = 277.3 Hz), 113.9 (s), 110.4 (s), 107.1 (q, J = 0.9 Hz), 34.1 (q, J = 32.4 Hz). IR (KBr): v 2154, 1578, 1473, 1422, 1365, 1255, 1152, 1084, 904, 812, 773, 676, 623, 569, 482 cm⁻¹. GC-MS m/z 277 (M⁺). HRMS (EI) m/z: calcd. for C₁₀H₆BrF₃O: 277.9554; found: 277.9557.

5-bromo-6-fluoro-2-(2,2,2-trifluoroethyl)benzofuran (3u)

Obtained as a white solid in 55% yield (163 mg). M.p. 42–43 °C. R_f (*n*-pentane) = 0.68. ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 6.7 Hz, 1H), 7.30 (d, J = 8.3 Hz, 1H), 6.68 (s, 1H), 3.63 (q, J = 9.9 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.2 (t, J = 10.0 Hz, 3F), -109.6 (t, J = 7.5 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 156.8 (d, J = 201.2 Hz), 153.9 (d, J = 12.1 Hz), 148.9 (q, J = 3.7 Hz), 125.6 (s), 124.4 (s), 124.3 (q, J = 277.2 Hz), 106.0 (s), 104.4 (d, J = 23.0 Hz), 100.1 (d, J = 27.9 Hz), 33.9 (q, J = 32.5 Hz). IR (KBr): v 2918, 1607, 1463, 1423, 1364, 1312, 1246, 1184, 1132, 1080, 1006, 952, 871, 840, 740, 674, 559 cm⁻¹. GC-MS m/z 296 (M⁺). HRMS (ESI) m/z: calcd. for C₁₀H₆BrF₄O [M+H]⁺: 296.9533; found:296.9526.

5-iodo-2-(2,2,2-trifluoroethyl)benzofuran (3v)

Obtained as a white solid in 61% yield (198 mg). M.p. 52–53 °C. R_f (*n*-pentane) = 0.68. ¹H NMR (400 MHz, CDCl₃) δ 7.91 (s, 1H), 7.60 (d, J = 8.6 Hz, 1H), 7.27 (d, J = 8.7 Hz, 1H), 6.67 (s, 1H), 3.64 (q, J = 9.8 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.1 (t, J = 9.9 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 154.4 (s), 148.1 (q, J = 3.6 Hz), 133.2 (s), 130.8 (s), 129.9 (s), 124.4 (q, J = 277.2 Hz), 113.3 (s), 106.0 (s), 86.6 (s), 33.9 (q, J = 32.4 Hz). IR (KBr): v 2232, 1602, 1441, 1419, 1364, 1249, 1183, 1079, 957, 914, 872, 797, 665, 607, 569, 518, 425 cm⁻¹. GC-MS m/z 325 (M⁺). HRMS (EI) m/z: calcd. for C₁₀H₆IF₃O: 325.9416; found: 325.9421.

2-(2,2,2-trifluoroethyl)naphtho[1,2-b]furan (3w)

Obtained as a white solid in 70% yield (175 mg). M.p. 80–81 °C. R_f (*n*-pentane) = 0.68. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 8.2 Hz, 1H), 7.98 (d, J = 8.2 Hz, 1H), 7.77 (d, J = 8.9 Hz, 1H), 7.70 – 7.59 (m, 2H), 7.53 (t, J = 7.5 Hz, 1H), 7.23 (s, 1H), 3.74 (q, J = 10.1 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.3 (t, J = 10.1 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 152.7 (s), 146.2 (q, J = 3.7 Hz), 130.4 (s), 128.8 (s), 127.5 (s), 126.5 (s), 125.6 (s), 124.7 (s), 124.6 (q, J = 277.1 Hz), 123.3 (s), 112.2 (s), 112.2 (s), 105.9 (q, J = 0.7 Hz), 34.2 (q, J = 32.3 Hz). IR (KBr): v 3059, 1631, 1578, 1526, 1448, 1386, 1363, 1319, 1255, 1185, 1134, 1078, 959, 800, 774, 699, 651, 516, 483 cm⁻¹. GC-MS m/z 250 (M⁺). HRMS (EI) m/z: calcd. for C₁₄H₉F₃O: 250.0605; found: 250.0604.

