Supplementary Information

Copper-Catalyzed Enantioselective Arylboronation of Activated Alkenes leading to Chiral 3,3'-Disubstituted Oxindoles

Jiangfei Chen, Jin-Heng Li,* Yan-Ping Zhu* and Qiu-An Wang*

State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China,
 School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education,
 Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of
 Shandong, Yantai University, Shandong, Yantai, 264005, China, Key Laboratory of Jiangxi Province for
 Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China,
 and State Key Laboratory of Applied Organic Chemistry Lanzhou University, Lanzhou 730000, China

E-mail: jhli@hnu.edu.cn, chemzyp@foxmail.com, wangqa@hnu.edu.cn

List of Contents

- (A) Typical Experimental Procedure
- (B) Analytical data
- (C) NMR Spectra
- (D) The X-ray Single-Crystal Diffraction Analysis of 3x

(E) References

(A) Typical Experimental Procedure

(a) General

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded on a Bruker 500 (500, 125, and 471 MHz) and advance spectrometer at room temperature in CDCl₃ (solvent signals, δ 7.26 and 77.0 ppm) using TMS as internal standard. High-resolution mass spectra (HRMS) was recorded on an electrospray ionization (ESI) apparatus using time-of-flight (TOF) mass spectrometry. Melting Points were recorded on Hanon MP100 Apparatus. All the susbtrates **1** were prepared according to the known procedures.¹ Unless otherwise noted, all reactions were carried out using standard Schlenk techniques, and the starting materials and solvents were commercially available and were used without further purification. Column chromatography was performed on silica gel (200-300 mesh) using petroleum ether (PE)/ethyl acetate (EA).

(b) General procedure for synthesis of compounds 3.

To a Schlenk tube were added *N*-(2-iodophenyl)-*N*-methyl-2-methylacrylamide **1a** (0.1 mmol), B_2pin_2 **2a** (1.5 equiv), AcOCu (10 mol %), Ligand **L1** (15 mol%), 'BuOK (1.5 equiv.), and Toluene/CPME (1:2) (1.0 mL). Then the tube is evacuated briefly under high vacuum and charged with argon through using standard Schlenk techniques; this process is repeated three times. The reaction mixture was stirred at 50 °C for 16 h. The reaction was quenched with water and extracted with ethyl acetate. The organic layer was washed with saturated NaCl solution, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The resulting residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate) to afford the desired product **3a**.

(c) Screening of reaction conditions

Table S1 Screening of optimal reaction conditions^a

Entry	Variation from the standard conditions	Isolated yield (%)	er (%)
1	none	62	92:8
2	without CuOAc	0	
3	without ^t BuOK	trace	
4	CuCl instead of CuOAc	35	86:14
5	CuCN instead of CuOAc	33	88:12
6	CuTc instead of CuOAc	40	82:18
7	$Cu(CH_3CN)_4BF_4$ instead of CuOAc	42	88:12
8	Cu(OAc) ₂ instead of CuOAc	41	91:9
9	CPME instead of toluene/CPME	46	92:8
10	toluene instead of toluene/CPME	66	90:10
11	dioxane instead of toluene/CPME	0	
12	^t BuOLi instead of ^t BuOK	55	89:11
13	^t BuONa instead of ^t BuOK	58	88:12
14	MeONa instead of ^t BuOK	32	89:11
15	NaOH instead of ^t BuOK	46	88:12
16	Cs ₂ CO ₃ instead of ^t BuOK	0	
17	at 40 °C	34	92:8
18	at 60 °C	66	90:10
19	L2 instead of L1	55	87:13
20	L3 instead of L1	68	89:11
21	L4 instead of L1	64	87:13
22	L5 instead of L1	trace	
23	L6 instead of L1	50	86:14
24	L7 instead of L1	63	89:11
25	L8 instead of L1	45	63:37
26	L9 instead of L1	56	87:13
27	L10 instead of L1	22	76:24
28	L11 instead of L1	63	73:27

29	L12 instead of L1	48	67:33
30	L13 instead of L1	60	89:11
31	L14 instead of L1	50	23:77
32	L15 instead of L1	50	51:49
33	L16 instead of L1	72	89:11

^{*a*} Standard reaction conditions: **1a** (0.1 mmol), **2a** (1.5 equiv), CuOAc (10 mol%), **L1** (15 mol%), ^{*t*}BuOK (1.5 equiv), anhydrous Toluene/CPME (1:2; 1.0 mL), 50 °C and 16 h. Methoxycyclopentane = CPME.

(d) Synthesis of compounds 1e, 1y and 1z.

Step 1: The substrate **A** (2.65 g, 9.2 mmol, 1.0 equiv), paraformaldehyde (4.3 g, 5.0 equiv), DABCO (1.0 g, 1.0 equiv) and BnOH (50 uL, 0.25 equiv) in *t*-BuOH (3 mL) / H₂O (12 mL) was stirred at 60 °C overnight. After the reaction was completed (monitored by TLC), the mixture was quenched with saturated brine and extracted with EtOAc (50 mL \times 3). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 2/1) to give the desired products **B** (0.94 g, 29% yield) and **C** (1.16 g, 40% yield).

Step 2: The substrate **B** (0.88 g, 2.5 mmol, 1.0 equiv), was added to a solution of TBSCl (5 mmol, 0.75g) and imidazole (5 mmol, 340 mg) in dichloromethane(8 mL) at 0 °C. The reaction was warmed to room temperature and monitored by TLC. Upon completion the reaction was quenched with saturated NH₄Cl and extracted with ether (3×5 mL). The combined organics were washed with brine, dried over Na₂SO₄ and

concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 10/1) to give the desired product **1e** (1.03g, 90% yield).

Preparation of **1y-1z**:

Step 3: To a solution of **C** (3.6 mmol) in DMF (2.0 mL)/Et₂O (1.0 mL) was added PBr₃ (0.17 mL, 0.5 equiv) dropwise at 0 °C. The mixture was stirred at room 10 mL) to the reaction mixture, the aqueous phase was further extracted with EtOAc (10 mL×3). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 8/1) to get **D**.

Step 4: Estrone (1 mmol) was added to a solution of **D** (1 mmol) and K₂CO₃ (2 mmol) in acetone 10 mL at 60 °C. The reaction was stirring for overnight and monitored by TLC. Upon completion the reaction was quenched with water and concentration, which was extracted with ethyl acetate (3×10 mL). The combined organics were washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 10/1) to give the desired product **1**y.

Step 5: Cholesterol (1 mmol) was slowly added to a solution of NaH (2 mmol) in THF 10 mL at 0 °C, and stirring for 30 mins at room temperature, **D** was also added at 0°C, the reaction was stirring for overnight and monitored by TLC. Upon completion the reaction was quenched with water and extracted with ethyl acetate (3×10 mL). The combined organics were washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 10/1) to give the desired product **1z**.

(e) Ligands synthesis:

L5, L7, L9, L10, L11, L14 were commercial available, and the ligands synthesis were proceed as follows:

(*R*)-4-cyclohexyl-2-(pyridin-2-yl)-4,5-dihydrooxazole (L1):

White solid, mp 128.9-129.9 °C; Preparation of ⁵⁻ $^{CF}_{3}$ PyOx^{*c*-hex} (*R*)-L1: D-valinol (1.55 g, 15 mmol) was added to a mixture of 5-(trifluoromethyl)picolinonitrile (1.72 g, 10 mmol) and Zn(OTf)₂ (363.5 mg, 5mmol) in

toluene (20 mL). The solution was stirred under refluxing for 5 h, and then toluene

was removed in vacuum. The residue was purified by flash column chromatography with PE/EtOAc (v/v 2:1) to give the title compound as white solid (1.3 g, 44%). Optical Rotation: $[\alpha]_D^{20} = +23.6$ (c = 0.3, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 8.95 (s, 1H), 8.18 (d, J = 8.0 Hz, 1H), 8.01 (dd, J = 8.0 Hz, J = 1.5 Hz, 1H) 4.53 (dd, J = 9.5 Hz, J = 8.0 Hz, 1H), 4.27 (t, J = 8.5 Hz, 1H), 4.21-4.16(m, 1H), 2.01-1.98 (m, 1H), 1.79-1.74 (m, 2H), 1.70-1.67 (m, 1H), 1.61-1.54 (m, 2H), 1.28-1.98 (m, 3H), 1.13-1.05 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 161.4, 150.0, 146.6, 146.5, 133.9, 123.6, 76.7, 72.3, 71.3, 42.7, 29.5, 28.9, 26.4, 26.0. ¹⁹F NMR (471 MHz, CDCl₃) δ - 62.6. HRMS-ESI, m/z calcd. for C₁₅H₁₇F₃N₂O [M+H]⁺298.1293; found: 298.1295.

(*R*)-4-isopropyl-2-(3-methylpyridin-2-yl)-4,5-dihydrooxazole (L2):

White solid, mp 81.2-82.2 °C; Preparation of ^{3-Me}PyOx^{*i*Pr} (*R*)-L2: D-valinol (1.55 g, 15 mmol) was added to a mixture of 3- methylpicolinonitrile (1.18 g, 10 mmol) and Zn(OTf)₂ (363.5 mg,

5mmol) in toluene (20 mL). The solution was stirred under refluxing for 5 h, and then toluene was removed in vacuum. The residue was purified by flash column chromatography with PE/EtOAc (v/v 2:1) to give the title compound as white solid (1.1 g, 54%). Optical Rotation: $[\alpha]_D{}^{20} = +59.9$ (c = 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 8.50 (dd, *J* = 4.5 Hz, *J* =1.0 Hz, 1H), 7.56 (dd, *J* = 7.5 Hz, *J* =1.0 Hz, 1H), 7.24 (dd, *J* = 7.5 Hz, *J* = 4.5 Hz, 1H), 4.43 (dd, *J* = 9.5 Hz, *J* = 7.5 Hz, 1H), 4.20-4.11 (m, 1H), 2.60 (s, 3H), 1.88-1.83 (m, 1H), 1.04 (d, *J* = 6.5 Hz, 3H), 0.95 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 162.2, 146.7, 145.8, 139.1, 134.9, 124.6, 73.5, 69.7, 32.9, 20.5, 18.9, 18.4. HRMS-ESI, m/z calcd. for C₁₂H₁₆N₂O [M+H]⁺204.1263; found: 204.1263.

(*R*)-4-isopropyl-2-(4-methylpyridin-2-yl)-4,5-dihydrooxazole (L3):

Yellow oil. Preparation of ^{4-Me}PyOx^{*i*Pr}(R)-L3: D-valinol (1.55 g, 15 mmol) was added to a mixture of 4-methylpicolinonitrile (1.18 g, 10 mmol) and Zn(OTf)₂ (363.5 mg, 5mmol) in toluene (20 mL). The solution was stirred under refluxing for 5 h, and

then toluene was removed in vacuum. The residue was purified by flash column chromatography with PE/EtOAc (v/v 2:1) to give the title compound as white solid (1.3 g, 64%). Optical Rotation: $[\alpha]_D^{20} = +167$ (c = 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 8.48 (d, *J* = 5.0 Hz, 1H), 7.84(s, 1H), 7.13-7.12 (m, 1H), 4.43 (dd, *J* = 9.5 Hz, *J* = 8.0 Hz, 1H), 4.16-4.06 (m, 2H), 2.33 (s, 3H), 1.87-1.79 (m, 1H), 0.99 (d, *J* =

7.0 Hz, 3H), 0.88 (d, J = 6.5 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 162.6, 149.3, 147.7, 146.5, 126.2, 124.6, 72.7, 70.5, 32.5, 20.8, 18.9, 18.0. HRMS-ESI, m/z calcd. for C₁₂H₁₆N₂O [M+H]⁺204.1263; found: 204.1265.

