Palladium-catalyzed [2+2+1] annulation: access to chromone fused cyclopentanones with cyclopropenone as the CO source

Wen-Qing Zhu,^{‡a} Yu-Chen Fang,^{‡a} Wen-Yong Han,^{*b,c} Fei Li,^b Min-Ge Yang^a and

Yong-Zheng Chen^{*b,c}

- ^aXi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, P. R. China.
- ^bKey Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China.
- ^cKey Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, P. R. China.

Email: hanwy@zmu.edu.cn; yzchen@zmu.edu.cn

‡ These authors contributed equally to this work.

Electronic Supplementary Information

Table of Contents

1. General experimental information	S1
2. Optimization of the reaction conditions for the construction of 4a	
3. Synthetic methods of substrates	S6
4. Characterization data of 1a-1w , 2a-2h and 3a-3b	
5. Representative procedure for the synthesis of compound 4a	S16
6. Characterization data of compounds 4a-4ad	S17
7. Preparative-scale experiments	S29
8. Transformation of 4a into 5 , 6 , 7	S29
9. Transformation of 4i into 8 , 9 , 10	S31
10. Transformation of 4x into 11 , 12	\$33
11. References	S35
12. X-ray crystal data for 4a , 4x , 4y , 4z , 4aa , 4ab , 4ad , 5 , 6 and 7	\$37
13. ¹ H and ¹³ C NMR spectra of 1a-1w , 2a-2h and 3a-3b	S47
14. ¹ H and ¹³ C NMR spectra of 4a-4ad and 5-12	\$113

1. General experimental information

Unless otherwise noted, all commercially available reagents were used without further purification. All of the solvents were treated according to known methods. Column chromatography was performed on silica gel (200-400 mesh). ¹H NMR (400 MHz) chemical shifts were reported in ppm (δ) relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard. ¹³C NMR (100 MHz) chemical shifts were reported in ppm (δ) from tetramethylsilane (TMS) with the solvent resonance as the internal standard. Data were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, td = triplet of doublets, ddd = doublet of doublet of doublets, dt = doublet of triplets, tt = triplet of triplets, dq = doublet of quartets, qd = quartet of doublets, m = multiplet), coupling constants (Hz) and integration. HRMS measurements were obtained on a TOF analyzer. Melting points were uncorrected.

3-Iodochromones (1) were prepared according to the reported procedures.^{1a} Bridged olefins 2a-2e were purchased from commercial suppliers. Bridged olefins 2f-2h were prepared according to the reported procedures.^{2,3} Cyclopropenone **3a** was purchased from commercial suppliers. Cyclopropenone **3b** was prepared according to the reported procedures.^{4a}

		+ Ph Ph d	[Pd] (10 mol%) igand (20 mol%) base (2.0 equiv.) solvent (2.0 mL)	Ъ н	
	1a	2a 3a	Ar, 100 °C, 24 h O 4a (X-ray)		
Entry	Ligand	[Pd]	Solvent	Base	Yield $(\%)^b$
1	PPh ₃	Pd(OAc) ₂	PhMe	Cs ₂ CO ₃	48
2	TFP	$Pd(OAc)_2$	PhMe	Cs_2CO_3	29
3	PCy ₃	Pd(OAc) ₂	PhMe	Cs_2CO_3	33
4	$P(^{n}Bu)_{3}$	$Pd(OAc)_2$	PhMe	Cs_2CO_3	18
5	$P(2-MeC_{6}H_{4})_{3}$	$Pd(OAc)_2$	PhMe	Cs_2CO_3	68
6	$P(3-MeC_{6}H_{4})_{3}$	$Pd(OAc)_2$	PhMe	Cs_2CO_3	66
7	$P(4-MeC_{6}H_{4})_{3}$	$Pd(OAc)_2$	PhMe	Cs_2CO_3	62
8	P(2-OMeC ₆ H ₄) ₃	Pd(OAc) ₂	PhMe	Cs ₂ CO ₃	44
9	$P(3-OMeC_6H_4)_3$	$Pd(OAc)_2$	PhMe	Cs_2CO_3	52
10	P(3-FC ₆ H ₄) ₃	$Pd(OAc)_2$	PhMe	Cs_2CO_3	69
11	$P(4-OMeC_6H_4)_3$	$Pd(OAc)_2$	PhMe	Cs_2CO_3	39
12	$P(4-CF_{3}C_{6}H_{4})_{3}$	Pd(OAc) ₂	PhMe	Cs_2CO_3	79
13	tris(2,6-dimethoxyphenyl)phosphine	$Pd(OAc)_2$	PhMe	Cs_2CO_3	35
14	trimesitylphosphine	$Pd(OAc)_2$	PhMe	Cs_2CO_3	39
15	PhPCy ₂	$Pd(OAc)_2$	PhMe	Cs_2CO_3	24
16	"BuPAd ₂	$Pd(OAc)_2$	PhMe	Cs_2CO_3	37

2. Optimization of the reaction conditions for the construction of 4a $^{\mathrm{a}\mathrm{)}}$

17	diphenyl(pentafluorophenyl)phosphine	$Pd(OAc)_2$	PhMe	Cs_2CO_3	41
18	methyldiphenylphosphine	$Pd(OAc)_2$	PhMe	Cs_2CO_3	36
19	dppm	$Pd(OAc)_2$	PhMe	Cs_2CO_3	19
20	dppe	Pd(OAc) ₂	PhMe	Cs_2CO_3	11
21	dppp	Pd(OAc) ₂	PhMe	Cs_2CO_3	11
22	dppb	Pd(OAc) ₂	PhMe	Cs_2CO_3	trace
23	dpppe	Pd(OAc) ₂	PhMe	Cs_2CO_3	4
24	dpph	Pd(OAc) ₂	PhMe	Cs_2CO_3	8
25	cis-1,2-bis(diphenylphosphino)ethylene	Pd(OAc) ₂	PhMe	Cs_2CO_3	12
26	Xantphos	Pd(OAc) ₂	PhMe	Cs_2CO_3	8
27	rac-BINAP	Pd(OAc) ₂	PhMe	Cs_2CO_3	7
28	JohnPhos	Pd(OAc) ₂	PhMe	Cs_2CO_3	43
29	CyJohnPhos	$Pd(OAc)_2$	PhMe	Cs_2CO_3	34
30	2-(diphenylphosphino)-biphenyl	Pd(OAc) ₂	PhMe	Cs_2CO_3	59
31	BrettPhos	Pd(OAc) ₂	PhMe	Cs_2CO_3	25
32	^t BuXPhos	Pd(OAc) ₂	PhMe	Cs_2CO_3	22
33	Sphos	Pd(OAc) ₂	PhMe	Cs_2CO_3	22
34	RuPhos	Pd(OAc) ₂	PhMe	Cs_2CO_3	25
35	DavePhos	Pd(OAc) ₂	PhMe	Cs_2CO_3	47
36	$P(4-CF_{3}C_{6}H_{4})_{3}$	Pd(TFA) ₂	PhMe	Cs_2CO_3	84
37	P(4-CF ₃ C ₆ H ₄) ₃	PdCl ₂	PhMe	Cs_2CO_3	86
38	$P(4-CF_{3}C_{6}H_{4})_{3}$	PdBr ₂	PhMe	Cs ₂ CO ₃	70

39	$P(4-CF_3C_6H_4)_3$	$Pd(dppf)_2Cl_2$	PhMe	Cs_2CO_3	39
40	$P(4-CF_3C_6H_4)_3$	PdCl ₂ (dppe)	PhMe	Cs_2CO_3	83
41	$P(4-CF_3C_6H_4)_3$	PdCl ₂ (dppb)	PhMe	Cs_2CO_3	62
42	$P(4-CF_3C_6H_4)_3$	$[Pd(C_4H_9)_3PBr]_2$	PhMe	Cs_2CO_3	66
43	P(4-CF ₃ C ₆ H ₄) ₃	PdCl ₂ (dippp)	PhMe	Cs_2CO_3	62
44	$P(4-CF_3C_6H_4)_3$	[(cinnamyl)PdCl] ₂	PhMe	Cs_2CO_3	74
45	$P(4-CF_3C_6H_4)_3$	$PdCl_2[P(C_2H_5)_3]_2$	PhMe	Cs_2CO_3	50
46	$P(4-CF_3C_6H_4)_3$	Pd(OTf) ₂ (dippp)	PhMe	Cs_2CO_3	39
47	P(4-CF ₃ C ₆ H ₄) ₃	Pd(dppf)Cl ₂	PhMe	Cs_2CO_3	51
48	P(4-CF ₃ C ₆ H ₄) ₃	Pd(Phos)Cl ₂	PhMe	Cs_2CO_3	81
49	$P(4-CF_3C_6H_4)_3$	Pd(PPh ₃) ₄	PhMe	Cs_2CO_3	41
50	$P(4-CF_3C_6H_4)_3$	$Pd_2(dba)_3$	PhMe	Cs_2CO_3	75
51	$P(4-CF_3C_6H_4)_3$	PdCl ₂	o-xylene	Cs_2CO_3	78
52	P(4-CF ₃ C ₆ H ₄) ₃	PdCl ₂	<i>m</i> -xylene	Cs_2CO_3	72
53	$P(4-CF_3C_6H_4)_3$	PdCl ₂	<i>p</i> -xylene	Cs_2CO_3	70
54	$P(4-CF_3C_6H_4)_3$	PdCl ₂	mesitylene	Cs_2CO_3	57
55	$P(4-CF_3C_6H_4)_3$	PdCl ₂	PhCF ₃	Cs_2CO_3	70
56	P(4-CF ₃ C ₆ H ₄) ₃	PdCl ₂	anisole	Cs_2CO_3	54
57	P(4-CF ₃ C ₆ H ₄) ₃	PdCl ₂	PhF	Cs_2CO_3	91
58	$P(4-CF_3C_6H_4)_3$	PdCl ₂	PhNO ₂	Cs_2CO_3	65
59	$P(4-CF_3C_6H_4)_3$	PdCl ₂	PhCl	Cs_2CO_3	77
60	$P(4-CF_3C_6H_4)_3$	PdCl ₂	1,2-dichlorobenzne	Cs_2CO_3	87

61	$P(4-CF_3C_6H_4)_3$	PdCl ₂	DMSO	Cs_2CO_3	10
62	$P(4-CF_3C_6H_4)_3$	PdCl ₂	DMF	Cs_2CO_3	23
63	$P(4-CF_3C_6H_4)_3$	PdCl ₂	DMA	Cs_2CO_3	36
64	$P(4-CF_3C_6H_4)_3$	PdCl ₂	HMPA	Cs_2CO_3	23
65	P(4-CF ₃ C ₆ H ₄) ₃	PdCl ₂	NMM	Cs_2CO_3	47
66	$P(4-CF_3C_6H_4)_3$	PdCl ₂	NMP	Cs_2CO_3	31
67	$P(4-CF_3C_6H_4)_3$	PdCl ₂	DCE	Cs_2CO_3	82
68	$P(4-CF_{3}C_{6}H_{4})_{3}$	PdCl ₂	1,4-dioxane	Cs_2CO_3	54
69	P(4-CF ₃ C ₆ H ₄) ₃	PdCl ₂	glyme	Cs_2CO_3	42
70	$P(4-CF_{3}C_{6}H_{4})_{3}$	PdCl ₂	THF	Cs_2CO_3	56
71	$P(4-CF_3C_6H_4)_3$	PdCl ₂	CH ₃ CN	Cs_2CO_3	30
72	$P(4-CF_3C_6H_4)_3$	PdCl ₂	<i>t</i> -amylol	Cs_2CO_3	58
73	$P(4-CF_3C_6H_4)_3$	PdCl ₂	HFIP	Cs_2CO_3	NR
74	P(4-CF ₃ C ₆ H ₄) ₃	PdCl ₂	MTBE	Cs_2CO_3	50
75	$P(4-CF_3C_6H_4)_3$	PdCl ₂	CH ₃ NO ₂	Cs_2CO_3	10
76	$P(4-CF_3C_6H_4)_3$	PdCl ₂	PhF	K_2CO_3	29
77	$P(4-CF_3C_6H_4)_3$	PdCl ₂	PhF	Na ₂ CO ₃	17
78	P(4-CF ₃ C ₆ H ₄) ₃	PdCl ₂	PhF	KO ^t Bu	19
79	$P(4-CF_{3}C_{6}H_{4})_{3}$	PdCl ₂	PhF	K ₃ PO ₄	55

^{*a*}All reactions were performed with **1a** (0.2 mmol), **2a** (0.8 mmol), **3a** (0.2 mmol), Pd-catalyst (0.02 mmol), ligand (0.04 mmol), base (0.4 mmol) in 2.0 mL of solvent under Ar atmosphere at 100 °C for 24 h. ^{*b*}Isolated yields based on **1a**.