$2-(2,2,2-\text{trifluoroethyl})-1H-\text{indole}(5a)^4$

Obtained as a white solid in 42% yield (84 mg). M.p. 65–66 °C. R_f (*n*-pentane/ethyl acetate = 20:1) = 0.52. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (br s, 1H), 7.62 (d, J = 7.5 Hz, 1H), 7.39 (d, J = 7.9 Hz, 1H), 7.24 (t, J = 7.9 Hz, 1H), 7.15 (t, J = 7.6 Hz, 1H), 6.53 (s, 1H), 3.62 (q, J = 10.5 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.3 (t, J = 10.4 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 136.6 (s), 128.0 (s), 126.5 (q, J = 3.3 Hz), 125.2 (q, J = 277.0 Hz), 122.6 (s), 120.5 (s), 120.2 (s), 110.8 (s), 104.5 (s), 33.8 (q, J = 31.4 Hz). IR (KBr): v 3403, 2983, 1737, 1456, 1427, 1372, 1291, 1253, 1135, 1078, 1044, 915, 736, 662, 555 cm⁻¹. GC-MS m/z 199 (M⁺).

5-fluoro-2-(2,2,2-trifluoroethyl)-1*H*-indole (5b)⁴

Obtained as a colorless liquid in 40% yield (86 mg). $R_f(n$ -pentane/ethyl acetate = 20:1) = 0.50. ¹H NMR (400 MHz, CDCl₃) δ 8.16 (br s, 1H), 7.27 (d, J = 9.4 Hz, 2H), 7.00 (t, J = 9.0 Hz, 1H), 6.50 (s, 1H), 3.60 (q, J = 10.4 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.3 (t, J = 10.4 Hz, 3F), -124.1 – -124.3 (m, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 158.1 (d, J = 234.8 Hz), 133.1 (s), 128.4 (q, J = 3.1 Hz), 125.4 (s), 125.1 (q, J = 276.9 Hz), 111.5 (d, J = 9.7 Hz), 110.9 (d, J = 26.4 Hz), 105.4 (d, J = 23.7 Hz), 104.5 (d, J = 4.6 Hz), 33.8 (q, J = 31.5 Hz). GC-MS m/z 217 (M⁺).

5-chloro-2-(2,2,2-trifluoroethyl)-1*H*-indole (5c)⁴

Obtained as a white solid in 45% yield (105 mg). M.p. 72–73 °C. R_f (*n*-pentane/ethyl acetate = 20:1) = 0.51. ¹H NMR (400 MHz, CDCl₃) δ 8.19 (br s, 1H), 7.58 (s, 1H), 7.29 (s, 1H), 7.19 (d, J = 8.6 Hz, 1H), 6.47 (s, 1H), 3.61 (q, J = 10.4 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.2 (t, J = 10.4 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ

134.9 (s), 129.1 (s), 128.1 (q, J = 3.3 Hz), 125.9 (s), 125.0 (q, J = 277.1 Hz), 122.9 (s), 119.9 (s), 111.9 (s), 104.1 (s), 33.8 (q, J = 31.6 Hz). IR (KBr): v 3416, 2926, 1985, 1656, 1583, 1550, 1468, 1448, 1369, 1311, 1267, 1253, 1149, 1079, 923, 869, 792, 664 cm⁻¹. GC-MS m/z 233 (M⁺).

6-chloro-2-(2,2,2-trifluoroethyl)-1*H*-indole (5d)

Obtained as a white solidin 43% yield (101 mg). M.p. 48–49 °C. R_f (*n*-pentane/ethyl acetate = 20:1) = 0.52. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (br s, 1H), 7.52 (d, J = 8.4 Hz, 1H), 7.38 (s, 1H), 7.13 (d, J = 8.1 Hz, 1H), 6.50 (s, 1H), 3.60 (q, J = 10.8 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.3 (t, J = 10.4 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 136.9 (s), 128.4 (s), 127.3 (q, J = 2.7 Hz), 126.6 (s), 125.0 (q, J = 276.9 Hz), 121.4 (s), 121.0 (s), 110.8 (s), 104.5 (s), 33.8 (q, J = 31.6 Hz). IR (KBr): v 3398, 2951, 1709, 1612, 1545, 1410, 1363, 1290, 1255, 1137, 1076, 996, 925, 895, 819, 741, 660, 490 cm⁻¹. GC-MS m/z 233 (M⁺). HRMS (ESI) m/z: calcd. for C₁₀H₈ClF₃N [M+H]⁺: 234.0292; found: 234.0286.

