Supporting Information for

Copper-catalyzed one-pot synthesis of
2-(2,2,2-trifluoroethyl)-substituted benzofused heterocycles
Wei Wu, ${ }^{\ddagger}$ Beibei Luo, ${ }^{\ddagger}$ Yi You,* and Zhiqiang Weng*
Key Laboratory of Molecule Synthesis and Function Discovery, and Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.
Corresponding authors: zweng @fzu.edu.cn
Table of Contents
General information S2
General procedure of copper-catalyzed one-pot synthesis of S3
2-(2,2,2-trifluoroethyl)-substituted benzofused heterocycles

\qquad
The effect of the amount of base DBU for the reaction S4
Procedure for gram scale reaction S5
Unsuccessful reaction with other salicylaldehyde p-tosylhydrazone substrate. S6
Data for compounds S7
Crystal structure analyses S22
References S24
Copies of ${ }^{1} \mathrm{H}$ NMR, ${ }^{19} \mathrm{~F}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra S25

General information

${ }^{1} \mathrm{H}$ NMR, ${ }^{19}$ F NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded using Bruker AVIII 400 spectrometer. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR chemical shifts were reported in parts per million (ppm) downfield from tetramethylsilane and ${ }^{19} \mathrm{~F}$ NMR chemical shifts were determined relative to CFCl_{3} as the external standard and low field is positive. Coupling constants (J) are reported in Hertz (Hz). The residual solvent peak was used as an internal reference: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3} \delta 7.26\right)$ and ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3} \delta 77.0\right)$. The following abbreviations were used to explain the multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. Salicylaldehyde p-tosylhydrazones $\mathbf{2}^{1}$ and 2-aminobenzaldehyde p-tosylhydrazones $\mathbf{4}^{2,3}$ were prepared according to the published procedures. Other reagents were received from commercial sources. Solvents were freshly dried and degassed according to the published procedures prior to use. Column chromatography purifications were performed by flash chromatography using Merck silica gel 60.

General procedure of copper-catalyzed one-pot synthesis of 2-(2,2,2-trifluoroethyl)-substituted benzofused heterocycles

In a glove box filled with nitrogen, to an oven-dried 25 mL pressure tube equipped with a stir bar were added $\mathrm{CuCl}(10 \mathrm{mg}, 0.10 \mathrm{mmol}, 0.10$ equiv), 2a ($1.0 \mathrm{mmol}, 1.0$ equiv), 2-bromo-3,3,3-trifluoro-1-propene $\mathbf{1}(0.26 \mathrm{~g}, 1.5 \mathrm{mmol}, 1.5$ equiv), DBU (0.53 $\mathrm{g}, 3.5 \mathrm{mmol}, 3.5$ equiv) and DMF (4.0 mL). The tube was sealed with Teflon screw cap and the solution was stirred at $100^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was cooled to room temperature and diluted with ethyl acetate $(60 \mathrm{~mL})$. The solution was washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}(3 \times 100 \mathrm{~mL})$ and saturated brine $(3 \times 100 \mathrm{~mL})$ in turn. The solvent was removed by rotary evaporation and the resulting product was purified by column chromatography on silica gel with n-pentane/dichloromethane or n-pentane/ethyl acetate.

The effect of the amount of base DBU for the reaction

Entry	X equiv of DBU	Yield of 3a (\%)
1	1.0	21
2	2.0	36
3	3.0	51
4	3.5	73
5	4.0	53
6	5.0	45

Procedure for gram scale reaction for synthesis of

2-(2,2,2-trifluoroethyl)benzofuran (3a)

In a glove box filled with nitrogen, to an oven-dried 100 mL pressure tube equipped with a stir bar were added $\mathrm{CuCl}(0.10 \mathrm{~g}, 1.0 \mathrm{mmol}, 0.10$ equiv), N^{\prime}-(2-hydroxybenzylidene)-4-methylbenzenesulfonohydrazide 2a (2.90 g, 10 mmol , 1.0 equiv), 2-bromo-3,3,3-trifluoro-1-propene $1(2.62 \mathrm{~g}, 15 \mathrm{mmol}, 1.5$ equiv), DBU ($5.31 \mathrm{~g}, 35 \mathrm{mmol}, 3.5$ equiv) and DMF (40 mL). The tube was sealed with Teflon screw cap and the solution was stirred at $100^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was cooled to room temperature, diluted with ethyl acetate (200 mL). The solution was washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}(3 \times 300 \mathrm{~mL})$ and saturated brine $(3 \times 200 \mathrm{~mL})$ in turn. The solvent was removed by rotary evaporation and the resulting product was purified by column chromatography on silica gel with n-pentane to give 1.10 g of product $\mathbf{3 a}$ (55\% yield).

Unsuccessful reaction with other salicylaldehyde \boldsymbol{p}-tosylhydrazone substrate

Data for compounds

2-(2,2,2-trifluoroethyl)benzofuran (3a)

Obtained as a colorless liquid in 66% yield $(132 \mathrm{mg}) . R_{f}(n$-pentane $)=0.71 .{ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 3.65(\mathrm{q}, J=10.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F} \mathrm{NMR}$ ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-65.2(\mathrm{t}, J=10.1 \mathrm{~Hz}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.1$ (s), 147.1 (q, $J=3.6 \mathrm{~Hz}$), 128.1 (s , 124.6 (s$), 124.5(\mathrm{q}, J=277.1 \mathrm{~Hz}), 123.0(\mathrm{~s})$, 121.0 (s), 111.3 (s), 106.8 (s), 34.0 (q, $J=32.3 \mathrm{~Hz}$). IR (KBr): v 2928, 1607, 1588, $1454,1366,1288,1264,1133,1080,1009,956,915,833,806,738,663,555 \mathrm{~cm}^{-1}$. GC-MS m/z $200\left(\mathrm{M}^{+}\right)$. HRMS (EI) m/z: calcd. for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{O}: 200.0449$; found: 200.0452.

6-methyl-2-(2,2,2-trifluoroethyl)benzofuran (3b)

Obtained as a white solid in 70% yield (149 mg). M.p. $45-46{ }^{\circ} \mathrm{C} . R_{f}(n$-pentane $)=$ 0.70. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 3.62(\mathrm{q}, J=10.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}){ }^{19}$ F NMR (376 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-65.3(\mathrm{t}, J=9.9 \mathrm{~Hz}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.5(\mathrm{~s})$, 146.4 (q, $J=3.7 \mathrm{~Hz}$), 134.9 (s), 125.6 (s$), 124.6$ ($\mathrm{q}, ~ J=277.1 \mathrm{~Hz}$), 124.4 (s$), 120.4$ (s), 111.4 (s), 106.6 (s), $34.0(\mathrm{q}, ~ J=32.2 \mathrm{~Hz}$), 21.7 (s). IR (KBr): v 2189, 1364, 1265, 1247, 1199, 1138, 1119, 1083, 963, 904, 820, 727, 648, 508, 458, $432 \mathrm{~cm}^{-1}$. GC-MS $\mathrm{m} / \mathrm{z} 214\left(\mathrm{M}^{+}\right)$. HRMS (EI) m/z: calcd. for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}: 214.0605$; found: 214.0610 .

