Supporting Information

Photo-Induced Weak Base-Catalyzed Synthesis of α-

Haloboronates from Vinylboronates and Polyfluoroalkyl Halides

Tongchang Fang,¹ Jian Qiu,¹ Kai Yang,¹ Qiuling Song^{*1,2}

¹ Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University Fuzhou, Fujian, 350108 (China)

² Institute of Next Generation Matter Transformation, College of Materials Science Engineering at Huaqiao University 668 Jimei Boulevard, Xiamen, Fujian, 361021 (China)

E-mail: qsong@hqu.edu.cn

Contents

Supporting Information	1
1. General methods	2
2. Preparation of the starting materials	3
3. Typical procedure for the synthesis of α -haloboronates	7
4. Synthetic applicability	19
5. Mechanism studies	26
5.1. Radical inhibition experiment with TEMPO	26
5.2. Radical clock experiments	27
5.3. UV-vis spectroscopic measurement	29
5.4. Comparative Experiment	30
5.5. Comparison with or without KOAc	32
5.6. Catalyst cycle experiment	
6. Unsuccessful examples	34
7. References	35
8. Crystal data and structure refinement for 3m (CCDC 2058412)	35
9. Copies of NMR spectra of all new compounds	37

1. General methods

All experiments were conducted with a schlenk tube. Flash column chromatography was performed over silica gel (200-300 mesh). ¹H NMR and ¹³C NMR spectra were recorded at ambient temperature using Bruker AscendTM 400 (400 MHz) spectrometer, Bruker AVANCE NEO 600 (600 MHz) spectrometer or JEOL JNM-ECZ500R/S1 (500 MHz) spectrometer. Chemical shifts (in ppm) were referenced to $CDCl_3$ ($\delta = 7.26$ ppm), MeCN-d₃ (δ = 1.94 ppm) as internal standards. ¹³C NMR spectra were obtained by using the same NMR spectrometers and were calibrated with $CDCl_3$ ($\delta = 77.0$ ppm), MeCN-d₃ (δ = 1.32 ppm). Data for 1H NMR are recorded as following abbreviations: multiplicity (s = singlet, d = doublet, t = triplet, q = quarter, m = multiplet), coupling constant (J, Hz). HRMS data were obtained on Thermo Scientific Orbitrap Elite Mass Spectrometer with an ESI source (Ion Trap) or Agilent 7250 GC/Q-TOF. Analytical thin-layer chromatography (TLC) was carried out on Merck 60 F254 pre-coated silica gel plate (0.2 mm thickness). Visualization was accomplished by UV light (254 nm), or KMnO₄ staining solutions followed by heating, also by Gas chromatograph-Mass spectrometer analysis (GC-MS). No attempts were made to optimize yields for substrate synthesis. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification.

2. Preparation of the starting materials

The iodine difluoroaryl sulfone **1n-1u** were prepared according to the reference^{1,2}.

Step 1: Benzenethiol **6** (10 mmol) was dissolved in isopropanol (15 ml). The reaction mixture was warmed up to 60 °C, and solution of NaOH (800 mg, 20 mmol) in H₂O was added dropwise. A balloon was attached to the reaction vessel and CF₂HCl gas was bubbled into the stirred mixture from a cylinder for 4 h. When all of the starting material was converted into the product, the mixture was cooled down to room temperature, poured in water, and the aqueous layer was extracted with Et₂O, washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was directly used in the next step without further purification.

Step 2: To a mixture of difluoromethyl aryl sulfide (9 mmol), CCl_4 (8 mml), CH_3CN (8 ml), H_2O (14 ml) and $RuCl_3 \cdot H_2O$ (10 mg, 0.04 mmol) at 0 °C, $NaIO_4$ was added (7.7 g, 36 mmol). After stirring at 0 °C to RT for 1.5 hours, the resulting reaction mixture was extracted with Et_2O . The combined organic phase was washed successively with saturated $NaHCO_3$ and saturated brine, and then dried over anhydrous Na_2SO_4 . concentrated under reduced pressure. The crude product was directly used in the next step without further purification.

Step 3: Difluoromethyl aryl sulfone (5 mmol, 1.0 equiv) and NIS (15 mmol, 3.375 g, 3.0 equiv) were added to a dry Schlenk tube. The flask was evacuated and backfilled with pure Ar for 3 times. Then THF (20 mL) was added with syringe under Ar atmosphere. The mixture was cooled to -78 °C. LiHMDS (1.0 M in THF, 15 mmol, 15 mL, 3.0 equiv) was added with syringe under Ar atmosphere in 15 min. The mixture was stirred at -78 °C for 3 h (monitored by GC-MS). After the reaction was complete, the mixture was quenched by saturated aqueous solution of NH₄Cl (10 mL). After the

mixture was warmed to room temperature, the aqueous layer was extracted with Et_2O for 3 times (30 mL × 3). Then the organic phase was combinated and dried over anhydrous MgSO₄. The solvent was removed under reduced pressure and the residue was purified by column chromatography to afford the desired product. The following compounds are synthesized according to this method.

1-((difluoroiodomethyl)sulfonyl)-4-(trifluoromethyl)benzene (1n)

White solid, mp: 91-92 °C

¹H NMR (500 MHz, Chloroform-*d*) δ 8.15 (d, J = 8.2 Hz, 2H), 7.91 (d, J = 8.5 Hz, 2H).

¹⁹F NMR (471 MHz, Chloroform-*d*) δ -52.12, -63.37.

¹³C NMR (126 MHz, Chloroform-*d*) δ 137.5 (q, J = 33.4 Hz), 132.0, 126.8 (q, J = 3.7

Hz), 122.8 (q, J = 273.5 Hz), 101.8 (t, J = 355.1 Hz).

HRMS (ESI) calcd for C₈H₅F₅IO₂S (M+H⁺): 386.8970, found: 386.8986.

1-((difluoroiodomethyl)sulfonyl)-4-fluorobenzene (10)

White solid, mp: 84-85 °C

¹H NMR (500 MHz, Chloroform-*d*) δ 8.06 – 7.99 (m, 2H), 7.37 – 7.29 (m, 2H).

¹⁹F NMR (471 MHz, Chloroform-*d*) δ -52.06, -98.36.

¹³C NMR (126 MHz, Chloroform-*d*) δ 167.5 (d, *J* = 260.8 Hz), 134.4 (d, *J* = 10.3 Hz),

123.8, 117.3 (d, *J* = 23.0 Hz), 102.0 (t, *J* = 354.7 Hz).

HRMS (EI) calcd for C₇H₅F₃IO₂S: 335.8929, found: 335.8930.

1-chloro-4-((difluoroiodomethyl)sulfonyl)benzene (1p)³

White solid, mp: 104-105 °C

¹H NMR (500 MHz, Chloroform-*d*) δ 7.93 (d, J = 8.4 Hz, 2H), 7.62 (d, J = 8.7 Hz,

2H).

¹⁹F NMR (471 MHz, Chloroform-*d*) δ -52.05.

¹³C NMR (126 MHz, Chloroform-*d*) δ 143.4, 132.7, 130.1, 126.4, 102.0 (t, *J* = 354.9 Hz).

HRMS (ESI) calcd for C₇H₄ClF₂IO₂SNa (M+Na⁺): 374.8525, found: 374.8521.

1-bromo-4-((difluoroiodomethyl)sulfonyl)benzene (1q)

White solid, mp: 132-133 °C

¹H NMR (500 MHz, Chloroform-*d*) δ 7.86 – 7.83 (m, 2H), 7.81 – 7.77 (m, 2H).

 $^{19}\mathrm{F}$ NMR (471 MHz, Chloroform-d) δ -52.02.

¹³C NMR (126 MHz, Chloroform-*d*) δ 133.2, 132.7, 132.3, 127.0, 102.0 (t, *J* = 355.0 Hz).

HRMS (ESI) calcd for C₇H₄BrF₂IO₂SNa (M+Na⁺): 418.8020, found: 418.8020.

1-chloro-3-((difluoroiodomethyl)sulfonyl)benzene (1r)

White solid, mp: 66-67 °C

¹H NMR (500 MHz, Chloroform-*d*) δ 7.98 (t, J = 2.0 Hz, 1H), 7.89 (dd, J = 7.9, 0.9 Hz,

1H), 7.78 (ddd, *J* = 8.0, 2.1, 1.0 Hz, 1H), 7.59 (t, *J* = 8.0 Hz, 1H).

¹⁹F NMR (471 MHz, Chloroform-*d*) δ -51.90.

¹³C NMR (126 MHz, Chloroform-*d*) δ 136.3, 136.0 131.1, 130.9, 129.9, 129.5, 101.9 (t, *J* = 355.2 Hz).

HRMS (ESI) calcd for C₇H₅ClF₂IO₂S (M+H⁺): 351.8633, found: 351.8630.

