Supporting Information

Iron-catalysed chemo- and ortho-selective C-H bond functionalization of phenols with α-aryl-αdiazoacetates

Zhunzhun Yu,^a Guanghui Li, ^a Junliang Zhang,^{*c} and Lu Liu^{*a, b}

^a School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road Shanghai, 200241, P. R. China; E-mail: lliu@chem.ecnu.edu.cn.

^bShanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, P. R. China

^cDepartment of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China; E-mail: junliangzhang@fudan.edu.cn.

Content:

1.	Table S1	S2
2.	General Information	
3.	General procedure for ortho C-H bond functionalization	S4
4.	References	S11
5.	X-ray crystal date for 3ed and 6a	S10
6.	NMR Spectra of new compounds	S11

	OH	N₂ ↓	LFeCl (10 m AgX (10 m	iol%)	OH Ph $CO_{2}B^{1}$.	Ph	
		Ph [^] CO ₂ R ¹	Solvent,	r.t.		ArO´ `CO ₂ R'	
1a		2a-2d		3aa-3ad		4aa-4ad	
Entry	\mathbb{R}^1	L	AgX	Solvent	3aa-3ad (%) ^a	4aa-4ad (%) ^a	
1	Me	L1	AgSbF ₆	CH ₂ Cl ₂	39	19	
2	Me	L2	AgSbF ₆	CH ₂ Cl ₂	33	15	
3	Me	L3	AgSbF ₆	CH_2Cl_2	39	23	
4	Me	L4	AgSbF ₆	CH_2Cl_2	71	16	
5	Me	L5	AgSbF ₆	CH ₂ Cl ₂	60	19	
6	Me	L6	AgSbF ₆	CH ₂ Cl ₂	60	15	
7	Me	L7	AgSbF ₆	CH ₂ Cl ₂	-	-	
8	Me	L8	AgSbF ₆	CH ₂ Cl ₂	52	15	
9	Me	L4	AgOTf	CH_2Cl_2	trace	trace	
10	Me	L4	AgNTf ₂	CH_2Cl_2	trace	trace	
11	Me	L4	NaBAr _F	CH_2Cl_2	58	15	
12	2a /Me	L4	AgBF ₄	CH ₂ Cl ₂	32	N.D	
13	2a /Me	L4	$AgPF_6$	CH ₂ Cl ₂	Trace	Trace	
14	2a /Me	L4	AgClO ₄	CH ₂ Cl ₂	Trace	Trace	
15	2a /Me	L4	-	CH ₂ Cl ₂	NR	NR	
16	Me	L4	AgSbF ₆	DCE	66	16	
17	Me	L4	AgSbF ₆	CH ₃ CN	NR	NR	
18	Me	L4	AgSbF ₆	Toluene	41	13	
19	Me	L4	AgSbF ₆	THF	52	10	
20	Et	L4	AgSbF ₆	CH ₂ Cl ₂	75	12	
21	ⁱ Pr	L4	AgSbF ₆	CH ₂ Cl ₂	70	7	
22	^t Bu	L4	AgSbF ₆	CH ₂ Cl ₂	81(69)	7.7	
23	^t Bu	L4	-	CH ₂ Cl ₂	NR	NR	
24	^t Bu	-	AgSbF ₆	CH ₂ Cl ₂	-	trace	
25^{b}	^t Bu	L1	-	CH_2Cl_2	NR	NR	
26	Me	L1	AgSbF ₆	CH_2Cl_2	NR	NR	
27^c	^t Bu	L1	AgSbF ₆	CH ₂ Cl ₂	NR	NR	

Table S1: Optimization of Reaction Conditions.

Reaction Conditions: **1a** (0.4 mmol), **2a** (0.6 mmol), catalyst (10 mol%), solvent (5 mL), rt. ^{*a*}NMR yield, the number in parenthesis is isolated yield. ^{*b*}Cobalt porphyrin was used instead. ^{*c*}Manganese was used instead.