5-methyl-2-(2,2,2-trifluoroethyl)benzofuran (3c)

Obtained as a colorless liquid in 85% yield $(181 \mathrm{mg}) . R_{f}(n$-pentane $)=0.71 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$,
$6.67(\mathrm{~s}, 1 \mathrm{H}), 3.63(\mathrm{q}, J=10.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $-65.2(\mathrm{t}, J=10.1 \mathrm{~Hz}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.5(\mathrm{~s}), 147.1(\mathrm{q}, J=3.6$ $\mathrm{Hz}), 132.5(\mathrm{~s}), 128.2(\mathrm{~s}), 125.8(\mathrm{~s}), 124.6(\mathrm{q}, J=277.1 \mathrm{~Hz}), 120.8(\mathrm{~s}), 110.7(\mathrm{~s}), 106.6$ (s), 34.1 ($\mathrm{q}, J=32.2 \mathrm{~Hz}$), 21.3 (s . $\mathrm{IR}(\mathrm{KBr}): ~ v 2925,1603,1475,1420,1363,1323$, 1243, 1161, 1081, 958, 873, 838, 799, 740, 665, 585, $476 \mathrm{~cm}^{-1}$. GC-MS m/z $214\left(\mathrm{M}^{+}\right)$. HRMS (EI) m/z: calcd. for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}: 214.0605$; found: 214.0612.

5-(tert-butyl)-2-(2,2,2-trifluoroethyl)benzofuran (3d)

Obtained as a white solid in 80% yield (204 mg). M.p. $44-45^{\circ} \mathrm{C} . R_{f}(n$-pentane $)=$ 0.70. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.37(\mathrm{~m}, 2 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H})$, $3.63(\mathrm{q}, J=10.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-65.3(\mathrm{t}, J=$ $10.1 \mathrm{~Hz}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.3(\mathrm{~s}), 147.1(\mathrm{q}, J=3.7 \mathrm{~Hz}), 146.2$ (s), 127.8 (s , 124.6 (q, $J=277.3 \mathrm{~Hz}$), 122.6 (s$), 117.2$ (s$), 110.5$ (s$), 107.0(\mathrm{q}, J=0.9$ $\mathrm{Hz}), 34.7(\mathrm{~s}), 34.1(\mathrm{q}, ~ J=32.2 \mathrm{~Hz}), 31.8(\mathrm{~s}) . \mathrm{IR}(\mathrm{KBr}): \mathrm{v}_{2} 2964,1603,1478,1364$, $1258,1189,1136,1085,958,881,731,664,538,455 \mathrm{~cm}^{-1}$. GC-MS m/z $256\left(\mathrm{M}^{+}\right)$. HRMS (EI) m/z: calcd. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}$: 256.1075; found: 256.1077.

5,7-di-tert-butyl-2-(2,2,2-trifluoroethyl)benzofuran (3e)

Obtained as a white solid in 50% yield (156 mg). M.p. $66-67^{\circ} \mathrm{C} . R_{f}(n$-pentane $)=$ 0.69. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 3.64(\mathrm{q}, J$ $=10.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.53(\mathrm{~s}, 9 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-65.3(\mathrm{t}, J=$ $10.1 \mathrm{~Hz}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.7(\mathrm{~s}), 146.1(\mathrm{q}, J=3.7 \mathrm{~Hz}), 145.8$ (s), 133.9 (s), 128.2 (s), 124.6 (q, $J=277.5 \mathrm{~Hz}$), 119.2 (s$), 114.9$ (s), $106.9(\mathrm{q}, J=0.6$ Hz), 34.9 (s), 34.5 (s), 34.2 (q, $J=32.1 \mathrm{~Hz}$), 31.9 (s$), 29.8(\mathrm{~s}) . \mathrm{IR}(\mathrm{KBr}):$ v 2960, 1481,

1364, 1262, 1149, 1084, 963, 904, 871, 839, 728, 672, $650 \mathrm{~cm}^{-1}$. GC-MS m/z 312 $\left(\mathrm{M}^{+}\right)$. HRMS (EI) m/z: calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{O}$: 312.1701; found: 312.1707.

5-methoxy-2-(2,2,2-trifluoroethyl)benzofuran (3f)

Obtained as a colorless liquid in 93% yield $(213 \mathrm{mg}) . R_{f}$ (n-pentane/ethyl acetate $=$ $15: 1)=0.65 .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.94$ (dd, $J=8.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.68$ ($\mathrm{s}, 1 \mathrm{H}$), $3.87(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{q}, J=10.1 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-65.2(\mathrm{t}, J=10.1 \mathrm{~Hz}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 156.1(\mathrm{~s}), 150.1(\mathrm{~s}), 147.8(\mathrm{q}, J=3.7 \mathrm{~Hz}), 128.7(\mathrm{~s}), 124.7(\mathrm{q}, J=277.5 \mathrm{~Hz})$, 113.4 (s), 111.7 (s), 106.9 (q, $J=0.8 \mathrm{~Hz}$), 103.4 (s), 55.9 (s), 34.1 (q, $J=32.2 \mathrm{~Hz}$). IR (KBr): v 2939, 1607, 1478, 1439, 1322, 1246, 1205, 1168, 1128, 1082, 961, 838, 731, 650, $536 \mathrm{~cm}^{-1}$. GC-MS m/z $230\left(\mathrm{M}^{+}\right)$. HRMS (EI) m/z: calcd. for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{2}$: 230.0555; found: 230.0566 .

6-methoxy-2-(2,2,2-trifluoroethyl)benzofuran (3g)

Obtained as a colorless liquid in 60% yield $(138 \mathrm{mg}) . R_{f}(n$-pentane/ethyl acetate $=$ 15:1) $=0.65 .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H})$, $6.91(\mathrm{dd}, J=8.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{q}, J=10.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-65.4(\mathrm{t}, J=10.1 \mathrm{~Hz}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 158.2 (s), 156.1 (s), $145.9(\mathrm{q}, ~ J=3.5 \mathrm{~Hz}), 130.3(\mathrm{~s}), 124.6(\mathrm{q}, J=277.2 \mathrm{~Hz}), 121.1(\mathrm{~s})$, 112.2 (s), 106.6 (s), 95.8 (s), 55.7 (s$), 33.9$ (q, $J=32.2 \mathrm{~Hz}$). IR (KBr): v 2943, 1630, $1589,1493,1439,1294,1273,1245,1191,1108,966,821,665,535,439 \mathrm{~cm}^{-1}$. GC-MS m/z $230\left(\mathrm{M}^{+}\right)$. HRMS (EI) m/z: calcd. for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{2}$: 230.0555; found: 230.0550 .

4-methoxy-2-(2,2,2-trifluoroethyl)benzofuran (3h)

Obtained as a colorless liquid in 45% yield $(103 \mathrm{mg}) . R_{f}$ (n-pentane/ethyl acetate $=$ $15: 1)=0.65 .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{q}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-65.3(\mathrm{t}, J=10.0 \mathrm{~Hz}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.3$ (s), 153.4 (s), $145.6(\mathrm{q}, J=3.4 \mathrm{~Hz}), 126.9(\mathrm{q}, J=277.2 \mathrm{~Hz}), 125.3(\mathrm{~s}), 118.4$ (s), 104.4 (s), 104.3 (s), 103.4 (s$), 55.6$ (s$), 33.9$ (q, $J=32.3 \mathrm{~Hz}$). IR (KBr): v 2946, 2841, 2323, 2168, 1979, 1609, 1592, 1499, 1361, 1258, 1215, 1088, 957, 815, 770, $701,645,487 \mathrm{~cm}^{-1}$. GC-MS m/z $230\left(\mathrm{M}^{+}\right)$. HRMS (EI) m/z: calcd. for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{2}$: 230.0555 ; found: 230.0563 .