1-((difluoroiodomethyl)sulfonyl)-4-methoxybenzene (1s)

White solid, mp: 104-105 °C

¹H NMR (500 MHz, Chloroform-*d*) δ 7.90 (d, J = 9.0 Hz, 2H), 7.07 (d, J = 9.0 Hz, 2H),

3.92 (s, 3H).

 $^{19}\mathrm{F}$ NMR (471 MHz, Chloroform-d) δ -51.84.

¹³C NMR (126 MHz, Chloroform-*d*) δ 165.9, 133.7 118.4, 115.1, 102.7 (t, *J* = 354.9

Hz), 55.9.

HRMS (ESI) calcd for C₈H₈F₂IO₃S (M+H⁺): 348.9201, found: 348.9201.

1-((difluoroiodomethyl)sulfonyl)-3-methoxybenzene (1t)

White solid, mp: 76-77 °C

¹H NMR (500 MHz, Chloroform-*d*) δ 7.44 (d, J = 7.6 Hz, 1H), 7.39 (t, J = 8.0 Hz, 1H),

7.30 (s, 1H), 7.18 (ddd, *J* = 8.3, 2.5, 1.1 Hz, 1H), 3.74 (s, 3H).

 $^{19}\mathrm{F}$ NMR (471 MHz, Chloroform-d) δ -51.91.

¹³C NMR (126 MHz, Chloroform-*d*) δ 160.2, 130.6, 129.1, 123.6, 122.9, 115.3, 102.6

(t, J = 355.5 Hz), 55.8.

HRMS (ESI) calcd for C₈H₈F₂IO₃S (M+H⁺): 348.9201, found: 348.9201.

4-((difluoroiodomethyl)sulfonyl)-1,2-dimethoxybenzene (1u)

White solid, mp: 120-121 °C

¹H NMR (500 MHz, Chloroform-*d*) δ 7.61 (d, J = 8.5 Hz, 1H), 7.33 (s, 1H), 7.03 (d, J

= 7.6 Hz, 1H), 3.97 (s, 3H), 3.92 (s, 3H).

¹⁹F NMR (471 MHz, Chloroform-*d*) δ -51.65.

¹³C NMR (126 MHz, Chloroform-*d*) δ 155.6, 149.5, 126.4, 118.4, 112.5, 111.1, 102.6

(t, *J* = 354.9 Hz), 56.4, 56.3.

HRMS (ESI) calcd for C₉H₁₀F₂IO₄S (M+H⁺): 378.9307, found: 378.9306.

3. Typical procedure for the synthesis of α-haloboronates

In air, a 25 mL schlenk tube was charged with KOAc (0.03 mmol, 3 mg, 10 mol%). The tube was evacuated and filled with Argon for three cycles. Then, 1,1-Dichloroethane (2 mL), Vinyl borate pinacol ester (**2a**) (0.3 mmol, 52 uL, 1.0 equiv), Perfluoroiodobutane (**1a**) (0.6 mmol, 105 uL, 2.0 equiv) were added to the tube at room temperature. The reaction was allowed to stir under Blue LEDs irradiation at room temperature. After 24 hours, the crude reaction mixture was concentrated in vacuo and purified by column chromatography (*n*-pentane: ethyl acetate = 30:1) to afford the desired product.

4,4,5,5-tetramethyl-2-(3,3,4,4,4-pentafluoro-1-iodobutyl)-1,3,2-dioxaborolane (3b)

Yellow liquid, Flash column chromatography conditions: n-pentane: ethyl acetate = 30:1; Yield: 100.7 mg (84%);

¹H NMR (500 MHz, Chloroform-*d*) δ 3.33 (dd, *J* = 11.8, 4.5 Hz, 1H), 2.93 – 2.77 (m,

1H), 2.66 – 2.52 (m, 1H), 1.24 (d, *J* = 7.0 Hz, 12H).

¹⁹F NMR (471 MHz, Chloroform-*d*) δ -85.43, -117.79 – -118.30 (m).

¹³C NMR (126 MHz, Chloroform-*d*) δ 118.6 (qt, J = 286.0, 35.91 Hz), 115.2 (tq, J =

254.52, 37.8 Hz), 84.5, 37.0 (t, J = 21.3 Hz), 24.2, 24.0.

¹¹B NMR (128 MHz, Chloroform-*d*) δ 31.4.

HRMS (ESI) calcd for C₁₀H₁₆BF₅IO₂ (M+H⁺): 401.0203, found: 401.0203.

2-(3,3,4,4,5,5,5-heptafluoro-1-iodopentyl)-4,4,5,5-tetramethyl-1,3,2 dioxaborolane (3c)

C₃F₇ Bpin

Yellow liquid, Flash column chromatography conditions: *n*-pentane: ethyl acetate = 30:1; Yield: 103.9 mg (77%);

¹H NMR (500 MHz, Chloroform-*d*) δ 3.36 (dd, *J* = 11.8, 4.4 Hz, 1H), 2.98 – 2.82 (m, 1H), 2.70 – 2.55 (m, 1H), 1.25 (d, *J* = 8.2 Hz, 12H).

¹⁹F NMR (471 MHz, Chloroform-*d*) δ -80.45 (t, *J* = 10.0 Hz), -114.19 – -115.91 (m), -127.84.

¹³C NMR (126 MHz, Chloroform-*d*) δ 121.5 – 105.7 (m), 84.5, 37.1 (t, *J* = 21.4 Hz), 24.2, 24.0.

¹¹B NMR (128 MHz, Chloroform-*d*) δ 31.4.

HRMS (ESI) calcd for C₁₁H₁₆BF₇IO₂ (M+H⁺): 451.0171, found: 451.0181.

4,4,5,5-tetramethyl-2-(3,3,4,4,5,5,6,6,6-nonafluoro-1-iodohexyl)-1,3,2-

dioxaborolane (3a)

Yellow liquid, Flash column chromatography conditions: *n*-pentane: ethyl acetate = 30:1; Yield: 114.1 mg (76%);

¹H NMR (500 MHz, Chloroform-*d*) δ 3.36 (dd, J = 11.9, 4.3 Hz, 1H), 2.99 – 2.83 (m,

1H), 2.71 – 2.56 (m, 1H), 1.25 (d, *J* = 8.6 Hz, 12H).

¹⁹F NMR (471 MHz, Chloroform-*d*) δ -81.08 (t, J = 9.7 Hz), -113.51 - -115.14 (m), -

124.47 - -124.65 (m), -125.95 - -126.04 (m).

¹³C NMR (126 MHz, Chloroform-*d*) δ 121.1 – 105.7 (m), 84.5, 37.3 (t, *J* = 21.4 Hz), 24.1, 23.9.

¹¹B NMR (128 MHz, Chloroform-d) δ 31.3.

HRMS (ESI) calcd for $C_{12}H_{16}BF_9IO_2$ (M+H⁺): 501.0139, found: 501.0136.

4,4,5,5-tetramethyl-2-(3,3,4,4,5,5,6,6,7,7,7-undecafluoro-1-iodoheptyl)-1,3,2dioxaborolane (3d) C₅F₁₁ Bpin

Yellow liquid, Flash column chromatography conditions: *n*-pentane: ethyl acetate = 30:1; Yield: 118.7 mg (72%);

¹H NMR (500 MHz, Chloroform-*d*) δ 3.36 (dd, J = 11.9, 4.3 Hz, 1H), 3.00 – 2.84 (m,

1H), 2.71 – 2.56 (m, 1H), 1.25 (d, *J* = 8.6 Hz, 12H).

¹⁹F NMR (471 MHz, Chloroform-*d*) δ -80.89 (t, J = 10.0 Hz), -113.27 - -115.00 (m), -

122.59 - -122.71 (m), -123.75 - -123.90 (m), -126.20 - -126.40 (m).

¹³C NMR (126 MHz, Chloroform-*d*) δ 121.3 – 105.7 (m), 84.5, 37.4 (t, *J* = 21.4 Hz), 24.1, 23.9.

¹¹B NMR (128 MHz, Chloroform-*d*) δ 31.3.

HRMS (EI) calcd for C₁₃H₁₅BF₁₁IO₂: 500.0034, found: 500.0037.

4,4,5,5-tetramethyl-2-(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-1-iodooctyl)-1,3,2dioxaborolane (3e)

C₆F₁₃ Bpin

Yellow liquid, Flash column chromatography conditions: *n*-pentane: ethyl acetate = 30:1; Yield: 133.3 mg (74%);

¹H NMR (500 MHz, Chloroform-*d*) δ 3.37 (dd, *J* = 11.9, 4.3 Hz, 1H), 3.00 – 2.84 (m, 1H), 2.71 – 2.57 (m, 1H), 1.26 (d, *J* = 8.6 Hz, 12H).

¹⁹F NMR (471 MHz, Chloroform-*d*) δ -80.86 (t, J = 9.9 Hz), -113.30 - -114.92 (m), -

121.79 - -121.90 (m), -122.83 - -122.90 (m), -123.55 - -123.70 (m), -126.10 - -126.926 (m).