5-bromo-2-(2,2,2-trifluoroethyl)-1*H*-indole (5e)⁴

Obtained as a white solid in 50% yield (138 mg). M.p. 87–88 °C. R_f (*n*-pentane/ethyl acetate = 20:1) = 0.48. ¹H NMR (400 MHz, CDCl₃) δ 8.19 (br s, 1H), 7.74 (s, 1H), 7.35 – 7.22 (m, 2H), 6.47 (s, 1H), 3.61 (q, J = 10.4 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.2 (t, J = 10.4 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 135.1 (s), 129.7 (s), 128.0 (q, J = 3.3 Hz), 125.5 (s), 125.1 (q, J = 277.1 Hz), 123.1 (s), 113.4 (s), 112.3 (s), 104.0 (s), 33.8 (q, J = 31.6 Hz). IR (KBr): v 3416, 2957, 2858, 1668, 1586, 1545, 1465, 1377, 1254, 1213, 1146, 1078, 1051, 917, 869, 792, 663 cm⁻¹. GC-MS m/z 277 (M⁺).

6-bromo-2-(2,2,2-trifluoroethyl)-1H-indole (5f)

Obtained as a white solid in 48% yield (133 mg). M.p. 81–82°C. R_f (*n*-pentane/ethyl acetate = 20:1) = 0.50. ¹H NMR (400 MHz, CDCl₃) δ 8.15 (br s, 1H), 7.54 (s, 1H), 7.47 (d, J = 8.1 Hz, 1H), 7.26 (d, J = 8.4 Hz, 1H), 6.50 (s, 1H), 3.60 (q, J = 10.7 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.3 (t, J = 10.4 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 137.3 (s), 127.3 (q, J = 3.1 Hz), 126.9 (s), 125.1 (q, J = 274.0 Hz), 123.6 (s), 121.8 (s), 116.0 (s), 113.8 (s), 104.6 (s), 33.7 (q, J = 31.5 Hz). IR (KBr): v 3413, 2923, 1654, 1612, 1540, 1454, 1364, 1287, 1252, 1140, 1077, 994, 904, 812, 732, 664, 553 cm⁻¹. GC-MS m/z 279 (M⁺). HRMS (ESI) m/z: calcd. for C₁₀H₇BrF₃N [M]⁺: 278.9693; found: 278.9691.

2-(2,2,2-trifluoroethyl)-1*H*-pyrrolo[2,3-*b*]pyridine (5g)

Obtained as a white solid in 15% yield (30 mg). M.p. 126.8–128.0 °C. R_f (*n*-pentane/ethyl acetate = 1:1) = 0.59. ¹H NMR (400 MHz, CDCl₃) δ 12.30 (br s, 1H), 8.32 (s, 1H), 7.94 (d, J = 7.8 Hz, 1H), 7.19 – 7.06 (m, 1H), 6.48 (s, 1H), 3.69 (q, J = 10.4 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.3 (t, J = 10.4 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 149.3 (s), 142.2 (s), 129.0 (s), 128.1 (q, J = 3.2 Hz), 125.0 (q, J= 277.2 Hz), 121.1 (s), 116.1 (s), 102.0 (s), 34.2 (q, J = 31.7 Hz). IR (KBr): v 3136, 2922, 2851, 1420, 1248, 1143, 1115, 1074, 807, 769 cm⁻¹. HRMS (ESI) m/z: calcd. for C₉H₈F₃N₂ [M+H]⁺: 201.0634; found: 201.0628.

