Supporting Information

Decarboxylative C–H Alkylation of Heteroarenes by

Copper Catalysis

Xiaolong Zhu,^a Xuan Li,^a Xuehao Li,^a Jian Lv,^a Kai Sun,^b Xiuyan Song,^{*a} and Daoshan Yang^{*a}

^aKey Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China. E-mail: yangdaoshan@tsinghua.org.cn

^bCollege of Chemistry and Chemical Engineering, YanTai University, Yantai, 264005, P. R. China

Table of Contents

1. General considerations	
2. Experimental procedures	
3. Mechanistic Experiments	
4. Characterization of products	
References	
NMR spectra of the products	S46

1. General considerations

All reagents and solvents were obtained from commercial suppliers and used without further purification. Flash chromatography was performed on silica gel (200~300 mesh). ¹H NMR and ¹³C NMR spectra were recorded at 500 and 125 MHz on a BRUKER 500 spectrometer. Chemical shifts (δ) are expressed in parts per million (ppm), coupling constants (J) are in Hz. Proton and carbon magnetic resonance spectra (¹H NMR and ¹³C NMR) were recorded using tetramethylsilane (TMS) as the internal standard in DMSO- d_6 or in CDCl₃. Mass analyses and HRMS were obtained by ESI on a TOF mass analyzer.

2. Experimental procedures

2.1 Typical procedure for the preparation of imidazo[1,2-a]pyridines¹

A clean oven-dried 100 mL RB flask was charged with acetophenone (10 mmol, 1.0 equiv), 2-amino pyridine (12 mmol, 1.2 equiv), CuI (2 mmol) and 1,4-dioxane (30 mL). The resulting solution was stirred at 100 °C under ambient air until TLC indicated that the reaction was completed. Then, the reaction mixture was concentrated in *vacuo*. The crude residue was purified by chromatography on silica gel, eluting with EtOAc/ hexanes (1/2) to afford the desired product.

2.2 Typical procedure for the preparation of 2-phenyl imidazo [2,1-*b*] benzothiazole²

A mixture of 2-aminobenzothiazole (3g, 20 mmol) and 2-bromoacetophenone (3.96 g, 20 mmol) was refluxed in ethanol (50 mL) for 3-4 h. After cooling to room temperature, the solution was concentrated in vacuo and the residue diluted in water. The solution was made basic with sodium bicarbonate (15 mL) and extracted with dichloromethane. The dried organic layer was evaporated and then the residue was purified by column chromatography over silica gel (100-200 mesh) with (eluent hexane-ethyl acetate 60:40) to obtain the corresponding compound as a white solid.

2.3 Typical procedure for preparation of 2*H*-Indazole³

A solution of 2-picoline (0.93 g, 10 mmol, 1.0 equiv) and 2-bromoacetophenone (1.99 g, 10 mmol, 1.0 equiv) in acetone (50 mL) were added to a 100 mL round bottom flask and heated for 5 hours at 60 °C. The precipitate obtained by filtration separation. Then, the crude product was redissolved in 20 mL of hot water (60 °C). After that, K_2CO_3 (1.38 g, 10 mmol, 1.0 equiv) was added and heated at 60 °C for 5 hours. After filtration and drying in vacuo, a white solid compound was obtained in 50% overall yield (965 mg, 5 mmol) without further purification.

2.4 Typical procedure for preparation of 2-(methyl(phenyl)amino) acetic acid⁴

2-Chloroacetic acid (7.0 g, 74 mmol) was dissolved in a solution of K₂CO₃ (11.17 g,

80.8 mmol) in 30 mL of water, and then *N*-methylaniline (7.9 g, 73.7 mmol) in 25 mL of ethanol was slowly added to the above soultuon. After complete addition, the mixture was refluxed for 72 h under nitrogen atmosphere. The ethanol was then removed using a rotary evaporator. Then, HCl (10%) was added until the pH was ca 1. The precipitate was filtered off, washed with ethanol and then dried under vacuum. A white powder (6.4 g) was obtained (yield: 59%).

2.5 General procedure for the synthesis of 3

A 25 ml Schlenk tube equipped with a magnetic stirring bar was charged with Heterocyclic compound 1 (0.2 mmol), carboxylic acid 2 (0.3 mmol), Cu(OTf)₂ (5 mol%), dtbpy (10mol%), MnO₂ (0.2 mmol). The tube was evacuated twice and backfilled with nitrogen, and 2 mL DMF was added to the tube under nitrogen atmosphere. The tube was sealed with a nitrogen balloon and then the resulting mixture was heated in 120 °C stirring for 24 h. The cooled mixture was partitioned between water and ethyl acetate. The organic layer was separated, and the aqueous layer was extracted with ethyl acetate. The combined organic layers were dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by flash chromatography using petroleum ether/ethyl acetate as eluent to affording **3**. In general, the identity and purity of the products were confirmed by ¹H and ¹³C NMR spectroscopy.

2.6 General procedure for the synthesis of 5

A 25 ml Schlenk tube equipped with a magnetic stirring bar was charged with Heterocyclic compound 1 (0.2 mmol), carboxylic acid 4 (0.3 mmol), Cu(OTf)₂ (5 mol%), dtbpy (10 mol%), MnO₂ (0.2 mmol). The tube was evacuated twice and backfilled with nitrogen, and 2 mL DMF was added to the tube under nitrogen atmosphere. The tube was sealed with a nitrogen balloon and then the resulting mixture was heated in 120 °C stirring for 24 h. The cooled mixture was partitioned between water and ethyl acetate. The organic layer was separated, and the aqueous layer was extracted with ethyl acetate. The combined organic layers were dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by flash chromatography using petroleum ether/ethyl acetate as eluent to affording **5**. In general, the identity and purity of the products were confirmed by ¹H and ¹³C NMR spectroscopy.

2.7 Investigation of branched alkyl carboxylic acids under the standard conditions

A 25 ml Schlenk tube equipped with a magnetic stirring bar was charged with 2-phenylimidazo[1,2-*a*]pyridine **1a** (0.2 mmol), carboxylic acids (0.3 mmol), $Cu(OTf)_2$ (5 mol%), dtbpy (10mol%), MnO_2 (0.2 mmol). The tube was evacuated twice and backfilled with nitrogen, and 2 mL DMF was added to the tube under nitrogen atmosphere. The tube was sealed with a nitrogen balloon and then the resulting mixture was heated in 120 °C stirring for 24 h. No desired product was

detected by TLC.

3. Mechanistic Experiments

General procedure for the synthesis of *d*-1a

Under air, a sealed reaction tube was charged with 1a (0.2 mmol), D_2O (25.0 equiv) and 1.5 mL of toluene. The reaction mixture was stirred at 110 °C for 12 h. After the completion of the reaction, the solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography on a silica gel to give the product. The mixture was analyzed using ¹H NMR spectrometer.

Kinetic isotope effect experiments

Two flame dried reaction tubes equipped with magnetic stirring bars were each charged with indole-3-acetic acid (4a, 52.6 mg, 0.300 mmol), Cu(OTf)₂ (3.6 mg, 0.010 mmol), dtbpy (5.4 mg, 0.020 mmol), MnO₂ (17.4 mg, 0.020 mmol), respectively. 2-phenylimidazo[1,2-a]pyridine 1a (38.8 mg, 0.200mmol) and d-1a (40.0 mg, 0.200 mmol) were added to the above two reaction tubes, respectively. The tube was evacuated twice and backfilled with nitrogen, and 2 mL DMF was added to the tube under nitrogen atmosphere. The tube was sealed with a nitrogen balloon and then the resulting mixture was heated in 120 °C stirring for 0.5 h, then a small portion of the solution of the reaction 1 and reaction 2 were taken out via syringe for ¹H NMR analysis. Samples of 1 h, 2 h, 6 h, 10 h, 13 h were also made by the same procedure. Yields the determined $^{1}\mathrm{H}$ of product by NMR CDCl₃ were in using1,3,5-trimethoxybenzene as an internal standard.

Figure S2. Kinetic isotopic effect studies: parallel experiments.

Time (h)	5a (%) of Reaction 1	5a (%) of Reaction 2
0.5	trace	trace
1	10.5	7
2	17	14.5
6	44	38
10	51	43
13	62	60

Synthesis of 3a on a gram scale.

A 50 ml oven-dried Schlenk bottle equipped with a magnetic stirring bar was charged

with imidazo[1,2-*a*]pyridine **1a** (6 mmol, 1.17 g), dimethylglycine **2a** (9 mmol, 0.93 g), Cu(OTf)₂ (5 mol%), dtbpy (10 mol%), MnO₂ (0.2 mmol). The tube was evacuated and backfilled with nitrogen (three times), and 15 mL DMF was added to the tube under nitrogen atmosphere. The tube was sealed with a nitrogen balloon and then the resulting mixture was heated in 120 °C stirring for 24 h. The cooled mixture was partitioned between water and ethyl acetate. The organic layer was separated, and the aqueous layer was extracted with ethyl acetate. The combined organic layers were dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel using petroleum ether/ethyl acetate as eluent to give the corresponding product **3a** in 72% yield, 1.09 g.

Radical-trapping experiments

A 25 ml Schlenk tube equipped with a magnetic stirring bar was charged with **1a** (0.2 mmol), **2i** or **4a** (0.3 mmol), Cu(OTf)₂ (5 mol%), dtbpy (10mol%), MnO₂ (0.2 mmol), and TEMPO or BHT (0.4 mmol). The tube was evacuated twice and backfilled with nitrogen, and 2 mL DMF was added to the tube under nitrogen atmosphere. The tube was sealed with a nitrogen balloon and then the resulting mixture was heated in 120 °C stirring for 24 h. The cooled mixture was partitioned between water and ethyl acetate. The organic layer was separated, and the aqueous layer was extracted with ethyl acetate. The combined organic layers were dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by flash chromatography using petroleum ether/ethyl acetate as eluent to affording the desired products.

