Table of Contents.

1. Crystallographic Data Collection, Structure Determination and Refinement. S2
2. Crystallographic Analysis of DehydroAla Schiff Base Complex (S)-1a and Rationale for the Scalemic Formation of $\boldsymbol{\beta}$-Phosphorus Adducts. S5
3. General Remarks. S7
4. Experimental procedures and characterization data. S8
4.1. General Procedures S8
4.1.1. General Procedure for the Michael Addition of Phosphine Nucleophiles to the Dehydroalanine $\mathrm{Ni}(\mathrm{II})$ Complex (R)-1 or (S)-1 (G.P.A). S8
4.1.2. General Procedure for the Disassemblies of the 3-Phosphinyl Alanine Ni(II) Complexes (3) and Boc Protection to Afford Compounds of Type 4. S9
5. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of New Compounds. S10

1. Crystallographic Data Collection, Structure Determination and Refinement.

The single crystal X-ray diffraction experiments were carried out using a RIGAKU XtaLabPro diffractometer equipped with a Mo microfocus sealed tube generator coupled to a doublebounce confocal Max-Flux® multilayer optic, and a HPAD PILATUS3 R 200K detector and controlled by CrysalisPro ${ }^{1}$ software, that also ensured the data processing.

For crystal of compound $(R)-\mathbf{4 k}$, data collection was performed on a small colourless block grown in dichloromethane, and of dimensions $0.12 \times 0.10 \times 0.06 \mathrm{~mm}^{3}$, at low temperature 153 K , and at ambient temperature for (S)-1a that crystallized as red platelets with dimensions of $0.18 \times 0.15 \times 0.04 \mathrm{~mm}^{3}$. Both structures were solved by Intrinsic Phasing methods (SHELXT program), ${ }^{2}$ in non-centrosymmetric Sohncke space groups, $\mathrm{P} 2_{1}$ and $\mathrm{P} 2_{1} 2_{1} 2_{1}$, for $(R)-4 \mathbf{k}$ and (S) 1a respectively. Structure refinements were performed by full-matrix least-squares methods (SHELXL-2018/3 program). ${ }^{3}$ All non-hydrogen atoms were improved by anisotropic refinement. While H atoms were mostly identified in difference maps, they were all idealized and included as rigid groups, allowed to rotate but not tip in the case of methyl groups, and refined with $U_{\text {iso }}$ set to $\mathrm{x} U_{\text {eq }}(\mathrm{C})$ of the parent carbon atom ($\mathrm{x}=1.5$ for methyl groups, 1.2 for the others). Only the position of the amine H atom was permitted to refine.

In $(R)-\mathbf{4 k}$, one ethyl chain appeared disordered over two sites whose occupancy factors were refined to values of $0.86(1): 0.14(1)$. That slight disorder required the application of soft restraints on anisotropic displacement parameters (DELU and SIMU instructions ${ }^{3}$) and distances (SADI). The crystal structure of compound (S)-1a contains a channel propagating along the b direction in zig-zag around the two-fold screwed axis located at the unit cell origin. Examination of the refined structure using the SQUEEZE procedure as implemented within

[^0]PLATON, ${ }^{4}$ showed the presence of 88 electrons per unit cell. But there were no significant peaks in the difference maps, thus no plausible solvent model -possibly one disordered or mobile hexane molecule (50 electrons) per complex-could be developed. Nevertheless, the SQUEEZE procedure by omitting the solvent contribution to the diffraction did not improve at all the model refinement, so it was abandoned for the present crystal structure.

The presence of strong resonant atoms allowed us establish the correct absolute configuration for each compound based on the Flack x parameters: for $((S)-1 \mathbf{1 a)} x=0.001(5)$ calculated using 2076 quotients, ${ }^{5}$ and for $((R)-\mathbf{4 k}) x=-0.02$ (3) calculated using 1262 quotients.

Crystal structure determination of $(R)-\mathbf{4 k}$:

Crystal Data for (R)-2-((tert-butoxycarbonyl)amino)-3-(diethoxyphosphoryl)propanoic acid: $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{NO}_{7} \mathrm{P}(\mathrm{M}=325.29 \mathrm{~g} / \mathrm{mol})$: orthorhombic, space group $\mathrm{P} 2_{1} 2_{1} 2_{1}($ no. 19 $), \mathrm{a}=9.4385(3) \AA$, $b=10.4341(2) \AA, c=16.9555(4) \AA, V=1669.82(7) \AA^{3}, Z=4, T=153(2) K, \mu(M o K \alpha)=0.194$ mm^{-1}, Dcalc $=1.294 \mathrm{~g} / \mathrm{cm}^{3}, 20342$ reflections measured $\left(3.906^{\circ} \leq \theta \leq 26.372^{\circ}\right), 3414$ unique $($ Rint $=0.043)$ which were used in all calculations. The final R1 was 0.0379 (for $3154 I>2 \sigma(I)$) and wR2 was 0.0945 (all data). The final difference Fourier map showed minimum and maximum values of 0.282 and $-0.265 \mathrm{e}^{\AA^{-3}}$, respectively.

Crystal structure determination of (S)-1a:

Crystal Data for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{NiO}_{3}(\mathrm{M}=613.54 \mathrm{~g} / \mathrm{mol})$: Monoclinic, space group $\mathrm{P} 2_{1}(\mathrm{no} .5)$, a $=9.80049(17) \AA, b=11.6264(2) \AA, c=13.6934(3) \AA, \beta=108.1849(17)^{\circ},, V=1482.36(5) \AA^{3}$, $\mathrm{Z}=2, \mathrm{~T}=293(2) \mathrm{K}, \mu(\mathrm{MoK} \alpha)=0.957 \mathrm{~mm}^{-1}$, Dcalc $=1.375 \mathrm{~g} / \mathrm{cm}^{3}, 27122$ reflections measured $\left(3.062^{\circ} \leq \theta \leq 25.349^{\circ}\right), 5410$ unique $(\operatorname{Rint}=0.043)$ which were used in all calculations. The

[^1]final R1 was 0.0376 (for $4849 I>2 \sigma(I)$) and wR2 was 0.0974 (all data). The final difference Fourier map showed minimum and maximum values of 0.652 and $-0.309 \mathrm{e}^{-3}$, respectively. CCDC 2036929 (compound (S)-1a) and 2036930 (compound (R)-4k) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Figure 1. Ortep view of compound $(R)-\mathbf{4 k}$. The minor disordered ethyl group is not shown for clarity. Ellipsoids are drawn at 30% of probability.

Figure 2. Ortep view of compound (S)-1a. Ellipsoids are drawn at 30\% of probability.

2. Crystallographic Analysis of DehydroAla Schiff Base Complex (S)-1a and Rationale for the Scalemic Formation of $\boldsymbol{\beta}$-Phosphorus Adducts.

Figure 3. Ball and stick crystallographic structure of dehydroAla Schiff base complex (S)-1a.

Figure 4. Spacefill crystallographic structure of dehydroAla Schiff base complex (S)-1a.

Figure 5. Deviation from the planarity of the $\mathrm{Ni}(\mathrm{II})$ coordination sphere of dehydroAla Schiff base complex (S)-1a.

Figure 6. Dihedral angles of the chelate rings around the $\mathrm{Ni}(\mathrm{II})$ of dehydroAla Schiff base complex (S) $1 a$.

Scheme 1. Axial chirality of the chelate rings and rationale for the scalemic formation of β-phosphorus adducts.

3. General Remarks.

Unless otherwise stated, all reagents and starting materials were purchased from commercial sources and used as received. All solvents were reagent grade. NMR spectra were recorded at 298 K with a Bruker Avance III HD nanobay 400 MHz spectrometer equipped with a BBO probe. The structures of the new compounds were assigned with the aid of $1 \mathrm{D}\left[{ }^{1} \mathrm{H} \mathrm{NMR},{ }^{13} \mathrm{C}\right.$ NMR, Distortionless Enhancement by Polarization Transfer (DEPT)] and 2 D Correlation Spectroscopy $\left[\left({ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}\right.\right.$ COSY and ${ }^{1} \mathrm{H}^{-13} \mathrm{C}$ Heteronuclear Single Quantum Coherence (HSQC)]. When appropriate or in the event of ambiguous proton and carbon, assignments were established using ${ }^{19} \mathrm{~F}$ NMR, ${ }^{31} \mathrm{P}$ NMR and ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ Heteronuclear Multiple-bond Correlation (HMBC) experiments. ${ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ spectra were acquired on a broad band decoupled mode. ${ }^{1} \mathrm{H}$ NMR (400 MHz) chemical shift values are listed in parts per million (ppm). Tetramethylsilane (TMS) was used as an internal standard, or alternatively, spectra were calibrated using the signals of the corresponding non-deuterated solvent. Data are reported as follows: chemical shift (ppm on the δ scale), multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet and po $=$ partially overlapped), coupling constant $J(\mathrm{~Hz})$, and integration. ${ }^{13} \mathrm{C}$ NMR (101 MHz) chemical shifts are given in ppm . Spectra were calibrated using the corresponding non-deuterated solvent. ${ }^{19} \mathrm{~F}(376 \mathrm{MHz})$ and ${ }^{31} \mathrm{P}(162 \mathrm{MHz})$ NMR chemical shifts are given in ppm. Primary NMR data files were processed by MestReNova. High-resolution mass spectra were recorded with a Bruker maXis ESI qTOF ultrahigh-resolution mass spectrometer coupled to a Dionex Ultimate 3000 RSLC system (FR2708, Orléans). MS data were acquired in positive mode and were processed using Data Analysis 4.4 software (Bruker). Infrared spectra were recorded with a Thermo Scientific Nicolet IS10 FTIR spectrometer using diamond ATR golden gate sampling and are reported in wave numbers $\left(\mathrm{cm}^{-1}\right)$. Specific optical rotations were measured with a JASCO P-2000 digital polarimeter, in a thermostated $\left(20^{\circ} \mathrm{C}\right) 1 \mathrm{dm}$ long cell with high-pressure sodium lamp and are reported as follows: $[\alpha]_{\mathrm{D}}{ }^{\mathrm{T}}$ [solvent, $\left.c(\mathrm{~g} / 100 \mathrm{~mL})\right]$.

