Supporting Information

Iron-catalyzed *para*-selective C–H silylation of benzamide derivatives with chlorosilanes

Pei Liu, Na Hao, Dong Yang, Lingyun Wan, Tianyi Wang, Tao Zhang, Rui Zhou, Xuefeng Cong, Jie Kong

Table of Contents

1. Materials and Methods	1
2. Procedure for the Preparation of Substituted benzamides	1
3. Optimizing Reaction Parameters	11
4. General Procedure for Fe-Catalyzed para-Selective Formatio	n of Silylation by
Benzamide Derivatives	13
5. Experiments of Kinetic Isotope Effect	
6. EPR studies of stoichiometric reactions	
7. Supplementary References	
8. X-Ray Crystal Structure of 3	
9. ¹ H, ¹³ C and ¹⁹ F NMR Spectra	

1. Materials and Methods

General. All reactions dealing with air- or moisture-sensitive compounds were carried out in a flame-dried, sealed Schlenk reaction tube under an atmosphere of nitrogen. Analytical thin-layer chromatography was performed on glass plates coated with 0.25 mm 230–400 mesh silica gel containing a fluorescent indicator (Merck). Flash silica gel column chromatography was performed on silica gel 60N (spherical and neutral, 140–325 mesh) as described by Still.¹ NMR spectra were measured on a Bruker AV-400 spectrometer and reported in parts per million. ¹H NMR spectra were recorded at 400 MHz in CDCl₃ were referenced internally to tetramethylsilane as a standard, and ¹³C NMR spectra were recorded at 100 MHz and referenced to the solvent resonance. Analytical gas chromatography (GC) was carried out on a Thermo Trace 1300 gas chromatograph, equipped with a flame ionization detector. Mass spectra (GC-MS) were taken at Thermo Trace 1300 gas chromatograph mass spectrometer. High resolution mass spectra (HRMS) were recorded on the Exactive Mass Spectrometer (Thermo Scientific, USA) equipped with ESI ionization source. Melting points were determined with a Hanon MP-300.

Materials. Unless otherwise noted, materials were purchased from Tokyo Chemical Industry Co., Aldrich Inc., Alfa Aesar, Adamas, and other commercial suppliers and used as received. Solvents were dried over sodium (for THF and ether) by refluxing for overnight and freshly distilled prior to use. Grignard reagents were purchased from commercial suppliers or prepared by the reaction between related organic halides and magnesium turnings in anhydrous THF, and titrated prior to use.

2. Procedure for the Preparation of Substituted benzamides

General procedure A: Benzoyl chlorides was slowly dropwised into the solution of *tert*-butylamine (1.5 equiv, aqueous), Et_3N (2 equiv) and DCM (2 M) at ice-water bath. Then the mixture was warmed to room temperature and stirred for 3 h. The crude product was then purified by flash chromatography on silica gel to give the corressponing benzamides (85–96% yields).

General procedure B: In a dried flask, substituted benzoic acid was dissolved in

DCM and a few drops of DMF were then added. The resulting solution was added slowly via syringe immersed deeply solution of oxalyl dichloride (3 equiv) in DCM. After stirring at room temperature for 6 h, the volatiles were removed under vacuum. The crude product was used directly for next-step synthesis.

The prepared benzoyl chlorides was added to the solution of *tert*-butylamine (1.5 equiv, aqueous), Et₃N (2 equiv) and DCM (2 M) at ice-water bath. Then the mixture was warmed to room temperature and stirred for 3 h. The crude product was then purified by flash chromatography on silica gel to give the corressponing benzamides (60–96% yields).

N-(*tert*-butyl)benzamide (1a)

The title compound was prepared according the General procedure A

¹H NMR (400 MHz, CDCl₃) δ = 7.71 (d, *J* = 7.0 Hz, 2H), 7.48–7.44(m, 1H), 7.41– 7.37 (m, 2H), 5.97 (brs, 1H), 1.47 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 166.9, 135.9, 131.0, 128.4, 126.6, 51.5, 28.8. Spectroscopic data are in accordance with those described in the literature.¹

N-(tert-butyl)-2-methoxybenzamide (1b)

The title compound was prepared according the General procedure B

¹H NMR (400 MHz, CDCl₃) δ = 8.16 (dd, *J* = 7.8, 1.8 Hz, 1H), 7.84 (brs, 1H), 7.42– 7.33 (m, 1H), 7.08–7.00 (m, 1H), 6.93 (d, *J* = 8.2 Hz, 1H), 3.92 (s, 3H), 1.44 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 164.1, 157.1, 132.3, 131.8, 122.6, 121.2, 111.2, 55.8, 50.9, 28.8. Spectroscopic data are in accordance with those described in the literature.²

N-(*tert*-butyl)-2-ethoxybenzamide (1c)

The title compound was prepared according the General procedure A

¹H NMR (400 MHz, CDCl₃) δ = 8.19 (dd, *J* = 7.8, 1.8 Hz, 1H), 8.12 (brs, 1H), 7.42– 7.35 (m, 1H), 7.04 (t, *J* = 7.5 Hz, 1H), 6.91 (d, *J* = 8.3 Hz, 1H), 4.16 (q, *J* = 7.0 Hz, 2H), 1.52 (t, *J* = 7.0 Hz, 3H), 1.46 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 164.1, 156.7, 132.3, 131.9, 122.5, 121.2, 112.1, 64.6, 51.1, 28.9, 14.8. HRMS (ESI⁺): calcd for C₁₃H₁₉NO₂Na [M+Na]⁺ 244.13135, found 244.13018.

N-(tert-butyl)-2-hydroxybenzamide (1d)

The title compound was prepared according the **General procedure B** ¹H NMR (400 MHz, CDCl₃) δ = 12.50 (brs, 1H), 7.38–7.33 (m, 1H), 7.28 (dd, *J* = 8.0, 1.4 Hz, 1H), 6.96 (d, *J* = 8.3 Hz, 1H), 6.84–6.78 (m, 1H), 6.11 (brs, 1H), 1.48 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 169.7, 161.6, 133.8, 125.2, 118.6, 118.4, 115.1, 52.1,

28.8. Spectroscopic data are in accordance with those described in the literature.³

N-(tert-butyl)-3-fluorobenzamide (1e)

The title compound was prepared according the General procedure A

¹H NMR (400 MHz, CDCl₃) δ = 7.47–7.40 (m, 2H), 7.39–7.33 (m, 1H), 7.17–7.12 (m, 1H), 5.96 (brs, 1H), 1.46 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 165.5 (d, *J* = 2.0 Hz), 162.7 (d, *J* = 246.0 Hz), 138.2 (d, *J* = 7.0 Hz), 130.0 (d, *J* = 8.0 Hz), 122.1 (d, *J* = 3.0 Hz), 118.0 (d, *J* = 21.0 Hz), 114.1 (d, *J* = 23.0 Hz), 51.8, 28.7; ¹⁹F NMR (470 MHz, CDCl₃) δ = -112.09. Spectroscopic data are in accordance with those described in the literature.¹

N-(tert-butyl)-3-methoxybenzamide (1f)

The title compound was prepared according the General procedure A

¹H NMR (400 MHz, CDCl₃) δ = 7.34–7.27 (m, 2H), 7.21 (d, *J* = 7.7 Hz, 1H), 7.00 (dd, *J* = 8.1, 2.0 Hz, 1H), 5.95 (brs, 1H), 3.84 (s, 3H), 1.47 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 166.7, 159.8, 137.4, 129.4, 118.3, 117.3, 112.1, 55.4, 51.6, 28.8. Spectroscopic data are in accordance with those described in the literature.²

3-(benzyloxy)-N-(tert-butyl)benzamide (1g)

The title compound was prepared according the General procedure B

¹H NMR (400 MHz, CDCl₃) δ = 7.43–7.21 (m, 8H), 7.05 (dd, *J* = 7.9, 1.4 Hz, 1H), 5.95 (brs, 1H), 5.07 (s, 2H), 1.44 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 166.6, 158.8, 137.4, 136.5, 129.4, 128.6, 128.0, 127.5, 118.8, 117.9, 113.1, 70.1, 51.5, 28.8. HRMS (ESI⁺): calcd for C₁₈H₂₁NO₂Na [M+Na]⁺ 306.14700, found 306.14577.

N-(tert-butyl)-3-phenoxybenzamide (1h)

The title compound was prepared according the General procedure B

¹H NMR (400 MHz, CDCl₃) δ = 7.43–7.32 (m, 5H), 7.15–7.08 (m, 2H), 7.03–6.98 (m, 2H), 5.91 (brs, 1H), 1.45 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 166.2, 157.6, 156.7, 137.8, 129.9, 129.8, 123.7, 121.3, 121.2, 119.1, 117.2, 51.7, 28.8. HRMS (ESI⁺): calcd for C₁₇H₁₉NO₂Na [M+Na]⁺ 292.13135, found 292.13005.

N-(tert-butyl)-3-methylbenzamide (1i)

The title compound was prepared according the General procedure A

¹H NMR (400 MHz, CDCl₃) δ = 7.50 (s, 1H), 7.46–7.43 (m, 1H), 7.25–7.20 (m, 2H), 5.92 (brs, 1H), 2.34 (s, 3H), 1.42 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 167.1, 138.2, 135.8, 131.7, 128.3, 127.4, 123.6, 51.5, 28.8, 21.3. Spectroscopic data are in accordance with those described in the literature.²

*N-(tert-*butyl)-3-(methylthio)benzamide (1j)

The title compound was prepared according the General procedure B

¹H NMR (400 MHz, CDCl₃) δ = 7.61 (d, *J* = 1.5 Hz, 1H), 7.41–7.36 (m, 1H), 7.35–7.26 (m, 2H), 5.96 (brs, 1H), 2.49 (s, 3H), 1.45 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 166.4, 139.4, 136.5, 128.8, 128.7, 124.7, 122.8, 51.6, 28.8, 15.6. HRMS (ESI⁺): calcd for C₁₂H₁₇NOSNa [M+Na]⁺ 246.09285, found 246.09173.

*N-(tert-*butyl)-[1,1'-biphenyl]-3-carboxamide (1k)

The title compound was prepared according the **General procedure B** ¹H NMR (400 MHz, CDCl₃) δ = 7.95 (t, *J* = 1.7 Hz, 1H), 7.71–7.65 (m, 2H), 7.63– 7.59 (m, 2H), 7.50–7.43 (m, 3H), 7.40–7.35 (m, 1H), 6.02 (brs, 1H), 1.49 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 166.9, 141.5, 140.3, 136.5, 129.7, 128.82, 128.79, 127.6, 127.1, 125.6, 125.3, 51.6, 28.8. Spectroscopic data are in accordance with those described in the literature.⁴

N-(tert-butyl)-3-(trifluoromethoxy)benzamide (11)

The title compound was prepared according the General procedure B

¹H NMR (400 MHz, CDCl₃) δ = 7.62–7.56 (m, 2H), 7.42 (dd, *J* = 9.8, 5.7 Hz, 1H), 7.31 (s, 1H), 5.98 (brs, 1H), 1.46 (d, *J* = 2.2 Hz, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 165.3, 149.3, 138.0, 129.9, 124.8, 123.4, 119.7, 51.7, 28.5; ¹⁹F NMR (470 MHz, CDCl₃) δ = -57.8. HRMS (ESI⁺): calcd for C₁₂H₁₄NO₂F₃Na [M+Na]⁺ 284.08743, found 284.08602.

N-(tert-butyl)-3,5-dimethoxybenzamide (1m)

The title compound was prepared according the General procedure B

¹H NMR (400 MHz, CDCl₃) δ = 6.83 (d, *J* = 2.3 Hz, 2H), 6.53 (t, *J* = 2.3 Hz, 1H), 5.93 (brs, 1H), 3.80 (s, 6H), 1.45 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 166.6, 160.7, 138.1, 104.6, 103.0, 55.5, 51.6, 28.8. Spectroscopic data are in accordance with those described in the literature.⁵

The title compound was prepared according the General procedure B

N-(tert-butyl)-3-fluoro-5-methoxybenzamide (1n)

¹H NMR (400 MHz, CDCl₃) δ = 7.06 (s, 1H), 6.93 (d, *J* = 8.8 Hz, 1H), 6.72–6.65 (m, 1H), 5.91 (brs, 1H), 3.83–3.79 (m, 3H), 1.45 (d, *J* = 0.7 Hz, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 165.5 (d, *J*=3.0 Hz), 163.3 (d, J=245.0 Hz), 161.0 (d, *J*=11.0 Hz), 138.6 (d, *J*=8.0 Hz), 108.3 (d, *J*=2.0 Hz), 150.9 (d, *J*=23.0 Hz), 104.4 (d, *J*=25.0 Hz), 55.7, 51.8, 28.7; ¹⁹F NMR (470 MHz, CDCl₃) δ = -110.8. HRMS (ESI⁺): calcd for C₁₂H₁₆NO₂FNa [M+Na]⁺ 248.10628, found 248.10499.

N-(tert-butyl)-3,5-difluorobenzamide (10)

The title compound was prepared according the General procedure A

¹H NMR (400 MHz, CDCl₃) δ = 7.24–7.15 (m, 2H), 6.94–6.83 (m, 1H), 5.96 (d, *J* = 56.0 Hz, 1H), 1.45 (d, *J* = 7.9 Hz, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 164.4, 162.9 (d, J=249.0 Hz), 139.3 (t, *J*=8.0 Hz), 110.0 (q, *J*=12.0 Hz), 106.3 (t, J=25.0 Hz), 52.0, 28.7; ¹⁹F NMR (470 MHz, CDCl₃) δ = -108.3. Spectroscopic data are in accordance with those described in the literature.⁶

*N-(tert-*butyl)-5-fluoro-2-methoxybenzamide (1p)

The title compound was prepared according the General procedure B

¹H NMR (400 MHz, CDCl₃) δ = 7.89 (dd, *J* = 9.7, 3.3 Hz, 2H), 7.13–7.07 (m, 1H), 6.90 (dd, *J* = 9.0, 4.1 Hz, 1H), 3.93 (s, 3H), 1.45 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 162.8, 158.4, 156.1, 153.3 (d, J=2.0 Hz), 124.4 (d, J=7.0 Hz), 118.4 (t, J=25.0 Hz), 118.1, 112.8, 56.5, 51.1, 28.8; ¹⁹F NMR (470 MHz, CDCl₃) δ = -122.2. HRMS (ESI⁺): calcd for C₁₂H₁₆NO₂FNa [M+Na]⁺ 248.10628, found 248.10500.

N-(tert-butyl)-2,5-dimethoxybenzamide (1q)

The title compound was prepared according the General procedure B

¹H NMR (400 MHz, CDCl₃) δ = 8.00 (brs, 1H), 7.75 (d, *J* = 3.2 Hz, 1H), 6.96 (dd, *J* = 8.9, 3.3 Hz, 1H), 6.88 (d, *J* = 9.0 Hz, 1H), 3.90 (s, 3H), 3.81 (s, 3H), 1.45 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 163.9, 153.9, 151.5, 123.2, 119.2, 114.8, 113.2, 56.6, 55.7, 51.0, 28.9. HRMS (ESI⁺): calcd for C₁₃H₁₉NO₃Na [M+Na]⁺ 260.12626, found 260.12507.

N-(*tert*-butyl)-1-naphthamide (1r)

The title compound was prepared according the General procedure B

¹H NMR (400 MHz, CDCl₃) δ = 8.27 (d, *J* = 8.2 Hz, 1H), 7.87 (t, *J* = 8.2 Hz, 2H), 7.58–7.49 (m, 3H), 7.43 (t, *J* = 7.6 Hz, 1H), 5.82 (brs, 1H), 1.54 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 169.2, 136.0, 133.7, 130.07, 130.05, 128.3, 127.0, 126.3, 125.4, 124.8, 124.5, 52.1, 28.9. Spectroscopic data are in accordance with those described in the literature.⁷

*N-(tert-*butyl)benzo[d][1,3]dioxole-4-carboxamide (1s)

The title compound was prepared according the **General procedure B** ¹H NMR (400 MHz, CDCl₃) δ = 7.57–7.50 (m, 1H), 6.92 (s, 1H), 6.91 (d, *J* = 1.8 Hz, 1H), 6.88 (brs, 1H), 6.06 (s, 2H), 1.45 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 162.3, 147.3, 144.6, 122.2, 121.8, 117.1, 111.1, 101.2, 51.4, 28.8. HRMS (ESI⁺): calcd for C₁₂H₁₅NO₃Na [M+Na]⁺ 244.09496, found 244.09373.

*N-(tert-*butyl)-2,3-dihydrobenzo[b][1,4]dioxine-5-carboxamide (1t)

The title compound was prepared according the **General procedure B** ¹H NMR (400 MHz, CDCl₃) δ = 7.68 (dd, *J* = 7.7, 1.5 Hz, 1H), 7.50 (brs, 1H), 6.98– 6.86 (m, 2H), 4.41–4.36 (m, 2H), 4.31–4.26 (m, 2H), 1.44 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 163.6, 143.4, 141.7, 123.7, 123.3, 121.2, 120.3, 64.8, 63.5, 51.1, 28.9. HRMS (ESI⁺): calcd for C₁₃H₁₇NO₃Na [M+Na]⁺ 258.11061, found 258.10944.

N-(tert-butyl)furan-2-carboxamide (1u)

The title compound was prepared according the **General procedure A** ¹H NMR (400 MHz, CDCl₃) δ = 7.38 (d, *J* = 0.9 Hz, 1H), 7.04 (d, *J* = 3.1 Hz, 1H), 6.46 (dd, *J* = 3.4, 1.7 Hz, 1H), 6.19 (brs, 1H), 1.45 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 157.8, 148.8, 143.2, 113.4, 112.1, 51.4, 28.9. HRMS (ESI⁺): calcd for C₉H₁₃NO₂Na [M+Na]⁺ 190.08440, found 190.08334.

N-(tert-butyl)thiophene-3-carboxamide (1v)

The title compound was prepared according the General procedure A

¹H NMR (400 MHz, CDCl₃) δ = 7.76 (s, 1H), 7.29 (dd, *J* = 19.0, 4.8 Hz, 2H), 5.89 (brs, 1H), 1.43 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 162.5, 138.8, 127.4, 126.2, 126.0, 51.5, 28.8. Spectroscopic data are in accordance with those described in the literature.¹

N^1 , N^3 -di-*tert*-butylisophthalamide (1w)

The title compound was prepared according the General procedure A

¹H NMR (400 MHz, CDCl₃) δ = 8.09 (t, J = 1.6 Hz, 1H), 7.83 (dd, J = 7.7, 1.8 Hz, 2H), 7.46 (t, J = 7.7 Hz, 1H), 6.08 (brs, 2H), 1.47 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ = 166.0, 135.9, 129.3, 128.7, 124.9, 51.9, 28.8. Spectroscopic data are in accordance with those described in the literature.⁸

N^{1} , N^{3} -di-*tert*-butyl-5-methylisophthalamide (1x)

The title compound was prepared according the General procedure B

¹H NMR (400 MHz, CDCl₃) δ = 7.85 (s, 1H), 7.62 (s, 2H), 6.08 (brs, 2H), 2.40 (s, 3H), 1.46 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 166.2, 138.7, 135.9, 130.0, 122.1, 51.8, 28.8, 21.3. HRMS (ESI⁺): calcd for C₁₇H₂₆N₂O₂Na [M+Na]⁺ 313.18920, found 313.18747.

N-methylbenzamide (1y)

The title compound was prepared according the General procedure A

¹H NMR (400 MHz, CDCl₃) δ = 7.81–7.72 (m, 2H), 7.50–7.42 (m, 1H), 7.42–7.34 (m, 2H), 6.48 (brs, 1H), 3.01–2.94 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 168.4, 134.6, 131.4, 128.5, 126.9, 26.9. Spectroscopic data are in accordance with those described in the literature.⁹

N-ethylbenzamide (1z)

The title compound was prepared according the **General procedure A** ¹H NMR (400 MHz, CDCl₃) δ = 7.79–7.73 (m, 2H), 7.51–7.45 (m, 1H), 7.45–7.38 (m, 2H), 6.18 (brs, 1H), 3.54–3.46 (m, 2H), 1.25 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 167.4, 134.8, 131.3, 128.5, 126. 8, 34.9, 14.9. Spectroscopic data are in accordance with those described in the literature.⁹

N-isopropylbenzamide (1aa)

The title compound was prepared according the General procedure A

¹H NMR (400 MHz, CDCl₃) δ = 7.77–7.72 (m, 2H), 7.48–7.43 (m, 1H), 7.42–7.36 (m, 2H), 6.10 (brs, 1H), 4.34–4.22 (m, 1H), 1.24 (d, *J* = 6.6 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ = 166.6, 134.9, 131.2, 128.4, 126.8, 41.8, 22.8. Spectroscopic data are in accordance with those described in the literature.⁸

N-(*tert*-butyl)benzamide-2,3,4,5,6-*d*₅ (1a-*d*₅)

The title compound was prepared according the General procedure B

¹H NMR (400 MHz, CDCl₃) δ = 5.96 (brs, 1H), 1.47 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 166.9, 135.8, 130.8, 130.5, 130.3, 128.2, 127.9, 127.7, 126.5, 126.3, 126.0, 51.6, 28.9. HRMS (ESI⁺): calcd for C₁₁H₁₀NOD₅Na [M+Na]⁺ 205.13652, found 205.13536.

3. Optimizing Reaction Parameters

Table S1. Investigation of the Effect of the Amount of Grignard Reagent on Fe-Catalyzed *para*-Selective Formation of Silylation by Benzamide Derivatives^a

	Bu + Me ₃ Si-Cl <u>FeCl₂ (10 mol %)</u> Grignard Reagent (4 equiv) THF, rt, 48 h 2	Me ₃ Si 3
Entry	Grignard Reagent	Yield (3) ^b
1		0
2	<i>i</i> -PrMgCl	74
3	<i>i</i> -BuMgCl	10
4	PhMgBr	ND
5	CyMgCl	ND
6	t-BuMgCl	10

^{*a*}Conditions: **1** (0.2 mmol), **2** (0.6 mmol), FeCl₂ (0.02 mmol), grignard reagent (0.8 mmol), and THF (0.5 mL), under Ar atmosphere at rt for 48 h. ^{*b*}Isolated yield are shown. ND, not detected.

Table S2. Investigation of the Effect of the Amount of FeCl₂ on Fe-Catalyzed *para*-Selective Formation of Silylation by Benzamide Derivatives^{*a*}

3	0.15 equiv	70
4	0.2 equiv	65

^{*a*}Conditions: **1** (0.2 mmol), **2** (0.6 mmol), FeCl₂ (0.05–0.2 equiv), *i*-PrMgCl (0.8 mmol), and THF (0.5 mL), under Ar atmosphere at rt for 48 h. ^{*b*}Isolated yield are shown. ND, not detected.

Table S3. Investigation of the Effect of the Amount of TMS-Cl on Fe-Catalyzed *para*-Selective Formation of Silylation by Benzamide Derivatives^{*a*}

O N H H H	+ Me ₃ Si-Cl <u>/</u> <i>i</i> -PrMgCl (4 equiv THF, rt, 48 h	$\xrightarrow{O}_{H^{2}}$ $Me_{3}Si$ 3 O $H^{t}Bu$ H
Entry	Me ₃ Si-Cl (X equiv)	Yield (3a) ^b
1	1.0 equiv	10
2	2.0 equiv	40
3	3.0 equiv	74
4	4.0 equiv	72

^{*a*}Conditions: **1** (0.2 mmol), **2** (1.0–4.0 equiv), FeCl₂ (0.02 mmol), *i*-PrMgCl (0.8 mmol), and THF (0.5 mL), under Ar atmosphere at rt for 48 h. ^{*b*}Isolated yield are shown. ND, not detected.

Table S4. Inefficient benzamides and silylation reagents in Fe-catalyzed paraselective silylation reaction

Inefficient benzamides in Fe-catalyzed para-selective silylation reaction

$$R^{1} + R^{2} + R^{3}Si-CI \xrightarrow{FeCl_{2} (10 \text{ mol } \%)}{THF, rt, 48 \text{ h}} \xrightarrow{R^{1} + R^{3}Si} R^{1} + R^{2}$$

A dried Schlenk tube were placed *N*-(*tert*-butyl)benzamide **1** (0.2 mmol), FeCl₂ (0.02 mmol) and freshly distilled THF (0.5 mL). *i*-PrMgCl (0.8–1 mmol) was dropwise added by syringe at room temperature. After stirring the mixture for 30 min, chlorosilane (0.6 mmol) was added by syringe and the mixture was stirred at room temperature for 48 h. The resulting mixture was then quenched by an aqueous solution of NH₄Cl and extraction with ethyl acetate (3 x 10 mL). The combined organic phase was dried over anhydrous Na₂SO₄ and concentrated under vacuum. The crude product was purified by silica gel chromatography to give the *para*-selective silylation product **3**.

*N-(tert-*butyl)-4-(trimethylsilyl)benzamide (3)

¹H NMR (400 MHz, CDCl₃) δ = 7.68 (d, *J* = 8.1 Hz, 2H), 7.55 (d, *J* = 8.1 Hz, 2H), 5.96 (brs, 1H), 1.46 (s, 9H), 0.27 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 167.0, 144.4, 136.1, 133.5, 125.8, 51.6, 28.9, -1.3. HRMS (ESI⁺): calcd for C₁₄H₂₄NOSi [M+H]⁺ 250.16272, found 250.16160. Spectroscopic data are in accordance with those described in the literature.¹⁰

*N-(tert-*butyl)-2-methoxy-4-(trimethylsilyl)benzamide (4)

¹H NMR (400 MHz, CDCl₃) δ = 8.13 (d, *J* = 7.6 Hz, 1H), 7.86 (brs, 1H), 7.21 (dd, *J* = 7.6, 0.5 Hz, 1H), 7.05 (s, 1H), 3.96 (s, 3H), 1.45 (s, 9H), 0.27 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 164.2, 156.4, 146.2, 131.0, 126.3, 123.0, 115.6, 55.8, 50.9, 28.9, - 1.3. HRMS (ESI⁺): calcd for C₁₅H₂₆NO₂Si [M+H]⁺ 280.17328, found 280.17197.

*N-(tert-*butyl)-2-ethoxy-4-(trimethylsilyl)benzamide (5)

¹H NMR (400 MHz, CDCl₃) δ = 8.14 (d, *J* = 7.6 Hz, 2H), 7.19 (d, *J* = 7.6 Hz, 1H), 7.02 (brs, 1H), 4.20 (q, *J* = 6.9 Hz, 2H), 1.52 (t, *J* = 6.9 Hz, 3H), 1.45 (s, 9H), 0.26 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 164.2, 156.0, 146.1, 130.9, 126.1, 122.9, 116.5, 64.6, 51.0, 28.9, 14.9, -1.3. HRMS (ESI⁺): calcd for C₁₆H₂₈NO₂Si [M+H]⁺ 294.18893, found 294.18771.

N-(tert-butyl)-2-hydroxy-4-(trimethylsilyl)benzamide (6)

¹H NMR (400 MHz, CDCl₃) δ = 7.62 (dd, *J* = 7.1, 1.8 Hz, 1H), 7.41–7.31 (m, 3H), 5.72 (brs, 1H), 1.47 (s, 9H), 0.34 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 170.7, 143.7, 139.5, 135.3, 129.1, 128.6, 126.2, 51.6, 28.9, 0.2. HRMS (ESI⁻): calcd for C₁₄H₂₂NO₂Si [M-H]⁻ 264.14198, found 264.14001.

*N-(tert-*butyl)-2-(mercaptomethyl)-4-(trimethylsilyl)benzamide (7)

¹H NMR (400 MHz, CDCl₃) δ = 7.25–7.2 (m, 1H), 7.04 (dd, *J* = 14.5, 7.5 Hz, 2H), 5.56 (brs, 1H), 2.41 (s, 2H), 1.45 (s, 9H), -0.01 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 169.9, 139.1, 136.2, 129.9, 129.1, 127.0, 123.8, 51.6, 28.8, 23.4, -1.4. HRMS (ESI⁺): calcd for C₁₅H₂₆NOSSi [M+H]⁺ 296.15044, found 296.14993.

N-(tert-butyl)-3-fluoro-4-(trimethylsilyl)benzamide (8)

¹H NMR (400 MHz, CDCl₃) δ = 7.44–7.38 (m, 2H), 7.32 (d, *J* = 8.9 Hz, 1H), 5.94 (brs, 1H), 1.46 (s, 9H), 0.31 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 167.2 (d, *J*=241.0 Hz), 165.7 (d, *J*=3.0 Hz), 139.1 (d, *J* = 7.0 Hz), 135.2 (d, *J* = 11.0 Hz), 130.0 (d, *J*=34.5 Hz), 121.7 (d, *J* = 3.0 Hz), 113.1 (d, 14.0 Hz), 51.7 , 28.7, -1.3 (d, 4.0 Hz); ¹⁹F NMR (470 MHz, CDCl₃) δ -100.0. HRMS (ESI⁺): calcd for C₁₄H₂₃NOFSi [M+H]⁺ 268.15329, found 268.15206.

N-(tert-butyl)-3-methoxy-4-(trimethylsilyl)benzamide (9)

¹H NMR (400 MHz, CDCl₃) δ = 7.35 (d, *J* = 7.4 Hz, 1H), 7.30 (d, *J* = 1.2 Hz, 1H), 7.13 (dd, *J* = 7.4, 1.3 Hz, 1H), 6.01 (brs, 1H), 3.84 (s, 3H), 1.46 (s, 9H), 0.26 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 166.9, 164.6, 138.3, 134.7, 131.8, 117.4, 108.3, 55.13, 51.5, 28.8, -1.2. HRMS (ESI⁺): calcd for C₁₅H₂₆NO₂Si [M+H]⁺ 280.17328, found 280.17192.

3-(benzyloxy)-N-(tert-butyl)-4-(trimethylsilyl)benzamide (10)

¹H NMR (400 MHz, CDCl₃) δ = 7.46–7.37(m, 6H), 7.33 (dd, *J* = 8.3, 5.9 Hz, 1H), 7.18 (dd, *J* = 7.4, 1.0 Hz, 1H), 5.98 (brs, 1H), 5.12 (s, 2H), 1.47 (s, 9H), 0.26 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 166.8, 163.7, 138.4, 136.7, 135.0, 132.0, 128.5, 127.9, 127.6, 117.7, 109.2, 70.0, 51.6, 28.8, -1.1. HRMS (ESI⁺): calcd for C₂₁H₃₀NO₂Si [M+H]⁺ 356.20458, found 356.30312.

N-(tert-butyl)-3-phenoxy-4-(trimethylsilyl)benzamide (11)

¹H NMR (400 MHz, CDCl₃) δ = 7.51 (d, *J* = 7.6 Hz, 1H), 7.37–7.31 (m, 3H), 7.19 (d, *J* = 1.4 Hz, 1H), 7.10 (t, *J* = 7.4 Hz, 1H), 6.99–6.94 (m, 2H), 5.89 (s, 1H), 1.41 (s, 9H), 0.29 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 166.3, 162.2, 156.9, 138.5, 135.4, 134.4, 129.9, 123.3, 120.5, 118.8, 115.6, 51.6, 28.7, -1.1. HRMS (ESI⁺): calcd for C₂₀H₂₈NO₂Si [M+H]⁺ 342.18893, found 342.18731.

*N-(tert-*butyl)-3-methyl-4-(trimethylsilyl)benzamide (12)

¹H NMR (400 MHz, CDCl₃) δ = 7.47 (dd, *J* = 11.9, 8.6 Hz, 3H), 5.98 (brs, 1H), 2.48 (s, 3H), 1.46 (s, 9H), 0.32 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 167.0, 143.8, 142.2, 136.3, 134.4, 127.7, 122.7, 51.5, 28.8, 22.9, -0.4. HRMS (ESI⁺): calcd for C₁₅H₂₆NOSi [M+H]⁺264.17837, found 264.17700.

*N-(tert-*butyl)-3-(methylthio)-4-(trimethylsilyl)benzamide (13)

¹H NMR (400 MHz, CDCl₃) δ = 7.68 (d, *J* = 1.3 Hz, 1H), 7.42 (d, *J* = 7.6 Hz, 1H), 7.33 (dd, *J* = 7.6, 1.5 Hz, 1H), 5.99 (brs, 1H), 2.50 (s, 3H), 1.45 (s, 9H), 0.36 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 166.6, 145.9, 143.1, 136.9, 134.5, 125.1, 121.9, 51.61, 28.8, 17.4, -0.4. HRMS (ESI⁺): calcd for C₁₅H₂₆NOSSi [M+H]⁺ 296.15044, found 296.14896.

*N-(tert-*butyl)-6-(trimethylsilyl)-[1,1'-biphenyl]-3-carboxamide (14)

¹H NMR (400 MHz, CDCl₃) δ = 7.72 (dd, *J* = 7.8, 1.8 Hz, 1H), 7.67 (d, *J* = 7.8 Hz, 1H), 7.51 (d, *J* = 1.5 Hz, 1H), 7.42–7.35 (m, 3H), 7.28 (dd, *J* = 6.5, 3.1 Hz, 2H), 5.99 (brs, 1H), 1.46 (s, 9H), 0.01 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 166.7, 149.3, 143.6, 142.3, 135.7, 134.9, 129.3, 127.7, 127.4, 127.1, 124.5, 51.6, 28.8, 0.3. HRMS (ESI⁺): calcd for C₂₀H₂₈NOSi [M+H]⁺ 326.19402, found 326.19248.

*N-(tert-*butyl)-3-(trifluoromethoxy)-4-(trimethylsilyl)benzamide (15)

¹H NMR (400 MHz, CDCl₃) δ = 7.62 (s, 1H), 7.49 (s, 2H), 5.97 (brs, 1H), 1.46 (s, 9H), 0.31 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 165.5, 154.6, 138.7, 135.6, 135.4, 123.3, 116.5, 51.8, 29.7, 28.7, -1.1; ¹⁹F NMR (470 MHz, CDCl₃) δ -55.8. HRMS (ESI⁺): calcd for C₁₅H₂₃NO₂F₃Si [M+H]⁺ 334.14502, found 334.14343.

N-(tert-butyl)-3,5-dimethoxy-4-(trimethylsilyl)benzamide (16)

¹H NMR (400 MHz, CDCl₃) δ = 6.79 (s, 2H), 5.99 (brs, 1H), 3.77 (s, 6H), 1.46 (s, 9H), 0.26 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 167.0, 165.3, 139.1, 117.8, 101.8, 55.3, 51.6, 28.8, 1.1. HRMS (ESI⁺): calcd for C₁₆H₂₈NO₃Si [M+H]⁺ 310.18385, found 310.18236.

*N-(tert-*butyl)-3-fluoro-5-methoxy-4-(trimethylsilyl)benzamide (17)

¹H NMR (400 MHz, CDCl₃) δ = 7.05 (d, *J* = 0.9 Hz, 1H), 6.79 (dd, *J* = 9.0, 1.1 Hz, 1H), 5.99 (brs, 1H), 3.80 (s, 3H), 1.44 (s, 9H), 0.29 (d, *J* = 1.9 Hz, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 167.0 (d, *J* = 243.0 Hz), 165.8 (d, *J* = 5.0 Hz), 165.5 (d, *J* = 16.0 Hz), 139.5 (d, *J* = 9.0 Hz), 117.0 (d, *J* = 32 Hz), 105.7 (d, *J* = 30.0 Hz), 104.6 (d, *J* = 2.0 Hz), 55.5, 51.7, 28.7, 0.3 (d, *J* = 16.0 Hz); ¹⁹F NMR (470 MHz, CDCl₃) δ = -98.0. HRMS (ESI⁺): calcd for C₁₅H₂₅NO₂FSi [M+H]⁺298.16386, found 298.16243.

*N-(tert-*butyl)-3,5-difluoro-4-(trimethylsilyl)benzamide (18)

¹H NMR (400 MHz, CDCl₃) δ = 7.13–7.08 (m, 2H), 5.94 (brs, 1H), 1.44 (s, 9H), 0.35 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 168.1 (d, *J* = 15.0 Hz), 165.7 (d, *J* = 16.0 Hz), 164.5 (t, *J* = 3.0 Hz), 140.1 (t, *J* = 9.0 Hz), 116.9 (t, *J* = 34.0 Hz), 109.6 (d, *J* = 2.0 Hz), 109.3 (d, *J* = 2.0 Hz), 51.9, 28.7, 0.1; ¹⁹F NMR (470 MHz, CDCl₃) δ = -96.0. HRMS (ESI⁺): calcd for C₁₄H₂₂NOF₂Si [M+H]⁺ 286.14387, found 286.14270.

*N-(tert-*butyl)-5-fluoro-2-methoxy-4-(trimethylsilyl)benzamide (19)

¹H NMR (400 MHz, CDCl₃) δ = 7.88 (brs, 1H), 7.77 (d, *J* = 9.1 Hz, 1H), 6.89 (d, *J* = 3.9 Hz, 1H), 3.94 (s, 3H), 1.44 (s, 9H), 0.32 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ =

163.0, 161.9 (d, J = 232.0 Hz), 152.9 (d, J = 2.0 Hz), 131.0 (d, J = 33.0 Hz), 125.5 (d, J = 8.0 Hz), 117.5 (d, J = 11.0 Hz), 117.4 (d, J = 30.0 Hz), 56.6, 51.1, 28.9, -1.2. ¹⁹F NMR (470 MHz, CDCl₃) δ -110.0. HRMS (ESI⁺): calcd for C₁₅H₂₅NO₂FSi [M+H]⁺ 298.16386, found 298.16254.

N-(tert-butyl)-2,5-dimethoxy-4-(trimethylsilyl)benzamide (20)

¹H NMR (400 MHz, CDCl₃) δ = 8.05 (brs, 1H), 7.66 (s, 1H), 6.95 (s, 1H), 3.91 (s, 3H), 3.81 (s, 3H), 1.45 (s, 9H), 0.27 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 164.2, 158.8, 151.1, 133.3, 124.1, 118.7, 111.9, 56.7, 55.7, 51.0, 28.9, -1.1. HRMS (ESI⁺): calcd for C₁₆H₂₈NO₃Si [M+H]⁺ 310.18385, found 310.18221.

*N-(tert-*butyl)-4-(trimethylsilyl)-1-naphthamide (21)

¹H NMR (400 MHz, CDCl₃) δ = 8.31–8.25 (m, 1H), 8.15–8.09 (m, 1H), 7.65 (d, *J* = 6.9 Hz, 1H), 7.57–7.51 (m, 2H), 7.48 (d, *J* = 6.9 Hz, 1H), 5.83 (brs, 1H), 1.53 (s, 9H), 0.47 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 169.3, 140.8, 137.3, 137.0, 132.0, 129.7, 128.4, 126.3, 126.2, 125.9, 123.2, 52.0, 28.8, 0.1. HRMS (ESI⁺): calcd for C₁₈H₂₆NOSi [M+H]⁺ 300.17837, found 300.17688.

Me₃Si

*N-(tert-*butyl)-7-(trimethylsilyl)benzo[d][1,3]dioxole-4-carboxamide (22)

¹H NMR (400 MHz, CDCl₃) δ = 7.50 (d, *J* = 8.0 Hz, 1H), 6.95 (d, *J* = 8.0 Hz, 1H), 6.92 (brs, 1H), 6.04 (s, 2H), 1.45 (s, 9H), 0.28 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 162.6, 152.0, 143.1, 126.5, 123.0, 121.5, 117.4, 100.6, 51.4, 28.9, -1.5. HRMS (ESI⁺): calcd for C₁₅H₂₄NO₃Si [M+H]⁺ 294.15255, found 294.15114.

*N-(tert-*butyl)-8-(trimethylsilyl)-2,3-dihydrobenzo[b][1,4]dioxine-5-carboxamide (23)

¹H NMR (400 MHz, CDCl₃) δ = 7.64 (dd, *J* = 7.7, 1.0 Hz, 1H), 7.54 (brs, 1H), 6.97 (dd, *J* = 7.7, 1.0 Hz, 1H), 4.40–4.35 (m, 2H), 4.30–4.26 (m, 2H), 1.43 (s, 9H), 0.25 (s, 9H);

¹³C NMR (100 MHz, CDCl₃) δ = 163.8, 147.7, 140.8, 132.1, 126.2, 124.1, 123.1, 64.60, 63.2, 51.0, 28.8, -1.2. HRMS (ESI⁺): calcd for C₁₆H₂₆NO₃Si [M+H]⁺ 308.16820, found 308.16680.

N-(tert-butyl)-5-(trimethylsilyl)furan-2-carboxamide (24)

¹H NMR (400 MHz, CDCl₃) δ = 7.37 (d, *J* = 1.4 Hz, 1H), 6.43 (d, *J* = 1.3 Hz, 1H), 6.24 (brs, 1H), 1.44 (s, 9H), 0.30 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 158.2, 152.1, 141.9, 123.9, 117.0, 51.1, 28. 9, -1.0. HRMS (ESI⁺): calcd for C₁₂H₂₁NO₂NaSi [M+Na]⁺ 262.12393, found 262.12292.

N-(tert-butyl)-5-(trimethylsilyl)thiophene-3-carboxamide (25)

¹H NMR (400 MHz, CDCl₃) δ = 7.48 (d, *J* = 4.8 Hz, 1H), 7.24 (d, *J* = 4.8 Hz, 1H), 5.68 (brs, 1H), 1.45 (s, 9H), 0.39 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 164.7, 144.9, 144.2, 130.1, 127.3, 51.5, 28.8, 0.0. HRMS (ESI⁺): calcd for C₁₂H₂₁NOSNaSi [M+Na]⁺ 278.10108, found 278.10008.

N¹,N³-di-tert-butyl-4-(trimethylsilyl)isophthalamide (26)

¹H NMR (400 MHz, CDCl₃) δ = 7.81 (s, 1H), 7.61 (d, *J* = 7.7 Hz, 1H), 7.54 (d, *J* = 7.5 Hz, 1H), 6.00 (brs, 1H), 5.92 (brs, 1H), 1.46 (s, 18H), 0.33 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 169.9, 166.4, 144.1, 143.5, 135.7, 135.4, 126.0, 124.9, 51.8, 51.8, 28.8, 0.1. HRMS (ESI⁺): calcd for C₁₉H₃₂N₂O₂NaSi [M+Na]⁺ 371.21307, found 371.21151.

N¹,N³-di-tert-butyl-5-methyl-4-(trimethylsilyl)isophthalamide (27)

¹H NMR (400 MHz, CDCl₃) δ = 7.52 (d, *J* = 1.5 Hz, 1H), 7.36 (d, *J* = 1.4 Hz, 1H), 5.95 (brs, 1H), 5.76 (brs, 1H), 2.49 (s, 3H), 1.45 (d, *J* = 2.6 Hz, 18H), 0.38 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 171.0, 166.3, 146.4, 145.5, 140.8, 135.5, 128.5, 123.0, 51.94, 51.7, 28.8, 28.8, 24.5, 1.9. HRMS (ESI⁺): calcd for C₂₀H₃₄N₂O₂NaSi [M+Na]⁺ 385.22872, found 385.22707.

N-methyl-4-(trimethylsilyl)benzamide (28)

¹H NMR (400 MHz, CDCl₃) δ = 7.72 (d, *J* = 7.9 Hz, 2H), 7.56 (d, *J* = 7.9 Hz, 2H), 6.33 (brs, 1H), 3.00 (d, *J* = 4.8 Hz, 3H), 0.27 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 168.3, 144.7, 134.7, 133.5, 125.9, 26.8, -1.3. HRMS (ESI⁺): calcd for C₁₁H₁₈NOSi [M+H]⁺208.11577, found 208.11480.

N-ethyl-4-(trimethylsilyl)benzamide (29)

¹H NMR (400 MHz, CDCl₃) δ = 7.73 (d, *J* = 8.2 Hz, 2H), 7.56 (d, *J* = 8.2 Hz, 2H), 6.29 (brs, 1H), 3.52–3.45 (m, 2H), 1.23 (t, *J* = 7.3 Hz, 3H), 0.27 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 167.5, 144.7, 134.9, 133.4, 125.9, 34.8, 14.9, -1.3. HRMS (ESI⁺): calcd for C₁₂H₂₀NOSi [M+H]⁺ 222.13142, found 222.13038.

*N-iso*propyl-4-(trimethylsilyl)benzamide (30)

¹H NMR (400 MHz, CDCl₃) δ = 7.72 (d, *J* = 8.1 Hz, 2H), 7.55 (d, *J* = 8.1 Hz, 2H), 6.11 (brs, 1H), 4.36–4.17 (m, 1H), 1.25 (s, 3H), 1.23 (s, 3H), 0.27 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 166.7, 144.5, 135.0, 133.4, 125.9, 41.8, 22.8, -1.3. HRMS (ESI⁺): calcd for C₁₃H₂₂NOSi [M+H]⁺236.14707, found 236.14587.

*N-(tert-*butyl)-4-(dimethyl(phenyl)silyl)benzamide (31)

¹H NMR (400 MHz, CDCl₃) δ = 7.70 (d, *J* = 8.1 Hz, 2H), 7.57 (d, *J* = 8.1 Hz, 2H), 7.51 (dd, *J* = 7.4, 1.9 Hz, 2H), 7.40–7.33 (m, 3H), 6.03 (brs, 1H), 1.48 (s, 9H), 0.58 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ = 167.0, 142.2, 137.6, 136.4, 134.4, 134.2, 129.4, 128.0, 125.9, 51.6, 28.9, -2.5. HRMS (ESI⁺): calcd for C₁₉H₂₆NOSi [M+H]⁺ 312.17837, found 312.17693.

*N-(tert-*butyl)-4-(butyldimethylsilyl)benzamide (32)

¹H NMR (400 MHz, CDCl₃) δ = 7.67 (d, *J* = 8.0 Hz, 2H), 7.53 (d, *J* = 8.1 Hz, 2H), 6.01 (brs, 1H), 1.46 (s, 9H), 1.33–1.23 (m, 4H), 0.85 (t, *J* = 7.0 Hz, 3H), 0.73 (dd, *J* = 9.6, 6.7 Hz, 2H), 0.25 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ = 167.0, 143.6, 135.9, 133.6, 125.7, 51.5, 28.8, 26.4, 25.9, 15.2, 13.7, -3.2. HRMS (ESI⁺): calcd for C₁₇H₃₀NOSi [M+H]⁺292.20967, found 292.20824.

*N-(tert-*butyl)-4-(dimethyl(3,3,3-trifluoropropyl)silyl)benzamide (33)

¹H NMR (400 MHz, CDCl₃) δ = 7.70 (d, *J* = 8.1 Hz, 2H), 7.52 (d, *J* = 8.1 Hz, 2H), 5.98 (brs, 1H), 2.00–1.91 (m, 2H), 1.47 (s, 9H), 0.99–0.93 (m, 2H), 0.32 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ = 166.8, 141.1, 136.7, 133.6, 128.7, 126.1, 51.6, 29.7, 28.8, 28.5, 7.4, -3.9; ¹⁹F NMR (470 MHz, CDCl₃) δ = -68.6. HRMS (ESI⁺): calcd for C₁₆H₂₄NOF₃SiNa [M+H]⁺ 354.14770, found 354.14606.

*N-(tert-*butyl)-4-(dimethyl(octadecyl)silyl)benzamide (34)

¹H NMR (400 MHz, CDCl₃) δ = 7.67 (d, *J* = 8.1 Hz, 2H), 7.54 (d, *J* = 8.1 Hz, 2H), 5.95 (brs, 1H), 1.47 (s, 9H), 1.26 (d, *J* = 9.1 Hz, 32H), 0.88 (t, *J* = 6.8 Hz, 3H), 0.76–0.69 (m, 2H), 0.25 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ = 167.0, 143.7, 136.0, 133.7, 125.7, 51.5, 33.6, 31.9, 29.68, 29.65, 29.6, 29.4, 29.3, 28.8, 23.8, 22.7, 15.5, 14.1, -3.1. HRMS (ESI⁺): calcd for C₃₁H₅₈NOSi [M+H]⁺488.42877, found 488.42705.

*N-(tert-*butyl)-4-iodobenzamide (35)

¹H NMR (400 MHz, CDCl₃) δ = 7.70 (d, *J* = 8.4 Hz, 2H), 7.41 (d, *J* = 8.4 Hz, 2H), 6.01 (brs, 1H), 1.43 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 166.1, 137.5, 135.2, 128.3, 97.8, 51.7, 28.7. HRMS (ESI⁺): calcd for C₁₁H₁₅NOI [M+H]⁺ 304.01983, found 304.01839.

4-bromo-N-(tert-butyl)benzamide (36)

¹H NMR (400 MHz, CDCl₃) δ = 7.55 (d, *J* = 8.4 Hz, 2H), 7.48 (d, *J* = 8.4 Hz, 2H), 6.04 (brs, 1H), 1.43 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 165.9, 134.6, 131.5,

128.3, 125.5, 51.7, 28.7. HRMS (ESI⁺): calcd for $C_{11}H_{15}NOBr [M+H]^+$ 256.03370, found 256.03257.

N-(tert-butyl)-4-chlorobenzamide (37)

¹H NMR (400 MHz, CDCl₃) δ = 7.63 (d, *J* = 8.3 Hz, 2H), 7.35 (d, *J* = 8.4 Hz, 2H), 5.96 (brs, 1H), 1.45 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 165.8, 137.1, 134.2, 128.6, 128.1, 51.7, 28.8. HRMS (ESI⁺): calcd for C₁₁H₁₅NOCl [M+H]⁺ 212.08422, found 212.08320.

*N-(tert-*butyl)-2,4-bis(trimethylsilyl)benzamide (38)

¹H NMR (400 MHz, CDCl₃) δ = 7.80 (s, 1H), 7.52 (dd, *J* = 7.5, 1.1 Hz, 1H), 7.38 (d, *J* = 7.5 Hz, 1H), 5.74 (brs, 1H), 1.48 (s, 9H), 0.37 (s, 9H), 0.29 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 170.7, 144.0, 141.6, 140.1, 138.1, 133.7, 125.3, 51.6, 28.8, 0.2, -1.3. HRMS (ESI⁺): calcd for C₁₇H₃₁NONaSi₂ [M+Na]⁺ 344.18419, found 344.18246.

*N-(tert-*butyl)-2-(butyldimethylsilyl)-4-(trimethylsilyl)benzamide (39)

¹H NMR (400 MHz, CDCl₃) δ = 7.76 (s, 1H), 7.50 (dd, *J* = 7.5, 1.1 Hz, 1H), 7.35 (d, *J* = 7.5 Hz, 1H), 5.68 (brs, 1H), 1.46 (s, 9H), 1.37–1.28 (m, 4H), 0.88 (dd, *J* = 15.2, 8.3 Hz, 5H), 0.33 (s, 6H), 0.27 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 170.8, 144.3, 141.4, 140.5, 137.2, 133.6, 125.4, 51.6, 28.9, 26.6, 26.5, 16.0, 13.9, -1.3, -1.6. HRMS (ESI⁺): calcd for C₂₀H₃₇NONaSi₂ [M+Na]⁺ 386.23114, found 386.22961.

4-(tert-butylcarbamoyl)phenyl propionate (40)

¹H NMR (400 MHz, CDCl₃) δ = 7.73 (d, *J* = 8.6 Hz, 2H), 7.13 (d, *J* = 8.6 Hz, 2H), 5.90 (brs, 1H), 2.60 (q, *J* = 7.5 Hz, 2H), 1.46 (s, 9H), 1.26 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 172.6, 166.1, 152.8, 133.4, 128.1, 121.6, 51.7, 28.8, 27.7, 8.9. HRMS (ESI⁺): calcd for C₁₄H₂₀NO₃ [M+H]⁺250.14432, found 250.14398.

N-(tert-butyl)-4-(trimethylsilyl)benzamide-2,3,5,6-d₄ (3-d₄)

¹H NMR (400 MHz, CDCl₃) δ = 5.97 (brs, 1H), 1.46 (s, 9H), 0.27 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 167.0, 144.2, 135.9, 133.2, 133.0, 132.8, 125.6, 125.3, 125.1, 51.6, 28.9, -1.3. HRMS (ESI⁺): calcd for C₁₄H₂₀D₄NOSi [M+H]⁺254.18782, found 254.18.659.

5. Experiments of Kinetic Isotope Effect

A dried Schlenk tube were placed *N*-(*tert*-butyl)benzamide **1** (0.2 mmol) or **1a**-*d*₅ (0.2 mmol) and FeCl₂ (0.02 mmol) and freshly distilled THF (0.5 mL). *i*-PrMgCl (0.4 mL 0.8 mmol) was dropwise added by syringe at room temperature. After stirring the mixture for 30 min, TMSCl (0.6 mmol) was added by syringe and reacted then reacted for the designated time (30 min, 60 min, 90 min, 120 min) at room temperature. Then, the reaction mixture quenched with aqueous solution of NH₄Cl. The yield was determined by GC analysis. A value of $K_{\rm H}/K_{\rm D}$ = 0.9 was obtained.

6. EPR studies of stoichiometric reactions

X-band EPR spectrum of the standard silvlation after 3 hours was recorded at room temperature. The sharp peak at about 3500 Oe is typical for radicals with the *g* value around 2.0, indicating that radical species are involved in the silvlation. Analysis of *iso*-propylmagnesium chloride in THF by EPR spectroscopy suggested that no radical species was existed in the solution.

7. Supplementary References

[1] H. Jiang, B. Liu, Y. Li, A. Wang, H. Huang, Org. Lett. 2011, 13, 1028-1031.

[2] M. Chen, Y. Li, H. Tang, H. Ding, K. Wang, L. Yang, C. Li, M. Gao, A. Lei, Org. Lett. 2017, 19, 3147-3150.

[3] E. Bellamy, O. Bayh, C. Hoarau, F. Trécourt, G. Quéguiner, F. Marsais, *Chem. Commun.* 2010, *46*, 7043-7045.

[4] B. S. Gore, G. C. Senadi, A. M. Garkhedkar, J.-J. Wang, Adv. Synth. Catal. 2017, 359, 3014-3021.

[5] J. C. Baum, J. E. Milne, J. A. Murry, O. R. Thiel, J. Org. Chem. 2009, 74, 2207-2209.

[6] B. J. Bhanage, B. M. Khairnar, Synthesis 2014, 46, 1236-1242.

[7] S. S. Bera, S. Debbarma, A. K. Ghosh, S. Chand, M. S. Maji, *J. Org. Chem.* 2017, 82, 420-430.

[8] G. Singh, R. Dada, S. Yaragorla, Tetrahedron Letters 2016, 57, 4424-4427.

[9] P. Liu, C. Chen, X. Cong, J. Tang, X. Zeng, Nat Commun 2018, 9, 4637.

[10] M. Tobisu, Y. Kita, Y. Ano, N. Chatani, J. Am. Chem. Soc. 2008, 130, 15982-15989.

8. X-Ray Crystal Structure of 3

Table S4. Crystal data and structure refinement for 3

Empirical formula	C ₁₄ H ₂₃ NOSi
Formula weight	249.42
Temperature	296.15 K
Wavelength	0.71073 A
Crystal system, space group	Orthorhombic, Pbca
Unit cell dimensions	$a = 10.2659(17)$ $\alpha/^{\circ}90$
	$b = 11.991(2)$ $\beta/^{\circ} 90$
	$c = 25.229(4) \gamma \gamma^{\circ} 90$
Volume	3105.7(9)
Z, Calculated density	8, 1.067
Absorption coefficient	0.138 mm^-1
F(000)	1088.0
Crystal size	$0.15 \times 0.12 \times 0.10$
Theta range for data collection	3.228 to 53.234
Limiting indices	$-12 \le h \le 12, -15 \le k \le 15, -31 \le l \le 31$
Reflections collected	3245 [Rint = 0.0445, Rsigma = 0.0232]
Completeness to theta = 24.813	99.8 %

Data / restraints / parameters	3245 / 0 / 160
Goodness-of-fit on F^2	1.087
Final R indices [I>2sigma(I)]	R1 = 0.0388, wR2 = 0.0961
R indices (all data)	R1 = 0.0600, wR2 = 0.1093
Extinction coefficient	n/a
Largest diff. peak and hole	0.40/-0.18

9. ¹H, ¹³C and ¹⁹F NMR Spectra

¹H and ¹³C NMR spectra in CDCl₃ for compound 1a

²⁰⁰ 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ¹H and ¹³C NMR spectra in CDCl₃ for compound 1b

²⁰⁰ ¹⁹⁰ ¹⁸⁰ ¹⁷⁰ ¹⁶⁰ ¹⁵⁰ ¹⁴⁰ ¹³⁰ ¹²⁰ ¹¹⁰ ¹⁰⁰ ⁹⁰ ⁸⁰ ⁷⁰ ⁶⁰ ⁵⁰ ⁴⁰ ³⁰ ²⁰ ¹⁰ ⁰ ¹H and ¹³C NMR spectra in CDCl₃ for compound 1c

²¹⁰ 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ¹H and ¹³C NMR spectra in CDCl₃ for compound 1d

²⁰⁰ 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ¹H and ¹³C NMR spectra in CDCl₃ for compound 1e

7.0 6.0 7.5 10.5 10.0 9.5 9.0 8.5 8.0 6.5 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

7.5 6.0 1.5 10.5 10.0 8.5 6.5 5.5 3.5 3.0 2.5 2.0 1.0 0.5 0.0 9.5 9.0 8.0 7.0 5.0 4.5 4.0

¹⁰ 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 ¹⁹F NMR spectra in CDCl₃ for compound 11

²⁰⁰ 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ¹H and ¹³C NMR spectra in CDCl₃ for compound 1m

²⁰⁰ 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ¹H and ¹³C NMR spectra in CDCl₃ for compound 1n

¹⁰ 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 ¹⁹F NMR spectra in CDCl₃ for compound 1n

¹⁰ 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 ¹⁹F NMR spectra in CDCl₃ for compound 1p

²⁰⁰ ¹⁹⁰ ¹⁸⁰ ¹⁷⁰ ¹⁶⁰ ¹⁵⁰ ¹⁴⁰ ¹³⁰ ¹²⁰ ¹¹⁰ ¹⁰⁰ ⁹⁰ ⁸⁰ ⁷⁰ ⁶⁰ ⁵⁰ ⁴⁰ ³⁰ ²⁰ ¹⁰ ⁰ ¹H and ¹³C NMR spectra in CDCl₃ for compound 1p

¹⁰ 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 ¹⁹F NMR spectra in CDCl₃ for compound 8

²⁰⁰ 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 1 ¹H and ¹³C NMR spectra in CDCl₃ for compound 9

¹H and ¹³C NMR spectra in CDCl₃ for compound 10

--1,415 --0.293

²⁰⁰ 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ¹H and ¹³C NMR spectra in CDCl₃ for compound 11

²⁰⁰ 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ¹H and ¹³C NMR spectra in CDCl₃ for compound 12

²⁰⁰ ¹⁹⁰ ¹⁸⁰ ¹⁷⁰ ¹⁶⁰ ¹⁵⁰ ¹⁶⁰ ¹⁵⁰ ¹⁴⁰ ¹³⁰ ¹²⁰ ¹¹⁰ ¹⁰⁰ ⁹⁰ ⁸⁰ ⁷⁰ ⁶⁰ ⁵⁰ ⁴⁰ ³⁰ ²⁰ ¹¹ ¹H and ¹³C NMR spectra in CDCl₃ for compound 13

¹H and ¹³C NMR spectra in CDCl₃ for compound 15

----55,84

75

¹⁰ 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 ¹⁹F NMR spectra in CDCl₃ for compound 17

¹H and ¹³C NMR spectra in CDCl₃ for compound 18

---95.95

¹⁹F NMR spectra in CDCl₃ for compound 19

-1.525

²⁰⁰ 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ¹H and ¹³C NMR spectra in CDCl₃ for compound 26

--1.478

1, 238 1,

130 120 0 200 190 170 160 150 140 110 100 60 50 40 20 10 180 90 80 70 30 ¹H and ¹³C NMR spectra in CDCl₃ for compound 32

¹H and ¹³C NMR spectra in CDCl₃ for compound 33

¹H and ¹³C NMR spectra in CDCl₃ for compound 3-d₄