(R)-4-isopropyl-2-(5-methylpyridin-2-yl)-4,5-dihydrooxazole (L4):

White solid, mp 80.8-81.8 °C; Preparation of ${}^{5-Me}$ PyOx ${}^{iPr}(R)$ -L4: D-valinol (1.55 g, 15 mmol) was added to a mixture of 5methylpicolinonitrile (1.18 g, 10 mmol) and Zn(OTf)₂ (363.5

mg, 5mmol) in toluene (20 mL). The solution was stirred under refluxing for 5 h, and then toluene was removed in vacuum. The residue was purified by flash column chromatography with PE/EtOAc (v/v 2:1) to give the title compound as white solid (0.95 g, 46%). Optical Rotation: $[\alpha]_D{}^{20} = +108.3$ (c = 0.3, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 8.50 (d, *J* = 5.0 Hz, 1H), 7.93 (d, *J* = 8.0 Hz, 1H), 7.55 (dd, *J* = 8.0 Hz, J = 1.5 Hz, 1H), 4.47 (dd, *J* = 9.0 Hz, *J* = 8.0 Hz, 1H), 4.20-4.12 (m, 2H), 2.37 (s, 3H), 1.91-1.85 (m, 1H), 1.03 (d, *J* = 7.0 Hz, 3H), 0.92 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 162.6, 150.1, 144.2, 136.9, 135.5, 123.4, 72.8, 70.6, 32.7, 19.0, 18.5, 18.1. HRMS-ESI, m/z calcd. for C₁₂H₁₆N₂O [M+H]⁺204.1263; found: 204.1263.

(R)-4-isopropyl-2-(4-(trifluoromethyl)pyridin-2-yl)-4,5-dihydrooxazole (L6):

Yellow solid, mp 81.0-82.2 °C; Preparation of $^{4-CF}_{3}$ PyOx^{*i*Pr} (*R*)-L6: D-valinol (1.55 g, 15 mmol) was added to a mixture of 4-(trifluoromethyl)picolinonitrile (1.72 g, 10 mmol) and Zn(OTf)₂ (363.5 mg, 5mmol) in toluene (20 mL). The

solution was stirred under refluxing for 5 h, and then toluene was removed in vacuum. The residue was purified by flash column chromatography with PE/EtOAc (v/v 2:1) to give the title compound as yellow solid (1.0 g, 39%). Optical Rotation: $[α]_D^{20} = +89.2$ (c = 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 8.85 (d, *J* = 5.0 Hz, 1H), 8.25 (s,1H), 7.57 (d, *J* = 4.5 Hz, 1H), 4.51 (dd, *J* = 9.0 Hz, *J* = 8.0 Hz, 1H), 4.21 (t, *J* = 8.0 Hz, 1H), 4.18-4.14 (m, 1H), 1.89-1.84 (m, 1H), 1.02 (d, *J* = 7.0 Hz, 3H), 0.92 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 161.5, 150.6, 148.1, 139.2, 138.9, 123.5, 121.3, 120.8, 119.7, 119.6, 73.0, 71.0, 32.6, 18.8, 18.1. ¹⁹F NMR (471 MHz, CDCl₃) δ -64.9. HRMS-ESI, m/z calcd. for C₁₂H₁₃F₃N₂O [M+H]⁺258.0980; found: 258.0982.

(R)-4-propyl-2-(pyridin-2-yl)-4,5-dihydrooxazole (L8):

Yellow oil; Preparation of PyOx^{nPr} (*R*)-L8: D-Norvalinol (1.55 g, 15.0 mmol) was added to a mixture of 2-cyanopyridine (1.04 g, 10.0 mmol) and Zn(OTf)₂ (363.5 mg,

1.0 mmol) in toluene (20 mL). The solution was stirred under refluxing for 5 h, and then toluene was removed in vacuum. The residue was purified by flash column chromatography with PE/EtOAc (v/v 2:1) to give the title compound as yellow oil (1.2 g, 63%). Optical Rotation: $[\alpha]_D^{20} = +68.0$ (c = 0.3, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 8.65-8.62 (m, 1H), 7.97 (d, *J* = 7.5 Hz, 1H), 7.72-7.68 (m, 1H), 7.33-7.29 (m, 1H), 4.51 (dd, *J* = 9.5 Hz, *J* = 8.5 Hz, 1H), 4.32-4.25 (m, 1H), 4.05 (t, *J* = 8.5 Hz, 1H), 1.75 -1.68 (m, 1H), 1.54-1.40 (m, 1H), 1.38-1.33 (m, 1H), 0.91 (t, *J* =7.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 162.4, 149.5, 146.7, 136.4, 125.3, 123.7, 73.0, 66.7, 37.8, 19.0, 13.9. HRMS-ESI, m/z calcd. for C₁₁H₁₄N₂O [M+H]⁺ 190.1106; found: 190.1104.

(*R*)-4-benzhydryl-2-(pyridin-2-yl)-4,5-dihydrooxazole (L12):

White solid, mp 156.8-157.4 °C; Preparation of PyOx (*R*)-L12: (*R*)-Diphenylalaninol (3.4 g, 15.0 mmol) was added to a mixture of 2-cyanopyridine (1.04 g, 10.0 mmol) and $Zn(OTf)_2$ (363.5 mg, 1.0 mmol) in toluene (20 mL). The

solution was stirred under refluxing for 5 h, and then toluene was removed in vacuum. The residue was purified by flash column chromatography with PE/EtOAc (v/v 2:1) to give the title compound as white solid (2.0 g, 64%). Optical Rotation: $[\alpha]_D^{20} = +41.6$ (c = 0.2, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 8.67 (d, *J* = 4.0 Hz, 1H), 8.04 (d, *J* = 7.5 Hz, 1H), 7.76-7.72 (m, 1H), 7.39-7.35 (m, 3H), 7.32-7.28 (m, 6H), 7.23-7.20 (m, 2H), 5.20 (q, *J* = 9.5 Hz, 1H), 4.54(t, *J* = 9.5 Hz, 1H), 4.20 (t, *J* = 8.5 Hz, 1H), 4.11 (d, *J* = 9.5 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 163.3, 149.6, 136.5, 128.7, 128.6, 128.4, 126.8, 126.5, 125.5, 124.3, 72.0, 70.4, 58.9. HRMS-ESI, m/z calcd. for C₂₁H₁₈N₂O [M+H]⁺314.1419; found: 314.1421.

(*R*)-4-cyclohexyl-2-(pyridin-2-yl)-4,5-dihydrooxazole (L13):

White solid; Preparation of PyOx^{*c*-hex}(*R*)-L13: D-2-Amino-2cyclohexylethanol (2.1 g, 15.0 mmol) was added to a mixture of 2-cyanopyridine (1.04 g, 10.0 mmol) and $Zn(OTf)_2$ (363.5 mg,

1.0 mmol) in toluene (20 mL). The solution was stirred under refluxing for 5 h, and

then toluene was removed in vacuum. The residue was purified by flash column chromatography with PE/EtOAc (v/v 2:1) to give the title compound as white solid (1.2 g, 52%). ¹H NMR (500 MHz, CDCl₃) δ 8.70 (d, *J* = 4.5 Hz, 1H), 8.04 (d, *J* = 8.0 Hz, 1H), 7.78-7.74 (m, 1H), 7.39-7.35 (m, 1H), 4.49 (dd, *J* = 9.5 Hz, *J* = 8.5 Hz, 1H), 4.23 (t, *J* = 8.0 Hz,1H), 4.17-4.11 (m, 1H), 2.02-1.99 (d, *J* = 12.5 Hz, 1H), 1.77-1.73 (m, 2H), 1.69-1.66 (m, 2H), 1.63-1.60 (m, 1H), 1.59-1.55 (m, 1H), 1.27-1.19 (m, 3H), 1.17-1.02 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 162.4, 149.7, 146.9, 136.5, 125.4, 123.9, 72.1, 71.0, 42.7, 29.6, 28.8, 26.5, 26.0.

(*R*)-4-isopropyl-5,5-dimethyl-2-(pyridin-2-yl)-4,5-dihydrooxazole (L15):

White solid, mp 119.8-121.5 °C; Preparation of PyOx (R)-L15: (R)-Diphenylalaninol (3.4 g, 15.0 mmol) was added to a mixture of 2-cyanopyridine (1.04 g, 10.0 mmol) and Zn(OTf)₂ (363.5 mg,

1.0 mmol) in toluene (20 mL). The solution was stirred under refluxing for 5 h, and then toluene was removed in vacuum. The residue was purified by flash column chromatography with PE/EtOAc (v/v 2:1) to give the title compound as white solid (2.0 g, 64%). Optical Rotation: $[\alpha]_D^{20} = +26.1$ (c = 0.2, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 8.57 (d, *J* = 4.5 Hz, 1H), 8.20 (d, *J* = 8.0 Hz, 1H), 7.86-7.82 (m, 1H), 7.43-7.40 (m, 1H), 3.95 (dd, *J* =10.5 Hz, *J* = 2.5 Hz, 1H), 2.29-2.23 (m, 1H), 1.34 (s, 3H), 1.27 (s, 3H), 1.05 (d, *J* =6.5 Hz, 3H), 0.98 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 165.0, 149.9, 148.2, 137.3, 126.1, 122.4, 73.8, 60.8, 29.1, 28.4, 27.1, 22.5, 17.0. HRMS-ESI, m/z calcd. for C₁₃H₁₈N₂O [M+H]⁺218.1419; found: 218.1419.