3. Synthetic methods of substrates

3.1 Synthesis of 3-Iodochromones (1)

A mixture of substituted 2-hydroxyacetophenones (0.5 mmol) and N,N-dimethylformamide dimethylacetal (DMF-DMA, 1.75 mmol, 2.5 equiv.) was dissolved in N,N-dimethylformamide (DMF, 25 mL) and heated at 75 °C for 0.5 h. After completion of the reaction, saturated brine was solid added to the mixture. The was separated to afford the substituted 3-(dimethylamino)-1-(2-hydroxyphenyl)propanones. To a solution of the solid in CH₂Cl₂ (15 mL) was added iodine (1.5 mmol, 3.0 equiv.), and the mixture was stirred at room temperature for 0.5 h. After completion of the reaction, the solution was diluted with saturated NaHSO₃ (15 mL), and the aqueous layer was extracted with CH2Cl2 (60 mL). The combined organic fractions were condensed and purified by flash column chromatography to afford 3-Iodochromones (1) in 50 \sim 80% yields.1a

3.2 Synthesis of Bridged olefins (2)

To a 40 mL glass vial were added 2-bromo-*p*-xylene (2.0 g, 10.8 mmol), Cs_2CO_3 (3.6 g, 10.8 mmol) and norbornadiene (3.3 mL, 32.4 mmol) followed by dry 1,4-dioxane (20 mL) under argon atmosphere. The reaction vial was evacuated and filled with argon three times. $Pd(OAc)_2$ (121mg, 0.54 mmol) and PPh₃ (283 mg, 1.08 mmol) were added to this solution. Then the reaction mixture was stirred at 25 °C for 5 min, and then heated to 130 °C for 12 h. After completion of the reaction, the mixture was cooled to 25 °C and passed through a thin layer of Celite bed and washed with EtOAc (50 mL) to remove inorganic salts. The filtrate was evaporated under reduced pressure and purified by silica gel chromatography (eluted with hexanes) to afford compound **2f** as a colorless oil (954.0 mg, 45% yield). Under the same conditions, replacing 2-bromo-*p*-xylene with

9-bromophenanthrene can obtain compound 2g as a white solid. Spectra matched those previously reported.²

A sealed glass tube containing anthracene (891.2 mg, 5 mmol) and norbornadiene (NBDE, 2.3 g, 25 mmol) under argon atmosphere was heated at 175 °C for 27 h in an oil bath. After the completion of the reaction and Cooled to room temperature, the norbornadiene was stripped from the reaction mixture at reduced pressure. The yellow residue was purified by flash column chromatography on silica gel (petroleum ether) to afford the desired product **2h** as a white solid (1.08 g, 79% yield). Spectra matched those previously reported.³

3.3 Synthesis of Cyclopropenones (3b)

To an oven-dried sealed tube containing a stir bar was added NaI (330 mg, 2.2 mmol). The NaI was gently flame-dried under vacuum and then allowed to cool to room temperature. A solution of 2-butyne (0.08 mL, 1.0 mmol) in anhydrous THF (3.0 mL) was added under an atmosphere of Ar. Trifluoromethyltrimethylsilane (0.30 mL, 2.0 mmol) was added, and the tube was sealed. The solution was stirred rapidly at room temperature for 2 d, then diluted with H₂O (15 mL) and extracted into CH_2Cl_2 (60 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (eluting with 30% acetone/CH₂Cl₂) to afford compound **3b** as a yellow oil (57.5 mg, 70% yield). Spectra matched those previously reported.⁴

4. Characterization data of 1a-1w, 2a-2h and 3a-3b

3-iodo-4*H***-chromen-4-one** (**1a**). White solid, mp 101.1 – 102.9 °C (lit.^{1a} mp 102 – 103 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.30 (s, 1H), 8.24 (dd, J = 8.0, 1.2 Hz, 1H), 7.71 (ddd, J = 8.6, 7.2, 1.6 Hz, 1H), 7.49 – 7.42 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 173.5, 157.9, 156.2, 134.2, 126.7, 126.1, 121.9, 118.1, 87.0.

3-iodo-5-methoxy-4*H***-chromen-4-one** (**1b**). White solid, mp 141.7 – 143.0 °C (lit.^{1a} mp 143 – 145 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.12 (s, 1H), 7.54 (t, *J* = 8.4 Hz, 1H), 6.97 (d, *J* = 8.4 Hz, 1H), 6.82 (d, *J* = 8.4 Hz, 1H), 3.94 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 159.7, 158.1, 156.0, 134.2, 112.6, 109.8, 106.9, 89.4, 56.6.

3-iodo-5-fluoro-4*H***-chromen-4-one (1c)**. White solid, mp 99.6 – 101.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 1.6 Hz, 1H), 7.68 – 7.60 (m, 1H), 7.27 (d, *J* = 8.6 Hz, 1H), 7.11 (t, *J* = 9.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 171.1 (d, *J* = 2.3 Hz), 160.4 (d, *J* = 266.8 Hz), 157.1 (d, *J* = 3.1 Hz), 157.0, 134.3 (d, *J* = 10.7 Hz), 114.0 (d, *J* = 4.7 Hz), 112.7 (d, *J* = 20.7 Hz), 112.4 (d, *J* = 10.1 Hz), 88.26.

3-iodo-5-chloro-4*H***-chromen-4-one** (1d). Yellow solid, mp 123.7 – 125.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, J = 3.0 Hz, 1H), 7.56 (ddd, J = 8.4, 3.6, 2.0 Hz, 1H), 7.45 (ddd, J = 5.0,

3.4, 1.1 Hz, 1H), 7.41 – 7.36 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 157.7, 156.6, 134.1, 133.4, 128.8, 119.1, 117.3, 88.8.

3-iodo-6-methyl-4*H***-chromen-4-one** (1e). White solid, mp 142.6 – 143.9 °C (lit.^{1b} mp 138 – 140 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, *J* = 2.0 Hz, 1H), 8.00 (s, 1H), 7.50 (d, *J* = 8.6 Hz, 1H), 7.35 (d, *J* = 8.6 Hz, 1H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.5, 157.7, 154.5, 136.2, 135.5, 125.9, 121.5, 117.8, 86.8, 21.1.

3-iodo-6-methoxy-4*H***-chromen-4-one** (**1f**). White solid, mp 109.2 – 111.0 °C (lit.^{1a} mp 112 – 113 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.27 (s, 1H), 7.56 (d, *J* = 3.0 Hz, 1H), 7.39 (d, *J* = 9.2 Hz, 1H), 7.28 (dd, *J* = 9.2, 3.0 Hz, 1H), 3.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.4, 157.6, 157. 5, 151.1, 124.4, 122.5, 119.6, 105.5, 86.08, 56.1.

3-iodo-6-fluoro-4*H***-chromen-4-one (1g)**. White solid, mp 116.9 – 118.2 °C (lit.^{1a} mp 120 – 122 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, J = 2.2 Hz, 1H), 7.86 (dt, J = 8.2, 2.4 Hz, 1H), 7.49 (ddd, J = 9.0, 4.2, 2.2 Hz, 1H), 7.46 – 7.39 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 172.9 (d, J = 2.4 Hz), 159.8 (d, J = 248.3 Hz), 158.0, 152.5 (d, J = 1.8 Hz), 122.9 (d, J = 7.6 Hz), 122.7 (d, J = 25.5 Hz), 120.4 (d, J = 8.2 Hz), 111.5 (d, J = 23.9 Hz), 86.1 (d, J = 1.2 Hz).

3-iodo-6-chloro-4*H***-chromen-4-one** (**1h**). White solid, mp 139.5 – 140.8 °C (lit.^{1b} mp 138 – 140 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.29 (s, 1H), 8.17 (d, J = 2.6 Hz, 1H), 7.63 (dd, J = 9.0, 2.6 Hz, 1H), 7.43 (d, J = 9.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 157.9, 154.5, 134.5, 131.9, 126.0, 122.6, 119.9, 86.7.

3-iodo-6-bromo-4*H***-chromen-4-one (1i)**. White solid, mp 113.0 – 114.2 °C (lit.^{1b} mp 115 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.36 (d, J = 2.4 Hz, 1H), 8.30 (s, 1H), 7.79 (dd, J = 9.0, 2.4 Hz, 1H), 7.38 (d, J = 8.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 158.0, 155.0, 137.3, 129.2, 123.0, 120.1, 119.4, 86.8.

3-iodo-4-oxo-4*H***-chromene-6-carbonitrile** (**1j**). White solid, mp 199.7 – 201.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.56 (d, *J* = 1.6 Hz, 1H), 8.33 (s, 1H), 7.93 (dd, *J* = 8.8, 1.5 Hz, 1H), 7.60 (d, *J* = 8.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 158.1, 157.9, 136.5, 132.3, 122.0, 119.9, 117.3, 110.4, 87.5.

3-iodo-6-nitro-4*H***-chromen-4-one** (**1k**). White solid, mp 107.7 – 109.2 °C (lit.^{1c} mp 110 – 111 °C); ¹H NMR (400 MHz, DMSO- d_6) δ 8.89 (s, 1H), 8.65 (s, 1H), 8.55 (d, J = 8.2 Hz, 1H), 7.90 (d, J = 9.2 Hz, 1H); ¹³C NMR (100 MHz, DMSO- d_6) δ 172.3, 159.7, 158.7, 144.6, 128.6, 121.7, 120.9, 120.8, 87.2.

3-iodo-7-methyl-4*H***-chromen-4-one (11**). Yellow solid, mp 87.8 – 89.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.24 (s, 1H), 8.10 (d, *J* = 8.6 Hz, 1H), 7.24 (d, *J* = 6.8 Hz, 2H), 2.48 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.3, 157.6, 156.4, 145.7, 127.6, 126.4, 119.6, 117.7, 87.0, 22.0.

3-iodo-7-methoxy-4*H***-chromen-4-one (1m**). Yellow solid, mp 108.4 – 109.8 °C (lit.^{1a} mp 103 – 105 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.21 (s, 1H), 8.13 (d, *J* = 9.0 Hz, 1H), 6.99 (dd, *J* = 9.0, 2.4 Hz, 1H), 6.83 (d, *J* = 2.3 Hz, 1H), 3.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 164.4, 158.0, 157.3, 128.2, 115.8, 115.5, 100.1, 87.3, 56.1.

3-iodo-7-fluoro-4*H***-chromen-4-one** (**1n**). White solid, mp 106.1 – 107.6 °C (lit.^{1a} mp 107 – 109 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.26 (s, 1H), 8.24 (t, *J* = 8.6 Hz, 1H), 7.19 – 7.12 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 172.5, 165.8 (d, *J* = 256.5 Hz), 157.9 (d, *J* = 1.3 Hz), 157.2 (d, *J* = 13.4 Hz), 129.4 (d, *J* = 10.7 Hz), 118.6 (d, *J* = 2.5 Hz), 115.0 (d, *J* = 22.9 Hz), 104.8 (d, *J* = 25.5 Hz), 87.2.

3-iodo-7-chloro-4*H***-chromen-4-one** (**1o**). Yellow solid, mp 115.9 – 117.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.26 (s, 1H), 8.16 (d, *J* = 8.6 Hz, 1H), 7.48 (d, *J* = 1.6 Hz, 1H), 7.40 (dd, *J* = 8.6, 1.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 157.8, 156.3, 140.4, 128.1, 127.0, 120.3, 118.2, 87.2.

3-iodo-7-bromo-4*H***-chromen-4-one (1p**). White solid, mp 162.7 – 164.1 °C (lit.^{1c} mp 163 – 164 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.26 (s, 1H), 8.10 (d, *J* = 8.5 Hz, 1H), 7.67 (d, *J* = 1.7 Hz, 1H), 7.57 (dd, *J* = 8.5, 1.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 172.9, 157.7, 156.2, 129.8, 128.6, 128.2, 121.2, 120.7, 87.3.

3-iodo-8-methyl-4*H***-chromen-4-one (1g)**. White solid, mp 106.6 – 107.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.32 (s, 1H), 8.05 (d, *J* = 8.0 Hz, 1H), 7.52 (d, *J* = 7.2 Hz, 1H), 7.31 (t, *J* = 7.6 Hz, 1H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.7, 157.6, 154.7, 135.1, 127.6, 125.6, 124.2, 121.8, 87.0, 15.70.

3-iodo-8-chloro-4*H***-chromen-4-one** (**1r**). White solid, mp 116.7 – 118.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.35 (s, 1H), 8.12 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.75 (d, *J* = 7.8 Hz, 1H), 7.37 (t, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 157.6, 151.9, 134.5, 126.1, 125.3, 123.7, 123.0, 87.3.

3-iodo-6,7-dimethyl-4*H***-chromen-4-one (1s**). White solid, mp 154.5 – 156.3 °C (lit.^{1c} mp 156 – 157 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.22 (s, 1H), 7.93 (s, 1H), 7.21 (s, 1H), 2.37 (s, 3H), 2.34

(s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.3, 157.5, 154.8, 144.9, 135.5, 126.1, 119.8, 118.1, 86.9, 20.6, 19.5.

3-iodo-6,8-dimethyl-4*H***-chromen-4-one** (**1t**). White solid, mp 139.5 – 141.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.29 (s, 1H), 7.83 (s, 1H), 7.34 (s, 1H), 2.41 (s, 3H), 2.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.8, 157.5, 153.1, 136.5, 135.6, 127.3, 123.5, 121.6, 86.8, 21.1, 15.6.

3-iodo-6-chloro-7-methyl-4*H***-chromen-4-one** (**1u**). White solid, mp 166.2 – 167.9 °C (lit.^{1c} mp 167 – 168 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.24 (s, 1H), 8.15 (s, 1H), 7.34 (s, 1H), 2.48 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 157.7, 154.5, 143.8, 132.7, 126.2, 120.7, 119.9, 86.6, 21.05.