1. General Information:

All air- and moisture-sensitive manipulations were carried out with standard Schlenk techniques under nitrogen or in a glove box under nitrogen. ¹H NMR, ¹³C NMR spectra were measured at 400 MHz and 100 MHz in CDCl₃. Data for ¹H NMR spectra are reported as follows: chemical shift (ppm, referenced to TMS; s = singlet, d = doublet, t = triplet, dd = doublet of doublets, dt = doublet of triplets, m = multiplet), coupling constant (Hz), and integration. Data for ¹³C NMR are reported in terms of chemical shift (ppm) relative to residual solvent peak (CDCl₃: 77.0 ppm). THF, Toluene, 1,4-dioxne, Ether were distilled from sodium and benzophenone prior to be used. CH₂Cl₂, CH₃CN were distilled from CaH₂ prior to be used.

2. General procedure for the ortho C-H bond functionalization of naphthalenols^[1]

In a dried glass tube, a mixture of LFeCl (0.04 mmol), AgX (0.04 mmol) in CH₂Cl₂ (4 mL) was stirred at room temperature for 15 mins. Subsequently, naphthalenol (0.4 mmol) was added to the reaction mixture at room temperature. Then a solution of diazo compounds (0.6 mmol) in CH₂Cl₂ (1 mL) was introduced into the reaction mixture by a syringe in a period of 15 mins. The resulting mixture was continually stirred at room temperature for 1 min. The mixture was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel (PE/EA = 10:1 to 5:1) to afford the desired product.

1) Synthesis of 3ad^[2]

3ad

3ad, colorless oil, 69% yield. ¹H-NMR (400 MHz, CDCl₃) δ 7.40-7.45 (m, 1H), 8.34 (d, *J* = 6.4 Hz, 1H), 7.75-7.80 (m, 1H), 7.45-7.50 (m, 2H), 7.39 (d, *J* = 8.0 Hz, 1H), 7.20-7.35 (m, 6H), 5.05 (s, 1H), 1.53 (s, 9H).

2) Synthesis of 3ae

3ae, colorless oil, 61% yield. ¹H-NMR (400 MHz, CDCl₃) δ 9.10 (s, 1H), 8.28-8.32 (m, 1H), 8.14 (d, *J* = 8.0 Hz, 2H), 7.81 (dd, *J* = 8.0 Hz, 4 Hz, 1H), 7.40-7.50 (m, 5H), 7.23 (d, *J* = 8.0 Hz, 1H), 5.14 (s, 1H), 1.55 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃) δ 27.91, 56.97, 84.82, 115.46, 120.58, 122.56, 123.77, 125.60, 126.43, 126.90, 127.28,

128.43, 128.77, 134.57, 144.63, 147.09, 151.55, 174.67. MS(EI): m/z (%): 379 (M⁺, 6.90), 57 (100); HRMS (EI) calcd. for C₂₂H₂₁NO₅: 379.1420, found: 379.1423.

3) Synthesis of 3af

3af, colorless oil, 56% yield. ¹H-NMR (400 MHz, CDCl₃) δ 9.46 (s, 1H), 8.32-8.38 (m, 1H), 7.76-7.80 (m, 1H), 7.45-7.50 (m, 2H), 7.40 (d, *J* = 8.4 Hz, 1H), 7.23 (d, *J* = 8.4 Hz, 1H), 7.08-7.16 (m, 4H), 5.03 (s, 1H), 1,54 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃) δ 21.00, 27.96, 57.31, 83.85, 116.30, 119.86, 122.88, 125.16, 126.46, 126.53, 127.09, 127.15, 129.35, 129.51, 134.14, 134.37, 136.98, 151.76, 176.03. MS(EI): m/z (%): 348 (M⁺, 6.98), 231 (100); HRMS (EI) calcd. for C₂₃H₂₄O₃: 348.1725, found: 348.1722.

4) Synthesis of 3ag^[2]

3ag, colorless oil, 56% yield. ¹H-NMR (400 MHz, CDCl₃) δ 8.15-8.25 (m, 1H), 7.90-7.95 (m, 1H), 7.35-7.50 (m, 2H), 7.15-7.25 (m, 2H), 6.90-6.95 (m, 1H), 6.80-6.85 (m, 2H), 6.40-6.45 (m, 1H), 6.22 (bs, 1H), 5.52 (s, 1H), 3.78 (s, 3H), 1.45 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃) δ 27.95, 53.44, 55.20, 81.64, 107.98, 113.95, 122.62, 123.08, 124.71, 124.96, 126.28, 126.63, 127.34, 129.98, 130.51, 132.69, 151.20, 158.57, 173.29. MS(EI): m/z (%): 364 (M⁺, 10.45), 263 (100); HRMS (EI) calcd. for C₂₃H₂₄O₄: 364.1675, found: 364.1680.