2-(2,2,2-trifluoroethyl)benzofuran-5-ol (3i)

Obtained as a colorless liquid in 60% yield $(129 \mathrm{mg}) . R_{f}(n$-pentane $)=0.51 .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=$ 8.8, $2.5 \mathrm{~Hz}, 1 \mathrm{H}$), $6.63(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.60(\mathrm{q}, J=10.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-65.2(\mathrm{t}, J=10.1 \mathrm{~Hz}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.6$ (s), 150.2 (s , 148.1 ($\mathrm{q}, ~ J=3.7 \mathrm{~Hz}$), 128.9 (s$), 124.5(\mathrm{q}, J=277.1 \mathrm{~Hz}), 113.3(\mathrm{~s}), 111.7$ (s), $106.7(\mathrm{q}, J=0.9 \mathrm{~Hz}), 105.9(\mathrm{~s}), 34.1(\mathrm{q}, J=32.3 \mathrm{~Hz}) . \mathrm{IR}(\mathrm{KBr}): v 2189,1474$, 1261, 1167, 1147, 1084, 903, 789, 725, 649, $432 \mathrm{~cm}^{-1}$. GC-MS m/z $216\left(\mathrm{M}^{+}\right)$. HRMS (EI) m / z : calcd. for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{O}_{2}$: 216.0398; found: 216.0400.

Methyl 2-(2,2,2-trifluoroethyl)benzofuran-5-carboxylate (3j)

Obtained as a white solid in 58% yield (140 mg). M.p. $67-68{ }^{\circ} \mathrm{C} . R_{f}(n$-pentane/ethyl
acetate $=15: 1)=0.63 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.31(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{q}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-65.1(\mathrm{t}, J=10.0 \mathrm{~Hz}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $167.1(\mathrm{~s}), 157.6(\mathrm{~s}), 148.6(\mathrm{q}, J=3.7 \mathrm{~Hz}), 128.1(\mathrm{~s}), 126.4(\mathrm{~s}), 125.5(\mathrm{~s}), 124.4(\mathrm{q}, J=$ 277.2 Hz), 123.5 (s), 111.1 (s), 107.3 (s), 52.1 (s$), 33.9$ (q, $J=32.4 \mathrm{~Hz}$). IR (KBr): v $2889,2256,1715,1606,1455,1366,1289,1193,1116,1089,984,905,839,808,769$, $649,579,434 \mathrm{~cm}^{-1}$. GC-MS m/z $258\left(\mathrm{M}^{+}\right)$. HRMS (EI) m/z: calcd. for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{3}$: 258.0504; found: 258.0503 .

2-(2,2,2-trifluoroethyl)-5-(trifluoromethoxy)benzofuran (3k)

Obtained as a colorless liquid in 56% yield (159 mg). $R_{f}(n$-pentane $)=0.55 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.76(\mathrm{~s}, 1 \mathrm{H}), 3.65(\mathrm{q}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-58.3(\mathrm{~s}, 3 \mathrm{~F})$, $-65.1(\mathrm{t}, J=10.0 \mathrm{~Hz}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.1(\mathrm{~s}), 149.2(\mathrm{q}, J=3.5$ $\mathrm{Hz}), 145.1(\mathrm{q}, J=2.1 \mathrm{~Hz}), 128.8(\mathrm{~s}), 124.3(\mathrm{q}, J=277.1 \mathrm{~Hz}), 120.6(\mathrm{q}, J=256.3 \mathrm{~Hz})$, 118.3 (s), 113.7 (s), 112.0 (s), 107.0 (s), 34.1 (q, $J=32.4 \mathrm{~Hz}$). IR (KBr): v 2212, 1606, 1469, 1420, 1366, 1249, 1189, 1144, 1083, 960, 906, 873, 804, 787, 664, 612, 434 cm^{-1}. GC-MS m/z $284\left(\mathrm{M}^{+}\right)$. HRMS (EI) m/z: calcd. for $\mathrm{C}_{11} \mathrm{H}_{6} \mathrm{~F}_{6} \mathrm{O}_{2}:$ 284.0272; found: 284.0266.

6-fluoro-2-(2,2,2-trifluoroethyl)benzofuran (31)

Obtained as a colorless liquid in 60% yield $(130 \mathrm{mg}) . R_{f}(n$-pentane $)=0.70 .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50(\mathrm{dd}, J=8.5,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-$ $6.98(\mathrm{~m}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 3.63(\mathrm{q}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $-65.3(\mathrm{t}, J=10.0 \mathrm{~Hz}, 3 \mathrm{~F}),-116.9(\mathrm{td}, J=9.2,5.4 \mathrm{~Hz}, 1 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.0(\mathrm{~d}, J=243.6 \mathrm{~Hz}), 154.9(\mathrm{~d}, J=13.6 \mathrm{~Hz}), 147.8(\mathrm{q}, J=3.7 \mathrm{~Hz}), 129.8(\mathrm{~s})$,
$124.4(\mathrm{q}, J=277.0 \mathrm{~Hz}), 121.3(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 111.5(\mathrm{~d}, J=24.1 \mathrm{~Hz}), 106.6(\mathrm{~s}), 99.1$ (d, $J=26.8 \mathrm{~Hz}$), 33.9 (q, $J=32.3 \mathrm{~Hz}$). IR (KBr): v 2919, 1621, 1599, 1487, 1435, 1366, 1255, 1191, 1101, 1081, 969, 896, 819, 776, 665, 595, 481, $437 \mathrm{~cm}^{-1}$. GC-MS $\mathrm{m} / \mathrm{z} 218\left(\mathrm{M}^{+}\right)$. HRMS (EI) m/z: calcd. for $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~F}_{4} \mathrm{O}$: 218.0355; found: 218.0361.

5-fluoro-2-(2,2,2-trifluoroethyl)benzofuran (3m)

Obtained as a colorless liquid in 60% yield $(130 \mathrm{mg}) . R_{f}(n$-pentane $)=0.71 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43(\mathrm{dd}, J=8.9,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, J$ $=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 3.64(\mathrm{q}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F} \operatorname{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $-65.1(\mathrm{t}, J=10.0 \mathrm{~Hz}, 3 \mathrm{~F}),-120.7(\mathrm{td}, J=8.8,4.0 \mathrm{~Hz}, 1 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.3(\mathrm{~d}, J=239.4 \mathrm{~Hz}), 151.3(\mathrm{~d}, J=0.6 \mathrm{~Hz}), 148.9(\mathrm{q}, J=3.7 \mathrm{~Hz}), 128.9(\mathrm{~d}, J=$ $10.9 \mathrm{~Hz}), 124.4(\mathrm{q}, J=277.1 \mathrm{~Hz}), 112.3(\mathrm{~d}, J=26.6 \mathrm{~Hz}), 111.8(\mathrm{~d}, J=9.6 \mathrm{~Hz}), 107.0$ (m), 106.5 (d, $J=25.1 \mathrm{~Hz}$), 34.1 (q, $J=32.4 \mathrm{~Hz}$). IR (KBr): v 1626, 1607, 1471, 1449, $1419,1365,1283,1188,1168,1117,1081,953,905,839,797,734,616,534,478$ cm^{-1}. GC-MS m/z $218\left(\mathrm{M}^{+}\right)$. HRMS (EI) m/z: calcd. for $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~F}_{4} \mathrm{O}: 218.0355$; found: 218.0358.