(*R*)-4-cyclohexyl-2-(4-methylpyridin-2-yl)-4,5-dihydrooxazole (L16):

White solid, mp 129.8-131.4 °C; Preparation of ^{4-Me}PyOx^{*c*-hex} (*R*)-**L26**: D-valinol (1.55 g, 15 mmol) was added to a mixture of 4-methylpicolinonitrile (1.18 g, 10 mmol) and $Zn(OTf)_2$ (363.5 mg, 5mmol) in toluene (20 mL). The solution was

stirred under refluxing for 5 h, and then toluene was removed in vacuum. The residue was purified by flash column chromatography with PE/EtOAc (v/v 2:1) to give the title compound as white solid (1.6 g, 66%). Optical Rotation: $[\alpha]_D^{20} = +156.0$ (c = 0.3, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 8.51-8.48 (m, 1H), 7.86 (s, 1H), 7.15-7.14 (m, 1H), 4.44 (dd, J = 9.5 Hz, J = 8.0 Hz, 1H), 4.19 (t, J = 8.5 Hz, 1H), 4.12-4.07 (m, 1H), 2.35 (s, 3H), 1.97-1.92 (m, 1H), 1.75-1.70 (m, 2H), 1.66-1.62 (m, 1H), 1.60-1.56 (m,

1H), 1.54-1.48 (m, 1H), 1.24-1.12 (m, 3H), 1.10-1.01 (m, 2 H). ¹³C NMR (125 MHz, CDCl₃) δ 162.6, 149.3, 147.8, 146.6, 126.2, 124.6, 71.9, 72.8, 70.8, 42.6, 29.5, 28.7, 26.4, 25.9, 20.8. HRMS-ESI, m/z calcd. for C₁₅H₂₀N₂O [M+H]⁺244.1576; found: 244.1578.

(e) Alkene Arylsilylation and Derivatization:

To a Schlenk tube were added *N*-(2-iodo-4-methoxyphenyl)-*N*-methyl-2phenylacrylamide **1e** (0.1 mmol), Me₂(Ph)SiBPin **2b** (3.0 equiv), AcOCu (10 mol %), Ligand **L1** (15 mol%), 'BuOK (1.5 equiv.), and Toluene (1.0 mL). Then the tube is evacuated briefly under high vacuum and charged with argon through using standard Schlenk techniques; this process is repeated three times. The reaction mixture was stirred at room temperature for 1 h. The reaction was quenched with water and extracted with ethyl acetate. The organic layer was washed with saturated NaCl solution, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The resulting residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate) to afford the desired product **4e**.

(R)-3-(hydroxymethyl)-1,3-dimethylindolin-2-one (6a)

3a (17.4 mg, 0.1 mmol) was dissolved in THF (0.5 mL). NaH₂PO₄ (0.5 M, 0.5 mL) was added. The reaction was cooled to 0 °C and H₂O₂ (30% wt% in H₂O, 0.25 mL) was added. The reaction was stirred at room temperature for 24 h. The reaction was di luted with water then extracted with EtOAc (3×5 mL). The organic layers were dried over magnesium sulfate and concentrated under reduced pressure. The product **6** was isolated from the above residue by flash column chromatography using 40% EtOAc/ petroleum ether or MeOH/EtOAc/petroleum ether (about 2:49:49).

(S)-3-(2-hydroxyethyl)-1,3-dimethylindolin-2-one (5a)

3a (17.4 mg, 0.1 mmol) and dibromomethane (18 μ L, 0.25 mmol, 2.5 equiv) was dissolved in THF (1.0 mL) and cooled to -78 °C. Then nBuLi (90 μ L, 0.22 mmol, 2.2 equiv) was added dropwise. The reaction was warmed to room temperature and stirred for 1 h. The reaction was cooled to 0 °C then 2M NaOH (1 mL) followed by 30% H₂O₂ (1 mL) was added. The reaction was stirred for 2 h then extracted to ethyl acetate (3×5 mL). The residue was dried and purified by flash column chromatography (EtOAc/petroleum ether =1:4 to about 2:3) to afford **5a**.

(B) Analytical data2-((((tert-butyldimethylsilyl)oxy)methoxy)methyl)-N-(2-iodophenyl)-N-methylacrylamide (1e):

Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, J = 7.5 Hz, 1H), 7.31 (t, J = 7.5 Hz, 1H), 7.22 (d, J = 7.5 Hz, 1H), 6.98 (t, J = 7.5 Hz, 1H), 5.23 (s, 1H), 5.14 (s, 1H), 4.82-4.78 (m, 2H), 4.29 (d, J = 13.5 Hz, 1H), 4.12 (d, J = 13.5 Hz, 1H), 3.23 (s, 3H), 0.87 (s, 9H), 0.07 (s, 3H), 0.06 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 169.4, 146.7, 140.6, 140.0, 129.8, 129.4, 129.1, 118.9, 98.8, 89.4, 67.7, 36.9, 25.6, 18.0, -5.0, -5.1; HRMS-ESI, m/z calcd. for C₁₈H₂₉INO₃Si [M+H]⁺ 462.0956; found: 462.0960.

N-(2-iodophenyl)-N-methyl-2-((((8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3yl)oxy)methyl)acrylamide (1y):

Yellow solid, mp 122.0-123.1 °C; ¹H NMR (500
MHz, CDCl₃) δ 7.88 (d, J = 8.0 Hz, 1H), 7.33 (t, J = 7.5 Hz, 1H), 7.22 (d, J = 7.5 Hz, 1H), 6.98 (t, J = 7.5 Hz, 1H), 7.27-7.24 (m, 1H), 7.15 (d, J =

8.5 Hz, 1H), 7.01 (t, J = 7.5 Hz, 1H), 6.69-6.65 (m, 1H), 6.62 (s, 1H), 5.37 (s, 1H), 5.22 (s, 1H), 4.79 (d, J = 13.0 Hz, 1H), 4.56 (d, J = 13.5 Hz, 1H), 3.28 (s, 3H), 2.86-2.84 (m, 2H), 2.49 (dd, J = 19.5 Hz, J = 8.5 Hz, 1H), 2.38-2.36 (m, 1H), 2.25-2.21(m, 1H), 2.17-2.09 (m, 1H), 2.07-2.03 (m, 1H), 2.02-1.97 (m, 1H), 1.96-1.93 (m, 1H), 1.66-1.55 (m, 2H), 1.54-1.50 (m, 1H), 1.49-1.46 (m, 2H), 1.44-1.39 (m, 1H), 0.90 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 220.8, 169.0, 156.2, 146.5, 140.0, 139.5, 137.6, 132.2, 129.7, 129.4, 129.3, 126.2, 119.6, 114.5, 112.3, 98.9, 68.0, 50.3, 47.9, 43.8, 38.2, 37.0, 35.8, 31.5, 29.5, 26.4, 25.8, 21.5, 13.7; HRMS-ESI, m/z calcd. for C₂₉H₃₃INO₃ [M+H]⁺ 570.1500; found: 570.1503.

2-((((3S,8R,9S,10S,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2yl)hexadecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)methyl)-N-(2iodophenyl)-N-methylacrylamide (1z):

Yellow solid, mp 130.3-131.3 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, *J* = 8.0 Hz, 1H), 7.33 (t, *J* = 7.5 Hz, 1H), 7.22 (d, *J* = 7.5 Hz, 1H), 6.98 (t, *J* = 7.5 Hz, 1H), 7.27-7.24 (m, 1H),

7.15 (d, J = 8.5 Hz, 1H), 7.01 (t, J = 7.5 Hz, 1H), 7.26-7.24 (m, 1H), 6.99 (t, J = 7.5 Hz, 1H), 5.33 (s, 1H), 5.25 (s, 1H), 5.13 (s, 1H), 4.26 (d, J = 13.5 Hz, 1H), 4.03 (d, J = 13.5 Hz, 1H), 3.24 (s, 3H), 3.14-3.13 (m, 1H), 2.35-2.30 (m, 1H), 2.20-2.15 (m, 1H), 2.01-1.94 (m, 2H), 1.86-1.78 (m, 3H), 1.58-1.41 (m, 8H), 1.37-1.28 (m, 3H), 1.28-1.21 (m, 1H), 1.17-1.04 (m, 6H), 1.04-0.99 (m, 2H), 0.98 (s, 3H), 0.95-0.92 (m, 1H), 0.91 (d, J = 6.5 Hz, 3H), 0.86 (d, J = 2.0 Hz, 3H), 0.85 (d, J = 2.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 169.8, 146.7, 141.7, 140.7, 140.6, 140.0, 130.0, 129.4, 129.2, 121.6, 121.6, 118.2, 99.0, 79.1, 68.1, 68.0, 56.7, 56.1, 50.1, 42.3, 39.7, 39.5, 39.1, 37.1, 36.9, 36.8, 36.1, 35.7, 31.9, 31.8, 28.3, 28.3, 28.2, 28.0, 24.2, 23.8, 22.8, 22.5, 21.0, 19.4, 18.7, 11.8; HRMS-ESI, m/z calcd. for C₃₈H₅₇INO₂ [M+H]⁺ 686.3428; found: 686.3430.

(*S*)-1,3-dimethyl-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)indolin-2-one (3a):

18.6 mg, 62% yield. Colorless foam; ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.25-7.20 (m, 2H), 7.01 (t, J = 7.5 Hz, 1H), 6.79 (d, J = 7.5 Hz, 1H), 3.19 (s, 3H), 1.43-1.33 (m, 2H), 1.40 (s, 3H), 1.02 (s, 6H), 0.95 (s, 6H). ¹³C NMR (CDCl₃, 125

MHz): δ (ppm) 181.7, 143.4, 135.8, 127.5, 122.6, 122.1, 107.6, 83.0, 45.5, 26.2, 25.6, 24.7, 24.3. [α]²⁰_D = -1.0 (c = 0.26 in CH₂Cl₂); 92:8 er [Chiralcel AD-H column, n-hexane / i-PrOH = 95:5, 1.0 mL/min, λ_{max} 254 nm, t_{R} = 7.4 min and 8.5 min].

1 检测器 A 通道1 / 254nm

峰表

检测器 A	Ch1 254nm				
峰#	RT(min)	Area	Height	Area%	Height%
1	7.335	14832682	1481604	49.301	52.146
2	8.438	15253232	1359669	50.699	47.854
总计		30085915	2841273	100.000	100.000

1 检测器 A 通道1 / 254nm

检测器 A	Ch1 254nm				
峰#	RT(min)	Area	Height	Area%	Height%
1	7.363	3033129	336380	91.632	91.831
2	8.478	277009	29921	8.368	8.169
总计		3310137	366302	100.000	100.000

(S)-3-butyl-1-methyl-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)methyl)indolin-2-one (3b):

Hz, 1H), 1.22-1.18 (m, 2H), 1.70-1.14 (m, 2H), 0.97 (s, 6H), 0.89 (s, 6H), 0.75 (t, J = 7.5 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 181.1, 144.2, 134.2, 127.4, 122.8, 122.0, 107.4, 82.9, 49.6, 39.6, 26.4, 26.1, 24.7, 24.3, 22.8, 13.8. HRMS *m/z* (ESI) calcd for C₂₀H₃₁BNO₃ [M+H]⁺: 344.2392, found: 344.2394. [α]²⁰_D = -5.3 (c = 0.3 in CH₂Cl₂); 87:13 er [Chiralcel AD-H column, n-hexane / i-PrOH = 95:5, 0.8 mL/min, λ_{max} 254 nm, t_{R} = 7.8 min and 9.8 min].

