Supporting Information for

Palladium-catalyzed asymmetric allylic amination of vinylethylene carbonate with N-heteroaromatics

Chao Xia, ${ }^{\text {a }}$ Dong-Chao Wang, ${ }^{\text {b }}$ Gui-Rong Qu^{b} and Hai-Ming Guo*, a, b
${ }^{\text {a }}$ School of Environment, Henan Normal University, Xinxiang, Henan Province 453007, China
${ }^{\text {b }}$ NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
E-mail: ghm@htu.edu.cn

Table of Contents

1. General information .. 1
2. The Optimization of Reaction Conditions .. 2
3. General procedure for the asymmetric allylic amination reactions.. 5
4. Scale-up synthesis of product 3g.. 6
5. Transformation.. 7
6.Characterization Data of Products .. 11
6. Copies of NMR spectra for the products... 26
7. Copies of HPLC spectra for racemic and chiral products... 65

1. General information

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker Avance III HD 600 or Avance 400 MHz spectrometer. Chemical shifts are recorded in ppm relative to tetramethylsilane with the solvent resonance as the internal standard. Data are represented as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{m}=$ multiplet , coupling constants (J) are in Hertz (Hz), and integration. Enantiomer excesses were determined by chiral HPLC analysis on Chiralcel IA/AS-H/ID/OD-H/IE/IG in comparison with the authentic racemates. Chiral HPLC analysis was recorded on Thermo Scientific Dionex Ultimate 3000 and Agilent Technologies 1260 Infinity. Optical rotations were recorded on Autopol Automatic Polarimeter, and were reported as follows: $[\alpha]_{\mathrm{D}}{ }^{\mathrm{T}}$ (c: g/100 mL , in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). High resolution mass spectra (HRMS) was recorded on an ABI/Sciex QStar Mass Spectrometer (ESI). Single crystal X-ray crystallography data were obtained on Supernova Atlas S2 CCD detector. Melting point (m.p.) data were obtained on X-5 micro melting point apparatus. For column chromatography, silica gel (200-300 mesh) was used as the stationary phase. Unless stated otherwise, all the solvent and reagents were purchased from commercial suppliers and used without further purification.

2. The Optimization of Reaction Conditions

Table S1 The optimization of reaction conditions for selecting substrate $\mathbf{2}^{\boldsymbol{a}}$

${ }^{a}$ Reaction conditions: 1a $(0.2 \mathrm{mmol}), \mathbf{2}(0.22 \mathrm{mmol})$, and solvent $(2.0 \mathrm{~mL}) .{ }^{b}$ Isolated yields. ${ }^{c}$ Determined by chiral HPLC analysis.

Table S2 The Screening of Palladium ${ }^{a}$

		$\xrightarrow[\mathrm{CH}_{3} \mathrm{CN}, \mathrm{N}_{2}, \mathrm{rt}, 12 \mathrm{~h}]{\substack{[\mathrm{Pd}](\mathrm{x} \mathrm{mol} \%) \\ \mathrm{L8}(1 \mathrm{~mol} \%)}}$	
entry	[Pd] (x mol\%)	yield ${ }^{\text {b }}$ (\%)	$\mathrm{ee}^{c}(\%)$
1	$\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(0.5)$	86	96
2	$\mathrm{Pd}(\mathrm{dba})_{2}(1)$	88	96
3	$\left[\mathrm{Pd}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cl}\right]_{2}(0.5)$	20	73
4	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(1)$	47	20
5	$\mathrm{Pd}(\mathrm{OAc})_{2}(1)$	NR	--
${ }^{a}$ Reaction conditions: 1a $(0.4 \mathrm{mmol}), 2(0.44 \mathrm{mmol})$, and solvent $(4.0 \mathrm{~mL}) .{ }^{b}$ Isolated yields. ${ }^{c}$ Determined by chiral HPLC analysis.			

Table S3 The optimization of reaction conditions for pyrimidine $4^{\boldsymbol{a}}$

entry	4	Pg	Solvent (x mL)	$\mathrm{yield}^{\text {b }}$ (\%)	$\mathrm{ee}^{c}(\%)$
1	4 a	Bz	$\mathrm{CH}_{3} \mathrm{CN}$ (2)	97	82
2	4b	Boc	$\mathrm{CH}_{3} \mathrm{CN}$ (2)	93	82
3	4a	Bz	DCM (2)	85	66
4	4 a	Bz	DCE (2)	83	69
5	4a	Bz	$\mathrm{CHCl}_{3}(2)$	89	50
6	4a	Bz	EA (2)	90	76
7	4a	Bz	THF (2)	NR	--
8	4a	Bz	toluene (2)	92	74
9	4a	Bz	$\mathrm{CH}_{3} \mathrm{CN}$ (4)	97	84
10	4a	Bz	$\mathrm{CH}_{3} \mathrm{CN}$ (6)	80	84
11	4a	Bz	$\mathrm{CH}_{3} \mathrm{CN}$ (8)	53	90
12	4a	Bz	$\mathrm{CH}_{3} \mathrm{CN}$ (10)	35	92
13^{d}	4a	Bz	$\mathrm{CH}_{3} \mathrm{CN}$ (10)	35	92
14^{e}	4a	Bz	$\mathrm{CH}_{3} \mathrm{CN}(10)$	95	92

${ }^{a}$ Reaction conditions: $\mathbf{4}(0.2 \mathrm{mmol}), 2(0.22 \mathrm{mmol}) .{ }^{b}$ Isolated yields. ${ }^{c}$
Determined by chiral HPLC analysis. ${ }^{d}$ The reaction was carried out at $0^{\circ} \mathrm{C}$.
${ }^{e} 3$ equivalent 2 was used.

3. General procedure for the asymmetric allylic amination reactions

A reaction tube was charged with $1(0.4 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(1.8 \mathrm{mg}, 0.002 \mathrm{mmol}, 0.5 \mathrm{~mol} \%)$ and $\mathbf{L 8}(3.2 \mathrm{mg}, 0.004 \mathrm{mmol}, 1 \mathrm{~mol} \%)$. The reaction tube was placed under vacuum and backfilled with argon three times. $\mathrm{CH}_{3} \mathrm{CN}(4.0 \mathrm{~mL})$ followed by $\mathbf{2}(0.44 \mathrm{mmol}, 1.1$ equiv) were added via syringe under argon. The resulting mixture was stirred at rt for 12 h , and the solvent was removed under vacuum. The residue was purified by flash column chromatography on silica gel $(\mathrm{PE}: \mathrm{EA}=$ $2: 1$ to $1: 1$) to give the corresponding products 3 .

A reaction tube was charged with $4(0.2 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.9 \mathrm{mg}, 0.001 \mathrm{mmol}, 0.5 \mathrm{~mol} \%)$ and $\mathbf{L 8}(1.6 \mathrm{mg}, 0.002 \mathrm{mmol}, 1 \mathrm{~mol} \%)$. The reaction tube was placed under vacuum and backfilled with argon three times. $\mathrm{CH}_{3} \mathrm{CN}(10.0 \mathrm{~mL})$ followed by $2(0.6 \mathrm{mmol}, 3$ equiv) were added via syringe under argon. The resulting mixture was stirred at rt for 4 h , and the solvent was removed under vacuum. The residue was purified by flash column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=2: 1$ to 1:1) to give the corresponding annulation 5 .

A reaction tube was charged with $6(0.4 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(1.8 \mathrm{mg}, 0.002 \mathrm{mmol}, 0.5 \mathrm{~mol} \%)$ and $\mathbf{L 8}(3.2 \mathrm{mg}, 0.004 \mathrm{mmol}, 1 \mathrm{~mol} \%)$. The reaction tube was placed under vacuum and backfilled with argon three times. $\mathrm{CH}_{3} \mathrm{CN}(4.0 \mathrm{~mL})$ followed by $2(0.44 \mathrm{mmol}, 1.1$ equiv) were added via syringe under argon. The resulting mixture was stirred at rt for 6 h , and the solvent was removed under vacuum. The residue was purified by flash column chromatography on silica gel $(\mathrm{PE}: \mathrm{EA}=$ $4: 1$ to $2: 1$) to give the corresponding products 5 .

4. Scale-up synthesis of product 3g

In a 50 mL reaction flask, $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(18 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.5 \mathrm{~mol} \%), \mathbf{L 8}(32 \mathrm{mg}, 0.04 \mathrm{mmol}, 1$ $\mathrm{mol} \%)$ and $\mathrm{CH}_{3} \mathrm{CN}(40 \mathrm{~mL})$ were introduced under an argon atmosphere. The resulting solution was stirred for 30 minutes. Then, $\mathbf{1 g}(1.34 \mathrm{~g}, 4 \mathrm{mmol})$ and $\mathbf{2}(502 \mathrm{mg}, 4.4 \mathrm{mmol})$ were added in one portion. The resulting mixture was stirred at rt for 12 h , and the solvent was removed under vacuum. The residue was purified by flash column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=2: 1$ to $1: 1$) to give product $\mathbf{3 g}$ as white solid ($1.49 \mathrm{~g}, 92 \%$ yield, 95% ee $)$.

5. Transformation

To a solution of $\mathbf{5 a}(60 \mathrm{mg}, 0.2 \mathrm{mmol})$ in $\mathrm{MeOH}(2.0 \mathrm{~mL}), \mathrm{NaOH}(16 \mathrm{mg}, 0.4 \mathrm{mmol})$ was added. The reaction was stirred at the room temperature for 12 h . After the reaction was consumed (determined by TLC), the solvent was removed under vacuum. The residue was purified by flash column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=1: 1$ to $1: 2$) to give product 5aa as white solid (37.7 $\mathrm{mg}, 96 \%$ yield, 92% ee).

STEP 1: To a solution of $\mathbf{3 g}(81 \mathrm{mg}, 0.2 \mathrm{mmol})$ in $\mathrm{MeOH}(2.0 \mathrm{~mL}),{ }^{t} \mathrm{BuONa}(38.4 \mathrm{mg}, 0.4$ mmol) was added. The reaction was stirred at the room temperature for 12 h . After the reaction was consumed (determined by TLC), the solvent was removed under vacuum. The residue was purified by flash column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=1: 1$ to $1: 2$) to give product 3ga as white solid ($58 \mathrm{mg}, 95 \%$ yield).

STEP 2: Heated the temperature of the reaction solution that had been completed in STEP 1 to $50^{\circ} \mathrm{C}$ and stirred the reaction for other 16 h . After the reaction was consumed (determined by TLC), the solvent was removed under vacuum. The residue was purified by flash column chromatography on silica gel ($\mathrm{DCM}: \mathrm{MeOH}=10: 1$) to give product $\mathbf{3 g b}$ as white solid $(39.1 \mathrm{mg}$, 95% yield, 94% ee).

STEP 1: To a solution of $\mathbf{3 g}(81 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(130 \mathrm{mg}, 0.4 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}$ $(2.0 \mathrm{~mL})$, allyl iodide ($51 \mathrm{mg}, 0.3 \mathrm{mmol}$) was added. The reaction was stirred at $40{ }^{\circ} \mathrm{C}$ for 12 h . After the reaction was consumed (determined by TLC), the solvent was removed under vacuum. The residue was purified by flash column chromatography on silica gel $(\mathrm{PE}: \mathrm{EA}=4: 1$ to $2: 1$) to give product $\mathbf{3 g c}$ as colorless oil ($80.2 \mathrm{mg}, 90 \%$ yield).