4-fluoro-2-(2,2,2-trifluoroethyl)benzofuran (3n)

Obtained as a colorless liquid in 50% yield (109 mg). R_{f} (n-pentane) $=0.70 .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 3.65$ $(\mathrm{q}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-65.2(\mathrm{t}, J=10.0 \mathrm{~Hz}, 3 \mathrm{~F}),-119.6$ (dd, $J=9.4,5.1 \mathrm{~Hz}, 1 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.8$ (s), 155.7 (d, $J=250.9$ $\mathrm{Hz}), 147.7(\mathrm{q}, ~ J=3.7 \mathrm{~Hz}), 125.2(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 124.4(\mathrm{q}, J=277.2 \mathrm{~Hz}), 117.3(\mathrm{~d}, J=$ $21.9 \mathrm{~Hz}), 108.6(\mathrm{~d}, J=18.8 \mathrm{~Hz}), 107.5(\mathrm{~d}, J=4.2 \mathrm{~Hz}), 103.1(\mathrm{~s}), 33.9(\mathrm{q}, J=32.5 \mathrm{~Hz})$. IR (KBr): v 2926, 1593, 1496, 1437, 1366, 1259, 1213, 1148, 1086, 1027, 904, 776, 727, $650 \mathrm{~cm}^{-1}$. GC-MS m/z $218\left(\mathrm{M}^{+}\right)$. HRMS (EI) m/z: calcd. for $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~F}_{4} \mathrm{O}$:
218.0355; found: 218.0351.

6-chloro-2-(2,2,2-trifluoroethyl)benzofuran (30)

Obtained as a white solid in 60% yield $(140 \mathrm{mg})$. M.p. $66-67^{\circ} \mathrm{C} . R_{f}(n$-pentane $)=$ 0.69. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 3.63(\mathrm{q}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $-65.2(\mathrm{t}, J=10.0 \mathrm{~Hz}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.1(\mathrm{~s}), 147.9(\mathrm{q}, J=3.7$ $\mathrm{Hz}), 130.5(\mathrm{~s}), 126.7(\mathrm{~s}), 124.4(\mathrm{q}, ~ J=277.2 \mathrm{~Hz}), 123.8(\mathrm{~s}), 121.5(\mathrm{~s}), 111.9(\mathrm{~s}), 106.7$ $(\mathrm{q}, J=0.9 \mathrm{~Hz}), 33.9(\mathrm{q}, J=32.4 \mathrm{~Hz}) . \mathrm{IR}(\mathrm{KBr}): v 1606,1468,1424,1312,1246,1189$, 1150, 1081, 959, 927, 905, 845, 728, 650, 577, $469 \mathrm{~cm}^{-1}$. GC-MS m/z $234\left(\mathrm{M}^{+}\right)$. HRMS (EI) m/z: calcd. for $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{ClF}_{3} \mathrm{O}$: 234.0059; found: 234.0057.

5-chloro-2-(2,2,2-trifluoroethyl)benzofuran (3p)

Obtained as a white solid in 62% yield $(145 \mathrm{mg})$. M.p. $34-35^{\circ} \mathrm{C} . R_{f}(n$-pentane $)=$ 0.70. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 3.64(\mathrm{q}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $-65.1(\mathrm{t}, J=10.0 \mathrm{~Hz}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.4(\mathrm{~s}), 148.7(\mathrm{q}, J=3.6$ Hz), 129.4 (s), 128.7 (s), 124.9 (s), 124.6 ($\mathrm{q}, ~ J=275.1 \mathrm{~Hz}$), 120.6 (s$), 112.2$ (s$), 106.5$ (s), 34.1 (q, $J=32.4 \mathrm{~Hz}$). IR (KBr): v 2208, 1447, 1255, 1186, 1151, 1085, 903, 803, 726, 653, 649, $429 \mathrm{~cm}^{-1}$. GC-MS m/z $234\left(\mathrm{M}^{+}\right)$. HRMS (EI) m/z: calcd. for $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{ClF}_{3} \mathrm{O}: 234.0059$; found: 234.0056.

4-chloro-2-(2,2,2-trifluoroethyl)benzofuran (3q)

Obtained as a colorless liquid in 53% yield $(124 \mathrm{mg}) . R_{f}(n$-pentane $)=0.70 .{ }^{1} \mathrm{H}$ NMR
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{q}, J$ $=10.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-65.1(\mathrm{t}, J=10.0 \mathrm{~Hz}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.3(\mathrm{~s}), 147.8(\mathrm{q}, J=3.7 \mathrm{~Hz}), 127.6$ (s$), 125.9(\mathrm{~s}), 125.2$ (s$)$, 124.3 (q, $J=277.2 \mathrm{~Hz}$), 123.1 (s$), 109.9(\mathrm{~s}), 105.5(\mathrm{~s}), 34.0(\mathrm{q}, J=32.4 \mathrm{~Hz})$. IR (KBr): v 2928, 1602, 1584, 1477, 1365, 1321, 1253, 1173, 1082, 957, 942, 897, 860, 767, 731, 681, 575, $488 \mathrm{~cm}^{-1}$. GC-MS m/z $234\left(\mathrm{M}^{+}\right)$. HRMS (EI) m/z: calcd. for $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{ClF}_{3} \mathrm{O}: 234.0059$; found: 234.0063.

6-bromo-2-(2,2,2-trifluoroethyl)benzofuran (3r)

Obtained as a white solid in 67% yield (185 mg). M.p. $54-55^{\circ} \mathrm{C} . R_{f}(n$-pentane $)=$ 0.70. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 3.63(\mathrm{q}, \mathrm{J}=10.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $-65.1(\mathrm{t}, J=10.0 \mathrm{~Hz}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.3(\mathrm{~s}), 147.8(\mathrm{q}, J=3.7$ $\mathrm{Hz}), 127.1(\mathrm{~s}), 126.5(\mathrm{~s}), 124.3(\mathrm{q}, ~ J=277.2 \mathrm{~Hz}), 121.9(\mathrm{~s}), 117.9(\mathrm{~s}), 114.8(\mathrm{~s}), 106.7$ (q, $J=0.8 \mathrm{~Hz}), 33.9(\mathrm{q}, J=32.4 \mathrm{~Hz}) . \mathrm{IR}(\mathrm{KBr}): v 2156,1606,1463,1450,1362,1311$, 1246, 1149, 1077, 1047, 955, 879, 822, 728, 664, 591, 570, $431 \mathrm{~cm}^{-1}$. GC-MS m/z $277\left(\mathrm{M}^{+}\right)$. HRMS (EI) m/z: calcd. for $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{BrF}_{3} \mathrm{O}: 277.9554$; found: 277.9559 .