3-iodo-4*H***-benzo[***h***]chromen-4-one (1v). Yellow solid, mp 153.7 – 155.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.44 (s, 1H), 8.40 (d,** *J* **= 8.2 Hz, 1H), 8.13 (d,** *J* **= 8.8 Hz, 1H), 7.91 (d,** *J* **= 8.0 Hz, 1H), 7.79 – 7.64 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.3, 157.0, 153.8, 135.9, 129.8, 128.3, 127.6, 126.3, 123.6, 122.3, 121.4, 118.1, 89.0.**

2-iodo-1*H***-benzo**[*f*]**chromen-1-one** (**1w**). White solid, mp 136.2 – 137.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.98 (d, *J* = 8.8 Hz, 1H), 8.33 (s, 1H), 8.08 (d, *J* = 9.2 Hz, 1H), 7.88 (d, *J* = 8.0 Hz, 1H), 7.76 (t, *J* = 7.8 Hz, 1H), 7.63 (t, *J* = 7.6 Hz, 1H), 7.46 (d, *J* = 9.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 174.5, 157.6, 155.6, 136.2, 130.8, 130.2, 129.7, 128.4, 127.4, 127.2, 117.2, 115.3, 91.5.

A

2a

bicyclo[2.2.1]hept-2-ene (2a). 2a was purchased from commercial supplier. Colorless solid; ¹H NMR (400 MHz, CDCl₃) δ 6.00 (s, 2H), 2.85 (s, 2H), 1.71 – 1.53 (m, 2H), 1.32 (d, J = 8.0 Hz, 1H), 1.08 (d, J = 8.0 Hz, 1H), 1.03 – 0.89 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 135.5, 48.7, 41.9, 24.7.

2b

bicyclo[2.2.1]hepta-2,5-diene (**2b**). **2b** was purchased from commercial supplier. Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 6.96 – 6.86 (m, 4H), 3.71 (s, 2H), 2.23 – 2.08 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 143.2, 75.2, 50.2.

1,4-dihydro-1,4-methanonaphthalene (2c). 2c was purchased from commercial supplier. Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.30 (td, J = 5.4, 3.2 Hz, 2H), 7.0 (td, J = 5.2, 3.0 Hz, 2H), 6.87 (t, J = 1.6 Hz, 2H), 3.96 (t, J = 1.8 Hz, 2H), 2.39 (dt, J = 7.1, 1.5 Hz, 1H), 2.32 (d, J = 7.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 151.7, 143.1, 124.3, 121.6, 70.3, 50.4.

2d

1,4-dihydro-1,4-ethanonaphthalene (2d). 2d was purchased from commercial supplier. Colorless

oil; ¹H NMR (400 MHz, CDCl₃) δ 7.21 (dt, J = 12.0, 3.6 Hz, 2H), 7.13 (dt, J = 8.6, 3.2 Hz, 2H), 4.02 (qd, J = 2.8, 1.4 Hz, 2H), 1.65 – 1.59 (m, 2H), 1.54 – 1.48 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 144.4, 135.2, 125.0, 122.7, 40.3, 25.9.

1,2,3,4,4a,5,8,8a-octahydro-1,4:5,8-dimethanonaphthalene (2e). 2e was purchased from commercial supplier. Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 5.94 (t, J = 1.6 Hz, 2H), 2.83 (t, J = 1.6 Hz, 2H), 2.04 (ddd, J = 9.8, 4.2, 2.1 Hz, 1H), 2.00 (s, 2H), 1.94 (s, 2H), 1.42 – 1.35 (m, 2H), 1.27 (dt, J = 7.7, 1.6 Hz, 1H), 1.15 (d, J = 7.7 Hz, 1H), 1.02 – 0.95 (qd, J = 7.2, 2.4 Hz, 2H), 0.53 (d, J = 10.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 135.3, 53.0, 48.7, 46.8, 37.9, 33.9, 32.0.

5,8-dimethyl-1,4,4a,8b-tetrahydro-1,4-methanobiphenylene (**2f**).² Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.03 (s, 2H), 6.36 (s, 2H), 3.22 (s, 2H), 2.93 (s, 2H), 2.33 (s, 6H), 1.43 (d, *J* = 8.8 Hz, 1H), 1.02 (d, *J* = 8.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 144.0, 136.6, 129.0, 128.4, 46.0, 41.7, 40.8, 16.5.

8c,9,12,12a-tetrahydro-9,12-methanobenzo[3,4]cyclobuta[1,2-*I***]phenanthrene (2g). White solid, mp 117.3 – 118.5 °C (lit.² mp 220 – 222 °C); ¹H NMR (400 MHz, CDCl₃) \delta 8.76 (dt,** *J* **= 9.4, 3.6 Hz, 2H), 7.86 (dt,** *J* **= 7.2, 3.4 Hz, 2H), 7.63 (dt,** *J* **= 9.4, 3.4 Hz, 4H), 6.36 (s, 2H), 3.46 (s, 2H), 2.95 (s, 2H), 1.36 (d,** *J* **= 9.2 Hz, 1H), 0.91 (d,** *J* **= 9.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) \delta 141.4, 136.6, 130.9, 128.3, 126.7, 125.8, 124.0, 123.0, 46.1, 41.7, 40.0.**

9,10-dihydro-9,10-[2]bicycloanthracene (**2h**). White solid, mp 143.0 – 144.3 °C (lit.³ mp 144 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.24 (dq, *J* = 13.0, 6.0 Hz, 4H), 7.13 (dt, *J* = 9.2, 4.0 Hz, 2H), 7.06 (dt, *J* = 9.2, 4.0 Hz, 2H), 6.16 (s, 2H), 4.17 (s, 2H), 2.50 (s, 2H), 2.07 (s, 2H), 0.75 (d, *J* = 9.4 Hz, 1H), -0.13 (d, *J* = 94 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 146.0, 142.8, 140.2, 126.1, 125.5, 124.7, 123.4, 48.4, 47.7, 44.6, 40.6.

2,3-diphenylcycloprop-2-en-1-one (**3a**). **3a** was purchased from commercial supplier. Yellow solid, mp 119.2 – 121.3 °C (lit.^{4a} mp 120 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.93 (m, 2H), 7.60 – 7.52 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 155.9, 148.3, 132.8, 131.6, 129.4, 124.0.

2,3-dimethylcycloprop-2-en-1-one (**3b**).^{4b} Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 2.26 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 160.7, 157.9, 11.40.

5. Representative procedure for the synthesis of compound 4a (Scheme 2)

To a 4 mL flame-dried vial with a stir bar, 3-iodochromone (**1a**, 54.5 mg, 0.2 mmol), NBE (**2a**, 75.3 mg, 0.8 mmol), diphenylcyclopropenone (**3a**, 41.2 mg, 0.2 mmol), PdCl₂ (3.5 mg, 0.02 mmol), P(4-CF₃C₆H₄)₃ (18.7 mg, 0.04 mmol), Cs₂CO₃ (130.3 mg, 0.4 mmol) and fluorobenzene (2.0 mL) were added under argon atmosphere at 100 °C for 24 h. After the completion of the

reaction detected by thin layer chromatography (TLC), the mixture was cooled to room temperature and purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = $40:1 \sim 5:1$) to afford the desired product **4a** as a yellow solid (48.5 mg, 91% yield).

6. Characterization data of compounds 4a-4ad

Scheme 2, 4a

Compound **4a**: yellow solid, 48.5 mg, 91% yield, mp 116.7 – 118.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.07 (dd, J = 8.0, 1.6 Hz, 1H), 7.62 (ddd, J = 8.8, 7.2, 1.6 Hz, 1H), 7.44 (d, J = 8.2 Hz, 1H), 7.32 (td, J = 7.4, 0.4 Hz, 1H), 2.99 (d, J = 5.4 Hz, 1H), 2.53 (d, J = 4.0 Hz, 1H), 2.43 (d, J = 4.0 Hz, 1H), 2.36 (d, J = 5.2 Hz, 1H), 1.64 (tt, J = 11.6, 4.2 Hz, 1H), 1.53 (tt, J = 12.0, 4.0 Hz, 1H), 1.42 – 1.34 (m, 1H), 1.29 – 1.22 (m, 1H), 0.95 (d, J = 11.0 Hz, 1H), 0.87 (d, J = 11.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 202.2, 177.6, 159.3, 155.8, 141.1, 134.8, 125.8, 125.6, 124.8, 119.0, 53.0, 42.0, 39.7, 37.2, 31.9, 28.8, 28.4; HRMS (ESI-TOF): calcd. for C₁₇H₁₅O₃ [M + H]⁺ 267.1016; found 267.1012.

Scheme 2, 4b

Compound **4b**: yellow solid, 30.3 mg, 51% yield, mp 163.8 – 165.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.60 (t, J = 8.4 Hz, 1H), 7.13 (d, J = 8.4 Hz, 1H), 6.84 (d, J = 8.4 Hz, 1H), 3.98 (s, 3H), 3.06 (d, J = 5.2 Hz, 1H), 2.67 (d, J = 3.8 Hz, 1H), 2.53 (d, J = 3.4 Hz, 1H), 2.43 (d, J = 5.2 Hz, 1H), 1.73 (tt, J = 12.0, 4.2 Hz, 1H), 1.63 (tt, J = 11.8, 4.2 Hz, 1H), 1.52 – 1.43 (m, 1H), 1.39 – 1.30 (m, 1H), 1.05 (d, J = 11.0 Hz, 1H), 0.98 (d, J = 11.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 202.6, 177.7, 160.4, 158.3, 157.9, 142.9, 135.2, 115.9, 111.0, 107.0, 56.6, 53.4, 42.3, 39.8, 37.3, 32.1, 29.0, 28.7; HRMS (ESI-TOF): calcd. for C₁₈H₁₇O₄ [M + H]⁺ 297.1121; found 297.1122.

Scheme 2, 4c

Compound **4c**: yellow solid, 35.3 mg, 62% yield, mp 168.7 – 170.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.66 (td, J = 8.4, 5.6 Hz, 1H), 7.39 (d, J = 8.6 Hz, 1H), 7.09 (dd, J = 10.2, 8.6 Hz, 1H), 3.09 (d, J = 5.2 Hz, 1H), 2.66 (d, J = 4.0 Hz, 1H), 2.56 (d, J = 3.6 Hz, 1H), 2.46 (d, J = 5.2 Hz, 1H), 1.76 (tt, J = 11.8, 4.2 Hz, 1H), 1.65 (tt, J = 12.0, 4.2 Hz, 1H), 1.53 – 1.44 (m, 1H), 1.41 – 1.32 (m, 1H), 1.08 (d, J = 11.0 Hz, 1H), 0.98 (d, J = 11.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 202.2, 176.3, 161.1 (d, J = 266.2 Hz), 158.7, 157.2, 142.2, 135.1 (d, J = 10.9 Hz), 115.7 (d, J = 10.5 Hz), 115.1 (d, J = 4.6 Hz), 112.8 (d, J = 20.7 Hz), 53.4, 42.2, 39.9, 37.4, 32.2, 29.1, 28.7; HRMS (ESI-TOF): calcd. for C₁₇H₁₄FO₃ [M + H]⁺ 285.0921; found 285.0921.

Scheme 2, 4d

Compound **4d**: yellow solid, 37.3 mg, 62% yield, mp 175.8 – 177.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (t, J = 8.2 Hz, 1H), 7.50 (d, J = 8.0 Hz, 1H), 7.42 (d, J = 7.6 Hz, 1H), 3.09 (d, J = 5.2 Hz, 1H), 2.68 (d, J = 3.6 Hz, 1H), 2.56 (d, J = 3.2 Hz, 1H), 2.46 (d, J = 5.2 Hz, 1H), 1.75 (tt, J = 12.0, 4.2 Hz, 1H), 1.65 (tt, J = 11.8, 4.2 Hz, 1H), 1.51 – 1.44 (m, 1H), 1.42 – 1.33 (m, 1H), 1.08 (d, J = 11.0 Hz, 1H), 0.99 (d, J = 11.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 202.3, 176.9, 158.2, 157.9, 142.3, 134.2, 134.1, 128.9, 122.2, 118.4, 53.5, 42.4, 39.9, 37.4, 32.2, 29.0, 28.7; HRMS (ESI-TOF): calcd. for C₁₇H₁₄ClO₃ [M + H]⁺ 301.0626; found 301.0623.

Scheme 2, 4e

Compound **4e**: yellow solid, 44.9 mg, 80% yield, mp 164.8 – 165.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.00 (s, 1H), 7.53 (dd, J = 8.6, 1.8 Hz, 1H), 7.47 (d, J = 8.6 Hz, 1H), 3.10 (d, J = 5.2 Hz, 1H), 2.65 (d, J = 3.8 Hz, 1H), 2.55 (d, J = 3.4 Hz, 1H), 2.45 (s, 4H), 1.75 (tt, J = 12.0, 4.2 Hz, 1H),

1.63 (tt, J = 11.8, 4.2 Hz, 1H), 1.53 – 1.45 (m, 1H), 1.42 – 1.32 (m, 1H), 1.06 (d, J = 11.0 Hz, 1H), 0.97 (d, J = 11.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 202.7, 178.1, 159.4, 154.4, 141.3, 136.4, 136.0, 125.4, 124.8, 119.0, 53.3, 42.2, 39.9, 37.4, 32.1, 29.1, 28.7, 21.0; HRMS (ESI-TOF): calcd. for C₁₈H₁₇O₃ [M + H]⁺ 281.1172; found 281.1173.