STEP 2: To a solution of $\mathbf{3 g c}(89 \mathrm{mg}, 0.2 \mathrm{mmol})$ in DCM $(2.0 \mathrm{~mL})$, Grubbs II catalyst (10 $\mathrm{mol} \%$) was added. The reaction was stirred under N_{2} at $40^{\circ} \mathrm{C}$ for 12 h . After the reaction was consumed (determined by TLC), the solvent was removed under vacuum. The residue was purified by flash column chromatography on silica gel (PE:EA $=3: 1$ to $3: 2$) to give product $\mathbf{3 g d}$ as colorless oil ($73.4 \mathrm{mg}, 88 \%$ yield, $94 \% \mathrm{ee}$).

STEP 3: To a solution of $\mathbf{3 g d}(83.5 \mathrm{mg}, 0.2 \mathrm{mmol})$ in $\mathrm{MeOH}(2.0 \mathrm{~mL}),{ }^{t} \mathrm{BuONa}(38.4 \mathrm{mg}, 0.4$ mmol) was added. The reaction was stirred at $50^{\circ} \mathrm{C}$ for 16 h . After the reaction was consumed (determined by TLC), the solvent was removed under vacuum. The residue was purified by flash column chromatography on silica gel $(\mathrm{DCM}: \mathrm{MeOH}=10: 1)$ to give product 3ge as white solid (41.2 $\mathrm{mg}, 95 \%$ yield, 95% ee).

STEP 4: $\mathrm{K}_{2} \mathrm{OsO}_{2}(\mathrm{OH})_{4}(2.4 \mathrm{mg}, 0.008 \mathrm{mmol}, 4 \mathrm{~mol} \%)$, (DHQ $)_{2} \mathrm{PYR}(17.6 \mathrm{mg}, 0.02 \mathrm{mmol}$, $10 \mathrm{~mol} \%$), $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ ($196 \mathrm{mg}, 0.6 \mathrm{mmol}, 3$ equiv), methanesulfonamide ($38 \mathrm{mg}, 0.4 \mathrm{mmol}, 2$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}(84 \mathrm{mg}, 0.6 \mathrm{mmol}, 3$ equiv) were suspended in a mixture of water and tert-butyl alcohol (1:1, 8 mL$)$. The mixture was stirred at room temperature for 1 h and then added $\mathbf{3 g d}(83.5$ $\mathrm{mg}, 0.2 \mathrm{mmol}$). The reaction was stirred at the room temperature for 24 h and monitored by TLC until the reaction was completed. The reaction was quenched at $0{ }^{\circ} \mathrm{C}$ by addition of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and the mixture stirred at room temperature for 2 h . The reaction mixture was then partitioned between ethyl acetate and water. The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to afford a crude oil. Purification by flash column chromatography (PE:EA =
$1: 1$ to $1: 3$) to furnished $\mathbf{3 g f}(79.3 \mathrm{mg}, 88 \%$ yield, 93% ee and $>20: 1 \mathrm{dr}$) as white solid.
STEP 5: To a solution of $\mathbf{3 g d}(90.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ in $\mathrm{MeOH}(2.0 \mathrm{~mL}),{ }^{t} \mathrm{BuONa}(38.4 \mathrm{mg}, 0.4$ mmol) was added. The reaction was stirred at $50{ }^{\circ} \mathrm{C}$ for 16 h . After the reaction was consumed (determined by TLC), the solvent was removed under vacuum. The residue was purified by flash column chromatography on silica gel $(\mathrm{DCM}: \mathrm{MeOH}=10: 1$ to $3: 1)$ to give product $\mathbf{3 g g}$ as white solid ($45.2 \mathrm{mg}, 90 \%$ yield).

STEP 1: To a solution of $\mathbf{3 g}(81 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathrm{TsCl}(53 \mathrm{mg}, 0.3 \mathrm{mmol})$ in $\mathrm{DCM}(2.0 \mathrm{~mL})$, $\mathrm{Et}_{3} \mathrm{~N}(40 \mathrm{mg}, 0.4 \mathrm{mmol})$ was added. The reaction was stirred at the room temperature for 6 h . After the reaction was consumed (determined by TLC), the solvent was removed under vacuum. The residue was purified by flash column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=4: 1$ to $2: 1$) to give product $\mathbf{3 g h}$ as white solid ($104 \mathrm{mg}, 93 \%$ yield).

STEP 2: $\mathrm{K}_{2} \mathrm{OsO}_{2}(\mathrm{OH})_{4}(1.2 \mathrm{mg}, 0.004 \mathrm{mmol}, 2 \mathrm{~mol} \%)$, (DHQ) $)_{2} \mathrm{PYR}(17.6 \mathrm{mg}, 0.02 \mathrm{mmol}$, $10 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}(196 \mathrm{mg}, 0.6 \mathrm{mmol}, 3$ equiv), methanesulfonamide ($38 \mathrm{mg}, 0.4 \mathrm{mmol}, 2$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}(84 \mathrm{mg}, 0.6 \mathrm{mmol}, 3$ equiv) were suspended in a mixture of water and tert-butyl alcohol (1:1, 8 mL). The mixture was stirred at room temperature for 1 h and then added $\mathbf{3 g h}$ (112 $\mathrm{mg}, 0.2 \mathrm{mmol})$. The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 12 h and monitored by TLC until the reaction was completed. The reaction was quenched at $0{ }^{\circ} \mathrm{C}$ by addition of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and the mixture stirred at room temperature for 2 h . The reaction mixture was then partitioned between ethyl acetate and water. The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to afford a crude oil. Purification by flash column chromatography (PE:EA $=1: 1$ to $1: 3$) to furnished 3gi ($109.2 \mathrm{mg}, 92 \%$ yield, 96% ee and $>20: 1 \mathrm{dr}$) as white solid.

STEP 3: Warmed the temperature of the reaction solution that had been completed in STEP 2 up to room temperature and $\mathrm{K}_{2} \mathrm{CO}_{3}(56 \mathrm{mg}, 0.4 \mathrm{mmol}, 2$ equiv) was added. The reaction was stirred at the room temperature for other 12 h . The reaction was quenched at $0{ }^{\circ} \mathrm{C}$ by addition of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and the mixture stirred at room temperature for 2 h . The reaction mixture was then partitioned
between ethyl acetate and water. The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to afford a crude oil. Purification by flash column chromatography ($\mathrm{PE}: \mathrm{EA}=$ 1:1 to $1: 2$) to furnished $\mathbf{3 g j}(69.6 \mathrm{mg}, 85 \%$ yield, 94% ee and $>20: 1 \mathrm{dr}$) as colorless oil.

6.Characterization Data of Products

(S)-2-(6-chloro-9H-purin-9-yl)but-3-en-1-ol (3a)

White solid; m.p. $104.8-106.3^{\circ} \mathrm{C} ; 81.6 \mathrm{mg}, 91 \%$ yield, 97% ee; $[\alpha]_{\mathrm{D}}{ }^{23}=-73.67\left(\mathrm{c}=0.600, \mathrm{CHCl}_{3}\right)$; HPLC CHIRALCEL IE, n-hexane $/ 2$-propanol $=85 / 15$, flow rate $=0.8 \mathrm{~mL} / \mathrm{min}, \lambda=256 \mathrm{~nm}$, retention time: 16.395 min (major), 17.837 min (minor); ${ }^{1} \mathbf{H} \mathbf{N M R}(600 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 8.66$ (s, $1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 6.21(\mathrm{ddd}, J=17.4,10.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{dd}, J=10.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.27$ (dddt, $J=6.6,4.8,3.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{dd}, J=17.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{dd}, J=12.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.15$ $(\mathrm{dd}, J=12.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{brs}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}(150 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 151.8,151.4,150.9$, 145.5, 132.1, 131.4, 120.4, 63.4, 60.8; HRMS (ESI-TOF): exact mass calcd. for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{ClN}_{4} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+}$requires $\mathrm{m} / \mathrm{z} 225.0538$, found $\mathrm{m} / \mathrm{z} 225.0538$.

(S)-2-(9H-purin-9-yl)but-3-en-1-ol (3b)

White solid; m.p. $70.4-71.6^{\circ} \mathrm{C} ; 54.8 \mathrm{mg}, 72 \%$ yield, $95 \% \mathrm{ee} ;[\alpha]_{\mathrm{D}}{ }^{23}=-84.21\left(\mathrm{c}=0.585, \mathrm{CHCl}_{3}\right)$; HPLC CHIRALCEL IE, n-hexane $/ 2$-propanol $=70 / 30$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=256 \mathrm{~nm}$, retention time: 13.320 min (minor), 17.232 min (major); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.88(\mathrm{~s}$, $1 \mathrm{H}), 8.79(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}), 6.21(\mathrm{ddd}, J=17.6,10.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.28-5.23(\mathrm{~m}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{brs}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=12.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10$ $(\mathrm{dd}, J=12.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.1,151.0,148.3,145.5,133.8,132.5$, 120.0, 63.3, 60.4; HRMS (ESI-TOF): exact mass calcd. for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$requires m / z 191.0927, found $\mathrm{m} / \mathrm{z} 191.0924$.
(S)-2-(6-methyl-9H-purin-9-yl)but-3-en-1-ol (3c)

White solid; m.p. $108.6-110.2^{\circ} \mathrm{C} ; 63.6 \mathrm{mg}, 78 \%$ yield, $96 \% \mathrm{ee} ;[\alpha]_{\mathrm{D}}{ }^{23}=-100.55\left(\mathrm{c}=0.610, \mathrm{CHCl}_{3}\right)$;

HPLC CHIRALCEL IE, n-hexane $/ 2$-propanol $=85 / 15$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=256 \mathrm{~nm}$, retention time: 21.165 min (major), 23.288 min (minor); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.64(\mathrm{~s}$, $1 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}), 6.20(\mathrm{ddd}, J=17.0,10.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.22-5.09(\mathrm{~m}$, $3 \mathrm{H}), 4.28-4.20(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 159.4, 151.7, 150.1, 144.1, 132.9, 132.6, 119.7, 63.4, 61.0, 19.3; HRMS (ESI-TOF): exact mass calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$requires m / z 205.1084, found m / z 205.1083.
(S)-2-(6-methoxy-9H-purin-9-yl)but-3-en-1-ol (3d)