5-bromo-2-(2,2,2-trifluoroethyl)benzofuran (3s)

Obtained as a white solid in 66% yield (182 mg). M.p. $46-47{ }^{\circ} \mathrm{C} . R_{f}(n$-pentane $)=$ 0.70. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 3.64(\mathrm{q}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $-65.1(\mathrm{t}, J=10.0 \mathrm{~Hz}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.8(\mathrm{~s}), 148.5(\mathrm{q}, J=3.6$ $\mathrm{Hz}), 130.0(\mathrm{~s}), 127.6(\mathrm{~s}), 124.4(\mathrm{q}, ~ J=277.2 \mathrm{~Hz}), 123.7(\mathrm{~s}), 116.1(\mathrm{~s}), 112.7(\mathrm{~s}), 106.3$ (q, $J=0.9 \mathrm{~Hz}$), $34.0(\mathrm{q}, J=32.4 \mathrm{~Hz}) . \mathrm{IR}(\mathrm{KBr}): ~ v 3094,2930,1876,1743,1605$, $1461,1416,1361,1263,1183,1084,952,917,881,807,739,607,534,464 \mathrm{~cm}^{-1}$.

GC-MS m/z $277\left(\mathrm{M}^{+}\right)$. HRMS (EI) m/z: calcd. for $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{BrF}_{3} \mathrm{O}$: 277.9554; found: 277.9561.

4-bromo-2-(2,2,2-trifluoroethyl)benzofuran (3t)
Obtained as a white solid in 55% yield $(152 \mathrm{mg})$. M.p. $62-63{ }^{\circ} \mathrm{C} . R_{f}(n$-pentane $)=$ 0.68. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44(\mathrm{t}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.80(\mathrm{~s}, 1 \mathrm{H}), 3.65(\mathrm{q}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-65.1(\mathrm{t}, J=$ $10.0 \mathrm{~Hz}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.8(\mathrm{~s}), 147.7(\mathrm{q}, J=3.7 \mathrm{~Hz}), 129.7$ (s), 126.1 (s), 125.6 (s), 124.3 (q, $J=277.3 \mathrm{~Hz}$), 113.9 (s$), 110.4$ (s), 107.1 (q, $J=0.9$ $\mathrm{Hz}), 34.1(\mathrm{q}, ~ J=32.4 \mathrm{~Hz}) . \mathrm{IR}(\mathrm{KBr}): ~ v 2154,1578,1473,1422,1365,1255,1152$, 1084, 904, 812, 773, 676, 623, 569, $482 \mathrm{~cm}^{-1}$. GC-MS m/z $277\left(\mathrm{M}^{+}\right)$. HRMS (EI) m/z: calcd. for $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{BrF}_{3} \mathrm{O}$: 277.9554; found: 277.9557 .

5-bromo-6-fluoro-2-(2,2,2-trifluoroethyl)benzofuran (3u)

Obtained as a white solid in 55% yield $(163 \mathrm{mg})$. M.p. $42-43{ }^{\circ} \mathrm{C} . R_{f}(n$-pentane $)=$ $0.68 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.68(\mathrm{~s}, 1 \mathrm{H}), 3.63(\mathrm{q}, J=9.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-65.2(\mathrm{t}, J=$ $10.0 \mathrm{~Hz}, 3 \mathrm{~F}),-109.6(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.8(\mathrm{~d}, J=$ $201.2 \mathrm{~Hz}), 153.9(\mathrm{~d}, J=12.1 \mathrm{~Hz}), 148.9(\mathrm{q}, J=3.7 \mathrm{~Hz}), 125.6(\mathrm{~s}), 124.4(\mathrm{~s}), 124.3(\mathrm{q}$, $J=277.2 \mathrm{~Hz}), 106.0(\mathrm{~s}), 104.4(\mathrm{~d}, J=23.0 \mathrm{~Hz}), 100.1(\mathrm{~d}, J=27.9 \mathrm{~Hz}), 33.9(\mathrm{q}, J=$ $32.5 \mathrm{~Hz})$. IR (KBr): v 2918, 1607, 1463, 1423, 1364, 1312, 1246, 1184, 1132, 1080, 1006, 952, 871, 840, 740, 674, $559 \mathrm{~cm}^{-1}$. GC-MS m/z $296\left(\mathrm{M}^{+}\right)$. HRMS (ESI) m/z: calcd. for $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{BrF}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 296.9533$; found:296.9526.

S15

5-iodo-2-(2,2,2-trifluoroethyl)benzofuran (3v)

Obtained as a white solid in 61% yield (198 mg). M.p. $52-53{ }^{\circ} \mathrm{C} . R_{f}(n$-pentane $)=$ 0.68. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J$ $=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 3.64(\mathrm{q}, J=9.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $-65.1(\mathrm{t}, J=9.9 \mathrm{~Hz}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.4$ (s), 148.1 (q, $J=3.6$ Hz), 133.2 (s), 130.8 (s$), 129.9$ (s$), 124.4$ (q, $J=277.2 \mathrm{~Hz}$), 113.3 (s$), 106.0(\mathrm{~s}), 86.6$ (s), 33.9 (q, $J=32.4 \mathrm{~Hz}$). IR (KBr): v 2232, 1602, 1441, 1419, 1364, 1249, 1183, 1079, 957, 914, 872, 797, 665, 607, 569, 518, $425 \mathrm{~cm}^{-1}$. GC-MS m/z $325\left(\mathrm{M}^{+}\right)$. HRMS (EI) m/z: calcd. for $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{IF}_{3} \mathrm{O}$: 325.9416; found: 325.9421.

2-(2,2,2-trifluoroethyl)naphtho[1,2-b]furan (3w)

Obtained as a white solid in 70% yield (175 mg). M.p. $80-81^{\circ} \mathrm{C} . R_{f}(n$-pentane $)=$ 0.68. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.13(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.77(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H})$, $3.74(\mathrm{q}, J=10.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-65.3(\mathrm{t}, J=10.1 \mathrm{~Hz}, 3 \mathrm{~F})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.7$ (s), $146.2(\mathrm{q}, J=3.7 \mathrm{~Hz}$), 130.4 (s), 128.8 (s), 127.5 (s , 126.5 (s$), 125.6$ (s$), 124.7$ (s$), 124.6$ (q, $J=277.1 \mathrm{~Hz}$), 123.3 (s$), 112.2$ (s$)$, 112.2 (s), 105.9 (q, $J=0.7 \mathrm{~Hz}$), $34.2(\mathrm{q}, J=32.3 \mathrm{~Hz}) . \mathrm{IR}(\mathrm{KBr}): ~ v 3059,1631,1578$, $1526,1448,1386,1363,1319,1255,1185,1134,1078,959,800,774,699,651,516$, $483 \mathrm{~cm}^{-1}$. GC-MS m/z $250\left(\mathrm{M}^{+}\right)$. HRMS (EI) m/z: calcd. for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}: 250.0605$; found: 250.0604 .