检测器 A	Ch1 254nm				
峰#	RT(min)	Area	Height	Area%	Height%
1	7.766	3594274	277736	86.704	87.956
2	9.803	551192	38031	13.296	12.044
总计		4145466	315767	100.000	100.000

(S)-3-benzyl-1-methyl-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)methyl)indolin-2-one (3c):

检测哭 △	Ch1 254nm		山主人		
峰#	RT (min)	Area	Height	Area%	Height%
1	8.502	3071197	257993	88.973	90.160
2	10.666	380644	28157	11.027	9.840
总计		3451841	286150	100.000	100.000

(*S*)-3-((((tert-butyldimethylsilyl)oxy)methoxy)methyl)-1-methyl-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)indolin-2-one (3d):

J = 9.0 Hz, 1H), 3.19 (s, 3H), 1.38 (d, J = 15.5 Hz, 1H), 1.32 (d, J = 15.5 Hz, 1H), 1.00 (s, 6H), 0.91(s, 6H), 0.83 (s, 9H), -0.04 (s, 3H), -0.05 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 179.2, 144.5, 132.6, 127.7, 123.3, 122.0, 107.5, 90.3, 83.1, 73.0, 50.2, 26.2, 25.7, 25.0, 24.7, 24.3, 18.0, -5.1, -5.2; HRMS *m/z* (ESI) calcd for C₂₄H₄₁BNO₅Si [M+H]⁺: 462.2842, found: 462.2846. [α]²⁰_D = -0.6 (c = 0.25 in CH₂Cl₂); 88:12 er [Chiralcel AD-H column, n-hexane / i-PrOH = 95:5, 1.0 mL/min, λ_{max} 254 nm, t_{R} = 4.3 min and 5.2 min].

峰表 检测器 A Ch1 254nm Height Area% Height% RT(min) Area 4.284 10108776 1310883 49.833 54.145 244 10176521 1110185 50.167 45.855 20285298 100.000 2421068 100.000

2	-	
F.	ス	2
	4	全夫

检测器 A	Ch1 254nm				
峰#	RT(min)	Area	Height	Area%	Height%
1	4.269	8590452	962237	88.499	89.031
2	5.228	1116436	118551	11.501	10.969
总计		9706889	1080788	100.000	100.000

(S)-5-methoxy-1-methyl-3-phenyl-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)methyl)indolin-2-one (3e):

(c = 0.26 in CH_2Cl_2); 87:13 er [Chiralcel OD-H column, n-hexane / i-PrOH = 95:5, 1.0 mL/min, λ_{max} 254 nm, t_{R} = 10.5 min and 16.6 min].

~	_	
-	18	
-	1	

恒测岙 A	Ch1 254nm				
峰#	RT(min)	Area	Height	Area%	Height%
1	10.455	3425802	147507	86.622	89.974
2	16.635	529101	16437	13.378	10.026
总计		3954903	163944	100.000	100.000

(S)-1-hexyl-3-methyl-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)methyl)indolin-2-one (3f):

25.9 mg, 70% yield. Colorless foam; ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.24 (d, *J* = 7.5, 1H), 7.20-7.17 (m, 1H), 6.97 (t, J = 7.5, 1H), 6.79 (d, J = 8.0, 1H), 3.72-3.60 (m, 2H),1.71-1.63 (m, 2H), 1.41 (d, J = 15.5 Hz, 1H), 1.37 (s, 3H),

1.34 (d, J = 16.0 Hz, 1H), 1.33-1.29 (m, 4H), 1.23-1.18 (m, 2H), 1.01 (s, 6H), 0.91 (s, 6H), 0.87 (t, J = 6.5 Hz, 3H).¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 181.4, 142.8, 136.0, 127.3, 122.7, 121.8, 107.9, 83.4, 83.0, 77.3, 76.7, 45.3, 40.0, 31.5, 27.2, 26.6, 26.1, 25.0, 24.7, 24.2, 22.5, 14.0. HRMS *m/z* (ESI) calcd for C₂₂H₃₅BNO₃ [M+H]⁺: 372.2705, found: 372.2703. $[\alpha]^{20}_{D} = -2.2$ (c = 0.2 in CH₂Cl₂); 91:9 er [Chiralcel AD-H column, n-hexane / i-PrOH = 95:5, 0.8 mL/min, λ_{max} 254 nm, t_{R} = 6.6 min and 9.2 min].

1 检测器 A 通道1 / 254nm

			1年 衣		
检测器 A	Ch1 254nm				
峰#	RT(min)	Area	Height	Area%	Height%
1	6.578	9527459	1040914	91.009	92.648
2	9.212	941241	82603	8.991	7.352
总计		10468699	1123517	100.000	100.000

山々主

(*S*)-3-methyl-1-(3-phenylpropyl)-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)indolin-2-one (3g):

2.78-2.67 (m, 2H), 2.09-1.95 (m, 2H), 1.44 (d, J = 15.5 Hz, 1H), 1.39 (s, 3H), 1.36 (d, J = 15.5 Hz, 1H), 0.99 (s, 6H), 0.90 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 181.5, 142.6, 141.3, 136.0, 128.4, 127.4, 126.0, 122.7, 121.9, 107.8, 83.0, 45.3, 39.5, 33.2, 28.8, 26.2, 24.7, 24.2. HRMS m/z (ESI) calcd for C₂₅H₃₃BNO₃ [M+H]⁺: 406.2548, found: 406.2550. [α]²⁰ _D = +12.6 (c = 0.2 in CH₂Cl₂); 91:9 er [Chiralcel AD-H column, n-hexane / i-PrOH = 95:5, 0.8 mL/min, λ_{max} 254 nm, t_{R} = 9.6min and 13.6 min].

检测器 A	Ch1 254nm				
峰#	RT(min)	Area	Height	Area%	Height%
1	9.578	524546	44878	9.326	12.734
2	13.642	5100157	307557	90.674	87.266
总计		5624703	352435	100.000	100.000

(S)-1-benzyl-3-methyl-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)methyl)indolin-2-one (3h):

28.2 mg, 76% yield. Colorless foam; ¹H NMR (CDCl₃, 500
MHz):
$$\delta$$
 (ppm) 7.36-7.34 (m, 2H), 7.32-7.29 (m, 2H), 7.28 -
7.26 (m, 1H), 7.25-7.21 (m, 1H), 7.09 (t, $J = 7.5$ Hz, 1H), 6.97
(t, $J = 7.5$ Hz, 1H), 6.66 (d, $J = 7.5$ Hz, 1H), 4.96 (d, $J = 16.0$
Hz, 1H), 4.85 (d, $J = 15.5$ Hz, 1H), 1.50 (d, $J = 15.5$ Hz, 1H), 1.47 (s, 3H), 1.43 (d, $J = 15.5$ Hz, 1H), 1.05 (s, 6H), 0.92 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm)
181.8, 142.4, 136.3, 135.8, 128.6, 127.4, 122.6, 122.2, 108.8, 83.1, 45.5, 43.9, 26.4,
24.7, 24.3. [α]²⁰_D = -1.2 (c = 0.2 in CH₂Cl₂); 91:9 er [Chiralcel AD-H column, n-
hexane / i-PrOH = 95:5, 1.0 mL/min, λ_{max} 254 nm, t_{R} = 11.7 min and 16.8 min].

u+ 化					
检测器 A	Ch1 254nm				
峰#	RT(min)	Area	Height	Area%	Height%
1	11.658	8888563	479356	49.825	60.471
2	16.672	8951106	313342	50.175	39.529
总计		17839669	792698	100,000	100,000

检测器 A 通道1 / 254nm 1

检测器 A Ch1 254nm 峰# RT (min) 1 11.741 Area 5743393 577319 Height 366550 Area% 90.866 Height% 93.536 2 总计 16.788 25331 9.134 6.464 6320712 391881 100.000 100.000

(*S*)-3-methyl-1-(4-methylbenzyl)-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)indolin-2-one (3i):

21.1 mg, 54% yield. Light yellow foam; ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.27-7.26 (m, 1H), 7.23 (d, J = 7.5 Hz, 2H),
7.12-7.07 (m, 3H), 6.96 (t, J = 7.5 Hz, 1H), 6.67 (t, J = 8.0 Hz, 1H), 4.93 (d, J = 15.5 Hz, 1H), 4.79 (d, J = 16.0 Hz, 1H), 2.31 (s, 3H), 1.48 (d, J = 15.5 Hz, 1H), 1.46 (s, 3H), 1.42 (d, J = 15.5 Hz, 1H),

15.5 Hz, 1H), 1.06 (s, 6H), 0.93 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 181.7, 142.5, 137.0, 135.9, 133.3, 129.3, 127.4, 122.6, 122.1, 108.8, 83.1, 45.5, 43.7, 26.3, 24.7, 24.3, 21.1. HRMS *m/z* (ESI) calcd for C₂₄H₃₁BNO₃ [M+H]⁺: 392.2392, found: 392.2393. [α]²⁰_D = -5.6 (c = 0.25 in CH₂Cl₂); 89:11 er [Chiralcel OD-H column, n-hexane / i-PrOH = 95:5, 1.0 mL/min, λ_{max} 254 nm, t_{R} = 5.4 min and 6.5 min].

<Column Performance>

1	PDA			
	Ret. Time	Area	Height	Area%
[5.428	4043240	309711	88.682
I	6.545	516040	36322	11.318
Î		4559280	346033	100.000

(S)-1-(3-methoxybenzyl)-3-methyl-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)indolin-2-one (3j):

30.9 mg, 76% yield. Colorless solid mp; ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.28-7.26 (m, 1H), 7.21 (t, J = 7.5 Hz, 1H), 7.10 (t, J = 7.5 Hz, 1H), 6.97 (t, J = 7.5 Hz, 1H), 6.92 (d, J = 7.5 Hz, 1H), 6.88 (s, 1H), 6.79- 6.77 (m, 1H), 6.68 (d, J = 7.5 Hz, 1H), 4.97 (d, J = 15.5 Hz, 1H), 4.75 (d, J = 15.5 Hz, 1H),

3.77 (s, 3H), 1.47 (d, J = 15.5 Hz, 1H), 1.46 (s, 3H), 1.41 (d, J = 15.0 Hz, 1H), 1.05 (s, 6H), 0.93 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 181.7, 159.8, 142.4, 137.9, 135.8, 129.6, 127.4, 122.6, 122.1, 119.6, 122.6, 113.1, 112.7, 108.7, 83.1, 55.1, 45.5, 43.8, 26.2, 24.7, 24.2. HRMS *m/z* (ESI) calcd for C₂₄H₃₁BNO₄ [M+H]⁺: 408.2341, found: 408.2343. [α]²⁰_D =+2.0 (c = 0.3 in CH₂Cl₂); 92:8 er [Chiralcel AD-H column, n-hexane / i-PrOH = 95:5, 1.0 mL/min, λ_{max} 254 nm, t_{R} = 9.4 min and 16.1 min].