6-(2,2,2-trifluoroethyl)-5*H*-[1,3]dioxolo[4,5-*f*]indole (5h)

Obtained as a colorless liquid in ca. 5% yield (12 mg). $R_f(n-\text{pentane/ethyl acetate} =$

3:1) = 0.45. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (br s, 1H), 6.95 (s, 1H), 6.84 – 6.79 (m, 1H), 6.40 – 6.31 (m, 1H), 5.93 (s, 2H), 3.52 (q, *J* = 10.8 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.6 (t, *J* = 10.8 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 145.2 (s), 143.2 (s), 131.4 (s), 125.1 (q, *J* = 277.1 Hz), 125.0 (q, *J* = 3.4 Hz), 121.8 (s), 104.6 (s), 100.6 (s), 99.0 (s), 91.8 (s), 33.8 (q, *J* = 31.5 Hz). IR (KBr): v 3403, 2926, 1363, 1328, 1294, 1254, 1176, 1141, 1080, 1040, 947 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₁H₇F₃NO₂ [M-H]⁻: 242.0423; found: 242.0425.

5,6-dimethoxy-2-(2,2,2-trifluoroethyl)-1*H*-indole (5i)

Obtained as a colorless liquid in *ca*. 5% yield (13 mg). R_f (*n*-pentane/ethyl acetate = 1:1) = 0.62. ¹H NMR (400 MHz, CDCl₃) δ 7.96 (br s, 1H), 7.03 (s, 1H), 6.87 (s, 1H), 6.37 (s, 1H), 3.92 (s, 3H), 3.91 (s, 3H), 3.55 (q, J = 10.5 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.6 (t, J = 10.8 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 147.4 (s), 145.4 (s), 130.9 (s), 125.2 (q, J = 277.0 Hz), 124.9 (q, J = 3.3 Hz), 120.7 (s), 104.2 (s), 102.2 (s), 94.3 (s), 56.3 (s), 56.2 (s), 33.8 (q, J = 31.4 Hz). IR (KBr): v 3365, 2937, 1486, 1364, 1258, 1204, 1140, 1125, 1081, 1010, 723 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₂H₁₃F₃NO₂ [M+H]⁺: 260.0893; found: 260.0887.

1-methyl-2-(2,2,2-trifluoroethyl)-1*H*-indole (5j)

Obtained as a white solid in 25% yield (53 mg). M.p. 65.5–66.9 °C. R_f (*n*-pentane/CH₂Cl₂) = 0.39. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 7.9 Hz, 1H), 7.34 (d, J = 8.1 Hz, 1H), 7.30 – 7.24 (m, 1H), 7.18 – 7.12 (m, 1H), 6.57 (s, 1H), 3.73 (s, 3H), 3.62 (q, J = 10.2 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.2 (t, J = 10.2 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 137.7 (s), 128.3 (q, J = 3.2 Hz), 127.3 (s), 125.0 (q, J = 277.0 Hz), 122.0 (s), 120.5 (s), 119.9 (s), 109.4 (s), 103.8 (s), 32.0 (q, J = 31.8 Hz), 29.8 (s). IR (ATR): v 3060, 2951, 2866, 1548, 1469, 1350, 1318, 1251, 1235, 1147, 1073, 903, 787, 753, 656 cm⁻¹. HRMS (EI) m/z: calcd. for $C_{11}H_{10}F_3N [M]^+$: 213.0765; found: 213.0766.

Crystal structure analyses

The crystal samples of **3j** were prepared by slow volatilization in a *n*-hexane/CDCl₃ (1:1) solvent mixture. The suitable crystals of **3j** (CCDC 2055439) were mounted on quartz fibers and X-ray data collected on a Bruker AXS APEX diffractometer, equipped with a CCD detector at -50 °C, using MoK α radiation (λ 0.71073 Å). The data was corrected for Lorentz and polarisation effect with the **SMART** suite of programs and for absorption effects with SADABS.⁵ Structure solution and refinement were carried out with the SHELXTL suite of programs.⁵ The structure was solved by direct methods to locate the heavy atoms, followed by difference maps for the light non-hydrogen atoms.