2-(2,2,2-trifluoroethyl)-1H-indole (5a) ${ }^{4}$

Obtained as a white solid in 42% yield (84 mg). M.p. $65-66{ }^{\circ} \mathrm{C} . R_{f}$ (n-pentane/ethyl acetate $=20: 1)=0.52 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.14(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.53(\mathrm{~s}, 1 \mathrm{H}), 3.62(\mathrm{q}, J=10.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-65.3(\mathrm{t}, J=$ $10.4 \mathrm{~Hz}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.6(\mathrm{~s}), 128.0(\mathrm{~s}), 126.5(\mathrm{q}, J=3.3$ $\mathrm{Hz}), 125.2(\mathrm{q}, ~ J=277.0 \mathrm{~Hz}), 122.6$ (s$), 120.5$ (s), 120.2 (s$), 110.8$ (s$), 104.5$ (s$), 33.8$ (q, $J=31.4 \mathrm{~Hz}$). IR (KBr): v 3403, 2983, 1737, 1456, 1427, 1372, 1291, 1253, 1135, 1078, 1044, 915, 736, 662, $555 \mathrm{~cm}^{-1}$. GC-MS m/z $199\left(\mathrm{M}^{+}\right)$.

5-fluoro-2-(2,2,2-trifluoroethyl)-1H-indole (5b) ${ }^{4}$

Obtained as a colorless liquid in 40% yield $(86 \mathrm{mg}) . R_{f}(n$-pentane/ethyl acetate $=20: 1)$ $=0.50 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{t}$, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 3.60(\mathrm{q}, J=10.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-65.3(\mathrm{t}, J=10.4 \mathrm{~Hz}, 3 \mathrm{~F}),-124.1--124.3(\mathrm{~m}, 1 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $158.1(\mathrm{~d}, J=234.8 \mathrm{~Hz}), 133.1(\mathrm{~s}), 128.4(\mathrm{q}, J=3.1 \mathrm{~Hz}), 125.4(\mathrm{~s}), 125.1(\mathrm{q}, J=276.9$ $\mathrm{Hz}), 111.5(\mathrm{~d}, ~ J=9.7 \mathrm{~Hz}), 110.9(\mathrm{~d}, ~ J=26.4 \mathrm{~Hz}), 105.4(\mathrm{~d}, J=23.7 \mathrm{~Hz}), 104.5(\mathrm{~d}, J=$ $4.6 \mathrm{~Hz}), 33.8(\mathrm{q}, J=31.5 \mathrm{~Hz}) . \mathrm{GC}-\mathrm{MS} \mathrm{m} / \mathrm{z} 217\left(\mathrm{M}^{+}\right)$.

5-chloro-2-(2,2,2-trifluoroethyl)-1H-indole (5c) ${ }^{4}$

Obtained as a white solid in 45% yield (105 mg). M.p. $72-73{ }^{\circ} \mathrm{C} . R_{f}$ (n-pentane/ethyl acetate $=20: 1)=0.51 .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.19(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H})$, $7.29(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 3.61(\mathrm{q}, J=10.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-65.2(\mathrm{t}, J=10.4 \mathrm{~Hz}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
134.9 (s), 129.1 (s), 128.1 (q, $J=3.3 \mathrm{~Hz}), 125.9(\mathrm{~s}), 125.0(\mathrm{q}, J=277.1 \mathrm{~Hz}), 122.9$ (s), 119.9 (s), 111.9 (s), 104.1 (s), 33.8 (q, $J=31.6 \mathrm{~Hz}$). IR (KBr): v 3416, 2926, 1985, 1656, 1583, 1550, 1468, 1448, 1369, 1311, 1267, 1253, 1149, 1079, 923, 869, 792, $664 \mathrm{~cm}^{-1}$. GC-MS m/z $233\left(\mathrm{M}^{+}\right)$.

6-chloro-2-(2,2,2-trifluoroethyl)-1H-indole (5d)

Obtained as a white solidin 43% yield (101 mg). M.p. $48-49{ }^{\circ} \mathrm{C} . R_{f}$ (n-pentane/ethyl acetate $=20: 1)=0.52 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 3.60(\mathrm{q}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-65.3\left(\mathrm{t}, \mathrm{J}=10.4 \mathrm{~Hz}, 3 \mathrm{~F}\right.$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.9(\mathrm{~s}), 128.4(\mathrm{~s}), 127.3(\mathrm{q}, J=2.7 \mathrm{~Hz}), 126.6(\mathrm{~s}), 125.0(\mathrm{q}, J=276.9 \mathrm{~Hz}), 121.4$ (s), 121.0 (s), 110.8 (s$), 104.5(\mathrm{~s}), 33.8(\mathrm{q}, J=31.6 \mathrm{~Hz})$. IR (KBr): v 3398, 2951, 1709, $1612,1545,1410,1363,1290,1255,1137,1076,996,925,895,819,741,660,490$ cm^{-1}. GC-MS m/z $233\left(\mathrm{M}^{+}\right)$. HRMS (ESI) m/z: calcd. for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{ClF}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 234.0292; found: 234.0286.

5-bromo-2-(2,2,2-trifluoroethyl)- $\mathbf{1 H}$-indole (5e) ${ }^{4}$

Obtained as a white solid in 50% yield (138 mg). M.p. $87-88{ }^{\circ} \mathrm{C} . R_{f}(n$-pentane/ethyl acetate $=20: 1)=0.48 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.19(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H})$, $7.35-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 3.61(\mathrm{q}, J=10.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-65.2(\mathrm{t}, J=10.4 \mathrm{~Hz}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.1(\mathrm{~s}), 129.7$ (s), 128.0 (q, $J=3.3 \mathrm{~Hz}$), 125.5 (s$), 125.1(\mathrm{q}, J=277.1 \mathrm{~Hz}), 123.1(\mathrm{~s}), 113.4(\mathrm{~s}), 112.3$ (s), 104.0 (s), 33.8 (q, $J=31.6 \mathrm{~Hz}$). IR (KBr): v 3416, 2957, 2858, 1668, 1586, 1545, 1465, 1377, 1254, 1213, 1146, 1078, 1051, 917, 869, 792, $663 \mathrm{~cm}^{-1}$. GC-MS m/z 277 $\left(\mathrm{M}^{+}\right)$.

6-bromo-2-(2,2,2-trifluoroethyl)-1H-indole (5f)

Obtained as a white solid in 48% yield (133 mg). M.p. $81-82^{\circ}$ C. R_{f} (n-pentane/ethyl acetate $=20: 1)=0.50 .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H})$, $7.47(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 3.60(\mathrm{q}, J=10.7 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-65.3\left(\mathrm{t}, J=10.4 \mathrm{~Hz}, 3 \mathrm{~F}\right.$). ${ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}) $\delta 137.3(\mathrm{~s}), 127.3(\mathrm{q}, J=3.1 \mathrm{~Hz}), 126.9(\mathrm{~s}), 125.1(\mathrm{q}, J=274.0 \mathrm{~Hz}), 123.6(\mathrm{~s})$, 121.8 (s), 116.0 (s), 113.8 (s), 104.6 (s), 33.7 (q, $J=31.5 \mathrm{~Hz}$). IR (KBr): v 3413, 2923, $1654,1612,1540,1454,1364,1287,1252,1140,1077,994,904,812,732,664,553$ cm^{-1}. GC-MS m/z $279\left(\mathrm{M}^{+}\right)$. HRMS (ESI) m/z: calcd. for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{BrF}_{3} \mathrm{~N}$ [M] $]^{+}$: 278.9693; found: 278.9691.