恒侧奋 A	Chi Zo4nm				
峰#	RT(min)	Area	Height	Area%	Height%
1	9.407	13718406	1017645	91.597	94.753
2	16.057	1258549	56348	8.403	5.247
总计		14976955	1073993	100.000	100.000

(*S*)-1-(4-methoxybenzyl)-3-methyl-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)indolin-2-one (3k):

1.41 (d, J = 15.5 Hz, 1H), 1.05 (s, 6H), 0.92 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 181.7, 158.9, 142.5, 135.9, 128.7, 128.4, 127.3, 122.6, 122.1, 114.0, 108.8, 83.1, 55.2, 45.4, 43.4, 26.3, 24.7, 24.3. HRMS *m/z* (ESI) calcd for C₂₄H₃₁BNO₄ [M+H]⁺: 408.2341, found: 408.2341. [α]²⁰_D = -2.8 (c = 0.2 in CH₂Cl₂); 92:8 er [Chiralcel AD-H column, n-hexane / i-PrOH = 97:3, 0.7 mL/min, λ_{max} 254 nm, t_{R} = 37.4 min and 39.9 min].

他們奋 A	Uni Zo4nm				9
峰#	RT (min)	Area	Height	Area%	Height%
1	37.399	16310868	307354	91.938	91.873
2	39.945	1430373	27188	8.062	8.127
总计		17741242	334542	100.000	100.000

(*S*)-1-(3,4-dimethoxybenzyl)-3-methyl-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)indolin-2-one (3l):

6H), 0.92 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 181.7, 149.1, 148.3, 142.3, 135.8, 128.9, 127.3, 122.7, 122.1, 119.7, 111.0, 110.8, 108.7, 83.1, 55.9, 55.8, 55.8, 45.5, 43.6, 25.9, 24.7, 24.2. HRMS *m/z* (ESI) calcd for C₂₅H₃₃BNO₅ [M+H]⁺: 438.2446, found: 438.2442. [α]²⁰_D = -3.2 (c = 0.3 in CH₂Cl₂); 93:7 er [Chiralcel AD-H column, n-hexane / i-PrOH = 90:10, 1.0 mL/min, λ_{max} 254 nm, t_{R} = 12.4 min and 14.0 min].

1世(四)百百 A	CHI ZJ4HII				
峰#	RT(min)	Area	Height	Area%	Height%
1	12.447	15143781	658567	93.064	92.509
2	14.014	1128582	53326	6.936	7.491
总计	i de la construcción de la constru	16272362	711893	100.000	100.000

(*S*)-1-(3,5-dimethoxybenzyl)-3-methyl-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)indolin-2-one (3m):

(s, 6H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 181.7, 160.9, 142.3, 138.7, 127.4, 122.6, 122.1, 108.7, 105.4, 99.0, 83.0, 77.3, 76.7, 55.2, 45.4, 43.8, 25.9, 24.7, 24.2. HRMS *m/z* (ESI) calcd for C₂₅H₃₃BNO₅ [M+H]⁺: 438.2446, found: 438.2444. [α]²⁰_D = -1.7 (c = 0.2 in CH₂Cl₂); 90:10 er [Chiralcel AD-H column, n-hexane / i-PrOH = 90:10, 1.0 mL/min, λ_{max} 254 nm, t_{R} = 6.8 min and 15.9 min].

5668601

488750

100.000

(S)-3-methyl-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-1-(2,4,6trimethylbenzyl)indolin-2-one (3n):

3.52-3.45 (m, 1H), 3.40-3.36 (m, 1H), 3.16 (t, J = 11.0 Hz, 1H), 2.71 (t, J = 8.0 Hz, 1H), 2.38 (s, 3H), 1.40 (d, J = 4.0 Hz, 2H), 1.08 (s, 6H), 1.00 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 181.3, 142.8, 137.3, 137.1, 136.0, 129.6, 128.8, 127.4, 122.6, 121.8, 128.1, 109.1, 83.1, 45.1, 39.8, 25.6, 25.0, 24,8 24.5, 20.9, 20.4. HRMS m/z (ESI) calcd for C₂₅H₃₅BNO₃ [M+H]+: 420.2705, found: 420.2705. $[\alpha]^{20}$ _D = -45.2 $(c = 0.5 \text{ in } CH_2Cl_2)$; 91:9 er [Chiralcel AD-H column, n-hexane / i-PrOH = 95:5, 1.0 mL/min, λ max 254 nm, $t_{\rm R}$ = 5.6 min and 9.3 min].

19124050

2109976

100.000

100.000

(*S*)-3-methyl-1-((perfluorophenyl)methyl)-3-((4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)methyl)indolin-2-one (30):

1.1	LING HE IN	Uni 20 mm				
	峰#	RT(min)	Area	Height	Area%	Height%
	1	6.610	3117962	344091	88.085	89.247
	2	7.483	421771	41458	11.915	10.753
	总计		3539733	385549	100.000	100.000

(*S*)-1-(4-(tert-butyl)benzyl)-3-methyl-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)indolin-2-one (3p):

27.7 mg, 64% yield. Colorless foam; ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.33-7.26 (m, 5H), 7.15-7.09 (m, 1H), 6.99-6.95 (m, 1H), 6.73 (d, J = 8.0 Hz, 1H), 4.93 (d, J = 15.5 Hz, 1H), 4.79 (d, J = 15.5 Hz, 1H), 1.28 (s, 6H), 1.26 (s, 3H), 1.04 (s, 6H), 0.91 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 181.7, 150.2, 142.6, 135.8, 133.3, 127.3, 127.2, 125.5, 122.6, 122.0, 108.7, 83.0, 45.4, 43.5, 34.4, 31.3, 26.2, 25.0, 24.7, 24.3. HRMS *m/z* (ESI) calcd for C₂₇H₃₇BNO₃ [M+H]⁺: 434.2861, found: 434.2865. [α]²⁰_D = -2.9 (c = 0.2 in CH₂Cl₂); 92:8 er [Chiralcel AD-H column, n-hexane / i-PrOH = 95:5, 1.0 mL/min, λ_{max} 254 nm, t_{R} = 9.0 min and 9.9 min].

检测器 A	Ch1 254nm				
峰#	RT(min)	Area	Height	Area%	Height%
1	9.006	1620728	128780	8.024	9.886
2	9.936	18578358	1173894	91.976	90.114
总计		20199087	1302674	100.000	100.000

(S)-1,3,5-trimethyl-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)methyl)indolin-2-one (3q):

6H), 0.97 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 181.6, 150.0, 135.9, 131.5, 127.6, 123.6, 107.4, 83.0, 45.5, 26.2, 25.5, 24.7, 24.4, 21.1. [α]²⁰_D =+8.0 (c = 0.2 in CH₂Cl₂); 92:8 er [Chiralcel AD-H column, n-hexane / i-PrOH = 95:5, 1.0 mL/min, λ_{max} 254 nm, t_{R} =5.3min and 6.1min].

			四手 12		
检测器 A	Ch1 254nm				
峰#	RT (min)	Area	Height	Area%	Height%
1	5.263	8196980	1011797	92.207	92.725
2	6.141	692770	79378	7.793	7.275
总计		8889749	1091175	100.000	100.000

峰丰

(*S*)-5-methoxy-1,3-dimethyl-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)methyl)indolin-2-one (3r):

1.32 (d, J = 15.5 Hz, 1H), 1.06 (s, 6H), 0.99 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 181.4, 155.9, 137.2, 136.9, 111.9, 110.3, 107.9, 83.0, 55.9, 45.9, 26.3, 25.4, 24.8, 24.4. [α]²⁰_D = 11.1 (c = 0.3 in CH₂Cl₂); 90:10 er [Chiralcel AD-H column, n-hexane / i-PrOH = 95:5, 1.0 mL/min, λ_{max} 254 nm, t_{R} = 7.9 min and 11.2 min].

			峰表		
检测器 A	Ch1 254nm			12	
峰#	RT(min)	Area	Height	Area%	Height%
1	7.963	17970106	1447966	90.144	93.281
2	11.219	1964827	104305	9.856	6.719
总计		19934933	1552271	100.000	100.000

(S)-5-fluoro-1,3-dimethyl-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)methyl)indolin-2-one (3s):

15.5 Hz, 1H), 1.07 (s, 6H), 1.00 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 181.3, 160.2, 139.3, 137.5, 137.5, 113.5, 113.3, 111.1, 110.9, 107.9, 107.9, 83.1, 45.9, 26.3, 25.3, 24.9, 24.7, 24.7, 24.4. ¹⁹F NMR (CDCl₃, 470 MHz): δ (ppm) -121.5. HRMS m/z (ESI) calcd for $C_{17}H_{24}BFNO_3 [M+H]^+$: 320.1828, found: 320.1831. $[\alpha]^{20}D = +2.2$ (c = 0.1 in CH_2Cl_2 ; 90:10 er [Chiralcel OD-H column, n-hexane / i-PrOH = 95:5, 1.0 mL/min, λ_{max} 254 nm, t_{R} = 5.6 min and 6.1 min].

检测器	A	Ch1	254nm	
			1	

Chi Zo4nm				
RT(min)	Area	Height	Area%	Height%
5.613	6081090	689711	89.787	89.652
6.136	691714	79612	10.213	10.348
	6772804	769324	100.000	100.000
	Ch1 254nm RT(min) 5.613 6.136	RT (min) Area 5.613 6081090 6.136 691714 6772804 6772804	RT(min) Area Height 5.613 6081090 689711 6.136 691714 79612 6772804 769324	RT(min) Area Height Area% 5.613 6081090 689711 89.787 6.136 691714 79612 10.213 6772804 769324 100.000

(*S*)-5-chloro-1,3-dimethyl-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)methyl)indolin-2-one (3t):

15.5 Hz, 1H), 1.07 (s, 6H), 0.99 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 181.2, 141.9, 137.5, 127.5, 127.3, 123.4, 108.5, 83.2, 45.7, 26.3, 25.2, 25.0, 24.7, 24.4. [α]²⁰_D = +1.18 (c = 0.2 in CH₂Cl₂); 85:15 er [Chiralcel AD-H column, n-hexane / i-PrOH = 95:5, 1.0 mL/min, λ_{max} 254 nm, t_{R} = 5.6 min and 6.0 min].

1 检测器 A 通道1 / 254nm

1.4. 300 1.000			-+ 1C	•	
检测器 A	Ch1 254nm				
峰#	RT(min)	Area	Height	Area%	Height%
1	5.596	19561347	1938627	85.173	83.334
2	6.007	3405196	387714	14.827	16.666
总计		22966543	2326341	100.000	100.000

(S)-5-bromo-1,3-dimethyl-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)methyl)indolin-2-one (3u):

Hz, 1H), 1.07 (s, 6H), 1.00 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 181.1, 142.4, 137.9, 130.2, 126.1, 114.8, 109.0, 83.2, 45.6, 26.3, 25.2, 25.0, 24.7, 24.4. [α]²⁰_D = 10.7 (c = 0.3 in CH₂Cl₂); 88:12 er [Chiralcel AD-H column, n-hexane / i-PrOH = 97:3, 1.0 mL/min, λ_{max} 254 nm, t_{R} = 8.8 min and 9.5 min].

检测器 A	Ch1 254nm	s			·
峰#	RT (min)	Area	Height	Area%	Height%
1	8.780	11438640	810005	88.157	89.161
2	9.523	1536657	98466	11.843	10.839
总计		12975297	908471	100.000	100.000

(S)-1,3,6-trimethyl-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)methyl)indolin-2-one (3v):

6H), 0.97 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 182.0, 143.4, 137.5, 132.9, 122.5, 122.4, 108.6, 83.0, 45.2, 26.1, 25.5, 25.0, 24.7, 24.3, 21.7. HRMS *m/z* (ESI) calcd for C₁₈H₂₇BNO₃ [M+H]⁺: 316.2079, found: 316.2081. [α]²⁰_D = -1.0 (c = 0.2 in CH₂Cl₂); 88:12 er [Chiralcel AD-H column, n-hexane / i-PrOH = 95:5, 1.0 mL/min, λ_{max} 254 nm, *t*_R = 5.3 min and 5.8 min].

	-+1				
检测器 A	Ch1 254nm				
峰#	RT(min)	Area	Height	Area%	Height%
1	5.272	5288509	673105	88.017	88.696
2	5.799	720009	85782	11.983	11.304
总计		6008518	758887	100.000	100.000
	检测器 A 峰# 1 2 总计	检测器 A Ch1 254nm 峰♯ RT(min) 1 5.272 2 5.799 总计	检测器 A Ch1 254nm 峰# RT(min) Area 1 5.272 5288509 2 5.799 720009 总计 6008518	检测器 A Ch1 254nm Area Height 峰# RT(min) Area Height 1 5.272 5288509 673105 2 5.799 720009 85782 总计 6008518 758887	检测器 A Ch1 254nm Area Height Area% 峰# RT(min) Area Height Area% 1 5.272 5288509 673105 88.017 2 5.799 720009 85782 11.983 总计 6008518 758887 100.000

(S)-6-methoxy-1,3-dimethyl-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)methyl)indolin-2-one (3w):

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} 21.1 \text{ mg}, 48\% \text{ yield. Yellow foam; }^{1}\text{H NMR (CDCl}_{3}, 500 \\ \text{MHz}\text{): } \delta (\text{ppm}) \ 7.15 \ (\text{d}, J = 8.0 \ \text{Hz}, 1\text{H}), \ 6.51 \ (\text{dd}, J = 8.5 \\ \text{Hz}, J = 2.5 \ \text{Hz}, 1\text{H}), \ 6.39 \ (\text{d}, J = 2.5 \ \text{Hz}, 1\text{H}), \ 3.81 \ (\text{s}, 3\text{H}), \ 3.17 \ (\text{s}, 3\text{H}), \ 1.37 \ (\text{s}, 3\text{H}), \ 1.37 \ (\text{d}, J = 15.5 \ \text{Hz}, 1\text{H}), \end{array}$$

1.32 (d, J = 15.5 Hz, 1H), 1.05 (s, 6H), 0.98 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 182.2, 159.8, 144.6, 128.0, 123.1, 105.7, 95.8, 83.0, 55.5, 45.0, 26.2, 25.7, 24.8, 24.4. [α]²⁰_D = -3.7 (c = 0.3 in CH₂Cl₂); 85:15 er [ChiralcelAD-H column, n-hexane / i-PrOH = 97:3, 0.7 mL/min, λ_{max} 254 nm, t_{R} = 12.8 min and 15.4 min].

		峰表			
检测器 A	Ch1 254nm				
峰#	RT(min)	Area	Height	Area%	Height%
1	12.542	6269624	348546	49.983	55.639
2	15.121	6273981	277895	50.017	44.361
总计		12543605	626441	100.000	100.000

1 检测器 A 通道1 / 254nm

检测器 A	Ch1 254nm				
峰#	RT(min)	Area	Height	Area%	Height%
1	12.750	2223963	118986	85.440	87.740
2	15.398	378990	16625	14.560	12.260
总计		2602953	135611	100.000	100.000
(S)-6-chloro-1,3-dimethyl-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)methyl)indolin-2-one (3x):

Hz, 1H), 1.05 (s, 6H), 0.97 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 181.6, 144.7, 134.2, 133.2, 123.5, 121.8, 108.3, 83.2, 65.6, 45.2, 26.3, 25.5, 24.8, 24.3. [α]²⁰_D = +4.3 (c = 0.2 in CH₂Cl₂); 95:5 er [Chiralcel OD-H column, n-hexane / i-PrOH = 95:5, 1.0 mL/min, λ_{max} 254 nm, t_{R} = 6.4min and 7.3 min].

202			峰表		
检测器 A	Ch1 254nm	r			
峰#	RT(min)	Area	Height	Area%	Height%
1	6.405	2366698	203667	49.349	54.006
2	7.483	2429174	173450	50.651	45.994
总计		4795872	377117	100.000	100.000

1 检测器 A 通道1 / 254nm

峰表

			「軍衣				
检	测器A	Ch1 254nm		1000			
	峰#	RT(min)	Area	Height	Area%	Height%	
	1	6.388	229740	25412	4.964	6.809	
	2	7.292	4398743	347806	95.036	93.191	
	总计		4628483	373218	100.000	100.000	

(*S*)-1-methyl-3-((((8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17decahydro-6H-cyclopenta[a]phenanthren-3-yl)oxy)methyl)-3-((4,4,5,5tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)indolin-2-one (3y):

26.0 mg, 46% yield. Yellow foam. ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.36 (d, J = 7.5 Hz, 1H), 7.24 (dd, J = 7.5 Hz, J = 1.0 Hz, 1H), 7.11 (d, J = 8.5 Hz, 1H), 7.00 (t, J = 7.5 Hz, 1H), 6.81 (d, J = 8.0 Hz, 1H), 6.62-6.58 (m, 1H), 6.53 (s, 1H), 4.19 (dd, J = 9.0 Hz, J = 6.5

Hz, 1H), 4.07 (dd, J = 8.5 Hz, J = 5.0 Hz, 1H), 3.23 (s, 3H), 2.84-2.80 (m, 2H), 2.48 (dd, J = 19.5 Hz, J = 9.0 Hz, 1H), 2.37-2.33 (m, 1H), 2.22-2.17 (m, 1H), 2.16-2.08 (m, 1H), 2.06-2.00 (m, 1H), 1.98-1.91(m, 2H), 1.66-1.57 (m, 2H), 1.54-1.48 (m, 2H), 1.48-1.41(m, 4H), 1.39-1.34 (m, 1H), 1.00 (s, 6H), 0.91 (s, 6H), 0.88(s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 230.0, 178.7, 156.8, 144.3, 137.5, 132.2, 132.2, 127.9, 126.1, 123.8, 122.2, 114.9, 114.8, 112.5, 112.3, 107.6, 83.1, 72.9, 50.4, 50.0, 47.9, 43.9, 38.3, 35.8, 31.5, 29.5, 26.5, 26.3, 25.9, 24.8, 24.7, 24.5, 21.5, 13.8. HRMS *m/z* (ESI) calcd for C₃₅H₄₅BNO₅ [M+H]⁺: 570.3385, found: 570.3391. [α]²⁰_D = +12.2 (c = 0.2 in CH₂Cl₂).

(*S*)-3-((((38,88,98,10R,13R,148,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-

cyclopenta[a]phenanthren-3-yl)oxy)methyl)-1-methyl-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)indolin-2-one (3z):

30.1 mg, 44% yield. Colorless foam; ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.29 (d, J = 7.0 Hz, 1H), 7.22 (t, J =7.5 Hz, 1H), 6.99 (t, J = 7.5 Hz, 1H), 6.77 (d, J = 7.5 Hz, 1H), 5.26-5.21 (m, 1H), 3.71 (t, J = 8.0 Hz, 1H), 3.64 (dd,

J = 9.0 Hz, *J* = 7.0 Hz, 1H), 3.19 (s, 3H), 3.02-2.97 (m, 1H), 2.19-2.08(m, 1H), 2.37-2.33 (m, 1H), 2.22-2.17 (m, 1H), 2.16-2.08 (m, 1H), 2.06-2.00 (m, 1H), 2.06-1.90 (m, 3H), 1.84-1.78(m, 1H), 1.77-1.71 (m, 2H), 1.66-1.62 (m, 1H), 1.58-1.53 (m, 1H), 150-1.47 (m, 3H), 1.44-1.34 (m, 5H), 1.34-1.30 (m, 2H), 1.23-1.18 (m, 2H), 1.15-1.02 (m, 7H), 0.97 (s, 6H), 0.96-0.94 (m, 2H), 0.91(s, 3H), 0.89 (d, J = 7.0 Hz, 3H), 0.88 (s, 6H), 0.86 (d, J = 2.0 Hz, 3H) 0.85 (d, J = 2.5 Hz, 3H), 0.64 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 179.4, 144.4, 141.0, 133.1, 127.5, 123.6, 121.9, 121.9, 121.3, 107.3, 83.0, 80.2, 80.1, 73.6, 73.5, 56.7, 56.1, 50.8, 50.1, 42.3, 39.7, 39.5, 39.0, 38.8, 37.1, 36.7, 36.2, 35.7, 31.8, 28.3, 28.2, 28.1, 28.0, 26.2, 24.7, 24.2, 23.8, 22.8, 22.5, 21.0, 19.3, 18.7, 11.8. HRMS *m*/*z* (ESI) calcd for C₄₄H₆₉BNO₄ [M+H]⁺: 686.5314, found: 686.5318. [α]²⁰_D = -8.9 (c = 0.2 in CH₂Cl₂).

(*S*)-3-((dimethyl(phenyl)silyl)methyl)-5-methoxy-1-methyl-3-phenylindolin-2-one (4e):

30.5 mg, 76% yield. Yellow oil; ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.33-7.31 (m, 2H), 7.29-7.26 (m, 2H), 7.25-7.23 (m, 3H), 7.22-7.19 (m, 3H), 6.81 (dd, *J* = 8.5 Hz, *J* = 2.5 Hz, 1H), 6.69 (d, *J* = 8.5 Hz, 1H), 6.61 (d, *J*

= 2.5 Hz, 1H), 3.67 (s, 3H), 2.92 (s, 3H), 2.21 (d, *J* = 14.5 Hz, 1H), 1.76 (d, *J* = 14.0 Hz, 1H),0.05 (s, 3H), -0.01 (S, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 178.3, 155.7, 143.1, 138.2, 137.0, 134.4, 133.5, 128.7, 128.3, 127.4, 126.9, 126.4, 112.9, 112.4, 108.5, 55.6, 54.1, 26.2, 25.7, -2.1, -2.5. $[\alpha]^{20}_{D}$ = -7.5 (c = 0.25 in CH₂Cl₂); 61:39 er [Chiralcel OD-H column, n-hexane / i-PrOH = 95:5, 1.0 mL/min, λ_{max} 254 nm, t_{R} = 11.6 min and 13.0 min].

检测器 A	Ch1 254nm				
峰#	RT(min)	Area	Height	Area%	Height%
1	11.629	39560581	1200419	49.370	45.643
2	13.123	40570952	1429573	50.630	54.357
总计		80131533	2629993	100.000	100.000

峰表

(S)-3-(2-hydroxyethyl)-1,3-dimethylindolin-2-one (5a):

OH 11.5 mg, 56% yield. White solid; ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.31 (t, J = 7.5 Hz, 1H), 7.22 (d, J = 6.0 Hz, 1H), 7.10, (t, J = 7.5 Hz, 1H), 6.88 (d, J = 8.0 Hz, 1H), 3.85 (d, J = 10.5 Hz, 1H),

3.74 (d, J = 11.0 Hz, 1H), 3.23 (s, 3H), 2.25-2.20 (m, 1H), 1.62-1.54 (m, 1H), 1.42 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 179.9, 143.7, 131.7, 128.4, 122.8, 122.7, 108.3, 67.7, 49.8, 37.3, 26.2, 19.0. [α]²⁰_D = +18.4 (c = 0.2 in CH₂Cl₂); 88:12 er [ChiralcAD-H column, n-hexane / i-PrOH = 90:10, 1.0 mL/min, λ_{max} 254 nm, t_{R} = 8.6 min and 10.1 min].

(*R*)-3-(hydroxymethyl)-1,3-dimethylindolin-2-one (6a):

(ppm) 7.31 (t, J = 7.5 Hz, 1H), 7.22 (d, J = 7.5 Hz, 1H), 7.09, (t, J = 7.5 Hz, 1H), 6.88 (d, J = 7.5 Hz, 1H), 3.85 (t, J = 9.0 Hz, 1H), 3.74

(dd, J = 10.5 Hz, J = 2.5 Hz, 1H), 3.23 (s, 3H), 2.32-2.29 (m, 1H), 1.41 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 179.9, 143.6, 131.7, 128.3, 122.7, 122.7, 108.3, 67.6, 49.8, 26.2, 19.0. [α]²⁰_D = +23.3 (c = 0.2 in CH₂Cl₂); 89:11 er [Chiralcel AD-H column, n-hexane / i-PrOH = 90:10, 1.0 mL/min, λ_{max} 254 nm, t_{R} = 8.6 min and 10.0 min].

<Column Performance>

Ret. Time	Area	Height	Area%
8.581	1155532	85477	11.266
10.053	9101576	518551	88.734
	10257108	604028	100.000

(D) NMR Spectra

(R)-4-isopropyl-2-(3-methylpyridin-2-yl)-4,5-dihydrooxazole (L2):

(R)-4-isopropyl-2-(4-(trifluoromethyl)pyridin-2-yl)-4,5-dihydrooxazole (L6) :

2-((((tert-butyldimethylsilyl)oxy)methoxy)methyl)-N-(2-iodophenyl)-Nmethylacrylamide (1e):

N-(2-iodophenyl)-N-methyl-2-((((8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3yl)oxy)methyl)acrylamide (1y):

2-((((3S,8R,9S,10S,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-

yl)hexadecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)methyl)-N-(2-

iodophenyl)-N-methylacrylamide (1z):

(S)-1,3-dimethyl-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)indolin-2-one (3a):

(S)-3-((((tert-butyldimethylsilyl)oxy)methoxy)methyl)-1-methyl-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)indolin-2-one (3d):

(S)-5-methoxy-1-methyl-3-phenyl-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)methyl)indolin-2-one (3e):

(S)-3-methyl-1-(3-phenylpropyl)-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)methyl)indolin-2-one (3g):

(S)-1-benzyl-3-methyl-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)methyl)indolin-2-one (3h):

(S)-3-methyl-1-(4-methylbenzyl)-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)methyl)indolin-2-one (3i):

(S)-1-(3-methoxybenzyl)-3-methyl-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)indolin-2-one (3j):

(S)-1-(4-methoxybenzyl)-3-methyl-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)methyl)indolin-2-one (3k):

(S)-1-(3,4-dimethoxybenzyl)-3-methyl-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-

2-yl)methyl)indolin-2-one (3l):

(S)-1-(3,5-dimethoxybenzyl)-3-methyl-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-

2-yl)methyl)indolin-2-one (3m):

(S)-3-methyl-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-1-(2,4,6-trimethylbenzyl)indolin-2-one (3n):

(S)-3-methyl-1-((perfluorophenyl)methyl)-3-((4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)methyl)indolin-2-one (30):

(S)-1-(4-(tert-butyl)benzyl)-3-methyl-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)indolin-2-one (3p):

(S)-1,3,5-trimethyl-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)methyl)indolin-2-one (3q):

(S)-5-methoxy-1,3-dimethyl-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)methyl)indolin-2-one (3r):

(S)-5-fluoro-1,3-dimethyl-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)methyl)indolin-2-one (3s):

S)-5-chloro-1,3-dimethyl-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)methyl)indolin-2-one (3t):

(S)-5-bromo-1,3-dimethyl-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)methyl)indolin-2-one (3u):

(S)-1,3,6-trimethyl-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)methyl)indolin-2-one (3v):

(S)-6-methoxy-1,3-dimethyl-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)methyl)indolin-2-one (3w):

(S)-6-chloro-1,3-dimethyl-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)methyl)indolin-2-one (3x):

(S)-1-methyl-3-((((8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-

decahydro-6H-cyclopenta[a]phenanthren-3-yl)oxy)methyl)-3-((4,4,5,5-

tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)indolin-2-one (3y):

(S)-3-((((3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1Hcyclopenta[a]phenanthren-3-yl)oxy)methyl)-1-methyl-3-((4,4,5,5-tetramethyl-

1,3,2-dioxaborolan-2-yl)methyl)indolin-2-one (3z):

(4e):

(R)-3-(hydroxymethyl)-1,3-dimethylindolin-2-one (6a):

(D) The X-ray Single-Crystal Diffraction Analysis of 3x (CCDC 2053886)

The thermal ellipsoid plot of 3x with 30% displacement ellipsoids

Table S2. Crystal data and structure refinement	for A.		
Identification code			
Empirical formula	C17 H23 B Cl N O3		
Formula weight	335.62		
Temperature	296(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P2 ₁ /c		
Unit cell dimensions	a = 13.213(3) Å	α= 90°.	
	b = 10.603(2) Å	β=114.903(3)°.	
	c = 14.382(3) Å	$\gamma = 90^{\circ}$.	
Volume	1827.6(7) Å ³		
Z	4		
Density (calculated)	1.220 Mg/m ³		
Absorption coefficient	0.221 mm ⁻¹		
F(000)	712		
Crystal size	$0.180 \ge 0.170 \ge 0.160 \text{ mm}^3$		
Theta range for data collection	2.565 to 25.498°.		
Index ranges	-16<=h<=16, -11<=k<=12, -16<=l<=17		
Reflections collected	13771		
Independent reflections	3395 [R(int) = 0.0342]		
Completeness to theta = 25.242°	99.9 %		
Absorption correction	None		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	3395 / 0 / 214		
Goodness-of-fit on F ²	1.034		

Final R indices [I>2sigma(I)]R1 = 0.0640, wR2 = 0.1714R indices (all data)R1 = 0.0901, wR2 = 0.1915Extinction coefficientn/aLargest diff. peak and hole0.704 and -0.326 e.Å⁻³

	х	У	Z	U(eq)
B(1)	7182(3)	4317(3)	6644(3)	47(1)
C(1)	7004(2)	8936(3)	6127(2)	50(1)
C(2)	6141(3)	8283(3)	5388(2)	55(1)
C(3)	6331(2)	7096(3)	5088(2)	53(1)
C(4)	7387(2)	6595(3)	5533(2)	44(1)
C(5)	8238(2)	7268(3)	6291(2)	43(1)
C(6)	8077(2)	8446(3)	6612(2)	46(1)
C(7)	10250(3)	6918(3)	7512(3)	73(1)
C(8)	9063(3)	5430(3)	6163(2)	50(1)
C(9)	7847(3)	5357(3)	5366(2)	49(1)
C(10)	7842(3)	5260(4)	4299(3)	70(1)
C(11)	7273(3)	4207(3)	5597(2)	57(1)
C(12)	7693(3)	4712(4)	8342(3)	67(1)
C(13)	6448(3)	4497(4)	7802(3)	67(1)
C(14)	8160(5)	5794(7)	9000(4)	139(3)
C(15)	8287(5)	3516(7)	8986(4)	143(3)
C(16)	5885(6)	3716(8)	8265(5)	168(3)
C(17)	5857(5)	5823(7)	7578(4)	146(3)
Cl(1)	6760(1)	10450(1)	6471(1)	70(1)
N(1)	9232(2)	6575(2)	6639(2)	48(1)
O(1)	9774(2)	4625(2)	6341(2)	66(1)
O(2)	8041(2)	4727(2)	7506(2)	59(1)
O(3)	6257(2)	4055(3)	6784(2)	66(1)

Table S3. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for A. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

B(1)-O(3)	1.349(4)
B(1)-O(2)	1.352(4)
B(1)-C(11)	1.565(5)
C(1)-C(2)	1.374(4)
C(1)-C(6)	1.390(4)
C(1)-Cl(1)	1.749(3)
C(2)-C(3)	1.388(5)
C(2)-H(2)	0.9300
C(3)-C(4)	1.373(4)
C(3)-H(3)	0.9300
C(4)-C(5)	1.389(4)
C(4)-C(9)	1.507(4)
C(5)-C(6)	1.379(4)
C(5)-N(1)	1.401(3)
C(6)-H(6)	0.9300
C(7)-N(1)	1.448(4)
C(7)-H(7A)	0.9600
C(7)-H(7B)	0.9600
C(7)-H(7C)	0.9600
C(8)-O(1)	1.214(4)
C(8)-N(1)	1.365(4)
C(8)-C(9)	1.533(4)
C(9)-C(10)	1.536(4)
C(9)-C(11)	1.545(4)
C(10)-H(10A)	0.9600
C(10)-H(10B)	0.9600
C(10)-H(10C)	0.9600
C(11)-H(11A)	0.9700
C(11)-H(11B)	0.9700
C(12)-C(14)	1.449(6)
C(12)-O(2)	1.457(4)
C(12)-C(13)	1.512(5)
C(12)-C(15)	1.571(7)
C(13)-C(16)	1.448(6)
C(13)-O(3)	1.454(4)
C(13)-C(17)	1.575(7)

Table S4. Bond lengths [Å] and angles [°] for A.