Stoichiometric reaction

A 25 ml Schlenk tube equipped with a magnetic stirring bar was charged with 1a (0.2 mmol), 4a (0.3 mmol), Cu(OTf)₂ (0.2 mmol), dtbpy (10mol%). The tube was evacuated twice and backfilled with nitrogen, and 2 mL DMF was added to the tube under nitrogen atmosphere. The tube was sealed with a nitrogen balloon and then the resulting mixture was heated in 120 °C stirring for 24 h. The cooled mixture was partitioned between water and ethyl acetate. The organic layer was separated, and the aqueous layer was extracted with ethyl acetate. The combined organic layers were dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by flash chromatography using petroleum ether/ethyl acetate as eluent to affording the **5a** in 87% yield.

Characterization of products

Characterization data of compounds 3a-5ab

N,N-Dimethyl-1-(2-phenylimidazo[1,2-*a*]pyridin-3-yl) methanamine (3a).⁵ Eluent petroleum ether/ethyl acetate (1:1). Yellow oil, 44 mg, 87% yield. ¹H NMR (CDCl₃, 500 MHz, ppm) δ 8.35 (d, *J* = 6.8 Hz, 1H), 7.79 (d, *J* = 7.5 Hz, 2H), 7.60 (d, *J* = 9.0 Hz, 1H), 7.43 (t, *J* = 7.6 Hz, 2H), 7.33 (t, *J* = 7.3 Hz, 1H), 7.18 – 7.13 (m, 1H), 6.76 (t, *J* = 6.8 Hz, 1H), 3.84 (s, 2H), 2.21 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz, ppm) δ 145.0, 144.8, 134.6, 128.9, 128.4, 127.6, 125.4, 124.5, 117.3, 117.1, 111.8, 52.8, 45.0. HRMS calcd for C₁₆H₁₈N₃⁺[M+H]⁺: 252.1495; found 252.1502.

1-(2-(4-Methoxyphenyl)imidazo[1,2-a]pyridin-3-yl)-N,N-dimethylmethanamine

(3b).⁵ Eluent petroleum ether/ethyl acetate (1:1). Yellow solid, 50 mg, 89% yield. ¹H

NMR (CDCl₃, 500 MHz, ppm) δ 8.35 (d, J = 6.8 Hz, 1H), 7.73 (d, J = 7.6 Hz, 2H), 7.60 (d, J = 9.0 Hz, 1H), 7.17 (t, J = 7.8 Hz, 1H), 7.01 – 6.96 (m, 2H), 6.77 (t, J = 6.7 Hz, 1H), 3.84 (d, J = 2.4 Hz, 5H), 2.23 (d, J = 1.7 Hz, 6H). ¹³C NMR (CDCl₃, 125 MHz, ppm) δ 159.4, 145.0, 144.8, 130.2, 127.3, 125.4, 124.5, 117.1, 116.9, 114.0, 111.9, 60.5, 55.4, 45.1. HRMS calcd for C₁₇H₂₀N₃O⁺ [M+H]⁺: 282.1601; found 282.1604.

N,N-Dimethyl-1-(2-(naphthalen-2-yl)imidazo[1,2-a]pyridin-3-yl)methanamine

(3c).⁵ Eluent petroleum ether/ethyl acetate (1:1). Yellow solid, 45 mg, 75% yield. ¹H NMR (CDCl₃, 500 MHz, ppm) δ 8.41 (d, *J* = 6.8 Hz, 1H), 8.29 (s, 1H), 7.98 (d, *J* = 8.4 Hz, 1H), 7.94-7.92 (m, 2H), 7.89 – 7.85 (m, 1H), 7.68 (d, *J* = 9.0 Hz, 1H), 7.53 – 7.47 (m, 2H), 7.25 – 7.20 (m, 1H), 6.83 (t, *J* = 6.7 Hz, 1H), 3.96 (s, 2H), 2.27 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz, ppm) δ 145.2, 144.8, 133.5, 132.9, 132.1, 128.4, 128.1, 128.0, 127.8, 127.0, 126.2, 126.2, 125.5, 124.8, 117.8, 117.3, 112.1, 53.0, 45.1. HRMS calcd for C₂₀H₂₀N₃⁺ [M+H]⁺: 302.1652; found 302.1650.

1-(2-(4-Chlorophenyl)imidazo[1,2-a]pyridin-3-yl)-N,N-dimethylmethanamine

(**3d**).⁵ Eluent petroleum ether/ethyl acetate (1:1). Light brown solid, 43 mg, 75% yield. ¹H NMR (CDCl₃, 500 MHz, ppm) δ 8.37 (d, *J* = 6.8 Hz, 1H), 7.76 (d, *J* = 8.5 Hz, 2H), 7.61 (d, *J* = 9.1 Hz, 1H), 7.42 (d, *J* = 8.4 Hz, 2H), 7.23–7.17 (m, 1H), 6.81 (t, *J* = 6.8 Hz, 1H), 3.84 (s, 2H), 2.23 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz, ppm) δ 145.1, 143.8, 133.7, 133.3, 130.2, 128.7, 125.4, 124.8, 117.6, 117.3, 112.1, 52.9, 45.1. HRMS calcd for C₁₆H₁₇ClN₃⁺ [M+H]⁺: 286.1106; found 286.1110.

1-(7-Chloro-2-(p-tolyl)imidazo[1,2-a]pyridin-3-yl)-N,N-dimethylmethanamine

(3e).⁶ Eluent petroleum ether/ethyl acetate (2:1). Yellow oil, 48 mg, 80% yield. ¹H NMR (CDCl₃, 500 MHz, ppm) δ 8.36 (d, J = 7.3 Hz, 1H), 7.65 (d, J = 8.3 Hz, 2H), 7.61 (s, 1H), 7.29–7.23 (m, 2H), 6.78–6.76 (m, 1H), 3.86 (s, 2H), 2.40 (s, 3H), 2.23 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz, ppm) δ 145.7, 144.7, 137.8, 131.3, 131.0, 129.3,

128.8, 126.0, 117.3, 115.9, 113.3, 52.9, 45.0, 21.4. HRMS calcd for C₁₇H₁₉ClN₃⁺ [M+H]⁺: 300.1262; found 300.1269.

N,N-Dimethyl-1-(7-methyl-2-(3-nitrophenyl)imidazo[1,2-*a*]pyridin-3-yl)methana mine (3f). Eluent petroleum ether/ethyl acetate (1:1). Yellow solid, 46 mg, 74% yield. ¹H NMR (CDCl₃, 500 MHz, ppm) δ 8.76 (s, 1H), 8.22 (t, *J* = 7.2 Hz, 2H), 8.18-8.16 (m, 1H), 7.59 (t, *J* = 7.9 Hz, 1H), 7.37 (s, 1H), 6.68–6.66 (m, 1H), 3.82 (s, 2H), 2.40 (s, 3H), 2.27 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz, ppm) δ 148.5, 145.6, 142.0, 136.7, 136.2, 134.6, 129.4, 124.4, 123.5, 122.2, 118.0, 115.9, 115.1, 52.7, 45.1, 21.5. HRMS calcd for C₁₇H₁₉N₄O₂⁺ [M+H]⁺: 311.1503; found 311.1506.

3-((Dimethylamino)methyl)-2-phenylimidazo[1,2-*a*]pyridine-6-carbonitrile (3g). Eluent petroleum ether/ethyl acetate (1:1). Brown solid, 23 mg, 41% yield. ¹H NMR (CDCl₃, 500 MHz, ppm) δ 9.02 (s, 1H), 7.76–7.73 (m, 2H), 7.68 (d, *J* = 9.3 Hz, 1H),

7.48 (t, *J* = 7.5 Hz, 2H), 7.41 (t, *J* = 7.4 Hz, 1H), 7.32–7.30 (m, 1H), 3.94 (s, 2H), 2.26 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz, ppm) δ 147.0, 144.3, 133.5, 132.7, 129.0, 128.8, 128.6, 124.4, 118.7, 118.2, 117.4, 97.9, 53.01, 45.1. HRMS calcd for C₁₇H₁₇N₄⁺ [M+H]⁺: 277.1448; found 277.1454.

1-(2-(Furan-2-yl)-7-methylimidazo[1,2-*a***]pyridin-3-yl)-***N***,***N***-dimethylmethanamin e (3h). Eluent petroleum ether/ethyl acetate (1:1). Yellow solid, 32 mg, 63% yield. ¹H NMR (CDCl₃, 500 MHz, ppm) \delta 8.18 (d,** *J* **= 6.9 Hz, 1H), 7.51 (s, 1H), 7.34 (s, 1H), 6.90 (d,** *J* **= 3.2 Hz, 1H), 6.64 (d,** *J* **= 6.9 Hz, 1H), 6.53 – 6.49 (m, 1H), 4.02 (s, 2H), 2.39 (s, 3H), 2.29 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz, ppm) \delta 150.3, 146.0, 142.1, 136.3, 135.8, 124.5, 116.2, 115.5, 114.9, 111.5, 108.1, 52.4, 45.1, 21.5. HRMS calcd for C₁₅H₁₈N₃O⁺ [M+H]⁺: 256.1444; found 256.1451.**

2-Phenyl-3-(piperidin-1-ylmethyl) imidazo[1,2-*a***]pyridine (3i).**⁷ Eluent petroleum ether/ethyl acetate (1:1). Yellow oil, 44 mg, 76% yield. ¹H NMR (CDCl₃, 500 MHz, ppm) δ 8.47 (d, *J* = 6.8 Hz, 1H), 7.81 (d, *J* = 7.5 Hz, 2H), 7.61 (d, *J* = 9.0 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.34 (t, *J* = 7.3 Hz, 1H), 7.20 – 7.14 (m, 1H), 6.77 (t, *J* = 6.7 Hz, 1H), 3.89 (s, 2H), 2.40 (s, 4H), 1.54 – 1.48 (m, 4H), 1.41 (s, 2H). ¹³C NMR (CDCl₃, 125 MHz, ppm) δ 145.1, 144.9, 134.8, 129.0, 128.5, 127.7, 125.8, 124.4, 117.2, 111.7, 54.3, 52.7, 26.1, 24.5. HRMS calcd for C₁₉H₂₂N₃⁺ [M+H]⁺: 292.1808; found 292.1816.