2-(2,2,2-trifluoroethyl)-1H-pyrrolo[2,3-b]pyridine (5g)

Obtained as a white solid in 15% yield (30 mg). M.p. $126.8-128.0{ }^{\circ} \mathrm{C} . R_{f}$ $(n$-pentane/ethyl acetate $=1: 1)=0.59 .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $8.32(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.06(\mathrm{~m}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 3.69(\mathrm{q}, J=$ $10.4 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-65.3(\mathrm{t}, J=10.4 \mathrm{~Hz}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.3(\mathrm{~s}), 142.2(\mathrm{~s}), 129.0(\mathrm{~s}), 128.1(\mathrm{q}, J=3.2 \mathrm{~Hz}), 125.0(\mathrm{q}, J$ $=277.2 \mathrm{~Hz}), 121.1(\mathrm{~s}), 116.1(\mathrm{~s}), 102.0(\mathrm{~s}), 34.2(\mathrm{q}, J=31.7 \mathrm{~Hz}) . \mathrm{IR}(\mathrm{KBr}):$ v 3136, 2922, 2851, 1420, 1248, 1143, 1115, 1074, 807, $769 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: calcd. for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}:$201.0634; found: 201.0628.

6-(2,2,2-trifluoroethyl)-5H-[1,3]dioxolo[4,5-f]indole (5h)

Obtained as a colorless liquid in $c a .5 \%$ yield $(12 \mathrm{mg}) . R_{f}(n$-pentane/ethyl acetate $=$

3:1) $=0.45 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 6.84-6.79$ $(\mathrm{m}, 1 \mathrm{H}), 6.40-6.31(\mathrm{~m}, 1 \mathrm{H}), 5.93(\mathrm{~s}, 2 \mathrm{H}), 3.52(\mathrm{q}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-65.6(\mathrm{t}, J=10.8 \mathrm{~Hz}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.2(\mathrm{~s})$, 143.2 (s), 131.4 (s), 125.1 (q, $J=277.1 \mathrm{~Hz}$), $125.0(\mathrm{q}, J=3.4 \mathrm{~Hz}), 121.8(\mathrm{~s}), 104.6(\mathrm{~s})$, 100.6 (s), 99.0 (s), 91.8 (s), 33.8 (q, $J=31.5 \mathrm{~Hz}$). IR (KBr): v 3403, 2926, 1363, 1328, 1294, 1254, 1176, 1141, 1080, 1040, $947 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: calcd. for $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{NO}_{2}[\mathrm{M}-\mathrm{H}]^{-}: 242.0423$; found: 242.0425 .

5,6-dimethoxy-2-(2,2,2-trifluoroethyl)-1H-indole (5i)

Obtained as a colorless liquid in $c a .5 \%$ yield $(13 \mathrm{mg}) . R_{f}(n$-pentane/ethyl acetate $=$ $1: 1)=0.62 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H})$, $6.37(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{q}, J=10.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-65.6(\mathrm{t}, J=10.8 \mathrm{~Hz}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.4(\mathrm{~s}), 145.4$ (s), $130.9(\mathrm{~s}), 125.2(\mathrm{q}, J=277.0 \mathrm{~Hz}), 124.9(\mathrm{q}, J=3.3 \mathrm{~Hz}), 120.7(\mathrm{~s}), 104.2(\mathrm{~s})$, 102.2 (s), 94.3 (s$), 56.3$ (s), 56.2 (s), 33.8 (q, $J=31.4 \mathrm{~Hz}$). IR (KBr): v 3365, 2937, 1486, 1364, 1258, 1204, 1140, 1125, 1081, 1010, $723 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 260.0893$; found: 260.0887.

1-methyl-2-(2,2,2-trifluoroethyl)-1H-indole (5j)

Obtained as a white solid in 25% yield (53 mg). M.p. $65.5-66.9{ }^{\circ} \mathrm{C}$. R_{f} $\left(n\right.$-pentane $\left./ \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=0.39 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 3.73$ $(\mathrm{s}, 3 \mathrm{H}), 3.62(\mathrm{q}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-65.2(\mathrm{t}, J=10.2 \mathrm{~Hz}$, 3F). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.7$ (s), 128.3 (q, $J=3.2 \mathrm{~Hz}$), 127.3 (s), 125.0 (q, $J=277.0 \mathrm{~Hz}), 122.0(\mathrm{~s}), 120.5(\mathrm{~s}), 119.9(\mathrm{~s}), 109.4(\mathrm{~s}), 103.8(\mathrm{~s}), 32.0(\mathrm{q}, J=31.8$

Hz), 29.8 (s). IR (ATR): v 3060, 2951, 2866, 1548, 1469, 1350, 1318, 1251, 1235, 1147, 1073, 903, 787, 753, $656 \mathrm{~cm}^{-1}$. HRMS (EI) m/z: calcd. for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}]^{+}$: 213.0765; found: 213.0766.

Crystal structure analyses

The crystal samples of $\mathbf{3 j}$ were prepared by slow volatilization in a n-hexane/ CDCl_{3} (1:1) solvent mixture. The suitable crystals of $\mathbf{3 j}$ (CCDC 2055439) were mounted on quartz fibers and X-ray data collected on a Bruker AXS APEX diffractometer, equipped with a CCD detector at $-50^{\circ} \mathrm{C}$, using $\mathrm{MoK} \alpha$ radiation (λ $0.71073 \AA$). The data was corrected for Lorentz and polarisation effect with the SMART suite of programs and for absorption effects with SADABS. ${ }^{5}$ Structure solution and refinement were carried out with the SHELXTL suite of programs. ${ }^{5}$ The structure was solved by direct methods to locate the heavy atoms, followed by difference maps for the light non-hydrogen atoms.

ORTEP diagrams

Figure S1. ORTEP diagram of compound 3j. Thermal ellipsoids are drawn at 40\% probability

References:

(1) Ragupathi, A.; Sagadevan, A.; Charpe, V. P.; Lin, C.-C.; Hwu, J.-R.; Hwang, K. C. Chem. Commun. 2019, 55, 5151.
(2) Patil, V. S.; Pal, S. S.; Pathare, R. S.; Reddy, L. K. K.; Pathak, A. Tetrahedron Lett. 2015, 56, 6370.
(3) Zhang, X.; Yuan, C.; Zhang, C.; Gao, X.; Wang, B.; Sun, Z.; Xiao, Y.; Guo, H. Tetrahedron 2016, 72, 8274.
(4) Zhang, H.; Wang, H.-Y.; Luo, Y.; Chen, C.; Cao, Y.; Chen, P.; Guo, Y.-L.; Lan, Y.; Liu, G. ACS Catalysis 2018, 8, 2173.
(5) SHELXTL version 5.03; Bruker Analytical X-ray Systems, Madison, WI, 1997.