¹³C NMR (101 MHz, Chloroform-*d*) δ 124.7 – 105.0 (m), 84.5, 37.5 (t, *J* = 21.5 Hz), 24.2, 24.0.

¹¹B NMR (128 MHz, Chloroform-*d*) δ 31.2.

HRMS (EI) calcd for C₁₄H₁₅BF₁₃IO₂: 600.0002, found: 600.0005.

2-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluoro-1-iododecyl)-4,4,5,5-

```
tetramethyl-1,3,2-dioxaborolane (3f)
```

Yellow liquid, Flash column chromatography conditions: *n*-pentane: ethyl acetate = 30:1; Yield: 163.8 mg (78%);

¹H NMR (500 MHz, Chloroform-*d*) δ 3.36 (dd, *J* = 11.9, 4.3 Hz, 1H), 3.00 – 2.84 (m, 0H), 2.71 – 2.56 (m, 1H), 1.25 (d, *J* = 8.7 Hz, 12H).

¹⁹F NMR (471 MHz, Chloroform-*d*) δ -112.15 - -115.21 (m), -121.05 - -121.80 (m), -121.80 - -122.48 (m), -122.58 - -123.36 (m), -123.43 - -124.06 (m), -126.03 - -126.53 (m).

¹³C NMR (101 MHz, Chloroform-*d*) δ 125.2 – 105.0 (m), 84.5, 37.5 (t, *J* = 21.5 Hz), 24.1, 24.0.

¹¹B NMR (128 MHz, Chloroform-*d*) δ 31.2.

HRMS (EI) calcd for C₁₆H₁₅BF₁₇IO₂: 699.9938, found: 699.9947.

2-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-henicosafluoro-1-iodododecyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3g)

C₁₀F₂₁ Bpin

Yellow liquid, Flash column chromatography conditions: *n*-pentane: ethyl acetate = 30:1; Yield: 194.4 mg (81%);

¹H NMR (500 MHz, Chloroform-*d*) δ 3.37 (dd, *J* = 11.9, 4.4 Hz, 1H), 3.00 – 2.84 (m, 0H), 2.72 – 2.57 (m, 1H), 1.26 (d, *J* = 8.6 Hz, 12H).

¹⁹F NMR (471 MHz, Chloroform-*d*) δ -80.82 (t, J = 9.9 Hz), -113.29 - -114.87 (m), -

121.39 - -122.11 (m), -122.72, -123.58, -125.92 - -126.37 (m).

¹³C NMR (126 MHz, Chloroform-*d*) δ 121.1– 105.9 (m), 84.5, 37.4 (t, *J* = 21.4 Hz), 24.1, 23.9.

¹¹B NMR (128 MHz, Chloroform-d) δ 32.1.

HRMS (EI) calcd for C₁₈H₁₅BF₂₁IO₂: 799.9874, found: 799.9878.

4,4,5,5-tetramethyl-2-(3,4,4,4-tetrafluoro-1-iodo-3-(trifluoromethyl)butyl)-1,3,2dioxaborolane (3h)

Yellow liquid, Flash column chromatography conditions: *n*-pentane: ethyl acetate = 30:1; Yield: 91.8 mg (68%);

¹H NMR (500 MHz, Chloroform-*d*) δ 7.24 (dd, *J* = 12.6, 3.9 Hz, 1H), 6.90 – 6.78 (m, 1H), 6.55 – 6.43 (m, 1H), 5.11 (d, *J* = 7.9 Hz, 12H).

¹⁹F NMR (471 MHz, Chloroform-*d*) δ -76.16 (m), -77.18 (m), -186.00 – -186.23 (m).

¹³C NMR (126 MHz, Chloroform-*d*) δ 124.6–116.8 (m), 91.7 (dp, *J* = 204.9, 32.2 Hz),

84.4, 34.9(d, *J* = 19.4 Hz), 24.1, 24.0

¹¹B NMR (128 MHz, Chloroform-d) δ 31.6.

HRMS (ESI) calcd for C₁₁H₁₆BF₇IO₂ (M+H⁺): 451.0171, found: 451.0175.

2-(4-chloro-3,3,4,4-tetrafluoro-1-iodobutyl)-4,4,5,5-tetramethyl-1,3,2-

dioxaborolane (3i)

Yellow liquid, Flash column chromatography conditions: *n*-pentane: ethyl acetate = 30:1; Yield: 77.4 mg (62%);

¹H NMR (500 MHz, Chloroform-*d*) δ 3.35 (dd, J = 11.8, 4.4 Hz, 1H), 2.98 – 2.82 (m,

1H), 2.72 – 2.57 (m, 1H), 1.25 (d, *J* = 7.2 Hz, 12H).

¹⁹F NMR (471 MHz, Chloroform-*d*) δ -71.25, -112.99 – -114.67 (m).

¹³C NMR (126 MHz, Chloroform-d) δ 123.0 (tt, J = 298.7, 37.2 Hz), 116.8 (tt, J =

256.1, 33.7 Hz), 84.4, 37.1(t, *J* = 21.7 Hz), 24.2, 24.0.

¹¹B NMR (128 MHz, Chloroform-*d*) δ 31.5.

HRMS (EI) calcd for C₁₀H₁₅BClF₄IO₂: 415.9834, found: 415.9843.

2-(8-chloro-3,3,4,4,5,5,6,6,7,7,8,8-dodecafluoro-1-iodooctyl)-4,4,5,5-tetramethyl-

1,3,2-dioxaborolane (3J)

CI(F₂C)₅F₂C Bpin

Yellow liquid, Flash column chromatography conditions: *n*-pentane: ethyl acetate =

30:1; Yield: 125.6 mg (68%);

¹H NMR (500 MHz, Chloroform-*d*) δ 3.36 (dd, *J* = 11.9, 4.3 Hz, 1H), 2.99 – 2.83 (m, 1H), 2.70 – 2.56 (m, 1H), 1.25 (d, *J* = 8.6 Hz, 12H).

¹⁹F NMR (471 MHz, Chloroform-*d*) δ -68.10 (t, J = 13.3 Hz), -113.32 - -114.96 (m), -

120.22, -121.36, -121.74, -123.65.

¹³C NMR (126 MHz, Chloroform-*d*) δ 124.8 – 106.4 (m), 84.5, 37.5 (t, *J* = 21.4 Hz), 24.1, 24.0.

¹¹B NMR (128 MHz, Chloroform-*d*) δ 31.2.

HRMS (EI) calcd for C₁₄H₁₅BClF₁₂IO₂: 615.9707, found: 615.9710.

2-(1-iodo-2-(perfluorocyclohexyl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3k)

Yellow liquid, Flash column chromatography conditions: *n*-pentane: ethyl acetate = 30:1; Yield: 124.0 mg (76%);

¹H NMR (500 MHz, Chloroform-*d*) δ 3.46 (dd, *J* = 12.7, 2.5 Hz, 1H), 3.12 – 3.02 (m,

1H), 2.84 – 2.72 (m, 1H), 1.25 (d, *J* = 9.8 Hz, 12H).

¹⁹F NMR (471 MHz, Chloroform-*d*) δ -118.26 (dd, *J* = 497.9, 296.7 Hz), -121.60 - -124.80 (m), -132.58 (dd, *J* = 401.3, 295.9 Hz), -139.27 (d, *J* = 284.4 Hz), -142.12 (d, *J* = 286.3 Hz), -185.57.

¹³C NMR (126 MHz, Chloroform-*d*) δ 112.9 – 104.8 (m), 93.2 – 89.9 (m), 84.5, 32.

(d, J = 19.5 Hz), 24.2, 23.9.

¹¹B NMR (128 MHz, Chloroform-*d*) δ 31.1.

HRMS (ESI) calcd for C₁₄H₁₆BF₁₁IO₂ (M+H⁺): 563.0107, found: 563.0108.

1,1,2,2-tetrafluoro-2-(1,1,2,2-tetrafluoro-4-iodo-4-(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)butoxy)ethane-1-sulfonyl fluoride (3l)

Yellow liquid, Flash column chromatography conditions: *n*-pentane: ethyl acetate = 30:1; Yield: 114.8 mg (66%);

¹H NMR (500 MHz, Chloroform-*d*) δ 3.33 (dd, *J* = 11.7, 4.4 Hz, 2H), 2.93 – 2.77 (m,

1H), 2.65 - 2.50 (m, 1H), 1.25 (d, J = 8.5 Hz, 12H).

¹⁹F NMR (471 MHz, Chloroform-d) -45.69 - -45.60 (m), -82.05 - -82.14 (m), -87.07 -

-87.80 (m), -111.87 - -112.31 (m), -117.28 - -118.71 (m).