White solid; m.p. $116.2-117.4^{\circ} \mathrm{C} ; 81.0 \mathrm{mg}, 76 \%$ yield, $92 \% \mathrm{ee} ;[\alpha]_{\mathrm{D}}{ }^{23}=-93.33\left(\mathrm{c}=0.660, \mathrm{CHCl}_{3}\right)$; HPLC CHIRALCEL IG, n-hexane $/ 2$-propanol $=80 / 20$, flow rate $=0.8 \mathrm{~mL} / \mathrm{min}, \lambda=256 \mathrm{~nm}$, retention time: 13.873 min (major), 15.707 min (minor); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.43(\mathrm{~s}$, $1 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 6.23(\mathrm{ddd}, J=17.2,10.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.28-5.22(\mathrm{~m}$, 1H), $5.19(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.16-5.11(\mathrm{~m}, 1 \mathrm{H}), 4.25-4.14(\mathrm{~m}, 2 \mathrm{H}), 4.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.8,151.6,151.2,142.5,132.8,121.2,119.7,63.6,61.4,54.3$; HRMS (ESITOF): exact mass calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$requires $\mathrm{m} / \mathrm{z} 221.1033$, found m / z 221.1032.
(S)-2-(6-(propylthio)-9H-purin-9-yl)but-3-en-1-ol (3e)

Colorless oil; $87.7 \mathrm{mg}, 83 \%$ yield, $94 \% \mathrm{ee} ;[\alpha]_{\mathrm{D}}^{23}=-81.97\left(\mathrm{c}=0.610, \mathrm{CHCl}_{3}\right) ;$ HPLC CHIRALCEL IE, n-hexane $/ 2$-propanol $=80 / 20$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=256 \mathrm{~nm}$, retention time: 10.732 min (major), 11.790 min (minor); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.58$ ($\mathrm{s}, 1 \mathrm{H}$), 7.98 (s, 1H), 6.16 (ddd, J $=17.2,10.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.20-5.05(\mathrm{~m}, 3 \mathrm{H}), 4.15(\mathrm{~s}, 2 \mathrm{H}), 3.26(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.75(\mathrm{~h}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.03(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.7$, 151.5, 147.7, 142.7, 132.7, 131.0, 119.6, 63.6, 60.6, 30.7, 22.9, 13.5; HRMS (ESI-TOF): exact mass calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}$requires $\mathrm{m} / \mathrm{z} 265.1118$, found $\mathrm{m} / \mathrm{z} 265.1119$.
(S)-2-(6-(diethylamino)-9H-purin-9-yl)but-3-en-1-ol (3f)

Colorless oil; $74.2 \mathrm{mg}, 71 \%$ yield, $94 \% \mathrm{ee} ;[\alpha]_{\mathrm{D}}^{23}=-87.87\left(\mathrm{c}=0.500, \mathrm{CHCl}_{3}\right) ;$ HPLC CHIRALCEL IE, n-hexane $/ 2$-propanol $=85 / 15$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=256 \mathrm{~nm}$, retention time: 11.492 min (major), 12.808 min (minor); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.23(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 6.15$ (ddd, $J=16.8,10.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.14-4.05(\mathrm{~m}$, 2H), 3.96 (brs, 4 H), $1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.0,151.9,149.7$, 138.6, 133.5, 119.9, 118.6, 64.2, 61.5, 43.3, 13.6; HRMS (ESI-TOF): exact mass calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{5} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$requires $\mathrm{m} / \mathrm{z} 262.1662$, found $\mathrm{m} / \mathrm{z} 262.1663$.
(S)-2-(6-(diBocamino)-9H-purin-9-yl)but-3-en-1-ol (3g)

White solid; m.p. $59.5-61.2^{\circ} \mathrm{C} ; 142.6 \mathrm{mg}, 88 \%$ yield, $94 \% \mathrm{ee} ;[\alpha]_{\mathrm{D}}{ }^{23}=-44.95\left(\mathrm{c}=0.525, \mathrm{CHCl}_{3}\right)$; HPLC CHIRALCEL OD, n-hexane $/ 2$-propanol $=90 / 10$, flow rate $=0.7 \mathrm{~mL} / \mathrm{min}, \lambda=256 \mathrm{~nm}$, retention time: 11.008 min (minor), 12.845 min (major); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.75(\mathrm{~s}$, $1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 6.15(\mathrm{ddd}, J=17.2,10.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{q}, \mathrm{J}=5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{brs}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=12.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=$ $12.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.1,151.6,150.5,150.2,145.2$, 132.7, 128.8, 119.4, 84.0, 63.2, 60.3, 27.8; HRMS (ESI-TOF): exact mass calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{5} \mathrm{O}_{5}$ $[\mathrm{M}+\mathrm{H}]^{+}$requires $\mathrm{m} / \mathrm{z} 406.2085$, found $\mathrm{m} / \mathrm{z} 406.2080$.
(S)-2-(2-chloro-9H-purin-9-yl)but-3-en-1-ol (3h)

White solid; m.p. $89.0-90.6^{\circ} \mathrm{C} ; 68.2 \mathrm{mg}, 76 \%$ yield, $96 \% \mathrm{ee} ;[\alpha]_{\mathrm{D}}{ }^{23}=-53.55\left(\mathrm{c}=0.620, \mathrm{CHCl}_{3}\right)$; HPLC CHIRALCEL OD, n-hexane $/ 2$-propanol $=90 / 10$, flow rate $=0.8 \mathrm{~mL} / \mathrm{min}, \lambda=256 \mathrm{~nm}$, retention time: 23.547 min (minor), 25.702 min (major); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.85(\mathrm{~s}$, $1 \mathrm{H}), 8.23(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{ddd}, J=17.2,10.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.31-5.22(\mathrm{~m}$, 2H), $4.21(\mathrm{dd}, J=12.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=12.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{brs}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (150
$\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.2,153.0,150.0,146.1,133.0,132.0,120.5,63.4,59.8$; HRMS (ESI-TOF): exact mass calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{ClN}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$requires $\mathrm{m} / \mathrm{z} 225.0538$, found $\mathrm{m} / \mathrm{z} 225.0537$.
(S)-2-(2,6-dichloro-9H-purin-9-yl)but-3-en-1-ol (3i)

White solid; m.p. $144.6-146.2^{\circ} \mathrm{C} ; 53.8 \mathrm{mg}, 52 \%$ yield, 97% ee; $[\alpha]_{\mathrm{D}}{ }^{23}=-49.25\left(\mathrm{c}=0.555, \mathrm{CHCl}_{3}\right) ;$ HPLC CHIRALCEL ID, n-hexane $/ 2$-propanol $=90 / 10$, flow rate $=0.8 \mathrm{~mL} / \mathrm{min}, \lambda=256 \mathrm{~nm}$, retention time: 14.182 min (major), 16.353 min (minor); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.27(\mathrm{~s}$, $1 \mathrm{H}), 6.20(\mathrm{ddd}, J=17.2,10.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.32-5.26(\mathrm{~m}, 2 \mathrm{H}), 4.20(\mathrm{dd}$, $J=12.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=12.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{brs}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 153.0,152.9,151.7,146.0,131.7,130.6,120.9,63.4,60.1$; HRMS (ESI-TOF): exact mass calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$requires $\mathrm{m} / \mathrm{z} 259.0148$, found $\mathrm{m} / \mathrm{z} 259.0148$.

(S)-2-(2-chloro-6-(dimethylamino)-9H-purin-9-yl)but-3-en-1-ol (3j)

White solid; m.p. $119.5-121.1^{\circ} \mathrm{C} ; 77.0 \mathrm{mg}, 72 \%$ yield, $94 \% \mathrm{ee} ;[\alpha]_{\mathrm{D}}{ }^{23}=-73.53\left(\mathrm{c}=0.835, \mathrm{CHCl}_{3}\right)$; HPLC CHIRALCEL IE, n-hexane $/ 2$-propanol $=70 / 30$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=256 \mathrm{~nm}$, retention time: 6.885 min (major), 8.505 min (minor); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{~s}, 1 \mathrm{H})$, 6.13 (ddd, $J=17.2,10.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.11-$ $5.05(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{~s}, 1 \mathrm{H}), 4.15-4.02(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 155.0,153.5,151.3,138.5,132.9,119.4,118.9,64.0,60.3,39.2,38.2 ;$ HRMS (ESI-TOF): exact mass calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{ClN}_{5} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$requires $\mathrm{m} / \mathrm{z} 268.0960$, found $\mathrm{m} / \mathrm{z} 268.0957$.
(S)-2-(2-(diBocamino)-6-(benzyloxy)-9H-purin-9-yl)but-3-en-1-ol (3k)

White solid; m.p. $61.0-62.2^{\circ} \mathrm{C} ; 184.0 \mathrm{mg}, 90 \%$ yield, $95 \% \mathrm{ee} ;[\alpha]_{\mathrm{D}}{ }^{23}=-30.00\left(\mathrm{c}=0.600, \mathrm{CHCl}_{3}\right)$; HPLC CHIRALCEL IG, n-hexane $/ 2$-propanol $=80 / 20$, flow rate $=0.8 \mathrm{~mL} / \mathrm{min}, \lambda=256 \mathrm{~nm}$, retention time: 12.292 min (minor), 14.260 min (major); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~s}$,
$1 \mathrm{H}), 7.48(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.25(\mathrm{~m}, 3 \mathrm{H}), 6.10(\mathrm{ddd}, J=16.8,10.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{~s}$, $2 \mathrm{H}), 5.27(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{q}, J=5.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{t}, J=$ $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dt}, J=12.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dt}, J=12.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}) $\delta 160.9,152.6,151.4,150.8,143.2,135.8,133.1,128.6,128.5,128.3,119.7$, 119.0, 83.4, 68.8, 63.4, 60.7, 27.9; HRMS (ESI-TOF): exact mass calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{5} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$ requires $\mathrm{m} / \mathrm{z} 512.2504$, found $\mathrm{m} / \mathrm{z} 512.2503$.
(S)-9-(1-hydroxybut-3-en-2-yl)-1,3-dimethyl-3,9-dihydro-1H-purine-2,6-dione (31)

White solid; m.p. $140.9-142.6^{\circ} \mathrm{C} ; 76.1 \mathrm{mg}, 76 \%$ yield, 97% ee; $[\alpha]_{\mathrm{D}}{ }^{23}=-65.11\left(\mathrm{c}=0.600, \mathrm{CHCl}_{3}\right)$; HPLC CHIRALCEL OD, n-hexane $/ 2$-propanol $=60 / 40$, flow rate $=0.4 \mathrm{~mL} / \mathrm{min}, \lambda=256 \mathrm{~nm}$, retention time: 18.970 min (major), 25.622 min (minor); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75(\mathrm{~s}$, $1 \mathrm{H}), 6.16(\mathrm{ddd}, J=17.2,10.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{t}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.31(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.06$ $(\mathrm{qd}, J=12.0,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.4,151.5$, 149.0, 141.0, 132.6, 120.5, 106.9, 64.2, 61.8, 29.9, 28.2; HRMS (ESI-TOF): exact mass calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$requires $\mathrm{m} / \mathrm{z} 251.1139$, found $\mathrm{m} / \mathrm{z} 251.1138$.
(S)-3-benzoyl-1-(1-hydroxybut-3-en-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (5a)