ORTEP diagrams

Figure S1. ORTEP diagram of compound 3j. Thermal ellipsoids are drawn at 40% probability

References:

Ragupathi, A.; Sagadevan, A.; Charpe, V. P.; Lin, C.-C.; Hwu, J.-R.; Hwang,
K. C. *Chem. Commun.* **2019**, *55*, 5151.

(2) Patil, V. S.; Pal, S. S.; Pathare, R. S.; Reddy, L. K. K.; Pathak, A. *Tetrahedron Lett.* **2015**, *56*, 6370.

(3) Zhang, X.; Yuan, C.; Zhang, C.; Gao, X.; Wang, B.; Sun, Z.; Xiao, Y.; Guo, H. *Tetrahedron* **2016**, *72*, 8274.

(4) Zhang, H.; Wang, H.-Y.; Luo, Y.; Chen, C.; Cao, Y.; Chen, P.; Guo, Y.-L.; Lan,Y.; Liu, G. ACS Catalysis 2018, 8, 2173.

(5) SHELXTL version 5.03; Bruker Analytical X-ray Systems, Madison, WI, 1997.

Copies of ¹H NMR, ¹⁹F NMR and ¹³C NMR spectra

¹H NMR spectrum of **3a** in CDCl₃

¹⁹F NMR spectrum of **3a** in CDCl₃

15	20
-65. -65.	

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹³C NMR spectrum of **3a** in CDCl₃

¹H NMR spectrum of **3b** in CDCl₃

443212	50 20 20 20 20 20 20 20 2
······································	

¹⁹F NMR spectrum of **3b** in CDCl₃

10 0 -10 -20 -30 -40 -50 -60	-70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹³C NMR spectrum of **3b** in CDCl₃

-155, 50 -146, 41 -146, 44 -146, 33 -146, 33 -146, 33 -146, 33 -125, 55 -125, 55 -125, 55 -125, 55 -125, 49 -120, 49 -106, 60 -106, 60	34, 50 34, 18 33, 86 33, 54 21, 65

¹H NMR spectrum of **3c** in CDCl₃

¹⁹F NMR spectrum of **3c** in CDCl₃

-65 -65 -65

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹³C NMR spectrum of **3c** in CDCl₃

¹H NMR spectrum of **3d** in $CDCl_3$

$\begin{pmatrix} 3. \ 67 \\ 3. \ 64 \\ 3. \ 59 \\ 3. \ 59 \end{pmatrix}$	-1.41

 ^{19}F NMR spectrum of 3d in CDCl_3

 $\begin{pmatrix} -65.22 \\ -65.25 \\ -65.28 \end{pmatrix}$

CF₃

10 0 -10 -20 -30 -40 -60 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

 13 C NMR spectrum of **3d** in CDCl₃

7.7.7.7.888 7.7.0.7.18 7.0.2.18 7.0.00 7.00 7.00 7.00 7.00 7.00 7.00 7	73 54 58 83 83
	34

¹H NMR spectrum of **3e** in CDCl₃

¹⁹F NMR spectrum of **3e** in CDCl₃

¹³C NMR spectrum of **3e** in CDCl₃

¹H NMR spectrum of **3f** in CDCl₃

19 F NMR spectrum of **3f** in CDCl₃

CF3

MeO.

 $\underbrace{ \begin{pmatrix} -65. & 17 \\ -65. & 20 \\ -65. & 23 \end{pmatrix} }_{-65. & 23}$

¹³C NMR spectrum of **3f** in CDCl₃

¹H NMR spectrum of **3g** in CDCl₃

¹⁹F NMR spectrum of **3g** in CDCl₃

 $\underbrace{ \begin{pmatrix} -65.34 \\ -65.37 \\ -65.40 \end{pmatrix} }_{-65.40}$

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

^{13}C NMR spectrum of 3g in CDCl_3

¹H NMR spectrum of **3h** in CDCl₃

$\begin{array}{c} 27\\ 25\\ 14\\ 12\\ 84\\ 68\\ 68\\ 68\\ 68\\ 68\\ 68\\ 68\\ 68\\ 68\\ 68$	$\begin{array}{c} 96 \\ 64 \\ 61 \\ 59 \end{array}$
	\vec{n} \vec{n} \vec{n} \vec{n} \vec{n}