¹³C NMR (126 MHz, Chloroform-*d*) δ 120.0 – 109.5 (m), 84.5, 36.8 (t, *J* = 21.2 Hz),

24.1, 24.0.

¹¹B NMR (128 MHz, Chloroform-*d*) δ 31.3.

HRMS (EI) calcd for C₁₂H₁₅BF₉IO₅S: 579.9634, found: 579.9637.

2-(3,3-difluoro-1-iodo-3-(phenylsulfonyl)propyl)-4,4,5,5-tetramethyl-1,3,2dioxaborolane (3m)

White solid, mp: 94-95 °C, Flash column chromatography conditions: *n*-pentane: ethyl acetate = 30:1; Yield: 113.3 mg (80%);

¹H NMR (500 MHz, Chloroform-*d*) δ 7.97 (d, *J* = 7.5 Hz, 2H), 7.77 (t, *J* = 7.5 Hz, 1H),

7.62 (t, *J* = 7.9 Hz, 1H), 3.42 (dd, *J* = 11.0, 5.1 Hz, 1H), 3.23 – 3.07 (m, 1H), 3.00 – 2.85 (m, 1H), 1.24 (d, *J* = 6.3 Hz, 12H).

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -103.75 (d, *J* = 229.36 Hz), -103.80 (d, *J* = 229.36 Hz).

¹³C NMR (126 MHz, Chloroform-*d*) δ 135.5, 132.0, 130.8, 129.4, 123.4 (t, *J* = 287.9 Hz), 84.4, 35.5 (t, *J* = 19.7 Hz), 24.2, 24.0.

¹¹B NMR (128 MHz, Chloroform-*d*) δ 31.8.

HRMS (ESI) calcd for C₁₅H₂₁BF₂IO₄S (M+H⁺): 473.0261, found: 473.0263.

2-(3,3-difluoro-1-iodo-3-((4-(trifluoromethyl)phenyl)sulfonyl)propyl)-4,4,5,5tetramethyl-1,3,2-dioxaborolane (3n)

White solid, mp: 93-94 °C, Flash column chromatography conditions: *n*-pentane: ethyl acetate = 30:1; Yield: 103.6 mg (64%);

¹H NMR (500 MHz, Chloroform-*d*) δ 8.11 (d, *J* = 8.2 Hz, 2H), 7.89 (d, *J* = 8.3 Hz, 2H), 3.42 (dd, *J* = 10.9, 5.1 Hz, 1H), 3.24 – 3.09 (m, 1H), 3.02 – 2.87 (m, 1H), 1.24 (d, *J* = 6.6 Hz, 12H).

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -63.44, δ -102.56 (d, *J* = 229.36 Hz), -103.21 (d, *J* = 229.36 Hz).

¹³C NMR (126 MHz, Chloroform-*d*) δ 137.0 (q, *J* = 33.3 Hz), 135.7, 131.5, 126.5 (q, *J* = 3.7 Hz), 123.6.

¹¹B NMR (128 MHz, Chloroform-*d*) δ 31.8.

HRMS (ESI) calcd for C₁₆H₂₀BF₅IO₄S (M+H⁺): 541.0135, found: 541.0132.

2-(3,3-difluoro-3-((4-fluorophenyl)sulfonyl)-1-iodopropyl)-4,4,5,5-tetramethyl-

1,3,2-dioxaborolane (30)

White solid, mp: 77-78 °C, Flash column chromatography conditions: *n*-pentane: ethyl acetate = 30:1; Yield: 104.4 mg (71%);

¹H NMR (500 MHz, Chloroform-*d*) δ 8.00 (dd, *J* = 8.6, 5.0 Hz, 2H), 7.31 (t, *J* = 8.4 Hz, 2H), 3.42 (dd, *J* = 10.9, 5.1 Hz, 1H), 3.23 – 3.08 (m, 1H), 3.00 – 2.85 (m, 1H), 1.25 (d, *J* = 6.2 Hz, 12H).

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -99.96, δ -103.10 (d, *J* = 229.36 Hz), -103.75 (d, *J* = 229.36 Hz).

¹³C NMR (126 MHz, Chloroform-*d*) δ 167.1 (d, *J* = 259.5 Hz), 133.8 (d, *J* = 10.1 Hz), 127.9, 123.3 (t, *J* = 287.8 Hz), 116.9 (d, *J* = 22.9 Hz), 84.4, 35.4 (t, *J* = 19.6 Hz), 24.2, 24.0.

¹¹B NMR (128 MHz, Chloroform-*d*) δ 31.2.

HRMS (ESI) calcd for C₁₅H₂₀BF₃IO₄S (M+H⁺): 491.0167, found: 491.0169.

2-(3-((4-chlorophenyl)sulfonyl)-3,3-difluoro-1-iodopropyl)-4,4,5,5-tetramethyl-

1,3,2-dioxaborolane (3p)

White solid, mp: 109-110 °C, Flash column chromatography conditions: *n*-pentane: ethyl acetate = 30:1; Yield: 115.4 mg (76%);

¹H NMR (500 MHz, Chloroform-*d*) δ 7.90 (d, *J* = 8.7 Hz, 2H), 7.60 (d, *J* = 8.7 Hz, 2H), 3.41 (dd, *J* = 10.9, 5.1 Hz, 1H), 3.22 – 3.07 (m, 1H), 2.99 – 2.85 (m, 1H), 1.25 (d, *J* = 6.5 Hz, 12H).

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -102.98 (d, *J* = 229.36 Hz), -103.63 (d, *J* = 229.36 Hz).

¹³C NMR (126 MHz, Chloroform-*d*) δ 142.7, 132.2, 130.4, 129.8, 123.4 (t, *J* = 288.1

Hz), 84.5, 35.4 (t, *J* = 19.6 Hz), 24.2, 24.0.

¹¹B NMR (128 MHz, Chloroform-*d*) δ 31.9.

HRMS (ESI) calcd for C₁₅H₂₀BClF₂IO₄S (M+H⁺): 506.9871, found: 506.9873.

2-(3-((4-bromophenyl)sulfonyl)-3,3-difluoro-1-iodopropyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3q)

White solid, mp: 123-124 °C, Flash column chromatography conditions: *n*-pentane: ethyl acetate = 30:1; Yield: 95.6 mg (58%);

¹H NMR (500 MHz, Chloroform-*d*) δ 7.82 (d, *J* = 8.5 Hz, 2H), 7.77 (d, *J* = 8.7 Hz, 2H),

3.41 (dd, *J* = 11.0, 5.1 Hz, 1H), 3.22 – 3.06 (m, 1H), 2.99 – 2.84 (m, 1H), 1.24 (d, *J* = 6.4 Hz, 12H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 132.8, 132.2, 131.5 130.9, 123.4 (t, *J* = 288.1

Hz), 84.5, 35.4 (t, *J* = 19.6 Hz), 24.2, 24.0.

¹¹B NMR (128 MHz, Chloroform-*d*) δ 31.8.

HRMS (ESI) calcd for C₁₅H₂₀BBrF₂IO₄S (M+H⁺): 550.9366, found: 550.9366.

2-(3-((3-chlorophenyl)sulfonyl)-3,3-difluoro-1-iodopropyl)-4,4,5,5-tetramethyl-

1,3,2-dioxaborolane (3r)

White solid, mp: 66-67 °C, Flash column chromatography conditions: *n*-pentane: ethyl acetate = 30:1; Yield: 106.3 mg (70%);

¹H NMR (500 MHz, Chloroform-*d*) δ 7.95 (t, J = 2.0 Hz, 1H), 3.22 - 3.07 (m, 1H),

3.00 - 2.85 (m, 1H), 1.25 (d, J = 5.8 Hz, 12H).

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -102.74 (d, *J* = 229.36 Hz), -103.36 (d, *J* = 229.36 Hz).

¹³C NMR (126 MHz, Chloroform-*d*) δ 135.8, 135.7, 133.8, 130.6, 128.9, 123.5 (t, *J* =

288.4 Hz), 84.5, 35.4 (t, J = 19.5 Hz), 24.2, 24.0.

¹¹B NMR (128 MHz, Chloroform-*d*) δ 31.2.

HRMS (ESI) calcd for C₁₅H₂₀BClF₂IO₄S (M+H⁺): 506.9871, found: 506.9869.

2-(3,3-difluoro-1-iodo-3-((4-methoxyphenyl)sulfonyl)propyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3s)

White solid, mp: 122-123 °C, Flash column chromatography conditions: *n*-pentane: ethyl acetate = 30:1; Yield: 137.0 mg (91%);

¹H NMR (500 MHz, Chloroform-*d*) δ 7.86 (d, *J* = 8.9 Hz, 2H), 7.05 (d, *J* = 9.0 Hz, 2H), 3.89 (s, 3H), 3.40 (dd, *J* = 11.0, 5.0 Hz, 1H), 3.19 – 3.04 (m, 1H), 2.96 – 2.81 (m, 1H), 1.23 (d, *J* = 6.1 Hz, 12H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -103.10 (d, *J* = 229.36 Hz), -103.75 (d, *J* = 229.36 Hz).