White solid; m.p. $49.5-50.8^{\circ} \mathrm{C} ; 57.0 \mathrm{mg}, 95 \%$ yield, $92 \% \mathrm{ee} ;[\alpha]_{\mathrm{D}}{ }^{23}=-1.85\left(\mathrm{c}=0.505, \mathrm{CHCl}_{3}\right)$; HPLC CHIRALCEL IE, n-hexane $/ 2$-propanol $=70 / 30$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=256 \mathrm{~nm}$, retention time: 13.050 min (minor), 14.757 min (major); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95-7.86$ $(\mathrm{m}, 2 \mathrm{H}), 7.66-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{q}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{ddd}, J=17.2$, $10.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{dd}, J=10.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{dd}, J=17.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.14-5.08(\mathrm{~m}$, $1 \mathrm{H}), 3.91-3.78(\mathrm{~m}, 2 \mathrm{H}), 2.75(\mathrm{brs}, 1 \mathrm{H}), 1.92(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $169.3,163.0,150.6,138.4,135.2,132.0,131.6,130.5,129.3,120.6,110.7,62.7,59.0,12.6 ;$ HRMS (ESI-TOF): exact mass calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$requires $\mathrm{m} / \mathrm{z} 323.1002$, found m / z 323.0998.
tert-butyl (S)-3-(1-hydroxybut-3-en-2-yl)-5-methyl-2,6-dioxo-3,6-dihydropyrimidine-1(2H)carboxylate (5b)

Colorless oil; $53.2 \mathrm{mg}, 90 \%$ yield, $90 \% \mathrm{ee} ;[\alpha]_{\mathrm{D}}{ }^{23}=-12.02\left(\mathrm{c}=0.560, \mathrm{CHCl}_{3}\right) ;$ HPLC CHIRALCEL IE, n-hexane $/ 2$-propanol $=80 / 20$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=256 \mathrm{~nm}$, retention time: 11.653 min (minor), 13.247 min (major); ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \quad \delta \quad 7.14(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.91$ (ddd, $J=17.2,10.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{ddd}, J=10.8,1.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{ddd}, J=17.2,1.6,0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.15-5.10(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~h}, J=6.8,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{~s}, 1 \mathrm{H}), 1.89(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.59$ ($\mathrm{s}, 9 \mathrm{H}$) ${ }^{13}{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.6,149.7,148.3,138.2,132.1,120.7,110.2,87.0,62.7$, 59.2, 27.5, 12.6; HRMS (ESI-TOF): exact mass calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$requires m / z 319.1264, found $m / z 319.1258$.
(S)-3-benzoyl-1-(1-hydroxybut-3-en-2-yl)pyrimidine-2,4(1H,3H)-dione (5c)

Colorless oil; $54.9 \mathrm{mg}, 96 \%$ yield, 89% ee; $[\alpha]_{\mathrm{D}}{ }^{23}=-6.27\left(\mathrm{c}=0.765, \mathrm{CHCl}_{3}\right) ;$ HPLC CHIRALCEL IE, n-hexane $/ 2$-propanol $=60 / 40$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=256 \mathrm{~nm}$, retention time: 11.888 min (minor), 14.988 min (major); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.62(\mathrm{~m}$, $1 \mathrm{H}), 7.52-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{ddd}, J=17.2,10.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.47-5.42(\mathrm{~m}, 1 \mathrm{H}), 5.40-5.34(\mathrm{~m}, 1 \mathrm{H}), 5.18-5.11(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{qd}, J=10.8$, $10.4,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.0,162.4,150.5,142.9,135.3$, $131.8,131.5,130.6,129.4,121.0,101.9,62.7,59.2$; HRMS (ESI-TOF): exact mass calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$requires $\mathrm{m} / \mathrm{z} 309.0846$, found $\mathrm{m} / \mathrm{z} 309.0842$.
(S)-3-benzoyl-5-ethyl-1-(1-hydroxybut-3-en-2-yl)pyrimidine-2,4(1H,3H)-dione (5d)

Colorless oil; $59.6 \mathrm{mg}, 95 \%$ yield, 93% ee; $[\alpha]_{\mathrm{D}}{ }^{23}=-1.04\left(\mathrm{c}=0.575, \mathrm{CHCl}_{3}\right) ;$ HPLC CHIRALCEL IE, n-hexane $/ 2$-propanol $=80 / 20$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=256 \mathrm{~nm}$, retention time: 19.610 min
(minor), 21.112 min (major); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 5.90(\mathrm{ddd}, J=16.8,10.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~d}, J$ $=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{q}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=11.4,3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.87-3.81(\mathrm{~m}, 1 \mathrm{H}), 2.63(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{qd}, J=7.8,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.12(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (150 MHz, CDCl_{3}) $\delta 169.4,162.6,150.6,137.7,135.2,132.0,131.7,130.5,129.3,120.6,116.5$, 62.8, 59.1, 20.3, 12.8; HRMS (ESI-TOF): exact mass calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$requires m / z 315.1339, found $m / z 315.1334$.
(S)-3-benzoyl-1-(1-hydroxybut-3-en-2-yl)-5-methoxypyrimidine-2,4(1H,3H)-dione (5e)

Colorless oil; $58.8 \mathrm{mg}, 93 \%$ yield, 94% ee; $[\alpha]_{\mathrm{D}}{ }^{23}=-4.31\left(\mathrm{c}=0.650, \mathrm{CHCl}_{3}\right) ;$ HPLC CHIRALCEL AS, n-hexane $/ 2$-propanol $=70 / 30$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=256 \mathrm{~nm}$, retention time: 11.307 min (major), $14.690 \min$ (minor); ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 5.89(\mathrm{ddd}, J=16.8,10.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J$ $=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.17-5.12(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{dd}, J=12.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.85$ $(\mathrm{dd}, J=12.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.83(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.4,158.7$, 149.2, 136.1, 135.4, 131.9, 131.4, 130.6, 129.3, 123.0, 120.7, 62.7, 59.1, 58.1; HRMS (ESI-TOF): exact mass calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$requires $\mathrm{m} / \mathrm{z} 339.0951$, found $\mathrm{m} / \mathrm{z} 339.0946$.
(S)-3-benzoyl-5-fluoro-1-(1-hydroxybut-3-en-2-yl)pyrimidine-2,4(1H,3H)-dione (5f)

Colorless oil; $57.6 \mathrm{mg}, 95 \%$ yield, 90% ee; $[\alpha]_{\mathrm{D}}{ }^{23}=-2.35\left(\mathrm{c}=0.510, \mathrm{CHCl}_{3}\right) ;$ HPLC CHIRALCEL IE, n-hexane $/ 2$-propanol $=80 / 20$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=256 \mathrm{~nm}$, retention time: 21.060 min (minor), 22.550 min (major); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.64(\mathrm{~m}$, $1 \mathrm{H}), 7.57(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.47(\mathrm{~m}, 2 \mathrm{H}), 5.91(\mathrm{ddd}, J=17.6,10.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{dd}$, $J=10.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{dd}, J=17.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{dtt}, J=5.6,4.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}$, $J=12.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=12.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $167.5,156.3\left(J_{\mathrm{C}-\mathrm{F}}=27.0 \mathrm{~Hz}\right), 149.1,139.9\left(J_{\mathrm{C}-\mathrm{F}}=238.0 \mathrm{~Hz}\right), 135.7,131.3,131.1,130.7,129.5,127.2$
$\left(J_{\mathrm{C}-\mathrm{F}}=33.0 \mathrm{~Hz}\right), 121.5,62.7,59.0 ;{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-164.58$ (s); HRMS (ESI-TOF): exact mass calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FN}_{2} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$requires $\mathrm{m} / \mathrm{z} 327.0752$, found $\mathrm{m} / \mathrm{z} 327.0750$.

(S)-3-benzoyl-5-chloro-1-(1-hydroxybut-3-en-2-yl)pyrimidine-2,4(1H,3H)-dione (5g)

White waxy solid; m.p. $65.0-70.0^{\circ} \mathrm{C} ; 59.0 \mathrm{mg}, 92 \%$ yield, $88 \% \mathrm{ee} ;[\alpha]_{\mathrm{D}}{ }^{23}=-6.38\left(\mathrm{c}=0.690, \mathrm{CHCl}_{3}\right)$; HPLC CHIRALCEL ID, n-hexane $/ 2$-propanol $=70 / 30$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=256 \mathrm{~nm}$, retention time: 9.748 min (minor), 10.738 min (major); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.71-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.93(\mathrm{ddd}, J=16.8,10.8,5.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.51(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{q}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dt}, J=12.0,3.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.92(\mathrm{dt}, J=11.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.8,158.3$, 149.6, 139.8, 135.6, 131.4, 131.1, 130.7, 129.4, 121.7, 108.6, 62.7, 59.4; HRMS (ESI-TOF): exact mass calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$requires $\mathrm{m} / \mathrm{z} 343.0456$, found $\mathrm{m} / \mathrm{z} 343.0452$.
(S)-4-(diBocamino)-1-(1-hydroxybut-3-en-2-yl)pyrimidin-2(1H)-one (5h)

White solid; m.p. $118.2-119.5^{\circ} \mathrm{C} ; 72.2 \mathrm{mg}, 95 \%$ yield, 84% ee; $[\alpha]_{\mathrm{D}}{ }^{23}=-41.10\left(\mathrm{c}=0.725, \mathrm{CHCl}_{3}\right)$; HPLC CHIRALCEL ID, n-hexane $/ 2$-propanol $=60 / 40$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=256 \mathrm{~nm}$, retention time: 12.065 min (minor), 13.032 min (major); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{ddd}, J=17.2,10.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.31(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.27-5.20(\mathrm{~m}, 1 \mathrm{H}), 4.01-3.86(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 18 \mathrm{H}) ;$ ${ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.9,155.9,149.7,147.2,132.8,120.3,96.3,85.1,62.5,61.1,27.8 ;$ HRMS (ESI-TOF): exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$requires $\mathrm{m} / \mathrm{z} 404.1792$, found m/z 404.1789.

(S)-1-(1-hydroxybut-3-en-2-yl)pyridin-2(1H)-one (7a)

White solid; m.p. $88.2-90.1^{\circ} \mathrm{C} ; 55.4 \mathrm{mg}, 84 \%$ yield, $75 \% \mathrm{ee} ;[\alpha]_{\mathrm{D}}{ }^{23}=-86.90\left(\mathrm{c}=0.290, \mathrm{CHCl}_{3}\right) ;$

HPLC CHIRALCEL IG, n-hexane $/ 2$-propanol $=80 / 20$, flow rate $=0.4 \mathrm{~mL} / \mathrm{min}, \lambda=240 \mathrm{~nm}$, retention time: 22.160 min (minor), 23.753 min (major); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37(\mathrm{~d}, J$ $=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{ddd}$, $J=16.8,10.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{q}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=17.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.10(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dt}, J=12.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dt}, J=12.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 163.3,139.6,135.8,133.3,120.6,119.6,106.6,63.3,59.4$; HRMS (ESI-TOF): exact mass calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$requires m / z 188.0682, found m / z 188.0677.
(S)-1-(1-hydroxybut-3-en-2-yl)indoline-2,3-dione (7b)

Red solid; m.p. $102.7-104.5^{\circ} \mathrm{C} ; 57.2 \mathrm{mg}, 66 \%$ yield, $96 \% \mathrm{ee} ;[\alpha]_{\mathrm{D}}{ }^{23}=58.00\left(\mathrm{c}=0.500, \mathrm{CHCl}_{3}\right)$; HPLC CHIRALCEL OD, n-hexane $/ 2$-propanol $=90 / 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=256 \mathrm{~nm}$, retention time: 17.402 min (major), 20.738 min (minor); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{ddd}$, $J=16.6,10.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{q}, J=6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.21(\mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=12.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}(150 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 183.0,158.9,150.8,138.3,131.1,125.7,124.0,119.5,118.1,112.1,61.9,58.2 ;$ HRMS (ESI-TOF): exact mass calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$requires $\mathrm{m} / \mathrm{z} 240.0631$, found m / z 240.0628.