5) Synthesis of 3ah^[2]

3ah, colorless oil, 56% yield. ¹H-NMR (400 MHz, CDCl₃) δ 8.15-8.25 (m, 1H), 7.90-7.95 (m, 1H), 7.35-7.50 (m, 2H), 7.15-7.25 (m, 2H), 6.90-6.95 (m, 1H), 6.80-6.85 (m, 2H), 6.40-6.45 (m, 1H), 6.22 (bs, 1H), 5.52 (s, 1H), 3.78 (s, 3H), 1.45 (s, 9H).

6) Synthesis of 3ai

3ai, colorless oil, 78% yield. ¹H-NMR (400 MHz, CDCl₃) δ 8.89 (s, 1H), 8.30-8.40 (m, 1H), 7.75-7.85 (m, 1H), 7.40-7.55 (m, 3H), 7.20-7.30 (m, 2H), 6.98-7.10 (m, 3H), 5.17 (s, 1H), 1.48 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃) δ 27.75, 51.84, 83.80, 113.95, [115.35, *J* = 21 Hz, 1C], 120.28, 122.72, [123.88, *J* = 21 Hz, 1C], [124.18, *J* = 3 Hz, 1C], 125.31, 126.24, 126.65, 127.22, 128.64, [129.34, *J* = 15 Hz, 1C], 129.35, 134.48, 151.94, [160.70, *J* = 45 Hz, 1C], 174.81. MS(EI): m/z (%): 352 (M⁺, 7.82), 249 (100); HRMS (EI) calcd. for C₂₂H₂₁O₃F: 352.1475, found: 352.1478.

7) Synthesis of 3aj^[2]

3aj, colorless oil, 56% yield. ¹H-NMR (400 MHz, CDCl₃) δ 8.25-8.35 (m, 1H), 8.26 (s, 1H), 7.75-7.85 (m, 1H), 7.40-7.50 (m, 4H), 7.10-7.30 (m, 4H), 5.34 (s, 1H), 1.46 (s, 9H).

8) Synthesis of 3ak^[2]

3ak, colorless oil, 56% yield. ¹H-NMR (400 MHz, CDCl₃) δ 9.27 (s, 1H), 8.30-8.40 (m, 1H), 7.75-7.85 (m, 1H), 7.35-7.55 (m, 5H), 7.10-7.25 (m, 3H), 5.03 (s, 1H), 1.55

(s, 9H).

9) Synthesis of 3al^[2]

3al, colorless oil, 56% yield. ¹H-NMR (400 MHz, CDCl₃) δ 9.27 (s, 1H), 8.35-8.40 (m, 1H), 7.80-7.85 (m, 1H), 7.40-7.65 (m, 7H), 7.20-7.30 (m, 1H), 5.14 (s, 1H), 1.57 (s, 9H).

10) Synthesis of 3am^[2]

3am, colorless oil, 56% yield. ¹H-NMR (400 MHz, CDCl₃) δ 9.26 (s, 1H), 8.25-8.35 (m, 1H), 7.70-7.80 (m, 1H), 7.35-7.50 (m, 3H), 7.10-7.25 (m, 5H), 5.01 (s, 1H), 1.52 (s, 9H).

11) Synthesis of 3an

3an, colorless oil, 61% yield. ¹H-NMR (400 MHz, CDCl₃) δ 9.33 (s, 1H), 8.30-8.40 (m, 1H), 7.75-7.80 (m, 1H), 7.40-7.50 (m, 2H), 7.40 (d, *J* = 8.4 Hz, 1H), 7.15-7.25 (m, 2H), 6.75-6.85 (m, 3H), 5.02 (s, 1H), 3.70 (s, 3H), 1.52 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃) δ 27.93, 55.08, 57.52, 83.94, 112.31, 113.53, 116.05, 119.64, 119.89, 122.85, 125.17, 126.49, 127.09, 129.46, 129.59, 134.40, 138.71, 151.77, 159.72, 175.6. MS(EI): m/z (%): 364 (M⁺, 8.39), 231 (100); HRMS (EI) calcd. for C₂₃H₂₄O₄: 364.1675, found: 364.1674.