^{19}F NMR spectrum of **3h** in CDCl₃

 $\begin{pmatrix} -65.29 \\ -65.32 \\ -65.34 \\ -65.34 \end{pmatrix}$

CF3

			-		-																			
10	D	0	-10	-20	-30	-40	-5	0	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210

13 C NMR spectrum of **3h** in CDCl₃

¹H NMR spectrum of **3i** in CDCl₃

13	15	18
r ⁻⁶⁵ .	+-65.	<u>\-65.</u>

¹³C NMR spectrum of **3i** in CDCl₃

¹H NMR spectrum of **3j** in CDCl₃

^{19}F NMR spectrum of 3j in CDCl_3

 $\left\{ \begin{array}{c} ^{-65.\ 07} \\ ^{-65.\ 10} \\ ^{-65.\ 12} \end{array} \right.$

CF3 0

1																						
10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210

¹³C NMR spectrum of **3j** in CDCl₃

¹H NMR spectrum of **3k** in CDCl₃

^{19}F NMR spectrum of 3k in CDCl₃

 $\begin{pmatrix} -58. \ 29\\ -65. \ 11\\ -65. \ 14\\ -65. \ 17 \end{pmatrix}$

F3CO CF3

¹³C NMR spectrum of **3k** in CDCl₃

¹H NMR spectrum of **3l** in CDCl₃

 $\begin{array}{c} 7.51\\ 7.75\\$

¹⁹F NMR spectrum of **3l** in CDCl₃

¹³C NMR spectrum of **3l** in CDCl₃

¹H NMR spectrum of **3m** in CDCl₃

^{19}F NMR spectrum of **3m** in CDCl₃

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹³C NMR spectrum of **3m** in CDCl₃

 ^{19}F NMR spectrum of 3n in CDCl_3

 ^{13}C NMR spectrum of **3n** in CDCl₃

¹H NMR spectrum of **30** in CDCl₃

¹⁹F NMR spectrum of **30** in CDCl₃

14	17	20
, -65.	+-65.	<u>-65.</u>

¹³C NMR spectrum of **30** in CDCl₃

¹H NMR spectrum of **3p** in CDCl₃

^{19}F NMR spectrum of 3p in CDCl_3

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹³C NMR spectrum of 3p in CDCl₃

¹H NMR spectrum of **3q** in CDCl₃

^{19}F NMR spectrum of 3q in CDCl₃

¹³C NMR spectrum of **3q** in CDCl₃

¹H NMR spectrum of **3r** in CDCl₃

3846485	$64 \\ 64 \\ 65 \\ 65 \\ 61 \\ 65 \\ 61 \\ 61 \\ 61 \\ 61$
	\vec{n}

 ^{19}F NMR spectrum of 3r in CDCl₃

 $\underbrace{ \begin{pmatrix} -65. & 12 \\ -65. & 14 \\ -65. & 17 \end{pmatrix} }_{-65. & 17 }$

Br CF3

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

^{13}C NMR spectrum of $3\mathbf{r}$ in CDCl₃

¹H NMR spectrum of **3s** in CDCl₃

¹⁹F NMR spectrum of **3s** in CDCl₃

11 06	
$\begin{pmatrix} -65. \\ -65. \\ -65. \end{pmatrix}$	

Br

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹³C NMR spectrum of **3s** in CDCl₃

¹H NMR spectrum of **3t** in CDCl₃

44452588	$69 \\ 61 \\ 61 \\ 61 \\ 61 \\ 61 \\ 61 \\ 61 \\ $
6.7.7.7.7.	\vec{n}

¹⁹F NMR spectrum of **3t** in CDCl₃

 $\begin{pmatrix} -65. 03 \\ -65. 06 \\ -65. 08 \\ -65. 08 \end{pmatrix}$

CF₃

1																				_			
10	0)	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210