(S)-2-(1-hydroxybut-3-en-2-yl)isoindoline-1,3-dione (7c)

White solid; m.p. $64.9-66.6^{\circ} \mathrm{C} ; 70.3 \mathrm{mg}, 81 \%$ yield, $96 \% \mathrm{ee} ;[\alpha]_{\mathrm{D}}{ }^{23}=-62.22\left(\mathrm{c}=0.585, \mathrm{CHCl}_{3}\right)$;
HPLC CHIRALCEL OD, n-hexane $/ 2$-propanol $=70 / 30$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=256 \mathrm{~nm}$, retention time: 5.817 min (minor), $6.797 \mathrm{~min}(m a j o r) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{dd}, J=$ $5.6,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.70-7.65(\mathrm{~m}, 2 \mathrm{H}), 6.11(\mathrm{ddd}, J=17.2,10.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{dt}, J=4.8,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.22(\mathrm{p}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{dddt}, J=8.4,7.2,4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dt}, J=11.6,8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.91(\mathrm{dt}, J=11.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 168.6,134.2,132.1,131.8,123.4,118.9,62.7,56.0$; HRMS (ESI-TOF): exact mass calcd for

Colorless oil; $59.7 \mathrm{mg}, 79 \%$ yield, $92 \% \mathrm{ee} ;[\alpha]_{\mathrm{D}}^{23}=-59.48\left(\mathrm{c}=0.575, \mathrm{CHCl}_{3}\right) ;$ HPLC CHIRALCEL IG, n-hexane $/ 2$-propanol $=80 / 20$, flow rate $=0.7 \mathrm{~mL} / \mathrm{min}, \lambda=256 \mathrm{~nm}$, retention time: 16.857 min (minor), 18.233 min (major); ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.79(\mathrm{~s}, 1 \mathrm{H}), 8.68(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=$ $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{ddd}, J=16.8,10.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{p}, J=4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.27(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{dd}, J=12.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}$, $J=12.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 150.7,150.1,149.3,133.8,129.0,119.3$, 118.5, 100.0, 64.0, 60.8; HRMS (ESI-TOF): exact mass calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$requires m / z 190.0975, found $\mathrm{m} / \mathrm{z} 190.0975$.
(S)-2-(1-hydroxybut-3-en-2-yl)isoquinolin-1(2H)-one (7e)

Colorless oil; $55.0 \mathrm{mg}, 64 \%$ yield, $79 \% \mathrm{ee} ;[\alpha]_{\mathrm{D}}^{23}=-69.70\left(\mathrm{c}=0.505, \mathrm{CHCl}_{3}\right) ;$ HPLC CHIRALCEL IG, n-hexane $/ 2$-propanol $=70 / 30$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=256 \mathrm{~nm}$, retention time: 8.133 min (minor), 9.602 min (major); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.36(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{ddd}, J=$ $8.0,6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.00$ (ddd, $J=17.2,10.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{dtt}, J=6.8,5.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{ddd}, J=10.8,2.0,0.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.26(\mathrm{ddd}, J=17.2,2.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=11.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{t}, J=9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.62(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.0,136.8,133.5,132.5,129.1,128.1,127.0$, 126.0, 125.9, 119.3, 106.7, 63.6, 59.1; HRMS (ESI-TOF): exact mass calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ requires $\mathrm{m} / \mathrm{z} 216.1019$, found $\mathrm{m} / \mathrm{z} 216.1021$.
(S)-3-(1-hydroxybut-3-en-2-yl)quinazolin-4(3H)-one (7f)

White solid; m.p. $79.9-81.5^{\circ} \mathrm{C} ; 71.7 \mathrm{mg}, 83 \%$ yield, $88 \% \mathrm{ee} ;[\alpha]_{\mathrm{D}}{ }^{23}=-75.96\left(\mathrm{c}=0.545, \mathrm{CHCl}_{3}\right)$;

HPLC CHIRALCEL IG, n-hexane $/ 2$-propanol $=70 / 30$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=256 \mathrm{~nm}$, retention time: 8.798 min (major), 10.423 min (minor); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11(\mathrm{~s}, 1 \mathrm{H})$, $8.07(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{ddd}, J=8.4,7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35$ (ddd, $J=8.0,7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{ddd}, J=17.2,10.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.47-5.39(\mathrm{~m}, 2 \mathrm{H}), 5.36$ (ddd, $J=17.2,1.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~s}, 1 \mathrm{H}), 4.09(\mathrm{qd}, J=12.0,5.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 161.2,147.0,145.9,134.5,132.7,127.4,126.9,126.8,121.6,120.4,62.7,58.6 ;$ HRMS (ESI-TOF): exact mass calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$requires m / z 217.0972, found m / z 217.0971. (S)-1-(1-hydroxybut-3-en-2-yl)quinoxalin-2(1H)-one (7g)

White solid; m.p. $112.5-114.4^{\circ} \mathrm{C} ; 82.0 \mathrm{mg}, 95 \%$ yield, $99 \% \mathrm{ee} ;[\alpha]_{\mathrm{D}}{ }^{23}=-77.04\left(\mathrm{c}=0.540, \mathrm{CHCl}_{3}\right)$; HPLC CHIRALCEL AS, n-hexane $/ 2$-propanol $=80 / 20$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=256 \mathrm{~nm}$, retention time: 7.980 min (minor), 9.965 min (major); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.20(\mathrm{~s}, 1 \mathrm{H})$, $7.85(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{ddd}, J=8.4,5.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{ddd}, J=$ $17.4,10.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 5.35-5.32(\mathrm{~m}, 1 \mathrm{H}), 5.23-5.19(\mathrm{~m}, 1 \mathrm{H}), 4.31(\mathrm{dt}, J=12.0$, $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.9,150.5$, 134.2, 132.4, 132.2, 131.0, 130.8, 124.1, 118.6, 115.2, 62.4, 59.7; HRMS (ESI-TOF): exact mass calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$requires $\mathrm{m} / \mathrm{z} 239.0791$, found $\mathrm{m} / \mathrm{z} 239.0789$.

(S)-1-(1-hydroxybut-3-en-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (5aa)

White solid; m.p. $139.5-141.2{ }^{\circ} \mathrm{C} ; 37.7 \mathrm{mg}, 96 \%$ yield, $92 \% \mathrm{ee} ;[\alpha]_{\mathrm{D}}{ }^{23}=-2.95\left(\mathrm{c}=0.745, \mathrm{CHCl}_{3}\right) ;$ HPLC CHIRALCEL ID, n-hexane $/ 2$-propanol $=70 / 30$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=256 \mathrm{~nm}$, retention time: 11.372 min (minor), 12.470 min (major); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.99(\mathrm{~s}$, $1 \mathrm{H}), 7.10(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{ddd}, J=17.4,10.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.43-5.39(\mathrm{~m}, 1 \mathrm{H}), 5.35(\mathrm{dd}$, $J=17.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.21-5.17(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{dt}, J=12.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dt}, J=12.0,6.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.71(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.4$, 152.1, 138.7, 132.4, 120.4, 110.6, 62.6, 59.2, 12.6; HRMS (ESI-TOF): exact mass calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$requires $\mathrm{m} / \mathrm{z} 219.0740$, found $\mathrm{m} / \mathrm{z} 219.0739$.

White solid; m.p. $118.2-119.6^{\circ} \mathrm{C}$; $58.0 \mathrm{mg}, 95 \%$ yield; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.65(\mathrm{~s}, 1 \mathrm{H})$, $8.28(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{ddd}, J=16.8,10.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.19-$ $5.13(\mathrm{~m}, 2 \mathrm{H}), 4.60(\mathrm{~s}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=12.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=12.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~s}$, 9H); ${ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.5,150.7,150.1,149.9,142.7,132.8,121.8,119.7,82.5$, 63.8, 61.4, 28.3; HRMS (ESI-TOF): exact mass calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{5} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$requires m / z 306.1561, found $\mathrm{m} / \mathrm{z} 306.1557$.
(S)-2-(6-amino-9H-purin-9-yl)but-3-en-1-ol (3gb)

White solid; m.p. $163.2-164.7^{\circ} \mathrm{C} ; 39.1 \mathrm{mg}, 95 \%$ yield, $94 \% \mathrm{ee} ;[\alpha]_{\mathrm{D}}{ }^{20}=-55.28\left(\mathrm{c}=0.615, \mathrm{CH}_{3} \mathrm{OH}\right)$; HPLC CHIRALCEL IG, n-hexane $/ 2$-propanol $=70 / 30$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=256 \mathrm{~nm}$, retention time: 17.220 min (minor), 19.225 min (major); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}\right.$, Methanol- $\left.d_{4}\right) \delta 8.22$ (s, 1H), $8.19(\mathrm{~s}, 1 \mathrm{H}), 6.26(\mathrm{ddd}, J=17.4,10.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{dt}, J=10.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.23-$ $5.20(\mathrm{~m}, 1 \mathrm{H}), 5.17(\mathrm{dt}, J=17.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{dd}, J=12.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=12.0,4.2$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (150 MHz, Methanol- d_{4}) $\delta 157.3,153.5,150.7,142.0,134.7,120.0,119.3,64.0$, 61.2; HRMS (ESI-TOF): exact mass calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{5} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$requires m / z 206.1036, found m/z 206.1035.
(S)-9-(1-(allyloxy)but-3-en-2-yl)-9H-purin-6-diBocamine (3gc)

Colorless oil; $80.2 \mathrm{mg}, 90 \%$ yield; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.82(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H}), 6.21$ (ddd, $J=16.8,10.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.79-5.70(\mathrm{~m}, 1 \mathrm{H}), 5.43-5.40(\mathrm{~m}, 1 \mathrm{H}), 5.35(\mathrm{dd}, J=10.8,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.19(\mathrm{dd}, J=16.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{dd}, J=17.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{dd}, J=10.2,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.98(\mathrm{dd}, J=10.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-3.91(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{dd}, J=10.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}$,
$18 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 153.3,151.9,150.6,150.3,144.7,133.7,132.8,128.8,119.5$, 117.9, 83.7, 72.4, 70.6, 57.2, 27.9; HRMS (ESI-TOF): exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{NaO}_{5}$ $[\mathrm{M}+\mathrm{Na}]^{+}$requires $\mathrm{m} / \mathrm{z} 468.2217$, found $\mathrm{m} / \mathrm{z} 468.2221$.
(S)-9-(3,6-dihydro-2H-pyran-3-yl)-9H-purin-6-diBocamine (3gd)

Colorless oil; $73.4 \mathrm{mg}, 88 \%$ yield, 94% ee; $[\alpha]_{\mathrm{D}}^{23}=53.55\left(\mathrm{c}=0.600, \mathrm{CHCl}_{3}\right) ;$ HPLC CHIRALCEL IE, n-hexane $/ 2$-propanol $=70 / 30$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=256 \mathrm{~nm}$, retention time: 22.153 min (minor), 23.503 min (major); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.84(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~s}, 1 \mathrm{H}), 6.31$ (ddt, J $=10.2,3.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.05-6.02(\mathrm{~m}, 1 \mathrm{H}), 5.21-5.18(\mathrm{~m}, 1 \mathrm{H}), 4.38(\mathrm{dddd}, J=17.2,3.6,2.4$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{dq}, J=17.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dt}, J=12.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=12.0,3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.0,152.0,150.7,150.4,144.4,133.5$, 129.1, 121.4, 83.8, 68.5, 65.4, 47.4, 27.9; HRMS (ESI-TOF): exact mass calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{5} \mathrm{O}_{5}$ $[\mathrm{M}+\mathrm{H}]^{+}$requires $\mathrm{m} / \mathrm{z} 418.2085$, found $\mathrm{m} / \mathrm{z} 418.2081$.