Scheme 2, 4f

Compound **4f**: yellow solid, 42.1 mg, 71% yield, mp 181.5 – 182.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 3.0 Hz, 1H), 7.51 (d, *J* = 9.2 Hz, 1H), 7.30 (dd, *J* = 9.2, 3.0 Hz, 1H), 3.89 (s, 3H), 3.11 (d, *J* = 5.2 Hz, 1H), 2.65 (d, *J* = 3.6 Hz, 1H), 2.56 (d, *J* = 3.2 Hz, 1H), 2.46 (d, *J* = 5.2 Hz, 1H), 1.75 (tt, *J* = 12.0, 4.2 Hz, 1H), 1.64 (tt, *J* = 12.0, 4.2 Hz, 1H), 1.54 – 1.45 (m, 1H), 1.41 – 1.32 (m, 1H), 1.06 (d, *J* = 11.0 Hz, 1H), 0.97 (d, *J* = 11.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 202.7, 177.8, 159.3, 157.5, 150.9, 140.4, 125.8, 125.2, 120.6, 105.1, 56.1, 53.3, 42.2, 40.0, 37.4, 32.1, 29.1, 28.7; HRMS (ESI-TOF): calcd. for C₁₈H₁₇O₄ [M + H]⁺ 297.1121; found 297.1122.

Scheme 2, 4g

Compound **4g**: yellow solid, 39.8 mg, 70% yield, mp 160.6 – 162.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.86 (dd, J = 8.0, 3.2 Hz, 1H), 7.61 (dd, J = 9.2, 4.0 Hz, 1H), 7.46 (ddd, J = 9.2, 7.6, 3.2 Hz, 1H), 3.12 (d, J = 5.4 Hz, 1H), 2.66 (d, J = 3.8 Hz, 1H), 2.57 (d, J = 3.4 Hz, 1H), 2.48 (d, J = 5.2 Hz, 1H), 1.75 (tt, J = 11.6, 3.8 Hz, 1H), 1.66 (tt, J = 12.0, 4.0 Hz, 1H), 1.54 – 1.46 (m, 1H), 1.42 – 1.33 (m, 1H), 1.08 (d, J = 11.0 Hz, 1H), 0.98 (d, J = 11.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 202.4, 177.3, 159.9 (d, J = 248.4 Hz), 159.8, 152.3, 140.5, 126.3 (d, J = 7.3 Hz), 123.3 (d, J = 25.5 Hz), 121.4 (d, J = 8.1 Hz), 111.1 (d, J = 23.8 Hz), 53.4, 42.2, 40.0, 37.5, 32.2, 29.1, 28.7; HRMS (ESI-TOF): calcd. for C₁₇H₁₄FO₃ [M + H]⁺ 285.0921; found 285.0922.

Scheme 2, 4h

Compound **4h**: yellow solid, 45.2 mg, 75% yield, mp 196.8 – 198.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 2.4 Hz, 1H), 7.66 (dd, J = 9.0, 2.4 Hz, 1H), 7.55 (d, J = 9.0 Hz, 1H), 3.11 (d, J = 5.2 Hz, 1H), 2.65 (d, J = 3.4 Hz, 1H), 2.57 (d, J = 3.2 Hz, 1H), 2.48 (d, J = 5.2 Hz, 1H), 1.76 (tt, J = 11.6, 4.2 Hz, 1H), 1.65 (tt, J = 11.8, 4.2 Hz, 1H), 1.53 – 1.43 (m, 1H), 1.41 – 1.33 (m, 1H), 1.08 (d, J = 11.0 Hz, 1H), 0.97 (d, J = 11.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 202.2, 176.8, 159.7, 154.5, 141.2, 135.3, 132.0, 126.0, 125.6, 121.0, 53.3, 42.2, 40.0, 37.5, 32.2, 29.1, 28.7; HRMS (ESI-TOF): calcd. for C₁₇H₁₄ClO₃ [M + H]⁺ 301.0626; found 301.0627.

Scheme 2, 4i

Compound **4i**: yellow solid, 39.4 mg, 57% yield, mp 185.3 – 187.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.36 (d, J = 2.4 Hz, 1H), 7.81 (dd, J = 9.0, 2.4 Hz, 1H), 7.50 (d, J = 9.0 Hz, 1H), 3.12 (d, J = 5.2 Hz, 1H), 2.66 (d, J = 3.6 Hz, 1H), 2.58 (d, J = 3.4 Hz, 1H), 2.49 (d, J = 5.2 Hz, 1H), 1.77 (tt, J = 12.0, 4.2 Hz, 1H), 1.66 (tt, J = 11.8, 4.2 Hz, 1H), 1.55 – 1.46 (m, 1H), 1.43 – 1.34 (m, 1H), 1.09 (d, J = 11.0 Hz, 1H), 0.98 (d, J = 11.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 202.3, 176.7, 159.7, 155.0, 141.4, 138.1, 128.8, 126.4, 121.2, 119.5, 53.4, 42.3, 40.0, 37.5, 32.2, 29.1, 28.7; HRMS (ESI-TOF): calcd. for C₁₇H₁₄BrO₃ [M + H]⁺ 345.0121; found 345.0121.

Scheme 2, 4j

Compound **4j**: yellow solid, 41.4 mg, 71% yield, mp 199.7 – 200.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.59 (d, J = 2.0 Hz, 1H), 7.97 (dd, J = 8.8, 2.0 Hz, 1H), 7.73 (d, J = 8.8 Hz, 1H), 3.15 (d, J = 5.4 Hz, 1H), 2.67 (d, J = 4.0 Hz, 1H), 2.61 (d, J = 3.6 Hz, 1H), 2.52 (d, J = 5.4 Hz, 1H), 1.79 (tt, J = 11.8, 4.2 Hz, 1H), 1.68 (tt, J = 12.0, 4.2 Hz, 1H), 1.56 – 1.48 (m, 1H), 1.44 – 1.36 (m, 1H),

1.13 (d, J = 11.0 Hz, 1H), 1.00 (d, J = 11.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 201.7, 176.3, 160.0, 158.0, 142.0, 137.2, 131.9, 125.5, 121.0, 117.3, 110.3, 53.4, 42.3, 40.1, 37.5, 32.3, 29.1, 28.7; HRMS (ESI-TOF): calcd. for C₁₈H₁₄NO₃ [M + H]⁺ 292.0968; found 292.0967.

Scheme 2, 4k

Compound **4k**: yellow solid, 54.2 mg, 87% yield, mp 214.9 – 216.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.10 (d, *J* = 2.8 Hz, 1H), 8.57 (dd, *J* = 9.2, 2.8 Hz, 1H), 7.77 (d, *J* = 9.2 Hz, 1H), 3.16 (d, *J* = 5.2 Hz, 1H), 2.68 (d, *J* = 3.6 Hz, 1H), 2.61 (d, *J* = 3.0 Hz, 1H), 2.53 (d, *J* = 5.2 Hz, 1H), 1.80 (tt, *J* = 12.0, 4.2 Hz, 1H), 1.68 (tt, *J* = 12.0, 4.2 Hz, 1H), 1.56 – 1.48 (m, 1H), 1.44 – 1.35 (m, 1H), 1.13 (dd, *J* = 11.0, 1.2 Hz, 1H), 1.00 (dd, *J* = 11.0, 1.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 201.7, 176.5, 160.0, 159.0, 145.2, 141.7, 129.3, 125.2, 123.0, 121.1, 53.4, 42.2, 40.1, 37.5, 32.3, 29.1, 28.6; HRMS (ESI-TOF): calcd. for C₁₇H₁₄NO₅ [M + H]⁺ 312.0866; found 312.0866.

Scheme 2, 4l

Compound **4I**: yellow solid, 39.3 mg, 70% yield, mp 141.0 – 142.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 8.2 Hz, 1H), 7.34 (s, 1H), 7.23 (d, J = 8.4 Hz, 1H), 3.08 (d, J = 5.2 Hz, 1H), 2.63 (d, J = 3.4 Hz, 1H), 2.53 (d, J = 3.4 Hz, 1H), 2.47 (s, 3H), 2.43 (d, J = 5.2 Hz, 1H), 1.73 (tt, J = 12.0, 4.2 Hz, 1H), 1.62 (tt, J = 11.8, 4.2 Hz, 1H), 1.50 – 1.43 (m, 1H), 1.38 – 1.30 (m, 1H), 1.04 (d, J = 11.0 Hz, 1H), 0.96 (d, J = 11.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 202.7, 177.8, 159.4, 156.3, 146.8, 141.6, 127.4, 125.9, 122.9, 118.9, 53.3, 42.2, 39.9, 37.4, 32.1, 29.1, 28.7, 22.1; HRMS (ESI-TOF): calcd. for C₁₈H₁₇O₃ [M + H]⁺ 281.1172; found 281.1171.

Scheme 2, 4m

Compound **4m**: yellow solid, 42.7 mg, 72% yield, mp 179.6 – 180.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, *J* = 9.0 Hz, 1H), 7.02 – 6.92 (m, 2H), 3.89 (s, 3H), 3.09 (d, *J* = 5.2 Hz, 1H), 2.65 (d, *J* = 3.8 Hz, 1H), 2.55 (d, *J* = 3.4 Hz, 1H), 2.45 (d, *J* = 5.2 Hz, 1H), 1.75 (tt, tt, *J* = 11.8, 4.2 Hz 1H), 1.64(tt, *J* = 11.8, 4.2 Hz, 1H), 1.53 – 1.45 (m, 1H), 1.40 – 1.32 (m, 1H), 1.06 (d, *J* = 11.0 Hz, 1H), 0.98 (d, *J* = 11.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 202.5, 177.1, 165.2, 159.4, 158.2, 142.0, 127.5, 119.1, 115.5, 101.0, 56.1, 53.4, 42.3, 39.9, 37.4, 32.1, 29.1, 28.7; HRMS (ESI-TOF): calcd. for C₁₈H₁₇O₄ [M + H]⁺ 297.1121; found 297.1122.

Scheme 2, 4n

Compound **4n**: yellow solid, 46.1 mg, 81% yield, mp 192.6 – 194.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.26 (dd, J = 8.8, 6.4 Hz, 1H), 7.26 (dd, J = 8.8, 2.0 Hz, 1H), 7.18 (td, J = 8.6, 2.2 Hz, 1H), 3.11 (d, J = 5.2 Hz, 1H), 2.65 (d, J = 3.4 Hz, 1H), 2.57 (d, J = 2.8 Hz, 1H), 2.48 (d, J = 5.2 Hz, 1H), 1.76 (tt, J = 12.0, 4.4 Hz, 1H), 1.65 (tt, J = 11.8, 4.2 Hz, 1H), 1.53 – 1.46 (m, 1H), 1.41 – 1.33 (m, 1H), 1.08 (d, J = 11.0 Hz, 1H), 0.99 (d, J = 11.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 202.1, 177.0, 166.4 (d, J = 257.3 Hz), 159.9, 157.4 (d, J = 13.4 Hz), 141.8, 128.8 (d, J = 10.8 Hz), 122.0 (d, J = 2.3 Hz), 114.8 (d, J = 22.9 Hz), 105.9 (d, J = 25.6 Hz); 53.4, 42.2, 40.0, 37.5, 32.1, 29.1, 28.7; HRMS (ESI-TOF): calcd. for C₁₇H₁₄FO₃ [M + H]⁺ 285.0921; found 285.0924.

Scheme 2, 4o

Compound **40**: yellow solid, 44.0 mg, 73% yield, mp 193.8 – 195.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 8.6 Hz, 1H), 7.55 (d, J = 1.6 Hz, 1H), 7.38 (dd, J = 8.6, 1.6 Hz, 1H), 3.08 (d, J = 5.2 Hz, 1H), 2.62 (d, J = 3.6 Hz, 1H), 2.54 (d, J = 3.2 Hz, 1H), 2.45 (d, J = 5.2 Hz, 1H), 1.74 (tt, J = 11.6, 4.0 Hz, 1H), 1.63 (tt, J = 11.8, 4.2 Hz, 1H), 1.51 – 1.43 (m, 1H), 1.38 – 1.31 (m, 1H), 1.06 (d, J = 11.0 Hz, 1H), 0.96 (d, J = 11.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 202.0, 177.1, 159.6, 156.2, 141.7, 141.1, 127.5, 126.7, 123.6, 119.1, 53.3, 42.2, 40.0, 37.4, 32.1, 29.0, 28.6;

HRMS (ESI-TOF): calcd. for $C_{17}H_{14}ClO_3$ [M + H]⁺ 301.0626; found 301.0626.

Scheme 2, 4p

Compound **4p**: yellow solid, 37.3 mg, 54% yield, mp 196.5 – 197.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 8.6 Hz, 1H), 7.79 (d, *J* = 1.4 Hz, 1H), 7.57 (dd, *J* = 8.6, 1.4 Hz, 1H), 3.12 (d, *J* = 5.4 Hz, 1H), 2.66 (d, *J* = 3.6 Hz, 1H), 2.58 (d, *J* = 3.4 Hz, 1H), 2.48 (d, *J* = 5.4 Hz, 1H), 1.77 (tt, *J* = 12.0, 4.2 Hz, 1H), 1.66 (tt, *J* = 12.0, 4.0 Hz, 1H), 1.54 – 1.47 (m, 1H), 1.42 – 1.35 (m, 1H), 1.09 (d, *J* = 11.0 Hz, 1H), 0.99 (d, *J* = 11.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 202.1, 177.3, 159.6, 156.2, 141.8, 129.7, 129.5, 127.6, 124.0, 122.3, 53.4, 42.3, 40.0, 37.5, 32.2, 29.2, 28.7; HRMS (ESI-TOF): calcd. for C₁₇H₁₄BrO₃ [M + H]⁺ 345.0121; found 345.0121.

Scheme 2, 4q

Compound **4q**: yellow solid, 39.9 mg, 71% yield, mp 141.8 – 143.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.09 (dd, J = 8.0, 1.0 Hz, 1H), 7.57 (d, J = 6.8 Hz, 1H), 7.34 (t, J = 7.6 Hz, 1H), 3.12 (d, J = 5.2 Hz, 1H), 2.67 (d, J = 4.0 Hz, 1H), 2.57 (d, J = 3.8 Hz, 1H), 2.54 (s, 3H), 2.47 (d, J = 5.2 Hz, 1H), 1.76 (tt, J = 12.0, 4.2 Hz, 1H), 1.66 (tt, J = 12.0, 4.0 Hz, 1H), 1.57 – 1.46 (m, 1H), 1.43 – 1.33 (m, 1H), 1.07 (d, J = 11.0 Hz, 1H), 1.00 (d, J = 11.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 202.6, 178.4, 159.5, 154.6, 141.2, 136.1, 129.0, 125.4, 125.1, 123.8, 53.3, 42.2, 40.0, 37.5, 32.1, 29.1, 28.7, 15.9; HRMS (ESI-TOF): calcd. for C₁₈H₁₇O₃ [M + H]⁺ 281.1172; found 281.1171.

Scheme 2, 4r

Compound **4r**: yellow solid, 49.4 mg, 82% yield, mp 148.5 – 150.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.08 (dd, J = 8.0, 1.2 Hz, 1H), 7.75 (dd, J = 7.8, 1.2 Hz, 1H), 7.35 (t, J = 8.0 Hz, 1H),

3.09 (d, J = 5.2 Hz, 1H), 2.62 (d, J = 3.6 Hz, 1H), 2.55 (d, J = 3.2 Hz, 1H), 2.47 (d, J = 5.2 Hz, 1H), 1.74 (tt, J = 12.0, 4.2 Hz, 1H), 1.63 (tt, J = 11.8, 4.2 Hz, 1H), 1.51– 1.43 (m, 1H), 1.39– 1.32 (m, 1H), 1.06 (d, J = 11.0 Hz, 1H), 0.97 (d, J = 11.0 Hz, 1H); ¹³C NMR (100 MHz,CDCl₃) δ 201.5, 177.3, 159.5, 151.8, 141.2, 135.3, 126.3, 125.8, 124.7, 124.4, 53.2, 42.1, 40.0, 37.4, 32.1, 29.0, 28.6; HRMS (ESI-TOF): calcd. for C₁₇H₁₄ClO₃ [M + H]⁺ 301.0626; found 301.0626.

Scheme 2, 4S

Compound **4s**: yellow solid, 38.9 mg, 66% yield, mp 178.6 – 179.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.94 (s, 1H), 7.33 (s, 1H), 3.10 (d, *J* = 5.2 Hz, 1H), 2.65 (d, *J* = 3.6 Hz, 1H), 2.55 (d, *J* = 3.2 Hz, 1H), 2.44 (d, *J* = 5.2 Hz, 1H), 2.38 (s, 3H), 2.35 (s, 3H), 1.75 (tt, *J* = 12.0, 4.2 Hz, 1H), 1.64 (tt, *J* = 11.8, 4.2 Hz, 1H), 1.53 – 1.44 (m, 1H), 1.40 – 1.32 (m, 1H), 1.05 (d, *J* = 11.0 Hz, 1H), 0.97 (d, *J* = 11.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 202.8, 177.9, 159.3, 154.7, 145.9, 141.4, 135.4, 125.7, 123.0, 119.2, 53.3, 42.3, 39.9, 37.4, 32.1, 29.1, 28.7, 20.7, 19.5; HRMS (ESI-TOF): calcd. for C₁₉H₁₉O₃ [M + H]⁺ 295.1329; found 295.1328.

Scheme 2, 4t

Compound **4t**: yellow solid, 41.2 mg, 70% yield, mp 166.3 – 167.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (s, 1H), 7.39 (s, 1H), 3.11 (d, *J* = 5.2 Hz, 1H), 2.66 (d, *J* = 3.8 Hz, 1H), 2.56 (d, *J* = 3.2 Hz, 1H), 2.49 (s, 3H), 2.46 (d, *J* = 5.2 Hz, 1H), 2.41 (s, 3H), 1.75 (tt, *J* = 12.0, 4.2 Hz, 1H), 1.65 (tt, *J* = 11.8, 4.2 Hz, 1H), 1.53 – 1.46 (m, 1H), 1.40 – 1.33 (dd, *J* = m, 1H), 1.06 (d, *J* = 11.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 202.7, 178.4, 159.3, 152.9, 141.0, 137.4, 135.4, 128.6, 124.8, 123.0, 53.3, 42.2, 40.0, 37.5, 32.1, 29.1, 28.7, 21.0, 15.8; HRMS (ESI-TOF): calcd. for C₁₉H₁₉O₃ [M + H]⁺ 295.1329; found 295.1328.

Scheme 2, 4u

Compound **4u**: yellow solid, 41.0 mg, 65% yield, mp 180.2 – 181.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.17 (s, 1H), 7.46 (s, 1H), 3.10 (d, J = 5.2 Hz, 1H), 2.65 (d, J = 3.4 Hz, 1H), 2.55 (d, J = 2.8 Hz, 1H), 2.53 – 2.44 (m, 4H), 1.83 – 1.60 (m, 2H), 1.54 – 1.45 (m, 1H), 1.42 – 1.33 (m, 1H), 1.08 (d, J = 10.8 Hz, 1H), 0.97 (d, J = 10.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 202.3, 176.8, 159.6, 154.4, 144.7, 141.3, 132.8, 125.8, 124.2, 120.9, 53.3, 42.2, 40.0, 37.5, 32.2, 29.1, 28.7, 21.1; HRMS (ESI-TOF): calcd. for C₁₈H₁₆ClO₃ [M + H]⁺ 315.0782; found 315.0780.

Scheme 2, 4v

Compound **4v**: yellow solid, 35.5 mg, 56% yield, mp 165.9 – 167.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.63 (d, J = 8.2 Hz, 1H), 8.15 (d, J = 8.8 Hz, 1H), 7.92 (d, J = 7.8 Hz, 1H), 7.79 (d, J = 8.8 Hz, 1H), 7.75 – 7.65 (m, 2H), 3.18 (d, J = 5.2 Hz, 1H), 2.73 (d, J = 3.2 Hz, 1H), 2.62 (d, J = 2.8 Hz, 1H), 2.53 (d, J = 5.2 Hz, 1H), 1.79 (tt, J = 12.0, 4.2 Hz, 1H), 1.68 (tt, J = 12.0, 4.2 Hz, 1H), 1.58 – 1.50 (m, 1H), 1.47 – 1.36 (m, 1H), 1.10 (d, J = 11.0 Hz, 1H), 1.04 (d, J = 11.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 202.1, 177.7, 159.1, 153.8, 142.9, 136.5, 130.1, 128.2, 127.6, 126.2, 124.4, 123.1, 121.7, 120.7, 53.5, 42.4, 40.0, 37.5, 32.2, 29.2, 28.8; HRMS (ESI-TOF): calcd. for C₂₁H₁₇O₃ [M + H]⁺317.1172; found 317.1171.

Scheme 2, 4w

Compound **4w**: yellow solid, 31.7 mg, 50% yield, mp 202.4 – 203.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.03 (d, J = 8.6 Hz, 1H), 8.14 (d, J = 9.2 Hz, 1H), 7.92 (d, J = 8.0 Hz, 1H), 7.81 (td, J = 7.8, 1.2 Hz, 1H), 7.68 – 7.60 (m, 2H), 3.19 (d, J = 5.2 Hz, 1H), 2.76 (d, J = 3.8 Hz, 1H), 2.60 (d, J = 3.6 Hz, 1H), 2.51 (d, J = 5.2 Hz, 1H), 1.80 (tt, J = 11.8, 4.2 Hz, 1H), 1.68 (tt, J = 11.8, 4.2 Hz, 1H)

1H), 1.61 - 1.50 (m, 1H), 1.47 - 1.36 (m, 1H), 1.10 (d, J = 11.0 Hz, 1H), 1.03 (d, J = 11.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 202.3, 179.7, 157.8, 157.6, 144.2, 137.1, 130.9, 130.6, 129.9, 128.6, 127.3, 126.9, 118.8, 118.2, 53.7, 42.6, 39.9, 37.5, 32.3, 29.2, 28.8; HRMS (ESI-TOF): calcd. for C₂₁H₁₇O₃ [M + H]⁺ 317.1172; found 317.1168.

Figure 1, 4x

Compound **4x**: yellow solid, 35.4 mg, 67% yield, mp 118.9 – 120.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.26 (dd, J = 8.0, 1.4 Hz, 1H), 7.75 (td, J = 7.8, 1.6 Hz, 1H), 7.61 (d, J = 8.4 Hz, 1H), 7.47 (t, J = 7.6 Hz, 1H), 6.46 (dd, J = 5.4, 3.0 Hz, 1H), 6.27 (dd, J = 5.4, 3.0 Hz, 1H), 3.21 (d, J = 5.2 Hz, 1H), 3.18 (s, 1H), 3.11 (s, 1H), 1.48 (d, J = 9.8 Hz, 1H), 1.17 (d, J = 9.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 201.6, 177.8, 159.6, 156.2, 142.0, 139.6, 136.6, 135.2, 126.2, 126.0, 125.2, 119.3, 51.7, 44.5, 42.3, 42.0, 41.0; HRMS (ESI-TOF): calcd. for C₁₇H₁₃O₃ [M + H]⁺ 265.0859; found 265.0854.

Figure 1, 4y

Compound **4y**: yellow solid, 28.3 mg, 45% yield, mp 191.4 – 193.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.30 (dd, J = 8.0, 1.6 Hz, 1H), 7.78 (td, J = 7.8, 1.6 Hz, 1H), 7.64 (d, J = 8.4 Hz, 1H), 7.50 (td, J = 7.6, 0.8 Hz, 1H), 7.41 (dd, J = 5.6, 2.4 Hz, 1H), 7.28 (dd, J = 5.6, 2.6 Hz, 1H), 7.19 – 7.11 (m, 2H), 3.72 (s, 1H), 3.62 (s, 1H), 3.31 (d, J = 5.2 Hz, 1H), 2.67 (d, J = 5.2 Hz, 1H), 1.80 (d, J = 10.2 Hz, 1H), 1.52 (d, J = 10.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 201.1, 177.8, 159.9, 156.2, 147.9, 146.1, 141.4, 135.3, 126.7, 126.6, 126.3, 126.2, 125.2, 122.2, 121.5, 119.4, 52.8, 46.0, 44.1, 42.6, 42.3; HRMS (ESI-TOF): calcd. for C₂₁H₁₅O₃ [M + H]⁺ 315.1016; found 215.1013.

Figure 1, 4z

Compound **4z**: yellow solid, 39.4 mg, 60% yield, mp 189.3 – 190.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.19 (dd, J = 8.0, 1.6 Hz, 1H), 7.65 (ddd, J = 8.6, 7.2, 1.6 Hz, 1H), 7.48 – 7.34 (m, 2H), 7.09 – 7.03 (m, 2H), 7.02 – 6.94 (m, 1H), 6.91 (d, J = 7.2 Hz, 1H), 3.90 (q, 1H), 3.66 (dd, J = 6.4, 2.8 Hz, 1H), 3.60 (q, 1H), 2.94 (dd, J = 6.4, 3.2 Hz, 1H), 2.13 – 2.03 (m, 1H), 2.02 – 1.92 (m, 1H), 1.67 (tt, J = 12.0, 3.4 Hz, 1H), 1.56 (m, J = 12.0, 3.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 201.9, 177.8, 158.4, 155.8, 141.9, 139.2, 138.1, 135.0, 127.3, 127.1, 126.1, 125.8, 125.1, 124.8, 124.7, 119.2, 49.2, 38.9, 38.5, 36.7, 25.7, 25.2; HRMS (ESI-TOF): calcd. for C₂₂H₁₇O₃ [M + H]⁺ 329.1172; found 329.1169.

Figure 1, 4aa

Compound **4aa**: yellow solid, 40.6 mg, 61% yield, mp 233.7 – 235.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.23 (dd, J = 8.0, 1.6 Hz, 1H), 7.73 (td, J = 7.8, 1.6 Hz, 1H), 7.58 (d, J = 8.4 Hz, 1H), 7.44 (td, J = 7.2, 0.8 Hz, 1H), 3.48 (d, J = 5.0 Hz, 1H), 2.78 (d, J = 5.0 Hz, 1H), 2.71 (d, J = 4.6 Hz, 1H), 2.58 (d, J = 4.4 Hz, 1H), 2.43 (s, 1H), 2.26 (s, 1H), 1.87 (ddd, J = 47.8, 9.6, 4.8 Hz, 2H), 1.61 – 1.50 (m, 3H), 1.11 – 0.98 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 203.8, 177.8, 159.3, 156.1, 141.5, 135.1, 126.2, 125.9, 125.1, 119.3, 50.0, 49.7, 49.4, 44.4, 41.8, 37.8, 36.3, 36.2, 35.5, 35.2, 31.1, 31.1; HRMS (ESI-TOF): calcd. for C₁₇H₁₃O₃ [M + H]⁺ 265.0859; found 265.0854.

Figure 1, 4ab

Compound **4ab**: yellow solid, 60.5 mg, 82% yield, mp 184.9 – 186.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.27 (dd, J = 8.0, 1.6 Hz, 1H), 7.76 (td, J = 11.8, 1.6 Hz, 1H), 7.61 (d, J = 8.4 Hz, 1H), 7.47 (t, J = 7.6 Hz, 1H), 6.90 (s, 2H), 3.51 (d, J = 3.6 Hz, 1H), 3.35 (d, J = 3.6 Hz, 1H), 3.21 (d, J

= 5.2 Hz, 1H), 2.76 (s, 1H), 2.68 (s, 1H), 2.55 (d, J = 5.2 Hz, 1H), 2.16 (s, 3H), 2.14 (s, 3H), 0.82 (q, J = 11.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 202.2, 178.0, 159.1, 156.1, 143.1, 142.3, 141.2, 135.2, 129.7, 129.6, 129.2, 129.0, 126.2, 126.0, 125.1, 119.3, 52.1, 49.1, 48.0, 41.1, 39.0, 37.1, 26.5, 16.4, 16.2; HRMS (ESI-TOF): calcd. for C₂₅H₂₁O₃ [M + H]⁺ 369.1485; found 369.1480.

Figure 1, 4ac

Compound **4ac**: yellow solid, 80.2 mg, 91% yield, mp 161.3 – 163.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.74 – 8.66 (m 2H), 8.29 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.90 – 7.82 (m, 1H), 7.81 – 7.72 (m, 2H), 7.66 – 7.55 (m, 5H), 7.48 (td, *J* = 7.6, 1.0 Hz, 1H), 3.87 (d, *J* = 3.2 Hz, 1H), 3.71 (d, *J* = 3.2 Hz, 1H), 3.33 (d, *J* = 5.2 Hz, 1H), 2.94 (s, 1H), 2.86 (s, 1H), 2.67 (d, *J* = 5.2 Hz, 1H), 0.84 (q, *J* = 12.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 202.1, 178.0, 159.1, 156.2, 141.2, 139.6, 138.7, 135.2, 132.7, 132.6, 131.2, 131.1, 128.0, 127.0, 126.3, 126.23, 126.21, 126.0, 125.1, 124.0, 123.9, 123.2, 122.8, 119.3, 52.4, 49.3, 48.2, 41.5, 38.5, 36.6, 26.4; HRMS (ESI-TOF): calcd. for C₃₁H₂₁O₃ [M + H]⁺441.1485; found 441.1480.

Compound **4ad**: yellow solid, 79.7 mg, 90% yield, mp 245.7 – 247.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, J = 7.0 Hz, 1H), 7.71 (td, J = 10.2, 1.2 Hz, 1H), 7.56 (d, J = 8.4 Hz, 1H), 7.44 (t, J = 7.4 Hz, 1H), 7.33 – 7.27 (m, 2H), 7.21 – 7.00 (m, 6H), 4.41 (d, J = 2.4 Hz, 1H), 4.32 (d, J = 2.4 Hz, 1H), 3.02 (d, J = 5.0 Hz, 1H), 2.49 (s, 1H), 2.40 (s, 1H), 2.33 (d, J = 4.8 Hz, 1H), 2.26 (dd, J = 8.4, 2.2 Hz, 1H), 2.07 (dd, J = 8.4, 2.2 Hz, 1H), 0.15 (d, J = 12.2 Hz, 1H), -0.50 (d, J = 12.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 201.7, 177.9, 159.8, 156.0, 144.4, 144.2, 142.0, 141.6, 140.3, 135.2, 126.4, 126.1, 126.0, 125.9, 125.0, 124.5, 123.6, 123.5, 119.2, 54.4, 49.9, 48.6, 48.2, 48.1, 43.4, 42.8, 40.6, 27.1; HRMS (ESI-TOF): calcd. for C₃₁H₂₁O₃ [M + H]⁺ 443.1642; found

443.1637.

7. Preparative-scale experiments

7.1 Synthesis of 4a on a gram-scale (Scheme 3a)

To a 350 mL flame-dried pressure tube with a stir bar, **1a** (1.85 g, 6.8 mmol), **2a** (2.56 g, 27.2 mmol), **3a** (1.40 g, 6.8 mmol), PdCl₂ (120.6 mg, 0.7 mmol), P(4-CF₃C₆H₄)₃ (629.5 mg, 1.4 mmol), Cs₂CO₃ (4.43 g, 13.6 mmol), and fluorobenzene (68 mL) were added. Then, the reaction tube was evacuated and backfilled with argon three times, and the mixture was stirred at 100 °C for 24 h. After completed of the reaction, it was concentrated to remove solvent and purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 40:1 ~ 5:1) to afford the desired product **4a** (1.50 g, 83% yield).

7.2 Synthesis of 4ab on a gram-scale (Scheme 3b)

To a 350 mL flame-dried pressure tube with a stir bar, **1a** (2.07 g, 7.6 mmol), **2f** (2.98 g, 15.2 mmol), **3a** (1.57 g, 7.6 mmol), PdCl₂ (134.8 mg, 0.8 mmol), P(4-CF₃C₆H₄)₃ (708.7 mg, 1.5 mmol), Cs₂CO₃ (4.95 g, 15.2 mmol), fluorobenzene (76 mL) were added. Then, the reaction tube was evacuated and backfilled with argon three times, and the mixture was stirred at 100 °C for 24 h. After completed of the reaction, it was concentrated to remove solvent and purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 40:1 ~ 5:1) to afford the desired product **4ab** (2.28 g, 81% yield).

8. Transformation of 4a into 5, 6, 7

8.1 Synthesis of 5 from 4a (Scheme 4)

To a 4 mL dried vial with a stir bar, **4a** (53.3 mg, 0.2 mmol), Ph₃P=CHCO₂Et (76.6 mg, 0.22 mmol) and dichloromethane (2.0 mL) were added at room temperature overnight. After the completion of the reaction, it was concentrated by vacuum and purified by flash column chromatography to afford the desired product **5** (47.8 mg, 71% yield).⁵ Yellow solid, mp 135.2 – 137.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.22 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.67 (td, *J* = 7.0, 1.6 Hz, 1H), 7.47 (d, *J* = 8.0 Hz, 1H), 7.40 (t, *J* = 7.6 Hz, 1H), 6.43 (d, *J* = 2.4 Hz, 1H), 4.36 – 4.19 (m, 2H), 3.35 – 3.30 (m, 1H), 3.14 (d, *J* = 5.4 Hz, 1H), 2.61 (d, *J* = 3.6 Hz, 1H), 2.49 (d, *J* = 3.6 Hz, 1H), 1.74 – 1.65 (m, 1H), 1.65 – 1.55 (m, 1H), 1.53 – 1.43 (m, 2H), 1.35 (t, *J* = 7.2 Hz, 3H), 1.06 (d, *J* = 10.6 Hz, 1H), 1.00 (d, *J* = 10.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.8, 165.9, 163.2, 157.4, 156.4, 134.0, 130.8, 126.1, 125.4, 124.9, 118.4, 114.1, 60.6, 48.5, 47.9, 42.1, 38.5, 32.1, 29.3, 28.8, 14.4; HRMS (ESI-TOF): calcd. for C₂₁H₂₁O₄ [M + H]⁺ 337.1434; found 337.1431.

8.2 Synthesis of 6 from 4a (Scheme 4)

To a 4 mL dried vial with a stir bar, **4a** (53.3 mg, 0.2 mmol), sodium borohydride (15.1 mg, 0.4 mmol), and ^{*i*}PrOH (2.0 mL) were added at room temperature for 18 h. Detected by thin layer chromatography (TLC) until the reaction was completed. Then, it was concentrated to remove solvent and purified by flash column chromatography to afford the desired product **6** (42.4 mg, 79% yield).⁶ Yellow solid, mp 104.1 – 105.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, *J* = 7.8 Hz, 1H), 7.64 (t, *J* = 7.8 Hz, 1H), 7.48 (d, *J* = 8.4 Hz, 1H), 7.39 (t, *J* = 7.4 Hz, 1H), 5.27 (dd, *J* = 9.2, 5.6 Hz, 1H), 3.08 (d, *J* = 7.0 Hz, 1H), 2.59 (s, 1H), 2.50 (s, 2H), 2.41 (t, *J* = 8.2 Hz, 1H), 1.68 – 1.55 (m, 2H), 1.39 (t, *J* = 8.6 Hz, 1H), 1.29 (d, *J* = 10.6 Hz, 1H), 1.23 (d, *J* = 9.0 Hz, 1H), 1.12 (d, *J* = 10.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 177.1, 167.3, 157.2, 133.5, 126.0, 125.2,

124.6, 122.3, 118.4, 74.6, 48.5, 45.6, 37.8, 35.4, 34.0, 28.7, 28.5; HRMS (ESI-TOF): calcd. for $C_{17}H_{17}O_3 [M + H]^+ 269.1172$; found 269.1180.

8.3 Synthesis of 7 from 4a (Scheme 4)

To a 4 mL dried vial with a stir bar, **4a** (53.3 mg, 0.2 mmol), Lawesson's reagent (45.2 mg, 0.1 mmol), and toluene (2.0 mL) were added at 60 °C for 12 h. After the completion of the reaction, it was concentrated to remove solvent and purified by flash column chromatography to afford the desired product **7** (45.8 mg, 81% yield).⁷ Green solid, mp 145.7 – 147.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.50 (d, J = 8.2 Hz, 1H), 7.75 (td, J = 7.8, 1.0 Hz, 1H), 7.59 (d, J = 8.4 Hz, 1H), 7.43 (t, J = 7.6 Hz, 1H), 3.22 (d, J = 5.6 Hz, 1H), 2.80 (d, J = 3.6 Hz, 1H), 2.61 (d, J = 3.2 Hz, 1H), 2.47 (d, J = 5.6 Hz, 1H), 1.80 – 1.60 (m, 2H), 1.55 – 1.44 (m, 1H), 1.45 – 1.36 (m, 1H), 1.07 (d, J = 11.0 Hz, 1H), 0.96 (d, J = 11.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 203.6, 203.3, 150.8, 149.5, 148.6, 135.1, 132.3, 128.1, 126.9, 119.7, 53.8, 44.9, 40.0, 37.2, 32.7, 29.1, 28.8; HRMS (ESI-TOF): calcd. for C₁₇H₁₅SO₂ [M + H]⁺ 283.0787; found 283.0794.

9. Transformation of 4i into 8, 9, 10

9.1 Synthesis of 8 from 4i (Scheme 4)

To a 4 mL flame-dried vial with a stir bar, **4i** (69.0 mg, 0.2 mmol), MNFO (6.0 mg, 0.02 mmol), Cu₂O (3.0 mg, 0.02mmol), potassium hydroxide (22.4 mg, 0.4 mmol), ammonia (100 μ L, 0.3 mmol) and methanol (2.0 mL) were added under argon atmosphere at 60 °C for 24 h. After the completion of the reaction, it was concentrated and purified by flash column chromatography to afford the desired product **8** (20.9 mg, 37% yield).⁸ Yellow solid, mp 159.3 – 160.6 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.45 (d, *J* = 8.6 Hz, 1H), 7.19 – 7.02 (m, 2H), 5.70 (s, 2H), 2.93 (d, *J* =

5.2 Hz, 1H), 2.44 (t, J = 5.8 Hz, 2H), 2.33 (d, J = 3.0 Hz, 1H), 1.69 – 1.60 (m, 1H), 1.58 – 1.49 (m, 1H), 1.42 – 1.28 (m, 2H), 1.00 – 0.86 (m, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ 202.1, 177.1, 158.5, 147.6, 147.3, 138.9, 125.4, 123.0, 119.8, 104.7, 79.3, 52.4, 31.7, 28.5, 28.0; HRMS (ESI-TOF): calcd. for C₁₇H₁₆NO₃ [M + H]⁺ 282.1125; found 282.1134.