Analytical thin-layer chromatography (TLC) was performed with Merck Silica Gel 60 F254 precoated plates. Visualization of the developed chromatogram was performed under ultraviolet light (254 nm) and on staining by immersion in aqueous, acidic ceric ammonium molybdate followed by charring at $150{ }^{\circ} \mathrm{C}$. Flash chromatography was performed in air on Silica Gel 60 (230-400 mesh) with dichloromethane and acetone as eluents, unless otherwise stated. Organic solutions were concentrated under reduced pressure with a Buchi rotary evaporator. Supercritical fluid chromatography (SFC) was employed to determine enantiomeric excesses of compounds $\mathbf{4 a}$ and $\mathbf{4} \mathbf{k}$. Samples were dissolved in methanol at $1 \mathrm{mg} \mathrm{mL}^{-1}$. SFC analyses were carried out on an ACQUITY UPC² instrument from Waters. The stationary phase was a Chiralpak IC-U column from Chiral Technologies ($100 \times 3.0 \mathrm{~mm}, 1.6 \mu \mathrm{~m}$). Oven temperature was set at $25^{\circ} \mathrm{C}$, backpressure at 15 MPa and flow rate at $1 \mathrm{~mL} \mathrm{~min}^{-1}$. For the analysis of aminoacid 4a, the mobile phase was $\mathrm{CO}_{2} /$ methanol $80: 20(\mathrm{v} / \mathrm{v})$ and UV detection was set at 210 nm . For $\mathbf{4 k}$ analysis, mobile phase was $\mathrm{CO}_{2} /$ methanol $75: 15$ (v/v) and samples were detected by mass spectrometry (ACQUITY QDa from Waters) with electrospray ionization in positive (ESI+) and negative (ESI-) modes, and ion acquisition from 100 to $800 \mathrm{~m} / \mathrm{z}$. Make-up solvent for MS detection was methanol/water $(98 / 2)+20 \mathrm{~mm} \mathrm{NH} 44 \mathrm{OH}$. Data are reported as follows: column type, eluent, flow rate, temperature, backpressure, wavelength and retention times $\left(\mathrm{t}_{\mathrm{R}}\right)$.

4. Experimental procedures and characterization data.

4.1. General Procedures.

4.1.1. General Procedure for the Michael Addition of Phosphine Nucleophiles to the Dehydroalanine Ni(II) Complex (R)-1 or (S)-1 (G.P.A).

To a stirred solution of the dehydroalanine $\mathrm{Ni}(\mathrm{II})$ complex $(R)-\mathbf{1}$ or $(S) \mathbf{- 1}$ (1.0 equiv., 100 mg , 0.164 mmol) in $\mathrm{MeCN}(5 \mathrm{~mL}$) was successively added the phosphine nucleophile (1.5 equiv., 0.246 mmol) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (for secondary phosphine oxides) or $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (for dialkyl phosphites) (0.25 equiv., 0.041 mmol) and the reaction mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 4 h . Next, the
reaction was quenched by addition of 5% aq. acetic acid and the aqueous phase was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Combined organic layers were successively washed with $\mathrm{H}_{2} \mathrm{O}$ and brine. The organic phase was dried over MgSO_{4}, filtered through a cotton plug and evaporated under reduced pressure. Then, the residue was purified by column chromatography over silicagel $\left(\mathrm{CHCl}_{3} /\right.$ acetone $4: 1$ to $\left.0: 1, \mathrm{v} / \mathrm{v}\right)$ to give related compound as a red solid.

4.1.2. General Procedure for the Disassemblies of the 3-Phosphinyl Alanine Ni(II) Complexes (3) and Boc Protection to Afford Compounds of Type 4.

To a vigorously stirred solution of compound $(R) \mathbf{- 3 a},(S) \mathbf{- 3 a},(R) \mathbf{- 3 k}$ or $(S) \mathbf{- 3 k}$ (1.0 equiv., 200 $\mathrm{mg})$ in THF (4 mL) was added an aqueous solution of $\mathrm{HCl}(4 \mathrm{~N}, 1 \mathrm{~mL})$, and the reaction mixture was stirred for 10 min at room temperature (ca. $20^{\circ} \mathrm{C}$). Next, the mixture was diluted $\left(\mathrm{H}_{2} \mathrm{O}\right)$ and the aqueous layer was washed twice with AcOEt. Saturated aq. NaHCO_{3}, ethylenediaminetetraacetic acid (EDTA, 1.0 equiv.), and a solution of di-tert-butyl dicarbonate ($\mathrm{Boc}_{2} \mathrm{O}, 5.0$ equiv.) in 1,4-dioxane (6 mL) were subsequently added to the aqueous phase and the reaction mixture was stirred for 12 h at $20^{\circ} \mathrm{C}$. Water was then added, and the aqueous layer was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times)$. An aqueous solution of $\mathrm{HCl}(2 \mathrm{~m})$ was added to the aqueous layer (until $\mathrm{pH}=1.0$) and the mixture was extracted three times with AcOEt. The combined organic layer was washed with brine, dried over MgSO_{4}, filtered through a cotton plug and evaporated in vacuo to give the corresponding amino acid as a white solid.

$\mathrm{Ni}(\mathrm{II})$-(S)- N -(2-Benzoyl-4-chlorophenyl)-1-(3,4-dichlorobenzyl)-pyrrolidine-2-carboxamide/(R)-3-(diphenylphosphinyl)-alanine Schiff Base Complex (S,R)-3a.

Isolated yield: $89 \% . \mathrm{R}_{f} 0.11\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone $4: 1$, v/v) $\mathrm{Mp} .140^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}+219.4$ (c 1.0, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta 9.10\left(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 8.30(\mathrm{~d}, J=9.4 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.82-7.63\left(\mathrm{po}, 5 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.57-7.39\left(\mathrm{po}, 5 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.36-7.18\left(\mathrm{po}, 6 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.08$ $\left(\mathrm{dd}, J=9.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 6.36\left(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 6.01\left(\mathrm{br} \mathrm{d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right)$, 4.38 (ddd, $J=24.0,8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.32\left(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 3.99-3.88(\mathrm{~m}, 1 \mathrm{H}$, H-Pro), 3.76 - 3.60 (m, 1H, H-Pro), 3.41 (dd, $J=10.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ '), 3.23 (d, $J=12.4 \mathrm{~Hz}$, 1H, H-6'), 3.12 - 2.99 (m, 1H, H-Pro), 2.92 (td, $\left.J=16.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}\right), 2.66-2.50$ (m, 1H, H-Pro), $2.30-2.19$ (po, 2H, P(O)CH2, H-Pro), $2.10-1.97$ (m, 1H, H-Pro) ppm. ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta 180.2(\mathrm{C}, C \mathrm{CN}), 178.3(\mathrm{C}, \mathrm{COO}), 171.6(\mathrm{C}, C \mathrm{~N}), 141.7\left(\mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right)$, $135.5\left(\mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 134.1\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 133.3\left(\mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 133.2\left(\mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 133.1\left(\mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 132.3-127.1$ $\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 126.7\left(\mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 125.1\left(\mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 124.1\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 72.1\left(\mathrm{CH}, \mathrm{C}-2{ }^{\prime}\right), 66.2(\mathrm{~d}, J=5.3$ $\mathrm{Hz}, \mathrm{CH}, \mathrm{C}-2), 63.8\left(\mathrm{CH}_{2}, \mathrm{C}-6\right.$ '), $59.4\left(\mathrm{CH}_{2}, \mathrm{C}-5{ }^{\prime}\right), 33.3\left(\mathrm{~d}, J=69.0 \mathrm{~Hz}, \mathrm{CH}_{2}, \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}\right), 31.2$ $\left(\mathrm{CH}_{2}, C \mathrm{H}_{2} \mathrm{Pro}\right), 23.6\left(\mathrm{CH}_{2}, C \mathrm{H}_{2} \mathrm{Pro}\right) \mathrm{ppm} .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta+28.2-27.5(\mathrm{~m})$ ppm. IR (neat): $\tilde{v}=1700,1630,1459,1394,1338,1240,1166,1116,1067,1029,843,821$, $695 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z calcd. for $\mathrm{C}_{40} \mathrm{H}_{33} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{NiO}_{4} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$814.0706, found 814.0700.

$\mathrm{Ni}(\mathrm{II})-(S)$ - N -(2-Benzoyl-4-chlorophenyl)-1-(3,4-dichlorobenzyl)-pyrrolidine-2-carboxamide/(R)-3-[bis(2-methylphenyl)phosphinyl]-alanine Schiff Base Complex (S,R)3b.