2-(Furan-2-yl)-7-methyl-3-(piperidin-1-ylmethyl)imidazo[1,2-*a*]pyridine (3j). Eluent petroleum ether/ethyl acetate (3:1). Yellow solid, 51 mg, 86% yield. ¹H NMR (CDCl₃, 500 MHz, ppm) δ 8.26 (d, *J* = 7.0 Hz, 1H), 7.51 (s, 1H), 7.32 (s, 1H), 6.87 (d, *J* = 3.4 Hz, 1H), 6.63–6.61 (m, 1H), 6.51-6.50 (m, 1H), 4.02 (s, 2H), 2.44 (s, 4H), 2.39 (s, 3H), 1.54–1.50 (m, 4H), 1.43 (s, 2H). ¹³C NMR (CDCl₃, 125 MHz, ppm) δ 150.4, 146.0, 142.0, 135.9, 124.9, 115.5, 114.6, 111.5, 107.9, 54.3, 52.2, 26.1, 24.5, 21.5. HRMS calcd for C₁₈H₂₂N₃O⁺ [M+H]⁺: 296.1757; found 296.1760.

2-(4-Methoxyphenyl)-3-(piperidin-1-ylmethyl)imidazo[1,2-*a***]pyridine (3k).⁸ Eluent petroleum ether/ethyl acetate (2:1). Yellow oil, 56 mg, 87% yield. ¹H NMR (CDCl₃, 500 MHz, ppm) \delta 8.44 (d,** *J* **= 6.8 Hz, 1H), 7.75 (d,** *J* **= 8.6 Hz, 2H), 7.60 (d,** *J* **= 9.0 Hz, 1H), 7.19–7.14 (m, 1H), 6.98 (d,** *J* **= 8.6 Hz, 2H), 6.77 (t,** *J* **= 6.7 Hz, 1H), 3.88 (s, 2H), 3.84 (s, 3H), 2.40 (s, 4H), 1.54–1.49 (m, 4H), 1.41 (s, 2H). ¹³C NMR (CDCl₃, 125 MHz, ppm) \delta 159.3, 144.9, 144.7, 130.2, 127.3, 125.6, 124.3, 117.0, 116.5, 113.9, 111.6, 55.4, 54.3, 52.6, 26.1, 24.5. HRMS calcd for C₂₀H₂₄N₃O⁺ [M+H]⁺: 322.1914; found 322.1919.**

2-(4-Bromophenyl)-3-(piperidin-1-ylmethyl)imidazo[1,2-*a***]pyridine (31). Eluent petroleum ether/ethyl acetate (2:1). Yellow oil, 59 mg, 80% yield. ¹H NMR (CDCl₃, 500 MHz, ppm) \delta 8.46 (d,** *J* **= 6.8 Hz, 1H), 7.73 (d,** *J* **= 8.3 Hz, 2H), 7.61 (d,** *J* **= 9.1 Hz, 1H), 7.58 (d,** *J* **= 8.4 Hz, 2H), 7.23–7.18 (m, 1H), 6.81 (t,** *J* **= 6.7 Hz, 1H), 3.87 (s, 2H), 2.40 (s, 4H), 1.56–1.51 (m, 4H), 1.43 (s, 2H). ¹³C NMR (CDCl₃, 125 MHz, ppm)**

δ 145.2, 143.8, 133.9, 132.5, 131.7, 130.6, 125.7, 124.7, 121.9, 117.3, 112.0, 54.4, 52.6, 26.2, 24.5. HRMS calcd for C₁₉H₂₁BrN₃⁺ [M+H]⁺: 370.0913; found 370.0920.

7-Methyl-2-(3-nitrophenyl)-3-(piperidin-1-ylmethyl)imidazo[1,2-*a***]pyridine (3m).** Eluent petroleum ether/ethyl acetate (1:1). Yellow solid, 60 mg, 86% yield. ¹H NMR (CDCl₃, 500 MHz, ppm) δ 8.88 (s, 1H), 8.26 (t, *J* = 7.0 Hz, 2H), 8.16 (d, *J* = 8.1 Hz, 1H), 7.58 (t, *J* = 7.9 Hz, 1H), 7.36 (s, 1H), 6.67 (d, *J* = 7.0 Hz, 1H), 3.82 (s, 2H), 2.44 (s, 4H), 2.40 (s, 3H), 1.59–1.53 (m, 4H), 1.43 (s, 2H). ¹³C NMR (CDCl₃, 125 MHz, ppm) δ 148.5, 145.6, 142.1, 136.8, 136.0, 134.5, 129.3, 124.3, 123.8, 122.1, 117.9, 115.8, 115.0, 54.3, 52.2, 26.1, 24.4, 21.5. HRMS calcd for C₂₀H₂₃N₄O₂⁺ [M+H]⁺: 351.1816; found 351.1827.

2-(Naphthalen-2-yl)-3-(piperidin-1-ylmethyl)imidazo[1,2-*a***]pyridine (3n). Eluent petroleum ether/ethyl acetate (1:1). Yellow oil, 60 mg, 88% yield. ¹H NMR (CDCl₃,**

500 MHz, ppm) δ 8.48 (d, J = 6.9 Hz, 1H), 8.34 (s, 1H), 8.03–7.99 (m, 1H), 7.94–7.90 (m, 2H), 7.88–7.84 (m, 1H), 7.67 (d, J = 9.0 Hz, 1H), 7.51–7.46 (m, 2H), 7.23–7.18 (m, 1H), 6.80 (t, J = 6.8 Hz, 1H), 3.96 (s, 2H), 2.44 (s, 4H), 1.57–1.52 (m, 4H), 1.43 (s, 2H). ¹³C NMR (CDCl₃, 125 MHz, ppm) δ 145.2, 144.9, 133.5, 132.9, 132.3, 128.4, 128.1, 128.0, 127.8, 127.0, 126.2, 126.1, 125.6, 124.5, 117.6, 117.2, 111.8, 54.4, 52.6, 26.2, 24.5. HRMS calcd for C₂₃H₂₄N₃⁺ [M+H]⁺: 342.1965; found 342.1970.

N-((2-Phenylimidazo[1,2-*a*]pyridin-3-yl)methyl)aniline (30).⁹ Eluent petroleum ether/ethyl acetate (5:1). Light yellow solid, 37 mg, 61% yield. ¹H NMR (DMSO-d6, 500 MHz, ppm) δ 8.34 (d, *J* = 6.8 Hz, 1H), 7.81 (d, *J* = 7.6 Hz, 2H), 7.65 (d, *J* = 9.0 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 2H), 7.38 (t, *J* = 7.3 Hz, 1H), 7.33–7.29 (m, 1H), 7.08 (t, *J* = 7.7 Hz, 2H), 6.97 (t, *J* = 6.7 Hz, 1H), 6.67 (d, *J* = 7.9 Hz, 2H), 6.59 (t, *J* = 7.2 Hz, 1H), 6.17 (br, t, *J* = 4.3 Hz, 1H), 4.63 (d, *J* = 4.5 Hz, 2H). ¹³C NMR (DMSO-d6, 125 MHz, ppm) δ 148.5, 144.1, 143.2, 134.4, 128.9, 128.6, 128.1, 127.7, 125.1, 124.9, 117.5, 116.7, 116.3, 112.5, 112.2, 37.0. HRMS calcd for C₂₀H₁₈N₃⁺ [M+H]⁺: 300.1495; found 300.1498.

N-((2-(P-tolyl)imidazo[1,2-*a*]pyridin-3-yl)methyl)aniline (3p).⁹ Eluent petroleum ether/ethyl acetate (5:1). White solid, 53 mg, 84% yield. ¹H NMR (CDCl₃, 500 MHz, ppm) δ 8.10 (d, *J* = 6.8 Hz, 1H), 7.68 (d, *J* = 7.9 Hz, 3H), 7.28 (m, 2H), 7.26–7.22 (m, 3H), 6.83 (t, *J* = 7.0 Hz, 2H), 6.76 (d, *J* = 8.0 Hz, 2H), 4.69 (s, 2H), 3.82 (br, s, 1H), 2.39 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz, ppm) δ 147.7, 145.2, 144.8, 138.1, 131.0, 129.6, 128.4, 125.1, 124.2, 118.5, 117.6, 116.3, 113.3, 112.6, 38.4, 21.4. HRMS calcd for C₂₁H₂₀N₃⁺ [M+H]⁺: 314.1652; found 314.1654.

N-((2-(4-Chlorophenyl)imidazo[1,2-*a*]pyridin-3-yl)methyl)aniline (3q).⁹ Eluent petroleum ether/ethyl acetate (5:1). White solid, 50 mg, 75% yield. ¹H NMR (CDCl₃, 500 MHz, ppm) δ 8.05 (d, *J* = 6.8 Hz, 1H), 7.68 (d, *J* = 8.3 Hz, 2H), 7.64 (d, *J* = 9.1 Hz, 1H), 7.36 (d, *J* = 8.3 Hz, 2H), 7.30-7.21 (m, 3H), 6.86–6.76 (m, 4H), 4.63 (s, 2H), 4.01 (br, s, 1H). ¹³C NMR (CDCl₃, 125 MHz, ppm) δ 147.6, 145.2, 143.5, 134.1,

132.4, 129.6, 129.5, 129.0, 125.3, 124.1, 118.6, 117.6, 116.6, 113.2, 112.8, 38.3. HRMS calcd for $C_{20}H_{17}ClN_3^+$ [M+H]⁺: 334.1106; found 334.1115.