¹³C NMR (126 MHz, Chloroform-*d*) δ 165.3, 133.0, 123.2 (t, *J* = 287.1 Hz), 122.7, 114.7, 84.3, 55.8, 35.6 (t, *J* = 19.8 Hz), 24.2, 24.0.

¹¹B NMR (128 MHz, Chloroform-*d*) δ 31.0.

HRMS (ESI) calcd for C₁₆H₂₃BF₂IO₅S (M+H⁺): 503.0367, found: 503.0367.

2-(3,3-difluoro-1-iodo-3-((3-methoxyphenyl)sulfonyl)propyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3t)

White solid, mp: 84-85 °C, Flash column chromatography conditions: *n*-pentane: ethyl acetate = 30:1; Yield: 122.2 mg (81%);

¹H NMR (500 MHz, Chloroform-*d*) δ 7.58 – 7.49 (m, 2H), 7.43 (t, *J* = 2.1 Hz, 1H),

7.28 (ddd, *J* = 8.2, 2.7, 1.2 Hz, 1H), 3.88 (s, 3H), 3.42 (dd, *J* = 10.9, 5.0 Hz, 1H), 3.22 - 3.07 (m, 1H), 2.99 - 2.84 (m, 1H), 1.25 (d, *J* = 6.3 Hz, 12H).

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -103.39 (d, *J* = 229.36 Hz), -104.04 (d, *J* = 229.36 Hz).

¹³C NMR (126 MHz, Chloroform-*d*) δ 160.0, 133.1, 130.4, 123.4 (t, *J* = 288.4 Hz),

123.1, 122.3, 114.8, 84.4, 55.8, 35.6 (t, *J* = 19.7 Hz), 24.2, 24.0.

¹¹B NMR (128 MHz, Chloroform-d) δ 31.8.

HRMS (ESI) calcd for C₁₆H₂₃BF₂IO₅S (M+H⁺): 503.0367, found: 503.0367.

2-(3-((3,4-dimethoxyphenyl)sulfonyl)-3,3-difluoro-1-iodopropyl)-4,4,5,5tetramethyl-1,3,2-dioxaborolane (3u)

White solid, mp: 142-144 °C, Flash column chromatography conditions: *n*-pentane:

ethyl acetate = 30:1; Yield: 110.1 mg (69%);

¹H NMR (500 MHz, Chloroform-*d*) δ 7.59 (dd, *J* = 8.4, 2.2 Hz, 1H), 7.34 (s, 1H), 7.02 (d, *J* = 8.5 Hz, 1H), 3.98 (s, 3H), 3.93 (s, 3H), 3.41 (dd, *J* = 11.0, 5.0 Hz, 1H), 3.21 – 3.05 (m, 1H), 2.97 – 2.82 (m, 1H), 1.24 (d, *J* = 6.5 Hz, 12H).

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -103.61 (d, *J* = 229.36 Hz), -104.19 (d, *J* = 229.36 Hz).

¹³C NMR (126 MHz, Chloroform-*d*) δ 155.1, 149.3, 125.6, 123.4 (t, *J* = 287.3 Hz),

122.9, 112.3, 110.9, 84.4, 56.3, 35.7 (t, *J* = 19.9 Hz), 24.2, 24.0.

¹¹B NMR (128 MHz, Chloroform-*d*) δ 32.0.

HRMS (ESI) calcd for C₁₇H₂₅BF₂IO₆S (M+H⁺): 533.0472, found: 533.0472.

Ethyl 2,2-difluoro-4-iodo-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) butanoate (3v)

Colourless liquid, Flash column chromatography conditions: *n*-pentane: ethyl acetate = 20:1; Yield: 89.7 mg (74%);

¹H NMR (600 MHz, Chloroform-*d*) δ 4.32 (q, *J* = 7.2, 6.7 Hz, 1H), 3.33 (dd, *J* = 11.2, 5.0 Hz, 1H), 2.89 – 2.77 (m, 1H), 2.74 – 2.62 (m, 1H), 1.35 (t, *J* = 7.1 Hz, 1H), 1.26 (d, *J* = 5.3 Hz, 12H).

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -105.17 (d, *J* = 262.3 Hz), -107.11 (d, *J* = 262.3 Hz).

¹³C NMR (101 MHz, Chloroform-*d*) δ 163.3 (t, *J* = 32.4 Hz), 115.2 (t, *J* = 252.3 Hz), 84.3, 63.0, 40.5 (t, *J* = 23.3 Hz), 24.1, 24.1, 13.8.

¹¹B NMR (128 MHz, Chloroform-d) δ 31.3.

HRMS (ESI) calcd for $C_{12}H_{21}BF_2IO_4$ (M+H⁺): 405.0540, found: 405.0540.

2-(1-bromo-3,3,3-trichloropropyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3w)

CI Br CI Br Bpin

Colourless liquid, Flash column chromatography conditions: *n*-pentane: ethyl acetate =

80:1; Yield: 94.0 mg (89%);

¹H NMR (500 MHz, Chloroform-*d*) δ 7.29 – 7.11 (m, 2H), 6.87 (dd, *J* = 14.2, 2.8 Hz, 1H), 4.92 (s, 12H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 97.8, 84.6, 58.4, 24.3, 24.3.

¹¹B NMR (128 MHz, Chloroform-*d*) δ 30.4.

HRMS (EI) calcd for C₉H₁₅BBrCl₃O₂: 349.9414, found: 349.9411.

ethyl 2,2-difluoro-4-iodo-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) pentanoate (3x)

Colourless liquid, Flash column chromatography conditions: *n*-pentane: ethyl acetate = 20:1; Yield: 76.0 mg (61%);

¹H NMR (600 MHz, Chloroform-*d*) δ 4.31 (q, J = 7.2 Hz, 2H), 3.21 – 3.09 (m, 1H), 2.95 – 2.83 (m, 1H), 1.35 (t, J = 7.2 Hz, 3H), 1.27 (d, J = 5.8 Hz, 12H).

¹⁹F NMR (565 MHz, Chloroform-*d*) δ -101.28 (d, *J* = 264.8 Hz), -104.78 (d, *J* = 264.8 Hz).

¹³C NMR (151 MHz, Chloroform-*d*) δ 163.5 (t, *J* = 32.5 Hz), δ 115.4 (t, *J* = 348.8 Hz), 84.4, 63.0, 47.8 (t, *J* = 22.0 Hz), 29.4, 24.1, 24.1, 13.9.

¹¹B NMR (128 MHz, Chloroform-*d*) δ 32.1.

HRMS (ESI) calcd for C₁₃H₂₃BF₂IO₄ (M+H⁺): 419.0697, found: 419.0696.

4. Synthetic applicability Gram scale study

In air, a 200 mL schlenk tube was charged with KOAc (1 mmol, 99 mg, 10 mol%). The tube was evacuated and filled with Argon for three cycles. Then, 1,1-Dichloroethane (65 mL), Vinyl borate pinacol ester (2a) (10 mmol, 1.7 mL, 1.0 equiv), Perfluoroiodobutane (2a) (3.44 mL, 2.0 equiv) were added to the tube at room temperature. The reaction was allowed to stir under 5 W Blue LEDs irradiation at room

temperature. After 24 hours, the crude reaction mixture was concentrated in vacuo and purified by column chromatography (*n*-pentane: ethyl acetate = 30:1) to afford the desired product **3a** as a yellow liquid in 73% yield (3.69 g).

$$C_4F_9$$
 Bpin LiHMDS, THF
HCI, hexane C_4F_9 Bpin NH₃Cl
3a 4

The amine hydrochloride **4** is prepared according to the reference⁴.

 α -haloboronates **3a** (500 mg, 1 mmol, 1 equiv) was dissolved in anhydrous THF (1.3 mL) and was added dropwise to a cool (-78 °C) solution consisting of lithium bis(trimethylsilyl)amide (1.2 mL, 1.2 mmol, 1.0 M in THF) and THF (1.3 mL). The reaction mixture was allowed to warm to room temperature and stirred for 12 h. It was concentrated in vacuo, and hexane was added. The reaction mixture was cooled to -78 °C, and 4 N anhydrous hydrogen chloride in dioxane (0.75 mL, 3 mmol, 3 equiv) was added dropwise. The mixture was warmed to room temperature and stirred for 5 h. Solvent was removed by evaporation, and chloroform was added. Insoluble material was removed by filtration. The filtrate was evaporated almost to dryness, and hexanes were added. The desired product crystallized. It was isolated and washed with cold n-pentane to yield 250mg (59 %) of **4** as the amine hydrochloride.

3,3,4,4,5,5,6,6,6-nonafluoro-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)hexan-1-amino hydrochloride (4)

Off-white solid, mp: 184-185 °C

¹H NMR (500 MHz, Chloroform-*d*) δ 7.84 (s, 3H), 3.59 (q, *J* = 5.8 Hz, 1H), 3.14 – 2.99 (m, 1H), 2.93 – 2.77 (m, 1H), 1.31 (s, 12H).

¹⁹F NMR (471 MHz, Chloroform-*d*) δ -80.95 (t, J = 9.7 Hz), -110.16 - -111.64 (m)., -

124.25 - -124.46 (m), -125.75 - -125.89 (m).

¹³C NMR (101 MHz, Chloroform-*d*) δ 86.5, 30.16 (t, *J* = 21.3 Hz), 24.9, 24.7.

¹¹B NMR (128 MHz, Chloroform-d) δ 32.8.

HRMS (ESI) calcd for C₁₂H₁₈BF₉NO₂ (M+H⁺): 390.1281, found: 390.1279.

The *gem*-diboronate **5** is prepared according to the reference⁵.

In air, a 25 mL schlenk tube was charged with bis(catecholato)diboron (190 mg, 0.800 mmol, 4 equiv). The tube was evacuated and filled with argon for three cycles. Then, Dimethylformamide (0.6 mL) and α -haloboronates **3a** (100 mg, 0.2 mmol, 1.0 equiv) was added. The reaction mixture was stirred under 5 W Blue LED irradiation at room temperature for 24 hours. A solution of pinacol (95 mg, 0.80 mmol, 4.0 equiv) in triethylamine (0.7 mL) was added to the mixture. After 2-hour, water (15 mL) was added and the aqueous layer was extracted with ethyl acetate (3 x 15 mL). The combined organic layers were dried over magnesium sulfate, filtered and concentrated. The product was purified by flash column chromatography (*n*-pentane: ethyl acetate = 20:1) to afford the desired product **5** as a colorless oil in 61% yield (61.2 mg).

2,2'-(3,3,4,4,5,5,6,6,6-nonafluorohexane-1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2dioxaborolane) (5)

Bpin C₄F₉ Bpin

Known compound⁶.

¹H NMR (500 MHz, Chloroform-*d*) δ 2.42 – 2.29 (m, 2H), 1.22 (d, *J* = 6.1 Hz, 24H), 1.05 (t, *J* = 7.3 Hz, 1H).

¹⁹F NMR (471 MHz, Chloroform-*d*) δ -80.98 (t, J = 9.9 Hz), -114.84 - -115.03 (m), -

124.40 - -124.54 (m), -125.85 - -125.99 (m).

¹³C NMR (126 MHz, Chloroform-*d*) δ 83.7, 27.3 (t, *J* = 22.3 Hz), 24.8, 24.5.

¹¹B NMR (128 MHz, Chloroform-d) δ 33.1.

HRMS (ESI) calcd for C₁₈H₂₈B₂F₉O₄ (M+H⁺): 501.2025, found: 501.2021.

$$C_{4}F_{9} \xrightarrow{\text{Bpin}} \xrightarrow{\text{KHF}_{2} \text{ aq.}} C_{4}F_{9} \xrightarrow{\text{BF}_{3}K} C_{4}F_{9} \xrightarrow{\text{BF}_{3}K}$$

The potassium α -iodidetrifluoroborate **6** is prepared according to the reference⁷.

 α -haloboronates **3a** (400 mg, 0.8 mmol) was dissolved in acetonitrile (5 mL) and saturated aqueous potassium hydrogenfluoride solution (0.90 mL, 4.1 mmol, 4.5 M) was added. The reaction mixture was stirred at room temperature for 3 hours, concentrated, azeotroped with methanol and placed on the vacuum overnight. The crude product was dissolved in acetone, filtered and concentrated. The resulting crude product was washed with n-pentane several times to give the desired product **6** (375 mg, 98% yield) as a white solid.

potassium trifluoro(3,3,4,4,5,5,6,6,6-nonafluoro-1-iodohexyl)borate (6)

¹H NMR (500 MHz, Acetonitrile- d_3) δ 2.92 (s, 1H), 2.81 – 2.63 (m, 5H), 2.50 – 2.30 (m, 1H).

¹⁹F NMR (471 MHz, Acetonitrile-*d*₃) δ -81.82 (t, J = 10.4 Hz), -114.03 - -117.09 (m), -125.15. - -125.47 (m). -125.64 - -127.20 (m), -149.46 - -149.99 (m). ¹³C NMR (126 MHz, Acetonitrile-*d*₃) δ 36.7 (t, J = 21.1 Hz).

¹¹B NMR (128 MHz, Acetonitrile- d_3) δ 3.0.

HRMS (ESI) calcd for C₆H₃BF₁₂I (M-K⁺)⁻: 440.9186, found: 440.9184.

$$C_{4}F_{9}I + \swarrow Bpin \xrightarrow{KOAc (2 equiv)} C_{4}F_{9} \xrightarrow{OMe} C_{4}F_{9} \xrightarrow{OMe} Bpin$$
1a 2a rt, 24 h 7

In air, a 25 mL Schlenk tube was charged with KOAc (0.6 mmol, 59 mg, 2.0 equiv). The tube was evacuated and filled with Argon for three cycles. Then, methanol (2 mL), Vinyl borate pinacol ester (**2a**) (0.3 mmol, 105 μ L, 1.0 equiv), Perfluoroiodobutane (**1a**) (105 μ L, 0.6 mmol, 2.0 equiv) were added to the tube at room temperature. The reaction was allowed to stir under Blue LEDs irradiation at room temperature. After 24 hours, the crude reaction mixture was concentrated in vacuo and purified by column

chromatography (*n*-pentane: ethyl acetate = 20:1) to afford the desired product 7 as a colorless oil in 79% yield (95.6 mg).

4,4,5,5-tetramethyl-2-(3,3,4,4,5,5,6,6,6-nonafluoro-1-methoxyhexyl)-1,3,2-

dioxaborolane (7)

¹H NMR (500 MHz, Chloroform-*d*) δ 3.45 (t, *J* = 5.9 Hz, 1H), 3.38 (s, 3H), 2.60 -

2.31 (m, 2H), 1.28 (s, 12H).

¹⁹F NMR (471 MHz, Chloroform-*d*) δ -80.95 (t, J = 10.1 Hz), -111.32 - -113.57 (m),

-124.49 - -124.67 (m), -125.75 - -125.93 (m).

¹³C NMR (126 MHz, Chloroform-*d*) δ 84.5, 58.3, 31.5 (t, *J* = 21.5 Hz), 24.7, 24.6.

¹¹B NMR (128 MHz, Chloroform-*d*) δ 32.1.

HRMS (ESI) calcd for C₁₃H₁₉BF₉O₃ (M+H⁺): 405.1278, found: 405.1278.

Method A

$$C_4F_9$$
 H_{Bpin} + RM^+ $\frac{18 \text{-crown-6, MeCN}}{70 \, {}^{\circ}\text{C}, 18 \, \text{h}}$ C_4F_9 H_{Bpin}
3a 8

In air, a 25 mL schlenk tube was charged with potassium benzoate (0.4 mmol, 2.0 equiv), 18-crown-6 (0.2 mmol, 1.0 equiv). The tube was evacuated and filled with Argon for three cycles. Then, MeCN (2 mL), α -haloboronate **3a** was added to the tube at room temperature. The reaction mixture was vigorously stirred at 70 °C until the reaction was complete as monitored by TLC analysis (18 h). the crude reaction mixture was concentrated in vacuo and purified by column chromatography to afford the desired product.

Method B

In air, a 25 mL schlenk tube was charged with sodiumthiophenate (0.24 mmol, 1.2

equiv), The tube was evacuated and filled with Argon for three cycles. Then, DMF (2 mL), α -haloboronate **3a** was added to the tube at room temperature. The reaction mixture was vigorously stirred at 60 °C until the reaction was complete as monitored by TLC analysis (1 h). The reaction mixture was quenched with water and extracted with EtOAc. The combined organic layers were concentrated in vacuo and purified by column chromatography to afford the desired product.

4,4,5,5-tetramethyl-2-(3,3,4,4,5,5,6,6,6-nonafluoro-1-(phenylthio)hexyl)-1,3,2dioxaborolane (8a)

This compound was synthesized according to the Method B, Yellow liquid, Flash column chromatography conditions: *n*-pentane: ethyl acetate = 50:1; Yield: 63.5 mg (66%);

¹H NMR (500 MHz, Chloroform-*d*) δ 7.43 – 7.38 (m, 6H), 7.33 – 7.28 (m, 6H), 7.26 – 7.22 (m, 3H), 3.01 (dd, *J* = 11.5, 3.3 Hz, 3H), 2.73 – 2.57 (m, 1H), 2.46 – 2.32 (m, 1H), 1.23 (d, *J* = 10.4 Hz, 38H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 134.4, 130.6, 129.1, 127.1, 84.5, 33.3 (t, *J* =

¹⁹F NMR (471 MHz, Chloroform-*d*) δ -80.95 (t, J = 10.8 Hz), -111.73 - -114.16 (m),

-124.33 - -124.50 (m), -125.83 - -125.99 (m).