Isolated yield: $65 \% . \mathrm{R}_{f} 0.13\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone 4:1, v/v). M.p. $150{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}+219.9(c$ $1.0, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.15\left(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 8.34(\mathrm{dd}, J=13.0$, $\left.7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 8.25\left(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.71\left(\mathrm{dd}, J=8.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.56-7.32$ (po, 4H, H_{Ar}), $7.32-7.22\left(\mathrm{po}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.23-7.10\left(\mathrm{po}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.10-7.01\left(\mathrm{po}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right)$, $6.91\left(\mathrm{brt}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 6.32\left(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 5.74\left(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right)$, 4.50 (ddd, $J=25.2,7.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.31(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ '), $4.01-3.90(\mathrm{~m}, 1 \mathrm{H}$, H-Pro), $3.70-3.53$ (m, 1H, H-Pro), 3.41 (dd, $J=9.9,7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ '), 3.25 (po, 2H, P(O)CH2, H-6'), 3.11 - 2.98 (m, 1H, H-Pro), 2.61 - 2.47 (m, 1H, H-Pro), 2.41 (s, 3H, CH3 $), 2.29$ - 2.19 (m, 1H, H-Pro), 2.12 - $2.02\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}\right), 2.00-1.94(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Pro}), 1.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$ ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 179.9(\mathrm{C}, \mathrm{CON}), 178.4(\mathrm{~d}, J=2.6 \mathrm{~Hz}, \mathrm{C}, \mathrm{COO}), 171.2$ $(\mathrm{C}, C \mathrm{~N}), 142.5-124.1\left(\mathrm{C}_{\mathrm{Ar}}+\mathrm{CH}_{\mathrm{Ar}}\right), 72.2\left(\mathrm{CH}, \mathrm{C}-2{ }^{\prime}\right), 66.4(\mathrm{~d}, J=5.1 \mathrm{~Hz}, \mathrm{CH}, \mathrm{C}-2), 63.8\left(\mathrm{CH}_{2}\right.$, C-6'), $58.3\left(\mathrm{CH}_{2}, \mathrm{C}-5{ }^{\prime}\right), 31.0\left(\mathrm{CH}_{2}, C \mathrm{H}_{2} \mathrm{Pro}\right), 30.4\left(\mathrm{~d}, J=69.7 \mathrm{~Hz}, \mathrm{CH}_{2}, \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}\right), 23.4\left(\mathrm{CH}_{2}\right.$, $C \mathrm{H}_{2} \mathrm{Pro}$), $21.5\left(\mathrm{~d}, J=3.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 21.4\left(\mathrm{~d}, J=4.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{31} \mathrm{P}$ NMR (162 MHz , decpld., CDCl_{3}): $\delta+28.6 \mathrm{ppm}$. IR (neat): $\tilde{\mathrm{v}}=2972,1642,1460,1340,1251,1164,1081,826$,

854, $721 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z calcd. for $\mathrm{C}_{42} \mathrm{H}_{38} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{NiO}_{4} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+} 842.1013$, found 842.1003.

$\mathrm{Ni}(\mathrm{II})$-(S)- N -(2-benzoyl-4-chlorophenyl)-1-(3,4-dichlorobenzyl)-pyrrolidine-2-carboxamide/(R)-3-[bis(3,5-dimethylphenyl)phosphinyl]-alanine Schiff Base Complex (S,R)-3c.

Isolated yield: $63 \% . \mathrm{R}_{f} 0.12\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone $\left.4: 1, \mathrm{v} / \mathrm{v}\right) . \mathrm{Mp} .115^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}+210.2(c$ $1.0, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta 9.17\left(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 8.33(\mathrm{~d}, J=$ $\left.9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.72\left(\mathrm{dd}, J=8.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.54-7.39\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.35-7.27(\mathrm{po}$, $\left.5 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.24\left(\mathrm{dt}, J=7.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.19\left(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.12(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{Ar}}\right), 7.06\left(\mathrm{dd}, J=9.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 6.92\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 6.34\left(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right)$, $5.58\left(\mathrm{dt}, J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 4.42(\mathrm{ddd}, J=26.0,8.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.34(\mathrm{~d}, J=12.4$ Hz, 1H, H-6'), 4.11 - 4.02 (m, 1H, H-Pro), 3.73 - 3.59 (m, 1H, H-Pro), 3.40 (dd, $J=9.6,7.7$ Hz, 1H, H-2'), 3.24 (d, $\left.J=12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime} 6^{\prime}\right), 3.21-3.09$ (m, 1H, H-Pro), 2.96 (td, $J=14.8$, $\left.2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}\right), 2.65-2.50(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Pro}), 2.35-2.27$ (m, 1H, H-Pro), 2.31 (s, 6H, CH_{3}), $2.06\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.10-1.95\left(\mathrm{po}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Pro}, \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}\right)$ ppm. ${ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 180.2(\mathrm{C}, C \mathrm{ON}), 178.6(\mathrm{C}, C \mathrm{COO}), 171.5(\mathrm{C}, \mathrm{CN}), 141.8-124.5\left(\mathrm{C}_{\mathrm{Ar}}+\mathrm{CH}_{\mathrm{Ar}}\right), 72.2$ (CH, C-2'), $66.3(\mathrm{~d}, J=5.3 \mathrm{~Hz}, \mathrm{CH}, \mathrm{C}-2), 63.9\left(\mathrm{CH}_{2}, \mathrm{C}-6^{\prime}\right), 59.5\left(\mathrm{CH}_{2}, \mathrm{C}-5\right.$ '), $32.7(\mathrm{~d}, J=69.0$
$\left.\mathrm{Hz}, \mathrm{CH}_{2}, \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}\right), 31.2\left(\mathrm{CH}_{2}, \mathrm{CH}_{2}\right.$ Pro), $23.5\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{Pro}\right)$, $21.4\left(\mathrm{CH}_{3}\right)$, $21.1\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta+28.7-28.2(\mathrm{~m}) \mathrm{ppm}$. IR (neat): $\tilde{\mathrm{v}}=3008,2926,1642,1602$, 1470, 1399, 1350, 1273, 1248, 1131, 854, 746, 687, $592 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z calcd. for $\mathrm{C}_{44} \mathrm{H}_{41} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{NiO}_{4} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$870.1326, found 870.1317.

$\mathrm{Ni}(\mathrm{II})$-(S)- N -(2-Benzoyl-4-chlorophenyl)-1-(3,4-dichlorobenzyl)-pyrrolidine-2-carboxamide/(R)-3-[bis(4-tert-butylphenyl)phosphinyl]-alanine Schiff Base Complex (S,R)-3d.

Isolated yield: $79 \% . \mathrm{R}_{f} 0.12\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone 4:1, v/v). M.p. $90^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}+103.0(c 1.0$, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta 9.16\left(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 8.40(\mathrm{~d}, J=9.4 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.77-7.61\left(\mathrm{po}, 5 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.54-7.40\left(\mathrm{po}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.34-7.19\left(\mathrm{po}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.15$ (dd, $\left.J=8.4,2.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.06\left(\mathrm{dd}, J=9.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 6.28\left(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right)$, 5.69 (br d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}$), $4.48-4.25$ (m, 2H, H-2, H-6'), $4.09-3.99$ (m, 1H, H-Pro), 3.83 - 3.68 (m, 1H, H-Pro), 3.42 (dd, $J=9.9,7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}$), 3.23 (d, $J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 6'), $3.19-3.08$ (m, 1H, H-Pro), $2.95\left(\mathrm{td}, 1 \mathrm{H}, J=14.9,2.7 \mathrm{~Hz}, \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}\right), 2.64-2.51(\mathrm{~m}, 1 \mathrm{H}$, H-Pro), 2.33 - 2.21 (m, 1H, H-Pro), $2.08-1.94$ (po, 2H, P(O)CH2, H-Pro), $1.30\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.08\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 180.2(\mathrm{C}, \mathrm{CON}), 178.6(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, C, COO), $171.7(\mathrm{C}, C \mathrm{~N}), 155.6-124.1\left(\mathrm{C}_{\mathrm{Ar}}+\mathrm{CH}_{\mathrm{Ar}}\right), 72.3\left(\mathrm{CH}, \mathrm{C}-2^{\prime}\right), 66.4(\mathrm{~d}, J=5.5 \mathrm{~Hz}, \mathrm{CH}$,
$\mathrm{C}-2), 63.9\left(\mathrm{CH}_{2}, \mathrm{C}-6\right.$ '), $59.6\left(\mathrm{CH}_{2}, \mathrm{C}-5{ }^{\prime}\right), 35.1\left(\mathrm{C}, C\left(\mathrm{CH}_{3}\right)_{3}\right), 34.9\left(\mathrm{C}, C\left(\mathrm{CH}_{3}\right)_{3}\right), 33.1(\mathrm{~d}, J=$ $\left.69.7 \mathrm{~Hz}, \mathrm{CH}_{2}, \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{Pro}\right), 31.2\left(\mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 30.9\left(\mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 23.6$ $\left(\mathrm{CH}_{2}, \mathrm{CH}_{2}\right.$ Pro) ppm. ${ }^{31} \mathrm{P}$ NMR (162 MHz , decpld., CDCl_{3}): $\delta+27.9 \mathrm{ppm}$. IR (neat): $\tilde{\mathrm{v}}=2960$, $1660,1636,1467,1392,1365,1334,1254,1091,909,817,721 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z calcd. for $\mathrm{C}_{48} \mathrm{H}_{50} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{NiO}_{4} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+} 926.1952$, found 926.1945.

$\mathrm{Ni}(\mathrm{II})$-(S)- N -(2-Benzoyl-4-chlorophenyl)-1-(3,4-dichlorobenzyl)-pyrrolidine-2-carboxamide/(R)-3-(Dibenzylphosphinyl)-alanine Schiff Base Complex (S,R)-3e.