¹³C NMR spectrum of **3t** in CDCl₃

¹H NMR spectrum of 3u in CDCl₃

 ^{19}F NMR spectrum of 3u in CDCl_3

S55

¹³C NMR spectrum of **3u** in CDCl₃

¹H NMR spectrum of 3v in CDCl₃

$\begin{array}{c} 91 \\ 61 \\ 28 \\ 28 \\ 67 \\ 67 \end{array}$	67 62 60
6.7.7.9	\vec{n}

 ^{19}F NMR spectrum of 3v in CDCl₃

 $\underbrace{ \begin{pmatrix} -65. 03 \\ -65. 06 \\ -65. 09 \end{pmatrix} }_{-65. 09}$

¹³C NMR spectrum of **3v** in CDCl₃

$\begin{array}{c} 42\\116\\13\\25\\25\\25\\25\\25\\25\\25\\25\\25\\25\\25\\25\\25\\$	25	1 <u>5</u> 0 0 0 0
554 488.333.34 13.2258.333.33 06.06		44.000 4−∞4
	° I	n n n n

¹H NMR spectrum of 3w in CDCl₃

8, 14 8, 17 9, 17 9, 12,

7.80 7.75 7.70 7.65 7.60 7.55 7.50

^{19}F NMR spectrum of 3w in CDCl_3

	$\left\{ \begin{array}{c} -65.\ 24 \\ -65.\ 27 \\ -65.\ 30 \end{array} \right.$	
CF ₃		

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

 ^{13}C NMR spectrum of 3w in CDCl₃

¹H NMR spectrum of **5a** in CDCl₃

8.14 7.151 7.151 7.151 7.152 7.152 7.152 7.152 7.153 7.152 7.153 7.152 7.153 7.152 7.153 7.152 7.153 7

7.5 7.3 f1 (ppm)

 13 C NMR spectrum of **5a** in CDCl₃

 ^1H NMR spectrum of 5b in CDCl_3

¹³C NMR spectrum of **5b** in CDCl₃

 ^{19}F NMR spectrum of 5c in CDCl_3

 ^{13}C NMR spectrum of 5c in CDCl_3

 ^1H NMR spectrum of 5d in CDCl_3

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm) ¹³C NMR spectrum of **5d** in CDCl₃

 1 H NMR spectrum of **5e** in CDCl₃

 ^{19}F NMR spectrum of 5e in CDCl_3

¹³C NMR spectrum of **5e** in CDCl₃

¹H NMR spectrum of **5f** in CDCl₃

 ^{19}F NMR spectrum of $\mathbf{5f}$ in CDCl_3

 $\underbrace{ \left\{ -65.24 \\ -65.27 \\ -65.29 \\ -65.29 \\ \end{array} \right\}}$

¹³C NMR spectrum of **5f** in CDCl₃

¹H NMR spectrum of 5g in CDCl₃

30	$\begin{array}{c} 32 \\ 295 \\ 112 \\ $	73 70 65
112	8.2.2.2.2.0	\vec{n}

^{19}F NMR spectrum of $\mathbf{5g}$ in CDCl_3

¹³C NMR spectrum of **5g** in CDCl₃

28	21	90 20 20 20 20 20 20 20 20 20 20 20 20 20	2 4 8 0
49.	42.		4440 2002
ī	T		<u> </u>

¹H NMR spectrum of **5h** in CDCl₃

 ^{19}F NMR spectrum of **5h** in CDCl₃

53	56	59
r-65.	65.	<u>^−65</u> .

10 0 -10

-20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹³C NMR spectrum of **5h** in CDCl₃

¹H NMR spectrum of **5i** in CDCl₃

96	37 37 37 37	$51 \\ 55 \\ 51 \\ 51 \\ 51 \\ 51 \\ 51 \\ 51 \\$
-7.	7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	ri ri ri ri ri ri

¹⁹F NMR spectrum of **5i** in CDCl₃

 $\underbrace{+}^{-65.53}_{-65.56}$

ÇF₃ MeO

¹³C NMR spectrum of **5i** in CDCl₃

¹H NMR spectrum of **5j** in CDCl₃

¹⁹F NMR spectrum of **5j** in CDCl₃

20	8	26
,-65.	+-65.	V-65.

¹³C NMR spectrum of **5j** in CDCl₃

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10