¹¹B NMR (128 MHz, Chloroform-*d*) δ 32.1.

HRMS (ESI) calcd for C₁₈H₂₁BF₉O₂S (M+H⁺): 483.1206, found: 483.1201.

3,3,4,4,5,5,6,6,6-nonafluoro-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl acrylate (8b)

This compound was synthesized according to the Method A, Colourless liquid, Flash column chromatography conditions: *n*-pentane: ethyl acetate = 50:1; Yield: 71.6 mg (81%);

¹H NMR (400 MHz, Chloroform-*d*) δ 6.48 (d, J = 17.3 Hz, 1H), 6.15 (ddd, J = 17.4, 10.5, 1.8 Hz, 1H), 5.93 (d, J = 10.4 Hz, 1H), 4.38 (dt, J = 9.7, 2.6 Hz, 1H), 2.69 – 2.36 (m, 2H), 1.26 (s, 12H).

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -81.03 (t, J = 9.8 Hz), -111.68 - -115.03 (m), -

124.33 - -124.60 (m), -125.85 - -126.07 (m).

¹³C NMR (126 MHz, Chloroform-*d*) δ 168.3, 132.8, 126.7, 84.1, 31.5 (t, *J* = 21.3 Hz), 24.7, 24.6.

¹¹B NMR (128 MHz, Chloroform-*d*) δ 28.9.

HRMS (ESI) calcd for C₁₅H₁₉BF₉O₄ (M+H⁺): 445.1227, found: 445.1222.

3,3,4,4,5,5,6,6,6-nonafluoro-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl 2-chloro-6-((4,6-dimethoxypyrimidin-2-yl)thio)benzoate (8c)

This compound was synthesized according to the Method A, Yellow liquid, Flash column chromatography conditions: *n*-pentane: ethyl acetate = 50:1; Yield: 66.2 mg (49%);

¹H NMR (500 MHz, Chloroform-*d*) δ 7.60 (dd, J = 7.7, 1.1 Hz, 1H), 7.46 (dd, J = 8.2,

1.1 Hz, 1H), 7.38 (t, J = 7.9 Hz, 1H), 5.69 (s, 1H), 4.57 (dd, J = 8.0, 4.7 Hz, 1H), 3.69

(s, 6H), 2.66 – 2.44 (m, 2H), 1.25 (d, *J* = 5.1 Hz, 12H).

¹⁹F NMR (471 MHz, Chloroform-*d*) δ -80.96 (t, *J* = 9.7 Hz), -112.48 - -114.39 (m), -

124.34 - -124.49 (m), -125.85 - -125.99 (m),

¹³C NMR (126 MHz, Chloroform-*d*) δ 170.8, 169.2, 166.5, 138.1, 136.1, 131.4, 130.4, 130.2, 129.3, 86.4, 84.6, 53.9, 31.5 (t, *J* = 21.7 Hz), 24.6.

¹¹B NMR (128 MHz, Chloroform-*d*) δ 33.4.

HRMS (ESI) calcd for C₂₅H₂₆BClF₉N₂O₆S (M+H⁺): 699.1144, found: 699.1140.

5. Mechanism studies

5.1. Radical inhibition experiment with TEMPO

In air, a 25 mL schlenk tube was charged with KOAc (3 mg, 0.03 mmol, 10 mol%) and TEMPO (188 mg, 1.2 mmol, 4.0 equiv). The tube was evacuated and filled with Argon for three cycles. Then, 1,1-Dichloroethane (2 mL), Vinyl borate pinacol ester (**2a**) (52 μ L, 0.3 mmol, 1.0 equiv), Ethyl iododifluoroacetate (**1v**) (88 μ L, 0.6 mmol, 2.0 equiv) were added to the tube at room temperature. The reaction was allowed to stir under Blue LEDs irradiation at room temperature. After 24 hours, the crude reaction mixture was concentrated in vacuo and purified by column chromatography (*n*-pentane: ethyl acetate = 30:1) to afford the TEMPO-CF₂COOEt Adduct **9** (44 mg, 52% yield). as colorless liquid.

known compound⁸.

¹H NMR (400 MHz, Chloroform-*d*) δ 4.35 (q, *J* = 7.1 Hz, 2H), 1.64 – 1.50 (m, 5H),

1.37 (t, *J* = 7.2 Hz, 4H), 1.21 – 1.13 (m, 12H).

¹⁹F NMR (376 MHz, Chloroform-d) δ -73.45.

¹³C NMR (101 MHz, Chloroform-*d*) δ 160.7 (t, *J* = 42.6 Hz), 115.5 (t, *J* = 271.5 Hz),
63.0, 61.4, 40.2, 33.4 (t, *J* = 4.4 Hz), 20.7, 16.9, 13.9.

5.2. Radical clock experiments

In air, a 25 mL schlenk tube was charged with KOAc (3 mg, 0.03 mmol, 10 mol%). The tube was evacuated and filled with Argon for three cycles. Then, 1,1-Dichloroethane (2 mL), Alkenyl borate 10 (0.3 mmol, 1.0 equiv), Ethyl iododifluoroacetate (**1v**) (88 μ L, 0.6 mmol, 2.0 equiv) were added to the tube at room temperature. The reaction was allowed to stir under 5 W Blue LEDs irradiation at room temperature. After 24 hours, the crude reaction mixture was concentrated in vacuo and purified by column chromatography (*n*-pentane: ethyl acetate = 30:1) to afford the open ring product **11** (92 mg, 69% yield) as colorless liquid, no unopened products are detected.

¹H NMR (500 MHz, Chloroform-*d*) δ 6.45 (t, *J* = 7.1 Hz, 1H), 4.29 (q, *J* = 7.1 Hz, 2H), 3.15 (t, *J* = 7.3 Hz, 2H), 2.94 (t, *J* = 17.3 Hz, 2H), 2.79 (q, *J* = 7.3 Hz, 2H), 1.35 (t, *J* = 7.2 Hz, 3H), 1.24 (s, 12H).

¹⁹F NMR (471 MHz, Chloroform-*d*) δ -104.28.

¹³C NMR (126 MHz, Chloroform-*d*) δ 164.1 (t, *J* = 32.8 Hz), 149.3, 115.3 (t, *J* =

251.4 Hz), 83.8, 62.7, 33.4 (t, *J* = 23.8 Hz), 33.4, 24.6, 13.9, 2.7.

¹¹B NMR (128 MHz, Chloroform-*d*) δ 29.7.

HRMS (ESI) calcd for C₁₅H₂₅BF₂IO₄ (M+H⁺): 445.0853, found: 445.0852.

¹H NMR (500 MHz, Chloroform-d) δ 6.15 (t, *J* = 7.4 Hz, 1H), 4.28 (q, *J* = 7.1 Hz, 2H), 3.14 (t, *J* = 7.1 Hz, 2H), 3.00 – 2.81 (m, 4H), 1.33 (t, *J* = 7.1 Hz, 3H), 1.25 (s, 12H).

¹³C NMR (126 MHz, Chloroform-d) δ 164.1 (t, J = 32.9 Hz), 150.8, 115.6 (t, J =

251.3 Hz), 83.6, 62.6, 40.6 (t, *J* = 23.0 Hz), 34.7, 24.7, 14.0, 5.27.

 ^{19}F NMR (471 MHz, Chloroform-d) δ -104.54.

¹¹B NMR (128 MHz, Chloroform-d) δ 29.69.

HRMS (ESI) calcd for C₁₅H₂₅BF₂IO₄ (M+H⁺): 445.0853, found: 445.0852.

5.3. UV-vis spectroscopic measurement

UV/vis absorption spectra were recorded in 1 cm path quartz cuvettes using Hitachi UH4150 UV/Vis spectrometer, pure DCE as blank sample.

Solution 1: Vinyl borate pinacol ester (53 μ L, 0.3 mmol) was dissolved in DCE (2.0 mL).

Solution 2: Vinyl borate pinacol ester (53 μ L, 0.3 mmol) and KOAc (3 mg, 0.03 mmol) was dissolved in DCE (2.0 mL). The mixtures were stirred for two minutes, filtered before use.

Solution 3: Vinyl borate pinacol ester (53 μ L, 0.3 mmol) and perfluoroiodobutane (0.6 mmol, 105 μ L, 2.0 equiv) was dissolved in DCE (2.0 mL). The mixtures were stirred for two minutes, filtered before use.

Solution 4: Vinyl borate pinacol ester (53 μ L, 0.3 mmol), perfluoroiodobutane (0.6 mmol, 105 μ L, 2.0 equiv) and KOAc (3 mg, 0.03 mmol) was dissolved in DCE (2.0 mL). The mixtures were stirred for two minutes, filtered before use.

5.4. Comparative Experiment

$$C_{4}F_{9}I + \swarrow Bpin \xrightarrow{Black light (360 nm)}{MeCN, 4 h, rt} C_{4}F_{9} \xrightarrow{I} Bpin$$
1a 2a 3a, 17%

In air, a 25 mL schlenk tube was evacuated and filled with argon for three cycles. Then, MeCN (0.5 mL), vinyl borate pinacol ester (**2a**) (0.5 mmol, 86 μ L, 1.0 equiv), perfluoroiodobutane (**1a**) (0.75 mmol, 129 μ L, 1.5 equiv) were added to the tube at room temperature. The reaction was allowed to stir under Black light (360 nm) irradiation at room temperature. After 4 hours, the yield is 17% after GC detection (dodecane as internal standard).

In air, a 25 mL schlenk tube was charged with KOAc (0.05 mmol, 5 mg, 10 mol%). The tube was evacuated and filled with Argon for three cycles. Then, MeCN (2 mL), vinyl borate pinacol ester (**2a**) (0.5 mmol, 86 μ L, 1.0 equiv) and perfluoroiodobutane (**1a**) (0.75 mmol, 129 μ L, 1.5 equiv) were added to the tube at room temperature. The reaction was allowed to stir under Black light (360 nm) irradiation at room temperature. After 4 hours, the yield is 47% after GC detection (dodecane as internal standard).

In air, a 25 mL schlenk tube was charged with Potassium vinyl trifluoroborate (**2b**) (0.03 mmol, 40 mg, 1.0 equiv). The tube was evacuated and filled with argon for three cycles. Then, DCE (2 mL) and *i*-C₃F₇I (**1h**) (0.6 mmol, 81 μ L, 2.0 equiv) were added to the tube at room temperature. The reaction was allowed to stir under 5 W Blue LEDs

irradiation at room temperature. After 24 hours, trifluoromethoxybenzene (0.3 mmol, 40 μ L, 1.0 equiv) was added as an internal standard, and the NMR spectrum was measured, but the target product was not obtained.

In air, a 25 mL schlenk tube was charged with potassium vinyl trifluoroborate (2b) (0.03 mmol, 40 mg, 1.0 equiv). The tube was evacuated and filled with argon for three cycles. Then, DCE (1 mL), MeCN (1 ml) and i-C₃F₇I (1h) (0.6 mmol, 81 μ L, 2.0 equiv) were added to the tube at room temperature. The reaction was allowed to stir under 5 W Blue **LEDs** irradiation temperature. After 24 at room hours. trifluoromethoxybenzene (0.3 mmol, 40 µL, 1.0 equiv) was added as an internal standard, and the NMR spectrum yield is 63%.

5.5. Comparison with or without KOAc

Yields were determined by GC using dodecane as internal standard.

5.6. Catalyst cycle experiment

$$C_{4}F_{9}I + \swarrow Bpin \qquad \frac{KOAc (10 \text{ mol}\%)}{5 \text{ W Blue LEDs}} \xrightarrow{\begin{array}{c} \textbf{1a} (0.3 \text{ mmoi}) \\ \textbf{2a} (0.6 \text{ mmol}) \\ 5 \text{ W Blue LEDs} \\ DCE, \text{ Ar, rt,} \end{array}} \xrightarrow{\begin{array}{c} \textbf{1a} (0.3 \text{ mmoi}) \\ \textbf{2a} (0.6 \text{ mmol}) \\ 5 \text{ W Blue LEDs} \\ DCE, \text{ Ar, rt,} \end{array}} \xrightarrow{\begin{array}{c} \textbf{C}_{4}F_{9} \\ \textbf{Bpin} \\ \textbf{3a}, 70\% \text{ (total yield)} \end{array}}$$

In air, a 25 mL schlenk tube was charged with KOAc (0.03 mmol, 3 mg, 10 mol%). The tube was evacuated and filled with Argon for three cycles. Then, DCE (2 mL), vinyl borate pinacol ester (**2a**) (0.3 mmol, 52 μ L, 1.0 equiv) and perfluoroiodobutane (**1a**) (105 μ L, 2.0 equiv) were added to the tube at room temperature. The reaction was allowed to stir under 5 W Blue LEDs irradiation at room temperature. After 24 hours, under argon atmosphere, add the same proportions of vinyl borate pinacol ester (**2a**) (0.3 mmol, 52 μ L, 1.0 equiv), perfluoroiodobutane (**1a**) (105 μ L, 2.0 equiv) and DCE (2 ml). After continuing the reaction for 24 hours, the total yield is 70% after GC detection.

6. Unsuccessful examples

7. References

1. Rong, J.; Deng, L.; Tan, P.; Ni, C.; Gu, Y.; Hu, J., *Angew. Chem., Int. Ed.* 2016, 55, 2743-2747.

2. Wang, X.; Liu, G.; Xu, X.-H.; Shibata, N.; Tokunaga, E.; Shibata, N., *Angew. Chem., Int. Ed.* 2014, **53**, 1827-1831.

3. Korzynski, M. D.; Borys, K. M.; Bialek, J.; Ochal, Z., *Tetrahedron Letters* 2014, 55, 745-748.

4. Jagannathan, S.; Forsyth, T. P.; Kettner, C. A., J. Org. Chem 2001, 66, 6375-6380.

5. Cheng, Y.; Mück-Lichtenfeld, C.; Studer, A., Angew. Chem., Int. Ed. 2018, 57, 16832-16836.

 Zhao, B.; Li, Z.; Wu, Y.; Wang, Y.; Qian, J.; Yuan, Y.; Shi, Z., Angew. Chem., Int. Ed. 2019, 58, 9448-9452.

7. Cheng, Y.; Muck-Lichtenfeld, C.; Studer, A., J. Am. Chem. Soc. 2018, 140, 6221-6225.

8. Nie, X.; Cheng, C.; Zhu, G. Angew. Chem., Int. Ed. 2017, 56, 1898.

8. Crystal data and structure refinement for 3m (CCDC 2058412)

Bond precision:	C-C = 0.0060 A	Wavelength=0.71073		
Cell:	a=21.746(5)	b=10.386(3)	c=17.254(4)	
	alpha=90	beta=90	gamma=90	
Temperature:	296 K			
	Calculated		Reported	
Volume	3896.9(17)		3896.9(17)	
Space group	Pbcn		P b c n	
Hall group	-P 2n 2ab		-P 2n 2ab	
Moiety formula	C15 H20 B F	2 I O4 S	C15 H20 B F2 I O4 S	
Sum formula	C15 H20 B F	2 I O4 S	C15 H20 B F2 I O4 S	
Mr	472.08		472.08	
Dx,g cm-3	1.609		1.609	
Z	8		8	
Mu (mm-1)	1.783		1.783	
F000	1872.0		1872.0	
F000'	1870.15			
h,k,lmax	24,11,19		24,11,19	
Nref	2995		2994	
Tmin,Tmax	0.807,0.899		0.654,0.745	
Tmin'	0.807			
Correction metho	od=# Reported T Lim	its: Tmin=0.654	Tmax=0.745	
AbsCorr = MUL	TI-SCAN			
Data completene	Data completeness= 1.000 Theta(max)= 23.814		314	
R(reflections)=0	(reflections)= 0.0276(2446) wR2(reflections)= 0.0699(2994)			
S = 1.025		Npar= 221		
9. Copies of NMR spectra of all new compounds

f1 (ppm)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

fl (ppm)

--80.84 --80.86 --80.86 --80.86 --113.91 --113.97 --114.05 --114.18 --114.26 --114.26 --114.28 --114.28 --114.28 --114.28 --114.28 --114.28 --114.28 --114.28 --121.89 --121.85 --126.16 --126.1

¹⁹F NMR (471 MHz, CDCl₃)

45.69 45.66 45.66 45.66 45.66 45.66 45.66 45.64 45.60 45.64 45.60 45.64 45.60 45.64 45.60 45.64 45.60 45.64

3I ¹⁹F NMR (471 MHz, CDCl₃)

3o ¹H NMR (500 MHz, CDCl₃)

30 ¹³C NMR (126 MHz, CDCl₃)

¹⁹F NMR (376 MHz, CDCl₃)

1 1 1

3p ¹H NMR (500 MHz, CDCl₃)

60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 f1 (ppm)

3s ¹³C NMR (126 MHz, CDCl₃)

3t ¹H NMR (500 MHz, CDCl₃)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹⁹F NMR (376 MHz, CDCl₃)

¹⁹F NMR (376 MHz, CDCl₃)

| | //

¹H NMR (600 MHz, CDCl₃)

90 80 70 60 50 40 30

20

10 0

200 190 180 170 160 150 140 130 120 110 100 fl (ppm)

 $\left\{\begin{array}{c} 36.91\\ 36.74\\ 36.57\\ -1.32\end{array}\right.$