Copies of ${ }^{1} \mathrm{H}$ NMR, ${ }^{19} \mathrm{~F}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{3 a}$ in CDCl_{3}

노공

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 a}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3} \mathbf{b}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{3 b}$ in CDCl_{3}
$\stackrel{\llcorner }{\sim}{ }_{\sim}^{\infty} \stackrel{\circ}{\circ}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 b}$ in CDCl_{3}

$$
\begin{aligned}
& \stackrel{\circ}{\circ} \rightarrow \infty \text { 난 는 }
\end{aligned}
$$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 c}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{3 c}$ in CDCl_{3}
9.7
4
4

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3} \mathbf{c}$ in CDCl_{3}

눈옹

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 d}$ in CDCl_{3}

© $\square_{6} \mathrm{O}$	F
	$\stackrel{-}{-}$

${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{3 d}$ in CDCl_{3}
정

$\mathrm{Cl}_{10} \mathrm{I}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 d}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 e}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{3 e}$ in CDCl_{3}

$$
\begin{aligned}
& \stackrel{\infty}{\wedge} \vec{\sim} \\
& \begin{array}{r}
121218 \\
1 \\
1 \\
\hline
\end{array}
\end{aligned}
$$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3} \mathbf{e}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 f}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{3} \mathbf{f}$ in CDCl_{3}

$$
\begin{aligned}
& \approx 89
\end{aligned}
$$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 f}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 g}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{3 g}$ in CDCl_{3}

लि앙
$\begin{array}{r}121218 \\ 1 \\ \hline\end{array}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 g}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3} \mathbf{h}$ in CDCl_{3}

$$
\begin{aligned}
& \text { ㄴํㄱオニか尺 }
\end{aligned}
$$

${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{3 h}$ in CDCl_{3}
内N゙心

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 h}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 i}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{3 i}$ in CDCl_{3}

$$
\begin{aligned}
& \cong \stackrel{\infty}{2} \stackrel{\infty}{1} \\
& 1.0 .10 . \\
& 0
\end{aligned}
$$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 i}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3} \mathbf{j}$ in CDCl_{3}

$\begin{array}{llllllllll}8.1 & 8.0 & 7.9 & 7.8 & 7.7 & 7.6 & 7.5\end{array}$

${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{3} \mathbf{j}$ in CDCl_{3}

$$
\begin{aligned}
& \text { ㄷํㄱ }
\end{aligned}
$$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 j}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 k}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{3 k}$ in CDCl_{3}

$$
\begin{aligned}
& \text { 法 } 二 \pm=
\end{aligned}
$$

$$
\begin{aligned}
& 1
\end{aligned}
$$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 k}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 1}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{3 1}$ in CDCl_{3}

$\underset{\sim}{\sim}$	$\bar{\infty}_{\infty} \times \infty \times \infty$
ம் ம் ம் ம்	
¢ 0	1

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 1}$ in CDCl_{3}

$$
\begin{aligned}
& \stackrel{4}{4}-\infty
\end{aligned}
$$

$$
\begin{aligned}
& \text { ウ்ウ் ભ் }
\end{aligned}
$$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 m}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{3 m}$ in CDCl_{3}

- +	
	TTT

Cors3

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 m}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 n}$ in CDCl_{3}
 $\therefore \underset{\sim N}{\sim N}$

${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{3 n}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 n}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 o}$ in CDCl_{3}

	¢08 8
Nivicio	

${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{3 o}$ in CDCl_{3}

$$
\begin{aligned}
& \pm \approx \circ \\
& \text { 벙 } 4 .
\end{aligned}
$$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 o}$ in CDCl_{3}

> 네아
> $\underset{\sim}{\dot{\sim}} \underset{\sim}{\infty} \dot{\sim}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3} \mathbf{p}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{3 p}$ in CDCl_{3}

> ㄷํㄱ
> بi
\qquad

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 p}$ in CDCl_{3}

> 凧
> ค月 고앙

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 q}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{3 q}$ in CDCl_{3}

$$
\begin{aligned}
& \stackrel{\circ}{\circ} \circ=
\end{aligned}
$$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 q}$ in CDCl_{3}

$$
\begin{aligned}
& \text { గ오 } \infty
\end{aligned}
$$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 r}$ in CDCl_{3}

$$
\begin{aligned}
& \text { Nivio ๗்ற் }
\end{aligned}
$$

${ }^{19}$ F NMR spectrum of $\mathbf{3 r}$ in CDCl_{3}

$$
\begin{aligned}
& \text { ごニ }
\end{aligned}
$$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3} \mathbf{r}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 s}$ in CDCl_{3}

${ }^{19}$ F NMR spectrum of 3 s in CDCl_{3}

$$
\begin{aligned}
& 88= \\
& \text { வ்่ ப் ட் ட் }
\end{aligned}
$$

${ }^{13} \mathrm{C}$ NMR spectrum of 3 s in CDCl_{3}

$$
\begin{aligned}
& \text { 完 } \underbrace{\infty}
\end{aligned}
$$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 t}$ in CDCl_{3}

¢ サ ㄲ ㅈํㅇㅇ	
N心N心	ண்ற்ં

${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{3 t}$ in CDCl_{3}

$$
\begin{aligned}
& \text { \%8\% }
\end{aligned}
$$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 t}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 u}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{3 u}$ in CDCl_{3}

$$
\begin{aligned}
& \begin{array}{l}
n=0 \\
0 \\
0
\end{array}
\end{aligned}
$$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 u}$ in CDCl_{3}

Clors)

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 v}$ in CDCl_{3}

	¢68 88
Nricico	๗்றู่

${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{3 v}$ in CDCl_{3}

$$
\begin{aligned}
& 888
\end{aligned}
$$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 v}$ in CDCl_{3}

$$
\begin{aligned}
& \xrightarrow{\text { Lis }}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ウ் }
\end{aligned}
$$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 w}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{3 w}$ in CDCl_{3}

$$
\begin{aligned}
& \text { ざへ응 } \\
& \text { டி் பூ பி் }
\end{aligned}
$$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 w}$ in CDCl_{3}

$$
\begin{aligned}
& \text { ウ் ল゙ ল゙ }
\end{aligned}
$$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 a}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{5 a}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 a}$ in CDCl_{3}

[^0]${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 b}$ in CDCl_{3}
NoN8刃o

${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{5 b}$ in CDCl_{3}

C

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 b}$ in CDCl_{3}

C-CH2Clens

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 c}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{5 c}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 c}$ in CDCl_{3}

[^1]${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 d}$ in CDCl_{3}
Ninny in

C

${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{5 d}$ in CDCl_{3}

$$
\begin{aligned}
& n \infty \\
& \text { nom } \\
& \text { non } \\
& i
\end{aligned}
$$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 d}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 e}$ in CDCl_{3}

${ }^{19}$ F NMR spectrum of $\mathbf{5 e}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 e}$ in CDCl_{3}


```
~ %O:
```


Crers

[^2]${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 f}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{5} \mathbf{f}$ in CDCl_{3}
HN
Nu
ñ
i

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 f}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 g}$ in CDCl_{3}

$\stackrel{\text { ® }}{ }$		
$\stackrel{\text { i }}{ }$	oincivic	

${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{5 g}$ in CDCl_{3}

> \&
> $\stackrel{1}{4}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 g}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5} \mathbf{h}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{5} \mathbf{h}$ in CDCl_{3}
⿵ㅗㅇㅇㅛ

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 h}$ in CDCl_{3}

$$
\begin{aligned}
& \text { ベーロタ }
\end{aligned}
$$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 i}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{5 i}$ in CDCl_{3}

$$
\begin{aligned}
& \text { ⿵ㅏㄴ앙 } \\
& \text { ப் பி ட் }
\end{aligned}
$$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 i}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 j}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{5 j}$ in CDCl_{3}

$$
\begin{aligned}
& \text { 옹ํㅇ }
\end{aligned}
$$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 j}$ in CDCl_{3}

No
$\underset{\sim}{\infty} \rightarrow \infty$
ふN

[^0]: $\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^1]: $\begin{array}{llllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^2]: $\begin{array}{llllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -1\end{array}$