Isolated yield: $63 \% . \mathrm{R}_{f} 0.13\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone 4:1, v/v). M.p. $95^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}+230.7(c 1.0$, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.95\left(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 8.11(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{Ar}}\right), 7.76\left(\mathrm{dd}, J=8.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.61-7.46\left(\mathrm{po}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.42-7.33\left(\mathrm{po}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right)$, $7.33-7.20\left(\mathrm{po}, 9 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.20-7.14\left(\mathrm{po}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.11\left(\mathrm{dd}, J=9.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 6.56-$ $6.42\left(\mathrm{po}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 4.35(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ '), $4.19-4.08(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 3.65(\mathrm{dd}, J=$ 10.8, 6.3 Hz, 1H), 3.37 - 2.99 (po, 7H), 2.77 - 2.65 (m, 1H, H-Pro), 2.63 - 2.46 (m, 2H, $\left.\mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}, \mathrm{H}-\mathrm{Pro}\right), 2.40\left(\mathrm{t}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{Ph}\right), 2.15-2.03(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Pro}), 1.81(\mathrm{td}, J=$ 15.3, $\left.3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 180.0(\mathrm{C}, \mathrm{CON}), 177.8$ (br $\mathrm{s}, \mathrm{C}, C O O), 170.6(\mathrm{C}, C \mathrm{~N}), 141.1\left(\mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 135.0-124.6\left(\mathrm{C}_{\mathrm{Ar}}+\mathrm{CH}_{\mathrm{Ar}}\right), 71.4\left(\mathrm{CH}, \mathrm{C}-2{ }^{\prime}\right), 65.6$ (CH, C-2), $63.2\left(\mathrm{CH}_{2}, \mathrm{C}-6\right.$ '), $58.7\left(\mathrm{CH}_{2}, \mathrm{C}-5{ }^{\prime}\right), 36.0\left(\mathrm{~d}, J=62.5 \mathrm{~Hz}, \mathrm{CH}_{2}, \mathrm{PCH} 2 \mathrm{Ph}\right), 35.9(\mathrm{~d}, J$
$\left.=61.0 \mathrm{~Hz}, \mathrm{CH}_{2}, \mathrm{PCH}_{2} \mathrm{Ph}\right), 32.3\left(\mathrm{~d}, J=58.0 \mathrm{~Hz}, \mathrm{CH}_{2}, \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}\right), 30.9\left(\mathrm{CH}_{2}, C \mathrm{H}_{2} \mathrm{Pro}\right), 24.2$ $\left(\mathrm{CH}_{2}, \mathrm{CH}_{2}\right.$ Pro) ppm. ${ }^{31} \mathrm{P}$ NMR (162 MHz , decpld., CDCl_{3}): $\delta+38.4 \mathrm{ppm}$. IR (neat): $\tilde{\mathrm{v}}=1670$, 1632, 1460, 1334, 1254, 1174, 909, 733, $700 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{42} \mathrm{H}_{37} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{NiO}_{4} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$842.1013, found 842.0998.

$\mathrm{Ni}(\mathrm{II})$-(S)- N -(2-Benzoyl-4-chlorophenyl)-1-(3,4-dichlorobenzyl)-pyrrolidine-2-carboxamide/(R)-3-(di-1-naphtlenylphosphinyl)-alanine Schiff Base Complex (S,R)-3f. Isolated yield: 41%. $\mathrm{R}_{f} 0.14\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone $\left.4: 1, \mathrm{v} / \mathrm{v}\right)$. M.p. $175{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}+216.2(c$ $1.0, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$) $\delta 9.17\left(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 9.01(\mathrm{~d}, J=8.6$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 8.75\left(\mathrm{br} \mathrm{dd}, J=14.6,7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 8.33\left(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.98(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}$), $7.92-7.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.80\left(\mathrm{brd} \mathrm{d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.73-7.60(\mathrm{po}$, $\left.4 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.57-7.46\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.40-7.12\left(\mathrm{po}, 7 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.06(\mathrm{dd}, J=9.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{Ar}}\right), 6.50\left(\mathrm{td}, J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 6.16\left(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 4.78(\mathrm{br} \mathrm{d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.49$ (ddd, $J=27.2,6.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.30\left(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 4.13-4.01(\mathrm{~m}$, 1 H), $3.60-3.37\left(\mathrm{po}, 3 \mathrm{H}, \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}, \mathrm{H}-\mathrm{Pro}\right.$), 3.26 (d, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ '), $3.19-3.03$ (m, 1H H-Pro), 2.66-2.49 (m, 1H, H-Pro), 2.45 - 2.23 (po, 2H, P(O)CH2, H-Pro), 1.96 - 1.76 (m, $1 \mathrm{H}, \mathrm{H}-\mathrm{Pro}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 179.9$ (C, CON), 178.6 (d, $J=3.0 \mathrm{~Hz}, \mathrm{C}$, $C O O), 171.6(\mathrm{C}, C \mathrm{~N}), 141.2-124.0\left(\mathrm{C}_{\mathrm{Ar}}+\mathrm{CH}_{\mathrm{Ar}}\right), 72.3\left(\mathrm{CH}, \mathrm{C}-2^{\prime}\right), 66.7(\mathrm{~d}, J=5.8 \mathrm{~Hz}, \mathrm{CH}$,

C-2), $64.0\left(\mathrm{CH}_{2}, \mathrm{C}-6\right.$ '), $59.5\left(\mathrm{CH}_{2}, \mathrm{C}-5{ }^{\prime}\right), 31.7\left(\mathrm{~d}, J=69.9 \mathrm{~Hz}, \mathrm{CH}_{2}, \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}\right), 31.1\left(\mathrm{CH}_{2}, \mathrm{CH}_{2}\right.$ Pro), $23.6\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{Pro}\right)$ ppm. ${ }^{31} \mathrm{P}$ NMR (162 MHz , decpld., CDCl_{3}): $\delta+31.6 \mathrm{ppm}$. IR (neat): $\tilde{v}=3000,1660,1636,1460,1399,1340,1244,1174,1081,993,934,854,807,749,663 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{48} \mathrm{H}_{37} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{NiO}_{4} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+} 914.1013$, found 914.1001.

$\mathrm{Ni}(\mathrm{II})-(S)$ - N -(2-Benzoyl-4-chlorophenyl)-1-(3,4-dichlorobenzyl)-pyrrolidine-2-
carboxamide/(R)-3-[bis(4-fluorophenyl)phosphinyl]-alanine Schiff Base Complex (S,R)3g.

Isolated yield: $71 \% . \mathrm{R}_{f} 0.11\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone 4:1, v/v). M.p. $120^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}+85.2(c 1.0$, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}\right): \delta 9.02\left(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 8.24(\mathrm{~d}, J=9.3 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}_{\text {Ar }}\right), 7.83-7.60\left(\mathrm{po}, 5 \mathrm{H}, \mathrm{H}_{\text {Ar }}\right), 7.53-7.43\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.36-7.28\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.26-7.21$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.18-7.06\left(\mathrm{po}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 6.98\left(\mathrm{td}, J=8.6,2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 6.41(\mathrm{~d}, J=2.6 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 6.29\left(\mathrm{br} \mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 4.39-4.20\left(\mathrm{po}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H} 6^{\prime}\right), 3.85-3.70(\mathrm{~m}, 1 \mathrm{H}$, H-Pro), $3.65-3.53$ (m, 1H, H-Pro), 3.40 (dd, $J=10.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ '), 3.22 (d, $J=12.5 \mathrm{~Hz}$, 1H, H-6'), $3.01-2.89(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Pro}), 2.85-2.72\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}\right), 2.62-2.51(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ Pro), 2.44 (dt, $J=15.7,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Pro}), 2.25-2.15\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}\right), 2.13-2.03(\mathrm{~m}, 1 \mathrm{H}$, H-Pro) ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 180.2(\mathrm{C}, \mathrm{CON}), 177.8(\mathrm{~d}, J=1.9 \mathrm{~Hz}, \mathrm{C}, \mathrm{COO})$, 171.5 (C, CN), 165.1 (dd, $J=254.5,3.0 \mathrm{~Hz}, \mathrm{C}, C \mathrm{~F}), 164.8(\mathrm{dd}, J=255.5,3.0 \mathrm{~Hz}, \mathrm{C}, C \mathrm{~F}), 141.5$
$\left(\mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 135.3\left(\mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 134.0-115.8\left(\mathrm{C}_{\mathrm{Ar}}+\mathrm{CH}_{\mathrm{Ar}}\right), 71.9\left(\mathrm{CH}, \mathrm{C}-2^{\prime}\right), 65.9(\mathrm{~d}, J=4.0 \mathrm{~Hz}, \mathrm{CH}$, $\mathrm{C}-2), 63.7\left(\mathrm{CH}_{2}, \mathrm{C}-6\right.$ '), $59.2\left(\mathrm{CH}_{2}, \mathrm{C}-5{ }^{\prime}\right), 34.0\left(\mathrm{~d}, J=69.6 \mathrm{~Hz}, \mathrm{CH}_{2}, \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}\right), 31.1\left(\mathrm{CH}_{2}, \mathrm{CH}_{2}\right.$ Pro), $23.7\left(\mathrm{CH}_{2}, \mathrm{CH}_{2}\right.$ Pro $)$ ppm. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-105.9(\mathrm{~m}),-106.1(\mathrm{~m}) \mathrm{ppm}$. ${ }^{31}$ P NMR (162 MHz , decpld., CDCl_{3}): $\delta+26.9 \mathrm{ppm}$. IR (neat): $\tilde{\mathrm{v}}=2972,1667,1636,1584$, $1506,1460,1398,1238,1164,1116,829,746,721,663 \mathrm{~cm}^{-1} . \operatorname{IR}($ neat $): \tilde{v}=2972,1667,1636$, 1583, 1507, 1460, 1399, 1337, 1239, 1164, 1116, 829, 746, 721, $663 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z calcd. for $\mathrm{C}_{40} \mathrm{H}_{31} \mathrm{Cl}_{3} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{NiO}_{4} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+} 850.0512$, found 850.0496.