N-((2-(5-Bromothiophen-2-yl)imidazo[1,2-*a*]pyridin-3-yl)methyl)aniline (3r). Eluent petroleum ether/ethyl acetate (5:1). White solid, 66 mg, 86% yield. ¹H NMR (CDCl₃, 500 MHz, ppm) δ 7.98 (d, *J* = 6.8 Hz, 1H), 7.53 (d, *J* = 9.0 Hz, 1H), 7.30 (t, *J* = 7.7 Hz, 2H), 7.19–7.15 (m, 1H), 7.00 (d, *J* = 3.8 Hz, 1H), 6.92 (d, *J* = 3.9 Hz, 1H), 6.86–6.82 (m, 3H), 6.76 (t, *J* = 6.7 Hz, 1H), 4.63 (s, 2H), 4.24 (br, s, 1H). ¹³C NMR (CDCl₃, 125 MHz, ppm) δ 147.8, 145.1, 138.5, 138.0, 130.8, 129.6, 125.5, 125.2, 124.0, 118.5, 117.3, 115.8, 113.2, 112.9, 112.8, 38.0. HRMS calcd for C₁₈H₁₅BrN₃S⁺ [M+H]⁺: 384.0165; found 384.0170.

N-Methyl-*N*-((2-phenylimidazo[1,2-*a*]pyridin-3-yl)methyl)aniline (3s).¹⁰ Eluent petroleum ether/ethyl acetate (5:1). Yellow oil, 43 mg, 73% yield. ¹H NMR (CDCl₃, 500 MHz, ppm) δ 8.06 (d, *J* = 6.8 Hz, 1H), 7.80 (d, *J* = 7.5 Hz, 2H), 7.69 (d, *J* = 9.0

Hz, 1H), 7.47 (t, J = 7.6 Hz, 2H), 7.39 (t, J = 7.4 Hz, 1H), 7.32 (t, J = 7.8 Hz, 2H), 7.25–7.21 (m, 1H), 6.99 (d, J = 8.2 Hz, 2H), 6.88 (t, J = 7.3 Hz, 1H), 6.78 (t, J = 6.8 Hz, 1H), 4.83 (s, 2H), 2.70 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz, ppm) δ 150.4, 145.6, 145.3, 134.2, 129.5, 128.8, 128.7, 128.1, 124.9, 124.7, 118.7, 117.5, 116.3, 114.6, 112.6, 46.0, 36.2. HRMS calcd for C₂₁H₂₀N₃⁺ [M+H]⁺: 314.1652; found 314.1655.

N-Methyl-*N*-((2-(p-tolyl)imidazo[1,2-*a*]pyridin-3-yl)methyl)aniline (3t). Eluent petroleum ether/ethyl acetate (5:1). Yellow oil, 52 mg, 80% yield. ¹H NMR (CDCl₃, 500 MHz, ppm) δ 8.03 (d, *J* = 6.8 Hz, 1H), 7.67-7.65 (m, *J* = 8.4, 5.2 Hz, 3H), 7.31–7.29 (m, 2H), 7.24 (d, *J* = 2.8 Hz, 2H), 7.22–7.18 (m, 1H), 6.97 (d, *J* = 8.2 Hz, 2H), 6.85 (t, *J* = 7.3 Hz, 1H), 6.75 (t, *J* = 6.8 Hz, 1H), 4.80 (s, 2H), 2.68 (s, 3H), 2.39 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz, ppm) δ 150.5, 145.8, 145.3, 137.9, 131.4, 129.5, 129.4, 128.7, 124.8, 124.6, 118.7, 117.5, 116.1, 114.6, 112.5, 46.1, 36.2, 21.4. HRMS calcd for C₂₂H₂₂N₃⁺ [M+H]⁺: 328.1808; found 328.1819.

3-Chloro-2-(3-((methyl(phenyl)amino)methyl)imidazo[1,2-*a***]pyridin-2-yl)phenol (3u**). Eluent petroleum ether/ethyl acetate (8:1). Yellow oil, 31 mg, 43% yield. ¹H NMR (CDCl₃, 500 MHz, ppm) δ 8.11 (d, J = 6.8 Hz, 1H), 7.65-7.63 (m, 2H), 7.38–7.30 (m, 3H), 7.21–7.19 (m, 1H), 7.04–7.02 (m, 3H), 6.94–6.87 (m, 2H), 4.88 (s, 2H), 2.75 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz, ppm) δ 156.4, 150.3, 143.4, 142.2, 129.7, 129.6, 127.2, 126.0, 124.5, 123.8, 119.6, 119.2, 118.4, 116.9, 116.4, 115.3, 113.6, 46.6, 36.8. HRMS calcd for C₂₁H₁₉ClN₃O⁺ [M+H]⁺: 364.1211; found 364.1216.

N-((2-(5-Bromothiophen-2-yl)imidazo[1,2-*a*]pyridin-3-yl)methyl)-*N*-methylanilin e (3v). Eluent petroleum ether/ethyl acetate (5:1). Light yellow solid, 60 mg, 75% yield. ¹H NMR (CDCl₃, 500 MHz, ppm) δ 7.99 (d, J = 6.9 Hz, 1H), 7.62 (d, J = 9.2 Hz, 1H), 7.34 (t, J = 7.9 Hz, 2H), 7.24–7.20 (m, 2H), 7.05 (d, J = 3.9 Hz, 1H), 7.02 (d, J = 8.2 Hz, 2H), 6.90 (t, J = 7.3 Hz, 1H), 6.77 (t, J = 6.8 Hz, 1H), 4.81 (s, 2H), 2.70 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz, ppm) δ 150.4, 145.3, 139.0, 138.9, 130.7, 129.6, 125.6, 125.4, 124.6, 119.1, 117.4, 115.9, 114.9, 113.0, 112.9, 46.1, 36.7. HRMS calcd for C₁₉H₁₇BrN₃S⁺ [M+H]⁺: 398.0321; found 398.0328.

N,N-Dimethyl-1-(2-phenylbenzo[d]imidazo[2,1-b]thiazol-3-yl)methanamine

(**3w**).¹¹ Eluent petroleum ether/ethyl acetate (8:1). Red solid, 25 mg, 41% yield. ¹H NMR (CDCl₃, 500 MHz, ppm) δ 8.06 (d, J = 8.2 Hz, 1H), 7.72 (d, J = 7.5 Hz, 2H), 7.67 (d, J = 7.9 Hz, 1H), 7.44 (t, J = 6.7 Hz, 3H), 7.37–7.29 (m, 2H), 3.92 (s, 2H), 2.32 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz, ppm) δ 147.9, 146.5, 134.6, 133.7, 130.4, 128.7, 128.5, 127.5, 126.2, 124.5, 123.9, 122.4, 115.5, 52.8, 44.8. HRMS calcd for C₁₈H₁₈N₃S⁺[M+H]⁺: 308.1216; found 308.1227.

3-((Dimethylamino)methyl)-4*H***-chromen-4-one (3x).** Eluent petroleum ether/ethyl acetate (1:1). Yellow solid, 30 mg, 73% yield. ¹H NMR (CDCl₃, 500 MHz, ppm) δ 8.22 (d, J = 7.9 Hz, 1H), 7.95 (s, 1H), 7.64 (t, J = 7.7 Hz, 1H), 7.44 (d, J = 8.4 Hz, 1H), 7.38 (t, J = 7.5 Hz, 1H), 3.39 (s, 2H), 2.30 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz, ppm) δ 177.6, 156.5, 154.7, 133.6, 126.1, 125.1, 124.1, 121.1, 118.2, 53.7, 45.5. HRMS calcd for C₁₂H₁₄NO₂⁺ [M+H]⁺: 204.1019; found 204.1024.

3-(Piperidin-1-ylmethyl)-4*H***-chromen-4-one (3y).** Eluent petroleum ether/ethyl acetate (1:1). Yellow oil, 28 mg, 58% yield. ¹H NMR (CDCl₃, 500 MHz, ppm) δ 8.24-8.22 (m, 1H), 8.00 (s, 1H), 7.67–7.63 (m, 1H), 7.45 (d, J = 8.4 Hz, 1H), 7.39 (t, J = 7.5 Hz, 1H), 3.46 (s, 2H), 2.49 (s, 4H), 1.63–1.57 (m, 4H), 1.46–1.42 (m, 2H). ¹³C NMR (CDCl₃, 125 MHz, ppm) δ 178.0, 156.6, 154.7, 133.5, 126.1, 125.1, 124.0, 120.8, 118.2, 54.7, 53.2, 26.1, 24.3. HRMS calcd for C₁₅H₁₈NO₂⁺ [M+H]⁺: 244.1332; found 244.1338.

3-((1*H***-Indol-3-yl)methyl)-2-phenylimidazo[1,2-***a***]pyridine (5a).¹² Eluent petroleum ether/ethyl acetate (2:1). White solid, 56 mg, 86% yield. ¹H NMR (CDCl₃, 500 MHz, ppm) δ 8.60 (s, 1H), 7.83 (d,** *J* **= 7.4 Hz, 2H), 7.78 (d,** *J* **= 6.7 Hz, 1H), 7.68–7.64 (m, 2H), 7.38 (t,** *J* **= 6.9 Hz, 3H), 7.31 (t,** *J* **= 7.2 Hz, 1H), 7.26–7.24 (m, 1H), 7.19–7.14 (m, 2H), 6.66 (t,** *J* **= 6.6 Hz, 1H), 6.57 (s, 1H), 4.54 (s, 2H). ¹³C NMR (CDCl₃, 125 MHz, ppm) δ 144.9, 143.2, 136.9, 134.6, 128.8, 128.3, 127.8, 127.1,**

124.3, 123.9, 122.6, 122.2, 119.8, 118.7, 118.4, 117.4, 112.2, 111.6, 111.2, 20.8. HRMS calcd for $C_{22}H_{18}N_3^+$ [M+H]⁺: 324.1495; found 324.1498.

3-((1*H***-Indol-3-yl)methyl)-2-(p-tolyl)imidazo[1,2-***a***]pyridine (5b). Eluent petroleum ether/ethyl acetate (1:1). White solid, 55 mg, 82% yield. ¹H NMR (CDCl₃, 500 MHz, ppm) \delta 8.42 (s, 1H), 7.77 (d,** *J* **= 6.9 Hz, 1H), 7.73 (d,** *J* **= 8.0 Hz, 2H), 7.68–7.64 (m, 2H), 7.39 (d,** *J* **= 8.1 Hz, 1H), 7.25 (t,** *J* **= 7.5 Hz, 1H), 7.21–7.13 (m, 4H), 6.66 (t,** *J* **= 6.6 Hz, 1H), 6.60 (s, 1H), 4.53 (s, 2H), 2.36 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz, ppm) \delta 144.9, 143.4, 137.5, 136.9, 131.8, 129.5, 128.2, 127.1, 124.0, 123.8, 122.6, 122.2, 119.8, 118.8, 118.0, 117.4, 112.0, 111.6, 111.3, 21.4, 20.9. HRMS calcd for C₂₃H₂₀N₃⁺ [M+H]⁺: 338.1652; found 338.1658.**

3-((1*H*-Indol-3-yl)methyl)-2-(4-methoxyphenyl)imidazo[1,2-*a*]pyridine (5c).

Eluent petroleum ether/ethyl acetate (2:1). Yellow solid, 56 mg, 79% yield. ¹H NMR

(CDCl₃, 500 MHz, ppm) δ 8.55 (s, 1H), 7.76–7.73 (m, 3H), 7.68–7.64 (m, 2H), 7.38 (d, *J* = 8.1 Hz, 1H), 7.24 (d, *J* = 7.8 Hz, 1H), 7.19–7.12 (m, 2H), 6.92 (d, *J* = 8.7 Hz, 2H), 6.65 (t, *J* = 6.7 Hz, 1H), 6.56 (s, 1H), 4.50 (s, 2H), 3.80 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz, ppm) δ 159.5, 144.6, 142.8, 136.9, 129.5, 127.0, 126.9, 124.3, 123.8, 122.5, 122.2, 119.7, 118.6, 117.7, 117.0, 114.3, 112.2, 111.6, 111.0, 55.4, 20.8. HRMS calcd for C₂₃H₂₀N₃O⁺[M+H]⁺: 354.1601; found 354.1606.

3-((1*H***-Indol-3-yl)methyl)-2-(4-chlorophenyl)imidazo[1,2-***a***]pyridine (5d). Eluent petroleum ether/ethyl acetate (2:1). White solid, 60 mg, 84% yield. ¹H NMR (DMSO-d₆, 500 MHz, ppm) \delta 10.89 (s, 1H), 8.18 (d,** *J* **= 6.8 Hz, 1H), 7.86 (d,** *J* **= 8.3 Hz, 2H), 7.61 (d,** *J* **= 9.0 Hz, 1H), 7.52 (d,** *J* **= 8.3 Hz, 2H), 7.34–7.30 (m, 2H), 7.26–7.22 (t,** *J* **= 15.7 Hz 1H), 7.06 (t,** *J* **= 7.5 Hz, 1H), 6.91 (m, 2H), 6.85 (t,** *J* **= 6.7 Hz, 1H), 4.59 (s, 2H). ¹³C NMR (DMSO-d₆, 125 MHz, ppm) \delta 143.9, 140.3, 136.6, 133.8, 132.1, 129.3, 128.7, 126.6, 124.6, 124.4, 122.8, 121.3, 119.3, 118.6, 118.2, 116.8, 112.1, 111.6, 109.4, 20.8. HRMS calcd for C₂₂H₁₇ClN₃⁺ [M+H]⁺: 358.1106; found 358.1112.**

3-((1*H***-Indol-3-yl)methyl)-2-(4-bromophenyl)imidazo[1,2-***a***]pyridine (5e). Eluent petroleum ether/ethyl acetate (2:1). White solid, 52 mg, 65% yield. ¹H NMR (DMSO-d₆, 500 MHz, ppm) \delta 10.89 (s, 1H), 8.17 (d,** *J* **= 6.8 Hz, 1H), 7.80 (d,** *J* **= 8.4 Hz, 2H), 7.63 (m, 3H), 7.35-7.30 (m, 2H), 7.26–7.22 (m, 1H), 7.06 (t,** *J* **= 7.5 Hz, 1H), 6.94–6.88 (m, 2H), 6.85 (t,** *J* **= 6.8 Hz, 1H), 4.58 (s, 2H). ¹³C NMR (DMSO-d₆, 125 MHz, ppm) \delta 143.8, 140.3, 136.6, 134.1, 131.6, 129.7, 126.6, 124.6, 124.5, 122.8, 121.3, 120.7, 119.3, 118.6, 118.2, 116.8, 112.1, 111.6, 109.4, 20.0. HRMS calcd for C₂₂H₁₇BrN₃⁺[M+H]⁺: 402.0600; found 402.0606.**

3-((1*H***-Indol-3-yl)methyl)-2-(3,4-dimethoxyphenyl)-7-methylimidazo[1,2-***a***]pyridi ne (5f). Eluent petroleum ether/ethyl acetate (1:1). White solid, 64 mg, 80% yield. ¹H**

NMR (CDCl₃, 500 MHz, ppm) δ 8.65 (s, 1H), 7.68–7.64 (m, 2H), 7.45 (s, 1H), 7.42–7.36 (m, 2H), 7.27–7.22 (m, 2H), 7.16 (t, J = 7.4 Hz, 1H), 6.82 (d, J = 8.3 Hz, 1H), 6.59 (s, 1H), 6.50 (d, J = 6.9 Hz, 1H), 4.50 (s, 2H), 3.85 (s, 3H), 3.74 (s, 3H), 2.36 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz, ppm) δ 149.2, 148.7, 145.1, 142.6, 136.9, 135.2, 127.6, 127.0, 123.0, 122.5, 122.2, 120.4, 119.7, 118.7, 117.3, 115.6, 114.7, 111.6, 111.5, 111.4, 111.2, 56.0, 55.8, 21.4, 20.8. HRMS calcd for C₂₅H₂₄N₃O₂⁺ [M+H]⁺: 398.1863; found 398.1870.

3-((1*H***-Indol-3-yl)methyl)-2-(furan-2-yl)-7-methylimidazo[1,2-***a***]pyridine (5g). Eluent petroleum ether/ethyl acetate (2:1). White solid, 52 mg, 80% yield. ¹H NMR (DMSO-d₆, 500 MHz, ppm) \delta 10.87 (s, 1H), 8.11 (d,** *J* **= 7.0 Hz, 1H), 7.81 (s, 1H), 7.32–7.28 (m, 3H), 7.11 (d,** *J* **= 1.1 Hz, 1H), 7.02 (t,** *J* **= 7.6 Hz, 1H), 6.86–6.83 (m, 2H), 6.67–6.63 (m, 2H), 4.69 (s, 2H), 2.29 (s, 3H). ¹³C NMR (DMSO-d₆, 125 MHz, ppm) \delta 150.6, 144.5, 142.6, 136.5, 135.0, 133.0, 126.7, 123.8, 123.3, 121.1, 118.5, 118.4, 118.3, 114.8, 114.4, 111.7, 111.5, 109.6, 107.4, 20.7, 19.6. HRMS calcd for C₂₁H₁₈N₃O⁺ [M+H]⁺: 328.1444; found 328.1452.**

3-((5-Methoxy-1*H***-indol-3-yl)methyl)-2-phenylimidazo[1,2-***a***]pyridine (5h).¹² Eluent petroleum ether/ethyl acetate (2:1). Yellow solid, 45 mg, 63% yield. ¹H NMR (CDCl₃, 500 MHz, ppm) \delta 8.59 (s, 1H), 7.84–7.80 (m, 3H), 7.68 (d,** *J* **= 9.0 Hz, 1H), 7.39 (t,** *J* **= 7.5 Hz, 2H), 7.33 (d,** *J* **= 7.4 Hz, 1H), 7.24 (d,** *J* **= 8.8 Hz, 1H), 7.21–7.10 (m, 1H), 6.99 (s, 1H), 6.89-6.87 (m, 1H), 6.67 (t,** *J* **= 6.7 Hz, 1H), 6.59 (s, 1H), 4.50 (s, 2H), 3.80 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz, ppm) \delta 154.2, 144.8, 143.0, 134.5, 132.0, 128.8, 128.4, 127.8, 127.3, 124.4, 123.9, 122.9, 118.5, 117.3, 112.8, 112.3, 112.2, 110.5, 100.3, 56.0, 20.8. HRMS calcd for C₂₃H₂₀N₃O⁺ [M+H]⁺: 354.1601; found 354.1604.**

3-((5-Methoxy-1*H***-indol-3-yl)methyl)-7-methyl-2-(3-nitrophenyl)imidazo[1,2-***a***]p yridine (5i). Eluent petroleum ether/ethyl acetate (2:1). Yellow solid, 37 mg, 45% yield. ¹H NMR (DMSO-d₆, 500 MHz, ppm) \delta 10.73 (s, 1H), 8.69 (s, 1H), 8.29 (d,** *J* **= 7.7 Hz, 1H), 8.18 (d,** *J* **= 7.3 Hz, 2H), 7.74 (t,** *J* **= 8.0 Hz, 1H), 7.42 (s, 1H), 7.21 (d,** *J*

= 8.4 Hz, 1H), 6.97 (s, 1H), 6.75 (d, J = 7.0 Hz, 1H), 6.68 (d, J = 8.3 Hz, 2H), 4.60 (s, 2H), 3.53 (s, 3H), 2.34 (s, 3H). ¹³C NMR (DMSO-d₆, 125 MHz, ppm) δ 153.0, 148.2, 144.4, 138.6, 136.8, 135.4, 133.5, 131.6, 130.3, 126.8, 124.1, 123.6, 121.9, 121.8, 119.9, 115.2, 114.9, 112.3, 111.5, 109.1, 99.8, 54.9, 20.8, 20.0. HRMS calcd for C₂₄H₂₁N₄O₃⁺ [M+H]⁺: 413.1608; found 413.1609.

3-((5-Bromo-1*H***-indol-3-yl)methyl)-2-phenylimidazo[1,2-***a***]pyridine (5j). Eluent petroleum ether/ethyl acetate (2:1). White solid, 70 mg, 87% yield. ¹H NMR (DMSO-d₆, 500 MHz, ppm) \delta 11.08 (s, 1H), 8.20 (d,** *J* **= 6.7 Hz, 1H), 7.83 (d,** *J* **= 7.5 Hz, 2H), 7.62 (d,** *J* **= 9.0 Hz, 1H), 7.49–7.45 (m, 3H), 7.37 (t,** *J* **= 7.4 Hz, 1H), 7.30 (d,** *J* **= 8.6 Hz, 1H), 7.26–7.21 (m, 1H), 7.17–7.15 (m, 1H), 6.99 (s, 1H), 6.86 (t,** *J* **= 6.7 Hz, 1H), 4.58 (s, 2H). ¹³C NMR (DMSO-d₆, 125 MHz, ppm) \delta 143.8, 141.6, 135.2, 134.8, 128.7, 128.4, 127.8, 127.5, 124.5, 124.4, 124.2, 123.7, 120.8, 118.6, 116.7, 113.5, 112.0, 111.2, 109.6, 19.7. HRMS calcd for C₂₂H₁₇BrN₃⁺ [M+H]⁺: 402.0600; found 402.0603.**

3-((5-Bromo-1*H*-indol-3-yl)methyl)-2-(4-methoxyphenyl)imidazo[1,2-*a*]pyridine

(5k). Eluent petroleum ether/ethyl acetate (2:1). White solid, 74 mg, 85% yield. ¹H NMR (DMSO-d₆, 500 MHz, ppm) δ 11.07 (s, 1H), 8.18 (d, *J* = 6.8 Hz, 1H), 7.75 (d, *J* = 8.7 Hz, 2H), 7.58 (d, *J* = 9.1 Hz, 1H), 7.44 (s, 1H), 7.29 (d, *J* = 8.6 Hz, 1H), 7.24–7.19 (m, 1H), 7.17-7.15 (m, 1H), 7.04 (d, *J* = 8.6 Hz, 2H), 6.98 (s, 1H), 6.83 (t, *J* = 6.7 Hz, 1H), 4.54 (s, 2H), 3.78 (s, 3H). ¹³C NMR (DMSO-d₆, 125 MHz, ppm) δ 158.8, 143.7, 141.6, 135.2, 129.0, 128.5, 127.2, 124.4, 124.4, 124.0, 123.7, 120.8, 117.8, 116.5, 114.2, 113.5, 111.8, 111.2, 109.7, 55.1, 19.7. HRMS calcd for C₂₃H₁₉BrN₃O⁺ [M+H]⁺: 432.0706; found 432.0711.

3-((5-Bromo-1*H***-indol-3-yl)methyl)-2-(3,4-dimethoxyphenyl)-7-methylimidazo[1, 2-***a***]pyridine (5l). Eluent petroleum ether/ethyl acetate (1:1). Brown solid, 80 mg, 84% yield. ¹H NMR (DMSO-d₆, 500 MHz, ppm) δ 11.09 (s, 1H), 8.12 (d,** *J* **= 6.7 Hz, 1H), 7.47–7.35 (m, 3H), 7.30 (d,** *J* **= 8.3 Hz, 2H), 7.16 (d,** *J* **= 8.3 Hz, 1H), 7.04–7.01**

(m, 2H), 6.69 (d, J = 6.5 Hz, 1H), 4.53 (s, 2H), 3.78 (s, 3H), 3.72 (s, 3H), 2.34 (s, 3H). ¹³C NMR (DMSO-d₆, 125 MHz, ppm) δ 148.9, 148.3, 144.0, 141.3, 135.2, 134.4, 128.5, 127.7, 124.5, 123.7, 120.9, 119.8, 117.4, 114.8, 114.3, 113.5, 111.9, 111.4, 111.2, 110.0, 55.5, 55.3, 20.8, 19.8. HRMS calcd for C₂₅H₂₃BrN₃O₂⁺ [M+H]⁺: 476.0968; found 476.0973.

3-((5-Bromo-1*H***-indol-3-yl)methyl)-2-(5-bromothiophen-2-yl)imidazo[1,2-***a***]pyrid ine (5m). Eluent petroleum ether/ethyl acetate (2:1). Red solid, 87 mg, 89% yield. ¹H NMR (DMSO-d₆, 500 MHz, ppm) \delta 11.09 (s, 1H), 8.28 (d,** *J* **= 6.8 Hz, 1H), 7.58 (d,** *J* **= 9.0 Hz, 1H), 7.52 (s, 1H), 7.31–7.24 (m, 4H), 7.17-7.15 (m, 1H), 7.02 (s, 1H), 6.88 (t,** *J* **= 6.5 Hz, 1H), 4.60 (s, 2H). ¹³C NMR (DMSO-d₆, 125 MHz, ppm) \delta 143.8, 140.1, 135.4, 135.2, 131.4, 128.4, 124.9, 124.6, 123.70, 120.8, 118.4, 116.5, 113.6, 112.4, 111.3, 111.2, 109.1, 19.5. HRMS calcd for C₂₀H₁₄Br₂N₃S⁺ [M+H]⁺: 485.9270; found 485.9276.**

3-((5-Bromo-1*H***-indol-3-yl)methyl)-2-(furan-2-yl)-7-methylimidazo[1,2-***a***]pyridin e (5n**). Eluent petroleum ether/ethyl acetate (2:1). White solid, 66 mg, 81% yield. ¹H NMR (DMSO-d₆, 500 MHz, ppm) δ 11.08 (s, 1H), 8.14 (d, *J* = 7.0 Hz, 1H), 7.82 (s, 1H), 7.47 (d, *J* = 1.1 Hz, 1H), 7.31–7.27 (m, 2H), 7.17 (d, *J* = 1.5 Hz, 1H), 7.14-7.12 (m, 1H), 6.87 (d, *J* = 3.2 Hz, 1H), 6.68 (d, *J* = 7.0 Hz, 1H), 6.66-6.65 (m, 1H), 4.66 (s, 2H), 2.30 (s, 3H). ¹³C NMR (DMSO-d₆, 125 MHz, ppm) δ 150.4, 144.5, 142.6, 135.1, 135.1, 133.1, 128.5, 124.9, 123.8, 123.6, 120.8, 118.0, 114.8, 114.5, 113.5, 111.7, 111.1, 109.6, 107.5, 20.8, 19.3. HRMS calcd for C₂₁H₁₇BrN₃O⁺ [M+H]⁺: 406.0550; found 406.0552 .

3-((1-Methyl-1*H*-indol-3-yl)methyl)-2-phenylimidazo[1,2-*a*]pyridine (50).¹² Eluent petroleum ether/ethyl acetate (2:1). Yellow solid, 39 mg, 58% yield. ¹H NMR (CDCl₃, 500 MHz, ppm) δ 7.86 (d, *J* = 7.6 Hz, 2H), 7.81 (d, *J* = 6.8 Hz, 1H), 7.71 (d, *J* = 9.0

Hz, 1H), 7.66 (d, J = 7.9 Hz, 1H), 7.42 (t, J = 7.5 Hz, 2H), 7.36–7.28 (m, 3H), 7.19 (t, J = 7.6 Hz, 2H), 6.70 (t, J = 6.7 Hz, 1H), 6.51 (s, 1H), 4.55 (s, 2H), 3.67 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz, ppm) δ 144.9, 143.3, 137.6, 134.7, 128.8, 128.3, 127.8, 127.5, 126.8, 124.1, 123.9, 122.2, 119.3, 118.9, 118.4, 117.6, 112.1, 109.7, 109.6, 32.9, 20.8. HRMS calcd for C₂₃H₂₀N₃⁺ [M+H]⁺: 338.1652; found 338.1655.

2-(4-Bromophenyl)-3-((1-methyl-1*H*-indol-3-yl)methyl)imidazo[1,2-a]pyridine

(5p). Eluent petroleum ether/ethyl acetate (2:1). Yellow solid, 54 mg, 65% yield. ¹H NMR (CDCl₃, 500 MHz, ppm) δ 7.81 (d, *J* = 6.9 Hz, 1H), 7.74–7.62 (m, 4H), 7.53 (d, *J* = 8.3 Hz, 2H), 7.36–7.29 (m, 2H), 7.21-7.17 (m, 2H), 6.71 (t, *J* = 6.7 Hz, 1H), 6.48 (s, 1H), 4.52 (s, 2H), 3.67 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz, ppm) δ 145.0, 142.2, 137.6, 133.7, 131.9, 129.8, 127.4, 126.7, 124.4, 123.9, 122.3, 121.9, 119.4, 118.8, 118.7, 117.6, 116.0, 112.3, 111.9, 109.7, 109.4, 32.9, 20.8. HRMS calcd for C₂₃H₁₉BrN₃⁺ [M+H]⁺: 416.0757; found 416.0760.

2-(4-Bromophenyl)-3-((2-methyl-1*H*-indol-3-yl)methyl)imidazo[1,2-*a*]pyridine

(5q). Eluent petroleum ether/ethyl acetate (2:1). White solid, 74 mg, 89% yield. ¹H NMR (DMSO-d₆, 500 MHz, ppm) δ 10.88 (s, 1H), 7.94 (d, J = 6.8 Hz, 1H), 7.81 (d, J = 8.3 Hz, 2H), 7.65 (d, J = 8.3 Hz, 2H), 7.60 (d, J = 9.0 Hz, 1H), 7.23–7.17 (m, 2H), 6.90 (t, J = 7.5 Hz, 1H), 6.81–6.77 (m, 2H), 6.70 (t, J = 7.4 Hz, 1H), 4.54 (s, 2H), 2.18 (s, 3H).¹³C NMR (DMSO-d₆, 125 MHz, ppm) δ 143.7, 140.6, 135.2, 134.2, 132.4, 131.6, 130.0, 127.8, 124.4, 120.7, 120.1, 119.4, 118.4, 116.9, 116.8, 112.1, 110.6, 104.1, 19.6, 11.2. HRMS calcd for C₂₃H₁₉BrN₃⁺ [M+H]⁺: 416.0757; found 416.0766.

3-((2-Methyl-1*H*-indol-3-yl)methyl)-2-(naphthalen-2-yl)imidazo[1,2-a]pyridine

(5r). Eluent petroleum ether/ethyl acetate (2:1). White solid, 71 mg, 91% yield. ¹H NMR (DMSO-d₆, 500 MHz, ppm) δ 10.87 (s, 1H), 8.38 (s, 1H), 8.09 (d, *J* = 8.5 Hz,
1H), 8.01 (t, J = 7.5 Hz, 2H), 7.94-7.91 (m, 2H), 7.64 (d, J = 9.1 Hz, 1H), 7.52–7.50 (m, 2H), 7.25–7.18 (m, 2H), 6.91–6.86 (m, 2H), 6.82 (t, J = 6.8 Hz, 1H), 6.70 (t, J = 7.5 Hz, 1H), 4.68 (s, 2H), 2.21 (s, 3H). ¹³C NMR (DMSO-d₆, 125 MHz, ppm) δ 143.7, 141.6, 135.2, 133.1, 132.5, 132.4, 132.2, 128.1, 128.0, 127.9, 127.6, 126.6, 126.4, 126.1, 124.4, 124.2, 120.1, 119.6, 118.4, 117.1, 116.8, 112.0, 110.6, 104.6, 19.7, 11.3. HRMS calcd for C₂₇H₂₂N₃⁺ [M+H]⁺: 388.1808; found 388.1819.

3-Chloro-2-(3-((2-methyl-1*H***-indol-3-yl)methyl)imidazo[1,2-***a***]pyridin-2-yl)pheno I (5s).** Eluent petroleum ether/ethyl acetate (5:1). White solid, 26 mg, 34% yield. ¹H NMR (DMSO-d₆, 500 MHz, ppm) δ 12.39 (s, 1H), 10.89 (s, 1H), 8.26 (d, *J* = 6.7 Hz, 1H), 7.72 (d, *J* = 9.0 Hz, 1H), 7.58 (s, 1H), 7.36 (t, *J* = 7.8 Hz, 1H), 7.22 (t, *J* = 8.7 Hz, 2H), 7.00–6.96 (m, 2H), 6.91–6.88 (m, 1H), 6.69 (d, *J* = 3.0 Hz, 2H), 4.57 (s, 2H), 2.26 (s, 3H). ¹³C NMR (DMSO-d₆, 125 MHz, ppm) δ 155.4, 142.1, 138.3, 135.2, 132.5, 128.7, 127.6, 127.4, 125.5, 124.4, 122.4, 120.2, 120.1, 120.0, 118.5, 116.8, 116.2, 113.1, 110.6, 104.2, 19.8, 11.3. HRMS calcd for C₂₃H₁₉ClN₃O⁺ [M+H]⁺: 388.1211; found 388.1221.

7-Chloro-3-((2-methyl-1*H*-indol-3-yl)methyl)-2-(p-tolyl)imidazo[1,2-a]pyridine

(5t). Eluent petroleum ether/ethyl acetate (2:1). White solid, 66 mg, 85% yield. ¹H NMR (DMSO-d₆, 500 MHz, ppm) δ 10.87 (s, 1H), 7.90 (d, *J* = 7.4 Hz, 1H), 7.74 (d, *J* = 8.0 Hz, 3H), 7.28 (d, *J* = 7.9 Hz, 2H), 7.20 (d, *J* = 8.0 Hz, 1H), 6.92–6.85 (m, 2H), 6.76 (d, *J* = 7.9 Hz, 1H), 6.70 (t, *J* = 7.4 Hz, 1H), 4.54 (s, 2H), 2.34 (s, 3H), 2.18 (s, 3H).¹³C NMR (DMSO-d₆, 125 MHz, ppm) δ 143.2, 142.8, 136.9, 135.2, 132.4, 131.7, 129.3, 129.0, 128.0, 127.7, 125.2, 120.1, 119.3, 118.4, 116.9, 115.3, 112.9, 110.6, 104.0, 20.8, 19.6, 11.2. HRMS calcd for C₂₄H₂₁ClN₃⁺ [M+H]⁺: 386.1419; found 386.1422.

2-(3,4-Dimethoxyphenyl)-7-methyl-3-((2-methyl-1*H*-indol-3-yl)methyl)imidazo[1,

2-a]pyridine (5u). Eluent petroleum ether/ethyl acetate (1:1). Yellow solid, 63 mg,

76% yield. ¹H NMR (DMSO-d₆, 500 MHz, ppm) δ 10.83 (s, 1H), 7.82 (d, *J* = 7.1 Hz, 1H), 7.43–7.31 (m, 3H), 7.20 (d, *J* = 8.1 Hz, 1H), 7.01 (d, *J* = 8.3 Hz, 1H), 6.93–6.83 (m, 2H), 6.72 (t, *J* = 7.7 Hz, 1H), 6.61 (d, *J* = 7.0 Hz, 1H), 4.50 (s, 2H), 3.77 (s, 3H), 3.70 (s, 3H), 2.30 (s, 3H), 2.14 (s, 3H).¹³C NMR (DMSO-d₆, 125 MHz, ppm) δ 148.7, 148.2, 143.8, 141.5, 135.1, 134.1, 132.2, 127.9, 123.4, 120.1, 118.3, 117.6, 117.1, 114.8, 114.2, 111.8, 111.6, 110.5, 104.7, 55.5, 55.3, 20.7, 19.7, 11.2. HRMS calcd for C₂₆H₂₆N₃O₂⁺ [M+H]⁺: 412.2020; found 412.2026.

2-(5-Bromothiophen-2-yl)-3-((2-methyl-1*H***-indol-3-yl)methyl)imidazo[1,2-***a***]pyri dine (5v). Eluent petroleum ether/ethyl acetate (2:1). White solid, 76 mg, 90% yield. ¹H NMR (DMSO-d₆, 500 MHz, ppm) \delta 10.89 (s, 1H), 7.93 (d,** *J* **= 6.9 Hz, 1H), 7.56 (d,** *J* **= 9.0 Hz, 1H), 7.33 (d,** *J* **= 3.9 Hz, 1H), 7.26–7.12 (m, 3H), 6.91 (t,** *J* **= 8.1 Hz, 2H), 6.81 (t,** *J* **= 6.7 Hz, 1H), 6.74 (t,** *J* **= 7.5 Hz, 1H), 4.56 (s, 2H), 2.24 (s, 3H). ¹³C NMR (DMSO-d₆, 125 MHz, ppm) \delta 143.6, 140.4, 135.6, 135.2, 132.5, 131.4, 127.8, 124.8, 124.7, 124.3, 120.2, 118.7, 118.5, 117.0, 116.5, 112.4, 111.2, 110.6, 104.0, 19.3, 11.3. HRMS calcd for C₂₁H₁₇BrN₃S⁺ [M+H]⁺: 422.0321; found 422.0331.**

3-((5-Methoxy-1*H*-indol-3-yl)methyl)-2-phenylbenzo[*d*]imidazo[2,1-*b*]thiazole

(5w). Eluent petroleum ether/ethyl acetate (3:1). Brown solid, 35 mg, 43% yield. ¹H NMR (DMSO-d₆, 500 MHz, ppm) δ 10.75 (s, 1H), 8.00–7.98 (m, 1H), 7.70 (d, J = 7.7 Hz, 2H), 7.55–7.53 (m, 1H), 7.42 (t, J = 7.5 Hz, 2H), 7.31 (t, J = 3.7 Hz, 3H), 7.25 (d, J = 8.8 Hz, 1H), 7.00 (s, 1H), 6.92 (s, 1H), 6.75 (d, J = 8.8 Hz, 1H), 4.63 (s, 2H), 3.69 (s, 3H).¹³C NMR (DMSO-d₆, 125 MHz, ppm) δ 153.2, 145.9, 143.2, 134.5, 132.4, 131.8, 129.4, 128.6, 127.1, 127.0, 126.7, 126.3, 124.9, 124.6, 123.7, 123.2, 113.6, 112.4, 111.6, 110.1, 100.0, 55.3, 21.7. HRMS calcd for C₂₅H₂₀N₃OS⁺ [M+H]⁺: 410.1322; found 410.1328.

2-(5-Bromothiophen-2-yl)-3-((2-methyl-1*H*-indol-3-yl)methyl)imidazo[1,2-*a*]pyri

dine (5x). Eluent petroleum ether/ethyl acetate (3:1). Brown solid, 47 mg, 51% yield.

¹H NMR (DMSO-d₆, 500 MHz, ppm) δ 11.12 (s, 1H), 8.01–7.96 (m, 1H), 7.77 (s, 1H), 7.67 (d, *J* = 7.7 Hz, 2H), 7.50–7.46 (m, 1H), 7.41 (t, *J* = 7.6 Hz, 2H), 7.36–7.28 (m, 4H), 7.25-7.22 (m, 1H), 7.00 (s, 1H), 4.64 (s, 2H). ¹³C NMR (DMSO-d₆, 125 MHz, ppm) δ 146.0, 143.3, 135.5, 134.4, 132.4, 129.4, 128.7, 128.2, 127.2, 127.0, 126.4, 124.8, 124.6, 124.0, 122.6, 113.7, 113.5, 111.4, 110.5, 21.4. HRMS calcd for C₂₄H₁₇BrN₃S⁺ [M+H]⁺: 458.0321; found 458.0327.

3-((2-Phenylindolizin-3-yl)methyl)-1*H***-indole (5y).** Eluent petroleum ether/ethyl acetate (8:1). Blue solid, 57 mg, 88% yield. ¹H NMR (CDCl₃, 500 MHz, ppm) δ 7.84 (s, 1H), 7.62–7.56 (m, 2H), 7.53 (d, *J* = 7.5 Hz, 2H), 7.41 (d, *J* = 8.9 Hz, 1H), 7.34 (t, *J* = 7.1 Hz, 3H), 7.25–7.20 (m, 2H), 7.15 (t, *J* = 7.4 Hz, 1H), 6.69–6.59 (m, 2H), 6.51 (s, 1H), 6.33 (t, *J* = 6.7 Hz, 1H), 4.43 (s, 2H). ¹³C NMR (CDCl₃, 125 MHz, ppm) δ 136.8, 136.7, 132.4, 128.8, 128.7, 128.4, 127.2, 126.5, 122.8, 122.4, 122.2, 119.6, 119.0, 118.9, 118.5, 116.6, 112.5, 111.4, 110.2, 98.4, 21.4. HRMS calcd for C₂₃H₁₉N₂+ [M+H]⁺: 323.1543; found 323.1557.

2-Methyl-3-((2-phenylindolizin-3-yl)methyl)-1*H***-indole** (5z). Eluent petroleum ether/ethyl acetate (8:1). Red solid, 51 mg, 76% yield. ¹H NMR (DMSO-d₆, 500 MHz, ppm) δ 10.80 (s, 1H), 7.62 (d, *J* = 7.1 Hz, 1H), 7.56 (d, *J* = 7.6 Hz, 2H), 7.46-7.41 (m, 3H), 7.29 (t, *J* = 7.4 Hz, 1H), 7.20 (d, *J* = 8.0 Hz, 1H), 6.90 (t, *J* = 7.5 Hz, 1H), 6.77 (d, *J* = 7.9 Hz, 1H), 6.70 (t, *J* = 7.5 Hz, 1H), 6.67–6.60 (m, 2H), 6.43 (t, *J* = 6.7 Hz, 1H), 4.43 (s, 2H), 2.08 (s, 3H). ¹³C NMR (DMSO-d₆, 125 MHz, ppm) δ 136.5, 135.1, 132.0, 131.3, 128.7, 128.6, 128.0, 127.5, 126.3, 122.6, 120.0, 118.7, 118.3, 117.2, 116.3, 110.4, 110.1, 104.9, 98.3, 20.3, 11.0. HRMS calcd for C₂₄H₂₁N₂⁺ [M+H]⁺: 337.1699; found 337.1704.

5-Methoxy-3-((2-phenylindolizin-3-yl)methyl)-1*H*-indole (5aa). Eluent petroleum ether/ethyl acetate (8:1). Blue solid, 58 mg, 82% yield. ¹H NMR (DMSO-d₆, 500

MHz, ppm) δ 10.67 (s, 1H), 7.90 (d, J = 7.1 Hz, 1H), 7.58 (d, J = 7.5 Hz, 2H), 7.44 (t, J = 7.8 Hz, 3H), 7.30 (t, J = 7.4 Hz, 1H), 7.19 (d, J = 8.7 Hz, 1H), 6.89 (s, 1H), 6.70–6.44 (m, 3H), 6.60 (d, J = 1.9 Hz, 1H), 6.50 (t, J = 6.7 Hz, 1H), 4.45 (s, 2H), 3.55 (s, 3H). ¹³C NMR (DMSO-d₆, 125 MHz, ppm) δ 152.9, 136.4, 131.6, 131.5, 128.7, 128.4, 127.0, 126.9, 126.3, 123.4, 122.9, 118.9, 118.6, 116.4, 112.1, 111.3, 110.0, 109.9, 100.0, 98.2, 55.1, 20.7. HRMS calcd for C₂₄H₂₁N₂O⁺ [M+H]⁺: 353.1648; found 353.1650.

5-Bromo-3-((2-phenylindolizin-3-yl)methyl)-1*H***-indole (5ab).** Eluent petroleum ether/ethyl acetate (8:1). Blue solid, 54 mg, 67% yield. ¹H NMR (CDCl₃, 500 MHz, ppm) δ 7.96 (s, 1H), 7.74 (s, 1H), 7.59 (d, *J* = 7.1 Hz, 1H), 7.55 (d, *J* = 7.6 Hz, 2H), 7.45 (d, *J* = 8.9 Hz, 1H), 7.40 (t, *J* = 7.5 Hz, 2H), 7.33–7.29(m, 2H), 7.20 (d, *J* = 8.6 Hz, 1H), 6.71–6.66 (m, 2H), 6.52 (s, 1H), 6.40 (t, *J* = 6.7 Hz, 1H), 4.40 (s, 2H). ¹³C NMR (CDCl₃, 125 MHz, ppm) δ 136.5, 135.3, 132.44, 128.9, 128.8, 128.7, 128.5, 126.6, 125.2, 123.4, 122.6, 121.5, 119.1, 118.0, 116.6, 112.9, 112.8, 112.3, 110.3, 98.5, 21.1. HRMS calcd for C₂₃H₁₈BrN₂⁺ [M+H]⁺: 401.0648; found 401.0649.

References:

- K. Pericherla, P. Kaswan, P. Khedar, B. Khungar and A. Kumar, Copper Catalyzed Tandem Oxidative C-H Amination/Cyclizations: Direct Access to Imidazo[1,2-a]pyridines, RSC Adv., 2013, 3, 18923.
- (2) S. K. Maddili, R. Katla, V. K. Kannekanti, N. K. Bejjanki, B. Tuniki, C.-H. Zhou and H. Gandham, Molecular Interaction of Novel Benzothiazolyl Triazolium Analogues with Calf Thymus DNA and HSA-their Biological Investigation as Potent Antimicrobial Agents, *Eur. J. Med. Chem,*. 2018, 150, 228.
- (3) B. Li, Z. Chen, H. Cao and H. Zhao, Transition-Metal-Free Regioselective Cross-Coupling: Controlled Synthesis of Mono- or Dithiolation Indolizines, *Org. Lett.* 2018, 20, 3291.
- (4) S. Wang, L. Zhao, X. Zhang, X. Zhang, Z. Shi, Z. Cui, X. Chen and Y. Yang, Electric-Field-Induced Layer-By-Layer Fabrication of Stable Second-Order Nonlinear Optical Films, Polym Int., 2009, 58, 933.
- (5) P. Ghosh, S. Samanta, S. Ghosh, S. Jana and A. Hajra, Aminomethylation of Imidazopyridines Using N,N-Dimethylformamide as an Aminomethylating Reagent under Cu(II)-Catalysis, *Tetrahedron Lett.*, **2020**, *61*, 10.1016/j.tetlet.2020.152581.
- (6) R. Chinnapillai, R. R. Nallamaddi, R. R. Daliparthi and E. Poguri, An Elegant Method for the Preparation of 3- Cyanomethyl Derivatives of Imidazo[1, 2- a] pyridines, *Pharma Chem.*, 2012, 4, 2466.
- (7) D. Singh, G. Kumar, D. Dheer, Jyoti; M. Kushwaha, Q. N. Ahmed and R. Shankar, BCl₃-Mediated C-N, C-S, and C-O Bond Formation of Imidazo[1,2-*a*]pyridine Benzylic Ethers, *ACS Omega.*, **2019**, *4*, 4530.
- (8) G. Naresh, N. R. Lakkaniga, A. Kharbanda, W. Yan, B. Frett and H. Y. Li, Use of Imidazo[1,2-*a*]pyridine as a Carbonyl Surrogate in a Mannich-Like, Catalyst Free, One-Pot Reaction, *Eur. J. Org. Chem.*, **2019**, *2019*, 770.

- (9) T. Shi, K. Sun, X. Chen, Z.-X. Zhang, X.-Q. Huang, Y.-Y. Peng, L.-B. Qu and B. Yu, Recyclable Perovskite as Heterogeneous Photocatalyst for Aminomethylation of Imidazo Fused Heterocycles, *Adv. Synth. Catal.*, **2020**, *362*, 2143.
- (10) K. Golam, B. A. Kumar, H. Alakananda, Visible-Light-Promoted C(sp³)–C(sp²)
 Cross-Dehydrogenative Coupling of Tertiary Amine with Imidazopyridine, *J. Org. Chem.*, **2018**, *83*, 10619.
- (11) A. N. A. El-Shorbagi, S. Sakai, M. A. El-Gendy, N. M. Omar and H. H. Farag, Imidazo [2, 1-b] benzothiazoles.I, *Chem. Pharm. Bull.*, **1988**, *36*, 4760.
- (12) S. Mondal, S. Samanta, S. Santra, A. K. Bagdi and A. Hajra, N,N-Dimethylformamide Methylenating Reagent: Synthesis as а of Heterodiarylmethanes via Copper-Catalyzed Coupling between Imidazo[1,2-a]pyridines and Indoles/N,N-Dimethylaniline, Adv. Synth. Catal., 2016, 358, 3633.

NMR spectra of the products

S46

S51

S52

90 80 f1 (ppm)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

f1 (ppm)

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm)