9.2 Synthesis of 9 from 4i (Scheme 4)

To a 4 mL flame-dried vial with a stir bar, **4i** (69.0 mg, 0.2 mmol), phenylacetylene (40.8 mg, 0.4 mmol), Pd(PPh₃)₂Cl₂ (14.0 mg, 0.02 mmol), CuI (4.0 mg, 0.02 mmol), triethylamine (101.2 mg, 1 mmol), and DMF (2.0 mL) were added under argon atmosphere at 60 °C for 24 h. After the completion of the reaction, it was diluted with water, extracted with dichloromethane (15 mL × 3). The combined organic phase was concentrated and purified by flash column chromatography to afford the desired product **9** (53.5 mg, 73% yield).⁹ Yellow solid, mp 204.3 – 205.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.39 (d, *J* = 2.0 Hz, 1H), 7.84 (dd, *J* = 8.6, 2.0 Hz, 1H), 7.58 (d, *J* = 8.6 Hz, 1H), 7.57 – 7.53 (m, 2H), 7.41 – 7.33 (m, 3H), 3.14 (d, *J* = 5.2 Hz, 1H), 2.69 (d, *J* = 4.0 Hz, 1H), 2.59 (d, *J* = 3.6 Hz, 1H), 2.49 (d, *J* = 5.2 Hz, 1H), 1.78 (tt, *J* = 11.6, 4.0 Hz, 1H), 1.67 (tt, *J* = 12.0, 4.2 Hz, 1H), 1.56 – 1.46 (m, 1H), 1.43 – 1.34 (m, 1H), 1.10 (d, *J* = 11.0 Hz, 1H), 1.01 (d, *J* = 11.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 202.4, 177.2, 159.6, 155.5, 141.5, 137.7, 131.8, 129.3, 128.9, 128.6, 125.1, 122.6, 121.6, 119.6, 91.2, 87.5, 53.3, 42.3, 40.0, 37.5, 32.2, 29.1, 28.7; HRMS (ESI-TOF): calcd. for C₂₅H₁₉O₃ [M + H]⁺ 367.1329; found 367.1325.

9.3 Synthesis of 10 from 4i (Scheme 4)

To a 4 mL flame-dried vial with a stir bar, **4i** (69.0 mg, 0.2 mmol), phenylboronic acid (36.6 mg, 0.3 mmol), $Pd(OAc)_2$ (2.2 mg, 0.01 mmol), Cs_2CO_3 (65.2 mg, 0.4 mmol),

butyldi-1-adamantylphosphine (4.4 mg, 0.24 mmol), and DCE (2.0 mL) were added under argon atmosphere at 80 °C for 12 h. After the completion of the reaction, it was concentrated and purified by flash column chromatography to afford the desired product **10** (59.6 mg, 87% yield).¹⁰ Yellow solid, mp 163.7 – 165.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.45 (d, *J* = 2.4 Hz, 1H), 7.98 (dd, *J* = 8.8, 2.4 Hz, 1H), 7.70 – 7.63 (m, 3H), 7.48 (t, *J* = 7.6 Hz, 2H), 7.40 (t, *J* = 7.2 Hz, 1H), 3.16 (d, *J* = 5.2 Hz, 1H), 2.70 (d, *J* = 3.8 Hz, 1H), 2.60 (d, *J* = 3.6 Hz, 1H), 2.50 (d, *J* = 5.2 Hz, 1H), 1.79 (tt, *J* = 11.6, 4.2 Hz, 1H), 1.68 (tt, *J* = 11.8, 4.4 Hz, 1H), 1.57 – 1.49 (m, 1H), 1.45 – 1.34 (m, 1H), 1.10 (d, *J* = 11.0 Hz, 1H), 1.02 (d, *J* = 11.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 202.7, 178.1, 159.6, 155.5, 141.5, 139.1, 139.0, 134.0, 129.2, 128.2, 127.3, 125.3, 124.0, 119.8, 53.4, 42.3, 40.0, 37.5, 32.2, 29.1, 28.7; HRMS (ESI-TOF): calcd. for C₂₃H₁₉O₃ [M + H]⁺ 343.1329; found 343.1336.

10. Transformation of 4x into 11, 12 (Scheme 4)

10.1 Synthesis of **11** from **4x** (**Scheme 4**)

To a 4 mL flame-dried vial with a stir bar, **4x** (53.3 mg, 0.2 mmol), *m*-chloroperoxybenzoic acid (58.6 mg, 0.34 mmol), sodium carbonate (42.4 mg, 0.40 mmol) and dichloromethane (2.0 mL) were added at room temperature for 12 h. After the completion of the reaction, it was quenched with saturated sodium thiosulfate. the mixture was extracted with dichloromethane (15 mL × 3). The combined organic phase was dried with anhydrous sodium sulfate, concentrated by vacuum and purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1 ~ 5:1) to afford the desired product **11** (50.5 mg, 90% yield).¹¹ Yellow solid, mp 146.5 – 148.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 8.0 Hz, 1H), 7.75 (t, *J* = 7.6 Hz, 1H), 7.59 (d, *J* = 8.4 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 1H), 3.46 (s, 1H), 3.32 (s, 1H), 3.28 (d, *J* = 5.0 Hz, 1H), 2.93 (s, 1H), 2.84 (s, 1H), 2.63 (d, *J* = 4.8 Hz, 1H), 1.30 (d, *J* = 11.4 Hz, 1H), 0.60 (d, *J* = 11.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 200.3, 177.5, 159.3, 156.0, 140.1, 135.4, 126.2, 124.9, 119.3, 52.7, 51.0, 50.0, 40.0, 39.2, 38.4, 20.3; HRMS (ESI-TOF): calcd. for C₁₇H₁₃O₄ [M + H]⁺ 281.0808; found 281.0807.

10.2 Synthesis of 12 from 4x (Scheme 4)

To a 100 mL dry round bottom flask with a stir bar, **4x** (53.3 mg, 0.2 mmol) and dichloromethane (40 mL) were added. Bubbling ethylene into the solution, and adding Grubbs II catalyst (17 mg, 0.02 mmol) after 10 minutes. Then, the mixture was stirred under ethylene atmosphere at room temperature for 24 h. After the completion of the reaction detected by thin layer chromatography (TLC), concentrated under vacuum to remove solvent, and the residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = $30:1 \sim 10:1$) to afford the desired product **12** (39.2 mg, 67% yield).¹² Yellow solid, mp 91.1 – 93.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.22 (dd, J = 8.0, 1.6 Hz, 1H), 7.73 (td, J = 7.8, 1.4 Hz, 1H), 7.59 (d, J = 8.4 Hz, 1H), 7.45 (t, J = 7.6 Hz, 1H), 6.36 (ddd, J = 17.2, 10.2, 6.2 Hz, 1H), 5.98 (ddd, J = 17.2, 10.2, 7.0 Hz, 1H), 5.26 – 5.10 (m, 4H), 3.54 (t, J = 7.6 Hz, 1H), 3.02 – 2.94 (m, 1H), 2.65 (dq, J = 15.6, 7.0 Hz, 1H), 2.52 (dq, J = 13.6, 6.6 Hz, 1H), 2.19 (dt, J = 11.8, 5.8 Hz, 1H), 1.85 (q, J = 11.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 201.2, 177.8, 156.2, 155.3, 142.0, 140.2, 139.1, 135.1, 126.2, 126.0, 125.2, 119.2, 115.9, 114.4, 55.4, 48.0, 45.6, 45.5, 42.7; HRMS (ESI-TOF): calcd. for C₁₉H₁₇O₃ [M + H]⁺293.1172; found 293.1171.

11. References

- 1. (a) D. A. Vasselin, A. D. Westwell, C. S. Matthews, T. D. Bradshaw and M. F. G. Stevens, Structural studies on bioactive compounds. 40.1 Synthesis and biological properties of fluoro-, methoxyl-, and amino-substituted 3-phenyl-4H-1-benzopyran-4-ones and a comparison of their antitumor activities with the activities of related 2-phenylbenzothiazoles, J. Med. Chem., 2006, 49, 3973; (b) P. Mutai, E. Pavadai, I. Wiid, A. Ngwane, B. Baker and K. Chibale, Synthesis, antimycobacterial evaluation and pharmacophore modeling of analogues of the natural product formononetin, Bioorg. Med. Chem. Lett., 2015, 12, 2510; (c) Y. Lin, J.-P. Wana and Y. Liu, Synthesis of 3-halochromones with simple KX halogen sources enabled by in situ halide oxidation, New J. Chem., 2020, 44, 8120.
- 2. S. Liu, Z. Jin, Y. C. Teo and Y. Xia, Efficient synthesis of rigid ladder polymers via palladium catalyzed annulation, J. Am. Chem. Soc., 2014, 136, 17434.
- 3. M. N. Paddon-Row and R. Hartcher, Orbital interactions. 7. The birch reduction as a tool for exploring orbital interactions through bonds. Through-four-, -five-, and -six-bond interactions¹, J. Am. Chem. Soc., 1980, 102, 671.
- 4. (a) D. H. Wadsworth, B. A. Donatelli. Preparation of diarylacetylenes via cyclopropenes. Synthesis, 1981, 285. (b) T. K. Heiss and J. A. Prescher, Cyclopropeniminium ions exhibit unique reactivity profiles with bioorthogonal phosphines, J. Org. Chem., 2019, 84, 7443.
- 5. D. Choudhary, V. Khatri and A. K. Basak, Wittig ylide mediated decomposition of N-sulfonylhydrazones to sulfinates, Org. Lett., 2018, 20, 1703.
- 6. P. K. Verma, U. Sharma, N. Kumar, M. Bala, V. Kumar and B. Singh, Nickel phthalocyanine assisted highly efficient and selective carbonyl reduction in polyethylene glycol-400, Catal. Lett., 2012, 142, 907.
- 7. Y. Xi, C. Wang, Q. Zhang, J. Qu and Y. Chen, Palladium-catalyzed regio-, diastereo-, and enantioselective 1,2-arylfluorination of internal enamides, Angew. Chem. Int. Ed., 2021, 60, 2699.
- 8. J. Gao, S. Bhunia, K. Wang, L. Gan, S. Xia and D. Ma, Discovery of N-(naphthalen-1-yl)-N'-alkyl oxalamide ligands enables Cu-catalyzed aryl amination with high turnovers, Org. Lett., 2017, 19, 2809.
- 9. P. Wang, G.-Y. Wang, W.-L. Qiao and Y.-S. Feng, Mesoporous carbon supporting Pd(0) as a S35
highly efficient and stable catalyst for Sonogashira reaction in aqueous media, *Catal. Lett.*, 2016, **146**, 1792.

- H. Yazdani and A. Bazgir, Lewis acid catalyzed regio- and diastereoselective synthesis of spiroisoxazolines *via* one-pot sequential knoevenagel condensation/1,3-dipolar cycloaddition reaction, *Synthesis*, 2019, **51**, 1669.
- P. Thansandote, D. G. Hulcoop, M. Langer and M. Lautens, Palladium-catalyzed annulation of haloanilines and halobenzamides using norbornadiene as an acetylene synthon: A route to functionalized indolines, isoquinolinones, and indoles, *J. Org. Chem.*, 2009, **74**, 1673.
- I. L. Lysenko, H. G. Lee and J. K. Cha, Use of cyclopropanols as conformational constraints in RCM, *Org. Lett.*, 2006, 8, 2671.

12. X-ray crystal data for 4a, 4x, 4y, 4z, 4aa, 4ab, 4ad, 5, 6 and 7

4a (CCDC: 2056365)

Identification code	4a
Empirical formula	C ₁₇ H ₁₄ O ₃
Formula weight	266.28
Temperature/K	100.00(10)
Crystal system	orthorhombic
Space group	Pbca
a/Å	24.0388(11)
b/Å	11.3009(4)
c/Å	36.9112(15)
α /o	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	10027.3(7)
Z	32
$\rho_{calc}g/cm^3$	1.411
μ/mm^{-1}	0.096
F(000)	4480.0
Crystal size/mm ³	0.13 imes 0.12 imes 0.1
Radiation	Mo Ka ($\lambda = 0.71073$)
2θ range for data collection/°	4.044 to 49.996
Index ranges	$-23 \le h \le 28, -11 \le k \le 13, -43 \le l \le 41$
Reflections collected	32274
Independent reflections	8832 [$R_{int} = 0.0515$, $R_{sigma} = 0.0469$]
Data/restraints/parameters	8832/0/721
Goodness-of-fit on F ²	1.016
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0550, wR_2 = 0.1361$
Final R indexes [all data]	$R_1 = 0.0704, wR_2 = 0.1474$
Largest diff. peak/hole / e Å ⁻³	0.58/-0.33

4x (CCDC: 2056366)

Identification code	4x
Empirical formula	C ₁₇ H ₁₂ O ₃
Formula weight	264.27
Temperature/K	100.01(10)
Crystal system	triclinic
Space group	P-1
a/Å	5.5036(10)
b/Å	8.1424(13)
c/Å	13.547(2)
α'°	84.568(13)
β°	85.441(14)
$\gamma^{/\circ}$	89.725(14)
Volume/Å ³	602.42(18)
Z	2
$\rho_{calc}g/cm^3$	1.457
μ/mm^{-1}	0.100
F(000)	276.0
Crystal size/mm ³	$0.14\times0.13\times0.12$
Radiation	Mo Ka ($\lambda = 0.71073$)
2θ range for data collection/°	5.026 to 50.01
Index ranges	$-6 \le h \le 6, -9 \le k \le 9, -3 \le l \le 16$
Reflections collected	2104
Independent reflections	2104 [$R_{int} = 0705, R_{sigma} = 0.1121$]
Data/restraints/parameters	2104/0/182
Goodness-of-fit on F ²	1.101
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.1031, wR_2 = 0.2622$
Final R indexes [all data]	$R_1 = 0.1452, \ wR_2 = 0.2866$
Largest diff. peak/hole / e Å ⁻³	0.47/-0.54

4y (CCDC: 2056367)

Identification code	4y
Empirical formula	$C_{21}H_{14}O_3$
Formula weight	314.32
Temperature/K	100.00(10)
Crystal system	triclinic
Space group	P-1
a/Å	5.8572(6)
b/Å	8.3393(9)
c/Å	14.637(2)
$\alpha/^{\circ}$	93.034(10)
$\beta^{\prime \circ}$	96.799(10)
$\gamma/^{\circ}$	90.121(9)
Volume/Å ³	708.92(15)
Z	2
$\rho_{calc}g/cm^3$	1.473
µ/mm ⁻¹	0.792
F(000)	328.0
Crystal size/mm ³	$0.13\times0.1\times0.08$
Radiation	Cu Ka ($\lambda = 1.54184$)
2θ range for data collection/°	6.09 to 148.886
Index ranges	$-7 \le h \le 6, -10 \le k \le 10, -17 \le l \le 17$
Reflections collected	2748
Independent reflections	2748 [$R_{int} = 0.0517$, $R_{sigma} = 0.0859$]
Data/restraints/parameters	2748/0/218
Goodness-of-fit on F ²	1.052
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.1202, \ wR_2 = 0.2766$
Final R indexes [all data]	$R_1 = 0.1374, wR_2 = 0.2844$
Largest diff. peak/hole / e Å ⁻³	0.46/-0.65

Identification code 4z Empirical formula $C_{22}H_{16}O_3$ 328.35 Formula weight Temperature/K 100.00(10)Crystal system monoclinic Space group $P2_1/n$ a/Å 8.1695(4) b/Å 11.3093(6) c/Å 16.4310(9) α/° 90 β/° 92.784(5) γ/° 90 Volume/Å³ 1516.28(14) Ζ 4 $\rho_{calc}g/cm^3$ 1.438 μ/mm^{-1} 0.765 F(000) 688.0 Crystal size/mm³ $0.13 \times 0.12 \times 0.11$ Radiation Cu K α (λ = 1.54184) 2θ range for data collection/° 9.498 to 147.558 $-10 \le h \le 9, -11 \le k \le 13, -20 \le l \le 12$ Index ranges Reflections collected 5466 Independent reflections 2957 [$R_{int} = 0.0295$, $R_{sigma} = 0.0352$] Data/restraints/parameters 2957/0/226 Goodness-of-fit on F² 1.040 Final R indexes $[I \ge 2\sigma(I)]$ $R_1 = 0.0549, wR_2 = 0.1477$ Final R indexes [all data] $R_1 = 0.0595, wR_2 = 0.1532$ Largest diff. peak/hole / e $Å^{-3}$ 0.40/-0.26

4aa (CCDC: 2056370)

Identification code	4aa
Empirical formula	$C_{22}H_{20}O_3$
Formula weight	332.38
Temperature/K	100.00(10)
Crystal system	monoclinic
Space group	P2/c
a/Å	11.4543(7)
b/Å	6.0539(5)
c/Å	23.3796(14)
α'°	90
$\beta^{\prime \circ}$	102.119(6)
$\gamma/^{\circ}$	90
Volume/Å ³	1585.10(19)
Z	4
$\rho_{calc}g/cm^3$	1.393
µ/mm ⁻¹	0.092
F(000)	704.0
Crystal size/mm ³	$0.14 \times 0.13 \times 0.12$
Radiation	Mo Ka ($\lambda = 0.71073$)
2θ range for data collection/°	4.526 to 49.992
Index ranges	$-12 \le h \le 13, -7 \le k \le 5, -27 \le l \le 26$
Reflections collected	6346
Independent reflections	2775 [$R_{int} = 0.0227, R_{sigma} = 0.0336$]
Data/restraints/parameters	2775/0/226
Goodness-of-fit on F ²	1.082
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0412, wR_2 = 0.0899$
Final R indexes [all data]	$R_1=0.0491,wR_2=0.0951$
Largest diff. peak/hole / e Å ⁻³	0.23/-0.23

Identification code	4ab
Empirical formula	C ₂₅ H ₂₀ O ₃
Formula weight	368.41
Temperature/K	99.98(11)
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	7.2707(6)
b/Å	43.553(5)
c/Å	5.7823(5)
a/°	90
β/°	96.002(8)
$\gamma/^{\circ}$	90
Volume/Å ³	1821.0(3)
Z	4
$\rho_{calc}g/cm^3$	1.344
µ/mm ⁻¹	0.697
F(000)	776.0
Crystal size/mm ³	0.13 imes 0.1 imes 0.08
Radiation	Cu Kα (λ = 1.54184)
2θ range for data collection/°	8.12 to 147.298
Index ranges	$-7 \le h \le 8, -53 \le k \le 52, -7 \le l \le 4$
Reflections collected	7718
Independent reflections	3542 [$R_{int} = 0.0662, R_{sigma} = 0.0812$]
Data/restraints/parameters	3542/0/255
Goodness-of-fit on F ²	1.033
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0846, wR_2 = 0.2269$
Final R indexes [all data]	$R_1 = 0.1082, wR_2 = 0.2450$
Largest diff. peak/hole / e Å ⁻³	0.39/-0.39

4ad (CCDC: 2056382)

Identification code	4ad
Empirical formula	C ₃₁ H ₂₂ O ₃
Formula weight	442.48
Temperature/K	149.99(10)
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	14.2504(6)
b/Å	6.3375(3)
c/Å	23.4812(10)
α'°	90
$\beta^{\prime \circ}$	99.254(4)
$\gamma^{/\circ}$	90
Volume/Å ³	2093.04(16)
Z	4
$\rho_{calc}g/cm^3$	1.404
μ/mm^{-1}	0.710
F(000)	928.0
Crystal size/mm ³	$0.13 \times 0.11 \times 0.08$
Radiation	Cu Ka ($\lambda = 1.54184$)
2θ range for data collection/°	6.806 to 147.818
Index ranges	$\text{-}17 \leq h \leq 17, \text{-}7 \leq k \leq 7, \text{-}5 \leq l \leq 29$
Reflections collected	4126
Independent reflections	4126 [$R_{int} = 0.0478$, $R_{sigma} = 0.0572$]
Data/restraints/parameters	4126/0/308
Goodness-of-fit on F ²	1.044
Final R indexes [I>= 2σ (I)]	$R_1 = 0.1271, wR_2 = 0.3248$
Final R indexes [all data]	$R_1 = 0.1377, wR_2 = 0.3292$
Largest diff. peak/hole / e Å ⁻³	0.55/-0.50

Identification code	5
Empirical formula	C ₂₁ H ₂₀ O ₄
Formula weight	336.37
Temperature/K	100.01(11)
Crystal system	monoclinic
Space group	P21
a/Å	5.6748(14)
b/Å	13.565(3)
c/Å	10.788(3)
α'°	90
β/°	101.16(3)
$\gamma^{\prime \circ}$	90
Volume/Å ³	814.8(4)
Z	2
$\rho_{calc}g/cm^3$	1.371
µ/mm ⁻¹	0.094
F(000)	356.0
Crystal size/mm ³	$0.12\times0.11\times0.1$
Radiation	Mo Ka ($\lambda = 0.71073$)
2θ range for data collection/°	3.848 to 50.12
Index ranges	$-6 \le h \le 6, -16 \le k \le 16, -2 \le l \le 12$
Reflections collected	2283
Independent reflections	2283 [$R_{int} = 0.0572$, $R_{sigma} = 0.1055$]
Data/restraints/parameters	2283/7/228
Goodness-of-fit on F ²	1.186
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0767, wR_2 = 0.2175$
Final R indexes [all data]	$R_1 = 0.0926, wR_2 = 0.2294$
Largest diff. peak/hole / e Å ⁻³	0.39/-0.41
Flack parameter	1.0(10)

6 (CCDC: 2056385)

Identification code	6
Empirical formula	C ₁₇ H ₁₆ O ₃
Formula weight	268.30
Temperature/K	149.99(10)
Crystal system	triclinic
Space group	P-1
a/Å	6.8459(5)
b/Å	8.6461(6)
c/Å	11.8123(8)
$\alpha/^{\circ}$	107.918(6)
β/°	101.256(6)
$\gamma/^{\circ}$	98.709(6)
Volume/Å ³	635.49(8)
Z	2
$\rho_{calc}g/cm^3$	1.402
μ/mm^{-1}	0.095
F(000)	284.0
Crystal size/mm ³	$0.13\times0.12\times0.11$
Radiation	Mo Ka ($\lambda = 0.71073$)
2θ range for data collection/°	5.084 to 49.99
Index ranges	$-7 \le h \le 8, -10 \le k \le 9, -10 \le l \le 14$
Reflections collected	4187
Independent reflections	2228 [$R_{int} = 0.0209, R_{sigma} = 0.0359$]
Data/restraints/parameters	2228/0/183
Goodness-of-fit on F ²	1.054
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0387, wR_2 = 0.0942$
Final R indexes [all data]	$R_1 = 0.0452, wR_2 = 0.1000$
Largest diff. peak/hole / e Å ⁻³	0.23/-0.18

Identification code	7
Empirical formula	$C_{17}H_{14}O_2S$
Formula weight	282.34
Temperature/K	150.00(10)
Crystal system	orthorhombic
Space group	Pbca
a/Å	13.3198(8)
b/Å	9.2495(7)
c/Å	21.0527(14)
α'°	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	2593.7(3)
Z	8
$\rho_{calc}g/cm^3$	1.446
µ/mm ⁻¹	0.247
F(000)	1184.0
Crystal size/mm ³	$0.13 \times 0.12 \times 0.08$
Radiation	Mo Ka ($\lambda = 0.71073$)
2θ range for data collection/°	4.932 to 49.984
Index ranges	$-15 \le h \le 15, -9 \le k \le 10, -25 \le l \le 20$
Reflections collected	7667
Independent reflections	2282 [$R_{int} = 0.0292$, $R_{sigma} = 0.0292$]
Data/restraints/parameters	2282/0/181
Goodness-of-fit on F ²	1.049
Final R indexes $[I \ge 2\sigma(I)]$	$R_1=0.0344,wR_2=0.0782$
Final R indexes [all data]	$R_1=0.0437,wR_2=0.0840$
Largest diff. peak/hole / e Å ⁻³	0.22/-0.20

13. ¹H and ¹³C NMR spectra of 1a-1w, 2a-2h and 3a-3b

fyc-la-h

fyc-lc-h

fyc-ld-h

S60

8,2862 8,1833 8,1833 8,1833 7,5467 7,6467 7,6404 7,5244 7,7380 7,7380 7,74164 7,7380 7,7380 7,7380 7,7380

fyc-lh-h

fyc-lj-h

S69

S70

fyc-ln-h

fyc-lp-h

S79

S81

S84

S85

S86

--21.05

fyc-lv-h

S97

S105

fyc-3a-h

S111

14. ¹H and ¹³C NMR spectra of 4a-4ad and 5-12

fyc-86-0-h

88889	
	000-000044000
00000	

$<^{2.9974}_{2.9840}$	255395 25294 25294 253051 23051 23051 23051 23051	15829 15829 15829 15829 15829 15829 15829 15889 15889 15889 15889 15889 15889 15889 15889 15889 15889 15889 15889 15889 15899 15999

Scheme 2, 4a

fyc-86-29-h

7,0920 7,0920 7,0920 7,0920 7,0920 7,0920 7,0712 7,0920

LEFERENCE L

r7,5005 77,5800 -7,5800 -7,5800 -7,5806 -7,4886 -7,4886 -7,4886 -7,4886 -7,4886

fyc-86-20-h

-0.9656

Scheme 2, 4g

fyc-86-7-H

A 11700 A 117000 A 11700 A

Scheme 2, 4h

fyc-86-3-h

S128

fyc-86-4-h

^{8,3639}
^{8,3639}
^{8,3681}

Scheme 2, 4i

Ö H, Br Ή Ο Ô

S130

S134

fyc-86-6-h

Scheme 2, 4n

Ο H, O

S140

fyc-86-2-h

Scheme 2, 4o

0 H, Ή CI 0 Ó

S142

8.1174 8.0000 7.7.781 7.7.781 7.7.781 7.7.781 7.7.5815 7.5683 7.5615

Scheme 2, 4p

fyc-86-5-h

Ö H. Ή Br Ó

S146

2,255500 2,47700 2,47700 2,47700 2,47700 2,47700 2,47700 2,47700 2,4770

fyc-86-1-h

S150

Figure 1, 4x

0 Η, Ô Ö

S161

9.5

9.0

8.5

8.0

7.5

7.0

6.5

6.0

S163

5.5

4.5

3.5

2.5

2.0

1.5

0.5

S168

fyc-ipr-h

48113

48113

48113

48113

48113

48113

48113

48113

48113

48113

48113

48113

48113

48113

48113

48113

48113

48113

48113

48113

48113

48113

48113

48113

48113

48113

48113

48113

48113

48113

48113

48113

48113

48113

48113

48113

48113

48113

48113

48113

48113

48113

48113

48113

48113

48113

48113

48113

48113</

fyc-lsr-h

S179

128	7069 6973 6047 5966 5100 5100	7862 7566 6753 6753 5292 5292 5292 5292 5292 5292 0000 0375 0100
Ŷ	dadada	SVIDUZ

fyc-suzi-h

fyc-erxi-h