$\mathrm{Ni}(\mathrm{II})$-(S)- N -(2-Benzoyl-4-chlorophenyl)-1-(3,4-dichlorobenzyl)-pyrrolidine-2-carboxamide/(R)-3-[bis(4-trifluoromethylphenyl)phosphinyl]-alanine Schiff

Isolated yield: $43 \% . \mathrm{R}_{f} 0.11\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone $4: 1$, v/v). M.p. $150{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}+210.6(c$ $\left.1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.96\left(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 8.24(\mathrm{~d}, J=9.3 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.93-7.73\left(\mathrm{po}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.73-7.64\left(\mathrm{po}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.58(\mathrm{dd}, J=8.3,2.4 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{H}_{\text {Ar }}\right), 7.52-7.42\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.39-7.26\left(\mathrm{po}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.26-7.19\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.10(\mathrm{dd}, J$ $\left.=9.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 6.49\left(\mathrm{br} \mathrm{d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 6.43\left(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 4.34-$ 4.20 (po, 2H, H-2, H-6'), 3.74 - 3.62 (m, 1H, H-Pro), $3.65-3.50$ (m, 1H, H-Pro), 3.43 (dd, J $=10.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ '), 3.23 (d, $\left.J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 2.98-2.76$ (po, 2H, H-Pro,
$\left.\mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}\right), 2.74-2.52(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Pro}), 2.22-2.06\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}, \mathrm{H}-\mathrm{Pro}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 180.2(\mathrm{C}, C \mathrm{CN}), 177.5(\mathrm{~d}, J=1.9 \mathrm{~Hz}, \mathrm{C}, C \mathrm{OO}), 171.8(\mathrm{C}, \mathrm{CN}), 141.3-$ $121.9\left(\mathrm{C}_{\mathrm{Ar}}+\mathrm{CH}_{\mathrm{Ar}}\right), 71.7\left(\mathrm{CH}, \mathrm{C}-2{ }^{\prime}\right), 66.6(\mathrm{~d}, J=3.4 \mathrm{~Hz}, \mathrm{CH}, \mathrm{C}-2), 63.6\left(\mathrm{CH}_{2}, \mathrm{C}-6{ }^{\prime}\right), 59.1$ $\left(\mathrm{CH}_{2}, \mathrm{C}-5^{\prime}\right), 33.8\left(\mathrm{~d}, J=68.8 \mathrm{~Hz}, \mathrm{CH}_{2}, \mathrm{P}(\mathrm{O}) C \mathrm{H}_{2}\right), 31.0\left(\mathrm{CH}_{2}, C \mathrm{H}_{2}\right.$ Pro $), 23.8\left(\mathrm{CH}_{2}, C \mathrm{H}_{2}\right.$ Pro $)$ ppm. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-63.3$ (s), -63.3 (s) ppm. ${ }^{31} \mathrm{P}$ NMR (162 MHz , decpld., CDCl_{3}): $\delta+26.8 \mathrm{ppm}$. IR (neat): $\tilde{\mathrm{v}=1675,1632,1470,1402,1325,1171,1211,1060,826, ~}$ $715,599 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z calcd. for $\mathrm{C}_{42} \mathrm{H}_{32} \mathrm{Cl}_{3} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{NiO}_{4} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+} 950.0448$, found 950.0441 .

$\mathrm{Ni}(\mathrm{II})-(S)-\mathrm{N}$-(2-Benzoyl-4-chlorophenyl)-1-(3,4-dichlorobenzyl)-pyrrolidine-2-
carboxamide/(R)-3-(dibenzyloxyphosphinyl)-alanine Schiff Base Complex (S,R)-3i.
Isolated yield: 85%. $\mathrm{R}_{f} 0.11\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone $\left.4: 1, \mathrm{v} / \mathrm{v}\right)$. M.p. $177^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}+192.8(c$ $1.0, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta 9.05\left(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right.$), $8.26(\mathrm{~d}, J=$ $\left.9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.70\left(\mathrm{dd}, J=8.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.56-7.42\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.40-7.26(\mathrm{po}$, $\left.3 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.23-7.07\left(\mathrm{po}, 5 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 6.44\left(\mathrm{dt}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 6.40(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}$, H_{Ar}), $5.18-5.07\left(\mathrm{po}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.02\left(\mathrm{dd}, J=11.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.86(\mathrm{dd}, J=11.1$, $7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.29 (d, $\left.J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 4.19$ (ddd, $J=34.9,8.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 2), $3.75-3.65$ (m, 1H, H-5'), $3.50-3.38$ (m, 1H, H-Pro), 3.35 (dd, $J=10.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$
2^{\prime}), 3.20 (d, $J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ '), $2.85-2.71$ (m, 1H, H-Pro), 2.46 (ddt, $J=13.1,10.0,8.2$ Hz, 1H, H-Pro), 2.24 (ddd, $J=19.3,15.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}$), 2.11 - 1.99 (po, 2H, H-Pro), $1.88-1.71\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}, \mathrm{H}-5^{\prime}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 180.4(\mathrm{C}, \mathrm{CON})$, $178.4(\mathrm{~d}, J=1.9 \mathrm{~Hz}, \mathrm{C}, C \mathrm{OO}), 171.9(\mathrm{C}, C \mathrm{~N}), 141.4\left(\mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 135.8(\mathrm{~d}, J=6.0 \mathrm{~Hz}, \mathrm{C}$, $\left.\mathrm{P}(\mathrm{O}) \mathrm{OCH}_{2} \mathrm{Ph}\right), 135.6\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, \mathrm{C}, \mathrm{P}(\mathrm{O}) \mathrm{OCH}_{2} \mathrm{Ph}\right), 135.3\left(\mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 134.0\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 133.4$ $\left(\mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 133.3\left(\mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 133.2\left(\mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 132.5\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 132.3\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 131.0(\mathrm{CH}$, $\left.\mathrm{CH}_{\mathrm{Ar}}\right), 130.3\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 130.0\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 129.4\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 129.3\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 128.7-$ $128.4\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 127.7\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 127.0\left(\mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 126.7\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 125.4\left(\mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 124.3$ $\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 72.0\left(\mathrm{CH}, \mathrm{C}-2^{\prime}\right), 68.0\left(\mathrm{~d}, J=6.1 \mathrm{~Hz}, \mathrm{CH}_{2}, \mathrm{P}(\mathrm{O}) \mathrm{OCH}_{2} \mathrm{Ph}\right), 67.9(\mathrm{~d}, J=6.2 \mathrm{~Hz}, \mathrm{CH}$, $\left.\mathrm{P}(\mathrm{O}) \mathrm{OCH}_{2} \mathrm{Ph}\right), 65.2(\mathrm{~d}, J=5.9 \mathrm{~Hz}, \mathrm{CH}, \mathrm{C}-2), 63.7\left(\mathrm{CH}_{2}, \mathrm{C}-6\right.$ '), $59.1\left(\mathrm{CH}_{2}, \mathrm{C}-5{ }^{\prime}\right), 31.2\left(\mathrm{CH}_{2}\right.$, $C \mathrm{H}_{2} \mathrm{Pro}$), $29.0\left(\mathrm{~d}, J=140.1 \mathrm{~Hz}, \mathrm{CH}_{2}, \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}\right), 23.1\left(\mathrm{CH}_{2}, C \mathrm{H}_{2} \mathrm{Pro}\right) \mathrm{ppm} .{ }^{31} \mathrm{P}$ NMR (162 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 27.0-26.4 \mathrm{ppm} . \operatorname{IR}(n e a t): ~ \tilde{v}=1670,1636,1463,1393,1340,1245,1020$, 983, $964,878,850,817,749,721,700 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z calcd. for $\mathrm{C}_{42} \mathrm{H}_{38} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{NiO}_{4} \mathrm{P}$ $[\mathrm{M}+\mathrm{H}]^{+} 874.0912$, found 874.0902.

$\mathrm{Ni}(\mathrm{II})-(S)$ - N -(2-Benzoyl-4-chlorophenyl)-1-(3,4-dichlorobenzyl)-pyrrolidine-2-carboxamide/(R)-3-(Dimethoxyphosphinyl)-alanine Schiff Base Complex (S,R)-3j.

Isolated yield: $51 \% . \mathrm{R}_{f} 0.1\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone $\left.4: 1, \mathrm{v} / \mathrm{v}\right) . \mathrm{M} . \mathrm{p} .190^{\circ} \mathrm{C}$ (decomposed). $[\alpha]_{\mathrm{D}}{ }^{20}$ $+191.9\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$) δ $9.07\left(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 8.21\left(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.69\left(\mathrm{dd}, J=8.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right)$, $7.62-7.45\left(\mathrm{po}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.34\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.31-7.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.11(\mathrm{dd}, J=$ $\left.9.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 6.99\left(\mathrm{br} \mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 6.58\left(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 4.30(\mathrm{~d}, J$ $\left.=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 4.19$ (ddd, $\left.J=33.4,8.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 3.85-3.74(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Pro})$, $3.74(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OMe}), 3.69(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OMe}), 3.66-3.47$ (m, 1H, H-Pro), $3.38\left(\mathrm{dd}, J=10.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 3.24\left(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 2.92-2.78(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ Pro), 2.64 - 2.47 (m, 1H, H-Pro), 2.28 - 2.00 (m, 3H, H-Pro, P(O)CH2), 1.84 (td, $J=16.2,8.1$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 180.3(\mathrm{C}, \mathrm{CON}), 178.3(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, C, COO), $172.0(\mathrm{C}, C \mathrm{~N}), 141.3\left(\mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 135.3\left(\mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 134.0\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 133.4\left(\mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right)$, $133.4\left(\mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 133.3\left(\mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 132.8\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 132.4\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 131.0\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 130.5$ $\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 129.9\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 129.6\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 129.5\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 127.8\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 127.0$ $\left(\mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 126.9\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 125.6\left(\mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 124.1\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 72.0\left(\mathrm{CH}, \mathrm{C}-2{ }^{\prime}\right), 65.2(\mathrm{~d}, J=5.6$ $\mathrm{Hz}, \mathrm{CH}, \mathrm{C}-2), 63.9\left(\mathrm{CH}_{2}, \mathrm{C}-6^{\prime}\right), 59.0\left(\mathrm{CH}_{2}, \mathrm{C}-5\right.$ '), $52.9\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, \mathrm{CH}_{3}, \mathrm{OMe}\right), 52.7(\mathrm{~d}, J=$ $\left.6.3 \mathrm{~Hz}, \mathrm{CH}_{3}, \mathrm{OMe}\right), 31.2\left(\mathrm{CH}_{2}, C H_{2} \mathrm{Pro}\right), 27.8\left(\mathrm{~d}, J=141.3 \mathrm{~Hz}, \mathrm{CH}_{2}, \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}\right), 23.0\left(\mathrm{CH}_{2}\right.$, CH_{2} Pro) ppm. ${ }^{31} \mathrm{P}$ NMR (162 MHz , decpld., CDCl_{3}): $\delta+28.4 \mathrm{ppm}$. IR (neat): $\tilde{\mathrm{v}}=3051,2960$, $1734,1672,1638,1467,1399,1359,1331,1248,1168,1057,1026,863,811,734,703 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z calcd. for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{NiO}_{6} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+} 722.0286$, found 722.0273.