12) Synthesis of 3ao

3ao, white solid, 75% yield. ¹H-NMR (400 MHz, CDCl₃) δ 9.45 (s, 1H), 8.35-8.45 (m, 1H), 7.75-7.90 (m, 5H), 7.45-7.55 (m, 5H), 7.38-7.44 (s, 1H), 7.31-7.35 (m, 1H), 5.27 (s, 1H), 1.60 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃) δ 27.96, 57.65, 84.02, 116.12, 119.99, 122.86, 125.22, 125.58, 126.01, 126.17, 126.53, 126.54, 127.14, 127.48, 128.08, 128.41, 129.46, 132.50, 133.27, 134.43, 134.53, 151.84, 175.66. MS(EI): m/z (%): 384 (M⁺, 6.71), 281 (100); HRMS (EI) calcd. for C₂₆H₂₄O₃: 384.1725, found: 384.1723.

14) Synthesis of 3bd

3bd, light yellow oil, 53% yield. ¹H-NMR (400 MHz, CDCl₃) δ 9.78 (s, 1H), 8.37 (d, *J* = 8.0 Hz, 1H), 8.12 (d, *J* = 8.4 Hz, 1H), 7.55-7.62 (m, 1H), 7.48-7.55 (m, 2H), 7.20-7.32 (m, 5H), 4.98 (s, 1H), 1.54 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃) δ 27.91, 57.36, 84.48, 112.50, 116.90, 123.40, 125.94, 126.45, 127.15, 127.53, 127.76, 127.90, 128.75, 132.40, 132.61, 136.56, 151.87, 175.80. MS(EI): m/z (%): 412 (M⁺, 2.41), 414 ([M+2]⁺, 2.39), 311 (100); HRMS (EI) calcd. for C₂₂H₂₁O₃Br: 412.0674, found: 412.0677.

15) Synthesis of 3cd

3cd, light yellow oil, 75% yield. ¹H-NMR (400 MHz, CDCl₃) δ 9.70 (s, 1H), 8.37 (d, *J* = 8.4 Hz, 1H), 8.16 (d, *J* = 8.4 Hz, 1H), 7.57-7.63 (m, 1H), 7.50-7.55 (m, 1H), 7.34 (s, 1H), 7.21-7.31 (m, 5H), 4.98 (s, 1H), 1.54 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃) δ 27.91, 57.40, 84.43, 116.30, 122.52, 123.38, 123.85, 125.94, 127.18, 127.52, 127.59, 128.75, 129.05, 131.19, 136.58, 151.13, 175.74. MS(EI): m/z (%): 368 (M⁺, 2.72), 370 ([M+2]⁺, 0.97), 265 (100); HRMS (EI) calcd. for C₂₂H₂₁O₃Cl: 368.1179, found: 368.1177

16) Synthesis of 3dd^[2]

3dd, colorless oil, 56% yield. ¹H-NMR (400 MHz, CDCl₃) δ 9.71(s, 1H), 8.34 (d, *J* = 8.4 Hz, 1H), 7.70-7.80 (m, 2H), 7.20-7.35 (m, 7H), 5.06 (s, 1H), 1.52 (s, 9H).

17) Synthesis of 3ed^[2]

3ed

3ed, yellow solid, 56% yield. ¹H-NMR (400 MHz, CDCl₃) δ 9.57 (s, 1H), 8.43 (s, 1H), 7.53 (d, J = 8.8 Hz, 1H), 7.44 (dd, J = 8.8 Hz, 1.6 Hz, 1H), 7.10-7.30 (m, 7H), 4.95 (s, 1H), 1.44 (s, 9H).