(S)-9-(3,6-dihydro-2H-pyran-3-yl)-9H-purin-6-amine (3ge)

White solid; m.p. $192.6-194.4^{\circ} \mathrm{C} ; 41.2 \mathrm{mg}, 95 \%$ yield, $95 \% \mathrm{ee} ;[\alpha]_{\mathrm{D}}{ }^{20}=92.36\left(\mathrm{c}=0.550, \mathrm{CH}_{3} \mathrm{OH}\right)$; HPLC CHIRALCEL IF, n-hexane $/ 2$-propanol $=50 / 50$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=256 \mathrm{~nm}$, retention time: 24.745 min (minor), 32.330 min (major); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}\right.$, Methanol- $\left.d_{4}\right) \delta 8.22$ $(\mathrm{s}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}), 6.34(\mathrm{ddt}, J=10.0,3.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{ddt}, J=10.0,4.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.09$ $(\mathrm{s}, 1 \mathrm{H}), 4.39-4.33(\mathrm{~m}, 1 \mathrm{H}), 4.28-4.22(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{t}, J=3.2 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR (150 MHz, CDCl_{3}) $\delta 157.3,153.7,150.1,141.7,134.6,122.1,120.1,69.2,66.4,48.9 ;$ HRMS (ESI-TOF): exact mass calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{5} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$requires m / z 218.1036, found m / z 218.1039.
(3S,4R,5R)-5-(6-diBocamino-9H-purin-9-yl)tetrahydro-2H-pyran-3,4-diol (3gf)

White solid; m.p. $124.6-126.3^{\circ} \mathrm{C} ; 79.3 \mathrm{mg}, 88 \%$ yield, 93% ee, $>20: 1 \mathrm{dr} ;[\alpha]_{\mathrm{D}}{ }^{20}=37.62(\mathrm{c}=0.505$,
CHCl_{3}); HPLC CHIRALCEL OD, n-hexane $/ 2$-propanol $=70 / 30$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=256$ nm , retention time: 5.005 min (minor), $8.857 \mathrm{~min}\left(\right.$ major); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.77(\mathrm{~s}$, $1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 4.78(\mathrm{td}, J=9.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{dt}, J=9.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=11.4$, $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.08-3.99(\mathrm{~m}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{dd}, J=12.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~s}, 1 \mathrm{H}), 1.46(\mathrm{~s}$, $18 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.6,151.9,150.9,150.4,145.2,129.2,84.5,70.5,69.4$, 68.4, 67.4, 56.2, 28.0; HRMS (ESI-TOF): exact mass calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{5} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}$requires m / z 452.2140, found $\mathrm{m} / \mathrm{z} 452.2137$.
(3S,4R,5R)-5-(6-amino-9H-purin-9-yl)tetrahydro-2H-pyran-3,4-diol (3gg)

White solid; m.p. $265.5-267.2^{\circ} \mathrm{C} ; 46.0 \mathrm{mg}, 92 \%$ yield; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (600 MHz , Methanol- d_{4}) $\delta 8.18$ (s, 2H) , $4.78(\mathrm{td}, J=10.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{dd}, J=10.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=11.4,4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.02-3.92(\mathrm{~m}, 3 \mathrm{H}), 3.74(\mathrm{dd}, J=12.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.3$, 153.5, 151.2, 142.4, 120.4, 72.0, 70.8, 70.1, 68.8, 56.4; HRMS (ESI-TOF): exact mass calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{5} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$requires $\mathrm{m} / \mathrm{z} 252.1091$, found $\mathrm{m} / \mathrm{z} 252.1093$.
(S)-2-(6-diBocamino-9H-purin-9-yl)but-3-en-1-yl 4-methylbenzenesulfonate (3gh)

White solid; m.p. $52.2-54.7^{\circ} \mathrm{C} ; 104.0 \mathrm{mg}, 93 \%$ yield; ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.62(\mathrm{~s}, 1 \mathrm{H})$, $8.03(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.18(\mathrm{ddd}, J=17.2,10.4,6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.44(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{dd}, J=$ $10.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{dd}, J=10.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 152.8,151.8,150.7,150.5,145.7,144.0,131.6,130.1,128.9,127.8,121.8,84.0,68.3$, 57.4, 27.9, 21.7; HRMS (ESI-TOF): exact mass calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$requires m / z 560.2173, found $\mathrm{m} / \mathrm{z} 560.2172$.
(2R,3R)-2-(6-diBocamino-9H-purin-9-yl)-3,4-dihydroxybutyl 4-methylbenzenesulfonate (3gi)

White solid; m.p. $128.4-129.9^{\circ} \mathrm{C} ; 109.2 \mathrm{mg}, 92 \%$ yield, 96% ee, $>20: 1 \mathrm{dr} ;[\alpha]_{\mathrm{D}}{ }^{23}=2.17(\mathrm{c}=0.400$, CHCl_{3}); HPLC CHIRALCEL ID, n-hexane $/ 2$-propanol $=70 / 30$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=256$ nm , retention time: 9.662 min (major), 15.002 min (minor); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.65(\mathrm{~s}$, $1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.06(\mathrm{dt}, J=9.0,4.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.58(\mathrm{dd}, J=11.4,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{dd}, J=10.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{td}, J=6.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.41$ $(\mathrm{dd}, J=11.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=11.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.1,151.6,150.6,145.7,145.7,131.7,130.2,128.5,127.8,84.4,70.1,67.7$, 62.9, 57.0, 27.9, 21.7; HRMS (ESI-TOF): exact mass calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{~N}_{5} \mathrm{O}_{9} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$requires m / z 594.2228, found $\mathrm{m} / \mathrm{z} 594.2226$.
(3R,4R)-4-(6-diBocamino-9H-purin-9-yl)tetrahydrofuran-3-ol (3gj)

Colorless oil; $69.6 \mathrm{mg}, 85 \%$ yield, $94 \% \mathrm{ee}, 20: 1 \mathrm{dr} ;[\alpha]_{\mathrm{D}}{ }^{23}=-5.50\left(\mathrm{c}=0.800, \mathrm{CHCl}_{3}\right) ; \mathbf{H P L C}$ CHIRALCEL ID, n-hexane $/ 2$-propanol $=70 / 30$, flow rate $=0.8 \mathrm{~mL} / \mathrm{min}, \lambda=256 \mathrm{~nm}$, retention time: 12.100 min (major), 16.352 min (minor); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.87(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H})$, $5.02(\mathrm{dt}, J=5.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{dt}, J=6.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{dd}, J=10.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-$ $4.28(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{dd}, J=10.2,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.3$, 152.2, 150.8, 150.7, 142.8, 128.9, 84.2, 76.6, 74.1, 70.0, 63.0, 28.0; HRMS (ESI-TOF): exact mass calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$requires $\mathrm{m} / \mathrm{z} 444.1854$, found $\mathrm{m} / \mathrm{z} 444.1857$.

7. Copies of NMR spectra for the products

${ }^{1} \mathrm{H}$ NMR for $\mathbf{3 a}$

${ }^{13} \mathrm{C}$ NMR for $\mathbf{3 a}$

${ }^{1} \mathrm{H}$ NMR for 3b

${ }^{13} \mathrm{C}$ NMR for $\mathbf{3 b}$

| | |
| :--- | :--- | :--- |

${ }^{1} \mathrm{H}$ NMR for $\mathbf{3 c}$

${ }^{13} \mathrm{C}$ NMR for $\mathbf{3 c}$

${ }^{1} \mathrm{H}$ NMR for 3d

${ }^{13} \mathrm{C}$ NMR for 3d

${ }^{1} \mathrm{H}$ NMR for $\mathbf{3 e}$

${ }^{13} \mathrm{C}$ NMR for $\mathbf{3 e}$

${ }^{1} \mathrm{H}$ NMR for $\mathbf{3 f}$

${ }^{13} \mathrm{C}$ NMR for $\mathbf{3 f}$

${ }^{1} \mathrm{H}$ NMR for $\mathbf{3 g}$

${ }^{13}$ C NMR for $\mathbf{3 g}$

${ }^{1} \mathrm{H}$ NMR for $\mathbf{3 h}$

${ }^{13} \mathrm{C}$ NMR for $\mathbf{3 h}$

${ }^{1} \mathrm{H}$ NMR for $\mathbf{3 i}$

${ }^{13} \mathrm{C}$ NMR for $\mathbf{3 i}$

${ }^{1} \mathrm{H}$ NMR for $\mathbf{3 j}$

${ }^{13} \mathrm{C}$ NMR for $\mathbf{3 j}$

3j

2200
2100
-2000

- 1900
-1800
-1700
-1600
-1600
-1500
-1400
-1300
-1200
-1100
-900
-800
-700
-600
-500

400
-300
-200
-100
-0
- -100

210	200	190	180	170	160	150	140	130	120	$\begin{array}{c}110 \\ \mathrm{f} 1 \\ (\mathrm{ppm})\end{array}$	$\begin{array}{ll}100 & 90\end{array}$	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR for $\mathbf{3 k}$

${ }^{13} \mathrm{C}$ NMR for $\mathbf{3 k}$

${ }^{1} \mathrm{H}$ NMR for 31

${ }^{13} \mathrm{C}$ NMR for 31

$\begin{array}{llllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \begin{array}{c}110 \\ \mathrm{f} 1 \\ (100 \\ (\mathrm{ppm})\end{array} & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

