Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Supporting Information

Copper-Catalyzed Asymmetric Allylic C-H Amination of Alkenes using *N*-arylhydroxylamines

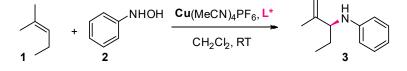
Siva Murru,^{*,1} Bhanudas D. Mokar,² Ramesh Bista,¹ Dominique Harakat,³ Jean Le Bras,³ Frank Fronczek,⁴ Kenneth M. Nicholas,^{*,5} and Radhey S. Srivastava^{*,2}

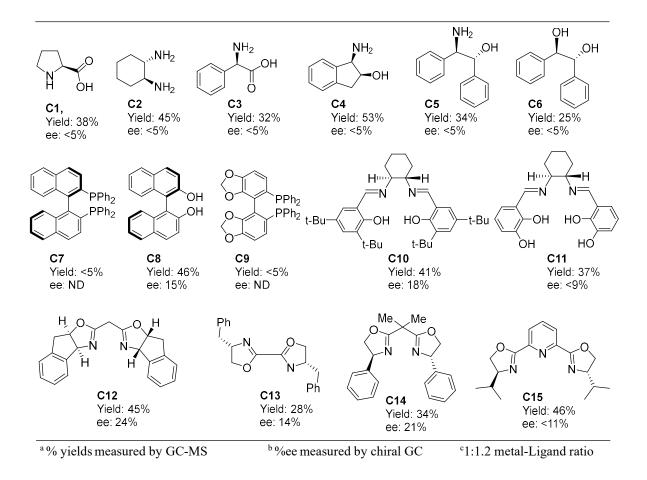
¹Chemistry Program, School of Sciences, University of Louisiana at Monroe, Louisiana 71209, United States; ²Department of Chemistry, University of Louisiana at Lafayette, Louisiana 70504, United States; ³Department of Chemistry, Louisiana State University, Baton Rouge 70803, United States. ⁴Institut de Chimie Moléculaire de Reims - UMR 7312 CNRS-Université de Reims Champagne-Ardenne UFR des Sciences Exactes et Naturelles, BP 1039, 51687 REIMS Cedex 2, France; ⁵Department of Chemistry and Biochemistry, University of Oklahoma, Oklahoma 73109, United States.

Table of Contents

1. General Information	S2
2. General Procedure for the Cu-Catalyzed Asymmetric Allylic C-H Amination	S2
3. Chiral ligand screening data toward the catalytic synthesis of chiral N-aryl allylamines	S2-S3
4. Synthesis, Isolation and X-Ray Crystallographic Characterization of 4b and 4c	S3-S5
5. Control Experiment with Nitrosobenzene	S5-S6
6. Studies on Determination of Absolute Configuration	S6-S9
7. Characterization Data of the Products	S9-S16
8. References	S16
9. HPLC Chromatograms of the Products	S17-S40
10. ¹ H and ¹³ C NMR Spectra of the Products	S41-S80

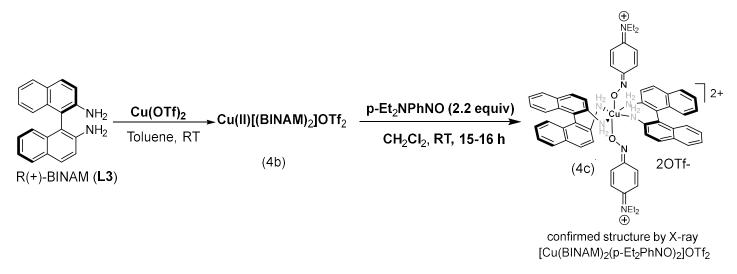
1. General Information


All reactions were performed in an atmosphere of argon using standard Schlenk tube or glovebox techniques. Reagent grade solvents were freshly distilled over appropriate drying reagents and stored over activated (250 °C) 4 Å molecular sieves in a Schlenk flask under argon. All organic substrates were received from commercial sources and were used without further purification. Arylhydroxylamines were prepared by following literature methods.¹ Column chromatography was performed on silica gel (60-120 mesh size), and thin layer chromatography was performed on aluminum plates pre-coated with silica gel 60 F₂₅₄ (0.25 mm). The ¹H and ¹³C NMR spectra were recorded on a Varian 400 MHz and JEOL 400 MHz FT-NMR spectrometers, and the data are reported in parts per million (ppm) relative to TMS, with the residual solvent peak as an internal reference. Multiplicities are reported as: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad; coupling constant(s) in Hz. Mass spectra were recorded from Agilent GC-MS (7890A-5975CVL MSD) spectrometer. Enantioselectivity was measured by GC (HP 5890 series II) Astec Chiraldex columns and HPLC (Agilent 1100 series) using and Chiralcel columns respectively. Optical activity was measured on Autopol III polarimeter. High resolution mass spectra (HRMS) were obtained at Louisiana State University.


The diffraction data were collected at low temperature on a Nonius Kappa CCD equipped with Mo Ka $(\lambda=0.71073 \text{ Å})$ and a Bruker Kappa Apex II equipped with Cu $(\lambda=1.54178 \text{ Å})$ radiation source diffractometer, a graphite monochromator, and an Oxford Cryostream low-temperature device. Absorption collections were made by the multi-scan method.

2. General Procedure for the Cu-Catalyzed Asymmetric Allylic C-H Amination of Simple Alkenes:

A Schlenk flask was charged with Cu(MeCN)₄PF₆ (10 mol %), R-(+)-BINAM (12 mol %) and CH₂Cl₂ (2 mL). The flask was placed in an oil bath preset at 25 °C and stirred for 0.5 h. An alkene (0.5 mmol) was added and then a solution of arylhydroxylamine (1.5 mmol) in CH₂Cl₂ (4 mL) was added slowly with the help of a syringe pump over a period of 4 h under a positive pressure of nitrogen. The reaction was allowed to continue for a further 2-4 h to ensure complete consumption of the arylhydroxylamine. The reaction mixture was filtered through a short celite bed by eluting with CH₂Cl₂ (10 mL), and the filtrate was analyzed by GC-MS. Analytically pure product was isolated by column chromatography on silica gel (230-460 mesh, hexanes/EtOAc). The product was completely characterized by NMR and MS spectroscopic methods and further chiral HPLC is used to measure the enantioselectivity.

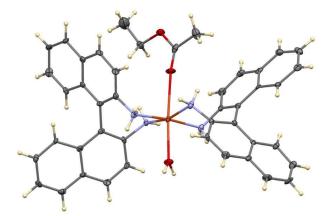
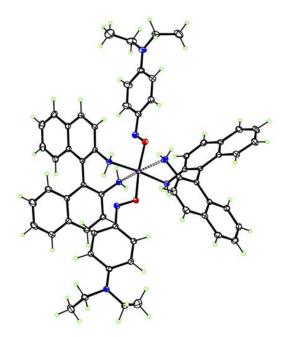

3. Chiral ligand screening data toward the catalytic synthesis of chiral N-aryl allylamines:

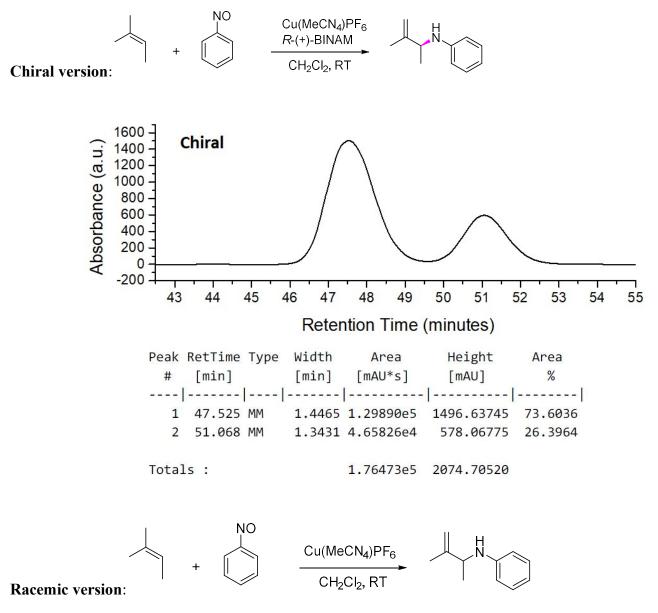
4. Synthesis, Isolation and Characterization of Cu^{II}OTf₂-R(+)BINAM (4b) and Cu^{II}OTf₂-R(+)BINAMpEt2PhNO (4c) complexes:

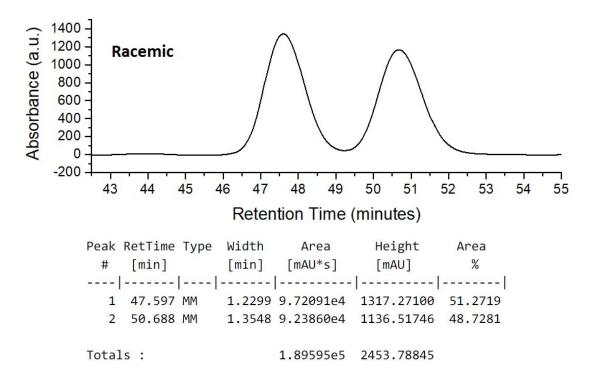
To the mixture of $[Cu(OTf)_2]$ (0.635 g, 1.76 mmol) and R(+)-BINAM ligand (1.0 g, 3.52 mmol), toluene (10 mL) was added and continued stirring at room temperature for 6 hours. Solvent was removed under vacuum and the crude product which was directly re-crystallized from ethylacetate:hexane mixture(5:1) to obtain pure $[Cu(BINAM)_2]OTf_2$ complex **4b** (1.28 g, 78% yield).

Scheme S1. Synthesis of Cu-BINAM-Nitroso complex

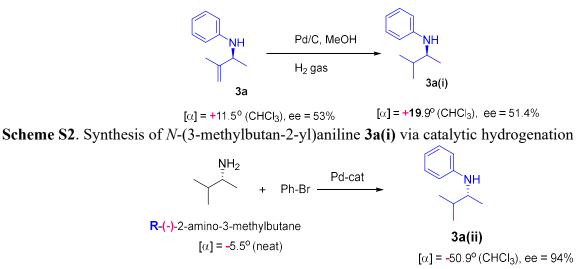
The Cu-complex (1.28 g, 1.37 mmol) obtained above was dissolved in dichloromethane (10 mL) and added *N*,*N*-diethyl-4-nitrosoaniline (0.40 g, 2.2 mmol). The dark brown solution becomes dark green immediately. After stirring overnight (15 h), the dark green solution was filtered, and the solvent was removed on rotavap. The solid residue was triturated with diethyl ether (10 mL x 2). Recrystallization from CH_2Cl_2 /hexane at -20 °C provided dark greenish crystals suitable for X-ray diffraction. The crystal structures of **4b** and **4c** are shown in Figure S1 and Figure S2 respectively. The molecular structure of 4b is similar to the one reported earlier with $CCDC\#677060.^2$

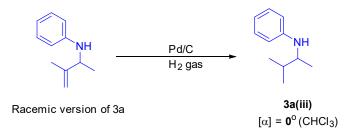




Figure S1. Single crystal X-ray structure of 4b.


However, molecular structure of **4c** is completely novel and the details of X-ray data and structure determination can be found in the additional supplementary materials document. This crystal structure data has been deposited via the joint CCDC/FIZ Karlsruhe deposition service and the data has been assigned to CCDC#2047831.

5. Control Experiment with Nitrosobenzene:


A dichloromethane (2.0 mL) solution of Cu(MeCN)₄PF₆ (19 mg, 10 mol %) and R-(+)-BINAM (28 mg, 20 mol %) was stirred at 25 °C for 0.5 h. 2-methylbut-2-ene (106 mg, 1.5 mmol) was added followed by the slow addition (4 h) of nitrosobenzene (54 mg, 0.5 mmol). The product was isolated by column chromatography and confirmed by both GC-MS and NMR. The racemic product was prepared in the same experimental conditions without the R-(+)-BINAM ligand. As shown below, the HPLC analysis of racemic and chiral products indicates 47% enantioselectivity.



6. Determination of Absolute Configuration:

In order to determine the absolute configuration of major *N*-aryl allylamine enantiomer, we have synthesized chiral *N*-(3-methylbutan-2-yl)anilines **3a(i)** and **3a(ii)** using two alternate approaches (**Scheme S2** and **Scheme S3**) i.e. Pd-catalyzed hydrogenation and Pd-catalyzed *N*-arylation. The catalytic hydrogenation of allyl double bond of **3a** led to *N*-(3-methylbutan-2-yl)aniline **3a(i)**.³ Alternatively, Buchwald-Hartwig amination (Pd-catalyzed *N*-arylation)⁴ of commercially available chiral R(-)-amine produced the corresponding R(-)-*N*-(3-methylbutan-2-yl)aniline **3a(ii)** in good yield. Additionally, for the comparison purpose, we have synthesized racemic *N*-(3-methylbutan-2-yl)aniline **3a(iii)** via catalytic hydrogenation of racemic version of **3a** (**Scheme S4**).

Scheme S3. Synthesis of N-(3-methylbutan-2-yl)aniline 3a(ii) via Buchwald-Hartwig amination

Scheme S4. Synthesis of racemic N-(3-methylbutan-2-yl)aniline 3a(iii) via catalytic hydrogenation

HPLC analysis and the optical activity data of 3a(iii), 3a(i), and 3a(ii) are provided in the Figures S3, S4 and S5. The structure of 3a(iii) was confirmed by GC-MS and ¹H-NMR (Figure S6) analysis. In comparison to the racemic mixture (Figure S4), the major enantiomer from the scheme S2 is on the right whereas the major enantiomer from scheme S3 is on the left. This observation clearly indicates that the absolute configuration of the major enantiomer {3a(i)} obtained from Cu-catalyzed asymmetric allylic amination is exactly opposite to the R(-)-*N*-(3-methylbutan-2-yl)aniline 3a(ii) which confirms the stereochemistry of 3a(i) as S(+)-*N*-(3-methylbutan-2-yl)aniline. In addition to that, optical activity data comparison of 3a(i) and 3a(ii) supports the absolute configuration assignment. Accordingly, we assigned "S" configuration to all the products obtained from our Cucatalyzed asymmetric allylic amination.

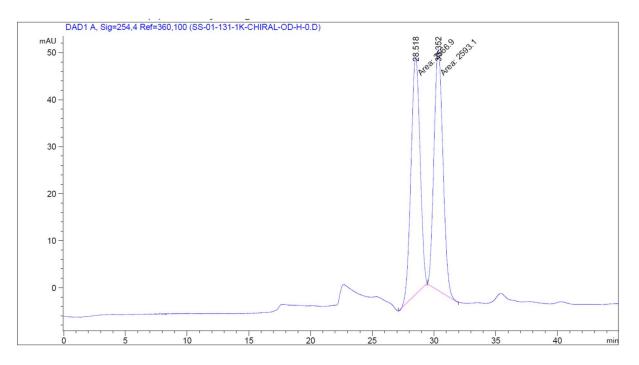


Figure S3. HPLC analysis of racemic *N*-(3-methylbutan-2-yl)aniline 3a(iii)

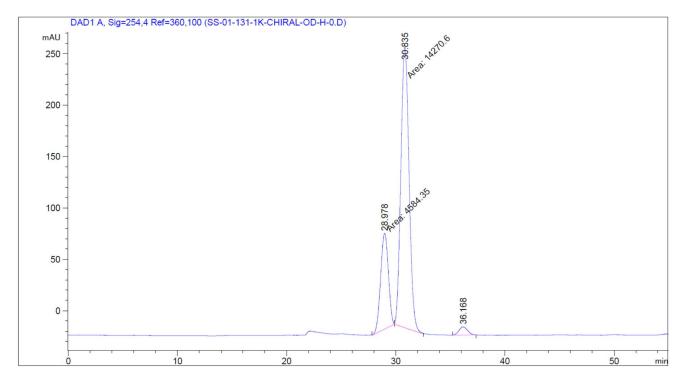


Figure S4. HPLC analysis of chiral N-(3-methylbutan-2-yl)aniline 3a(i)

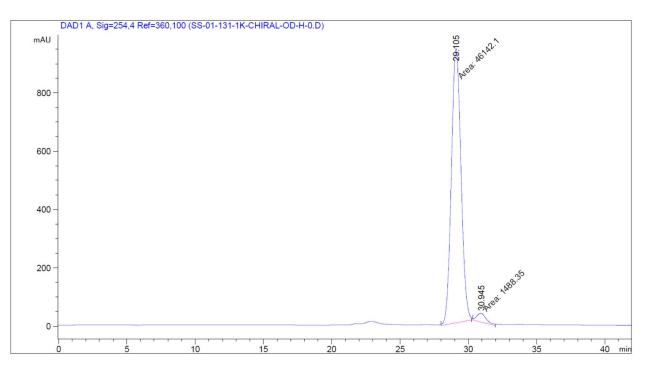
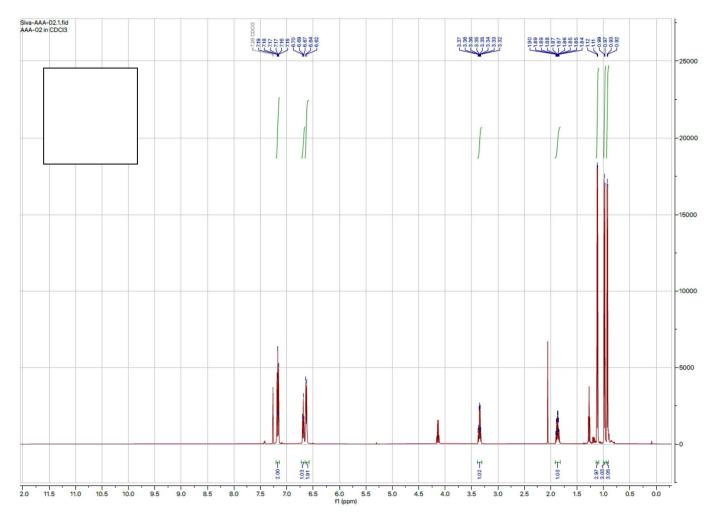
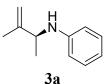
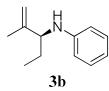
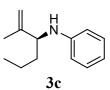


Figure S5. HPLC analysis of chiral N-(3-methylbutan-2-yl)aniline 3a(ii)

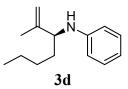




Figure S6. NMR analysis of racemic N-(3-methylbutan-2-yl)aniline 3a(iii)

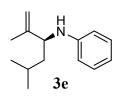
7. Characterization Data of the Chiral N-Aryl Allylamine Products


(*S*)-*N*-(3-methylbut-3-en-2-yl)aniline (3a): A dichloromethane (2.0 mL) solution of Cu(MeCN)₄PF₆ (19 mg, 10 mol %) and R-(+)-BINAM (28 mg, 20 mol %) was stirred at 25 °C for 0.5 h. 2-methylbut-2-ene (106 mg, 1.5 mmol) was added followed by the slow addition (4 h) of phenylhydroxylamine (55 mg, 0.5 mmol). The product **3a** was isolated by a column

chromatography on silica gel (hexanes/EtOAc = 99:1–98:2; TLC: $R_f = 0.75$ (5% EtOAc in hexanes)). Yield = 47 mg (58%). Data for **3a:** ¹H NMR (400 MHz, CDCl₃) δ 7.16 (t, J = 7.8 Hz, 2H), 6.70 (t, J = 7.2 Hz, 1H), 6.61 (d, J = 8.0 Hz, 2H), 4.99 (s, 1H), 4.86 (s, 1H), 3.89 (q, J = 6.8 Hz, 1H), 1.73 (s, 3H), 1.34 (d, J = 6.8 Hz, 3H) ppm; ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 147.0, 129.0, 117.4, 113.5, 110.9, 54.8, 21.1, 18.2 ppm; GC-MS for C₁₁H₁₅N, m/z = 161.23 (M⁺). ¹H and ¹³C NMR spectral data are in good agreement with the literature data.⁵

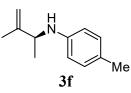

(*S*)-*N*-(2-methylpent-1-en-3-yl)aniline (3b): A dichloromethane (2.0 mL) solution of Cu(MeCN)₄PF₆ (19 mg, 10 mol %) and R-(+)-BINAM (28 mg, 20 mol %) was stirred at 25 °C for 0.5 h. 2-methylpent-2-ene (127 mg, 1.5 mmol) was added followed by the slow addition (4 h) of phenylhydroxylamine (55 mg, 0.5 mmol). The product **3b** was isolated by a column

chromatography on silica gel (hexanes/EtOAc = 99:1–98:2; TLC: $R_f = 0.75$ (5% EtOAc in hexanes)). Yield = 59 mg (67%). Data for **3b:** ¹H NMR (400 MHz, CDCl₃) δ 7.08 (t, J = 7.2 Hz, 2H), 6.60 (t, J = 7.4 Hz, 1H), 6.52 (d, J = 8.4 Hz, 2H), 4.90 (s, 1H), 4.85 (s, 1H), 3.64 (bs, 1H), 3.59 (t, J = 6.8 Hz, 1H), 1.59 (s, 3H), 1.55 (t, J = 7.0 Hz, 2H), 0.89 (t, J = 7.4 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 147.9, 145.6, 129.1, 117.0, 113.3, 112.3, 61.1, 27.3, 17.8, 10.9 ppm; IR (KBr) 3406, 3053, 2964, 2932, 1602, 1505, 1482, 1317, 1260, 1100, 1024, 800, 749, 687 cm-1. GC-MS for C₁₂H₁₇N, m/z = 175.10 (M⁺). ¹H and ¹³C NMR spectral data are in good agreement with the literature data.⁶

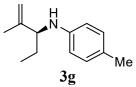

(*S*)-*N*-(2-methylhex-1-en-3-yl)aniline (3c): A dichloromethane (2.0 mL) solution of Cu(MeCN)₄PF₆ (19 mg, 10 mol %) and R-(+)-BINAM (28 mg, 20 mol %) was stirred at 25 °C for 0.5 h. 2-methylhex-2-ene (148 mg, 1.5 mmol) was added followed by the slow addition (4

h) of phenylhydroxylamine (55 mg, 0.5 mmol). The product **3c** was isolated by a column chromatography on silica gel (hexanes/EtOAc = 99:1–98:2; TLC: $R_f = 0.75$ (5% EtOAc in hexanes)). Yield = 58 mg (61%). Data for **3c**: ¹H NMR (400 MHz, CDCl₃) δ 7.15 (t, J = 7.6 Hz, 2H), 6.67 (t, J = 7.2 Hz, 1H), 6.58 (d, J = 8.4 Hz, 2H), 4.98 (s, 1H), 4.91 (s, 1H), 3.76 (t, J = 6.8 Hz, 1H), 3.70 (bs, 1H), 1.67 (s, 3H), 1.62–1.55 (m, 2H), 1.47–1.36 (m, 2H), 0.96 (t, J = 7.2 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 147.8, 145.8, 129.0, 116.9, 113.1, 112.0, 59.2, 36.6, 19.5, 17.7, 14.0 ppm; GC-MS for C₁₃H₁₉N, m/z = 189.03 (M⁺). ¹H and ¹³C NMR spectral data are in good agreement with the literature data.⁷

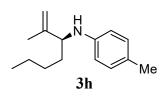
(*S*)-*N*-(2-methylhept-1-en-3-yl)aniline (3d): A dichloromethane (2.0 mL) solution of Cu(MeCN)₄PF₆ (19 mg, 10 mol %) and R-(+)-BINAM (28 mg, 20 mol %) was stirred at 25 °C for 0.5 h. 2-methylhept-2-ene (170 mg, 1.5 mmol) was added followed by the slow addition (4 h) of phenylhydroxylamine (55 mg, 0.5 mmol). The product **3d** was isolated by


a column chromatography on silica gel (hexanes/EtOAc = 99:1–98:2; TLC: $R_f = 0.75$ (5% EtOAc in hexanes)). Yield = 60 mg (59%). Data for **3d:** ¹H NMR (400 MHz, CDCl₃) δ 7.13 (d, J = 7.6, 7.2 Hz, 2H), 6.65 (t, J = 7.4 Hz, 1H), 6.57 (d, J = 7.6 Hz, 2H), 4.95 (s, 1H), 4.89 (s, 1H), 3.72 (t, J = 6.8 Hz, 1H), 3.69 (bs, 1H), 1.65 (s, 3H), 1.58 (q, J = 3.0 Hz, 2H), 1.37–1.33 (m, 4H), 0.91 (t, J = 7.2 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 147.9, 146.0, 129.1, 117.0, 113.2, 112.0, 59.5, 34.3, 28.6, 22.7, 17.7, 14.1 ppm; IR (KBr): 3410, 3052, 2956, 2929, 2857, 1648, 1601, 1505, 1373, 1317, 1257, 1153, 894, 748, 690 cm⁻¹. GC-MS for C₁₄H₂₁N, *m/z* = 203.12 (M⁺). ¹H and ¹³C NMR spectral data are in good agreement with the literature data.⁶

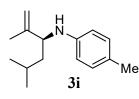
(*S*)-*N*-(2,5-dimethylhex-1-en-3-yl)aniline (3e): A dichloromethane (2.0 mL) solution of $Cu(MeCN)_4PF_6$ (19 mg, 10 mol %) and R-(+)-BINAM (28 mg, 20 mol %) was stirred at 25 °C for 0.5 h. 2,5-dimethylhex-2-ene (170 mg, 1.5 mmol) was added followed by the slow addition (4 h) of phenylhydroxylamine (55 mg, 0.5 mmol). The product **3e** was isolated by a column


chromatography on silica gel (hexanes/EtOAc = 99:1–98:2; TLC: $R_f = 0.75$ (5% EtOAc in hexanes)). Yield = 66 mg (65%). Data for **3e:** ¹H NMR (400 MHz, CDCl₃) δ 7.14 (t, *J* = 8.0 Hz, 2H), 6.66 (t, *J* = 7.6 Hz, 1H), 6.57 (d,

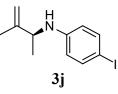
J = 7.6 Hz, 2H), 4.98 (s, 1H), 4.88 (s, 1H), 3.81 (t, J = 7.0 Hz, 1H), 3.66 (bs, 1H), 1.78–1.66 (m, 1H), 1.57 (s, 3H), 1.45 (t, J = 6.6 Hz, 2H), 0.95 (d, J = 6.8 Hz, 3H), 0.92 (d, J = 6.8 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 147.7, 146.1, 129.0, 116.9, 113.1, 111.8, 57.4, 44.0, 24.9, 22.8, 22.5, 17.5 ppm; GC-MS for C₁₄H₂₁N, m/z = 203.16 (M⁺); HRMS (IT-TOF/ESI) Calcd for C₁₄H₂₂N ([M+H]⁺) 204.1747, Found 204.1746.


(S)-4-methyl-N-(3-methylbut-3-en-2-yl)aniline (3f): A dichloromethane (2.0 mL) solution of Cu(MeCN)₄PF₆ (17 mg, 10 mol %) and R-(+)-BINAM (25 mg, 20 mol %) was stirred at 25 °C for 0.5 h. 2-methylbut-2-ene (94 mg, 1.5 mmol) was added followed by the slow addition (4 h) of *N*-(*p*-tolyl)hydroxylamine (55 mg, 0.5 mmol). The product **3f**

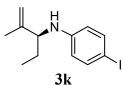
was isolated by a column chromatography on silica gel (hexanes/EtOAc = 99:1–98:2; TLC: $R_f = 0.7$ (5% EtOAc in hexanes)). Yield = 43 mg (55%). Data for **3f:** ¹H NMR (400 MHz, CDCl₃) δ 6.99 (d, J = 8.4 Hz, 2H), 6.53 (d, J = 8.4 Hz, 2H), 5.01 (s, 1H), 4.87 (s, 1H), 3.89 (q, J = 6.8 Hz, 1H), 3.61 (bs, 1H), 2.26 (s, 3H), 1.74 (s, 3H), 1.34 (d, J = 6.8 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 147.4, 145.2, 129.5, 126.1, 113.3, 110.5, 54.7, 21.2, 20.3, 18.1 ppm; GC-MS for C₁₄H₁₇N, m/z = 175.13 (M⁺); HRMS (IT-TOF/ESI) Calcd for C₁₄H₁₈N ([M+H]⁺) 176.1434, Found 176.1431.


(*S*)-4-methyl-*N*-(2-methylpent-1-en-3-yl)aniline (3g): A dichloromethane (2.0 mL) solution of Cu(MeCN)₄PF₆ (17 mg, 10 mol %) and R-(+)-BINAM (25 mg, 20 mol %) was stirred at 25 °C for 0.5 h. 2-methylpent-2-ene (113 mg, 1.5 mmol) was added followed by the slow addition (4 h) of *N*-(*p*-tolyl)hydroxylamine (55 mg, 0.5 mmol). The product **3g**

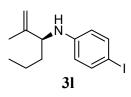
was isolated by a column chromatography on silica gel (hexanes/EtOAc = 99:1–98:2; TLC: $R_f = 0.7$ (5% EtOAc in hexanes)). Yield = 49 mg (58%). Data for **3g:** ¹H NMR (400 MHz, CDCl₃) δ 6.98 (d, J = 8.0 Hz, 2H), 6.54 (d, J = 8.4 Hz, 2H), 4.98 (s, 1H), 4.93 (s, 1H), 3.66 (t, J = 6.8 Hz, 1H), 3.61 (bs, 1H), 2.25 (s, 3H), 1.68 (s, 3H), 1.63 (q, J = 7.4 Hz, 2H), 0.98 (t, J = 7.4 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 145.5, 145.4, 129.5, 126.0, 113.3, 112.2, 61.2, 27.1, 20.3, 17.6, 10.8 ppm; GC-MS for C₁₃H₁₉N, m/z = 189.15 (M⁺); HRMS (IT-TOF/ESI) Calcd for C₁₃H₂₀N ([M+H]⁺) 190.1590, Found 190.1589.


(*S*)-4-methyl-*N*-(2-methylhept-1-en-3-yl)aniline (3h): A dichloromethane (2.0 mL) solution of Cu(MeCN)₄PF₆ (17 mg, 10 mol %) and R-(+)-BINAM (25 mg, 20 mol %) was stirred at 25 °C for 0.5 h. 2-methylhept-2-ene (150 mg, 1.5 mmol) was added followed by the slow addition (4 h) of *N*-(*p*-tolyl)hydroxylamine (55 mg, 0.5 mmol).

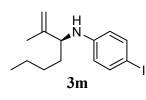
The product **3h** was isolated by a column chromatography on silica gel (hexanes/EtOAc = 99:1–98:2; TLC: R_f = 0.75 (5% EtOAc in hexanes)). Yield = 59 mg (62%). Data for **3h:** ¹H NMR (400 MHz, CDCl₃) δ 6.87 (d, *J* = 8.8 Hz, 2H), 6.42 (d, *J* = 8.4 Hz, 2H), 4.86 (s, 1H), 4.80 (s, 1H), 3.61 (t, *J* = 6.8 Hz, 1H), 3.49 (bs, 1H), 2.13 (s, 3H), 1.56 (s, 3H), 1.48 (p, *J* = 3.4 Hz, 2H), 1.28–1.25 (m, 4H), 0.82 (t, *J* = 7.0 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 146.2, 145.7, 129.7, 126.2, 113.5, 112.0, 59.9, 34.3, 28.7, 22.8, 20.5, 17.8, 14.2 ppm; GC-MS for C₁₅H₂₃N, *m/z* = 217.18 (M⁺); HRMS (IT-TOF/ESI) Calcd for C₁₅H₂₄N ([M+H]⁺) 218.1903, Found 218.1905.


(*S*)-*N*-(2,5-dimethylhex-1-en-3-yl)-4-methylaniline (3i): A dichloromethane (2.0 mL) solution of Cu(MeCN)₄PF₆ (17 mg, 10 mol %) and R-(+)-BINAM (25 mg, 20 mol %) was stirred at 25 °C for 0.5 h. 2,5-dimethylhex-2-ene (150 mg, 1.5 mmol) was added followed by the slow addition (4 h) of *N*-(*p*-tolyl)hydroxylamine (55 mg, 0.5 mmol). The product

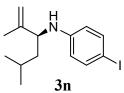
3i was isolated by a column chromatography on silica gel (hexanes/EtOAc = 99:1–98:2; TLC: $R_f = 0.7$ (5% EtOAc in hexanes)). Yield = 63 mg (65%). Data for **3i:** ¹H NMR (400 MHz, CDCl₃) δ 6.98 (d, *J* = 8.4 Hz, 2H), 6.53 (d, *J* = 8.4, 2H), 4.99 (s, 1H), 4.90 (s, 1H), 3.81 (t, *J* = 7.2 Hz, 1H), 3.56 (bs, 1H), 2.25 (s, 3H), 1.78–1.72 (m, 1H), 1.68 (s, 3H), 1.46 (t, *J* = 7.0 Hz, 2H), 0.98 (d, *J* = 6.4 Hz, 3H), 0.95 (d, *J* = 6.4 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 146.2, 145.4, 129.5, 126.0, 113.3, 111.7, 57.7, 44.0, 24.9, 22.8, 22.5, 20.3, 17.5 ppm; GC-MS for C₁₅H₂₃N, *m*/*z* = 217.18 (M⁺); HRMS (IT-TOF/ESI) Calcd for C₁₅H₂₄N ([M+H]⁺) 218.1903, Found 218.1903.


(*S*)-4-iodo-*N*-(3-methylbut-3-en-2-yl)aniline (3j): A dichloromethane (2.0 mL) solution of Cu(MeCN)₄PF₆ (9 mg, 10 mol %) and R-(+)-BINAM (13 mg, 20 mol %) was stirred at 25 °C for 0.5 h. 2-methylbut-2-ene (49 mg, 1.5 mmol) was added followed by the slow addition (4 h) of *N*-(4-iodophenyl)hydroxylamine (55 mg, 0.5 mmol). The product **3i** was

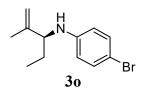
isolated by a column chromatography on silica gel (hexanes/EtOAc = 99:1–98:2; TLC: $R_f = 0.75$ (5% EtOAc in hexanes)). Yield = 53mg (76%). Data for **3j:** ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 8.4 Hz, 2H), 6.34 (d, J = 8.8 Hz, 2H), 4.95 (s, 1H), 4.85 (s, 1H), 3.82 (t, J = 6.6 Hz, 1H), 3.76 (bs, 1H), 1.69 (s, 3H), 1.32 (d, J = 6.4 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 147.0, 146.7, 137.6, 115.4, 110.9, 77.6, 54.4, 21.1, 18.0 ppm; GC-MS for C₁₁H₁₄IN, m/z = 287.01 (M⁺); HRMS (IT-TOF/ESI) Calcd for C₁₁H₁₅IN ([M+H]⁺) 288.0244, Found 288.0243.


(*S*)-4-iodo-*N*-(2-methylpent-1-en-3-yl)aniline (3k): A dichloromethane (2.0 mL) solution of Cu(MeCN)₄PF₆ (9 mg, 10 mol %) and R-(+)-BINAM (13 mg, 20 mol %) was stirred at 25 °C for 0.5 h. 2-methylpent-2-ene (59 mg, 1.5 mmol) was added followed by the slow addition (4 h) of *N*-(4-iodophenyl)hydroxylamine (55 mg, 0.5 mmol). The product **3k** was

isolated by a column chromatography on silica gel (hexanes/EtOAc = 99:1–98:2; TLC: $R_f = 0.75$ (5% EtOAc in hexanes)). Yield = 60 mg (86%). Data for **3k:** ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 8.4 Hz, 2H), 6.36 (d, J = 8.4 Hz, 2H), 4.93 (s, 1H), 4.92 (s, 1H), 3.75 (bs, 1H), 3.60 (t, J = 6.6 Hz, 1H), 1.63 (s, 3H), 1.62–1.58 (m, 2H), 0.95 (t, J = 7.4 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 147.2, 144.7, 137.5, 115.4, 112.6, 77.4, 60.9, 27.0, 17.6, 10.7 ppm; GC-MS for C₁₂H₁₆IN, m/z = 301.03 (M⁺); HRMS (IT-TOF/ESI) Calcd for C₁₂H₁₇IN ([M+H]⁺) 302.0400, Found 302.0398.

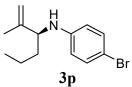

(S)-4-iodo-N-(2-methylhex-1-en-3-yl)aniline (31): A dichloromethane (2.0 mL) solution of Cu(MeCN)₄PF₆ (9 mg, 10 mol %) and R-(+)-BINAM (13 mg, 20 mol %) was stirred at 25 °C for 0.5 h. 2-methylhex-2-ene (69 mg, 1.5 mmol) was added followed by the slow addition (4 h) of N-(4-iodophenyl)hydroxylamine (55 mg, 0.5 mmol). The product **31** was

isolated by a column chromatography on silica gel (hexanes/EtOAc = 99:1-98:2; TLC: $R_f = 0.75$ (5% EtOAc in hexanes)). Yield = 58 mg (78%). Data for **31**: ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 8.8 Hz, 2H), 6.36 (d, J = 8.8 Hz, 2H), 4.93 (s, 1H), 4.89 (s, 1H), 3.74 (bs, 1H), 3.69 (t, J = 6.8 Hz, 1H), 1.63 (s, 3H), 1.60–1.52 (m, 2H), 1.44–1.33 (m, 2H), 0.94 (t, J = 7.4 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 147.2, 145.2, 137.6, 115.4, 112.3, 77.4, 59.1, 36.5, 19.4, 17.6, 13.9 ppm; GC-MS for $C_{13}H_{18}IN$, m/z = 315.04 (M⁺); HRMS (IT-TOF/ESI) Calcd for $C_{13}H_{19}IN$ ([M+H]⁺) 316.0557, Found 316.0555.

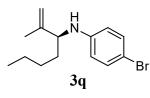


(S)-4-iodo-N-(2-methylhept-1-en-3-yl)aniline (3m): A dichloromethane (2.0 mL) solution of Cu(MeCN)₄PF₆ (9 mg, 10 mol %) and R-(+)-BINAM (13 mg, 20 mol %) was stirred at 25 °C for 0.5 h. 2-methylhept-2-ene (79 mg, 1.5 mmol) was added followed by the slow addition (4 h) of N-(4-iodophenyl)hydroxylamine (55 mg, 0.5 mmol). The

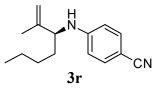
product **3m** was isolated by a column chromatography on silica gel (hexanes/EtOAc = 99:1-98:2; TLC: $R_f = 0.75$ (5% EtOAc in hexanes)). Yield = 62 mg (81%). Data for **3m**: ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 8.8 Hz, 2H), 6.35 (d, J = 8.8 Hz, 2H), 4.93 (s, 1H), 4.90 (s, 1H), 3.74 (bs, 1H), 3.67 (t, J = 6.8 Hz, 1H), 1.63 (s, 3H), 1.60-1.54 (m, 2H), 1.35-1.33 (m, 4H), 0.91 (t, J = 6.8 Hz, 3H) ppm; ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 147.2, 145.2, 137.5, 115.4, 112.3, 77.4, 59.3, 34.0, 28.4, 22.5, 17.6, 14.0 ppm; GC-MS for $C_{14}H_{20}IN$, m/z = 329.06 (M⁺); HRMS (IT-TOF/ESI) Calcd for C₁₄H₂₁IN ([M+H]⁺) 330.0713, Found 330.0710.


(S)-N-(2,5-dimethylhex-1-en-3-yl)-4-iodoaniline (3n): A dichloromethane (2.0 mL) solution of Cu(MeCN)₄PF₆ (9 mg, 10 mol %) and R-(+)-BINAM (13 mg, 20 mol %) was stirred at 25 °C for 0.5 h. 2,5-dimethylhex-2-ene (79 mg, 1.5 mmol) was added followed by the slow addition (4 h) of N-(4-iodophenyl)hydroxylamine (55 mg, 0.5 mmol). The product **3n** was isolated by a column chromatography on silica gel (hexanes/EtOAc = 99:1-98:2; TLC: $R_f = 0.75$ (5%) EtOAc in hexanes)). Yield = 56 mg (73%). Data for **3n**: ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 8.8 Hz, 2H), 6.36 (d, J = 8.8 Hz, 2H), 4.94 (s, 1H), 4.88 (s, 1H), 3.75 (t, J = 7.2 Hz, 1H), 3.71 (bs, 1H), 1.74-1.67 (m, 1H), 1.63 (s, 3H), 1.46–1.41 (m, 2H), 0.94 (d, J = 6.4 Hz, 3H), 0.92 (d, J = 6.4 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) § 147.2, 145.5, 137.6, 115.4, 112.1, 77.4, 57.4, 43.8, 24.8, 22.8, 22.4, 17.5 ppm; GC-MS for C₁₄H₂₀IN,

(S)-4-bromo-N-(2-methylpent-1-en-3-yl)aniline (30): A dichloromethane (2.0 mL) solution of Cu(MeCN)₄PF₆ (11 mg, 10 mol %) and R-(+)-BINAM (17 mg, 20 mol %) was stirred at 25 °C for 0.5 h. 2-methylpent-2-ene (74 mg, 1.5 mmol) was added followed by the slow addition (4 h) of N-(4-bromophenyl)hydroxylamine (55 mg, 0.5 mmol). The

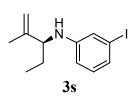

 $m/z = 329.06 \text{ (M}^+\text{)}; \text{HRMS (IT-TOF/ESI) Calcd for } C_{14}H_{21}\text{IN ([M+H]^+)} 330.0713, \text{ Found } 330.0710.$

product **30** was isolated by a column chromatography on silica gel (hexanes/EtOAc = 99:1–98:2; TLC: R_f = 0.75 (5% EtOAc in hexanes)). Yield = 58 mg (79%). Data for **30:** ¹H NMR (400 MHz, CDCl₃) δ 7.21 (d, *J* = 8.4 Hz, 2H), 6.46 (d, *J* = 8.4 Hz, 2H), 4.94 (s, 1H), 4.93 (s, 1H), 3.74 (bs, 1H), 3.60 (t, *J* = 6.6 Hz, 1H), 1.64 (s, 3H), 1.62–1.58 (m, 2H), 0.95 (t, *J* = 7.4 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 146.7, 144.8, 131.7, 114.8, 112.6, 108.5, 61.0, 27.0, 17.6, 10.7 ppm; GC-MS for C₁₂H₁₆BrN, *m/z* = 253.04 (M⁺); HRMS (IT-TOF/ESI) Calcd for C₁₂H₁₇BrN ([M+H]⁺) 254.0539, Found 254.0537.

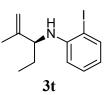

(*S*)-4-bromo-*N*-(2-methylhex-1-en-3-yl)aniline (3p): A dichloromethane (2.0 mL) solution of Cu(MeCN)₄PF₆ (11 mg, 10 mol %) and R-(+)-BINAM (17 mg, 20 mol %) was stirred at 25 °C for 0.5 h. 2-methylhex-2-ene (86 mg, 1.5 mmol) was added followed by the slow addition (4 h) of *N*-(4-bromophenyl)hydroxylamine (55 mg, 0.5 mmol). The

product **3p** was isolated by a column chromatography on silica gel (hexanes/EtOAc = 99:1–98:2; TLC: R_f = 0.75 (5% EtOAc in hexanes)). Yield = 55 mg (71%). Data for **3p:** ¹H NMR (400 MHz, CDCl₃) δ 7.20 (d, *J* = 8.8 Hz, 2H), 6.45 (d, *J* = 8.4 Hz, 2H), 4.94 (s, 1H), 4.90 (s, 1H), 3.72 (bs, 1H), 3.69 (t, *J* = 6.8 Hz 1H), 1.64 (s, 3H), 1.60–1.52 (m, 2H), 1.45–1.32 (m, 2H), 0.94 (t, *J* = 7.2 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 146.7, 145.3, 131.7, 114.7, 112.3, 108.4, 59.3, 36.5, 19.4, 17.5, 13.9 ppm; GC-MS for C₁₃H₁₈BrN, *m/z* = 267.06 (M⁺); HRMS (IT-TOF/ESI) Calcd for C₁₃H₁₉BrN ([M+H]⁺) 268.0695, Found 268.0693.

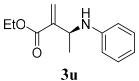
(*S*)-4-bromo-*N*-(2-methylhept-1-en-3-yl)aniline (3q): A dichloromethane (2.0 mL) solution of Cu(MeCN)₄PF₆ (11 mg, 10 mol %) and R-(+)-BINAM (17 mg, 20 mol %) was stirred at 25 °C for 0.5 h. 2-methylhept-2-ene (98 mg, 1.5 mmol) was added followed by the slow addition (4 h) of *N*-(4-bromophenyl)hydroxylamine (55 mg, 0.5 mmol). The


product **3q** was isolated by a column chromatography on silica gel (hexanes/EtOAc = 99:1–98:2; TLC: $R_f = 0.75$ (5% EtOAc in hexanes)). Yield = 56 mg (68%). Data for **3q:** ¹H NMR (400 MHz, CDCl₃) δ 7.20 (d, J = 8.4 Hz, 2H), 6.45 (d, J = 8.8 Hz, 2H), 4.94 (s, 1H), 4.90 (s, 1H), 3.73 (bs, 1H), 3.67 (t, J = 6.8 Hz, 1H), 1.64 (s, 3H), 1.60–1.54 (m, 2H), 1.36–1.34 (m, 4H), 0.92 (t, J = 6.6 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 146.6, 145.2, 131.7, 114.7, 112.4, 108.4, 59.5, 34.0, 28.4, 22.5, 17.6, 14.0 ppm; GC-MS for C₁₄H₂₀BrN, m/z = 281.07 (M⁺); HRMS (IT-TOF/ESI) Calcd for C₁₄H₂₁BrN ([M+H]⁺) 282.0852, Found 282.0848.

(S)-4-((2-methylhept-1-en-3-yl)amino)benzonitrile (3r): A dichloromethane (2.0 mL) solution of Cu(MeCN)₄PF₆ (11 mg, 10 mol %) and R-(+)-BINAM (17 mg, 20 mol %) was stirred at 25 °C for 0.5 h. 2-methylhept-2-ene (137 mg, 1.5 mmol) was added followed by the slow addition (4 h) of *N*-(4-cyanophenyl)hydroxylamine (55 mg,


0.5 mmol). The product **3r** was isolated by a column chromatography on silica gel (hexanes/EtOAc = 99:1–98:2; TLC: $R_f = 0.75$ (5% EtOAc in hexanes)). Yield = 33 mg (35%). Data for **3r:** ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 8.4 Hz, 2H), 6.53 (d, J = 8.8 Hz, 2H), 4.94 (s, 1H), 4.92 (s, 1H), 4.33 (bs, 1H), 3.74 (q, J = 6.8 Hz, 1H), 1.65 (s, 3H), 1.62–1.55 (m, 2H), 1.39–1.33 (m, 4H), 0.91 (t, J = 6.8 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz,

CDCl₃) δ 150.8, 144.4, 133.4, 120.6, 112.7, 98.1, 59.0, 33.7, 28.2, 22.4, 17.6, 13.9 ppm; GC-MS for C₁₅H₂₀N₂, $m/z = 228.16 \text{ (M}^+\text{)}; \text{ HRMS (IT-TOF/ESI) Calcd for } C_{15}H_{21}N_2 \text{ ([M+H]}^+\text{)} 229.1699\text{, Found } 229.1700\text{.}$

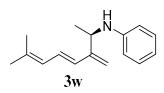

(S)-3-iodo-N-(2-methylpent-1-en-3-yl)aniline (3s): A dichloromethane (2.0 mL) solution of Cu(MeCN)₄PF₆ (9 mg, 10 mol %) and R-(+)-BINAM (13 mg, 20 mol %) was stirred at 25 °C for 0.5 h. 2-methylpent-2-ene (59 mg, 1.5 mmol) was added followed by the slow addition (4 h) of N-(3-iodophenyl)hydroxylamine (55 mg, 0.5 mmol). The product 3s was

isolated by a column chromatography on silica gel (hexanes/EtOAc = 99:1-98:2; TLC: $R_f = 0.75$ (5% EtOAc in hexanes)). Yield = 57 mg (82%). Data for 3s: ¹H NMR (400 MHz, CDCl₃) δ 6.97 (d, J = 7.6 Hz, 1H), 6.93 (s, 1H), 6.84 (t, J = 8.0, 1H), 6.52 (d, J = 8.0 Hz, 1H), 4.96 (s, 1H), 4.94 (s, 1H), 3.73 (bs, 1H), 3.61 (t, J = 6.3 Hz 1H), 1.65 (s, 3H), 1.62–1.57 (m, 2H), 0.95 (t, J = 7.6 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 148.9, 144.7, 130.5, 125.7, 121.8, 112.6, 112.3, 95.1, 60.8, 27.0, 17.6, 10.7 ppm; GC-MS for $C_{12}H_{16}IN$, m/z = 301.03(M⁺); HRMS (IT-TOF/ESI) Calcd for C₁₂H₁₇IN ([M+H]⁺) 302.0400, Found 302.0401.


(S)-2-iodo-N-(2-methylpent-1-en-3-yl)aniline (3t): A dichloromethane (2.0 mL) solution of Cu(MeCN)₄PF₆ (9 mg, 10 mol %) and R-(+)-BINAM (13 mg, 20 mol %) was stirred at 25 °C for 0.5 h. 2-methylpent-2-ene (59 mg, 1.5 mmol) was added followed by the slow addition (4 h) of N-(2-iodophenyl)hydroxylamine (55 mg, 0.5 mmol). The product 3t was isolated by a column chromatography on silica gel (hexanes/EtOAc = 99:1-98:2; TLC: $R_f = 0.75$ (5% EtOAc in hexanes)). Yield = 48 mg (68%). Data for **3t:** ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 8.0 Hz, 1H), 7.18 (t, J = 7.6, 1H),

6.55 (d, J = 8.4 Hz, 1H), 6.44 (t, J = 7.6, 1H), 4.99 (s, 1H), 4.96 (s, 1H), 4.31 (bs, 1H), 3.73 (q, J = 6.6 Hz 1H), 1.78-1.72 (m, 2H), 1.70 (s, 3H), 1.04 (t, J = 7.4 Hz, 3H) ppm; ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 146.5, 144.7, 138.8, 129.1, 118.3, 112.5, 111.7, 85.5, 61.4, 27.1, 17.7, 10.8 ppm; GC-MS for $C_{12}H_{16}IN$, m/z = 301.03 (M⁺); HRMS (IT-TOF/ESI) Calcd for C₁₂H₁₇IN ([M+H]⁺) 302.0400, Found 302.0399.

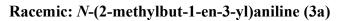
(S)-ethyl 2-methylene-3-(phenylamino)butanoate (3u): A dichloromethane (2.0 mL) solution of Cu(MeCN)₄PF₆ (19 mg, 10 mol %) and R-(+)-BINAM (28 mg, 20 mol %) was stirred at 25 °C for 0.5 h. Ethyl tiglate (194 mg, 1.5 mmol) was added followed by the slow addition (4 h) of phenylhydroxylamine (55 mg, 0.5 mmol). The product 5a was

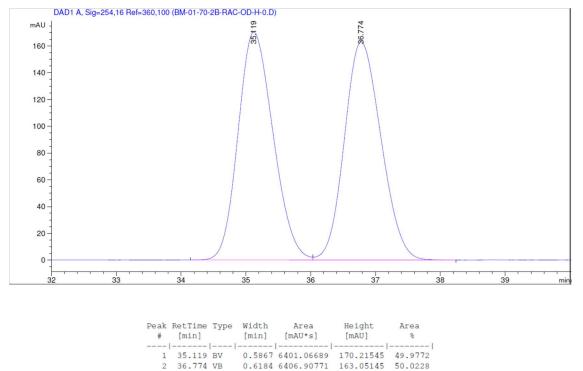

isolated by a column chromatography on silica gel (hexanes/EtOAc = 98:2-96:6; TLC: $R_f = 0.45$ (5% EtOAc in hexanes)). Yield = 60 mg (54%). GC-MS for $C_{13}H_{17}NO_2$, m/z = 219.16 (M⁺). For ¹H NMR and ¹³C{¹H} NMR please check the reference 8.

(S)-N-(3-methylenepent-4-en-2-yl)aniline (3v): A dichloromethane (2.0 mL) solution of Cu(MeCN)₄PF₆ (19 mg, 10 mol %) and R-(+)-BINAM (28 mg, 20 mol %) was stirred at 25 °C for 0.5 h. (E)-3-methylpenta-1,3-diene (124 mg, 1.5 mmol) was added followed by the slow addition (4 h) of phenylhydroxylamine (55 mg, 0.5 mmol). The product **5b** was isolated

by a column chromatography on silica gel (hexanes/EtOAc = 99:1–98:2; TLC: $R_f = 0.7$ (5% EtOAc in hexanes)).

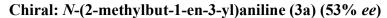
Yield = 42 mg (48%). GC-MS for $C_{12}H_{15}N$, m/z = 173.12 (M⁺). For ¹H NMR and ¹³C{¹H} NMR please check the reference 9.

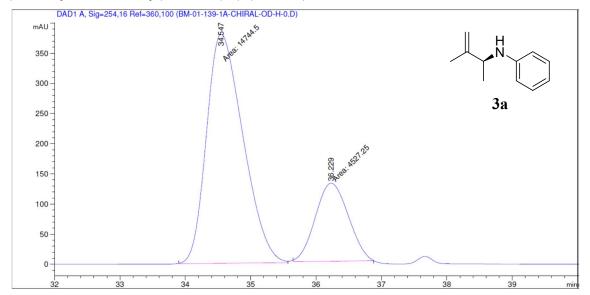

N-((*S*,4*Z*,6*E*)-2,6-dimethylocta-1,4,6-trien-3-yl)aniline (3w): A dichloromethane (2.0 mL) solution of Cu(MeCN)₄PF₆ (19 mg, 10 mol %) and R-(+)-BINAM (28 mg, 20 mol %) was stirred at 25 °C for 0.5 h. 2,6-dimethylocta-2,4,6-triene (206 mg, 1.5 mmol) was added followed by the slow addition (4 h) of phenylhydroxylamine (55 mg, 0.5


mmol). The product **5c** was isolated by a column chromatography on silica gel (hexanes/EtOAc = 99:1–98:2; TLC: $R_f = 0.65$ (5% EtOAc in hexanes)). Yield = 67 mg (58%). GC-MS for $C_{16}H_{21}N$, m/z = 227.16 (M⁺). For ¹H NMR and ¹³C{¹H} NMR please check the reference 9.

8. References

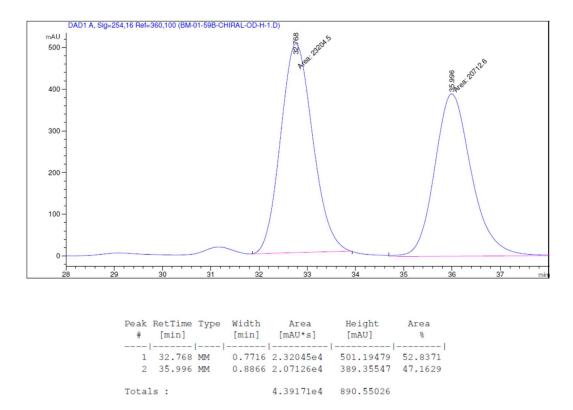
- 1. Ghorpade, S.; Liu, R.-S. Angew. Chem. Int. Ed. 2014, 53, 12885-12888.
- 2. Alamsetti, S. K.; Mannam, S.; Mutupandi, P.; Sekar, G. Chem.-Eur. J. 2009, 15, 1086-1090.
- 3. Felpin, F.-X.; Fouquet, E. Chem. Eur. J., 2010, 12440-12445.
- 4. M. C. Harris, Geis, O., and Buchwald, S. L. J. Org. Chem., 1999, 64(16), 6019-6022.
- 5. Yun, S. Y.; Yi, C. S. Org. Lett. 2005, 7, 2181–2183.
- 6. Srivastava, R. S.; Bertrand III, R.; Gallo, A. A.; Nicholas, K. M. Tetrahedron Lett. 2011, 52, 3478-3480.
- 7. Srivastava, R. S.; Nicholas, K. M. Tetrahedron Lett. 1994, 35, 8739-8742.
- 8. Murru, S.; Gallo, A. A.; Srivastava, R. S. J. Org. Chem. 2012, 77, 7119-7123.
- 9. Murru, S.; Srivastava, R. S. E. J. Org. Chem. 2014, 10, 2174-2181.

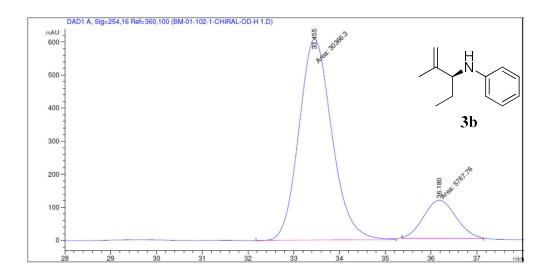

9. HPLC chromatograms of the racemic and chiral N-aryl allylamines



1.28080e4

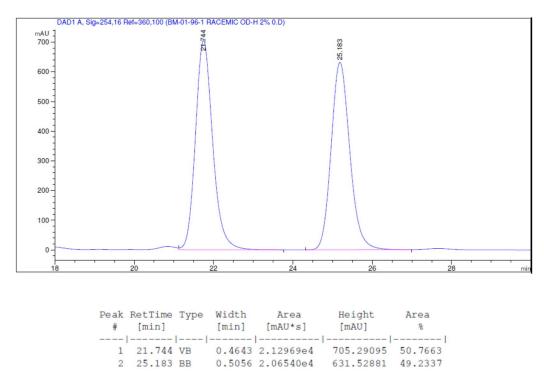
333.26691


Totals :

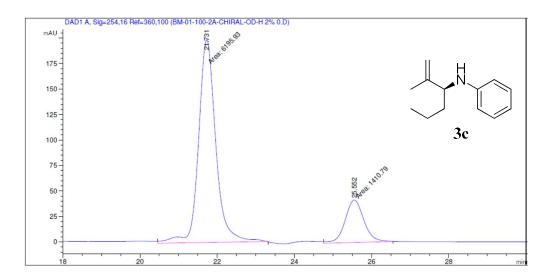

Signal 1: DAD1 A, Sig=254,16 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	34.547	MM	0.6463	1.47445e4	380.24365	76.5083
2	36.229	MP	0.5832	4527.24854	129.37712	23.4917
Total	s :			1.92717e4	509.62077	

Racemic: N-(2-methylpent-1-en-3-yl)aniline (3b)

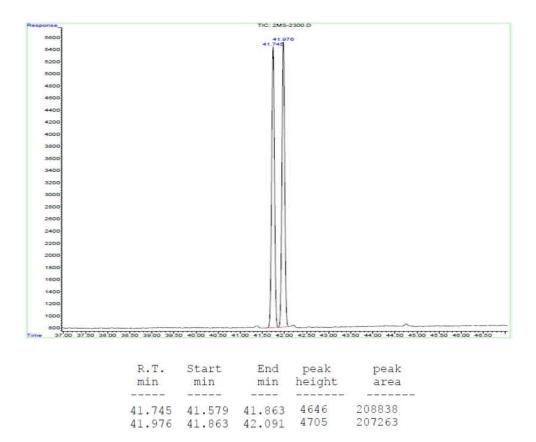

Chiral: (S)-N-(2-methylpent-1-en-3-yl)aniline (3b) (69% ee)

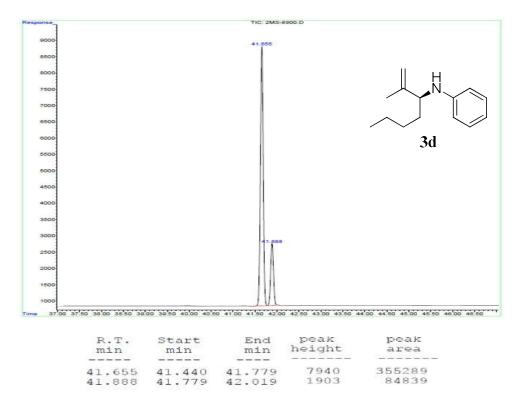
Signal 1: DAD1 A, Sig=254,16 Ref=360,100


Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	33.455	PP	0.8282	3.01115e4	605.94995	84.2692
2	36.181	MM	0.8176	5621.00049	114.57680	15.7308
Total	s:			3.57325e4	720.52675	

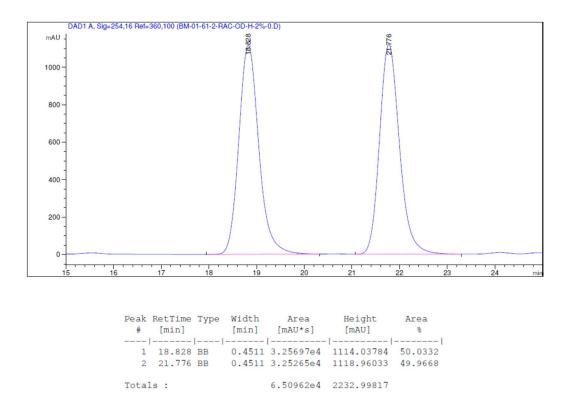
Racemic: N-(2-methylhex-1-en-3-yl)aniline (3c)

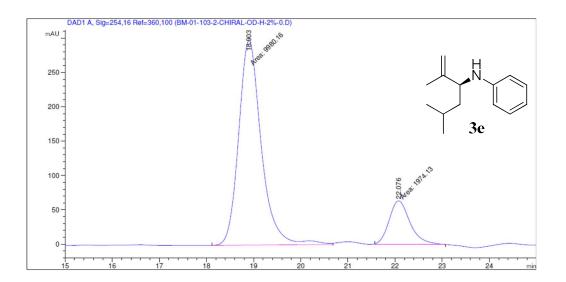
Totals : 4.19509e4 1336.81976


Chiral: (S)-N-(2-methylhex-1-en-3-yl)aniline (3c) (63% ee)

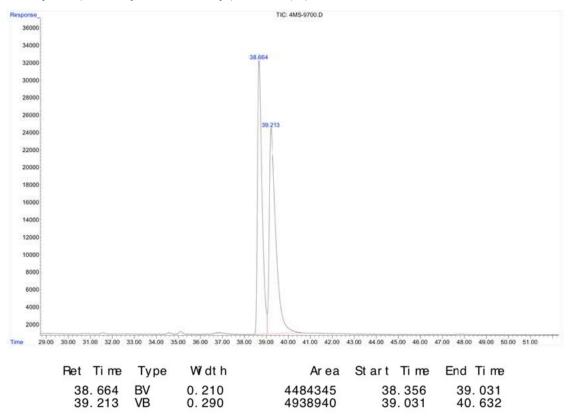

Signal 1: DAD1 A, Sig=254,16 Ref=360,100

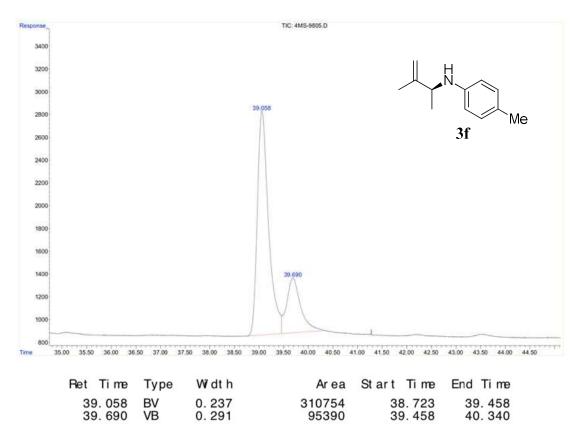
Peak #	RetTime [min]		Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	21.731	MM	0.5193	6195.93115	198.85376	81.4534
2	25.552	MM	0.5633	1410.78638	41.74030	18.5466
Total	s:			7606.71753	240.59406	


Racemic: *N*-(2-methylhept-1-en-3-yl)aniline (3d):

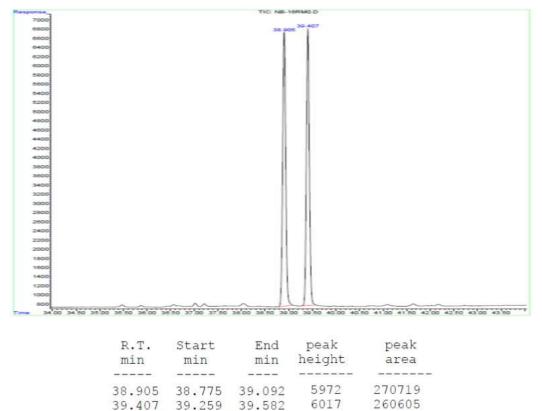

Chiral: (S)-N-(2-methylhept-1-en-3-yl)aniline (3d): (61% ee)

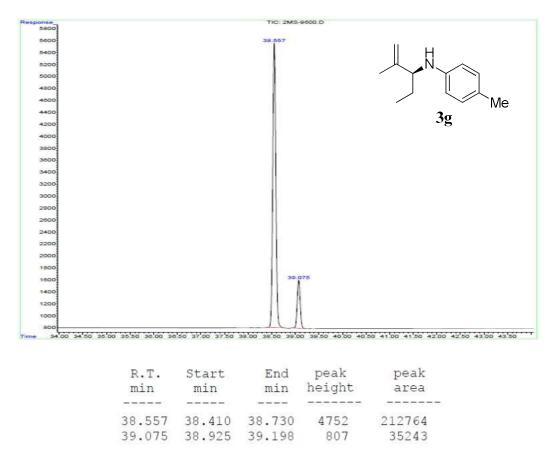
Racemic: N-(2,5-dimethylhex-1-en-3-yl)aniline (3e)

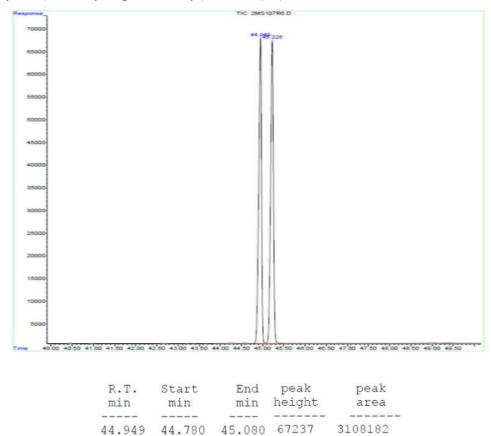

Chiral: (S)-N-(2,5-dimethylhex-1-en-3-yl)aniline (3e) (67% ee)


Signal 1: DAD1 A, Sig=254,16 Ref=360,100

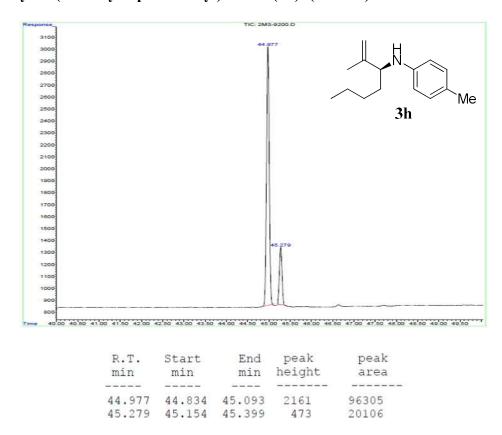
Peak #	RetTime [min]		Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	18.903	PM	0.5581	9980.16113	298.02954	83.4860
2	22.076	MP	0.5166	1974.12744	63.69362	16.5140
Total	s:			1.19543e4	361.72316	

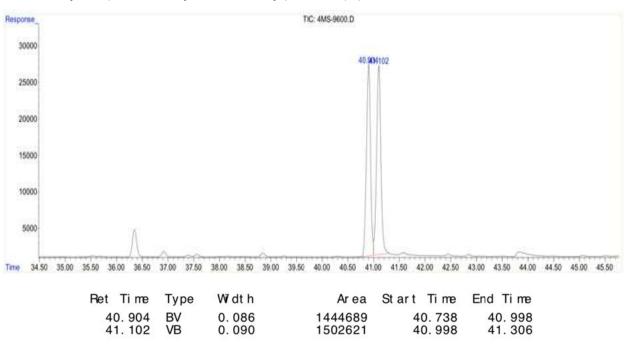

Racemic: 4-methyl-N-(2-methylbut-1-en-3-yl)aniline (3f)


Chiral: 4-methyl-N-(2-methylbut-1-en-3-yl)aniline (3f) (53% ee)

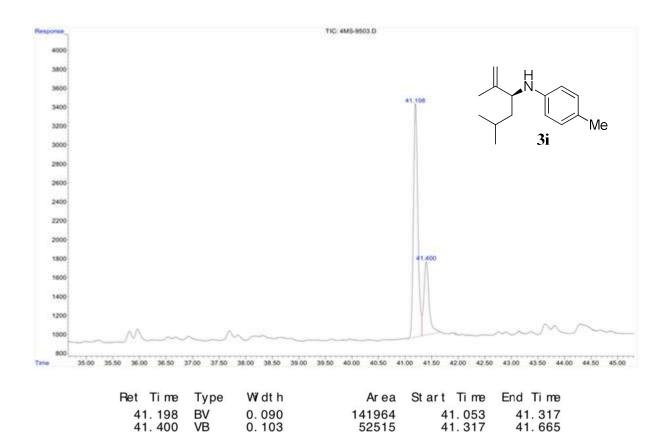

Racemic: 4-methyl-N-(2-methylpent-1-en-3-yl)aniline (3g)

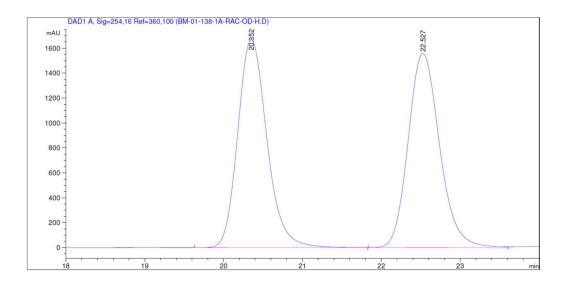
Chiral: (S)-4-methyl-N-(2-methylpent-1-en-3-yl)aniline (3g): (72% ee)


Racemic: 4-methyl-*N*-(2-methylhept-1-en-3-yl)aniline (3h)

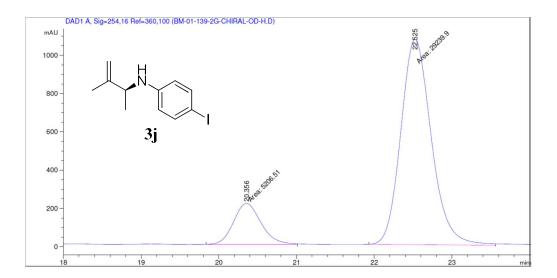

Chiral: (S)-4-methyl-N-(2-methylhept-1-en-3-yl)aniline (3h): (66% ee)

45.226 45.080 45.487 66827

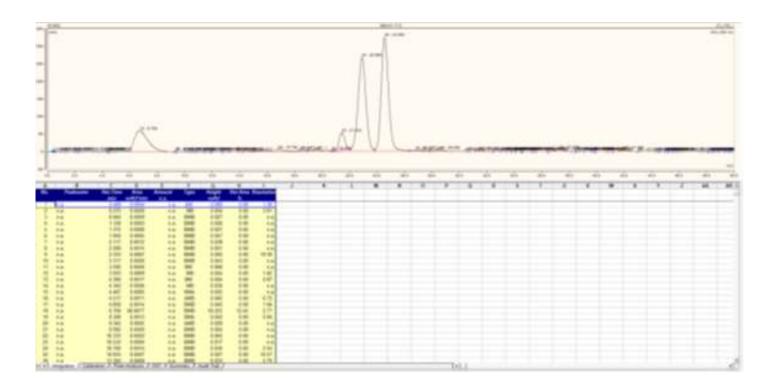

3120968


Racemic: 4-methyl-N-(2,5-dimethylhex-1-en-3-yl)aniline (3i)

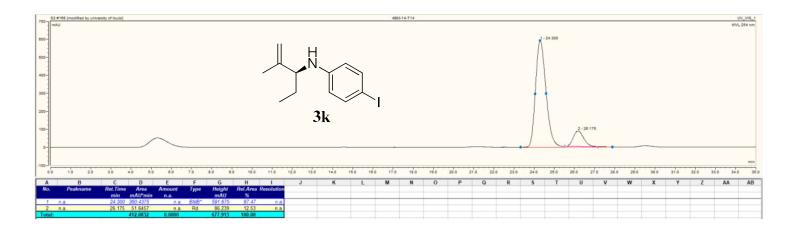
Chiral: (S)-4-methyl-N-(2,5-dimethylhex-1-en-3-yl)aniline (3i) (46% ee)


Racemic: 4-iodo-*N*-(3-methylbut-3-en-2-yl)aniline (3j)

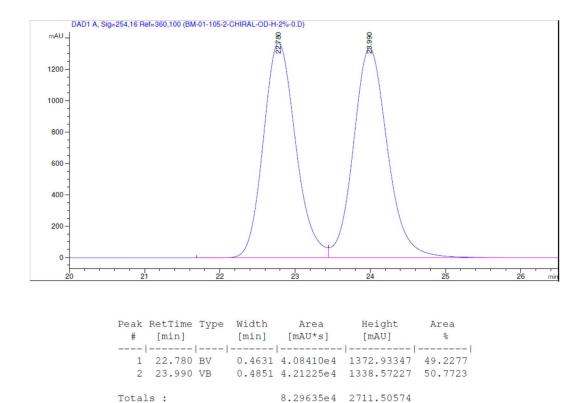
Signal 1: DAD1 A, Sig=254,16 Ref=360,100


Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	20.352	BB	0.3976	4.28942e4	1670.16455	49.8265
2	22.527	BV	0.4272	4.31929e4	1559.32898	50.1735
Total	ls :			8.60870e4	3229.49353	

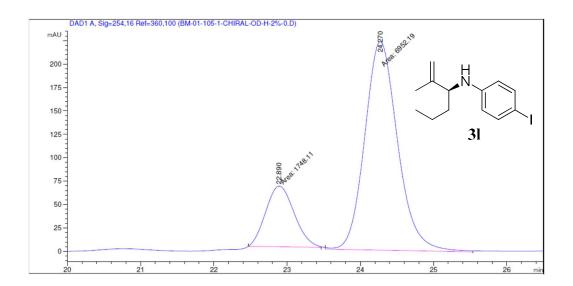
Chiral: (S)-4-iodo-N-(3-methylbut-3-en-2-yl)aniline (3j) (70% ee)


Signal 1: DAD1 A, Sig=254,16 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	20.356	PM	0.4066	5206.51123	213.43393	15.1148
2	22.525	PM	0.4539	2.92399e4	1073.54565	84.8852
Total	s:			3.44464e4	1286.97958	

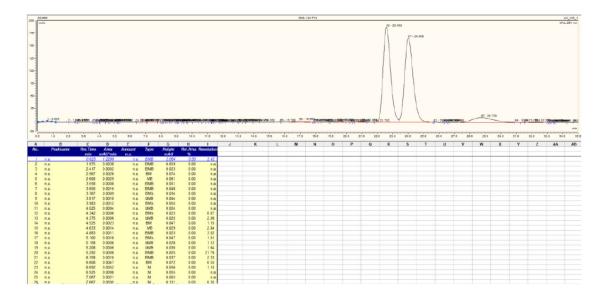

tr₁-22.90, tr₂-24.55

Chiral: (S)-4-iodo-N-(2-methylpent-1-en-3-yl)aniline (3k) (79% ee)

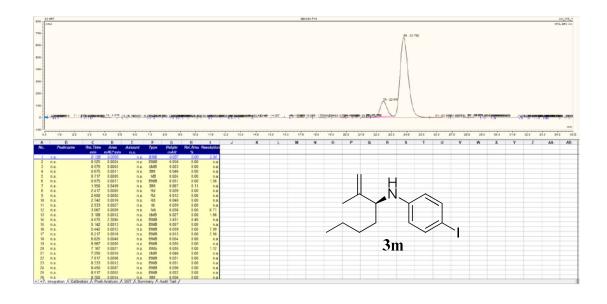


tr₁-23.15, tr₂-25.50

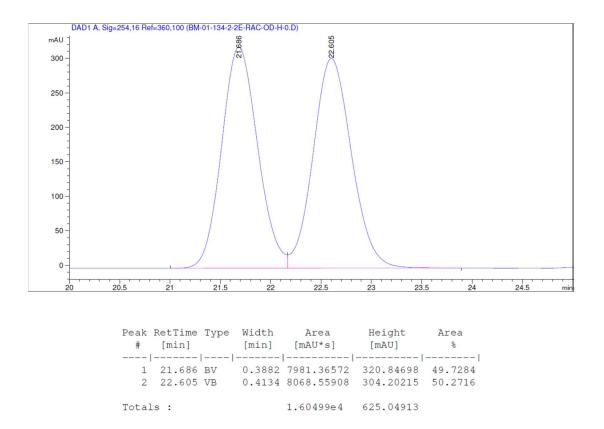
Racemic: 4-iodo-*N*-(2-methylhex-1-en-3-yl)aniline (3l)


Chiral: (S)-4-iodo-N-(2-methylhex-1-en-3-yl)aniline (31) (60% ee)

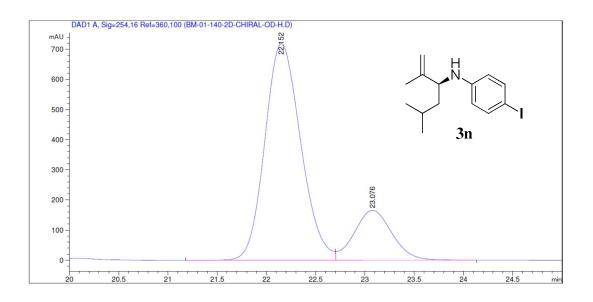
Signal 1: DAD1 A, Sig=254,16 Ref=360,100


Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	22.890	MM	0.4493	1748.11011	64.84074	20.0925
2	24.270	MM	0.5202	6952.18652	222.72963	79.9075
Total	ls :			8700.29663	287.57037	

Racemic: 4-iodo-*N*-(2-methylhept-1-en-3-yl)aniline (3m)

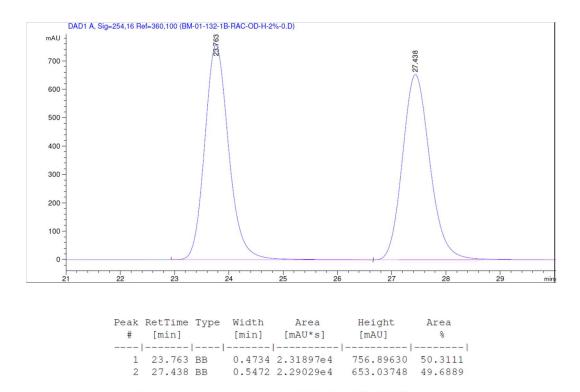

tr₁-22.59, tr₂-24.01

Chiral: (S)-4-iodo-N-(2-methylhept-1-en-3-yl)aniline (3m) (73% ee)

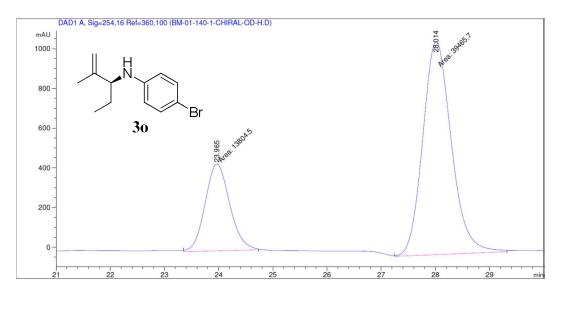


tr₁-22.45, tr₂-23.8

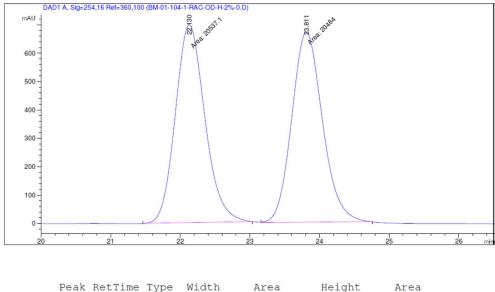
Racemic: N-(2,5-dimethylhex-1-en-3-yl)-4-iodoaniline (3n)



Chiral: (S)-N-(2,5-dimethylhex-1-en-3-yl)-4-iodoaniline (3n) (61% ee)

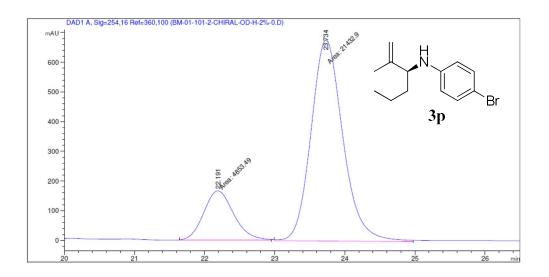

P		RetTime			Area	Height	Area
	#	[min]		[min]	[mAU*s]	[mAU]	00
-					1	710 21070	
	-	22.152				719.21979 165.50386	
	2	23.070	VD	0.4105	4402.32013	103.30300	19.4002
Т	otal	s:			2.25920e4	884.72365	

Racemic: 4-bromo-N-(2-methylpent-1-en-3-yl)aniline (30)



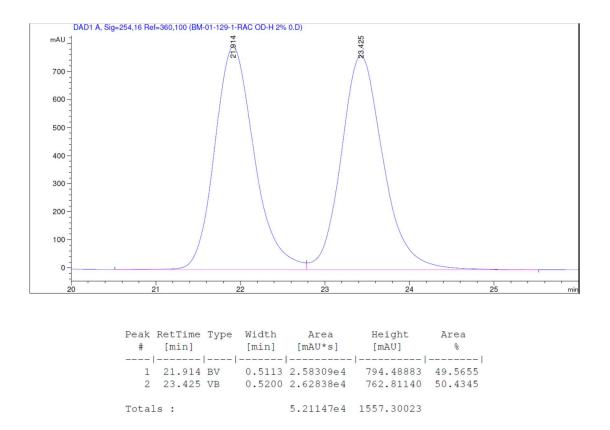
Totals: 4.60926e4 1409.93378

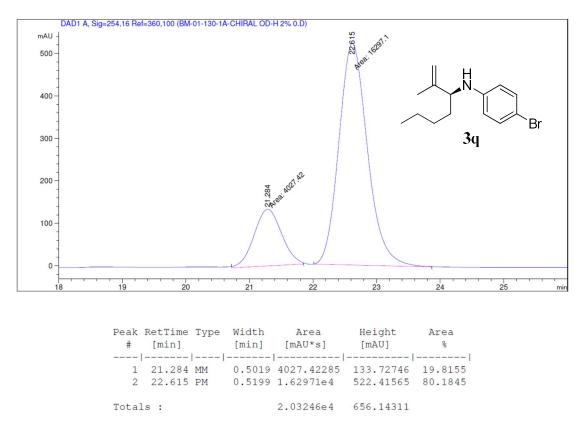
Chiral: (S)-4-bromo-N-(2-methylpent-1-en-3-yl)aniline (30) (48% ee)



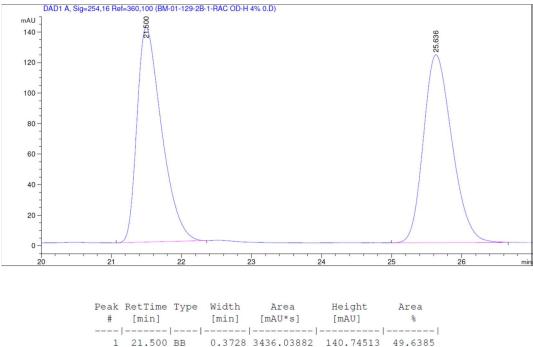
Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	23.965	MM	0.5259	1.38045e4	437.45798	25.9141
2	28.014	MM	0.6123	3.94657e4	1074.28857	74.0859
Total	ls :			5.32701e4	1511.74655	

Peak	RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	010	
						I	
1	22.130	MM	0.4908	2.05371e4	697.40369	50.0646	
2	23.811	MM	0.5100	2.04840e4	669.34784	49.9354	
Total	s:			4.10211e4	1366.75153		

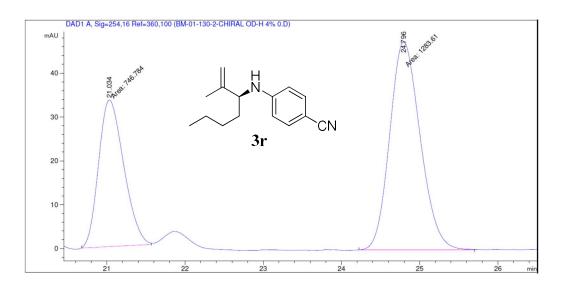

Chiral: (S)-4-bromo-N-(2-methylhex-1-en-3-yl)aniline (3p) (63% ee)


Signal 1: DAD1 A, Sig=254,16 Ref=360,100

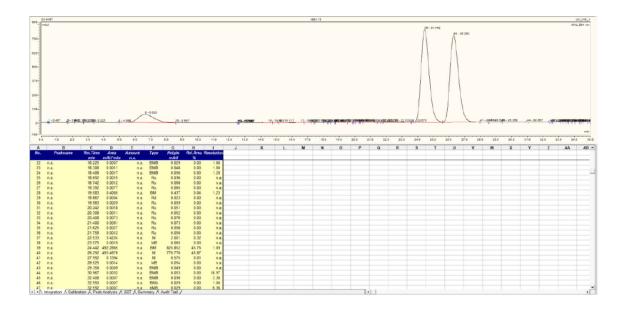
Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	22.191	MM	0.4904	4853.48682	164.95062	18.4639
2	23.734	MM	0.5273	2.14329e4	677.49182	81.5361
Tota	ls :			2.62864e4	842.44244	


Racemic: 4-bromo-N-(2-methylhept-1-en-3-yl)aniline (3q)

Chiral: (S)-4-bromo-N-(2-methylhept-1-en-3-yl)aniline (3q) (60% ee)

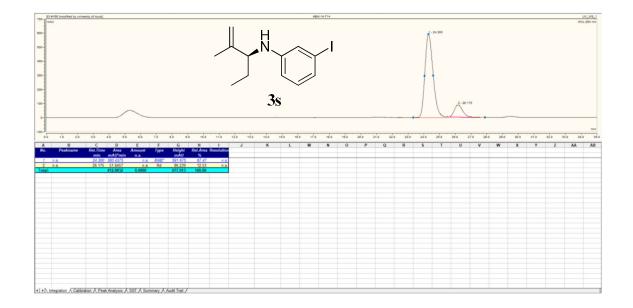


Racemic: 4-((2-methylhept-1-en-3-yl)amino)benzonitrile (3r)

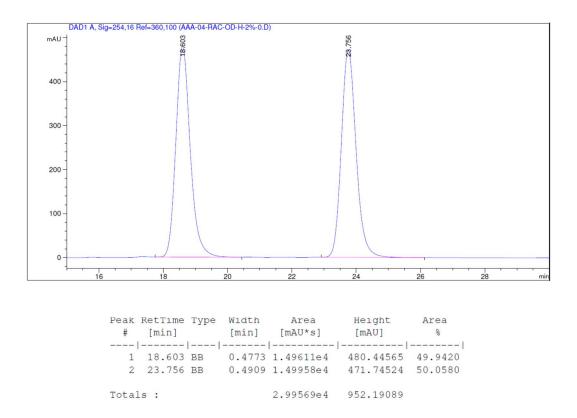


1 2	1.500 BB	0.3728	3436.03882	140.74513	49.6385
2 2	5.636 BB	0.4361	3486.09033	123.21353	50.3615
Totals	:		6922.12915	263.95866	

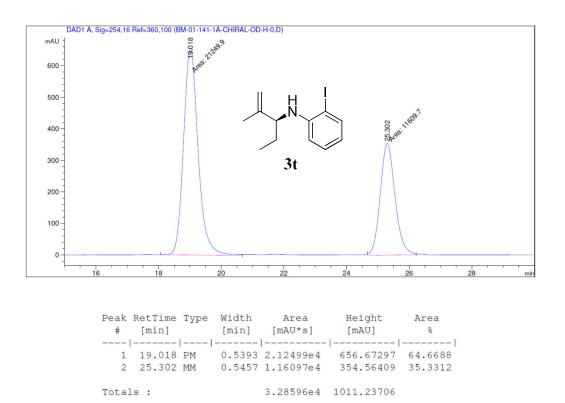
Chiral: (S)-4-((2-methylhept-1-en-3-yl)amino)benzonitrile (3r) (26% ee)

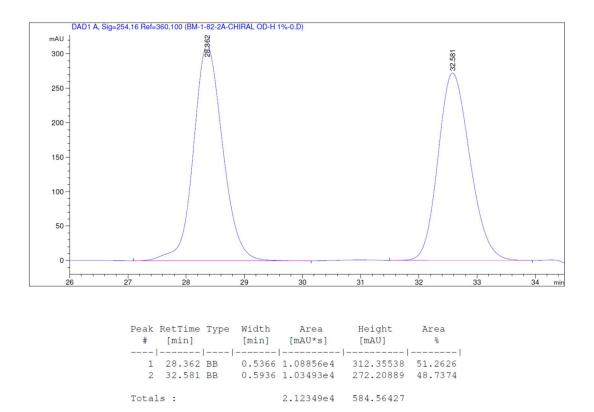


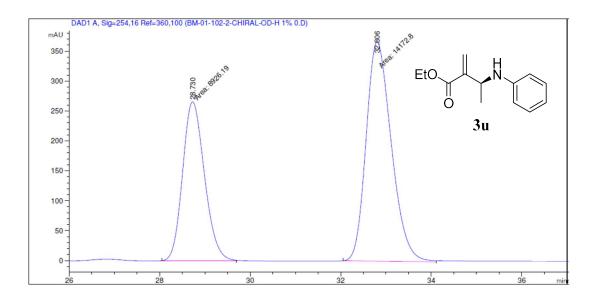
Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	21.034	PM	0.3724	746.78448	33.41962	36.7802
2	24.796	PM	0.4516	1283.61487	47.37314	63.2198
Total	ls :			2030.39935	80.79276	



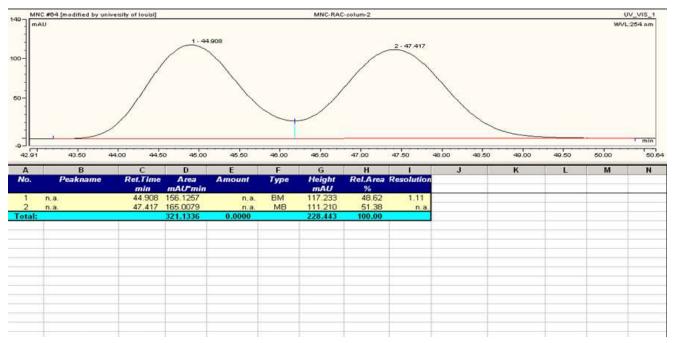
 $(tr_1-24.44, tr_2-26.29)$

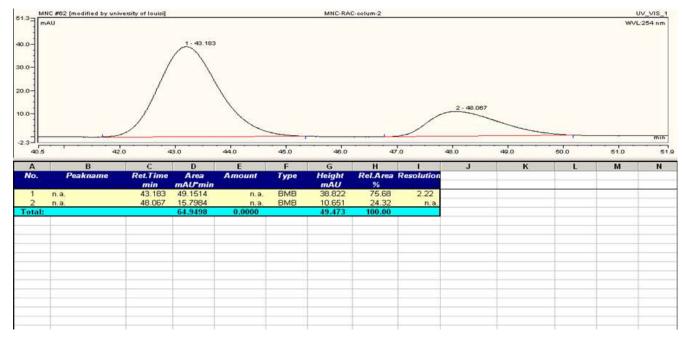

Chiral: (S)-3-iodo-N-(2-methylpent-1-en-3-yl)aniline (3s) (75% ee)


 $(tr_1-24.30, tr_2-26.18)$


Chiral: (S)-2-iodo-N-(2-methylpent-1-en-3-yl)aniline (3t) (29% ee)

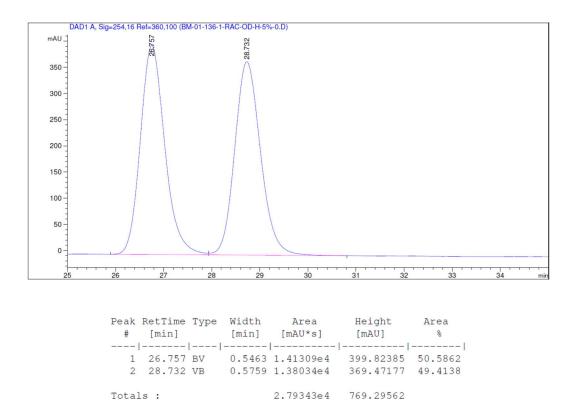
Racemic: Ethyl 2-methylene-3-(phenylamino)butanoate (3u)

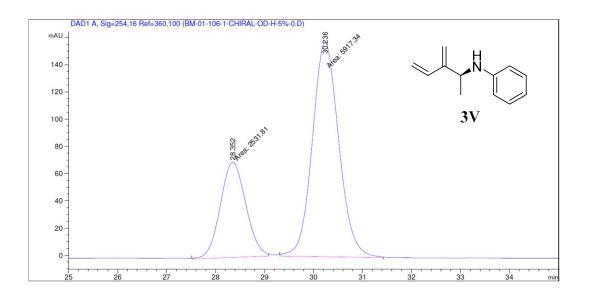

Chiral: (S)-ethyl 2-methylene-3-(phenylamino)butanoate (3u) (23% ee)


Signal 1: DAD1 A, Sig=254,16 Ref=360,100

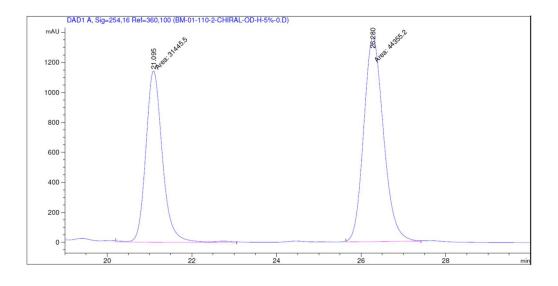
Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	28.730	MM	0.5598	8926.19336	265.74686	38.6433
2	32.806	PM	0.6451	1.41728e4	366.14670	61.3567
Total	s :			2.30990e4	631.89355	

Racemic: Ethyl 2-methylene-3-(phenylamino)butanoate (3u)

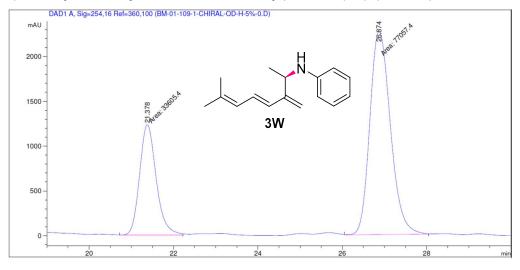

RAC (OD-H column) 0.3 ml flow rate and 99.3% hexane 0.7% IPA, RT = 44 and 48 run time 80 min.


Chiral: (S)-ethyl 2-methylene-3-(phenylamino)butanoate (3u) (51% ee)

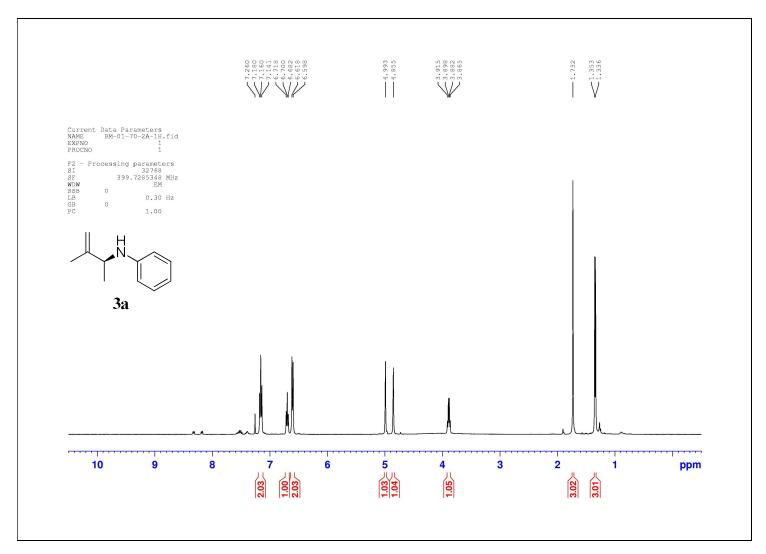
(OD-H column) 0.3 ml flow rate and 99.3% hexane 0.7% IPA, RT = 43 and 48 run time 80 min.


Racemic: N-(3-methylenepent-4-en-2-yl)aniline (3v)

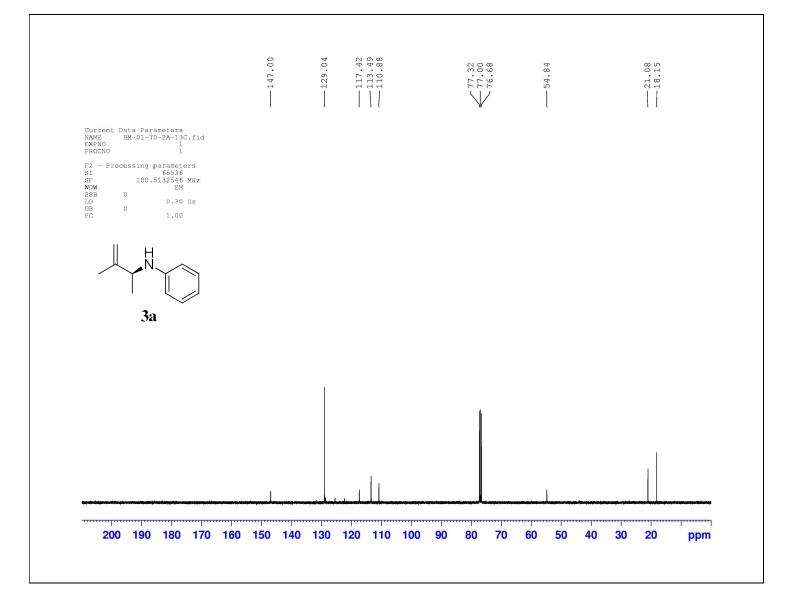
Chiral: (S)-N-(3-methylenepent-4-en-2-yl)aniline (3v) (40% ee)



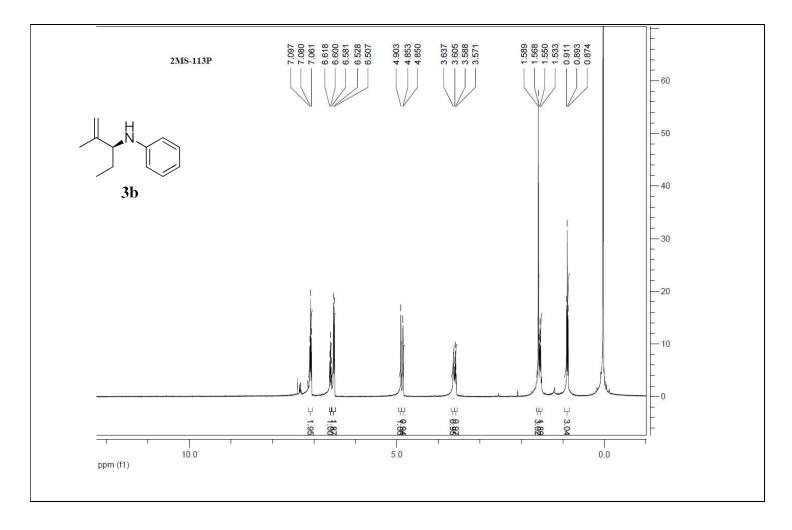
Peak #	RetTime [min]		Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	28.352	MM	0.6029	2531.80664	69.99104	29.9652
2	30.236	MM	0.6267	5917.33887	157.37259	70.0348
Total	s:			8449.14551	227.36362	

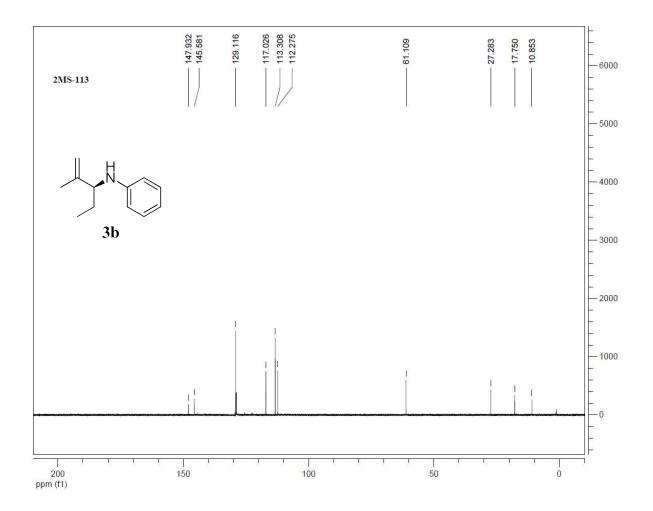

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	21.095	MM	0.4585	3.14455e4	1142.96802	41.4845
2	26.280	MM	0.5436	4.43552e4	1359.90491	58.5155
Total	ls :			7.58008e4	2502.87292	

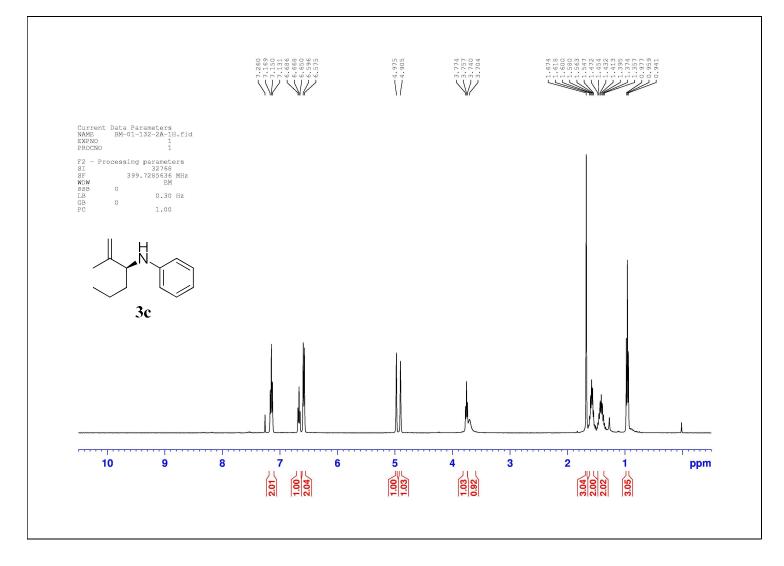
Chiral: (S,E)-N-(7-methyl-3-methyleneocta-4,6-dien-2-yl)aniline (3w) (39% ee)

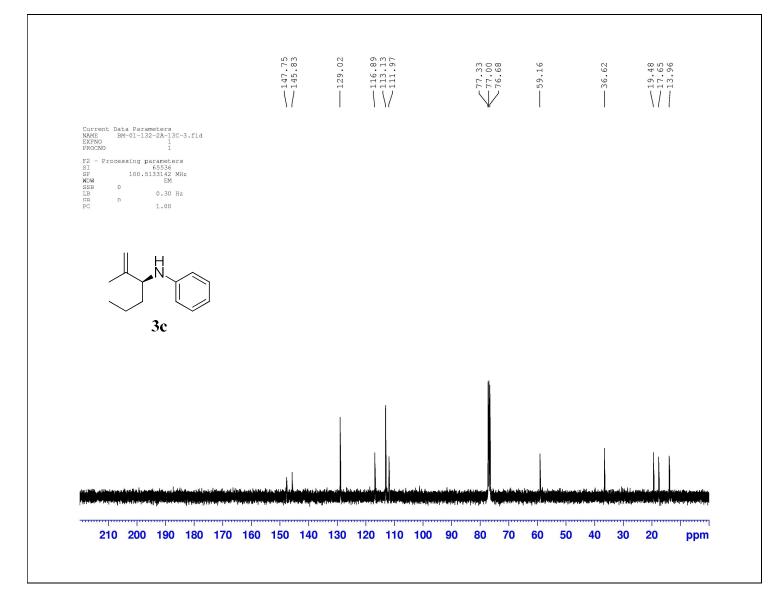


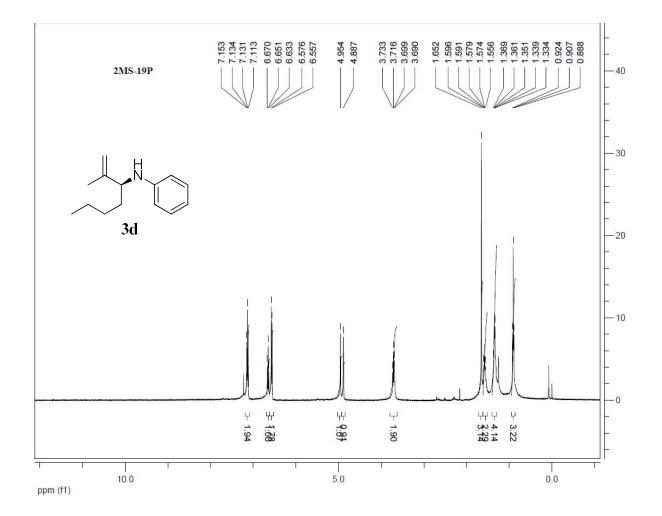
	RetTime [min]		Width [min]	Area [mAU*s]	Height [mAU]	Area ۶
1	21.378	MM	0.4549	3.36054e4	1231.21655	30.3674
2	26.874	MM	0.5666	7.70574e4	2266.49707	69.6326
Total	s:			1.10663e5	3497.71362	

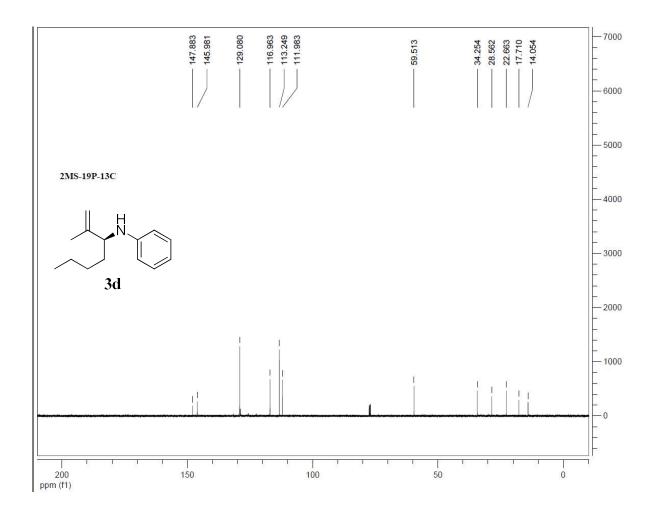

10. ¹H and ¹³C NMR Spectra of the Products

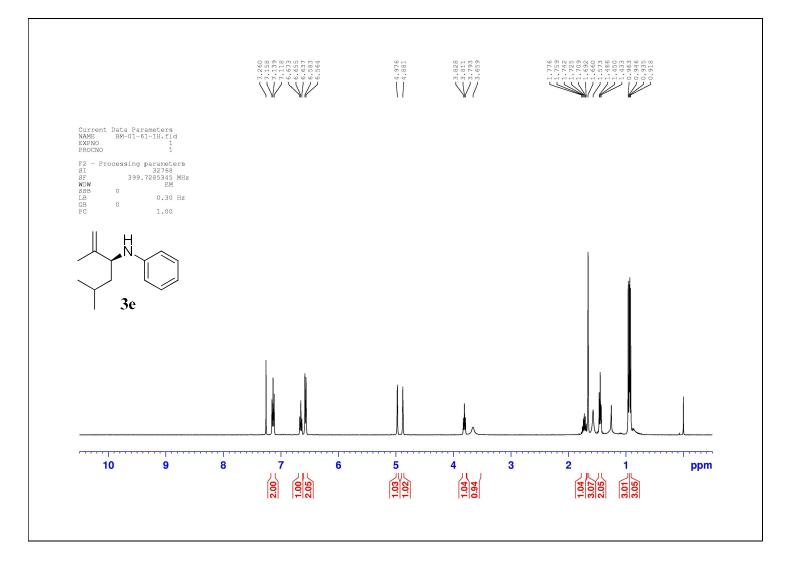

¹H Spectra of **3a** in CDCl₃.

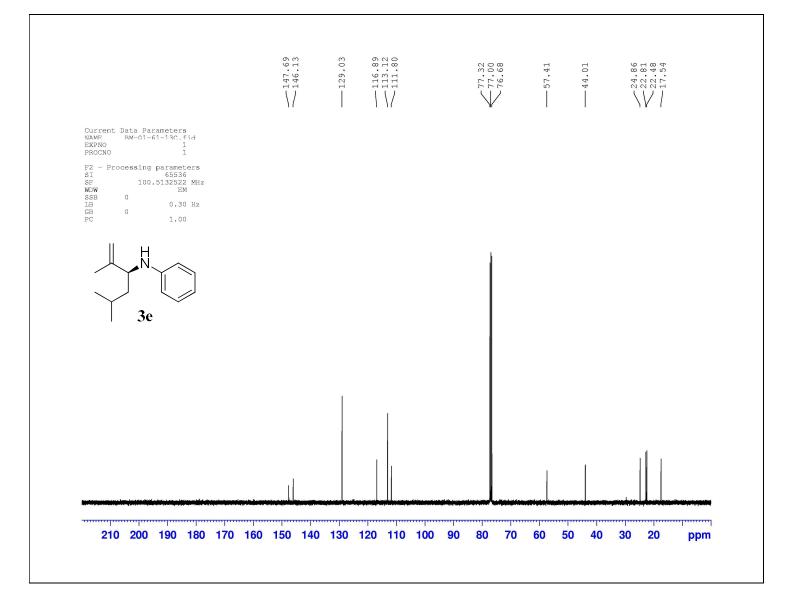

¹³C NMR Spectra of **3a** in CDCl₃.

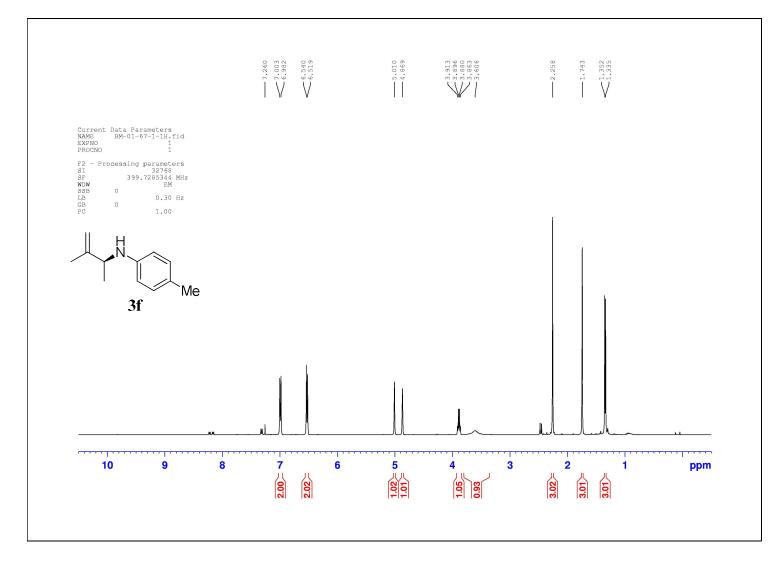

¹H Spectra of **3b** in CDCl₃.

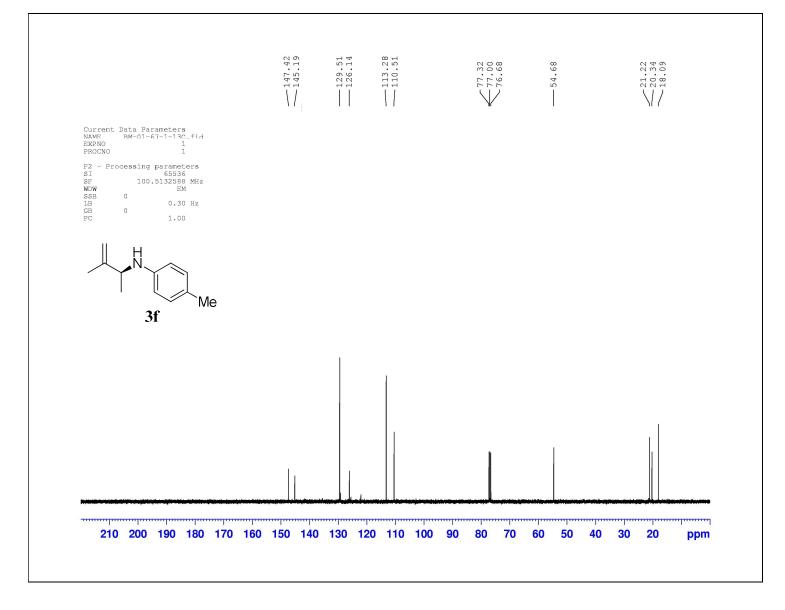

¹³C NMR Spectra of **3b** in CDCl₃.

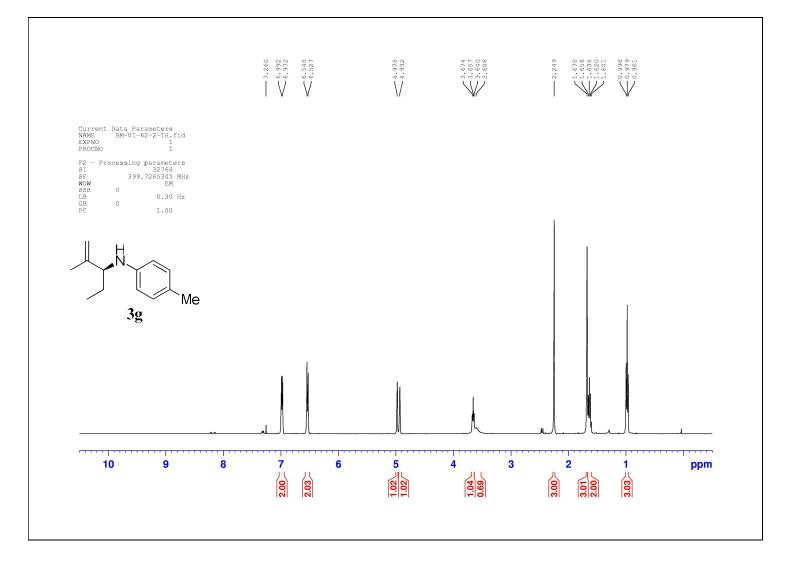

¹H Spectra of **3c** in CDCl₃.

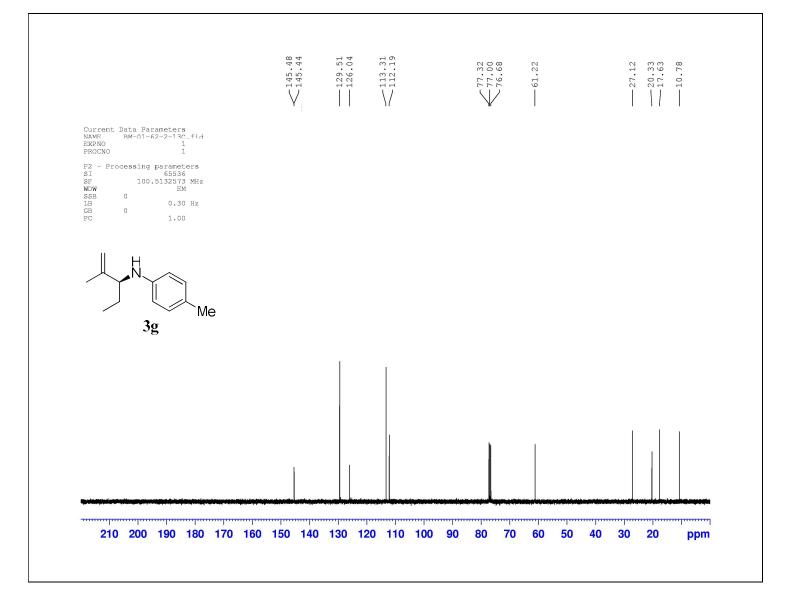

¹³C NMR Spectra of **3c** in CDCl₃.

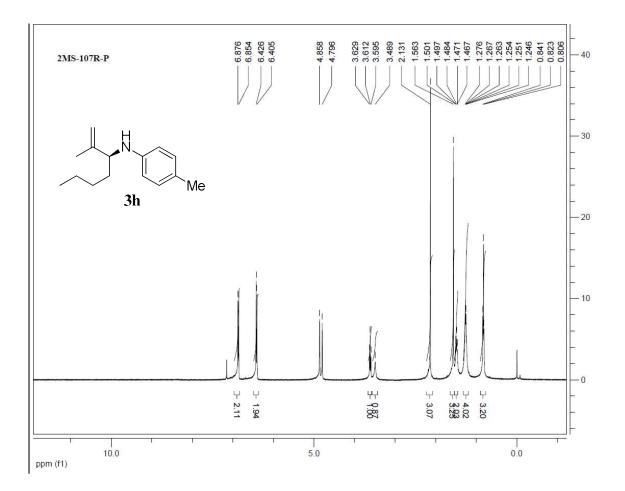

¹H Spectra of **3d** in CDCl₃.

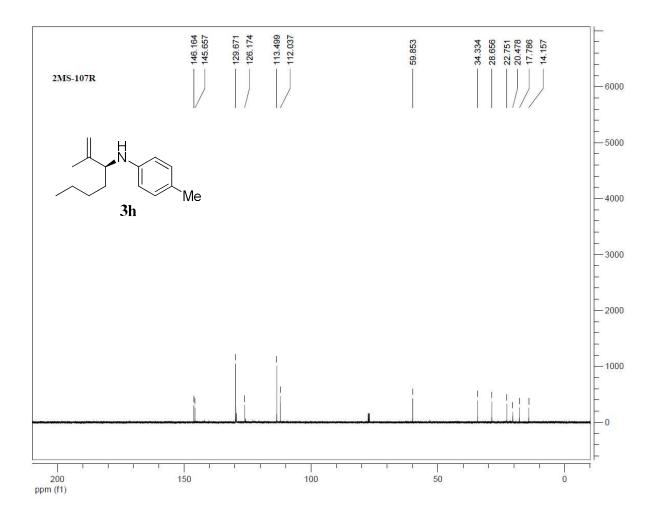

¹³C NMR Spectra of **3d** in CDCl₃.

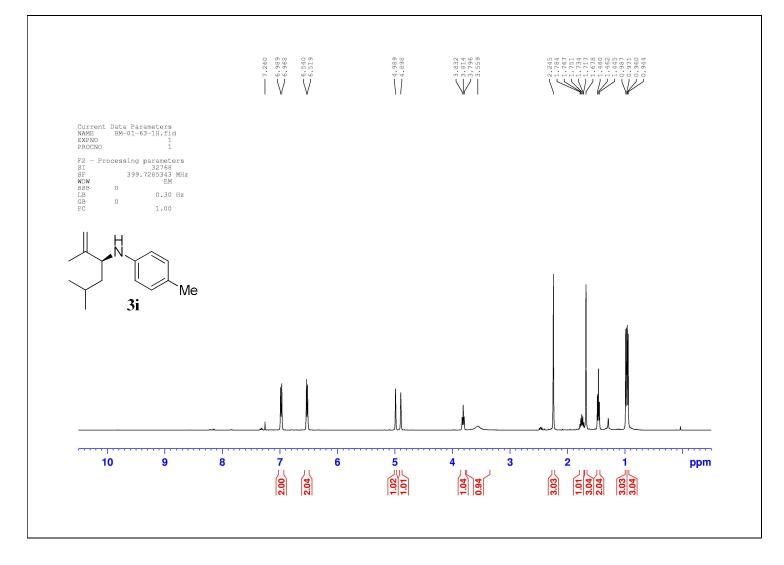

¹H Spectra of **3e** in CDCl₃.

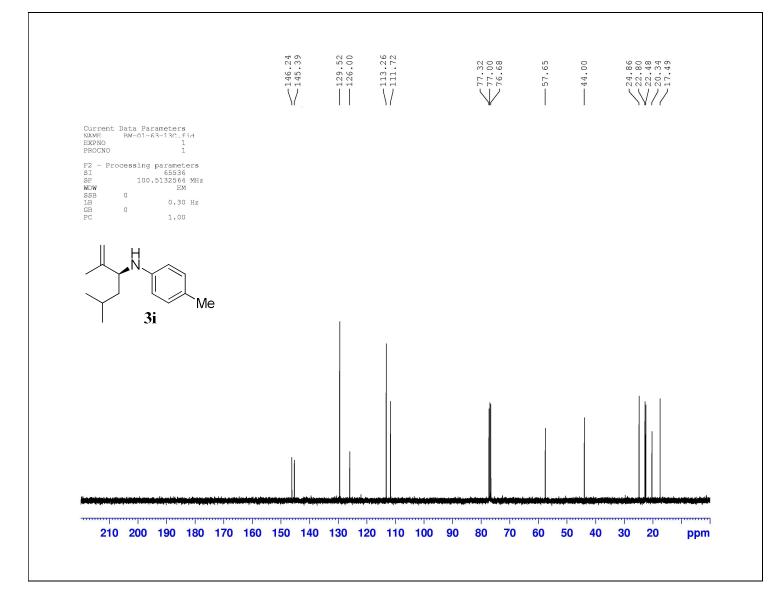

¹³C NMR Spectra of **3e** in CDCl₃.

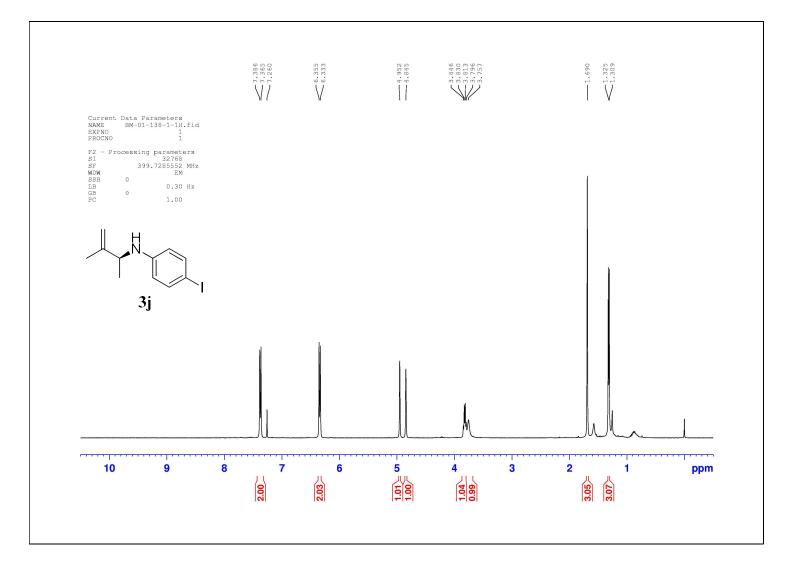

¹H Spectra of **3f** in CDCl₃.

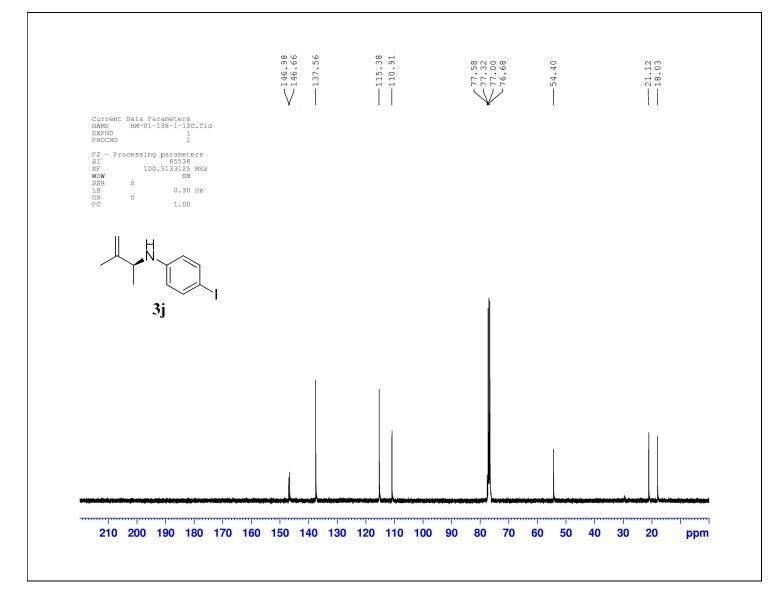

¹³C NMR Spectra of **3f** in CDCl₃.

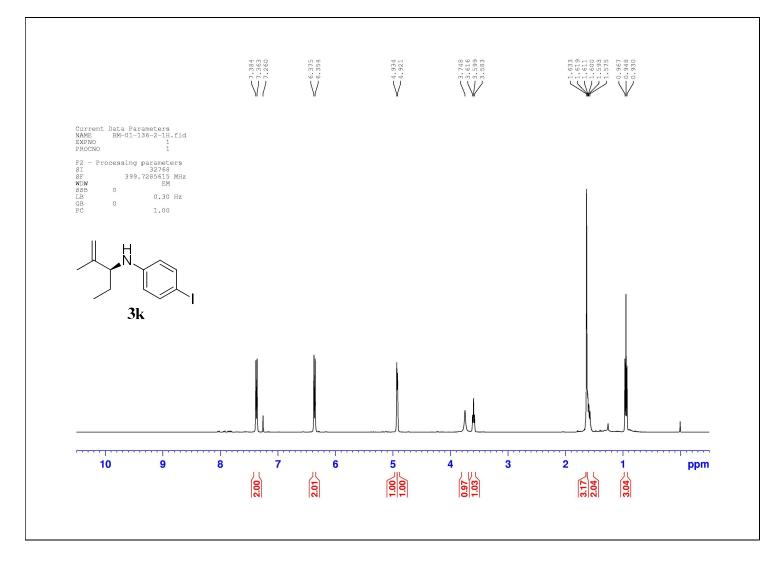

¹H Spectra of **3g** in CDCl₃.

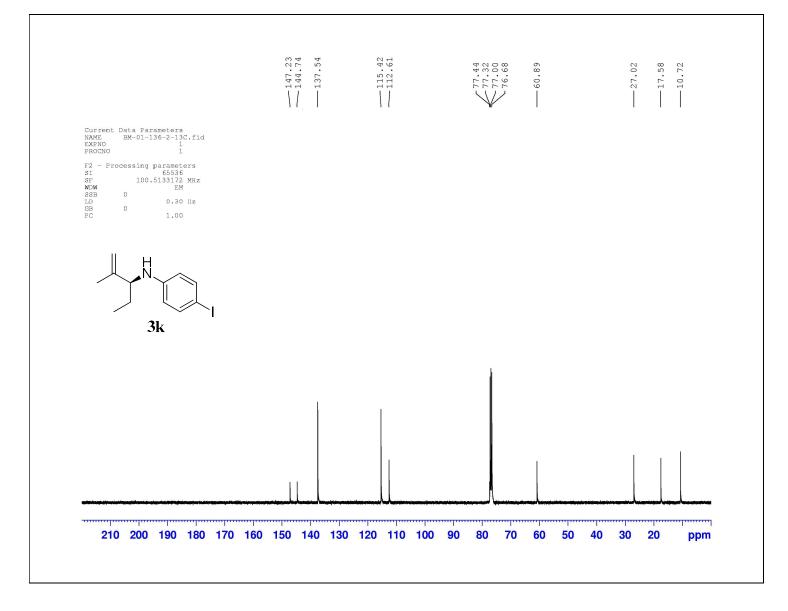

¹³C NMR Spectra of **3g** in CDCl₃.

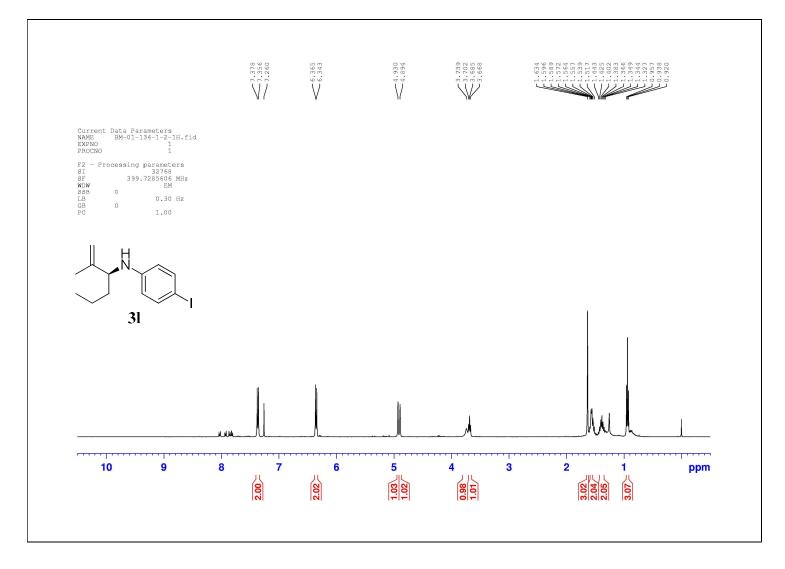

¹H Spectra of **3h** in CDCl₃.

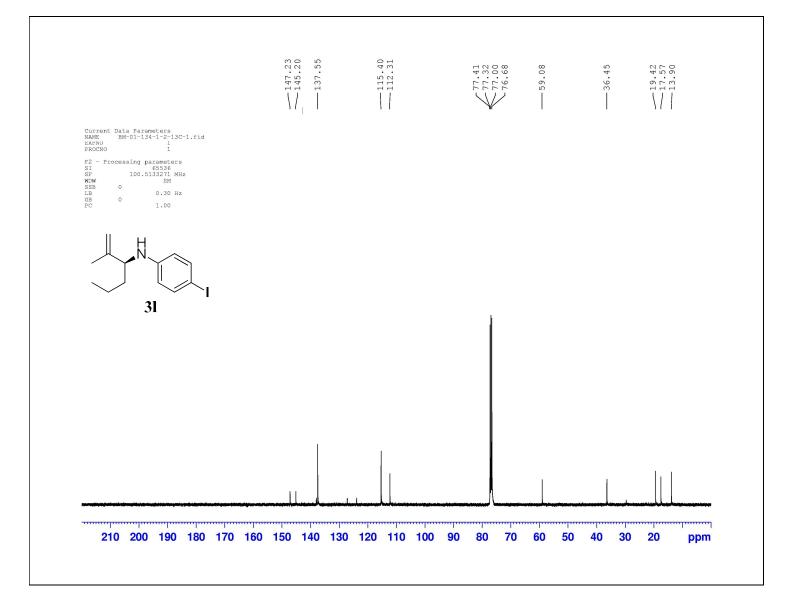

¹³C NMR Spectra of **3h** in CDCl₃.

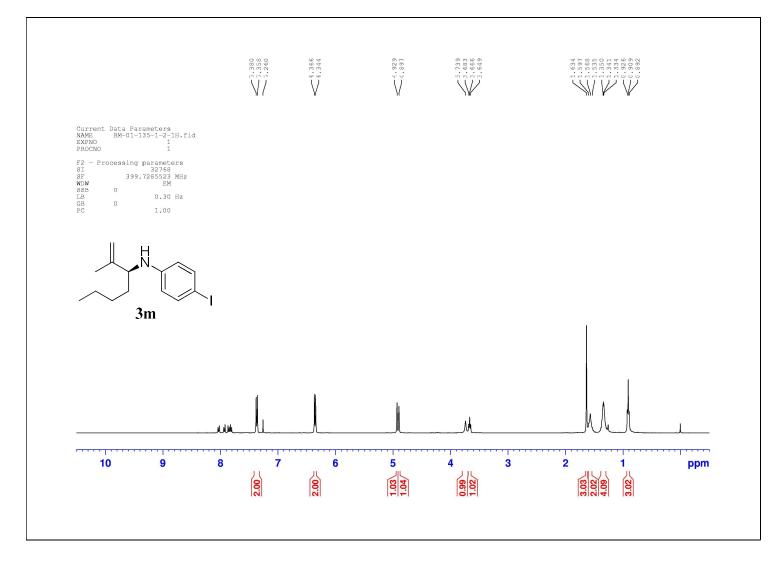

¹H Spectra of **3i** in CDCl₃.

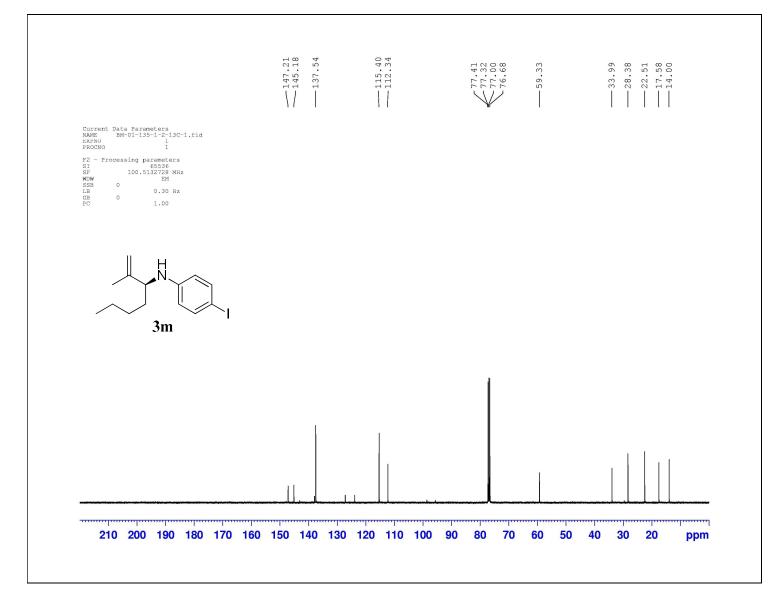

¹³C NMR Spectra of **3i** in CDCl₃.

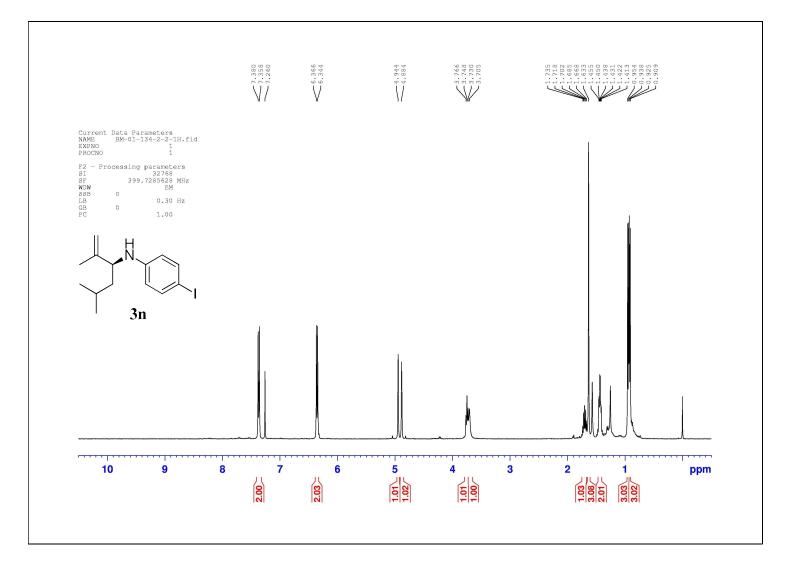

¹H Spectra of **3j** in CDCl₃.

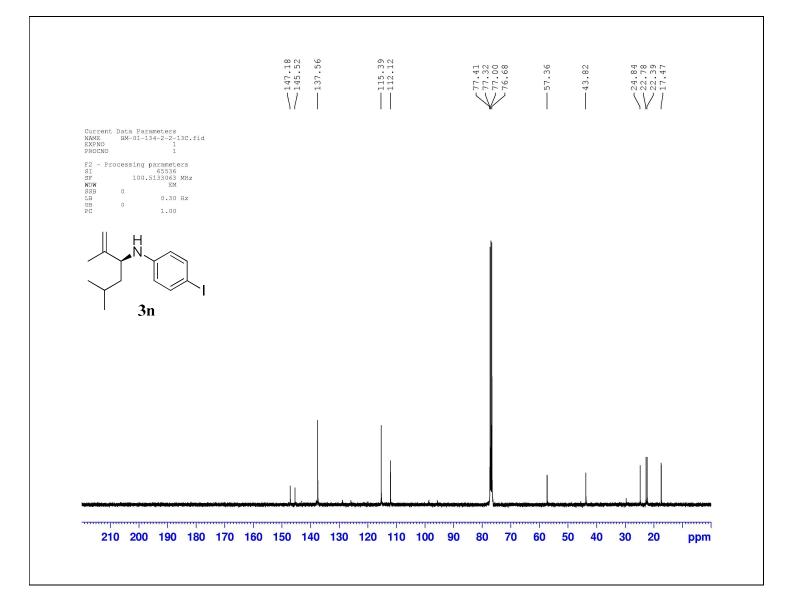

¹³C NMR Spectra of **3j** in CDCl₃.

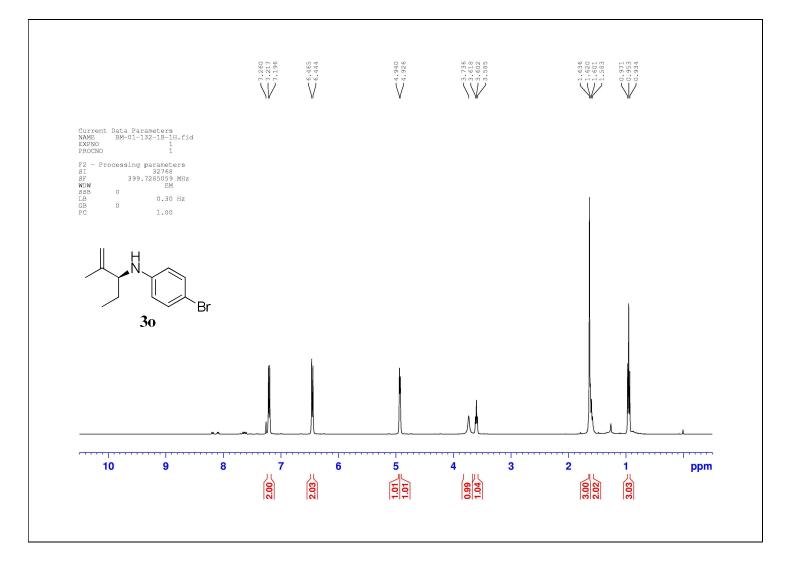

¹H Spectra of **3k** in CDCl₃.

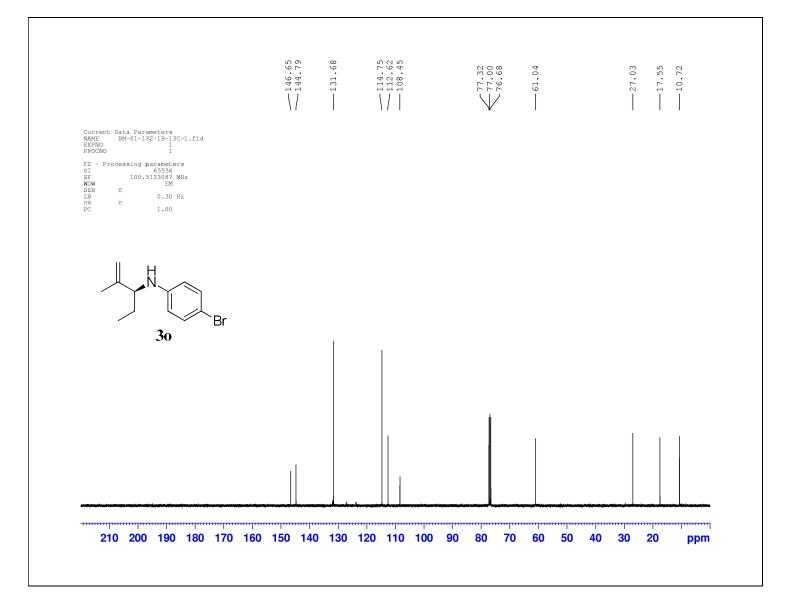

¹³C NMR Spectra of **3k** in CDCl₃.

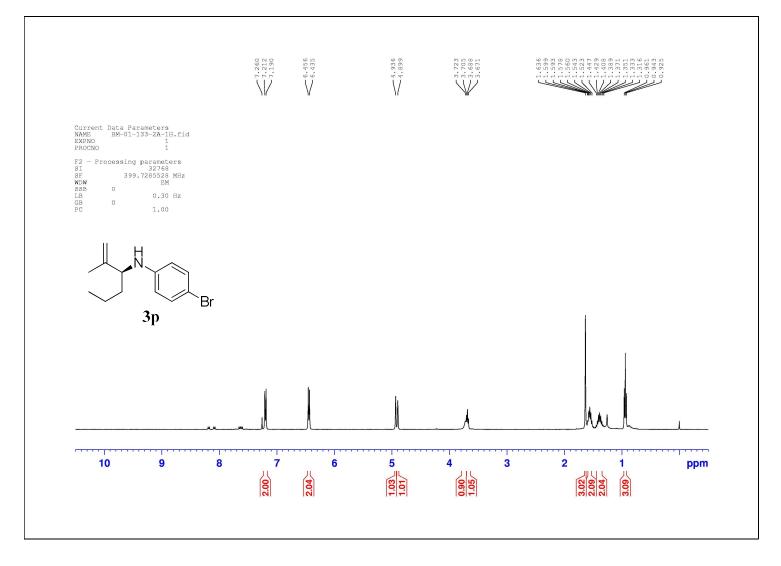

¹H Spectra of **3l** in CDCl₃.

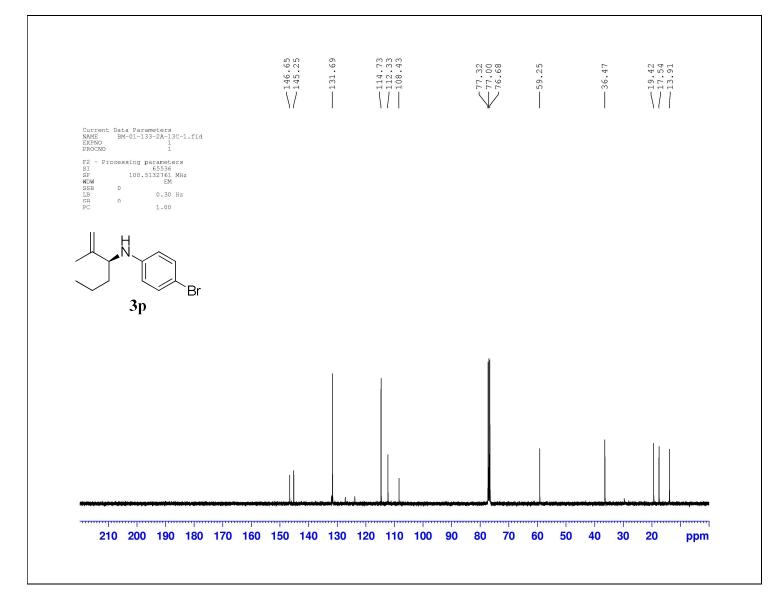

¹³C NMR Spectra of **3l** in CDCl₃.

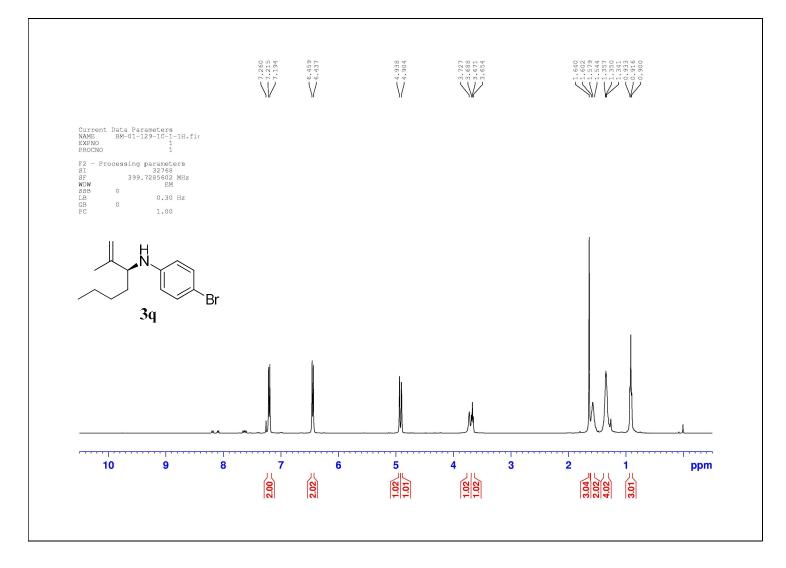

¹H Spectra of **3m** in CDCl₃.

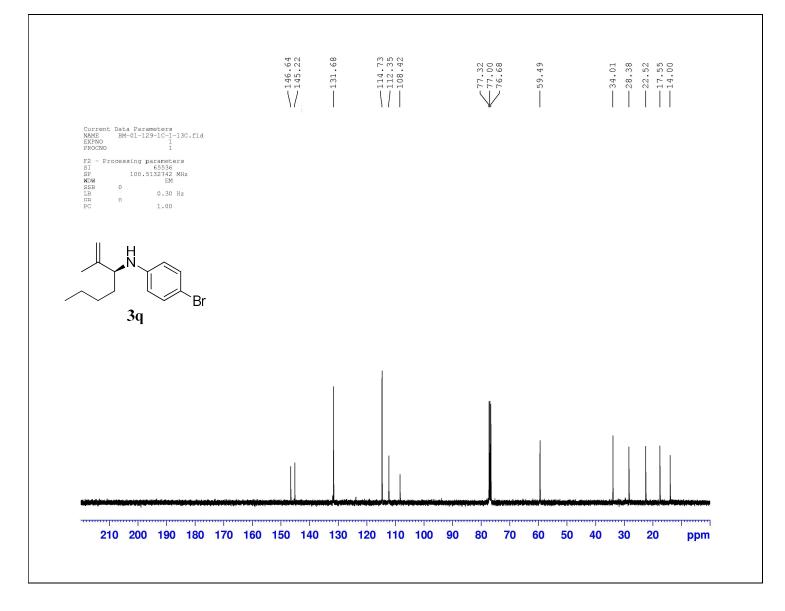

¹³C NMR Spectra of **3m** in CDCl₃.

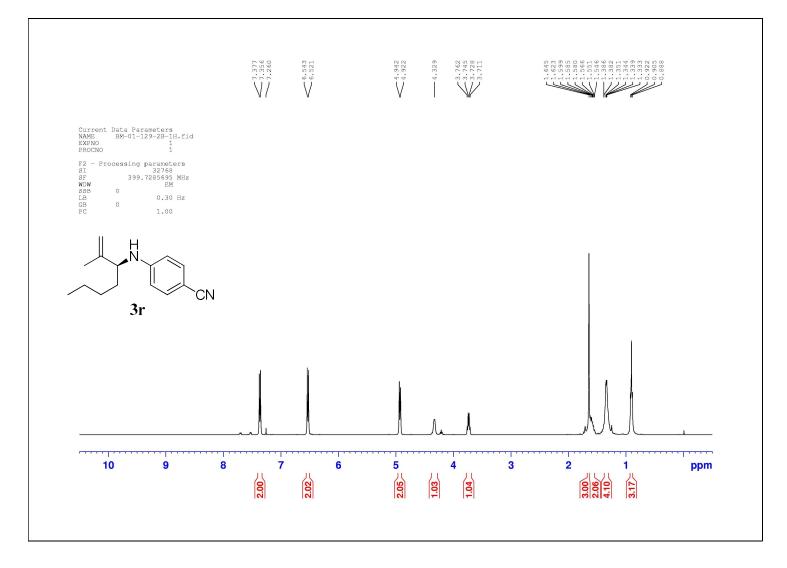

¹H Spectra of **3n** in CDCl₃.

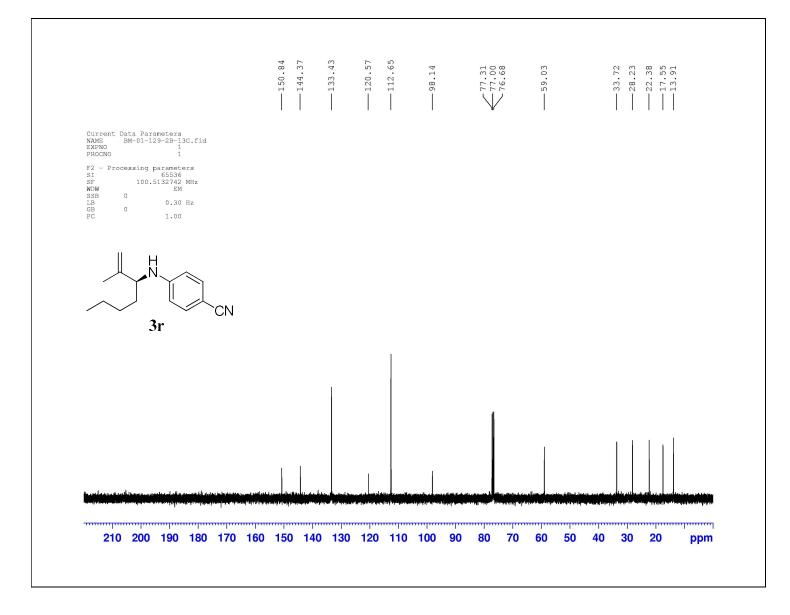

¹³C NMR Spectra of **3n** in CDCl₃.

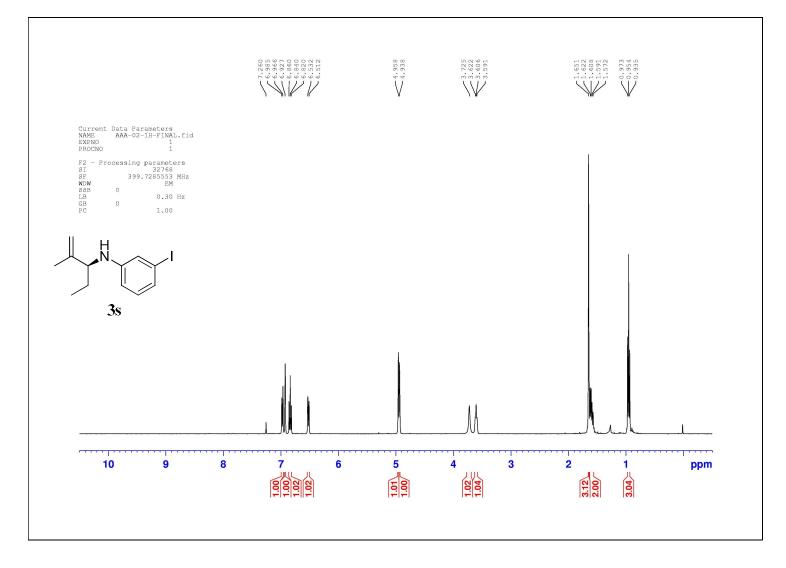

¹H Spectra of **30** in CDCl₃.

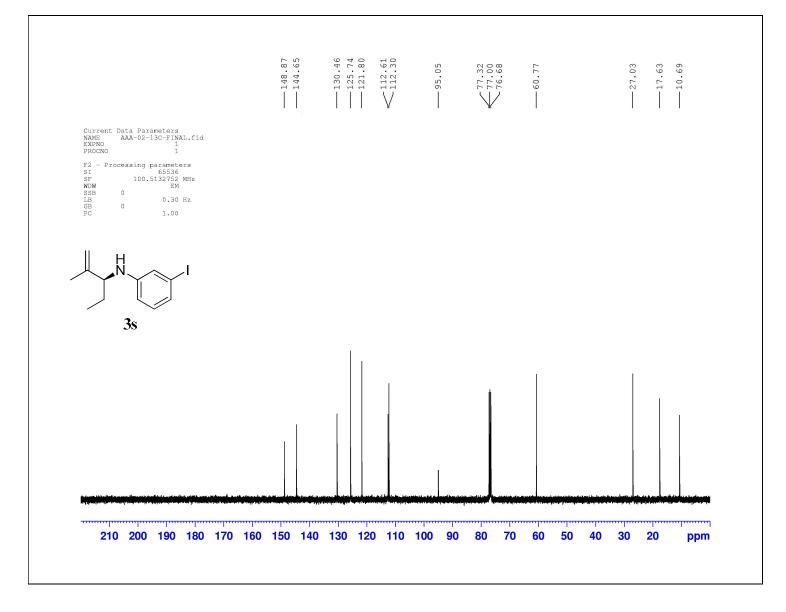

¹³C NMR Spectra of **30** in CDCl₃.

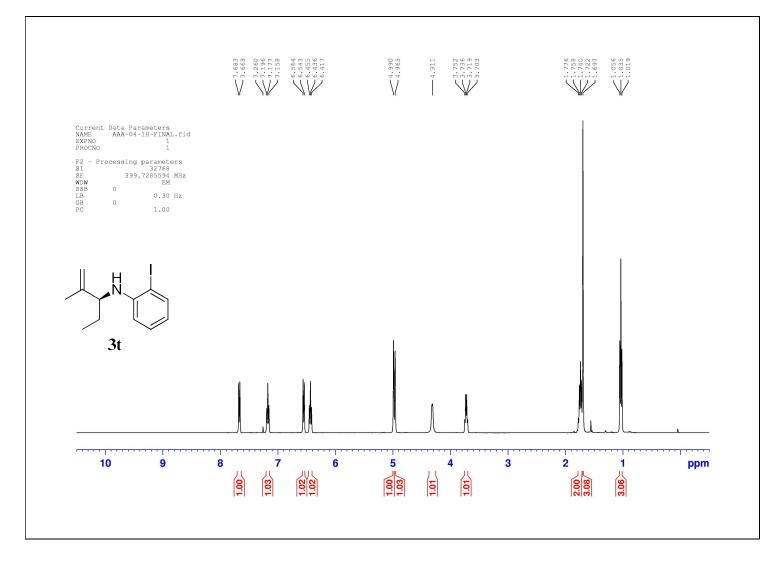

¹H Spectra of **3p** in CDCl₃.

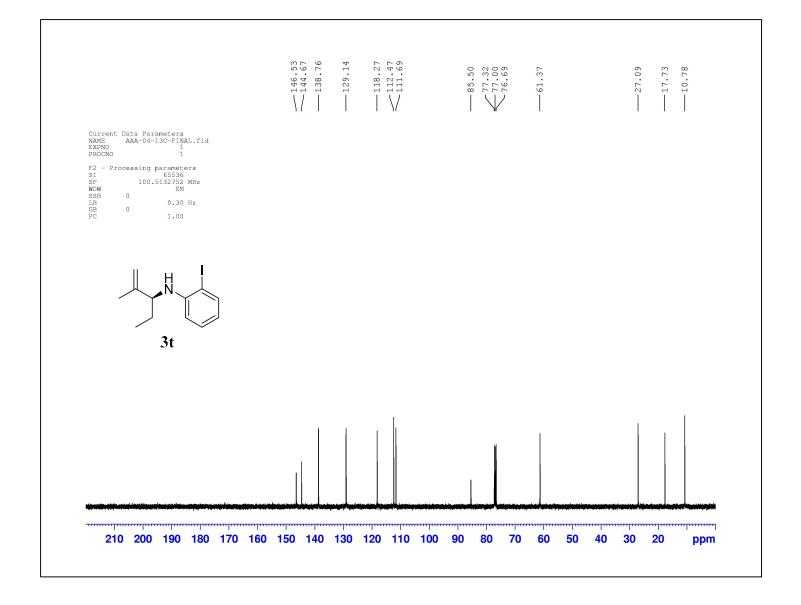

¹³C NMR Spectra of **3p** in CDCl₃.


¹H Spectra of **3q** in CDCl₃.


¹³C NMR Spectra of **3q** in CDCl₃.


¹H Spectra of **3r** in CDCl₃.


¹³C NMR Spectra of **3r** in CDCl₃.


¹H Spectra of **3s** in CDCl₃.

¹³C NMR Spectra of **3s** in CDCl₃.

¹H Spectra of **3t** in CDCl₃.

¹³C NMR Spectra of **3t** in CDCl₃.