18) Synthesis of 6a

6a, colorless oil, 60% yield. ¹H-NMR (400 MHz, CDCl₃) δ 7.88 (s, 1H), 7.20-7.35 (m, 5H), 7.11 (d, *J* = 7.2 Hz, 1H), 6.98 (d, *J* = 7.6 Hz, 1H), 6.78-6.85 (m, 1H), 5.14 (hept, *J* = 6.4 Hz, 1H), 5.03 (s, 1H), 2.24 (s, 3H), 1.32 (d, *J* = 6.4 Hz, 3H), 1.28 (d, *J* = 6.4 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 16.25, 21.61, 21.69, 55.69, 70.04, 120.07, 123.21, 126.77, 127.27, 127.55, 128.59, 129.08, 130.78, 137.05, 153.40, 175.13.

19) Synthesis of 6b

6b, colorless oil, 43% yield. ¹H-NMR (400 MHz, CDCl₃) δ 7.61 (s, 1H), 7.43 (d, J = 8.8 Hz, 2H), 7.05-7.20 (m, 3H), 6.90-7.00 (m, 1H), 6.80-6.90 (m, 1H), 5.14 (hetp, J = 6.4 Hz, 1H), 4.99 (s, 1H), 1.33 (d, J = 6.4 Hz, 3H), 1.28 (d, J = 6.4 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 16.17, 21.57, 21.67, 54.77, 70.18, 77.32, 120.27, 121.31, 123.01, 126.61, 128.76, 129.46, 130.91, 131.65, 136.22, 153.11, 174.53. MS(EI): m/z (%): 362 (M⁺, 8.00), 364 ([M+2]⁺, 7.87), 195 (100); HRMS (EI) calcd. for C₁₈H₁₉O₃Br: 362.0518, found: 362.0524.

20) Synthesis of 6c

6c, white solid, 45% yield. ¹H-NMR (400 MHz, CDCl₃) δ 7.59 (dd, *J* = 8.0 Hz, 1.2 Hz, 1H), 7.18-7.28 (m, 2H), 7.08-7.18 (m, 2H), 6.92-6.96 (m, 1H), 6.80-6.85 (m, 1H), 6.18 (s, 1H), 5.45 (s, 1H), 5.12 (hept, *J* = 6.4 Hz, 1H), 2.25 (s, 3H), 1.28 (d, *J* = 6.4 Hz, 3H), 1.22 (d, *J* = 6.4 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 16.08, 21.55, 53.93 69.58, 120.47, 122.66, 125.02, 125.10, 127.53, 128.36, 128.94, 130.25, 130.60, 133.04, 136.71, 152.70, 172.91. MS(EI): m/z (%): 362 (M⁺, 6.15), 364 ([M+2]⁺, 6.10), 195 (100); HRMS (EI) calcd. for C₁₈H₁₉O₃Br: 362.0518, found: 362.0516.

3. References

[1] The preparation of porphyrin iron catalysts, see: a) J. S. Lindsey, R. W. Wagner, *J. Org. Chem.* **1989**, *54*, 828; b) L.Wang, Y. She, R. Zhong, H. Ji, Y. Zhang, X. Song, *Org. Process Res. Dev.* **2006**, 10, 757.

[2] Z. Yu, Y. Li, P. Zhang, L. Liu, J. Zhang, Chem. Sci. 2019, 10, 6553.

4. X-ray crystal date for 3ed and 6a

5. NMR Spectra of new compounds

ΟΗ CO₂Bu^t

yzz-14-081-1-c

の4の44系22の23のましのの2423の200の2000の24230000400005423000542300555 81 .84 .75 . 0 M 0 . . 4 27 Ē 8 L L 9 51 Ч 8 7 7 7 _ _

yzz-14-108-1

3ao

200 180 160 140 120 100 80 60 40 20 0 ppm

yzz-14-144-1-c

yzz-15-007-1

yzz-15-007-1-c

yzz-15-014-1-c

ويبغر بالجريرة الجرواحيرية

			$\int_{130.91} 136.22$	128.76 126.61 123.01 121.31 120.27		77.32 77.20 76.68	54.77		\sim 21.67 21.57 $-$ 16.17	
	Me、	OH	Br CO ₂ Pi	ŀ						
		5ab								
200	180	160	140	120	100	80	60	40	20	0

used where the states of the

ppm