MW: 749,05 g/mol
$\mathrm{Ni}(\mathrm{II})$-(S)- N -(2-Benzoyl-4-chlorophenyl)-1-(3,4-dichlorobenzyl)-pyrrolidine-2-
carboxamide/(R)-3-(diethoxyphosphinyl)-alanine Schiff Base Complex (S,R)-3k.
Isolated yield: $64 \% . \mathrm{R}_{f} 0.12\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone $4: 1$, v/v). M.p. $110{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}+211.5(c$ $1.0, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3} / \mathrm{TMS}\right): ~ \delta 9.09\left(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 8.22(\mathrm{~d}, J=$ $\left.9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.68\left(\mathrm{dd}, J=8.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.63-7.44\left(\mathrm{po}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.34(\mathrm{~d}, J=8.1$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.31-7.25\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.10\left(\mathrm{dd}, J=9.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.00(\mathrm{dt}, J=8.2$, $\left.1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 6.57\left(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 4.31(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ '), $4.25-3.97$ (po, $\left.5 \mathrm{H}, \mathrm{H}-2,2 \times \mathrm{P}(\mathrm{O}) \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.79(\mathrm{ddd}, J=10.2,6.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ '), $3.71-3.53(\mathrm{~m}, 1 \mathrm{H}$, H-Pro), 3.37 (dd, $\left.J=10.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 3.23\left(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 2.87-2.72$ (m, 1H, H-Pro), $2.60-2.47$ (m, 1H, H-Pro), 2.25 - 2.09 (po, 2H, P(O)CH2, H-Pro), 2.10 - 1.96 (m, $1 \mathrm{H}, \mathrm{H}-\mathrm{Pro}), 1.82\left(\mathrm{td}, J=16.1,8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}\right), 1.23\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{P}(\mathrm{O}) \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $1.10\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{P}(\mathrm{O}) \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 180.2(\mathrm{C}, \mathrm{CON})$, $178.3(\mathrm{~d}, J=1.8 \mathrm{~Hz}, \mathrm{C}, C O O), 171.8(\mathrm{C}, C \mathrm{~N}), 141.3\left(\mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 135.4\left(\mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 134.0\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right)$, $133.4\left(\mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 133.3\left(\mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 133.2\left(\mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 132.6\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 132.3\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 131.0(\mathrm{CH}$, $\left.\mathrm{CH}_{\mathrm{Ar}}\right), 130.4\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 129.9\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 129.5\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 129.4\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 127.7(\mathrm{CH}$, $\left.\mathrm{CH}_{\mathrm{Ar}}\right), 126.9\left(\mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 126.9\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 125.4\left(\mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 124.1\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 71.9\left(\mathrm{CH}, \mathrm{C}-2{ }^{\prime}\right)$, $65.3(\mathrm{~d}, J=6.0 \mathrm{~Hz}, \mathrm{CH}, \mathrm{C}-2), 63.8\left(\mathrm{CH}_{2}, \mathrm{C}-6^{\prime}\right), 62.3\left(\mathrm{~d}, J=6.1 \mathrm{~Hz}, \mathrm{CH}_{2}, \mathrm{P}(\mathrm{O}) \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 62.1$ (d, $\left.J=6.2 \mathrm{~Hz}, \mathrm{CH}_{2}, \mathrm{P}(\mathrm{O}) \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 59.0\left(\mathrm{CH}_{2}, \mathrm{C}-5{ }^{\prime}\right), 31.1\left(\mathrm{CH}_{2}, C H_{2}\right.$ Pro), $28.5(\mathrm{~d}, J=140.8$
$\left.\mathrm{Hz}, \mathrm{CH}_{2}, \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}\right), 23.2\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{Pro}\right), 16.3\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{3}, \mathrm{P}(\mathrm{O}) \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 16.2(\mathrm{~d}$, $\left.J=6.4 \mathrm{~Hz}, \mathrm{CH}_{3}, \mathrm{P}(\mathrm{O}) \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 26.0-25.5(\mathrm{~m}) \mathrm{ppm}$. IR (neat): $\tilde{v}=2990,2926,1667,1633,1460,1399,1337,1242,1174,1051,1017,961,860$, 746, 706, $672 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{NiO}_{6} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+} 750.0599$, found 750.0587.

$\mathrm{Ni}(\mathrm{II})$-(S)- N -(2-Benzoyl-4-chlorophenyl)-1-(3,4-dichlorobenzyl)-pyrrolidine-2-carboxamide/(R)-3-(Dibutoxyphosphinyl)-alanine Schiff Base Complex (S,R)-31.

Isolated yield: 48%. $\mathrm{R}_{f} 0.12\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone $4: 1$, v/v). M.p. $142{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}+97.5(c$ $\left.1.00, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$) $\delta 9.08\left(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 8.27(\mathrm{~d}, J=$ $\left.9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.67\left(\mathrm{dd}, J=8.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.61-7.46\left(\mathrm{po}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.33(\mathrm{~d}, J=8.2$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.32-7.24\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.10\left(\mathrm{dd}, J=9.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.00(\mathrm{dt}, J=8.0$, $\left.1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 6.57\left(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 4.31(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ '), $4.24-3.90(\mathrm{po}$, $\left.5 \mathrm{H}, \mathrm{H}-2,2 \times \mathrm{P}(\mathrm{O}) \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.81(\mathrm{ddd}, J=10.2,6.7,3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ '), $3.74-3.57$ (m, 1H, H-Pro), 3.35 (dd, $J=10.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ '), 3.22 (d, $J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}$), $2.89-$ 2.76 (m, 1H, H-Pro), 2.53 (ddt, $J=13.2,10.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Pro}$), 2.25 - 1.97 (po, 4H, H-5', H-Pro, $\left.\mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}\right), 1.84\left(\mathrm{td}, J=16.1,8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}\right), 1.63-1.50(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{P}(\mathrm{O}) \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $1.46-1.24 \quad\left(\right.$ po, $4 \mathrm{H}, \quad \mathrm{P}(\mathrm{O}) \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$,
$\left.\mathrm{P}(\mathrm{O}) \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.17\left(\mathrm{~h}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{P}(\mathrm{O}) \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.85(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{P}(\mathrm{O}) \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.75\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{P}(\mathrm{O}) \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta 180.2(\mathrm{C}, C \mathrm{ON}), 178.2(\mathrm{~d}, J=1.8 \mathrm{~Hz}, \mathrm{C}, C \mathrm{OO}), 171.8(\mathrm{C}, C \mathrm{~N}), 141.4$ $\left(\mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 135.4\left(\mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 134.1\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 133.5\left(\mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 133.4\left(\mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 133.2\left(\mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 132.6$ $\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 132.2\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 131.0\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 130.4\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 129.9\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 129.6$ $\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 129.4\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 127.7\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 127.0\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 126.9\left(\mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 125.4(\mathrm{C}$, C_{Ar}), $124.2\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 72.0\left(\mathrm{CH}, \mathrm{C}-2{ }^{\prime}\right), 66.1\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{2}, \mathrm{P}(\mathrm{O}) \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $65.8\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{2}, \mathrm{P}(\mathrm{O}) \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 65.5(\mathrm{~d}, J=5.7 \mathrm{~Hz}, \mathrm{CH}, \mathrm{C}-2), 63.7\left(\mathrm{CH}_{2}\right.$, C-6'), $59.1\left(\mathrm{CH}_{2}, \mathrm{C}-5^{\prime}\right), 32.5\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, \mathrm{CH}_{2}, \mathrm{P}(\mathrm{O}) \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 32.4(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}, \mathrm{P}(\mathrm{O}) \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 31.2\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{Pro}\right), 30.2\left(\mathrm{~d}, \mathrm{~J}=167.6 \mathrm{~Hz}, \mathrm{CH}_{2}, \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}\right)$, $23.2 \quad\left(\mathrm{CH}_{2}, \quad \mathrm{CH}_{2} \quad\right.$ Pro $), \quad 18.8 \quad\left(\mathrm{CH}_{2}, \quad \mathrm{P}(\mathrm{O}) \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), \quad 18.7 \quad\left(\mathrm{CH}_{2}\right.$, $\left.\mathrm{P}(\mathrm{O}) \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $13.6 \quad\left(\mathrm{CH}_{3}, \quad \mathrm{P}(\mathrm{O}) \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $13.6 \quad\left(\mathrm{CH}_{3}\right.$, $\mathrm{P}(\mathrm{O}) \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$) ppm. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 26.0-25.5$ (m) ppm. IR (neat): $\tilde{v}=2962,2248,1710,1664,1642,1463,1392,1359,1217,1168,1063,986,897,730 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z calcd. for $\mathrm{C}_{36} \mathrm{H}_{41} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{NiO}_{6} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$806.1225, found 806.1214.