${ }^{1}$ H NMR for 5a

${ }^{13}$ C NMR for 5a

${ }^{1} \mathrm{H}$ NMR for $\mathbf{5 b}$

${ }^{13}$ C NMR for $\mathbf{5 b}$

${ }^{1} \mathrm{H}$ NMR for $\mathbf{5 c}$

${ }^{13}$ C NMR for $\mathbf{5 c}$

${ }^{1} \mathrm{H}$ NMR for 5d

${ }^{13}$ C NMR for $\mathbf{5 d}$

${ }^{1} \mathrm{H}$ NMR for $\mathbf{5 e}$

${ }^{13} \mathrm{C}$ NMR for $\mathbf{5 e}$

${ }^{1} \mathrm{H}$ NMR for $\mathbf{5 f}$

${ }^{13}$ C NMR for $\mathbf{5 f}$

${ }^{19} \mathrm{~F}$ NMR for $\mathbf{5 f}$

${ }^{1} \mathrm{H}$ NMR for $\mathbf{5 g}$

${ }^{13}$ C NMR for $\mathbf{5 g}$

${ }^{1} \mathrm{H}$ NMR for $\mathbf{5 h}$

${ }^{13} \mathrm{C}$ NMR for $\mathbf{5 h}$

${ }^{1} \mathrm{H}$ NMR for 7 a

${ }^{13} \mathrm{C}$ NMR for $7 \mathbf{a}$

${ }^{1} \mathrm{H}$ NMR for $7 \mathbf{b}$

${ }^{13}$ C NMR for $7 \mathbf{b}$

${ }^{1} \mathrm{H}$ NMR for 7c

${ }^{13} \mathrm{C}$ NMR for 7 c

${ }^{1} \mathrm{H}$ NMR for 7d

${ }^{13} \mathrm{C}$ NMR for $7 \mathbf{d}$

¢ ¢ ¢	ONOM M	\bigcirc	へ㇒ ¢ に N
응 ${ }^{\circ}$		$\dot{\circ}$	へべが
－	11	｜	

-3400
-3200
-3000
-2800
-2600
-2400
-2200
-2000
-1800
-1600
-1400
-1200
-1000
-800
-600
-400
200
-0
-200
-200

$\left.\begin{array}{lllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \begin{array}{c}110 \\ \mathrm{f} 1\end{array}(\mathrm{ppm})\end{array}\right)$
${ }^{1} \mathrm{H}$ NMR for 7 e

${ }^{13} \mathrm{C}$ NMR for 7 e

${ }^{1} \mathrm{H}$ NMR for $7 \mathbf{7}$

${ }^{13} \mathrm{C}$ NMR for $7 \mathbf{f}$

${ }^{1} \mathrm{H}$ NMR for $\mathbf{7 g}$

${ }^{13} \mathrm{C}$ NMR for 7 g

${ }^{1} \mathrm{H}$ NMR for $\mathbf{5 a a}$

${ }^{13} \mathrm{C}$ NMR for $\mathbf{5 a a}$

${ }^{1} \mathrm{H}$ NMR for 3ga

${ }^{13}$ C NMR for 3ga

${ }^{1}$ H NMR for $\mathbf{3 g b}$

${ }^{13} \mathrm{C}$ NMR for $\mathbf{3 g b}$

${ }^{1} \mathrm{H}$ NMR for $\mathbf{3 g c}$

${ }^{13} \mathrm{C}$ NMR for $\mathbf{3 g c}$

${ }^{1} \mathrm{H}$ NMR for $\mathbf{3 g d}$

${ }^{13}$ C NMR for 3gd

[^0]
${ }^{1}$ H NMR for 3ge

${ }^{13} \mathrm{C}$ NMR for 3ge

${ }^{1} \mathrm{H}$ NMR for $\mathbf{3 g f}$

${ }^{13} \mathrm{C}$ NMR for 3gf

${ }^{1} \mathrm{H}$ NMR for $\mathbf{3 g g}$

${ }^{13}$ C NMR for $\mathbf{3 g g}$

${ }^{1} \mathrm{H}$ NMR for $\mathbf{3 g h}$

${ }^{1} \mathrm{H}$ NMR for $\mathbf{3 g i}$

${ }^{13} \mathrm{C}$ NMR for $\mathbf{3 g i}$

${ }^{1} \mathrm{H}$ NMR for $\mathbf{3 g j}$

${ }^{13} \mathrm{C}$ NMR for $\mathbf{3 g j}$

8．Copies of HPLC spectra for racemic and chiral products

积分结果										
Peak	Retention Time min	Area $\mathrm{mAU*}$ min	Height mAU	Area $\%$	Height $\%$					
1	16.395	234.905	460.178	98.54	98.19					
2	17.837	3.480	8.492	1.46	1.81					
Total：							$\mathbf{2 3 8 . 3 8 5}$	$\mathbf{4 6 8 . 6 7 0}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

积分结果										
Peak	Retention Time min	Area mAU＊${ }^{*}$	Heinht mAU	Area $\%$	Height $\%$					
1	13.112	60.805	132.222	50.20	58.49					
2	17.760	60.323	93.827	49.80	41.51					
$\mathbf{~ T o t a l : ~}$							$\mathbf{1 2 1 . 1 2 8}$	$\mathbf{2 2 6 . 0 5 0}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

积分结果						
Peak	Retention Time min	Area mAU＊min	Height mAU	Area $\%$	Height $\%$	
1	13.320	7.561	17.654	2.48	3.96	
2	17.232	297.434	427.810	97.52	96.04	
Total：	$\mathbf{3 0 4 . 9 9 5}$	$\mathbf{4 4 5 . 4 6 4}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$		

积分结果					
Peak	Retention Time \min	Area $\mathrm{mAU*}$ min	Height mAU	Area $\%$	Height $\%$
1	13.873	1471.461	2707.963	96.07	95.37
2	15.707	60.210	131.486	3.93	4.63
Total：	$\mathbf{1 5 3 1 . 6 7 1}$	$\mathbf{2 8 3 9 . 4 4 9}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$	

积分结果					
Peak	Retention Time min	Area mAU＊min	Height mAU	Area $\%$	Height $\%$
1	11.652	67.289	216.181	49.67	52.91
2	12.773	68.170	192.383	50.33	47.09
$\mathbf{~ T o t a l : ~}$					

积分结果										
Peak	Retention Time min	Area mAU＊	Heinht mAU	Area $\%$	Height $\%$					
1	11.492	921.928	2602.760	96.97	96.82					
2	12.808	28.784	85.352	3.03	3.18					
Total：							$\mathbf{9 5 0 . 7 1 1}$	$\mathbf{2 6 8 8 . 1 1 1}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

积分结果										
Peak	Retention Time min	Area mAU＊	Heinht mAU	Area $\%$	Height $\%$					
1	10.953	69.934	96.693	50.03	51.96					
2	13.017	69.849	89.405	49.97	48.04					
$\mathbf{~ T o t a l : ~}$							$\mathbf{1 3 9 . 7 8 3}$	$\mathbf{1 8 6 . 0 9 9}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

积分结果									
Peak	Retention Time min	Area mAU min	Height mAU	Area $\%$	Height $\%$				
1	11.008	32.086	46.581	3.04	3.84				
2	12.845	1022.821	1167.253	96.96	96.16				
$\mathbf{1 0 5 4 . 9 0 7}$							$\mathbf{1 2 1 3 . 8 3 4}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

积分结果										
Peak	Retention Time min	Area mAU＊min	Height mAU	Area $\%$	Height $\%$					
1	23.483	53.528	58.301	50.21	52.68					
2	26.157	53.083	52.364	49.79	47.32					
$\mathbf{~ T o t a l : ~}$							$\mathbf{1 0 6 . 6 1 1}$	$\mathbf{1 1 0 . 6 6 5}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

积分结果						
Peak	Retention Time min	Area mAU min	Height mAU	Area $\%$	Height $\%$	
1	14.323	87.924	164.606	49.71	55.56	
2	16.192	88.963	131.657	50.29	44.44	
Total：	$\mathbf{1 7 6 . 8 8 7}$	$\mathbf{2 9 6 . 2 6 3}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$		

积分结果										
Peak	Retention Time min	Area mAU＊min	Height mAU	Area $\%$	Height $\%$					
1	14.182	295.911	524.439	98.49	98.56					
2	16.353	4.530	7.653	1.51	1.44					
$\mathbf{T o t a l}:$							$\mathbf{3 0 0 . 4 4 1}$	$\mathbf{5 3 2 . 0 9 2}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

积分结果						
Peak	Retention Time min	Area mAU＊${ }^{*}$ min	Height mAU	Area $\%$	Height $\%$	
1	6.902	270.838	993.512	49.63	56.25	
2	8.345	274.899	772.874	50.37	43.75	
Total：	$\mathbf{5 4 5 . 7 3 7}$	$\mathbf{1 7 6 6 . 3 8 6}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$		

积分结果										
Peak	Retention Time min	Area mAU	min	Height mAU	Area $\%$					
1	6.885	863.523	2931.162	97.17	Height $\%$					
2	8.505	25.136	55.071	2.83	1.84					
$\mathbf{~ T o t a l : ~}$							$\mathbf{8 8 8 . 6 5 9}$	$\mathbf{2 9 8 6 . 2 3 3}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

积分结果										
Peak	Retention Time min	Area mAU min	Height mAU	Area $\%$	Height $\%$					
1	12.310	141.474	248.413	50.11	54.71					
2	14.330	140.836	205.656	49.89	45.29					
Total：							$\mathbf{2 8 2 . 3 1 0}$	$\mathbf{4 5 4 . 0 6 9}$	$\mathbf{1 0 0 . 0 0}$	100.00

积分结果						
Peak	Retention Time min	Area mAU＊min	Height mAU	Area $\%$	Height $\%$	
1	12.292	14.956	28.214	2.48	3.23	
2	14.260	587.604	846.342	97.52	96.77	
Total：						

积分结果

Peak	Retention Time min	Area mAU min	Height mAU	Area $\%$	Height $\%$
1	20.483	309.501	185.687	49.26	44.24
2	24.770	318.784	234.034	50.74	55.76
Total：		$\mathbf{6 2 8 . 2 8 5}$	$\mathbf{4 1 9 . 7 2 2}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

积分结果					
Peak	Retention Time min	Area mAU ＊min	Height mAU	Area \％	Height \％
1	18.970	1739.579	1110.341	98.25	97.84
2	25.622	30.905	24.504	1.75	2.16
Total：		1770.484	1134.844	100.00	100.00

积分结果						
Peak	Retention Time min	Area mAU＊min	Height mAU	Area $\%$	Height $\%$	
1	13.025	100.164	222.981	50.09	52.53	
2	14.777	99.812	201.482	49.91	47.47	
Total：						

积分结果										
Peak	Retention Time min	Area mAU min	Height mAU	Area $\%$	Height $\%$					
1	13.050	1.595	4.038	4.25	5.12					
2	14.757	35.927	74.819	95.75	94.88					
Total：							$\mathbf{3 7 . 5 2 3}$	$\mathbf{7 8 . 8 5 7}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

积分结果					
Peak	Retention Time min	Area mAU min	Height mAU	Area $\%$	Height $\%$
1	11.653	23.414	36.713	5.25	7.72
2	13.247	422.238	438.630	94.75	92.28
Total：		$\mathbf{4 4 5 . 6 5 3}$	$\mathbf{4 7 5 . 3 4 3}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

积分结果

Peak	Retention Time min	Area $\mathrm{mAU*}$ min	Height mAU	Area $\%$	Height $\%$					
1	11.753	757.588	1703.052	49.98	56.69					
2	14.742	758.208	1301.088	50.02	43.31					
$\mathbf{~ T o t a l : ~}$							$\mathbf{1 5 1 5 . 7 9 5}$	$\mathbf{3 0 0 4 . 1 4 0}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

