Supporting Information

Organo-Redox-Catalysis for the difunctionalization of alkenes and oxidative Ritter reactions by C-H functionalization

Sensheng Liu, and Martin Klussmann*

Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany

E-mail: <u>klusi@mpi-muelheim.mpg.de</u>

Contents

Supplementary Methods	3
General Information	3
Optimization of reaction conditions	4
Table S1: Optimization of amine catalysts ^[a]	4
Table S2: Optimization of other reaction conditions	5
Failed examples:	7
Reaction procedures	10
Procedure A: synthesis of N-(2-cyclohexyl-1-phenylethyl)acetamide.	10
General procedure B: synthesis of N-(1-phenylalkyl)acetamides.	10
General procedure C: synthesis of radicals and nucleophiles addition.	10
General procedure D: synthesis of phenyl radicals and nucleophiles addition.	11
Synthesis of (1-fluoroethane-1,2-diyl)dibenzene.	11
Synthesis of (1,4-dicyclohexylbutane-2,3-diyl)dibenzene.	12
General procedure E: amination of allylic C-H bond	12
Synthesis of amination of N-(9H-fluoren-9-yl)acetamide.	13
Synthesis of triarylamine radical cation salt A1+ [2]	13
Synthesis of N-(3-cyano-1-phenylpropyl)acetamide catalyzed by triarylamine radical cation salts	13
Cyclic voltammograms	14
Mechanistic study	15
NMR study of BPO and catalyst in CD ₃ CN at 70 $^{\circ}\mathrm{C}.$	15
Table S3: Relative amounts of BPO, BzOH, and PhH for each experiment after 2 h and 10 h	16
Table S4: % conversion of BPO, BzOH, and PhH for each experiment after 2 h and 10 h	17
Characterization Data	26
NMR and some HRMS Spectra of the Products	49
Reference	167

Supplementary Methods

General Information

Unless otherwise indicated, all reagents and solvents were purchased from commercial distributors and used as received. Solvents (hexanes, ethyl acetate) used for column chromatography were of technical grade and used after distillation in a rotary evaporator.

TLC was used to check the reactions for full conversion and was performed on Macherey-Nagel Polygram Sil G/UV254 thin layer plates. TLC spots were visualized by UV-light irradiation or used of Phosphomolybdic acid hydrate after heated.

Flash column chromatography was carried out using Merck Silica Gel 60 (40-63 μ m). Yields refer to pure isolated compounds.

¹H and ¹³C NMR spectra were measured with Bruker AV 300 spectrometer, Bruker AV 500 spectrometer, Bruker AV 600 spectrometer. All chemical shifts are given in ppm downfield relative to TMS and were referenced to the solvent residual peaks.^[1] ¹H NMR chemical shifts are designated using the following abbreviations as well as their combinations: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. For ¹³C NMR data the following abbreviations are used: p = primary (CH₃), s = secondary (CH₂), t = tertiary (CH), q = quaternary (C).

High resolution mass spectra were recorded with a Bruker APEX III FTICR-MS or a Finnigan SSQ 7000 quadrupole MS or a Finnigan MAT 95 double focusing sector field MS instrument.

Cyclic Voltammetry (CV) were measured with the BAS Epsilon potentiostat.

Benzoyl peroxide (BPO, 75% in H_2O) and Sodium hexafluorophosphate (NaPF₆) was purchased from Sigma-Aldrich and used directly without further purification.

Tris(4-bromophenyl)ammoniumyl hexachloroantimonate (TBPA·+) was purchased from Sigma-Aldrich and used directly without further purification.

Optimization of reaction conditions

[a] 1a (0.5 mmol, 57 μ L), BPO (0.75 mmol, 1.5 equiv.), catalyst (10 mol%), NaPF₆ (0.15 mmol), cyclohexane (10 mL), CH₃CN (2 mL), 70 °C, 24 h. Yields were determined by ¹H NMR spectroscopic analysis of the crude reaction mixture relative to internal standard 1,3,5-Trimethoxybenzene.

Table S2: Optimization of other reaction conditions

		catalyst (10 oxidant (1.5 additi	D mol%) 5 equiv.) ve	
	-	Cyclohexand CH ₃ CN (e (10 mL) 2 mL)	
	5a	70 C,	24 11 ° 6a	
Entry	Catalyst	Oxidant	Additive	Yield (%)
1	A1	BPO	NaOTf (30 mol%)	8.4
2	A1	BPO	<mark>NaBF₄ (30 mol%)</mark>	47
3	A1	BPO	^t Bu₄NPF₀ (30 mol%)	0
4	A1	BPO	NaOBz (30 mol%)	0
5	A1	BPO	<mark>NaSbF₀ (30 mol%)</mark>	16
6	A1	BPO	<mark>NaPF₆ (30 mol%)</mark>	91(87) ^[b]
7	A1	BPO	NaPF ₆ (50 mol%)	88
8	A1	BPO	NaPF ₆ (10 mol%)	63
9	A1	BPO	NaPF ₆ (5 mol%)	50
10	<mark>A1</mark> (5 mol%)	BPO	NaPF ₆ (30 mol%)	66
11	A1 (2.5 mol%)	BPO	NaPF ₆ (30 mol%)	26
12	A1 (1.0 mol%)	BPO	NaPF ₆ (30 mol%)	23
13	<mark>A1</mark> (0.5 mol%)	BPO	NaPF ₆ (30 mol%)	8
14 ^[c]	A1	BPO	NaPF ₆ (30 mol%)	89
15 ^[d]	A1	BPO	NaPF ₆ (30 mol%)	2
16	A1	TBHP	NaPF ₆ (30 mol%)	0
17	A1	TBPB	NaPF ₆ (30 mol%)	<10
18	A1	DTBP	NaPF ₆ (30 mol%)	<10
19 ^[e]	A1	DTBP	NaPF ₆ (30 mol%)	32
20	-	BPO	NaPF ₆ (30 mol%)	0
21	A1	-	NaPF ₆ (30 mol%)	0
22	A1	BPO	-	0

[a] 1a (0.5 mmol, 57 μ L), BPO (0.75 mmol, 1.5 equiv.), catalyst (10 mol%), additive, cyclohexane (10 mL), CH₃CN (2 mL), 70 °C, 24 h. Yields were determined by ¹H NMR spectroscopic analysis of the crude reaction mixture relative to internal standard 1,3,5-Trimethoxybenzene. [b] Isolated yield. [c] 90 °C. [d] 50 °C. [e] 100 °C.

Additive effect: additive is required (compare entries 1-6) and the NaPF₆ is important for good yields of product **6a**. However, others such as NaBF₄, NaSbF₆ and NaOTf give low yield of **6a**, NaOBz and ${}^{t}Bu_{4}NPF_{6}$ give no desired products. The concentration of additive seems to be less important, compare entries 6-9.

Catalyst loading: The lower concentration of catalyst, the lower yields were got.

Oxidants: BPO is the best oxidant in this reaction.

Table S3: Optimization of allylic C-H Ritter reaction

		catalyst BPO NaPF ₆ CH ₃ C 11 DCE 70 °	(20 mol%) 0 (0.2 equiv.) NH (N (5 mL) 0 E (5 mL) 0 'C, 24 h 11a	
Entry	Catalyst	Oxidant	Solvent	Yield (%)
1	A1	BPO (1.5 equiv.)	CH₃CN (10 mL)	20
2	A1	BPO (2.0 equiv.)	CH₃CN (10 mL)	25
3	A2	BPO (2.0 equiv.)	CH₃CN (10 mL)	36
4	A3	BPO (2.0 equiv.)	CH₃CN (10 mL)	37
5	A3	BPO (2.0 equiv.)	CH₃CN (5 mL) + CH₃NO₂ (5 mL)	0
6	A3	BPO (2.0 equiv.)	CH₃CN (5 mL) + THF (5 mL)	0
7	A3	BPO (2.0 equiv.)	CH₃CN (5 mL) + DCE (5 mL)	71
8 ^[b]	A3	BPO (2.0 equiv.)	CH₃CN (5 mL) + DCE (5 mL)	0
9	-	BPO (2.0 equiv.)	CH₃CN (5 mL) + DCE (5 mL)	0

Ö

[a] 11 (0.5 mmol), BPO, catalyst (20 mol%), NaPF₆ (20 mol%), solvent, 70 °C, 24 h. Yields were determined by ¹H NMR spectroscopic analysis of the crude reaction mixture relative to internal standard 1,3,5-Trimethoxybenzene. [b] no NaPF₆.

Table S4: Optimization of benzylic C-H Ritter reaction

		catalyst (BPO) NaPF ₆ (C CH ₃ CN DCE 80 °C	(20 mol%) 0.2 equiv.) N (5 mL) (5 mL) C, 24 h 12a	
Entry	Catalyst	Oxidant	Tem/ °C	Yield (%)
1	A3	BPO (2.0 equiv.)	70	32
2	A3	BPO (3.0 equiv.)	70	43
3	A3	BPO (3.0 equiv.)	80	70
4	A3	BPO (3.0 equiv.)	100	60
5	A1	BPO (2.0 equiv.)	80	41
6	A2	BPO (2.0 equiv.)	80	15
7 ^[b]	A3	BPO (2.0 equiv.)	80	0
8	-	BPO (2.0 equiv.)	80	0

[a] **12** (0.5 mmol), BPO, catalyst (20 mol%), NaPF₆ (20 mol%), DCE (5 mL), CH₃CN (5 mL), 80 °C, 24 h. Yields were determined by ¹H NMR spectroscopic analysis of the crude reaction mixture relative to internal standard 1,3,5-Trimethoxybenzene. [b] no NaPF₆.

Failed examples:

Reaction procedures

Procedure A: synthesis of *N*-(2-cyclohexyl-1-phenylethyl)acetamide.

Under argon atmosphere, the styrene **5a** (0.5 mmol, 57 μ L), catalyst **A1** (10 mol%, 0.05 mmol, 18.5 mg), cyclohexane (10 mL), CH₃CN (2 mL), BPO (0.75 mmol, 1.5 equiv.) and NaPF₆ (0.15 mmol, 30 mol%) were added into a 25 mL glass tube. The reaction mixture was stirred at 70 °C for 24 h under Ar atmospheres. After the reaction was fully completed, the mixture was cooled to room temperature and concentrated under reduced pressure to give a crude product. The residue was further purified by silica gel column with *iso*-hexane/ethyl acetate (from 10:1 to 1:1) to give the desired products **6a**.

General procedure B: synthesis of *N*-(1-phenylalkyl)acetamides.

Under argon atmosphere, the styrenes **5** (0.5 mmol), catalyst **A1** (10 mol%, 0.05 mmol, 18.5 mg), R-H (10 mL), CH₃CN (2 mL), BPO (0.75 mmol, 1.5 equiv.) and NaPF₆ (0.15 mmol, 30 mol%) were added into a 25 mL glass tube. The reaction mixture was stirred at 70 °C for 24 h under Ar atmospheres. After the reaction was fully completed, the mixture was cooled to room temperature and concentrated under reduced pressure to give a crude product. The residue was further purified by silica gel column with *iso*-hexane/ethyl acetate (from 10:1 to 1:1) to give the desired products **6b-6o** and **7a-7p**.

General procedure C: synthesis of radicals and nucleophiles addition.

Under argon atmosphere, the styrenes **5** (0.5 mmol), catalyst **A1** (10 mol%, 0.05 mmol, 18.5 mg), nucleophiles (2 mL), R-H (10 mL), BPO (0.75 mmol, 1.5 equiv.) and NaPF₆ (0.15 mmol, 30 mol%) were added into a 25 mL glass tube. The reaction mixture was stirred at 70 °C for 24 h under Ar atmospheres. After the reaction was fully completed, the mixture was cooled to room temperature and concentrated under reduced pressure to give a crude product. The residue was further purified by silica gel column with *iso*-hexane/ethyl acetate (from 50:1 to 10:1) to give the desired products **8a-8i**.

General procedure D: synthesis of phenyl radicals and nucleophiles addition.

Under argon atmosphere, the styrene **5a** (0.5 mmol, 57 μ L), catalyst **A1** (10 mol%, 0.05 mmol, 18.5 mg), nucleophiles (2 mL), CH₃NO₂ (10 mL), BPO (0.75 mmol, 1.5 equiv.) and NaPF₆ (0.15 mmol, 30 mol%) were added into a 25 mL glass tube. The reaction mixture was stirred at 70 °C for 24 h under Ar atmospheres. After the reaction was fully completed, the mixture was cooled to room temperature and concentrated under reduced pressure to give a crude product. The residue was further purified by silica gel column with *iso*-hexane/ethyl acetate (from 50:1 to 10:1) to give the desired products **10a** and **10b**.

Synthesis of (1-fluoroethane-1,2-diyl)dibenzene.

Under argon atmosphere, the styrene **5a** (0.5 mmol, 57 μ L), catalyst **A1** (10 mol%, 0.05 mmol, 18.5 mg), NEt₃·3HF (2 mL), CH₃NO₂ (10 mL), BPO (0.75 mmol, 1.5 equiv.) and NaPF₆ (0.15 mmol, 30 mol%) were added into a 25 mL glass tube. The reaction mixture was stirred at 70 °C for 24 h under Ar atmospheres. After the reaction was fully completed, the mixture was cooled to room temperature and concentrated under reduced pressure to give a crude product. The residue was further purified by silica gel column with *iso*-hexane/ethyl acetate (from 500:1 to 100:1) to give the desired product **14c** in the yield of 26 %.

Synthesis of (1,4-dicyclohexylbutane-2,3-diyl)dibenzene.

Under argon atmosphere, the styrene **5a** (0.5 mmol), catalyst **A1** (10 mol%, 0.05 mmol, 18.5 mg), NEt₃·3HF (2 mL), cyclohexane (10 mL), BPO (0.75 mmol, 1.5 equiv.) and NaPF₆ (0.15 mmol, 30 mol%) were added into a 25 mL glass tube. The reaction mixture was stirred at 70 °C for 24 h under Ar atmospheres. After the reaction was fully completed, the mixture was cooled to room temperature and concentrated under reduced pressure to give a crude product. The residue was further purified by silica gel column with *iso*-hexane/ethyl acetate (from 500:1 to 100:1), not giving the desired fluoride but the dimer **9** in the yield of 31%.

General procedure E: oxidative Ritter reaction of allylic C-H bond.

Under argon atmosphere, the olefins **10** (0.5 mmol), catalyst **A3** (20 mol%, 0.05 mmol, 24.1 mg), CH₃CN (5 mL), DCE (5 mL), BPO (1.5 mmol, 3.0 equiv.) and NaPF₆ (0.15 mmol, 30 mol%) were added into a 25 mL glass tube. The reaction mixture was stirred at 70 °C for 24 h under Ar atmospheres. After the reaction was fully completed, the mixture was cooled to room temperature and concentrated under reduced pressure to give a crude product. The residue was further purified by silica gel column with *iso*-hexane/ethyl acetate (from 50:1 to 10:1) to give the desired products **11a-11g**. By using (Z)-decene as starting material, (*E*)-**11d** and (*E*)-**11c** were isolated.

Oxidative Ritter reaction of *N*-(9*H*-fluoren-9-yl)acetamide.

Under argon atmosphere, the 9*H*-fluorene **12** (0.5 mmol, 83 mg), catalyst **A3** (20 mol%, 0.05 mmol, 24.1 mg), CH₃CN (5 mL), DCE (5 mL), BPO (1.5 mmol, 3.0 equiv.) and NaPF₆ (0.15 mmol, 30 mol%) were added into a 25 mL glass tube. The reaction mixture was stirred at 80 °C for 24 h under Ar atmospheres. After the reaction was fully completed, the mixture was cooled to room temperature and concentrated under reduced pressure to give a crude product. The residue was further purified by silica gel column with *iso*-hexane/ethyl acetate (from 50:1 to 10:1) to give the desired product **13a**.

Synthesis of triarylamine radical cation salt A1+^[2]

A1+. To a solution of **A1** (185 mg, 0:5 mmol, 1.0 equiv.) in dry CH_2Cl_2 (5 mL) under Ar atmosphere was added AgSbF₆ (180.4 mg, 0.525 mmol, 1.05 equiv.) at room temperature. The slightly yellowish reaction mixture immediately turned dark blue and the reaction was stirred for about one minute. After removal of insoluble contents by filtration, product **A1+** was obtained by precipitation from CH_2Cl_2 /hexanes as a deep blue powder (275.7 mg, 91%). HRMS (ESI, DCM/CH₃CN, positive mode) m/z for $C_{18}H_{14}NI \bullet + (M+)$ calcd. 371.0165, found 371.0163; for SbF₆⁻(M⁻) calcd. 234.8949, found 234.8949. In the ¹H NMR, only a very broad signal around 8.5ppm -6.5 ppm could be observed, and no signal in the ¹³C NMR. No signals from the starting material (**A1**) could be seen, suggesting that the product is the pure ammoniumyl radical cation, free of the closed-shell starting material.

Synthesis of *N*-(3-cyano-1-phenylpropyl)acetamide catalyzed by triarylamine radical cation salts.

Under argon atmosphere, the styrene **5a** (0.5 mmol, 57 μ L), catalyst (10 mol%, 0.05 mmol), CH₃CN (12 mL), BPO (0.75 mmol, 1.5 equiv.), NaPF₆ (0.15 mmol, 30 mol%) were added into a 25 mL glass tube. The reaction mixture was stirred at 70 °C for 24 h under Ar atmospheres. After the reaction was fully completed, the mixture was cooled to room temperature and concentrated under reduced pressure to give a crude product. 1,3,5-Trimethoxybenzene (10 mg) added as internal standard for NMR, yields base on the NMR yield.

Cyclic voltammograms

Figure 1. Cyclic voltammograms shows the reduction potential of **A1**+ and BPO. Two platinized Pt and Carbon wires as a counter and working electrode with a Ag/AgCl electrode as a reference were used. The cyclic voltammetry (CV) was conducted from -1.5 V to 1.5 V with a scan rate of 200 mV/s ⁻¹. **A1**+ (0.03 mmol) or BPO (0.03 mmol) in 3 mL in CH₃CN of LiClO₄ (0.1 M) under Ar.

Figure 2. Cyclic voltammogram showing the structure-function relationship on the reduction and oxidation potential of amine catalysts. Two platinized Pt wires as a counter and working electrode with a Ag/AgCl electrode as a reference were used. The cyclic voltammetry (CV) was conducted from 0 V to 1.5 V with a scan rate of 100 mVs⁻¹. Triarylamine (0.2 mmol), tetrabutylammonium hexafluorophosphate (0.1 M) in CH₃CN under Ar.

Mechanistic study

NMR study of BPO and catalyst in CD3CN at 70 °C.

In an NMR tube, BPO (0.1 mmol) was added to CD₃CN (0.5 mL) and a first ¹H-NMR spectrum was measured as a control. The NMR tube was then heated at 70 °C in an oil-bath and ¹H-NMR spectra were measured after 2 h and 10 h, respectively, each time by removing the NMR tube from the oil-bath and measuring the spectra at ambient temperature. See the red line in the scheme below.

NMR studies of BPO decompose in $\mbox{CD}_3\mbox{CN}$

Table S5: Relative amounts of BPO, BzOH, and PhH for each experiment after 2 h and 10 h

A: BPO only; B: BPO + A1.

Reaction	BPO (mmol)				BzOH (mmol)				PhH (mmol)						
	0 h	0.5 h	1 h	2 h	10 h	0 h	0.5 h	1 h	2 h	10 h	0 h	0.5 h	1h	2 h	10 h
А	0.1	0.097	0.087	0.073	0.039	0	0.005	0.017	0.025	0.081	0	0.003	0.021	0.023	0.076
В	0.1	0.088	0.079	0.063	0.041	0	0.0027	0.05	0.079	0.132	0	0.001	0.003	0.01	0.012

BPO (0.1 mmol), catalyst (10 mol%) in 0.5 mL CD3CN.

Amount of BPO, BzOH, and PhH.

NMR yields based on the integration of BPO.

Table S6: % conversion of BPO, BzOH, and PhH for each experiment after 2 h and 10 h

A: BPO only; B: BPO + A1.

Reaction	вро					BzOH				PhH					
	0 h	0.5 h	1 h	2 h	10 h	0 h	0.5 h	1 h	2 h	10 h	0 h	0.5 h	1h	2 h	10 h
А	1	3%	13%	27%	60%	0	2.5%	8.5%	12.5%	40.5%	0	1.5%	10.5%	11.5%	38%
В	1	12%	21%	37%	59%	0	1.35%	25%	39.5%	66%	0	0.5%	1.5%	5%	6%

BPO (0.1 mmol), catalyst (10 mol%) in 0.5 mL CD3CN.

Amount of BPO, BzOH, and PhH.

% conversion based on the integration of BPO.

Amount of BPO in different time

Amount of BzOH in different time

Amount of PhH in different time

Details of the repetitive cycles experiment

- a) The 1st cycle: 1a (0.5 mmol), A1 (10 mol%), BPO (1.5 equiv.), NaPF₆ (30 mo%), cyclohexane (10 mL), CH₃CN (2 mL), 70 °C, 24 h. Yield: 90%. Determined by ¹H NMR spectroscopic analysis of the crude reaction mixture relative to internal standard 1,3,5-trimethoxybenzene.
- b) The 2nd cycle: **1a** (0.5 mmol), **A1** (10 mol%), BPO (1.5 equiv.), NaPF₆ (30 mo%), cyclohexane (10 mL), CH₃CN (2 mL), 70 °C, after 24 h, **1a** (0.5 mmol) and BPO (1.5 equiv.) were added again, keep the reaction at 70 °C for another 30 h. Yield: 85%. Determined by ¹H NMR spectroscopic analysis of the crude reaction mixture relative to internal standard 1,3,5-trimethoxybenzene.
- c) The 3rd cycle: **1a** (0.5 mmol), **A1** (10 mol%), BPO (1.5 equiv.), NaPF₆ (30 mo%), cyclohexane (10 mL), CH₃CN (2 mL), 70 °C, after 24 h, **1a** (0.5 mmol) and BPO (1.5 equiv.) were added again, after 30 h at 70 °C, added **1a** (0.5 mmol) and BPO (1.5 equiv.) again, keep the reaction at 70 °C for another 38 h. Yield: 55%. Determined by ¹H NMR spectroscopic analysis of the crude reaction mixture relative to internal standard 1,3,5-trimethoxybenzene.

Anions exchange between PF₆⁻ and OBz⁻

White participate can be isolated after the reaction cooled down. Washed the white participate three time with acetonitrile, acetone, and dichloromethane. Analyzing it by HRMS. From MS and HRMS spectral, only OBz- can be detected. Which means a little amount of NaOBz was formed. Besides, NaOBz is insoluble but $NaPF_6$ is soluble in cyclohexane and acetonitrile.

Triarylamine catalysts react with BPO to form intermediate radical cation A+, which under goes anion exchange to give more stable radical cation A+'. and NaOBz. This is the reason why the additive NaPF₆ is indispensable in this reaction system.

NaOBz

29.10.2020 09:37 p.*/2* Angegebene Mol.-Gewichte u. Massenzahlen basieren auf dem häufigsten Isotop der Elemente *** MassLib

MassLib V9.4

MPI für Kohlenforschung

29.10.2020 10:55 p.1/1	*** Angegebene MolGewichte u. Massenz	zahlen basieren auf dem häufigsten Isotop der l	Elemente ***	-MassLib
Mass to be matched (m/z	:): 121.029550 Charge: -1	Datum:	29.10.2020	
Mass Tolerance: +0.0055	50	Analyse:	150185b-00	
Restriction of atom num C H O 1-100 1-100 1-10	bers:	Sigel:	LJB-LA-785-01 KMA: Liu, Sensheng	
Number of calculated Fo	ormulas: 1	Method: Ionis. :	HR-MS ESIneg	
С7 Н5 О2	-0.37 121.029505	Solvent : Spectrometer:	Exactive	
		Auswerter:	Marcus, Tel:2243	
	possible eleme	ent composition		
	suggestion: 121 = [C7H5O2]-			
MassLib V9.4			М	PI für Kohlenforschung

Characterization Data

N-(2-cyclohexyl-1-phenylethyl)acetamide (6a, CAS: 2400221-26-1)

NH

Following the general procedure A, white solid (105.5 mg, 86%)

¹**H NMR** (500 MHz, DMSO- d_6) δ 8.27 (d, J = 8.6 Hz, 1H), 7.39–7.30 (m, 4H), 7.28–7.22 (m, 1H), 4.92 (td, J = 9.2, 5.8 Hz, 1H), 1.88 (s, 3H), 1.84–1.59 (m, 6H), 1.50 (ddd, J = 13.8, 8.1, 5.8 Hz, 1H), 1.35–1.13 (m, 4H), 0.98–0.94 (m, 2H);

¹³**C NMR** (125 MHz, DMSO-*d*₆) δ 168.73, 144.98, 128.66, 126.95, 126.75, 50.17, 44.66, 34.39, 33.51, 32.54, 26.56, 26.23, 26.09, 23.13.

HRMS (ESIpos) (m/z): calculated for C₁₆H₂₃NO 245.1774; found 245.1774.

N-(2-cyclopentyl-1-phenylethyl)acetamide (**6b**, unreported product)

NH

Following the general procedure B, white solid (97.0 mg, 84%).

¹**H NMR** (500 MHz, DMSO-*d*₆) δ 8.29 (d, *J* = 8.6 Hz, 1H), 7.43–7.32 (m, 4H), 7.30–7.22 (m, 1H), 4.83 (td, *J* = 8.5, 6.0 Hz, 1H), 1.88 (s, 3H), 1.75 (ddq, *J* = 16.3, 11.4, 5.7 Hz, 4H), 1.62–1.57 (m, 3H), 1.55–1.43 (m, 2H), 1.24–1.09 (m, 2H).

¹³**C NMR** (125 MHz, DMSO-*d*₆) δ 168.71, 144.76, 128.65, 126.99, 126.84, 52.28, 43.39, 37.14, 32.62, 32.53, 25.19, 25.04, 23.16.

HRMS (ESIpos) (m/z): calculated for C₁₅H₂₁NO 231.1617; found 231.1617.

N-(2-cycloheptyl-1-phenylethyl)acetamide (**6c**, unreported product)

Following the general procedure B, white solid (111.6 mg, 86%).

¹**H NMR** (500 MHz, DMSO- d_6) δ 8.28 (d, J = 8.6 Hz, 1H), 7.41–7.29 (m, 4H), 7.29–7.24 (m, 1H), 4.89 (td, J = 9.1, 5.6 Hz, 1H), 1.88 (s, 3H), 1.73–1.69 (m, 2H), 1.67–1.35 (m, 11H), 1.29–1.18 (m, 2H).

¹³**C NMR** (125 MHz, DMSO-*d*₆) δ 168.75, 144.94, 128.67, 126.95, 126.77, 50.75, 45.25, 35.73, 34.79, 33.67, 28.56, 28.53, 26.20, 26.08, 23.13.

HRMS (ESIpos) (m/z): calculated for C₁₇H₂₅NO 259.1930; found 259.1930.

N-(2-cyclooctyl-1-phenylethyl)acetamide (6d, unreported product)

NH

Following the general procedure B, white solid (107.5 mg, 80%).

¹**H NMR** (500 MHz, DMSO-*d*₆) δ 8.24 (d, *J* = 8.6 Hz, 1H), 7.35–7.25 (m, 4H), 7.23–7.18 (m, 1H), 4.85 (td, *J* = 9.0, 4.9 Hz, 1H), 1.83 (s, 3H), 1.66–1.17 (m, 17H).

¹³**C NMR** (125 MHz, DMSO-*d*₆) δ 168.74, 144.94, 128.67, 126.96, 126.78, 50.69, 45.13, 33.61, 32.67, 31.03, 27.42, 27.19, 26.29, 25.31, 25.16, 23.12.

HRMS (ESIpos) (m/z): calculated for C₁₈H₂₇NO 273.2087; found 273.2087.

N-(2-(1-methylcyclohexyl)-1-phenylethyl)acetamide (**6e**, major product from the reaction with methylcyclohexane, unreported product)

NH

Following the general procedure B, white solid (44.0 mg, 34%).

¹**H NMR** (600 MHz, DMSO- d_6) δ 8.25 (d, J = 8.8 Hz, 1H), 7.31–7.24 (m, 4H), 7.20–7.16 (m, 1H), 4.93 (td, J = 9.0, 3.5 Hz, 1H), 1.78 (s, 3H), 1.74 (dd, J = 14.4, 9.1 Hz, 1H), 1.48 (dd, J = 14.4, 3.5 Hz, 1H), 1.46–1.17 (m, 10H), 0.89 (s, 3H).

¹³**C NMR** (125 MHz, DMSO-*d*₆) δ 168.16, 146.39, 128.71, 126.80, 126.64, 49.17, 49.08, 38.11, 38.03, 33.32, 26.39, 25.56, 23.23, 21.99, 21.94.

HRMS (ESIpos) (m/z): calculated for C₁₇H₂₅NO 259.1930; found 259.1930.

N-((1R, 3S)-3-methyl-1-phenylheptyl)acetamide (6f, unreported product)

Following the general procedure B, colorless oil (5 mg , 4.1%).

¹**H NMR** (600 MHz, DMSO-*d*₆) δ 8.23 (d, *J* = 8.8 Hz, 1H), 7.33–7.27 (m, 2H), 7.29–7.24 (m, 2H), 7.20 (tt, *J* = 7.2, 1.5 Hz, 1H), 4.83 (q, *J* = 8.80, 8.5, 7.0 Hz, 1H), 1.80 (s, 3H), 1.71–1.55 (m, 1H), 1.50–1.43 (m, 1H), 1.38–1.88 (m, 8H), 0.86–0.82 (m, 5H).

¹³**C NMR** (151 MHz, DMSO-*d*₆) δ 168.06, 144.05, 128.14, 126.50, 126.38, 50.33, 43.66, 35.20, 28.95, 28.18, 22.58, 22.21, 19.56, 13.87.

HRMS (ESIpos) (m/z): calculated for C₁₆H₂₅NO 247.1930; found 247.1931.

N-((1*S*,3*S*)-3-methyl-1-phenylheptyl)acetamide (**6***g*, unreported product); *N*-(3-ethyl-1-phenylhexyl)acetamide (**6***h*, unreported product)

6g and 6h are a mixture (6g:6h = 2:2.3) as determined by ¹H NMR.

Following the general procedure B, colorless oil (94.0 mg, 76%).

¹**H NMR** (600 MHz, DMSO- d_6) δ 8.20 (dd, J = 8.7, 3.7 Hz, 1H), 7.32–7.23 (m, 4H), 7.19 (ddt, J = 8.7, 5.4, 1.6 Hz,1H), 4.89–4.78 (m, 1H), 1.83–1.78 (m, 2H), 1.66 (ddd, J = 13.3, 10.5, 4.4 Hz, 0.37H), 1.56 (dp, J = 14.0, 4.3Hz, 0.43H), 1.47 (dtd, J = 13.6, 6.3, 3.7 Hz, 0.38H), 1.41 (d, J = 5.5 Hz, 0.16H), 1.34–1.25 (m, 1H), 1.29–1.15 (m, 7H), 1.14–1.07 (m, 0.3H), 0.91–0.82 (m, 3H), 0.82–0.77 (m, 1H), 0.75 (t, J = 7.2Hz, 1H).

¹³C NMR (151 MHz, DMSO-*d*₆) δ 168.83, 168.73, 168.69, 145.12, 144.86, 144.81, 128.66, 126.92, 126.74, 50.73, 50.67, 50.53, 44.54, 41.02, 40.99, 36.90, 35.37, 35.09, 35.02, 34.63, 29.68, 29.02, 25.88, 24.93, 23.10, 22.89, 19.51, 19.47, 19.21, 14.83, 14.72, 14.46, 10.87, 10.41.

HRMS (ESIpos) (m/z): calculated for C₁₆H₂₅NO 247.1930; found 247.1929 and 247.1930.

N-(3,3-dimethyl-1-phenylhexyl)acetamide (**6***i*, Major product from the reaction with *iso*-hexane, unreported product)

NH

Following the general procedure B, colorless oil (50.6 mg, 41%)

¹**H NMR** (600 MHz, DMSO-*d*₆) δ 8.23 (d, *J* = 8.6 Hz, 1H), 7.36–7.21 (m, 3H), 7.17 (ddt, *J* = 7.2, 5.3, 1.4 Hz, 1H), 4.89 (td, *J* = 9.1, 4.1 Hz, 1H), 1.78 (s, 3H), 1.72–1.65 (m, 1H), 1.45 (dd, *J* = 14.3, 3.6 Hz, 1H), 1.22–1.08 (m, 4H), 0.86–0.79 (m, 9H).

¹³C NMR (151 MHz, DMSO-*d*₆) δ 168.18, 146.24, 128.69, 126.81, 126.64, 49.60, 48.53, 44.83, 33.46, 27.91, 27.89, 23.21, 17.18, 15.33.

¹⁵N NMR (61 MHz, DMSO-*d*₆) δ -247.5.

HRMS (ESIpos) (m/z): calculated for C₁₆H₂₅NO 247.1930; found 247.1930.

N-(4,4,6,6-tetramethyl-1-phenylheptyl)acetamide (6j, unreported product)

Following the general procedure B, colorless oil (40.4 mg, 28%).

¹**H NMR** (500 MHz, DMSO- d_6) δ 8.28 (d, J = 8.6 Hz, 1H), 7.40–7.30 (m, 4H), 7.27 (t, J = 7.0 Hz, 1H), 4.72 (q, J = 8.1 Hz, 1H), 1.88 (s, 3H), 1.73–1.57 (m, 2H), 1.34 (ddd, J = 13.4, 11.4, 5.5 Hz, 1H), 1.26–1.10 (m, 3H), 1.02–0.84 (m, 15H).

¹³**C NMR** (125 MHz, DMSO-*d*₆) δ 186.76, 144.47, 128.62, 127.02, 126.93, 53.98, 53.75, 41.33, 34.65, 32.46, 32.28, 31.74, 29.42, 29.27, 23.14.

HRMS (ESIpos) (m/z): calculated for C₁₉H₃₁NO 289.2400; found 289.2401.

N-(3,3-dichloro-1-phenylpropyl)acetamide (6k, unreported product)

Following the general procedure B, white solid (53.9 mg, 45%).

¹**H NMR** (500 MHz, DMSO- d_6) δ 8.42 (d, J = 8.5 Hz, 1H), 7.40–7.30 (m, 4H), 7.29–7.25 (m, 1H), 6.07 (dd, J = 8.6, 4.5 Hz, 1H), 5.02 (ddd, J = 10.0, 8.4, 4.7 Hz, 1H), 2.68–2.62 (m, 1H), 2.49–2.44 (m, 1H), 1.86 (s, 3H).

¹³**C NMR** (125 MHz, DMSO-d6) δ 169.15, 142.44, 129.01, 127.71, 126.83, 72.30, 50.55, 49.79, 23.20.

HRMS (ESIpos) (m/z): [M+H]⁺ calculated for C₁₁H₁₃Cl₂NO 246.0446; found 246.0447.

N-(3,3,3-trichloro-1-phenylpropyl)acetamide (**6**I, unreported product)

Following the general procedure B, white solid (102.8 mg, 74%).

¹**H NMR** (500 MHz, DMSO-*d*₆) δ 8.60 (d, *J* = 8.6 Hz, 1H), 7.40–7.33 (m, 4H), 7.29–7.26 (m, 1H), 5.35 (td, *J* = 8.4, 3.4 Hz, 1H), 3.34 (dd, *J* = 15.2, 3.4 Hz, 1H), 3.09 (dd, *J* = 15.2, 3.4 Hz, 1H), 1.86 (s, 3H).

¹³**C NMR** (125 MHz, DMSO-*d*₆) δ 168.66, 142.75, 129.05, 127.76, 126.99, 98.40, 59.51, 51.02, 23.25.

HRMS (ESIpos) (m/z): calculated for C₁₁H₁₂Cl₃NO 278.9978; found 278.9977.

N-(3,3-dibromo-1-phenylpropyl)acetamide (**6m**, unreported product)

Following the general procedure B, colorless oil (54.7 mg, 33%).

¹**H NMR** (600 MHz, DMSO-*d*₆) δ 8.36 (d, *J* = 8.4 Hz, 1H), 7.35–7.28 (m, 2H), 7.28–7.22 (m, 2H), 5.87 (dd, *J* = 9.0, 4.7 Hz, 1H), 4.94 (ddd, *J* = 9.7, 8.3, 4.8 Hz, 1H), 2.79 (ddd, *J* = 14.6, 9.8, 4.7 Hz, 1H), 2.63 (ddd, *J* = 14.6, 9.0, 4.8 Hz, 1H), 1.82 (s, 3H).

¹³**C NMR** (125 MHz, DMSO-*d*₆) δ 169.13, 142.31, 128.99, 127.67, 126.79, 52.09, 51.55, 44.73, 23.17.

HRMS (ESIpos) (m/z): [M+Na]⁺ calculated for C₁₁H₁₃Br₂NONa 355.9256; found 355.9253.

N-(3,3,3-tribromo-1-phenylpropyl)acetamide (**6n**, unreported product)

Following the general procedure B, colorless oil (49.2 mg, 24%) (Mixed with 21% of 6p).

¹**H NMR** (500 MHz, DMSO-*d*₆) δ 8.68 (d, *J* = 8.4 Hz, 1H), 7.46–7.39 (m, 3H), 7.38–7.29 (m, 2H), 5.29 (ddd, *J* = 9.7, 8.3, 4.8 Hz, 1H), 3.71 (dd, *J* = 15.4, 8.1 Hz, 1H), 3.36 (d, *J* = 2.8 Hz, 1H), 1.92 (s, 3H).

¹³**C NMR** (125 MHz, DMSO-*d*₆) δ 186.61, 142.60, 128.52, 127.14, 126.34, 63.81, 53.44, 38.59, 23.37.

HRMS (ESIpos) (m/z): [M+Na]⁺ calculated for C₁₁H₁₂Br₃NONa 433.8361; found 433.8359.

N-(3-cyano-1-phenylpropyl)acetamide (60, CAS: 2127514-83-2)

Following the general procedure B, white solid (86.8 mg, 86%).

¹**H NMR** (500 MHz, CDCl₃) *δ* 7.38-7.35 (m, 2H), 7.32-7.30 (m, 1H), 7.27-7.26 (m, 2H), 5.90 (d, *J* = 8.0 Hz, 1H), 5.04 (dd, *J* = 15.5 Hz, 8.0 Hz, 1H), 2.37-2.31 (m, 2H), 2.27-2.22 (m, 1H), 2.15-2.10 (m, 1H), 1.99 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 169.85, 139.83, 129.21, 128.34, 126.55, 119.26, 52.90, 31.66, 23.37, 14.54.
HRMS (ESIpos) (m/z): M⁺ calculated for C₁₂H₁₄N2O 202.1100; found 202.1098.

N-(2-cyclohexyl-1-(*p*-tolyl)ethyl)acetamide (**7***a*, unreported product)

Following the general procedure B, colorless oil (103.6 mg, 80%).

¹**H NMR** (500 MHz, DMSO-*d*₆) δ 8.16 (d, J = 8.6 Hz, 1H), 7.20–7.07 (m, 4H), 4.82 (td, *J* = 9.0, 6.1 Hz, 1H), 2.27 (s, 3H), 1.81 (s, 3H), 1.77–1.49 (m, 6H), 1.43 (ddd, *J* = 13.8, 7.9, 6.1 Hz, 1H), 1.26–1.06 (m, 4H), 0.97–0.81 (m, 2H).

¹³**C NMR** (125 MHz, DMSO-*d*₆) δ 168.61, 141.89, 135.93, 129.20, 126.70, 49.85, 44.62, 34.37, 33.44, 32.63, 26.56, 26.22, 26.10, 23.14, 21.09.

HRMS (ESIpos) (m/z): [M+Na]⁺ calculated for C₁₁H₁₃Br₂NONa 333.9436; found 333.9434.

N-(2-cyclohexyl-1-(4-fluorophenyl)ethyl)acetamide (**7**c, unreported product)

Following the general procedure B, colorless oil (65.7 mg, 50%).

¹**H NMR** (500 MHz, DMSO- d_6) δ 8.28 (d, J = 8.5 Hz, 1H), 7.49–7.30 (m, 2H), 7.18 (t, J = 8.9 Hz, 2H), 4.91 (td, J = 9.1, 5.9 Hz, 1H), 1.88 (s, 3H), 1.84–1.55 (m, 6H), 1.49 (ddd, J = 13.8, 8.1, 5.9 Hz, 1H), 1.3 –1.11 (m, 4H), 1.02–0.88 (m, 2H).

¹³**C NMR** (125 MHz, DMSO-*d*₆) δ 168.76, 141.14 (d, *J* = 3.75 Hz, 1C), 128.65 (d, *J* = 6.25 Hz, 1C), 115.44, 115.27, 49.55, 44.53, 34.37, 33.44, 32.52, 26.55, 26.22, 26.07, 23.12.

HRMS (ESIpos) (m/z): calculated for C₁₂H₂₂FNO 263.1679; found 263.1681.

N-(1-(4-chlorophenyl)-2-cyclohexylethyl)acetamide (**7d**, unreported product)

Following the general procedure B, colorless oil (113.0 mg, 81%).

¹**H NMR** (500 MHz, DMSO-*d*₆) δ 8.31 (d, *J* = 8.4 Hz, 1H), 7.56–7.11 (m, 4H), 4.90 (td, *J* = 9.1, 5.9 Hz, 1H), 1.88 (s, 3H), 1.84 –1.55 (m, 6H), 1.48 (ddd, *J* = 13.8, 8.1, 5.9 Hz, 1H), 1.32–1.12 (m, 4H), 1.04–0.85 (m, 2H).

¹³**C NMR** (125 MHz, DMSO-*d*₆) δ 168.85, 144.01, 131.46, 128.67, 128.63, 49.68, 44.33, 34.35, 33.44, 32.49, 26.54, 26.21, 26.06, 23.10.

HRMS (ESIpos) (m/z): [M+Na]⁺ calculated for C₁₆H₂₂CINONa 302.1282; found 302.1278.

N-(1-(4-bromophenyl)-2-cyclohexylethyl)acetamide (**7e**, unreported product)

Following the general procedure B, colorless oil (127.6 mg, 79%).

¹**H NMR** (500 MHz, DMSO- d_6) δ 8.31 (d, J = 8.4 Hz, 1H), 7.55 (d, J = 8.5 Hz, 2H), 7.28 (d, J = 8.4 Hz, 2H), 4.88 (td, J = 9.1, 5.9 Hz, 1H), 1.88 (s, 3H), 1.82–1.57 (m, 6H), 1.48 (ddd, J = 13.8, 8.1, 5.9 Hz, 1H), 1.36–1.06 (m, 4H), 1.03–0.81 (m, 2H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 168.86, 144.45, 131.55, 129.07, 119.93, 49.75, 44.28, 34.34, 33.44, 32.49, 26.53, 26.20, 26.06, 23.09.

HRMS (ESIpos) (m/z): calculated for C₁₆H₂₂BrNO 323.0879; found 323.0883.
N-(2-cyclohexyl-1-(4-(trifluoromethyl)phenyl)ethyl)acetamide (**7**f, unreported product)

Following the general procedure B, colorless oil (95.5 mg, 61%).

¹**H NMR** (500 MHz, DMSO- d_6) δ 8.35 (d, J = 8.2 Hz, 1H), 7.68 (d, J = 8.1 Hz, 2H), 7.49 (d, J = 8.0 Hz, 2H), 4.92 (td, J = 9.2, 5.6 Hz, 1H), 1.84 (s, 3H), 1.78–1.54 (m, 6H), 1.45 (ddd, J = 13.8, 8.3, 5.6 Hz, 1H), 1.31–1.08 (m, 4H), 0.99–0.78 (m, 2H).

¹³**C NMR** (125 MHz, DMSO-*d*₆) δ 169.05, 127.57, 127.54, 125.63 (q, *J* = 30, 15 Hz, 1C), 50.11, 44.22, 34.33, 33.50, 32.28, 26.53, 26.20, 26.03, 23.06.

HRMS (ESIpos) (m/z): calculated for C₁₇H₂₂F₃NO 312.1580; found 312.1584.

N-(1-(4-(chloromethyl)phenyl)-2-cyclohexylethyl)acetamide (**7**g, unreported product)

Following the general procedure B, colorless oil (102.5 mg, 70%).

¹**H NMR** (500 MHz, DMSO- d_6) δ 8.29 (d, J = 8.5 Hz, 1H), 7.42 (d, J = 8.2 Hz, 2H), 7.32 (d, J = 8.2 Hz, 2H), 4.91 (td, J = 9.1, 6.0 Hz, 1H), 4.79 (s, 2H), 1.88 (s, 3H), 1.82–1.59 (m, 6H), 1.50 (ddd, J = 13.8, 8.1, 5.9 Hz, 1H), 1.35–1.14 (m, 4H), 1.04–0.89 (m, 2H).

¹³**C NMR** (125 MHz, DMSO-*d*₆) δ 168.82, 145.25, 136.30, 129.29, 127.06, 49.97, 46.53, 44.45, 34.36, 33.47, 32.52, 26.55, 26.21, 26.07, 23.11.

HRMS (ESIpos) (m/z): calculated for C₁₇H₂₄CINO 293.1540; found 293.1542.

N-(1-([1,1'-biphenyl]-4-yl)-2-cyclohexylethyl)acetamide (**7h**, unreported product)

Following the general procedure B, white solid (101.1 mg, 63%).

¹**H NMR** (500 MHz, DMSO- d_6) δ 8.32 (d, J = 8.5 Hz, 1H), 7.78–7.61 (m, 3H), 7.52 (t, J = 7.7 Hz, 2H), 7.42 (dd, J = 7.9, 2.7 Hz, 3H), 4.96 (td, J = 9.1, 5.9 Hz, 1H), 1.90 (s, 3H), 1.84–1.62 (m, 6H), 1.55 (ddd, J = 13.8, 8.1, 5.9 Hz, 1H), 1.38–1.12 (m, 4H), 1.06–0.91 (m, 2H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 168.80, 144.24, 140.50, 138.95, 129.37, 127.73, 127.39, 127.06, 49.92, 44.51, 34.40, 33.51, 32.56, 26.57, 26.23, 26.09, 23.16.

HRMS (ESIpos) (m/z): [M+Na]⁺ calculated for C₂₂H₂₇NONa 344.1984; found 344.1987.

N-(2-cyclohexyl-1-(*m*-tolyl)ethyl)acetamide (7i, unreported product)

Following the general procedure B, colorless oil (97.1 mg, 75%).

¹**H NMR** (500 MHz, DMSO-*d*₆) δ 8.23 (d, *J* = 8.6 Hz, 1H), 7.24 (d, *J* = 7.6 Hz, 1H), 7.18–6.77 (m, 3H), 4.88 (td, *J* = 9.2, 5.7 Hz, 1H), 2.34 (s, 3H), 1.87 (s, 3H), 1.82–1.57 (m, 6H), 1.48 (ddd, *J* = 13.8, 8.2, 5.7 Hz, 1H), 1.32–1.14 (m, 4H), 1.04–0.86 (m, 2H).

¹³**C NMR** (125 MHz, DMSO-*d*₆) δ 168.69, 144.95, 137.66, 128.57, 127.59, 127.38, 123.84, 50.09, 44.69, 34.39, 33.54, 32.51, 26.57, 26.23, 26.09, 23.15, 21.57.

HRMS (ESIpos) (m/z): calculated for C₁₇H₂₅NO 259.1930; found 259.1930.

N-(1-(3-bromophenyl)-2-cyclohexylethyl)acetamide (7j, unreported product)

Following the general procedure B, colorless oil (133.8 mg, 83%).

¹**H NMR** (500 MHz, DMSO-*d*₆) δ 8.33 (d, *J* = 8.5 Hz, 1H), 7.52 (d, *J* = 1.3 Hz, 1H), 7.46 (ddd, *J* = 5.7, 3.6, 2.0 Hz, 1H), 7.36–7.30 (m, 2H), 5.15–4.60 (m, 1H), 1.89 (s, 3H), 1.82–1.59 (m, 6H), 1.48 (ddd, *J* = 13.7, 8.3, 5.5 Hz, 1H), 1.33–1.13 (m, 4H), 1.06–0.88 (m, 2H).

¹³**C NMR** (125 MHz, DMSO-*d*₆) δ 168.96, 147.97, 130.94, 129.90, 129.41, 126.00, 122.11, 49.89, 44.40, 34.38, 33.51, 32.37, 26.54, 26.22, 26.05, 23.10.

HRMS (ESIpos) (m/z): calculated for C₁₆H₂₂BrNO 323.0879; found 323.0881.

N-(2-cyclohexyl-1-(3-(trifluoromethyl)phenyl)ethyl)acetamide (**7k**, unreported product)

Following the general procedure B, colorless oil (70.4 mg, 45%).

1H NMR (500 MHz, DMSO-*d*₆) δ 8.41 (d, *J* = 8.4 Hz, 1H), 7.72–7.57 (m, 4H), 5.00 (ddd, *J* = 10.1, 8.3, 5.4 Hz, 1H), 1.90 (s, 3H), 1.82–1.62 (m, 6H), 1.50 (ddd, *J* = 13.8, 8.5, 5.4 Hz, 1H), 1.37–1.13 (m, 4H), 1.05–0.89 (m, 2H).

13C NMR (125 MHz, DMSO-*d*₆) δ 169.07, 146.63, 131.05, 129.82, 123.82 (d, *J* = 4.25 Hz, 1C), 123.09 (q, *J* = 364, 17 Hz, 1C), 50.02, 44.40, 34.41, 33.54, 32.31, 26.53, 26.22, 26.05, 23.08.

HRMS (ESIpos) (m/z): calculated for C₁₇H₂₂F₃NO 313.1647; found 313.1649.

N-(2-cyclohexyl-1-(o-tolyl)ethyl)acetamide (**7**I, unreported product)

Following the general procedure B, colorless oil (117.8 mg, 91%).

1H NMR (500 MHz, DMSO- d_6) δ 8.30 (d, J = 8.4 Hz, 1H), 7.40–7.31 (m, 1H), 7.21 (td, J = 8.0, 3.0 Hz, 1H), 7.19–7.11 (m, 2H), 5.15 (ddd, J = 10.4, 8.2, 3.7 Hz, 1H), 2.36 (s, 3H), 1.87 (s, 3H), 1.75–1.49 (m, 5H), 1.46–1.34 (m, 2H), 1.26–1.16 (m, 3H), 1.03–0.96 (m, 2H).

13C NMR (125 MHz, DMSO-*d*₆) δ 168.73, 143.57, 134.54, 130.38, 126.67, 126.50, 125.75, 46.29, 44.07, 34.56, 33.92, 32.25, 26.56, 26.27, 26.08, 23.08, 19.18.

HRMS (ESIpos) (m/z): calculated for C₁₇H₂₅NO 259.1930; found 259.1931.

N-(1-(2-bromophenyl)-2-cyclohexylethyl)acetamide (7m, unreported product)

Ο NH Rr

Following the general procedure B, colorless oil (129.2 mg, 80%).

¹**H NMR** (500 MHz, DMSO-*d*₆) δ 8.45 (d, *J* = 8.3 Hz, 1H), 7.60 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.49–7.38 (m, 2H), 7.21 (ddd, *J* = 8.0, 7.0, 2.0 Hz, 1H), 5.66–5.04 (m, 1H), 1.92–1.90 (m, 4H), 1.78–1.61 (m, 4H), 1.53–1.41 (m, 3H), 1.31–1.16 (m, 3H), 1.00 (t, *J* = 6.9 Hz, 2H).

¹³**C NMR** (125 MHz, DMSO-*d₆*) δ 169.06, 144.45, 132.90, 128.93, 128.44, 127.71, 122.38, 49.87, 43.68, 34.58, 34.01, 31.90, 26.54, 26.25, 26.02, 23.06.

HRMS (ESIpos) (m/z): [M+Na]⁺ calculated for C₁₆H₂₂BrNONa 346.0777; found 346.0776.

N-(2-cyclohexyl-1-mesitylethyl)acetamide (**7n**, unreported product)

HN^{_Ac}

Following the general procedure B, white solid (88.9 mg, 62%).

1H NMR (500 MHz, DMSO-*d*₆) δ 8.11 (d, *J* = 7.1 Hz, 1H), 6.77 (s, 2H), 5.21 (ddd, *J* = 11.2, 7.1, 4.4 Hz, 1H), 2.38 (s, 6H), 2.21 (s, 3H), 1.95–1.88 (m, 1H), 1.86 (s, 3H), 1.83–1.62 (m, 6H), 1.46–1.12 (m, 5H), 1.08–0.84 (m, 2H).

¹³**C NMR** (125 MHz, DMSO-*d*₆) δ 168.88, 137.59, 135.63, 135.09, 47.06, 40.91, 34.52, 34.06, 32.13, 26.58, 26.30, 26.10, 22.80, 21.00, 20.73.

HRMS (ESIpos) (m/z): calculated for C₁₉H₂₉NO 287.2243; found 287.2242.

N-((15, 2S)-1,2-diphenylpropyl)acetamide (15, 2S-7o, unreported product)

Following the general procedure B, colorless oil (33.0 mg, 25.5 %).

¹**H NMR** (600 MHz, DMSO- d_6) δ 8.26 (d, J = 9.2 Hz, 1H), 7.31–7.27 (m, 2H), 7.26–7.23 (m, 2H), 7.22–7.18 (m, 1H), 4.59 (dd, J = 10.6, 9.2 Hz, 1H), 1.79 (s, 3H), 1.77–1.54 (m, 5H), 1.47 (d, J = 12.4 Hz, 1H), 1.33–1.06 (m, 5H), 0.91 (td, J = 12.4, 8.9 Hz, 1H), 0.45 (d, J = 7.0 Hz, 3H).

¹³**C NMR** (151 MHz, DMSO-*d*₆) δ 168.41, 144.04, 128.52, 127.85, 127.01, 55.58, 42.81, 38.38, 32.10, 27.15, 26.80, 26.78, 26.11, 23.11, 12.53.

HRMS (ESIpos) (m/z): calculated for C₁₇H₂₅NO 259.1930; found 259.1931.

N-((1S, 2R)-2-cyclohexyl-1-phenylpropyl)acetamide (1S, 2R-70, unreported product)

Following the general procedure B, colorless oil (33.0 mg, 25.5 %)

¹**H NMR** (600 MHz, DMSO-*d*₆) δ 8.07 (d, *J* = 9.2 Hz, 1H), 7.33–7.28 (m, 2H), 7.25–7.16 (m, 3H), 4.88 (dd, *J* = 9.3, 7.6 Hz, 1H), 1.85 (s, 3H), 1.73–1.59 (m, 4H), 1.57–1.49 (m, 2H), 1.15–0.86 (m, 5H), 0.77 (d, *J* = 6.9 Hz, 3H).

¹³**C NMR** (151 MHz, DMSO-*d*₆) δ 168.96, 143.90, 128.56, 127.21, 126.86, 54.87, 43.59, 39.13, 31.61, 27.99, 26.73, 26.59, 26.50, 23.11, 11.77.

HRMS (ESIpos) (m/z): calculated for C₁₇H₂₅NO 259.1930; found 259.1931.

N-((1*S*, 2*R*)-2-cyclohexyl-1,2-diphenylethyl)acetamide (1*S*, 2*R*-**7***p*, unreported product, minor component)

Following the general procedure B, colorless oil (21.3 mg, 13.3%).

¹**H NMR** (600 MHz, DMSO-*d*₆) δ 8.35 (d, *J* = 9.3 Hz, 1H), 7.36–6.96 (m, 10H), 5.38 (dd, *J* = 9.3 Hz, 11.7 Hz, 1H), 3.02 (dd, *J* = 3.9 Hz, 11.7 Hz, 1H), 1.91-1.81 (m, 5H), 1.67–1.32 (m, 2H), 1.58–1.50 (m, 2H), 1.24–1.22 (m, 1H), 1.11–1.08 (m, 1H), 0.95–0.58 (m, 3H).

¹³**C NMR** (151 MHz, DMSO-*d*₆) δ 168.47, 143.51, 139.61, 130.28, 128.16, 128.10, 127.75, 126.62, 126.30, 55.85, 53.16, 39.00, 32.60, 27.35, 26.91, 26.75, 26.59, 23.18.

HRMS (ESIpos) (m/z): [M+H]⁺ calculated for C₂₂H₂₇NO 322.2165; found 322.2165.

N-((15, 25)-2-cyclohexyl-1,2-diphenylethyl)acetamide (15, 25-7p, unreported product, major component)

Following the general procedure B, colorless oil (42.6 mg, 26.7%).

¹**H NMR** (600 MHz, DMSO-*d*₆) δ 7.94 (d, *J* = 9.3 Hz, 1H), 7.36–6.96 (m, 10H), 5.37 (dd, *J* = 9.3 Hz, 10.9 Hz, 1H), 2.91 (dd, *J* = 4.3 Hz, 10.9 Hz, 1H), 1.75-1.71 (m, 1H), 1.58–1.47 (m, 6H), 1.43–1.42 (m, 1H), 1.14–1.11 (m, 1H), 0.95–0.58 (m, 5H).

¹³**C NMR** (151 MHz, DMSO-*d*₆) δ 168.21, 143.61, 139.73, 129.92, 128.67, 127.75, 127.68, 127.27, 126.62, 126.54, 56.73, 53.23, 38.61, 32.67, 27.64, 26.59, 26.38, 26.37, 22.96.

HRMS (ESIpos) (m/z): [M+H]⁺ calculated for C₂₂H₂₇NO 322.2165; found 322.2165.

N-(2-cyclohexyl-1-phenylethyl)propionamide (8a, unreported product)

NH

Following the general procedure C, white solid (90.6 mg, 70%).

¹**H NMR** (500 MHz, DMSO- d_6) δ 8.13 (d, J = 8.6 Hz, 1H), 7.51–7.24 (m, 4H), 7.23–7.17 (m, 1H), 4.88 (td, J = 9.2, 5.8 Hz, 1H), 2.10 (m, 2H), 1.77 – 1.54 (m, 6H), 1.45 (m, 1H), 1.29–1.07 (m, 4H), 0.98 (t, J = 7.6 Hz, 3H), 0.94–0.80 (m, 1H).

¹³**C NMR** (125 MHz, DMSO-*d*₆) δ 172.53, 145.09, 128.66, 126.91, 126.71, 50.00, 44.66, 34.47, 33.53, 32.47, 29.04, 26.56, 26.26, 26.13, 10.57.

HRMS (ESIpos) (m/z): calculated for C₁₇H₂₅NO 259.1930; found 259.1933.

N-(2-cyclohexyl-1-phenylethyl)butyramide (8b, unreported product)

Following **the general procedure C**, white solid (79.1 mg, 58%).

¹**H NMR** (500 MHz, DMSO-*d*₆) δ 8.16 (d, *J* = 8.7 Hz, 1H), 7.35–7.24 (m, 4H), 7.23–7.17 (m, 1H), 4.89 (td, *J* = 9.5, 5.4 Hz, 1H), 2.09–2.05 (m, 2H), 1.66–1.43 (m, 9H), 1.24–1.11 (m, 4H), 0.94–0.81 (m, 3H).

¹³C NMR (125 MHz, DMSO-*d₆*) δ 171.64, 145.16 128.64, 126.90, 126.69, 49.91, 44.61, 37.85, 34.49, 33.63, 32.31, 26.55, 26.32, 26.13, 19.29, 13.95.

HRMS (ESIpos) (m/z): calculated for C₁₈H₂₇NO 273.2087; found 273.2088.

N-(2-cyclohexyl-1-phenylethyl)pentanamide (8c, unreported product)

Following the general procedure C, white solid (86.1 mg, 60%).

¹**H NMR** (500 MHz, DMSO-*d*₆) δ 8.16 (d, *J* = 8.6 Hz, 1H), 7.34–7.24 (m, 4H), 7.23–7.18 (m, 1H), 4.89 (td, *J* = 9.5, 5.4 Hz, 1H), 2.19–2.02 (m, 2H), 1.74 (d, *J* = 12.8 Hz, 1H), 1.69–1.37 (m, 8H), 1.28–1.22 (m, 3H), 1.15–1.09 (m, 3H), 1.04–0.86 (m, 2H), 0.85 (t, *J* = 7.4 Hz, 3H).

¹³**C NMR** (125 MHz, DMSO-*d*₆) δ 171.77, 145.16, 128.64, 126.89, 126.67, 49.90, 44.63, 35.60, 34.49, 33.65, 32.31, 28.01, 26.56, 26.13, 22.11, 14.16.

HRMS (ESIpos) (m/z): calculated for C₁₉H₂₉NO 287.2243; found 287.2242.

N-(2-cyclohexyl-1-phenylethyl)hexanamide (8d, unreported product)

Following the general procedure C, white solid (114.4 mg, 76%).

¹**H NMR** (500 MHz, DMSO-*d*₆) δ 8.16 (d, *J* = 8.6 Hz, 1H), 7.32–7.25 (m, 4H), 7.23–7.17 (m, 1H), 4.89 (td, *J* = 9.6, 5.3 Hz, 1H), 2.15–2.03 (m, 2H), 1.75 (d, *J* = 13.0 Hz, 1H), 1.71–1.35 (m, 8H), 1.37–1.05 (m, 8H), 1.00–0.88 (m, 1H), 0.85 (t, *J* = 7.2 Hz, 4H).

¹³C NMR (125 MHz, DMSO-*d₆*) δ 171.78, 145.18, 128.62, 126.89, 126.67, 49.87, 44.64, 35.83, 34.49, 33.68, 32.28, 31.21, 26.56, 26.35, 26.14, 25.56, 22.32, 14.37.

HRMS (ESIpos) (m/z): calculated for C₂₀H₃₁NO 301.2400; found 301.2400.

N-(2-cyclohexyl-1-phenylethyl)-2-methoxyacetamide (**8f**, unreported product)

Following the general procedure C, white solid (61.7 mg, 48%).

¹**H NMR** (500 MHz, DMSO-*d*₆) δ 8.14 (d, *J* = 8.8 Hz, 1H), 7.31 (d, *J* = 6.7 Hz, 4H), 7.25–7.18 (m, 1H), 4.95 (td, *J* = 9.4, 5.7 Hz, 1H), 3.81 (d, *J* = 3.8 Hz, 2H), 3.30 (s, 3H), 1.78–1.37 (m, 7H), 1.29–1.06 (m, 4H), 0.98–0.83 (m, 2H).

¹³**C NMR** (125 MHz, DMSO-*d*₆) δ 168.67, 144.63, 128.67, 127.07, 126.93, 71.99, 58.95, 49.85, 43.92, 34.44, 33.50, 32.40, 26.56, 26.25, 26.10.

HRMS (ESIpos) (m/z): calculated for C₁₇H₂₅NO₂ 275.1879; found 275.1879.

2-cyclohexyl-1-phenylethyl acetate (8g, CAS: 2366999-88-2)

Following the general procedure C, colorless oil (77.5 mg, 63%).

¹**H NMR** (500 MHz, DMSO-*d*₆) δ 7.46–7.30 (m, 5H), 5.80 (dd, *J* = 8.8, 5.6 Hz, 1H), 2.09 (s, 3H), 1.83 (ddd, *J* = 14.4, 8.8, 6.1 Hz, 1H), 1.78–1.57 (m, 6H), 1.31–1.14 (m, 4H), 1.03–0.96 (m, 2H).

¹³**C NMR** (125 MHz, DMSO-*d*₆) δ 170.23, 141.58, 128.88, 128.16, 126.67, 73.61, 43.94, 34.08, 33.33, 32.75, 26.45, 26.11, 26.01, 21.41.

HRMS (ESIpos) (m/z): calculated for C₁₆H₂₂O₂ 246.1614; found 246.1616.

4-methoxy-4,4-diphenylbutanenitrile (8h, CAS: 1653998-30-1)

0~ CN

Following the procedure C, pale yellow solid (64.3 mg, 51%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.33–7.29 (m, 8H), 7.25–7.21 (m, 2H), 3.05 (s, 3H), 2.79–2.62 (m, 2H), 2.25–2.03 (m, 2H).

¹³**C NMR** (125 MHz, CDCl₃) δ 143.40, 128.32, 127.38, 126.76, 120.10, 81.46, 50.37, 31.34, 11.52.

HRMS (ESIpos) (m/z): calculated for C₁₇H₁₇NO 252.1382; found 252.1381.

4-ethoxy-4,4-diphenylbutanenitrile (8i, CAS: 1808942-62-2)

CN

Following the procedure C, yellow oil (54.5 mg, 41%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.33–7.28 (m, 8H), 7.25–7.21 (m, 2H), 3.15 (q, *J* = 6.9 Hz, 2H), 2.73–2.66 (m, 2H), 2.17–2.10 (m, 2H), 1.21 (t, *J* = 6.9 Hz, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 143.89, 128.27, 127.27, 126.64, 120.18, 81.01, 57.84, 32.02, 15.36, 11.59.

HRMS (ESIpos) (m/z): calculated for C₁₈H₂₀NO 266.1539; found 266.1544.

N-(1,2-diphenylethyl)acetamide (10a, CAS: 21511-90-0)

Following **the general procedure D**, white solid (118.3 mg, 99%).

¹**H NMR** (500 MHz, DMSO- d_6) δ 8.42 (d, J = 8.7 Hz, 1H), 7.41–7.34 (m, 4H), 7.33–7.20 (m, 6H), 5.08 (td, J = 8.6, 6.6 Hz, 1H), 3.07–2.87 (m, 2H), 1.82 (s, 3H).

¹³**C NMR** (125 MHz, DMSO-*d*₆) δ 168.73, 143.89, 139.19, 129.52, 128.61, 128.46, 127.17, 127.04, 126.53, 54.50, 42.75, 23.08.

HRMS (ESIpos) (m/z): calculated for C₁₆H₁₇NO 240.1382; found 240.1386.

(1-methoxyethane-1,2-diyl)dibenzene (10b, CAS: 27820-29-7)

Following the general procedure D, colorless oil (33 mg, 31%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.34 (ddd, *J* = 8.8, 6.4, 0.9 Hz, 2H), 7.29–7.25 (m, 3H), 7.23 (dd, *J* = 7.9, 6.5 Hz, 2H), 7.20–7.10 (m, 3H), 4.40 (dd, *J* = 7.9, 5.7 Hz, 1H), 3.07 (s, 3H), 3.02 (dd, *J* = 13.8, 7.9 Hz, 1H), 2.85 (dd, *J* = 13.8, 5.6 Hz, 1H).

¹³C NMR (125 MHz, CDCl₃) δ 142.01, 138.90, 129.78, 128.68, 128.39, 127.96, 127.19, 126.43, 84.32. 5650.
44.17.

HRMS (ESIpos) (m/z): [M+Na]⁺ calculated for C₁₅H₁₆ONa 235.1093; found 235.1094.

(1-fluoroethane-1,2-diyl)dibenzene (10c, CAS: 74185-77-6)

Colorless solid (26.0 mg, 25%)

¹**H NMR** (500 MHz, CDCl₃) δ 7.42–7.21 (m, 8H), 7.20–7.15 (m, 2H), 5.61 (ddd, *J* = 47.4, 8.1, 4.8 Hz, 1H), 3.27 (ddd, *J* = 17.5, 14.3, 8.1 Hz, 1H), 3.11 (ddd, *J* = 28.6, 14.3, 4.8 Hz, 1H).

¹⁹**F NMR** (471 MHz, CDCl₃) δ -153.64 – -193.14 (m).

¹³**C NMR** (125 MHz, CDCl₃) δ 129.53, 128.40, 128.38, 128.36, 126.70, 125.70, 125.65, 94.90 (d, *J* = 172.5 Hz, 1C), 43.96 (d, *J* = 23.8 Hz, 1C).

HRMS (ESIpos) (m/z): calculated for C₁₄H₁₃F 200.0995; found 200.0995.

(1,4-dicyclohexylbutane-2,3-diyl)dibenzene (9, CAS: 644985-99-9)

Colorless solid (48.6 mg, 31%)

¹**H NMR** (500 MHz, CDCl₃) δ 7.29 (t, J = 7.5 Hz, 4H), 7.23–7.17 (m, 2H), 7.16–7.10 (m, 4H), 2.79–2.72 (m, 2H), 1.70 (d, J = 12.4 Hz, 2H), 1.52–1.39 (m, 7H), 1.31 (dtd, J = 12.9, 10.7, 10.1, 3.1 Hz, 4H), 1.08–1.03 (m, 2H), 0.98–0.93 (m, 5H), 0.76–0.66 (m, 4H), 0.51 (qd, J = 11.8, 3.7 Hz, 2H).

¹³**C NMR** (125 MHz, CDCl₃) δ 145.02, 128.36, 128.12, 125.82, 49.37, 42.33, 34.58, 34.49, 31.69, 26.57, 26.16, 25.94.

HRMS (ESIpos) (m/z): calculated for C₂₈H₃₈ 374.2968; found 374.2964.

N-(cyclohex-2-en-1-yl)acetamide (**11a**, CAS: 39819-72-2)

Following the general procedure E, colorless solid (49.6 mg, 70%)

¹**H NMR** (300 MHz, CDCl₃) δ 5.81–5.85 (m, 1H), 5.53–5.48(m, 1H), 4.45–4.39 (m, 1H), 1.96–1.90 (m, 2H), 1.90 (s, 3H), 1.89–1.79 (m, 1H), 1.61–1.53 (m, 2H), 1.49–1.40 (m, 1H).

¹³**C NMR** (125 MHz, CDCl₃) *δ* 169.16, 130.94, 127.64, 44.68, 29.43, 24.79, 23.51, 19.69.

HRMS (ESIpos) (m/z): calculated for C₈H₁₃NO 140.1069; found 140.1068.

N-(bicyclo[3.2.1]oct-3-en-2-yl)acetamide (**11b**, CAS: 1823085-93-3)

Following the general procedure E, colorless solid (59.4 mg, 72%)

¹**H NMR** (300 MHz, CDCl₃) δ 6.05–5.99 (m, 1H), 5.47 (s, 1H), 5.27–5.22 (m, 1H), 4.06–4.02 (m, 1H), 2.42– 2.33 (m, 2H), 1.90 (s, 3H), 1.83–1.81 (m, 1H), 1.60–1.53 (m, 2H), 1.44–1.22 (m, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 168.64, 138.76, 123.26, 52.31, 38.50, 35.41, 32.19, 31.52, 26.63, 23.52.

HRMS (ESIpos) (m/z): calculated for C₁₀H₁₅NO 165.1148; found 165.1149.

N-(cyclohex-2-en-1-yl)propionamide (11c, CAS: 95973-99-2)

Following the general procedure E, colorless solid (25.2 mg, 33%)

¹**H NMR** (300 MHz, DMSO-*d*₆) δ 7.81 (d, *J* = 8.0 Hz, 1H), 5.83–5.81 (m, 1H), 5.57–5.49 (m, 1H), 4.30–4.27 (m, 1H), 2.11 (q, *J* = 7.5, 3.5 Hz, 2H), 2.02–1.99 (m, 2H), 1.80–1.1.76 (m, 2H), 1.60–1.56 (m, 1H), 1.48–1.44 (m, 1H), 1.03 (t, *J* = 7.5 Hz, 1H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 172.57, 129.56, 129.35, 44.26, 29.48, 28.87, 24.86, 20.18, 10.45.

HRMS (ESIpos) (m/z): calculated for C₉H₁₅NO 153.1148; found 153.1149.

(E)-N-(oct-4-en-3-yl)acetamide (11d, CAS: 2308508-60-1)

Following the general procedure E, colorless solid (41.4 mg, 49%)

¹**H NMR** (600 MHz, DMSO-*d*₆) δ 7.78 (d, *J* = 10.8 Hz, 1H), 5.55–5.49 (m, 1H), 5.39–5.35 (m, 1H), 4.17–4.11 (m, 1H), 2.03–1.99 (m, 2H), 1.86 (s, 3H), 1.46–1.37 (m, 4H), 0.91 (t, *J* = 9.0 Hz, 3H), 0.86 (t, *J* = 9.0 Hz, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 168.61, 131.58, 130.09, 51.99, 34.19, 28.21, 23.17, 22.38, 13.94, 10.86.

HRMS (ESIpos) (m/z): calculated for C₁₀H₁₉NO 169.1461; found 169.1461.

(*E*)-*N*-(oct-5-en-4-yl)acetamide (**11e**, CAS: 2308508-61-2)

Following the general procedure E, colorless solid (33.8 mg, 40%)

¹**H NMR** (600 MHz, DMSO-*d*₆) δ 7.77 (d, *J* = 10.2 Hz, 1H), 5.59–5.54 (m, 1H), 5.39–5.34 (m, 1H), 4.26–4.21 (m, 1H), 2.07–2.01 (m, 2H), 1.85 (s, 3H), 1.44–1.40 (m, 2H), 1.32–1.27 (m, 2H), 0.99 (t, *J* = 9.0 Hz, 3H), 0.90 (t, *J* = 8.4 Hz, 3H).

¹³**C NMR** (125 MHz, DMSO-*d*₆) δ 168.52, 131.54, 130.70, 50.04, 37.48, 25.11, 23.17, 19.18, 14.19, 13.99.

HRMS (ESIpos) (m/z): calculated for C₁₀H₁₉NO 169.1461; found 169.1461.

(E)-N-(dec-5-en-4-yl)acetamide (**11f**, unreported product)

Following the general procedure E, colorless solid (36.4 mg, 37%)

¹**H NMR** (600 MHz, DMSO-*d*₆) δ 7.71 (d, *J* = 6.0 Hz, 1H), 5.46–5.41 (m, 1H), 5.32–5.27 (m, 1H), 4.18–4.11 (m, 1H), 1.95–1.91 (m, 2H), 1.78 (s, 3H), 1.38–1.30 (m, 2H), 1.28–1.18 (m, 5H), 0.86–0.82 (m, 7H).

¹³**C NMR** (125 MHz, DMSO-*d*₆) δ 167.98, 131.17, 129.46, 49.56, 36.92, 31.18, 30.85, 22.62, 21.84, 18.61, 13.70, 13.64.

HRMS (ESIpos) (m/z): calculated for C₁₂H₂₃NO 197.3172; found 197.3171.

(E)-N-(dec-6-en-5-yl)acetamide (**11g**, CAS: 131317-75-4)

Following the general procedure E, colorless solid (36.4 mg, 37%)

¹**H NMR** (600 MHz, DMSO-d6) δ 7.71 (d, *J* = 6.0 Hz, 1H), 5.46–5.41 (m, 1H), 5.32–5.27 (m, 1H), 4.18–4.11 (m, 1H), 1.95–1.91 (m, 2H), 1.78 (s, 3H), 1.38–1.30 (m, 2H), 1.28–1.18 (m, 5H), 0.86–0.82 (m, 7H).

¹³**C NMR** (125 MHz, DMSO-*d*₆) δ 167.98, 131.40, 129.30, 49.87, 34.45, 33.62, 27.65, 22.62, 21.82, 21.48, 13.86, 13.38.

HRMS (ESIpos) (m/z): calculated for C₁₂H₂₃NO 197.3172; found 197.3171.

N-(9H-fluoren-9-yl)acetamide (13a, CAS: 5424-77-1)

Colorless solid (78.1 mg, 70%)

¹**H NMR** (300 MHz, DMSO-*d*₆) δ 8.50 (d, *J* = 8.4 Hz, 1H), 7.92–7.89 (m, 2 H), 7.57–7.47 (m, 2H), 7.46–7.45 (m, 2H), 7.41–7.36 (m, 2H), 6.07 (d, *J* = 8.4 Hz, 1H), 2.0 (s, 3H).

¹³**C NMR** (125 MHz, DMSO-*d*₆) δ 170.07, 144.86, 139.95, 128.28, 127.54, 124.82, 120.05, 54.02, 22.53.

HRMS (ESIpos) (m/z): calculated for C₁₅H₁₃NO 223.0989; found 223.0997.

NMR and some HRMS Spectra of the Products

LJB-LA-511 CDCI₃; 298 K; AV600a

Abam X(nam)

Major compound

C9, 10 and 11 are possibly to be interchanged. H8-H12 are overlapped at 1.46-1.17 ppm.

The other isomers in the mixture present too much signal overlap for reliable structure elucidation.

ALOIN	o (ppm)	3	nove	milde	COST	NULSI	H-III-IDC
C1	126.80		1	3			
H1	7.184	m (overlapped)	1	3			
C2	128.71		2				
H2	7.29	m (overlapped)	2	4			
C3	126.64		3	1,5			
H3	7.26	m (overlapped)	3	1,5		5,6b,14	
C4	146.39			2, 5, 6a, 6b			
C5	49.17		5	3, 6a, 6b, 16			
H5	4.93	d 3.5(6b), t 9.0(6a, 14)	5	3, 4, 7, 15	6a,6b,14	3,6b, 13, 14	
C6	49.08		6a, 6b	13			-
H6a	1.746	d 9.1(5), d 14.4(6b)	6	4, 5, 7, 8, 12, 13	5, 6b, 13, 14	14	
H6b	1.488	d 3.5(5), d 14.4(6a)	6	4, 5, 7, 8, 12, 13	5, 6a, 13, 14	3,5	
C7	33.32			5,6a,6b			
C8	38.03		8a, 8b	6a, 6b, 12, 13			
H8a	1.30	m (overlapped)	8	12			
H8b	1.21	m (overlapped)	8				
C9	21.94		9				
H9	1.46-1.17	m (overlapped)	9			-	
C10	26.39		10				
H10	1.46-1.17	m (overlapped)	10				
C11	21.99		11				
H11	1.46-1.17	m (overlapped)	11				
C12	38.11		12	6a, 6b, 8a, 13			
H12	1.46-1.17	m (overlapped)	12	8			
C13	25.56		13	6a, 6b			
H13	0.896	S	13	6,8,12	6a,6b	5,14	
N14	-246.5						14, 16
H14	8.257	d 8.80(5)		15	5, 6a, 6b, 16	3, 5, 6a, 13, 16	14
C15	168.16			5, 14, 16			
C16	23.23		16				
H16	1.789	S	16	5, 15	14	14	14

154

NOTEY

LJB-LA-511.13.fid — LJB-LA-511 — 1H — DMSO-d6; 298 K; 2 mg — av600a, cryoTCI

CH2-Groups are overlapping and can not be assigned with the Multiplet Manager individually. The measured 2D-Spectra support the suggested structure. Important HMBCs are: C9 - H7, C7 - H5 / H1, C15 - H7 There are <u>no NOEs</u> between H200 - H14 and H14 and H16. Important NOEs are: H7 - H14 / H12 / H9 / H8, H200 - H1 / H7 / H16 / H8 / H9

Atom	δ (ppm)	Min. Max (ppm)	Redicted Shift	3	0091	HSQC	HMBC	NOESI	Atom	δ (ppm)	Min. Max (ppm)	Predicted Shift	J	(COSY	HEQC	HMBC	NOESY
1 C	126.38	126.35.126.41	127.29			1	3, 7		10C	35.2	35.14.35.25	36.98			10, 10*	8', 8'', 14	
н	7.26	7.247.29	7.34	1.50(3)	2	1	3, 7	7, 8, 8, 9, 14, 16, 200	н	1.07	1.041.10	1.18, 1.30		10*	10	11	7, 9, 10 [°] , 11
2 C	128.14	128.11128.18	128.25			2	4		н	1.31	1.271.34	1.18, 1.30		10'	10		7, 10', 11
н	7.3	7.277.33	7.32	7.20(3)	1, 3	2	4, 6	7	11C	28.18	28.13.28.22	29.47			11	10, 12, 13	
3C	126.5	126.44.126.56	127.66			3	1, 5		HE	1.18	1.121.25	1.22, 1.28			11	13	7, 10', 10", 12
н	7.2	7.177.23	7.25	7.20(2), 1.50(1), 7.20(4), 1.50(5), 2.00(?)	2.4	3	1, 5		12C	22.21	22.16.22.25	23.09			12	13	
4C	128.14	128.11.128.18	128.25			4	2		HR	1.22	1.161.28	1.24, 1.26		13	12	11	8, 11, 13
н	7.3	7.277.33	7.32	7.20(3)	3, 5	4	2,6	7	13C	13.87	13.83.13.90	14.08			13	11	
5 C	126.38	126.35.126.41	127.29			5	3, 7		нв	0.83	0.810.86	0.89	6.97(7).	12	13	11, 12	12
н	7.26	7.247.29	7.34	1.50(3)	4	5	3, 7	7, 8', 8', 9, 14, 16, 200	14C	19.56	19.52.19.61	18.96			14	8', 8"	
6 C	144.05	144.01144.09	143.24				2, 4, 7, 8', 8'		HB	0.86	0.830.88	0.91	6.62(7)	9	14	8, 9, 10	1, 5, 7, 8, 8,
7C	50.33	50.2750.38	51.39			7	1, 5, 8', 8',		15C	168.06	168.03168.10	169.5				7, 16, 200	
н	4.83	4.794.86	4.96	8.80(200), 8.52(8"), 7.02(?)	8, 8, 200	7	1, 5, 6, 8, 9, 15	1, 2, 4, 5, 8', 8', 9, 10', 10', 11, 14, 200	16C	22.58	22.53.22.63	23.11			16		
8 C	43.66	43.5943.72	38.39			8', 8"	7, 14, 200		нв	1.8	1.791.81	1.85			16	15	1, 5, 200
н	1.58	1.541.62	1.64, 1.88	13.63(?), 6.86(?), 6.86(?)	7, 8°, 9	8	6, 7, <mark>9</mark> , 10, 14	1, 5, 7, 8 ' , 9, 12, 14, 200	100 O								
н	1.49	1.451.53	1.64, 1.88	8.52(7), 13.42(7), 6.60(?)	7, 8, 9	8	6, 7, 9, 10, 14	1, 5, 7, 8, 9, 14, 200	200 N								
9C	28.95	28.9028.99	29.77	CONTRACT OF CONTRACT		9	7, 8', 8", 14		н	8.23	8.218.25	6.14	8.80(7)	7		7, 8, 15	1, 5, 7, 8, 8,
н	1.28	1.251.31	1.39		8, 8, 14	9		1, 5, 7, 8', 8', 10', 14, 200									

 $\stackrel{1}{} H NMR (600 MHz, DMSO) \delta 8.20 (dd, J = 8.7, 3.7 Hz, 1H, 3, 43, 23), 7.32 - 7.23 (m, 4H, 7, 8, 47, 48, 27, 28), 7.19 (ddt, J = 8.7, 5.4, 1.6 Hz, 1H, 9, 49, 29), 4.89 - 4.78 (m, 1H, 2, 42, 22), 1.83 - 1.78 (m, 2H, 5.45, 25), 1.66 (ddd, J = 13.3, 10.5, 4.4 Hz, 0H, 17), 1.56 (dp, J = 14.0, 4.3 Hz, 0H, 41', 21'), 1.47 (ddt, J = 13.6, 6.3, 37 Hz, 0H, 41', 21'), 1.47 (ddt, J = 1.25 (m, 1H, 1'), 1.27 (ddt, J = 1.25 (m, 7H, 13'), 1.47 (ddt, J = 1.25 (m, 1H, 1'), 1.57 (ddt, J = 1.25 (m, 7H, 13'), 1.47 (ddt, J = 1.25 (m, 1H, 1'), 1.57 (ddt, J = 1.27 (m, 7H, 13'), 1.47 (ddt, J = 1.25 (m, 1H, 1'), 1.57 (ddt, J = 1.27 (m, 1H, 15'), 1.57 (ddt, J = 1.27 (m, 1H, 1'), 1.57 (ddt, J = 1.27 (m, 1H, 1'), 1.57 (ddt, J = 1.27 (m, 1H, 15'), 1.57 (ddt, J = 1.57 (m, 1H, 15'), 1.57 (ddt, J = 1.57$

¹³C NMR (151 MHz, DMSO) δ 168.83 (4), 168.73 (24), 168.69 (44), 145.12 (6), 144.86 (26), 144.81 (46), 128.66 (8, 48, 28), 126.92 (9, 49, 29), 126.74 (7, 47, 27), 50.73 (42), 50.67 (22), 50.53 (2), 44.54 (1), 41.02 (41), 40.99 (21), 36.90 (13), 35.37 (24), 35.09 (53), 35.02 (33), 34.63 (54), 29.68 (12), 29.62 (14), 25.88 (52), 24.93 (32), 23.10 (5, 45, 25), 22.89 (15), 19.51 (35), 19.47 (11), 19.21 (55), 14.83 (36), 14.72 (56), 14.46 (16), 10.87 (51), 10.41 (31).

Notes:

-This is a mixture of products. The signals are heavily overlapped in 1H, but thankfully many signals can be resolved in 13C. -Therefore, the assignment is mainly based on predictions from the suggested products... -The C-C bond with hexane was formed at position 2 in the major product and at position 3 in the other two minor products which are diastereomers of one another. -We cannot assign which diastereomer is which. -The ratios is approx:3:2:1.5

-The HMBC, COSY and NOESY spectra were not assigned

Atom	δ (ppm)	Predicted Shift	HSQC		Atom	ð (ppm)	Predicted Shift	HSQC		Atom	δ (ppm)	Predicted Shif	HSQC
1 C	44.54	41.31	1', 1"		21 C	40.99	39	21', 21"		41 C	41.02	39	41', 41"
H'	1.66	1.73, 1.77	1		H	1.56	1.78, 1.81	21		H	1.56	1.78, 1.81	41
H"	1.31	1.73, 1.77	1		H ^r	1.47	1.78, 1.81	21		H"	1.47	1.78, 1.81	41
2 C	50,53	52.3	2		22 C	50.67	52.14	22		42 C	50.73	52.15	42
н	4.84	4.85	2		н	4.84	4.82	22		н	4.84	4.81	42
3 N	-250.7		1	1	23 N	-250.7	(43 N	-250.7		
н	8.2	6.8			н	8.2	6.64			н	8.2	6.64	
4 C	168.83	169.82			24 C	168.73	169.82			44 C	168.69	169.82	
5 C	23.1	23.28	5		25 C	23.1	23.28			45 C	23.1	23.28	45
НЗ	1.8	1.88	5		HB	1.8	1.88		- 0	нв	1.8	1.88	45
6 C	145.12	143.37			26 C	144.86	143.36			46 C	144.81	143.36	
7 C	126.74	125.86	7		27 C	126.74	125.86	27		47 C	126.74	125.86	47
н	7.27	7.3	7		н	7.27	7.3	27		н	7.27	7.3	47
8 C	128.66	128.33	8		28 C	128.66	128.33	28		48 C	128.66	128.33	48
н	7.27	7.32	8		н	7.27	7.32	28		н	7.27	7.32	48
9 C	126.92	127.47	9		29 C	126.92	127.47	29		49 C	126.92	127.47	49
н	7.19	7.27	9		н	7.19	7.27	29		н	7.19	7.27	49
11 C	19.47	20.55	11	a 1	31 C	10.41	11.1	31		51 C	10.87	11.1	51
нз	0.85	0.9	11		нз	0.75	0.86	31		нз	0.8	0.86	51
12 C	29.68	30.39	12		32 C	24.93	27.31	32', 32"		52 C	25.88	27.31	52', 52"
н	1.41	1.6	12		н	1.23	1.28, 1.31	32		н	1.23	1.28, 1.31	52
13 C	36.9	36.64	13', 13"		H.,		1.28, 1.31	32		H"	· · · · · · · · · · · · · · · · · · ·	1.28, 1.31	52
H'	1.23	1.23, 1.25	13		33 C	35.02	36.87	33		53 C	35.09	36.87	53
H"	1.12	1.23, 1.25	13	3-3	н	1.23	1.6	33		н	1.23	1.6	53
14 C	29.02	29.4	14', 14"		34 C	35.37	36.46	34', 34"		54 C	34.63	36.46	54', 54''
H'	1.23	1.25, 1.27	14		H	1.23	1.23, 1.25	34		H,	1.23	1.23, 1.25	54
H"		1.25, 1.27	14		HC1		1.23, 1.25	34		H ^e		1.23, 1.25	54
15 C	22.89	23	15', 15"		35 C	19.51	20.05	35', 35"		55 C	19.21	20.05	55', 55''
H'	1.23	1.26, 1.27	15		н	1.23	1.28, 1.29	35		н	1.23	1.28, 1.29	55
н"		1.26, 1.27	15		H"		1.28, 1.29	35		H"		1.28, 1.29	55
16 C	14.46	14.11	16		36 C	14.83	14.48	36		56 C	14.72	14.48	56
нз	0.85	0.89	16		HB	0.85	0.89	36		нв	0.8	0.89	56

 $\label{eq:hardware} \stackrel{1}{} H \, NMR \, (600 \, MHz, DM \, SO) \, \delta \, 820 \, (dd, J = 8.7, 3.7 \, Hz, 1H, 3, 43, 23), 7.32 - 7.23 \, (m, 4H, 7, 8, 47, 48, 27, 28), 7.19 \, (ddt, J = 8.7, 5.4, 1.6 \, Hz, 1H, 9, 49, 29), 4.89 - 4.78 \, (m, 1H, 2, 42, 22), 1.83 - 1.78 \, (m, 2H, 5.45, 25), 1.66 \, (ddd, J = 13.3, 10.5, 4.4 \, Hz, 0H; 1\gamma), 1.56 \, (dp, J = 14.0, 4.3 \, Hz, 0H; 41), 21\gamma, 1.47 \, (dtd, J = 13.6, 6.3, 3.7 \, Hz, 0H; 41'; 1'), 1.41 \, (dJ = 13.4, 10.5, 4.4 \, Hz, 0H; 1\gamma), 1.56 \, (dp, J = 14.0, 4.3 \, Hz, 0H; 41'; 21'), 1.47 \, (dtd, J = 13.6, 6.3, 3.7 \, Hz, 0H; 41'; 1'), 1.41', 0H; 41', 1.34' - 1.25' \, (m, 2H, 14'), 1.55' \, (dp, J = 1.55'$

1D ¹³C{¹H}

¹³C NMR (151 MHz, DMSO) 5 168.83 (4), 168.73 (24), 168.69 (44), 145.12 (6), 144.86 (26), 144.81 (46), 128.66 (8, 48, 28), 126.92 (9, 49, 29), 126.74 (7, 47, 27), 50.73 (42), 50.67 (22), 50.53 (2), 44.54 (1), 41.02 (41), 40.99 (21), 36.90 (13), 35.37 (34), 35.09 (53), 35.02 (33), 34.63 (54), 29.02 (14), 25.88 (52), 24.93 (32), 23.10 (5, 45, 25), 22.89 (15), 19.51 (35), 19.47 (11), 19.21 (55), 14.83 (36), 14.72 (56), 14.44 (16), 10.87 (51), 10.41 (31).

- LJB-LA-520-01 - 5mm, DMSO, 2 mg - noesygpph @ 298K - av600a, cryoTCI

- LJB-LA-520-01 - 5mm, DMSO, 2 mg - hmbcf3gpndqf @ 298K - av600a

MW. No. Comment 6.07.2020 File: 147938a-00.raw Your proposed structures are possible. Ref.-spectrum: U22186:147938a-00 LJB-LA-520-01 Your proposed structures are possible. Equal to Peak 1 1 247 Analyse: LJB-LA-520-01 KMA: Liu, Sensheng 2 247 Messung: GC-MS Ref.-spectrum: U22187:147938a-00 LJB-LA-520-01 Ionisierung: GC-EI Spektrometer: ISQ Series Other measurements will follow (HRMS) MS 84 TG-5 SILMS Säule: Länge: 30 35-5-285-5 Temp.: GC-Nr.: ELNA-Nr.: 25947 Auswerter: Haupt (2243) 2 1 RI15 | 5:00 10:00 15:00 20:00 25:00 30:00]100% 106 Stellungsisomere m\374gligt 148 1 120 43 79 247 91 162 188 55 , ||||, , , , ||, ||, , , , ||, ||, , , , ||, , , , , ||, ||, 174 ||, 188 ||, 204 ||, 218 ||, 232 ||, 174 ||, -40 50 60 70 80 27% MW:247/247.38 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 C16H25N101 147938a-00 LJB-LA-520-01 20 30 U22186 0.13 0.18 0.37 105 3.27 106 100.00 107 8.62 0.06 0.02 0.07 0.45 38 63 0.30 84 130 0.91 155 0.03 200 39 40 64 65 131 132 0.16 202 204 0.11 85 0.78 156 1.09 0.25 1.03 86 157 41 42 66 67 0.11 0.03 108 109 0.39 133 134 0.23 0.14 3.57 0.07 4.60 0.15 87 158 205 2.20 0.48 88 159 218 11.49 0.83 0.35 0.52 0.23 7.37 110 112 0.02 0.88 43 44 45 50 51 52 53 68 89 0.03 139 160 219 0.02 90 91 69 70 71 72 73 74 75 76 77 78 79 0.02 140 161 232 0.02 0.04 0.31 113 0.02 141 0.25 162 6.53 246 0.13 0.27 92 93 0.82 114 115 0.17 2.63 0.71 142 143 0.49 0.59 0.37 5.98 163 164 0.84 247 248 8.25 0.08 0.15 0.43 0.11 94 95 0.11 0.07 116 117 144 145 170 172 0.05 249 0.12 0.08 6.04 54 55 96 97 118 119 146 147 1.12 0.26 0.26 0.14 0.06 1.76 173 0.14 1.99 0.45 0.10 174 0.31 1.10 56 57 58 98 175 0.53 6.91 0.10 120 22.27 148 75.19 0.04 2.96 99 100 0.03 121 122 2.02 149 150 176 0.96 12.86 0.11 11.43 1.03 0.05 0.17 186 0.82 101 102 0.10 126 127 0.12 187 188 0.12 59 0.06 80 151 0.07 60 81 152 0.03 1.53 0.14 0.25 0.02 61 62 0.04 82 103 2.77 128 1.85 153 189 0.49 0.05 83 104 129 1.78 154 15.65 190 0.06 U22186/% MW:247/247.38 C16H25N101 147938a-00 lim: 0.02% LJB-LA-520-01

6.07.2020 14:37 p. #3* Angegebene Mol.-Gewichte u. Massenzahlen basieren auf dem häufigsten Isotop der Elemente *** MassLib

6.07.2020 14:37 p.23* Angegebene Mol.-Gewichte u. Massenzahlen basieren auf dem häufigsten Isotop der Elemente *** MassLib

7.07.2020 06:52 p. ##* Angegebene Mol.-Gewichte u. Massenzahlen basieren auf dem häufigsten Isotop der Elemente *** MassLib

Peak 1

Mass to be matched (m/z): 247.193180 Charge: 1

Mass Tolerance: ± 0.050000 Restriction of atom numbers: C H N O 1-100 1-100 1-2 1-2Number of calculated Formulas: 5

Formula				Diff.(ppm)	theor. m/z
C16	H25	N1	01	-0.47	247.193064
C15 1	H23	N2	01	-51.35	247.180488
C15	H21	N1	02	-147.66	247.156679
C13 1	H31	Ν2	02	181.32	247.238002
C14	H19	Ν2	02	-198.54	247.144102
Г	-				

Suggestion: C16H25N101 MW: 247 7.07.2020 File: 147938b-00.raw Analyse: LJB-LA-520-01 KMA: Liu, Sensheng

Messung:	GC-MS
Ionisierung:	GC-EI
Spektrometer:	Q Exactive GC Orbitrap
Säule:	MS 75 ZB-5HT 30+5
Länge:	30+5
Temp.:	35-10-285-5
GC-Nr.:	-
ELNA-Nr.:	25947
Auswerter:	Haupt (2243)

Peak 2

Mass to be matched (m/z): 247.192960 Charge: 1

Mass Tolerance: ±0.050000 Restriction of atom numbers: C H N O 1-100 1-100 1-2 1-2 Number of calculated Formulas: 5

Formula				Diff.(ppm)	theor. m/z
C16	H25	N1	01	0.42	247.193063
C15	H23	N2	01	-50.46	247.180487
C15	H21	N1	02	-146.77	247.156679
C13	H31	Ν2	02	182.22	247.238003
C14	H19	N2	02	-197.65	247.144102

Suggestion: C16H25N101 MW: 247

P-ID: CF00204 Measured on: 16/05/2020 CHIFFRE: LJB-LA-521-01 ELNA#: 3972 Client: Sensheng Liu Group: Klußmann Spectroscopist: Fares Analysed on: 18/06/2020 Analysed by: Fares Amount: 2.0 mg Solvent: DMSO Reference: solvent Temperature: 298 K Spectrometer: av600a Probe: cryTCI Experiments: 1H-zg30, 13Czgdc30, [13C, 1H]-hsqcedetgpsisp2.4, [13C, 1H]-hmbcetgpl3nd, [1H, 1H]-cosygpmfphpp, [1H, 1H]-noesygpph, [1SN, 1H]-hmbdf_modef_1H) hmbcf3gpndqf, 15N-

 $^{1}\mathrm{H}$ NMR (600 MHz, DMSO) δ 8.23 (d, J = 8.6 Hz, 1H, 3), 7.36 – 7.21 (m, 3H, 7/8), 7.17 (ddt, J = 7.2, 5.3, 1.4 Hz, 1H,9), 4.89 (td, J = 9.1, 4.1 Hz, 1H,2), 1.78 (s, 3H,5), 1.72 – 1.65 (m, 1H,1'), 1.45 (dd, J = 14.3, 3.6 Hz, 1H, 1"), 1.22 – 1.08 (m, 4H,13/14), 0.86 – 0.79 (m, 9H, 11/11"/15).

¹³C NMR (151 MHz, DMSO) 5 168.18 (4), 146.24 (6), 128.69 (8), 126.81(9), 126.64(7), 49.60 (2), 48.53 (1), 44.83 (13), 33.46 (12), 27.91), 27.89 (11'), 23.21), 17.18 (14), 15.33 (15).

15N NMR (61 MHz, DMSO) δ -247.53, 3.

Notes:

-this sample contains many products but only the major components was assigned. -The suggested structure is characteristic of the quatemary carbon C12 and the almost equivalent methyl groups C11 and C11'. -Due to overlap and presence of many side-products, the quality of the 1H spectrum did not allow a precise multiplet and integral characterization. -The stereochemical assignment of C11 and C11' was not attempted. -The NOESY was not evaluated.

Atom	δ (ppm)	Predicted Shift	COSY	HSQC	HMBC
1 C	48.53	47.3		1', 1"	2, 11, 11'
H	1.69	1.78, 1.81	1",2	1	2, 3, 6, 11, 11', 12, 13
H'	1.45	1.78, 1.81	1', 2	1	3
2C	49.6	53.46		2	ſ
н	4.9	4.94	1', 1"	2	1, 6, 7, 12
3 N	-247.53				1, 1', 5
н		6.61			
4C	168.18	170.68			5
5 C	23.21	23.31		5	
H3	1.79	1.88		5	3, 4
6 C	146.24	143.21			1, 2, 8
7C	126.58	126.31		7	2, 7, 9
н	7.26	7.32		7	7, 9
8 C	128.69	128.32		8	8
н	7.29	7.32		8	6, 8
9 C	126.77	127.47		9	7
н	7.18	7.27		9	7
11 C	27.91	29.14		11	í
H3	0.84	0.99		11	1, 11', 12, 13
11' C	27.89	29.14		11'	1, 11, 11
НЗ	0.83	0.86		11'	1, 11', 12, 13
12 C	33.46	34.85			1, 2, 11, 11
13 C	44.83	44.44	1	13	1, 11, 11
H2	1.15	1.27, 1.28	14	13	
14 C	17.18	18.13			
H2	1.17	1.27, 1.28	13		
15 C	15.33	15.08			
НЗ	0.82	0.88			

The NMR-data support a *rel*-S,S configuration.

See for comparison: LJB-LA-556-02

Atom	δ (ppm)	3	HSQC	HMQC	COSY	NOESY	¹⁵ N-HMBC
C1	127.01		1	3			
H1	7.197	m	1	3	2, 3		-
C2	128.52		2				
H2	7.285	m	2	4	1, 3		
C3	127.86		3	1, 5			
НЗ	7.244	m	3	1, 5	1, 2	5, 6, 13, 14	
C4	144.04			2, 5			
C5	55.58		5	3, 13, 14			
H5	4.587	d 10.60(6), d 9.20(14)	5	3, 4, 6, 7, 13, 15	6, 13, 14	3, 6, 12a, 13, 14	
C6	42.81		6	5, 13			
HG	1.661	m	6	7, 12	5, 7, 13	3, 5, 8a, 13, 14	
C7	38.38		7	5, 6, 8b, 12b, 13			
H7	1.595	m (ax)	7		6, 8a, 8b, 12b	8a, 9b, 13, 14	
C8	32.10		8a, 8b				
H8a	1.468	(eq); dm 12.40(8b)	8		7, 8b, 9a, 9b, 12a	6, 7, 8b, 9a, 9b	
H8b	1.175	(ax); d 12.40(7), d 12.4(8a), d 12.10(9b), d 3.20(9a)	8	7, 12	7, 8a, 9a, 9b	8a, 9a, 12b, 13	
C9	27.15		9a, 9b				-
H9a	1.735	(eq); dm 12.50(9b)	9		8a, 8b, 9b, 10a, 10b	8a, 8b, 9b, 10a	
H9b	1.263	(ax); d 12.5(9a), d 12.1(10b); d 12.1(8b); t 3.50(8a, 10a)	9	11	8a, 8b, 9a, 10a, 10b	7, 8a, 9a, 10a	
C10	26.80		10a, 10b				
H10a	1.632	m (eq)	10		9a, 9b, 10b	9a, 9b, 10b, 11b	
H10b	1.077	m (ax)	10	11	9a, 9b, 10a, 11b	10a	
C11	26.78		11a, 11b	9b, 10b, 12b			
H11a	1.703	m (eq)	11		11b, 12a, 12b	11b, 12a, 12b	
H11b	1.113	m (ax)	11		10b, 11a, 12a, 12b	10a, 11a	
C12	26.11		12a, 12b	6, 8b			
H12a	1.574	m (eq)	12		8a, 11a, 11b, 12b	5, 11a, 12b	
H12b	0.907	(ax); q12.10(7, 11b, 12a), d 3.50(11a)	12	7, 11	7, 11a, 11b, 12a	8b, 11a, 12a, 13	
C13	12.54		13	5			
H13	0.454	d 7.00(6)	13	5, 6, 7	5, 6	3, 5, 6, 7, 8b, 12b	
N14	-249.0						14
H14	8.260	d 9.20(5)		5, 15	5	3, 5, 6, 7, 16	14
C15	168.41			5, 14, 16			
C16	23.11		16				
H16	1.789	s	16	15		14	

LJB-LA-556-01 DMSO-d₆; 298 K; 2 mg; AV600a

LJB-LA-556-02 DMSO-d₆; 298 K; 2 mg; AV600a

Atom	δ (ppm)	3	HSQC	HMQC	COSY	NOESY	¹⁵ N-HMBC
C1	126.86		1	3			
H1	7.200	m	1	3	2		
C2	128.56		2				
H2	7.304	m	2	4	1, 3		
C3	127.21		3	1, 5			
H3	7.232	m	3	1, 5	2	5, 6, 7, 12a, 13, 14, 16	Į.
C4	143.90			2,5	0		
C5	54.78		5	3, 6, 13, 14			
Н5	4.877	d 9.30(14), d 7.60(6)	5	3, 4, 6, 13, 15	6,14	3, 6, 7, 8a, 12a, 13, 14	
C6	43.59		6	5,13			2
H6	1.624	d 7.60(5), q 6.90(13), d ~5(7)	6	5, 13	5,13	3, 5, 13, 14	
C7	39.13		7	13			
H7	0.988	m (ax)	7		8b	3, 5, 13, 14	
C8	31.61		8a, 8b				
H8a	1.525	m (eq)	8		8b	5	
нар	1.100	m (ax)	8		7,8a	12b, 13	
C9	26.73		9a, 9b				
H9a	1.630	m (eq)	9		9b		
нэь	1.012	m (ax)	9		9a		1
C10	26.59		10a, 10b				
H10a	1.547	m (eq)	10		10b		
H10b	1.062	m (ax)	10		10a		
C11	26.50		11a, 11b				
H11a	1.656	m (eq)	11		11b		
H11b	0.966	m (ax)	11		11a		
C12	27.99		12a, 12b		14 million (1997)		
H12a	1.656	m (eq)	12		12b	3, 5, 13	
H1 2b	0.911	m (ax)	12		12a	8b, 13	
C13	11.77		13	5,6			
H13	0.773	d 6.90(6)	13	5, 6, 7	6	3, 5, 6, 7, 8b, 12a, 12b, 14, 16	
N14	-254.3						14
H14	8.068	d 9.30(5)		5,15	5	3, 5, 6, 7, 13, 16	14
C15	168.96			5, 14, 16			
C16	23.11		16				
H16	1.846	5	16	15		3, 13, 14	

The NMR-data support a rel-S,R configuration.

C and H 9, 10 and 11 could not be assigned unequivocally and are possibly to be interchanged.

See for comparison: LJB-LA-556-01

LJB-LA-556-02 — HMBC — 298K; DMSO-d6 — av600a; cryoTCl — NUS 25 %

LJB-LA-556-02 — 15N-HMBC — DMSO-d6; 298 K — AV600a

LJB-LA-557 DMSO-d₆; 298 K; 2 mg; AV600a

Click on the pictures to view the 3D-models in Chem3D. Warning: the depicted atom distances have been generated by Chem3D and are not based on experimental values! They are merely a means to qualitatively illustrate the spatial arrangement derived from the NOESY correlations.

Major Component (rel-R,R)

Atom	δ(ppm)	3	NOESY	COSY	HSQC	HMQC	¹⁵ N-HMBC
C1	127.27				1	3	
H1	7.235	m		2, 3	1	3	
C2	128.67				2		
H2	7.324	m		1, 3	2	4	
C3	127.68				3	1, 5	
H3	7.354	m	5, 6, 7, 12a, 17, 19	1, 2	3	1, 5	
C4	143.61					2, 5, 6	
C5	53.23				5	3, 6, 7, 17	
H5	5.374	d 10.9(6), d 9.3(17)	3, 6, 7, 8a, 12a, 14, 17	6, 17	5	3, 4, 6, 7, 13, 18	
C6	56.73				6	5, 7, 8b, 12b, 14, 17	
H6	2.910	d 10.9(5), d 4.3(7)	3, 5, 7, 8a, 14, 17	5, 7	6	4, 5, 7, 12, 13, 14	
C7	38.61				7	5, 6, 8b, 9b, 11b, 12b	0
H7	1.136	m (ax)	3, 5, 6, 8a, 9b, 11b, 12a, 14	6, 8a, 8b, 12a, 12b	7	5, 6	-
C8	32.67				8a, 8b		2
H8a	1.489	m (eq)	5, 6, 7, 8b, 14	7, 8b, 9a, 9b, 12a	8		
H8b	0.683	m (ax)	8a, 12b, 14	7, 8a, 9a, 9b	8	6, 7	S.
C9	26.59				9a, 9b		
H9a	1.510	m (eq)	9b, 10b	8a, 8b, 9b, 10a, 10b	9		
H9b	0.931	m (ax)	7,9a,10a	8a, 8b, 9a, 10a, 10b	9	7	
C10	26.38				10a, 10b		
H10a	1.419	m (eq)	9b, 10b, 11a, 11b	9a, 9b, 10b, 11a, 11b, 12a	10		
H10b	0.767	m (ax)	9a, 10a, 11a, 12b	9a, 9b, 10a, 11a, 11b	10		
C11	26.37				11a, 11b		
H11a	1.561	m (eq)	10a, 10b, 11b, 12a	10a, 10b, 11b, 12a, 12b	11		
H11b	0.840	m (ax)	7, 10a, 11a, 12a	10a, 10b, 11a, 12a, 12b	11	7	
C12	27.64				12a, 12b	6	
H12a	1.735	m (eq)	3, 5, 7, 11a, 11b, 12b, 14	7, 8a, 10a, 11a, 11b, 12b	12		
H12b	0.613	m (ax)	8b, 10b, 12a, 14	7, 11a, 11b, 12a	12	6, 7	
C13	139.73					5, 6, 15	1
C14	129.92				14	6, 15, 16	
H14	7.096	m	5, 6, 7, 8a, 8b, 12a, 12b, 17, 19	15, 16	14	6, 16	
C15	127.75				15		
H15	7.256	m	19	14, 16	15	13, 14	
C16	126.54				16	14	
H16	7.189	m		14, 15	16	14	
N17	-248.8						17
H17	7.943	d 9.3(5)	3, 5, 6, 14, 19	5		5, 6, 18	17
C18	168.21					5, 17, 19	
C19	22.96				19		
H19	1.519	S	3, 14, 15, 17		19	18	

Minor Component (rel-S,R)

Atom	δ(ppm)	J	NOESY	COSY	HSQC	HMQC	¹³ N-HMBC
C1	126.62		5		1	3	
H1	6.972	m		2, 3	1	3	
C2	128.10				2		
H2	7.059	m	0 1	1, 3	2	4	
C3	128.16				3	1, 5	
H3	7.137	m	5, 6, 14, 17	1, 2	3	1, 5	
C4	143.51					2, 5, 6	
C5	53.16				5	3, 6, 17	
H5	5.380	d 9.30(17), d 11.70(6)	3, 6, 7, 12a, 14, 17	6, 17	5	3, 4, 6, 7, 13, 18	
C6	55.85		8		6	5, 7, 14, 17	
H6	3.021	d 11.70(5), d 3.90(7)	3, 5, 7, 8a, 14, 17	5, 7	6	4, 5, 7, 13, 14	
C7	39.00				7	5, 6, 8b, 12b	
H7	1.886	m (ax)	5, 6, 8a, 9b, 11b, 17	6, 8a, 8b, 12a, 12b	7	6	
C8	32.60				8a, 8b		
H8a	1.583	m (eq)	6, 7, 8b	7, 8b, 9a, 9b, 12a	8		
H8b	0.583	m (ax)	8a, 12b, 14	7, 8a, 9a, 9b	8	7	
C9	26.91				9a, 9b		
H9a	1.632	m (eq)	9b, 10b	8a, 8b, 9b, 10a, 10b	9		
H9b	1.249	m (ax)	7, 9a	8a, 8b, 9a, 10a, 10b	9		
C10	26.59				10a, 10b		
H10a	1.536	m (eq)	10b	9a, 9b, 10b, 11a, 11b	10		
H10b	0.830	m (ax)	9a, 10a, 11a	9a, 9b, 10a, 11a, 11b	10		
C11	26.75				11a, 11b		
H11a	1.655	m (eq)	10b, 11b	10a, 10b, 11b, 12a, 12b	11		
H11b	1.109	m (ax)	7, 11a, 12a	10a, 10b, 11a, 12a, 12b	11		
C12	27.35				12a, 12b		
H12a	1.828	m (eq)	5, 11b, 12b, 14	7, 8a, 11a, 11b, 12b	12		
H12b	0.754	m (ax)	8b, 12a, 14	7, 11a, 11b, 12a	12	7	
C13	139.61					5, 6, 15	
C14	130.28				14	6, 16	
H14	6.992	m	3, 5, 6, 8b, 12a, 12b	15	14	6, 16	
C15	127.75				15		
H15	7.088	m		14, 16	15	13	
C16	126.30			-	16	14	
H16	7.005	m		15	16	14	
N17	-248.5						17
H17	8.353	d 9.30(5)	3, 5, 6, 7, 19	5		5, 6, 18	17
C18	168.47					5, 17, 19	
C19	23.18				19		
H19	1.837	s	17		19	18	

9.04.2020 07:51 p. 形参* Angegebene Mol.-Gewichte u. Massenzahlen basieren auf dem häufigsten Isotop der Elemente ***

main compound

17.07.2020				
110 14 662 04				
DB-DA-003-01				
Liu				
Klußmann				
Tobegen				
03.08.2020				
2 mg				
DMSO				
solvent				
298K				
Av600a				
1H, 13C{1H}, HSQC, HMBC				
COSY, NOESY, 15N-HMBC, dept135				
	UB-LA-663-01 Liu Klußmann Tobegen 03.08.2020 2 mg DMSO solvent 298K Av600a 1H, 13C{1H}, HSQC, HMBC COSY, NOESY, 15N-HMBC, of			

-This is a mixture of products. The signals are heavily overlapped in 1H, but thankfully many signals can be resolved in 13C. -Therefore, the assignment is mainly based on predictions from the suggested products and due to some correlation peaks in 2D spectra. -Most important CH2-Group to assign the molecules is 2C from the smaller compound with the shift at ~19 ppm.

main compound

Atom	õ (ppm)	MinMax (ppm)	Predicted Shift	COSY	HSQC	HMBC	NOESY
1 C	13.86	13.8013.92	13.9		1	2, 3', 3", 4	
нз	0.83	0.810.86	0.84	2	1	2, 3	2, 3', 3"
2 C	21.48	21.4221.54	23.2		2	1, 4	
H2	1.24	1.211.28	1.32, 1.34	1	2	1	1
3 C	27.65	27.5727.71	28.94		3', 3"	1, 4, 5	
H,	1.21	1.161.26	1.25, 1.33		3	1, 4, 5	1, 4, 5, 200
Н"	1.21	1.151.26	1.25, 1.33		3	1, 4, 5	1, 4, 5, 200
4C	34.45	34.3734.51	33.4		4	3', 3", 5, 6	
H2	1.36	1.341.38	1.39, 1.57	5	4	1, 2, 3, 5, 6	3', 3", 5, 6, 200
5 C	49.87	49.8449.90	53.19		5	3', 3", 4, 6, 7, 200	
н	4.15	4.104.19	4.18	4, 6, 200	5	3, 4, 6, 7, 11	3', 3", 4, 6, 7, 200
6 C	131.4	131.37131.42	132.54		6	4, 5, 7, 8	
н	5.3	5.265.33	5.27	5,7	6	4, 5, 7, 8	4, 5, 8, 200
7 C	129.3	129.27129.32	132.43		7	5, 6, 8, 9	
н	5.43	5.395.46	5.56	6,8	7	5, 6, 8, 9	5, 8, 9, 200
8 C	33.62	33.5533.69	36.5		8	6, 7, 9, 10	
H2	1.93	1.891.97	2.08, 2.10	7, 9, 10	8	6, 7, 9, 10	6, 7, 10
9 C	21.82	21.8021.83	22.69		9	7, 8, 10	
H2	1.32	1.291.35	1.42	8,10	9	7, 8, 10	7, 10
10 C	13.38	13.3213.44	13.63		10	8, 9	
нз	0.83	0.810.86	0.93	8,9	10	8, 9	8, 9
11 C	167.98	167.92168.03	170.96			5, 12, 200	
12 C	22.62	22.5622.68	22.6		12		
нз	1.78	1.761.79	2		12	11	200
100 O							
200 N							
н	7.71	7.687.74	6.73	5		5, 11	3', 3", 4, 5, 6, 7, 12

minor compound

Atom	δ (ppm)	MinMax (ppm)	Predicted Shift	COSY	HSQC	HMBC	NOESY
1 C	13.64	13.5813.70	14.02		1	2', 2", 3	
H3	0.83	0.810.86	0.93	2', 2"	1	2, 3	2', 2"
2 C	18.61	18.5318.67	19.63		2', 2"	1, 3, 4	
H.	1.2	1.171.23	1.26, 1.38	1	2	1	1, 3, 4, 200
H"	1.2	1.171.23	1.26, 1.38	1	2	1	1, 3, 4, 200
3 C	36.92	36.8336.99	34.71		3	1, 4, 5	
H2	1.36	1.341.38	1.39, 1.57	4	3	1, 2, 4, 5	2', 2", 4, 5, 200
4C	49.56	49.5449.59	53.3		4	3, 5, 6, 200	
н	4.15	4.104.19	4.18	3, 5, 200	4	2, 3, 5, 6, 11	2', 2", 3, 5, 6, 200
5 C	131.17	131.15131.20	132.57		5	3, 4, 6, 7	
н	5.3	5.265.33	5.27	4,6	5	3, 4, 6, 7	3, 4, 7, 200
6 C	129.46	129.43129.48	131.33		6	4, 5, 7, 9	
н	5.43	5.395.46	5.56	5,7	6	4, 5, 7, 8, 9	4, 7, 8', 8", 9, 200
7 C	31.18	31.0931.26	33.66		7	5, 6, 8', 8"	
H2	1.93	1.891.97	1.99, 2.01	6,8',8"	7	5, 6, 8, 9, 10	5, 6, 8', 8", 9, 10
8 C	30.85	30.7230.92	30.73		8', 8"	6, 7, 10	
н'	1.26	1.241.29	1.36	7	8	7, 9	6, 7, 10
H"	1.26	1.241.28	1.36	7	8	7, 9	6, 7, 10
9 C	21.84	21.7821.90	22.2		9	6, 7, 8', 8"	
H2	1.32	1.291.35	1.38	10	9	6	6, 7, 10
10 C	13.7	13.6413.76	13.96		10	7	
H3	0.83	0.810.86	0.89	9	10	8	7, 8', 8", 9
11 C	167.98	167.92168.03	170.96			4, 12, 200	
12 C	22.62	22.5622.68	22.6		12		
H3	1.78	1.761.79	2		12	11	200
100 O							
200 N							
н	7.7	7.687.73	6.73	4		4, 11	2', 2", 3, 4, 5, 6, 12

Reference

[1] G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, Organometallics 2010, 29, 2176.

[2] T. A. Schaub, T. Mekelburg, P. O. Dral, M. Miehlich, F. Hampel, K. Meyer, M. Kivala, Chem. Eur. J. 2020, 26, 3264-3269.