$\mathrm{Ni}(\mathrm{II})-(S)$ - N -(2-Benzoyl-4-chlorophenyl)-1-(3,4-dichlorobenzyl)-pyrrolidine-2-
carboxamide/(R)-3-(diisopropyloxyphosphinyl)-alanine Schiff Base Complex (S,R)-3m.
Isolated yield: $35 \% . \mathrm{R}_{f} 0.12\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone 4:1, v/v). M.p. $95^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}+222.1(c 1.0$, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta 9.12\left(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 8.24(\mathrm{~d}, J=9.4 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.65\left(\mathrm{dd}, J=8.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.61-7.45\left(\mathrm{po}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{Ar}}\right), 7.31-7.22\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.09\left(\mathrm{dd}, J=9.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.04(\mathrm{br} \mathrm{d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{Ar}}\right), 6.57\left(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 4.88-4.68\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{P}(\mathrm{O}) \mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.32(\mathrm{~d}, J=12.5$ Hz, 1H, H-6'), 4.15 (ddd, $J=32.9,8.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), $3.90-3.70$ (m, 1H, H-Pro), $3.79-$ 3.62 (m, 1H, H-Pro), 3.36 (dd, $J=10.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Pro}$), 3.21 (d, $J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathbf{6}^{\prime}$), 2.90 - 2.73 (m, 1H, H-Pro), 2.58 - 2.41 (m, 1H, H-Pro), $2.21-1.97$ (po, 3H, P(O)CH2, H-Pro), $1.84\left(\mathrm{td}, J=16.3,8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}\right), 1.34\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{P}(\mathrm{O}) \mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.24(\mathrm{~d}, J$ $\left.=6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{P}(\mathrm{O}) \mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.20\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{P}(\mathrm{O}) \mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.02(\mathrm{~d}, J=6.2$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{P}(\mathrm{O}) \mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 180.3(\mathrm{C}, \mathrm{CON}), 178.5(\mathrm{~d}, \mathrm{~J}=$ $1.7 \mathrm{~Hz}, \mathrm{C}, \mathrm{COO}), 171.8(\mathrm{C}, C \mathrm{~N}), 141.4\left(\mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 135.5\left(\mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 134.2\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 133.6(\mathrm{C}$, $\left.\mathrm{C}_{\mathrm{Ar}}\right), 133.4\left(\mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 133.2\left(\mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 132.6\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 132.3\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 131.0\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right)$, $130.4\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 129.9\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 129.5\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 129.3\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 127.7\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right)$, $127.0\left(\mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 127.0\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 125.4\left(\mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 124.1\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 71.9(\mathrm{CH}, \mathrm{C}-2$) $), 71.3(\mathrm{~d}$, $\left.J=6.1 \mathrm{~Hz}, \mathrm{CH}, \mathrm{P}(\mathrm{O}) \mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 71.1\left(\mathrm{~d}, J=6.1 \mathrm{~Hz}, \mathrm{CH}, \mathrm{P}(\mathrm{O}) \mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 65.8(\mathrm{~d}, J=5.6$
$\mathrm{Hz}, \mathrm{CH}, \mathrm{C}-2), 63.8\left(\mathrm{CH}_{2}, \mathrm{C}-6^{\prime}\right), 59.2\left(\mathrm{CH}_{2}, \mathrm{C}-5^{\prime}\right), 31.5\left(\mathrm{~d}, J=142.1 \mathrm{~Hz}, \mathrm{CH}_{2}, \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}\right), 31.1$ $\left(\mathrm{CH}_{2}, C \mathrm{H}_{2}\right.$ Pro $), 24.3\left(\mathrm{~d}, J=4.4 \mathrm{~Hz}, \mathrm{CH}, \mathrm{P}(\mathrm{O}) \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 24.2(\mathrm{~d}, J=4.0 \mathrm{~Hz}, \mathrm{CH}$, $\left.\mathrm{P}(\mathrm{O}) \mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 24.0\left(\mathrm{~d}, J=4.6 \mathrm{~Hz}, \mathrm{CH}, \mathrm{P}(\mathrm{O}) \mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 23.7(\mathrm{~d}, J=5.7 \mathrm{~Hz}, \mathrm{CH}$, $\left.\mathrm{P}(\mathrm{O}) \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $23.3\left(\mathrm{CH}_{2}, C \mathrm{H}_{2} \mathrm{Pro}\right) \mathrm{ppm} .{ }^{31} \mathrm{P}$ NMR (162 MHz , decpld., $\left.\mathrm{CDCl}_{3}\right): \delta+23.8$ ppm. IR (neat): $\tilde{v}=2984,2251,1710,1670,1633,1587,1531,1467,1405,1334,1365,1242$, 1171, 999, 974, 903, 820, $728 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{34} \mathrm{H}_{37} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{NiO}_{6} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$ 800.0731, found 800.0719.

(R)-Boc-3-(diphenylphosphinyl)-alanine [(+)-4a].

Isolated yield: 60%. Enantiomeric excess: 96%. $\mathrm{R}_{f} 0.09\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone 4:1, v/v). M.p. $79{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}+105.9\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta 7.82(\mathrm{dd}, J=12.0$, $\left.7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.75\left(\mathrm{dd}, J=12.2,7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.59-7.42\left(\mathrm{po}, 6 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 5.75(\mathrm{~d}, J=$ $5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$), $4.68-4.48(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 3.27-3.11(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 3.03(\mathrm{dt}, J=15.6,7.9$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3), 1.29\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 169.2(\mathrm{C}, \mathrm{C}-1), 156.0$ (C, NHCOO), $132.6\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 132.5\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 132.3\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 132.3\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right)$, $132.1\left(\mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 131.8\left(\mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 131.2\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 131.1\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 130.9\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 130.8$ $\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 129.1\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 129.0\left(\mathrm{CH}, \mathrm{CH}_{\mathrm{Ar}}\right), 79.8\left(\mathrm{C}, C\left(\mathrm{CH}_{3}\right)_{3}\right), 49.8(\mathrm{CH}, \mathrm{C}-2), 31.6(\mathrm{~d}$, $\left.J=69.0 \mathrm{~Hz}, \mathrm{CH}_{2}, \mathrm{C}-3\right), 28.4\left(\mathrm{CH}_{3}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{31} \mathrm{P}$ NMR (162 MHz , decpld., CDCl_{3}): $\delta+34.0$ ppm. IR (neat): $\tilde{v}=1704,1510,1442,1171,759,693,534 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+} 390.1465$, found 390.1462 .

(S)-Boc-3-(diphenylphosphinyl)-alanine [(-)-4a].

Isolated yield: 59\%. Enantiomeric excess: 96%. $[\alpha]_{\mathrm{D}}{ }^{20}-120.1\left(c 1.0, \mathrm{CHCl}_{3}\right)$.

The enantiomeric excesses of compounds (+)-4a and (-)-4a were determined respectively by SFC analyses on Chiralpak IC-U stationary phase using 20% methanol in carbon dioxide. Mobile phase was set up at $1 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$, temperature at $25^{\circ} \mathrm{C}$, pressure at 150 bar, and wavelength at $210 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}[(-)-\mathbf{4 a}, 1.6 \mathrm{~min}], \mathrm{t}_{\mathrm{R}}[(+)-\mathbf{4 a}, 3.7 \mathrm{~min}]$. First, compounds were injected in mixture in order to optimize peak separation and then, they were injected alone to determine elution order and calculate the enantiomeric excess for each enantiomer.

UV chromatogram of compounds (-)-4a and (+)-4a in mixture:

Peak	$\mathbf{t}_{\mathbf{R}}(\mathbf{m i n})$	\% area	Masses in ESI $(+)$	Masses in ESI $(-)$
1	1.6	$\mathbf{6 2 . 0 3}$	$334.12 / 290.14 / 390.28$	$314.10 / 388.19 / 271.12$
2	3.7	$\mathbf{3 7 . 9 7}$	$334.11 / 290.15 / 390.25$	$314.09 / 388.21 / 271.16$

UV chromatogram of compound (+)-4a:

Peak	$\mathbf{t}_{\mathbf{R}}(\mathbf{m i n})$	\% area	Masses in ESI $(+)$	Masses in ESI $(-)$
1	1.6	$\mathbf{2 . 1 0}$	$334.13 / 290.13 / 390.29$	$314.06 / 388.22 / 271.09$
2	3.7	$\mathbf{9 7 . 9 0}$	$334.11 / 290.14 / 390.26$	$314.10 / 388.19 / 271.15$

UV chromatogram of compound (-)-4a:

Peak	tR (min)	\% area	Masses in ESI $(+)$	Masses in ESI $(-)$
1	1.6	$\mathbf{9 7 . 9 1}$	$334.13 / 290.15 / 390.26$	$314.09 / 388.19 / 271.13$
2	3.7	2.09	$334.14 / 290.15 / 390.28$	$314.10 / 388.21 / 271.22$

In positive mode, $[\mathrm{M}+\mathrm{H}]^{+}$ion was observed at $390.3 \mathrm{~m} / \mathrm{z}$ and $[\mathrm{M}-\mathrm{Boc}+\mathrm{H}]^{+}$ion at $290.2 \mathrm{~m} / \mathrm{z}$ respectively. In negative mode, $[\mathrm{M}-\mathrm{H}]^{-}$ion was observed at $388.2 \mathrm{~m} / \mathrm{z}$.

$\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{NO}_{7} \mathrm{P}$
MW: $325,2978 \mathrm{~g} / \mathrm{mol}$

(R)-Boc-3-(diethoxyphosphinyl)-alanine [(+)-4k].