积分结果										
Peak	Retention Time min	Area mAU＊min	Height mAU	Area $\%$	Height $\%$					
1	11.888	1.652	4.125	5.60	7.58					
2	14.988	27.865	50.296	94.40	92.42					
Total：							$\mathbf{2 9 . 5 1 7}$	$\mathbf{5 4 . 4 2 1}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

积分结果										
Peak	Retention Time min	Area mAU＊	Height mAU	Area $\%$	Height $\%$					
1	19.650	112.080	196.999	49.88	52.21					
2	21.412	112.609	180.331	50.12	47.79					
$\mathbf{~ T o t a l : ~}$							$\mathbf{2 2 4 . 6 8 9}$	$\mathbf{3 7 7 . 3 3 0}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

积分结果					
Peak	Retention Time min	Area mAU ＊ min	Height mAU	Area $\%$	Height $\%$
1	11.457	119.610	126.604	49.87	54.78
2	14.640	120.246	104.513	50.13	45.22
$\mathbf{~ T o t a l : ~}$					

积分结果					
Peak	Retention Time min	Area mAU＊＊in	Height mAU	Area \％	$\begin{gathered} \text { Height } \\ \% \end{gathered}$
1	11.307	2243.472	2336.370	97.06	96.95
2	14.690	67.921	73.500	2.94	3.05
Total：		2311.393	2409.871	100.00	100.00

积分结果

Peak	Retention Time \min	Area mAU ＊	Heinht mAU	Area $\%$	Height $\%$					
1	21.122	101.388	164.460	50.24	53.09					
2	23.000	100.428	145.289	49.76	46.91					
\mathbf{T}							$\mathbf{2 0 1 . 8 1 6}$	$\mathbf{3 0 9 . 7 4 9}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

积分结果					
Peak	Retention Time min	Area $\mathrm{mAU*}$ min	Height mAU	Area $\%$	Height $\%$
1	12.035	102.756	243.631	50.13	47.37
2	13.132	102.208	270.734	49.87	52.63
Total：	$\mathbf{2 0 4 . 9 6 4}$	$\mathbf{5 1 4 . 3 6 6}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$	

[^1]

积分结果										
Peak	Retention Time min	Area mAU＊min	Height mAU	Area $\%$	Height $\%$					
1	22.133	126.618	233.100	49.82	51.41					
2	23.917	127.517	220.284	50.18	48.59					
$\mathbf{~ T o t a l : ~}$							$\mathbf{2 5 4 . 1 3 5}$	$\mathbf{4 5 3 . 3 8 4}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

$\left.\begin{array}{|l|c|c|c|c|c|}\hline \hline \text { 积分结果 } \\ \hline \text { Peak } & \begin{array}{c}\text { Retention Time } \\ \text { min }\end{array} & \begin{array}{c}\text { Area } \\ \mathrm{mAU} \\ \end{array} & 17.402 & 199.742 \\ \text { Height } \\ \mathrm{mAU}\end{array}\right)$

积分结果

Peak	Retention Time \min	Area mAU＊min	Height mAU	Area $\%$	Height $\%$					
1	5.773	166.552	705.659	50.09	52.22					
2	6.612	165.939	645.688	49.91	47.78					
$\mathbf{~ T o t a l : ~}$							$\mathbf{3 3 2 . 4 9 1}$	$\mathbf{1 3 5 1 . 3 4 6}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

积分结果					
Peak	Retention Time min	Area mAU＊ min	Height mAU	Area \％	$\begin{gathered} \text { Height } \\ \% \end{gathered}$
1	5.817	1.401	6.913	2.24	2.85
2	6.797	61.103	235.760	97.76	97.15
Total：		62.505	242.673	100.00	100.00

积分结果					
Peak	Retention Time min	Area mAU＊＊in	Height mAU	Area \％	Height $\%$
1	16.857	3.138	6.826	4.18	4.91
2	18.233	71.924	132.077	95.82	95.09
Total：		75.063	138.903	100.00	100.00

积分结果										
Peak	Retention Time min	Area mAU min	Height mAU	Area $\%$	Height $\%$					
1	8.117	104.133	441.028	50.17	54.65					
2	9.612	103.413	366.023	49.83	45.35					
Total：							$\mathbf{2 0 7 . 5 4 5}$	$\mathbf{8 0 7 . 0 5 1}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

积分结果					
Peak	Retention Time min	Area mAU min	Height mAU	Area $\%$	Height $\%$
1	8.133	20.010	85.060	10.63	12.65
2	9.602	168.248	587.338	89.37	87.35
$\mathbf{~ T o t a l : ~}$					

积分结果					
Peak	Retention Time min	Area mAU＊min	Height mAU	Area $\%$	Height $\%$
1	8.823	68.987	249.589	50.61	54.77
2	10.403	67.329	206.089	49.39	45.23
Total：	$\mathbf{1 3 6 . 3 1 7}$	$\mathbf{4 5 5 . 6 7 8}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$	

积分结果						
Peak	Retention Time min	Area mAU＊min	Height mAU	Area $\%$	Height $\%$	
1	8.798	239.091	877.729	93.85	94.40	
2	10.423	15.679	52.025	6.15	5.60	
$\mathbf{~ T o t a l : ~}$						

积分结果					
Peak	Retention Time min	Area $\mathrm{mAU*}$ min	Height mAU	Area \％	$\begin{gathered} \text { Height } \\ \% \end{gathered}$
1	7.980	1.604	4.534	0.73	1.19
2	9.965	216.949	376.140	99.27	98.81100.00
Total：	218.553		380.674	100.00	

积分结果

Peak	Retention Time min	Area mAU＊min	Height mAU	Area \％	Height \％
1	10.977	140.576	209.451	49.93	55.59
2	13.203	140.986	167.341	50.07	44.41
Total：		281.562	376.792	100.00	100.00

积分结果					
Peak	Retention Time min	Area mAU min	Height mAU	Area $\%$	Height $\%$
1	11.000	4.210	7.193	2.47	3.58
2	13.123	166.365	193.951	97.53	96.42
Total：					

积分结果										
Peak	Retention Time min	Area mAU＊min	Height mAU	Area $\%$	Height $\%$					
1	11.187	42.734	128.863	49.86	52.87					
2	12.457	42.977	114.857	50.14	47.13					
Total：							$\mathbf{8 5 . 7 1 1}$	$\mathbf{2 4 3 . 7 2 0}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

积分结果										
Peak	Retention Time min	Area mAU＊min	Height mAU	Area $\%$	Height $\%$					
1	17.010	164.110	244.684	48.98	54.43					
2	19.405	170.958	204.879	51.02	45.57					
Total：							$\mathbf{3 3 5 . 0 6 9}$	$\mathbf{4 4 9 . 5 6 2}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

积分结果

Retention Time min		Area mAU min	Height mAU	Area $\%$	Height $\%$					
1	17.220	10.882	15.626	3.21	3.81					
2	19.225	328.255	394.209	96.79	96.19					
Total：							$\mathbf{3 3 9 . 1 3 7}$	$\mathbf{4 0 9 . 8 3 6}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

积分结果					
Peak	Retention Time min	Area mAU ＊in	Height mAU	Area $\%$	Height $\%$
1	21.907	81.845	125.358	49.25	52.92
2	23.648	84.331	111.540	50.75	47.08
$\mathbf{T o t a l}:$					

积分结果					
Peak	Retention Time min	Area mAU ＊min	Height mAU	Area $\%$	Height $\%$
1	22.153	8.345	13.556	2.92	3.82
2	23.503	277.015	341.377	97.08	96.18
$\mathbf{~ T o t a l : ~}$					

积分结果					
Peak	Retention Time min	Area mAU＊＊in	Height mAU	Area \％	$\begin{gathered} \text { Height } \\ \% \end{gathered}$
1	23.568	507.288	387.086	49.89	56.15
2	33.907	509.546	302.303	50.11	43.85
Total：		1016.834	689.389	100.00	100.00

积分结果						
Peak	Retention Time min	Area mAU min	Height mAU	Area $\%$	Height $\%$	
1	24.745	46.606	27.319	2.50	2.95	
2	32.330	1816.801	899.994	97.50	97.05	
$\mathbf{~ T o t a l : ~}$						

积分结果										
Peak	Retention Time min	Area mAU＊min	Height mAU	Area $\%$	Height $\%$					
1	4.885	150.833	395.726	49.60	67.90					
2	8.750	153.260	187.059	50.40	32.10					
$\mathbf{~ T o t a l : ~}$							$\mathbf{3 0 4 . 0 9 3}$	$\mathbf{5 8 2 . 7 8 4}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

积分结果								
Peak	Retention Time min	Area mAU＊	Height mAU	Area $\%$	Height $\%$			
1	5.005	16.426	44.164	3.42	7.37			
2	8.857	463.372	555.129	96.58	92.63			
Total：	$\mathbf{5 9 9 . 2 9 3}$						100.00	100.00

积分结果										
Peak	Retention Time min	Area mAU＊min	Height mAU	Area $\%$	Height $\%$					
1	9.798	25.753	55.234	26.87	38.25					
2	10.883	25.653	48.983	26.77	33.92					
3	15.092	22.223	28.155	23.19	19.50					
4	26.563	22.210	12.036	23.17	8.33					
Total：							$\mathbf{9 5 . 8 3 9}$	$\mathbf{1 4 4 . 4 0 8}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

积分结果

Peak	Retention Time min	Area mAU min	Height mAU	Area $\%$	Height $\%$
1	9.662	148.706	334.856	97.89	98.55
2	15.002	3.211	4.930	2.11	1.45
Total：	$\mathbf{1 5 1 . 9 1 7}$	$\mathbf{3 3 9 . 7 8 6}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$	

积分结果					
Peak	Retention Time min	Area mAU＊min	Height mAU	Area $\%$	Height $\%$
1	12.185	119.459	269.271	53.00	62.87
2	16.160	105.945	159.019	47.00	37.13
Total：	$\mathbf{2 2 5 . 4 0 3}$	$\mathbf{4 2 8 . 2 9 0}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$	

积分结果

Peak	Retention Time min	Area mAU＊min	Height mAU	Area $\%$	Height $\%$
1	12.100	237.663	499.750	96.80	97.34
2	16.352	7.853	13.670	3.20	2.66
Total：	$\mathbf{2 4 5 . 5 1 6}$	$\mathbf{5 1 3 . 4 2 0}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$	

[^0]: $\begin{array}{llllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^1]:

 积分结果

 | Peak | Retention Time
 min | Area
 mAU min | Height
 mAU | Area
 $\%$ | Height
 $\%$ | | | | | |
 | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | 1 | 12.065 | 40.407 | 104.673 | 8.21 | 8.40 | | | | | |
 | 2 | 13.032 | 452.012 | 1141.062 | 91.79 | 91.60 | | | | | |
 | Total： | | | | | | | $\mathbf{4 9 2 . 4 1 9}$ | $\mathbf{1 2 4 5 . 7 3 5}$ | $\mathbf{1 0 0 . 0 0}$ | $\mathbf{1 0 0 . 0 0}$ |