C(14)-H(14A)	0.9600
C(14)-H(14B)	0.9600
C(14)-H(14C)	0.9600
C(15)-H(15A)	0.9600
C(15)-H(15B)	0.9600
C(15)-H(15C)	0.9600
C(16)-H(16A)	0.9600
C(16)-H(16B)	0.9600
C(16)-H(16C)	0.9600
C(17)-H(17A)	0.9600
C(17)-H(17B)	0.9600
С(17)-Н(17С)	0.9600
O(3)-B(1)-O(2)	113.1(3)
O(3)-B(1)-C(11)	124.8(3)
O(2)-B(1)-C(11)	122.1(3)
C(2)-C(1)-C(6)	122.6(3)
C(2)-C(1)-Cl(1)	119.3(2)
C(6)-C(1)-Cl(1)	118.1(2)
C(1)-C(2)-C(3)	119.8(3)
C(1)-C(2)-H(2)	120.1
C(3)-C(2)-H(2)	120.1
C(4)-C(3)-C(2)	119.2(3)
C(4)-C(3)-H(3)	120.4
C(2)-C(3)-H(3)	120.4
C(3)-C(4)-C(5)	119.6(3)
C(3)-C(4)-C(9)	131.4(3)
C(5)-C(4)-C(9)	109.0(2)
C(6)-C(5)-C(4)	122.7(3)
C(6)-C(5)-N(1)	127.6(3)
C(4)-C(5)-N(1)	109.7(3)
C(5)-C(6)-C(1)	116.1(3)
C(5)-C(6)-H(6)	122.0
C(1)-C(6)-H(6)	122.0
N(1)-C(7)-H(7A)	109.5
N(1)-C(7)-H(7B)	109.5
H(7A)-C(7)-H(7B)	109.5
N(1)-C(7)-H(7C)	109.5

H(7A)-C(7)-H(7C)	109.5
H(7B)-C(7)-H(7C)	109.5
O(1)-C(8)-N(1)	124.8(3)
O(1)-C(8)-C(9)	126.6(3)
N(1)-C(8)-C(9)	108.6(2)
C(4)-C(9)-C(8)	101.7(2)
C(4)-C(9)-C(10)	112.7(3)
C(8)-C(9)-C(10)	108.3(3)
C(4)-C(9)-C(11)	112.6(3)
C(8)-C(9)-C(11)	109.5(3)
C(10)-C(9)-C(11)	111.5(3)
C(9)-C(10)-H(10A)	109.5
C(9)-C(10)-H(10B)	109.5
H(10A)-C(10)-H(10B)	109.5
C(9)-C(10)-H(10C)	109.5
H(10A)-C(10)-H(10C)	109.5
H(10B)-C(10)-H(10C)	109.5
C(9)-C(11)-B(1)	113.1(3)
C(9)-C(11)-H(11A)	109.0
B(1)-C(11)-H(11A)	109.0
C(9)-C(11)-H(11B)	109.0
B(1)-C(11)-H(11B)	109.0
H(11A)-C(11)-H(11B)	107.8
C(14)-C(12)-O(2)	109.6(3)
C(14)-C(12)-C(13)	121.8(4)
O(2)-C(12)-C(13)	103.3(3)
C(14)-C(12)-C(15)	106.6(5)
O(2)-C(12)-C(15)	104.0(3)
C(13)-C(12)-C(15)	110.2(4)
C(16)-C(13)-O(3)	111.9(4)
C(16)-C(13)-C(12)	120.5(4)
O(3)-C(13)-C(12)	104.8(3)
C(16)-C(13)-C(17)	107.4(5)
O(3)-C(13)-C(17)	102.8(3)
C(12)-C(13)-C(17)	108.0(4)
C(12)-C(14)-H(14A)	109.5
C(12)-C(14)-H(14B)	109.5
H(14A)-C(14)-H(14B)	109.5

109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
110.9(2)
123.7(3)
124.5(3)
108.6(2)
107.5(2)

Symmetry transformations used to generate equivalent atoms:

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
B(1)	52(2)	39(2)	48(2)	-2(2)	20(2)	-6(2)
C(1)	47(2)	56(2)	44(2)	10(1)	17(1)	10(1)
C(2)	41(2)	72(2)	46(2)	10(2)	11(1)	13(2)
C(3)	45(2)	68(2)	38(2)	0(2)	10(1)	-2(2)
C(4)	43(2)	54(2)	33(1)	4(1)	14(1)	-1(1)
C(5)	39(2)	48(2)	42(2)	11(1)	16(1)	4(1)
C(6)	41(2)	47(2)	45(2)	4(1)	11(1)	1(1)
C(7)	38(2)	63(2)	93(3)	-3(2)	3(2)	2(2)
C(8)	50(2)	51(2)	52(2)	7(1)	26(2)	3(1)
C(9)	56(2)	52(2)	39(2)	-3(1)	22(1)	-3(1)
C(10)	87(3)	81(3)	52(2)	-1(2)	37(2)	3(2)
C(11)	64(2)	57(2)	48(2)	-11(2)	23(2)	-11(2)
C(12)	76(2)	88(3)	44(2)	-10(2)	31(2)	-20(2)
C(13)	61(2)	96(3)	51(2)	-7(2)	31(2)	-9(2)
C(14)	129(5)	196(7)	115(4)	-91(4)	73(4)	-71(4)
C(15)	125(5)	186(7)	108(4)	80(4)	41(4)	39(4)
C(16)	157(6)	268(9)	111(4)	-37(5)	88(4)	-123(6)
C(17)	144(5)	182(6)	96(4)	-16(4)	33(4)	81(5)
Cl(1)	63(1)	65(1)	72(1)	0(1)	20(1)	20(1)
N(1)	37(1)	44(1)	56(2)	3(1)	14(1)	1(1)
O(1)	62(1)	55(1)	80(2)	4(1)	30(1)	13(1)
O(2)	53(1)	80(2)	44(1)	-10(1)	21(1)	-16(1)
O(3)	58(1)	90(2)	53(1)	-17(1)	24(1)	-25(1)

Table S5.Anisotropic displacement parameters (Å²x 10³) for A.The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	х	У	Z	U(eq)
	- 10.1	0.62.6	-000	~-
H(2)	5431	8636	5090	67
H(3)	5751	6644	4592	63
H(6)	8652	8887	7122	56
H(7A)	10857	6418	7514	110
H(7B)	10162	6769	8132	110
H(7C)	10406	7795	7468	110
H(10A)	8228	5971	4188	105
H(10B)	7085	5252	3786	105
H(10C)	8209	4496	4254	105
H(11A)	7691	3452	5604	68
H(11B)	6530	4117	5051	68
H(14A)	7849	6553	8625	208
H(14B)	8955	5801	9228	208
H(14C)	7985	5744	9582	208
H(15A)	9037	3470	9044	214
H(15B)	7885	2772	8649	214
H(15C)	8301	3575	9657	214
H(16A)	6107	2853	8269	252
H(16B)	5093	3786	7876	252
H(16C)	6083	3990	8956	252
H(17A)	5187	5782	6955	220
H(17B)	6350	6444	7509	220
H(17C)	5674	6053	8135	220

Table S6. Hydrogen coordinates ($x\;10^4$) and isotropic displacement parameters (Å $^2x\;10\;^3$) for A.

Table S7. Torsion angles [°] for A.

C(6)-C(1)-C(2)-C(3)	-1.1(5)
Cl(1)-C(1)-C(2)-C(3)	178.2(2)
C(1)-C(2)-C(3)-C(4)	-0.5(4)
C(2)-C(3)-C(4)-C(5)	1.6(4)
C(2)-C(3)-C(4)-C(9)	-179.5(3)
C(3)-C(4)-C(5)-C(6)	-1.2(4)
C(9)-C(4)-C(5)-C(6)	179.6(3)
C(3)-C(4)-C(5)-N(1)	179.4(2)
C(9)-C(4)-C(5)-N(1)	0.2(3)
C(4)-C(5)-C(6)-C(1)	-0.3(4)
N(1)-C(5)-C(6)-C(1)	179.0(3)
C(2)-C(1)-C(6)-C(5)	1.5(4)
Cl(1)-C(1)-C(6)-C(5)	-177.8(2)
C(3)-C(4)-C(9)-C(8)	-177.3(3)
C(5)-C(4)-C(9)-C(8)	1.7(3)
C(3)-C(4)-C(9)-C(10)	66.9(4)
C(5)-C(4)-C(9)-C(10)	-114.0(3)
C(3)-C(4)-C(9)-C(11)	-60.2(4)
C(5)-C(4)-C(9)-C(11)	118.8(3)
O(1)-C(8)-C(9)-C(4)	178.1(3)
N(1)-C(8)-C(9)-C(4)	-3.1(3)
O(1)-C(8)-C(9)-C(10)	-62.9(4)
N(1)-C(8)-C(9)-C(10)	115.8(3)
O(1)-C(8)-C(9)-C(11)	58.8(4)
N(1)-C(8)-C(9)-C(11)	-122.5(3)
C(4)-C(9)-C(11)-B(1)	-47.9(4)
C(8)-C(9)-C(11)-B(1)	64.5(3)
C(10)-C(9)-C(11)-B(1)	-175.7(3)
O(3)-B(1)-C(11)-C(9)	134.4(3)
O(2)-B(1)-C(11)-C(9)	-43.7(4)
C(14)-C(12)-C(13)-C(16)	-93.5(6)
O(2)-C(12)-C(13)-C(16)	143.0(5)
C(15)-C(12)-C(13)-C(16)	32.4(6)
C(14)-C(12)-C(13)-O(3)	139.3(4)
O(2)-C(12)-C(13)-O(3)	15.8(4)
C(15)-C(12)-C(13)-O(3)	-94.8(4)

_

C(14)-C(12)-C(13)-C(17)	30.2(5)
O(2)-C(12)-C(13)-C(17)	-93.3(4)
C(15)-C(12)-C(13)-C(17)	156.1(4)
O(1)-C(8)-N(1)-C(5)	-177.7(3)
C(9)-C(8)-N(1)-C(5)	3.5(3)
O(1)-C(8)-N(1)-C(7)	-8.2(5)
C(9)-C(8)-N(1)-C(7)	173.0(3)
C(6)-C(5)-N(1)-C(8)	178.2(3)
C(4)-C(5)-N(1)-C(8)	-2.4(3)
C(6)-C(5)-N(1)-C(7)	8.8(5)
C(4)-C(5)-N(1)-C(7)	-171.8(3)
O(3)-B(1)-O(2)-C(12)	2.0(4)
C(11)-B(1)-O(2)-C(12)	-179.7(3)
C(14)-C(12)-O(2)-B(1)	-142.5(4)
C(13)-C(12)-O(2)-B(1)	-11.3(4)
C(15)-C(12)-O(2)-B(1)	103.9(4)
O(2)-B(1)-O(3)-C(13)	8.8(4)
C(11)-B(1)-O(3)-C(13)	-169.5(3)
C(16)-C(13)-O(3)-B(1)	-147.5(5)
C(12)-C(13)-O(3)-B(1)	-15.3(4)
C(17)-C(13)-O(3)-B(1)	97.5(4)

Symmetry transformations used to generate equivalent atoms:

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(6)-H(6)O(1)#1	0.93	2.44	3.355(4)	167.9
C(2)-H(2)Cl(1)#2	0.93	2.98	3.874(3)	161.7

Table S8. Hydrogen bonds for A [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 -x+2,y+1/2,-z+3/2 #2 -x+1,-y+2,-z+1

(E) References

(a) R.-X. Liang, R.-Y. Chen, C. Zhong, J.-W. Zhu, Z.-Y. Cao and Y.-X. Jia, Org. Lett., 2020, 22, 3215; (b) W. Kong, Q Wang and J. Zhu, Angew. Chem. Int. Ed., 2016, 55, 9714;
(c) M.-B. Zhou, X.-C. Huang, Y. Y. Liu, R.-J. Song and J.-H. Li, Chem. Eur. J., 2014, 20, 1843.