Isolated yield: 49%. Enantiomeric excess: 97%. $\mathrm{R}_{f} 0.08\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone $4: 1$, v/v). M.p. $166{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}+23.9\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta 9.27(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, $\mathrm{COOH}), 5.76(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N} H), 4.65-4.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1), 4.25-3.99\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $2.65-2.28(\mathrm{po}, 2 \mathrm{H}, \mathrm{H}-3), 1.44\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.33\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta 172.4$ (d, $\left.J=7.4 \mathrm{~Hz}, \mathrm{C}, \mathrm{COOH}\right), 155.3$ (C, NHCO), 80.0 (C, $\left.C\left(\mathrm{CH}_{3}\right)_{3}\right), 62.7\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{2}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 62.6\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{2}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 49.2(\mathrm{~d}$, $J=4.9 \mathrm{~Hz}, \mathrm{CH}, \mathrm{C}-2), 28.5\left(\mathrm{~d}, J=141.7 \mathrm{~Hz}, \mathrm{CH}_{2}, \mathrm{C}-3\right), 28.4\left(\mathrm{CH}_{3}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 16.4\left(\mathrm{CH}_{3}\right.$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $16.4\left(\mathrm{CH}_{3}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 28.0-27.5(\mathrm{~m}) \mathrm{ppm}$. IR (neat): $\tilde{v}=3332,1722,1679,1537,1368,1158,1035,952,648 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z calcd. for $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{NO}_{7} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$326.1363, found 326.1359.
(S)-Boc-3-(diethoxyphosphinyl)-alanine [(-)-4k].

Isolated yield: 45%. Enantiomeric excess: $97 \% .[\alpha]_{D}{ }^{20}-30.7$ (c 1.0, $\left.\mathrm{CHCl}_{3}\right)$.

The enantiomeric excesses of compounds (+)-4k and (-)-4k were respectively determined by SFC analyses on Chiralpak IC-U stationary phase using 20% methanol in carbon dioxide. Mobile phase was set up at $1 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$, temperature at $25^{\circ} \mathrm{C}$ and pressure at 150 bar ; $\mathrm{t}_{\mathrm{R}}[(-)-$ $\mathbf{4 k}, 1.1 \mathrm{~min}]$, $\mathrm{t}_{\mathrm{R}}[(+)-\mathbf{4 k}, 2.0 \mathrm{~min}]$. As this molecule does not have chromophores, mass spectrometry was used to identify enantiomers and to calculate enantiomeric excesses.

Mass chromatogram (SIM) of compounds (-)-4k and (+)-4k:

$\mathbf{t}_{\boldsymbol{R}}(\mathbf{m i n})$	$\mathbf{1 . 1}$	$\mathbf{2 . 0}$
\% area	95.3	4.7
\% area	4.5	$\mathbf{9 5 . 5}$

$\mathbf{t}_{\boldsymbol{R}}(\mathbf{m i n})$	$\mathbf{1 . 1}$	$\mathbf{2 . 0}$
\% area	98.8	1.2
\% area	$\mathbf{1 . 2}$	$\mathbf{9 8 . 8}$

On these chromatograms, $(-)-4 \mathbf{k}$ is in orange $\left(\mathrm{t}_{\mathrm{R}}=1.1 \mathrm{~min}\right)$ and $(+)-\mathbf{4 k}$ is in blue $\left(\mathrm{t}_{\mathrm{R}}=2.0\right.$ $\mathrm{min})$. The SIM signal at $226.2 \mathrm{~m} / \mathrm{z}$ corresponds to the $[\mathrm{M}-\mathrm{Boc}+\mathrm{H}]^{+}$ion, the most intense positive ion. These results allowed to calculate enantiomeric purity i.e. enantiomeric excess. The chemical purity of compounds could be determined by looking at the amount of impurities in the sample. For this purpose, analyses were recorded in SCAN positive mode (from 100 to $800 \mathrm{~m} / \mathrm{z}$) to see the overall sample composition.

Chemical purity of compounds (-)-4k: SCAN in positive mode

Peak No.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathrm{t}_{\mathrm{R}}(\min)$	1.10	1.58	2.00	3.23
Compound	$(-)-4 \mathrm{k}$	Impurity 1	$(+)-4 \mathrm{k}$	Impurity 2

$\%$ area	69.6	4.8	2.5	23.1

Chemical purity of compounds (+)-4k: SCAN in positive mode

Peak No.	$\mathbf{1}$	$\mathbf{2}$
$\mathrm{t}_{\boldsymbol{R}}(\mathrm{min})$	1.10	2.00
Compound	$(-)-4 \mathrm{k}$	$(+)-4 \mathrm{k}$
\% area	3.6	96.4

5. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of New Compounds.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$) Analysis of Compound (S, R) -3a.

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Analysis of Compound ($\left.\mathrm{S}, \mathrm{R}\right)$-3a.
N

| \/ ।
i

${ }^{13} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Analysis of Compound (S, R)-3a.

[^2]${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Analysis of Compound (S,R)-3b.

${ }^{13} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Analysis of Compound (S, R)-3b.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$) Analysis of Compound (S,R)-3c.

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Analysis of Compound (S, R)-3c.

${ }^{13} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Analysis of Compound (S, R)-3c.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$) Analysis of Compound (S,R)-3d.

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Analysis of Compound (S, R)-3d.

${ }^{13} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Analysis of Compound (S, R)-3d.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$) Analysis of Compound (S,R)-3e.

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Analysis of Compound (S, R)-3e.

${ }^{13} \mathrm{P}$ NMR (162 MHz, CDCl_{3}) Analysis of Compound (S,R)-3e.
$\stackrel{\square}{\infty}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Analysis of Compound (S, R)-3f.

	1	180				1			110			1	70	1	1		1	1	10	
200	190	180	170	160	150	140	130	120	110	$\begin{array}{r} 100 \\ \mathrm{f} 1(\mathrm{pp} \end{array}$	90	80	70	60	50	40	30	20	10	0

${ }^{13} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Analysis of Compound (S, R)-3f.
$\stackrel{0}{\stackrel{\infty}{m}}$

140	120	100	80	60	40	20	0	-	-40	-60	-80	-100	-120	-140	-160	-180	-200	-220	

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$) Analysis of Compound (S,R)-3g.

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Analysis of Compound (S, R)-3g.

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	10	10	0
										f1 (ppm)							30	20	10	0

${ }^{19}$ F NMR (376 MHz, CDCl_{3}) Analysis of Compound (S,R)-3g.

$-105.6-105.7-105.8-105.9-106.0-106.1-106.2-106.3-106.4$ f1 (ppm)
${ }^{13} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Analysis of Compound (S,R)-3g.

$1{ }^{1}$			10	10	10	1	1	1		1				140		-180	-100	-1	-1
140	120	100	80	60	40	20	0	-20	-40	-60	-80	-100	-120	-140	-160	-180	-200	-220	-240

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$) Analysis of Compound (S,R)-3h.

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Analysis of Compound (S, R)-3h.

${ }^{19}$ F NMR (376 MHz, CDCl_{3}) Analysis of Compound (S,R)-3h.

${ }^{13} \mathrm{P}$ NMR (162 MHz, CDCl_{3}) Analysis of Compound (S,R)-3h.
$\stackrel{\infty}{\stackrel{\infty}{\circ}}$

140	120	100	80	60	40	20	0	-20	-40	-60	-80	-100	-120	-140	-160	-180	-200	-220	-240
														-140	-160	-180			

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$) Analysis of Compound (S, R)-3i.

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Analysis of Compound (S,R)-3i.

		180	170								1	80	70	60	50	40	30	10		
200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ (\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

${ }^{13} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Analysis of Compound (S, R)-3i.

[^3]
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Analysis of Compound (S,R)-3j.

${ }^{13} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Analysis of Compound (S, R)-3j.
$\stackrel{+}{\infty}$

140	120	100	80	60	40	20	0	-20	-40	-60	1	1		1	1	1	1	12	240
											-80	-100	-120	-140	-160	-180	-200		-240

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$) Analysis of Compound (S,R)-3k.

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Analysis of Compound (S, R)-3k.

${ }^{13} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Analysis of Compound (S, R)-3k.

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Analysis of Compound (S,R)-3I.

[^4]${ }^{13} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Analysis of Compound ((S, R)-31.

-

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Analysis of Compound (S,R)-3m.

${ }^{13} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Analysis of Compound (S,R)-3m.
$\stackrel{\infty}{\sim}$

${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$ ）Analysis of Compound（＋）－4a．
$\stackrel{\sim}{\infty}_{\infty}^{\infty} \sim \infty$

ヘヘへへへへ
$\stackrel{0}{\circ}$
$\underset{\sim}{\text { Non }}$
$\underbrace{\infty \text { mলm }}$

${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) Analysis of Compound (+)-4a.

${ }^{13} \mathrm{P}$ NMR (162 MHz, CDCl_{3}) Analysis of Compound (+)-4a.
$\stackrel{\circ}{\dot{m}}$
i

Boc
.

1	1	1	1		1	1	1	1		,	1	11	1	1	16	180	10	12	- 1
140	120	100	80	60	40	20	0	-20	-40	-60	-80	-100	-120	-140	-160	-180	-200	-220	-240

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$) Analysis of Compound (+)-4k.

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Analysis of Compound (+)-4k.

${ }^{13} \mathrm{P}$ NMR（ $162 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）Analysis of Compound（＋）－4k．

$\infty^{\circ} \dot{\circ} へ \stackrel{\infty}{\infty} \wedge$

$\underbrace{\text { OิoñNへNへNAN }}$

[^0]: (1) O. D. Rigaku, CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England, 2015.
 (2) G. M. Sheldrick, Acta Cryst., 2015, A71, 3.
 (3) G. M. Sheldrick, Acta Cryst., 2015, C71, 3.

[^1]: (4) A. L. Spek, Acta Cryst., 2020, E76, 1.
 (5) (a) H. D. Flack, Acta Cryst., 1983, A39, 876; (b) S. Parsons, H. D. Flack and T. Wagner, Acta Cryst., 2013, B69, 249.

[^2]:

[^3]:

[^4]:

