CuI-mediated benzannulation of (*ortho*-arylethynyl)phenylenaminones to assemble *α*-aminonaphthalene derivatives

Wen-Nian Jiang,^{a, §} Qing-LanZhao,^{a, §} Jun-An Xiao,^b Hao-Yue Xiang,^{*a} Kai Chen,^a and Hua Yang^{*a}

^aCollege of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China. e-mail : ^bCollege of Chemistry and Materials Science, Nanning Normal University, Nanning 530001, Guangxi, P. R. China

E-mail: <u>hyangchem@csu.edu.cn</u>; <u>xianghaoyue@csu.edu.cn</u>

1.	General information	
2.	General procedure: synthesis of compounds 1	
3.	General procedure: synthesis of compounds 2	S3
4.	Labelling experiments	S3
5.	Characterization data of compounds	S5
6.	Copies of NMR Spectra	

1. General information

Unless otherwise noted, all the reagents were purchased from commercial suppliers and used without further purification. ¹H NMR spectra were recorded at 400 MHz. The chemical shifts were recorded in *ppm* relative to tetramethylsilane and with the solvent resonance as the internal standard. Data were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, br s = broad singlet, p = quintet, h = sextet, hept = septet, m = multiplet), coupling constants (Hz), integration. ¹³C NMR data were collected at 100 MHz with complete proton decoupling. High resolution mass spectroscopy (HRMS) was recorded on TOF MS ES+ mass spectrometer and acetonitrile was used to dissolve the sample. Emission intensities were recorded using Perkin-Elemer LS 55 fluorescence spectrometer. Column chromatography was carried out on silica gel (200-300 mesh).

2. General procedure: synthesis of compounds 1

Step 1: To a stirred solution of *o*-iodoacetophenone (5.0 mmol, 1.0 equiv) and terminal aromatic alkynes (1.2 equiv) in Et₃N (30 mL) was added PdCl₂(PPh₃)₂ (2 mol%) and CuI (2 mol%). The resulted mixture was stirred at room temperature for 8 h. After the separation of ammonium salt by filtration and the removal of solvent under reduced pressure, the residue was purified by column chromatography on silica gel (petroleum ether / ethyl acetate = 40 / 1) to afford the corresponding **S1** in yields ranging from 75% to 99%.¹

Step 2: To a stirred solution of ketone **S1** (5.0 mmol, 1.0 equiv.) in toluene (5 mL), 1,1-dimethoxy *N*,*N*-dimethylmethanamine (7.0 mmol, 1.4 equiv.) was added and stirred at 110 °C. After completion of the reaction (monitored by TLC), it was quenched with water, extracted with ethyl acetate and dried with anhydrous Na₂SO₄. Then the reaction mixture was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel (petroleum ether / ethyl acetate = 1 / 1) to afford the corresponding compounds **1** in yields ranging from 70% to 80%.²

3. General procedure: synthesis of compounds 2

To a mixture of compound **1** (1 equiv.), CuI (20 mmol %) in THF was (or not) added amines (3 equiv.) under nitrogen. Then the reaction was heated to reflux for 8 h. When the reaction was complete, the solvent was removed in vacuum, and the crude product was eluted on silica gel with petroleum ether/ethyl acetate (1/20) to give the corresponding products **2**.

4. Labelling experiments

HRMS of 2a

¹H NMR of **3a**

5. Characterization data of compounds

(*E*)-3-(dimethylamino)-1-(2-(phenylethynyl)phenyl)prop-2-en-1-one **1a**: purple oil; IR (neat)*v* 3047, 2913, 1544, 1421, 758, 695 cm⁻¹;

¹H NMR (400 MHz, Chloroform-*d*) δ 7.67 – 7.53 (m, 3H), 7.51 – 7.43 (m, 2H), 7.39 – 7.34 (m, 2H), 7.34 – 7.29 (m, 3H), 5.72 (d, *J* = 12.5 Hz, 1H), 3.08 (s, 3H), 2.81 (s, 3H);

1a ¹³C NMR (100 MHz, Chloroform-*d*) δ 191.1, 154.3, 144.6, 132.8, 131.4, 129.0, 128.3, 128.2, 128.1, 123.4, 120.5, 97.1, 93.7, 88.9, 44.9, 37.1;

HRMS (ESI): C₁₉H₁₈NO⁺ [M+H] ⁺276.1383, found 276.1389.

Methyl-(*E*)-3'-(3-(dimethylamino)acryloyl)-4'-(phenylethynyl)-[1,1'-biphenyl]-4-carboxylate **1b**: purple oil;

IR (neat) v 2915, 1636, 1543, 1272, 759, 695 cm⁻¹;

¹H NMR (400 MHz, Chloroform-*d*) δ 8.11 (d, *J* = 8.5 Hz, 2H), 7.89 (s, 1H), 7.71 (d, *J* = 8.5 Hz, 2H), 7.66 – 7.62 (m, 3H), 7.50 – 7.48 (m, 2H), 7.37 – 7.30 (m, 3H), 5.78 (d, *J* = 11.7 Hz, 1H), 3.94 (s, 3H), 3.10 (s, 3H), 2.82 (s, 3H);

¹³C NMR (100 MHz, Chloroform-*d*) δ 190.6, 166.9, 154.4, 145.2, 144.3, 139.6, 133.4, 131.5, 130.2, 129.3, 128.4, 128.3, 127.6, 127.0, 126.9, 123.4, 120.4, 97.1, 94.9, 88.7, 52.2, 45.0, 37.2; HRMS (ESI): $C_{27}H_{24}NO_3^+$ [M+H]⁺410.1751, found 410.1755.

(*E*)-3'-(3-(dimethylamino)acryloyl)-4'-(phenylethynyl)-[1,1'-biphenyl]-4-carbonitrile **1c**: purple oil;

IR (neat) v 2918, 1545, 1064, 723, 758, 541 cm⁻¹;

¹H NMR (400 MHz, Chloroform-*d*) δ 7.79 – 7.66 (s, 5H), 7.60 (d, *J* = 7.9 Hz, 2H), 7.53 (d, *J* = 7.9 Hz, 1H), 7.46 – 7.38 (m, 2H), 7.28 – 7.19 (s, 3H), 5.72 (d, J = 9.9 Hz, 1H), 3.05 (s, 3H), 2.76 (s, 3H);

¹³C NMR (100 MHz, Chloroform-*d*) δ 190.3, 145.3, 144.4, 138.7, 133.6, 132.7, 131.5, 128.6, 128.4, 127.6, 127.0, 123.2, 120.9, 118.9, 111.2, 96.7, 95.3, 88.5, 45.1, 37.3;
HRMS (ESI): C₂₆H₂₁N₂O⁺ [M+H]⁺377.1648, found 377.1653.

(*E*)-3-(dimethylamino)-1-(2-((4-ethylphenyl)ethynyl)prop-2-en-1-one **1d**: purple oil;

IR (neat) v 2922, 1543, 1064, 1062, 759, 539 cm⁻¹;

¹H NMR (400 MHz, Chloroform-*d*) δ 7.74 – 7.62 (m, 1H), 7.61 – 746 (m, 3H), 7.40 – 7.33 (m, 3H), 7.15 (d, *J* = 8.2 Hz, 2H), 5.74 (d, *J* = 12.2 Hz, 1H), 3.07 (s, 3H), 2.80 (s, *J* = 7.6 H = 2H)

3H), 2.65 (q, *J* = 7.6 Hz, 2H), 1.23 (t, *J* = 7.6 Hz, 3H);

¹³C NMR (100 MHz, Chloroform-*d*) δ 191.4, 154.1, 144.7, 132.8, 132.1, 131.9, 131.4, 129.0, 128.5, 128.0, 127.9, 120.7, 97.3, 94.0, 88.2, 44.9, 37.2, 28.8, 15.4;

HRMS (ESI): $C_{21}H_{22}NO^+$ [M+Na]⁺326.1515, found 326.1518.

(*E*)-3-(dimethylamino)-1-(2-((4-propylphenyl)ethynyl)phenyl)prop-2-en-1-one **1e**: purple oil;

IR (neat) v 2922, 1545, 1064, 1030, 760, 540 cm⁻¹;

¹H NMR (400 MHz, Chloroform-*d*) δ 7.73 – 7.64 (m, 1H), 7.62 – 7.52 (m, 2H), 7.49 – 7.46 (m, 1H), 7.38 (d, *J* = 8.1 Hz, 2H), 7.36 – 7.31 (m, 1H), 7.13 (d, *J* = 8.1 Hz, 2H), 5.74 (d, *J* = 12.4 Hz, 1H), 3.08 (s, 3H), 2.81 (s, 3H), 2.64 – 2.36 (m, 2H), 1.64 (h, *J* = 7.4 Hz, 2H), 0.93 (t, *J* = 7.3 Hz, 3H);

¹³C NMR (100 MHz, Chloroform-*d*) δ 191.4, 154.5, 144.4, 143.2, 132.8, 132.1, 132.0, 131.3, 129.0, 128.6, 128.5, 128.1, 120.7, 97.2, 94.0, 88.3, 44.9, 38.0, 37.2, 24.3, 13.8;

HRMS (ESI): $C_{22}H_{24}NO^+$ [M+H]⁺318.1852, found 318.1852.

(*E*)-1-(2-((4-butylphenyl)ethynyl)phenyl)-3-(dimethylamino)prop-2-en-1-one **1f**: purple oil;

IR (neat) v 2921, 1638, 1551, 1422, 1064, 762 cm⁻¹;

¹H NMR (400 MHz, Chloroform-*d*) δ 7.67 – 7.34 (m, 3H), 7.30 – 7.25 (m, 4H),

1f 7.05 (d, J = 8.0 Hz, 2H), 5.66 (d, J = 12.3 Hz, 1H), 2.99 (s, 3H), 2.72 (s, 3H), 2.63 – 2.41 (m, 2H), 1.51 (p, J = 7.5 Hz, 2H), 1.27 (p, J = 7.3 Hz, 2H), 0.85 (t, J = 7.3 Hz, 3H);

¹³C NMR (100 MHz, Chloroform-*d*) δ 191.3, 154.3, 144.4, 143.4, 132.8, 131.3, 129.0, 128.4, 128.1, 128.0, 120.8, 120.6, 97.3, 94.0, 88.3, 45.0, 37.2, 35.6, 33.4, 22.3, 14.0;

HRMS (ESI): $C_{23}H_{26}NO^+$ [M+H]⁺332.2009, found 332.2012.

(*E*)-3-(dimethylamino)-1-(2-((4-methoxyphenyl)ethynyl)prop-2-en-1-one **1g**: purple oil;

IR (neat) v 2909, 1543, 1243, 1028, 761, 533 cm⁻¹;

¹H NMR (400 MHz, Chloroform-*d*) δ 7.63 – 7.51 (m, 3H), 7.44 – 7.38 (m, 2H), 7.37 – 7.30 (m, 2H), 6.89 – 6.77 (m, 2H), 5.74 (d, *J* = 12.4 Hz, 1H), 3.82 (s, 3H), 3.08 (s, 3H),

2.81 (s, 3H);

¹³C NMR (100 MHz, Chloroform-*d*) δ 191.5, 159.6, 154.2, 144.3, 132.9, 132.6, 129.0, 128.1, 127.9, 120.9, 115.7, 113.9, 97.3, 93.8, 87.6, 55.3, 45.0, 37.2;

HRMS (ESI): $C_{20}H_{20}NO_2^+$ [M+H] ⁺306.1489, found 306.1499.

(*E*)-3-(dimethylamino)-1-(2-((4-fluorophenyl)ethynyl)prop-2-en-1-one **1h**: purple oil;

IR (neat) v 2917, 1537, 1224, 1066, 762, 537 cm⁻¹;

¹H NMR (400 MHz, Chloroform-*d*) δ 7.66 – 7.23 (m, 7H), 6.94 (t, *J* = 8.7 Hz, 2H), 5.59 (d, *J* = 12.5 Hz, 1H), 3.01 (s, 3H), 2.74 (s, 3H);

¹³C NMR (100 MHz, Chloroform-*d*) δ 191.3, 162.5 (d, ${}^{1}J_{C-F} = 249.5$ Hz), 154.5, 144.5, 133.3, 132.8, 132.1, 132.0, 129.1, 128.5 (d, ${}^{3}J_{C-F} = 12.1$ Hz), 128.1, 120.4, 119.6, 115.58 (d, ${}^{2}J_{C-F} = 22.1$ Hz), 97.1, 92.5, 88.5, 45.0, 37.2;

HRMS (ESI): $C_{19}H_{17}FNO^{+}[M+H]^{+}294.1289$, found 294.1301.

(4-(Dimethylamino)naphthalen-1-yl)(phenyl)methanone **2a**:yellow oil (48 mg, yield 88%); IR (neat) v 2844, 1570, 1276, 1201, 719, 640 cm⁻¹;

¹H NMR (400 MHz, Chloroform-*d*) δ 8.39 – 8.32 (m, 1H), 8.28 – 8.18 (m, 1H), 7.86 – 7.75 (m, 2H), 7.56 – 7.43 (m, 4H), 7.39 (t, *J* = 7.6 Hz, 2H), 6.91 (d, *J* = 7.9 Hz, 1H), 2.92 (s, 6H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 197.5, 154.4, 139.4, 133.1, 132.6, 130.6, 130.4, 129.7, 128.5, 128.3, 127.3, 126.5, 125.5, 124.9, 111.5, 44.9;

HRMS (ESI): C₁₉H₁₈NO⁺ [M+Na]⁺298.1202, found 298.1213.

Methyl 4-(5-benzoyl-8-(dimethylamino)naphthalen-2-yl)benzoate 2b: yellow oil (61 mg, yield 75%);

IR (neat) v 2854, 1720, 1224, 1104, 706, 444 cm⁻¹;

¹H NMR (400 MHz, DMSO- d_6) δ 8.47 (s, 1H), 8.34 (d, J = 8.9 Hz, 1H), 8.07 (d, J = 8.2 Hz, 2H), 8.00 – 7.86 (m, 3H), 7.76 (d, J = 7.3 Hz, 2H), 7.66 (t, J = 7.4 Hz, 1H), 7.59 - 7.48 (m, 3H), 7.10 (d, J = 7.9 Hz, 1H), 3.88 (s, 3H), 2.95

(s, 6H);

¹³C NMR (100 MHz, DMSO-*d*₆) δ 197.0, 166.6, 154.8, 144.8, 139.1, 136.1, 133.5, 132.5, 131.7, 130.5, 130.2, 129.11, 129.06, 128.7, 128.1, 127.7, 127.3, 126.7, 123.3, 112.8, 52.7, 45.0; HRMS (ESI): C₂₇H₂₃KNO₃⁺ [M+K]⁺448.1310, found 448.1339.

4-(5-Benzoyl-8-(dimethylamino)naphthalen-2-yl)benzonitrile 2c: yellow oil (53 mg, yield 60%);

IR (neat) v 2933, 1244, 1224, 1055, 812, 688 cm⁻¹;

¹H NMR (400 MHz, DMSO- d_6) δ 8.46 (s, 1H), 8.38 – 8.23 (m, 1H), 7.99 – 7.90 (m, 5H), 7.75 (d, J = 7.5 Hz, 2H), 7.67 (t, J = 7.3 Hz, 1H), 7.60 – 7.43 (m, 3H), 7.11 (d, J = 7.9 Hz, 1H), 2.96 (s, 6H);

¹³C NMR (100 MHz, DMSO-d6) δ 196.7, 154.8, 144.8, 139.1, 135.5, 133.4, 133.3, 132.7, 131.8, 130.3, 129.0, 128.7, 128.3, 128.1, 127.4, 126.6, 123.5, 119.3, 112.8, 110.7, 45.0;

HRMS (ESI): C₂₆H₂₁N₂O⁺ [M+H]⁺ 377.1648, found 377.1632.

(4-(Dimethylamino)naphthalen-1-yl)(4-ethylphenyl)methanone 2d: yellow oil (40 mg, yield 67%);

IR (neat) v 2922, 1638, 1351, 1066, 759, 539 cm⁻¹;

¹H NMR (400 MHz, DMSO- d_6) δ 8.22 (d, J = 8.0 Hz, 1H), 8.14 (d, J = 8.2 Hz, 1H), 7.68 (d, J = 7.8 Hz, 2H), 7.61 – 7.48 (m, 3H), 7.37 (d, J = 7.9 Hz, 2H), 7.10 (d, J = 7.9 Hz, 1H), 2.93 (s, 6H), 2.70 (q, *J* = 7.4 Hz, 2H), 1.23 (d, *J* = 73 Hz, 3H);

¹³C NMR (100 MHz, DMSO-*d*₆) δ 196.7, 154.1, 149.9, 136.8, 132.7, 130.5, 130.3, 129.6, 128.5, 128.1, 127.6, 126.3, 125.9, 125.1, 112.2, 44.9, 28.7, 15.6;

HRMS (ESI): C₂₁H₂₁NNaO⁺ [M+Na]⁺326.1515, found 326.1551.

(4-(Dimethylamino)naphthalen-1-yl)(4-propylphenyl)methanone 2e: yellow oil (51 mg, yield 81%);

IR (neat) v 2931, 1570, 1177, 1047, 834, 767 cm⁻¹;

¹H NMR (400 MHz, Chloroform-*d*) δ 8.33 – 8.18 (m, 2H), 7.78 (d, *J* = 8.3 Hz, 2H), 7.57 – 7.46 (m, 3H), 7.30 – 7.19 (m, 2H), 6.99 (d, J = 7.8 Hz, 1H), 2.98 (s, 6H), 2.70 – 2.54 (m, 2H), 1.68 (h, *J* = 7.4 Hz, 2H), 0.97 (t, *J* = 7.3 Hz, 3H);

¹³C NMR (100 MHz, Chloroform-*d*) δ 197.4, 154.1, 148.1, 136.8, 133.0, 130.5, 130.3, 129.9, 128.5, 128.4, 127.1, 126.4, 125.4, 124.7, 111.5, 44.9, 38.1, 24.3, 13.8;

HRMS (ESI): C₂₂H₂₄NO⁺ [M+H] ⁺318.1852, found 318.1852.

(4-Butylphenyl)(4-(dimethylamino)naphthalen-1-yl)methanone 2f: yellow oil (44 mg, yield 67%);

IR (neat) v3183, 2923, 1430, 1055, 784 cm⁻¹;

¹H NMR (400 MHz, Chloroform-*d*) δ 8.42 – 8.12 (m, 2H), 7.86 – 7.73 (m, 2H), 7.64 – 7.43 (m, 3H), 7.29 – 7.20 (m, 2H), 6.98 (d, *J* = 7.8 Hz, 1H), 2.97 (s, 6H), 2.75 – 2.64 (m, 2H), 1.71 – 1.55 (m, 2H), 1.42 – 1.32 (m, 2H), 0.94 (t, *J* = 7.3 Hz, 3H);

¹³C NMR (100 MHz, Chloroform-*d*) δ 197.4, 154.1, 148.4, 136.8, 133.0, 130.6, 130.3, 129.9, 128.5, 128.3, 127.1, 126.4, 125.4, 124.7, 111.5, 44.9, 35.8, 33.3, 22.4, 13.9;

HRMS (ESI): C₂₃H₂₆NO⁺ [M+H]⁺332.2009, found 332.2012.

(4-(Dimethylamino)naphthalen-1-yl)(4-methoxyphenyl)methanone **2g**: yellow oil (40 mg, yield 66%);

IR (neat) v 2835, 1537, 1163, 1021, 769, 584 cm⁻¹;

¹H NMR (400 MHz, Chloroform-*d*) δ 8.28 – 8.23 (m, 1H), 8.21 – 8.16 (m, 1H), 7.90 –
7.81 (m, 2H), 7.55 – 7.42 (m, 3H), 7.00 (d, *J* = 7.8 Hz, 1H), 6.95 – 6.86 (m, 2H), 3.87 (s, 3H), 2.96 (s, 6H);

¹³C NMR (100 MHz, Chloroform-*d*) δ 196.5, 163.4, 153.8, 132.9, 132.7, 131.9, 130.7, 129.1, 128.5, 126.9, 126.4, 125.4, 124.7, 113.5, 111.7, 55.5, 44.9;

HRMS (ESI): $C_{20}H_{20}NO_2^+$ [M+H]⁺306.1489, found 306.1499.

(4-(Dimethylamino)naphthalen-1-yl)(4-fluorophenyl)methanone **2h**: yellow oil (35 mg, yield 60%);

IR (neat) v 2837, 1570, 1146, 844, 767, 581 cm⁻¹;

¹H NMR (400 MHz, Chloroform-*d*) δ 8.26 – 8.11 (m, 2H), 7.85 – 7.73 (m, 2H), 7.50 – 7.32 (m, 3H), 7.04 (t, *J* = 8.6 Hz, 2H), 6.89 (d, *J* = 7.9 Hz, 1H), 2.89 (s, 6H);

¹³C NMR (100 MHz, Chloroform-*d*) δ 195.0, 164.5 (d, ${}^{1}J_{C-F} = 254.2$ Hz), 153.4, 134.5 (d, ${}^{4}J_{C-F} = 3.0$ Hz), 131.9, 131.8 (d, ${}^{3}J_{C-F} = 9.1$ Hz), 129.2, 128.5, 127.4, 126.2, 125.2, 124.4, 123.8, 114.3 (d, ${}^{2}J_{C-F} = 21.8$ Hz), 110.4, 43.8;

HRMS (ESI): C₁₉H₁₇FNO⁺ [M+H]⁺294.1289, found 294.1273.

Phenyl(4-(pyrrolidin-1-yl)naphthalen-1-yl)methanone **2i**: yellow oil (43 mg, yield 71%); IR (neat) v 3692, 2928, 1561, 1249, 1055, 723 cm⁻¹;

¹H NMR (400 MHz, Chloroform-*d*) δ 8.49 (d, *J* = 8.5 Hz, 1H), 8.16 (d, *J* = 8.5 Hz, 1H), 7.73 (d, *J* = 7.3 Hz, 2H), 7.47 – 7.39 (m, 3H), 7.37 – 7.31 (m, 3H), 6.63 (d, *J* = 8.2 Hz, 1H), 3.46 (t, *J* = 6.4 Hz, 4H), 1.93 (t, *J* = 6.4 Hz, 4H);

¹³C NMR (100 MHz, Chloroform-*d*) δ 197.0, 151.6, 140.2, 133.8, 132.7, 131.9, 130.2, 128.1, 127.2, 126.6, 126.3, 126.1, 125.3, 124.0, 107.0, 52.8, 25.6;

HRMS (ESI): calculated $C_{21}H_{20}NO^+$ [M+H]⁺ 302.1539, found 302.1538.

(4-Morpholinonaphthalen-1-yl)(phenyl)methanone **2j**: yellow oil (20 mg, yield 31%);

IR (neat) v 2846, 1574, 1113, 1063, 860, 771 cm⁻¹;

¹H NMR (400 MHz, DMSO- d_6) δ 8.26 (d, J = 8.0 Hz, 1H), 8.14 (d, J = 7.7 Hz, 1H), 7.76 (d, J = 7.2 Hz, 2H), 7.68 (t, J = 7.1 Hz, 1H), 7.57 (p, J = 7.9, 7.4 Hz, 5H), 7.18 (d, J = 7.8 Hz, 1H), 3.91 (s, 4H), 3.13 (s, 4H);

¹³C NMR (100 MHz, DMSO-*d*₆) δ 197.2 152.8, 138.9, 133.6, 132.5, 130.6, 130.3, 130.6, 129.1, 128.3, 127.8, 126.5, 126.3, 124.6, 113.3, 66.9, 53.4;

HRMS (ESI): $C_{21}H_{19}KNO_2^+$ [M+K]⁺ 356.1047, found 356.1098.

Tert-butyl 4-(4-benzoylnaphthalen-1-yl)piperazine-1-carboxylate **2k**: yellow oil (21.7 mg, yield 26%);

IR (neat) v 2837, 1588, 1570, 1047, 767, 581 cm⁻¹;

¹H NMR (400 MHz, DMSO- d_6) δ 8.26 (d, J = 8.0 Hz, 1H), 8.13 (d, J = 8.2 Hz, 1H), 7.76 (d, J = 7.6 Hz, 2H), 7.69 (t, J = 7.2 Hz, 1H), 7.65 – 7.50 (m, 5H), 7.18 (d, J = 7.8 Hz, 1H), 3.65 (s, 4H), 3.08 (s, 4H), 1.45 (s, 9H);

¹³C NMR (100 MHz, DMSO-*d*₆) δ 197.1, 154.4, 152.7, 138.9, 133.6, 132.5, 130.8, 130.3, 130.2, 129.1, 128.4, 127.8, 126.6, 126.3, 124.5, 113.7, 79.5, 52.9, 28.6;

HRMS (ESI): $C_{26}H_{29}N_2O_3^+$ [M+H]⁺ 417.2173, found 417.2173.

(4-(Cyclopentylamino)naphthalen-1-yl)(phenyl)methanone **2l**: yellow oil (14.1 mg, yield 22%);

IR (neat) v 2921, 1567, 1525, 1249, 697 cm⁻¹;

¹H NMR (400 MHz, Chloroform-*d*) δ 8.75 (d, J = 8.4 Hz, 1H), 7.81 – 7.78 (m, 3H), 7.68 – 7.39 (m, 6H), 6.53 (d, J = 8.3 Hz, 1H), 4.95 (s, 1H), 4.09 – 3.83 (m, 1H), 2.17 (dq, J = 12.3, 7.2 Hz, 2H), 1.90 – 1.57 (m, 6H);

¹³C NMR (100 MHz, Chloroform-*d*) δ 197.0, 146.8, 140.7, 134.7, 133.1, 131.6, 130.1, 128.0, 127.7, 127.2, 125.2, 123.0, 122.8, 119.5, 102.2, 54.5, 33.6, 24.3;

HRMS (ESI): $C_{22}H_{22}NO^+$ [M+H]⁺ 316.1696, found 316.1201.

(4-(Cyclohexylamino)naphthalen-1-yl)(phenyl)methanone **2m**: yellow oil (14.3 mg, yield 23%);

IR (neat) v 2922, 1564, 1272, 1245, 754, 701 cm⁻¹;

¹H NMR (400 MHz, Chloroform-*d*) δ 8.78 (d, J = 8.5 Hz, 1H), 7.80 – 7.78 (m, 3H), 7.65 – 7.35 (m, 6H), 6.51 (d, J = 8.3 Hz, 1H), 4.90 (s, 1H), 3.55 (s, 1H), 2.29 – 2.09 (m, 2H), 1.92 – 1.78 (m, 2H), 1.78 – 1.59 (m, 6H);

¹³C NMR (100 MHz, Chloroform-*d*) δ 196.9, 146.2, 140.7, 135.0, 133.4, 131.6, 130.1, 128.0, 127.7, 127.2, 125.1, 122.7, 122.6, 119.5, 101.5, 51.5, 33.0, 25.8, 24.9;

HRMS (ESI): $C_{23}H_{24}NO^+$ [M+H] $^+$ 330.1852, found 330.1826.

Phenyl(4-((4-phenylbutyl)amino)naphthalen-1-yl)methanone **2n**: yellow oil (11.8 mg, yield 23%);

IR (neat) v 3690, 3636, 3390, 2922, 1056, 722 cm⁻¹;

1H NMR (400 MHz, Chloroform-d) δ 8.67 (d, J = 8.5 Hz, 1H), 7.78 – 7.66 (m, 3H), 7.57 – 7.32 (m, 6H), 7.28 – 7.18 (m, 2H), 7.16 – 7.07 (m, 3H), 6.40 (d, J = 8.2 Hz, 1H), 4.81 (s, 1H), 3.28 (t, J = 6.6 Hz, 2H), 2.64 (t, J = 6.7 Hz, 2H), 1.76 (p, J = 6.4 Hz, 4H);

¹³C NMR (100 MHz, Chloroform-d) δ 197.1, 147.2, 141.9, 140.6, 134.7, 133.1, 131.7, 130.1, 128.4, 128.3, 128.1, 127.7, 127.2, 126.0, 125.3, 123.3, 122.7, 119.6, 101.2, 43.6, 35.6, 28.9, 28.7; HRMS (ESI): $C_{27}H_{26}NO^+$ [M+H]⁺380.2009, found 380.2012.

(4-((4-Methylbenzyl)amino)naphthalen-1-yl)(phenyl)methanone 20: yellow oil (25 mg,

yield 34%);

IR (neat) v 3203, 2919, 1658, 1386, 1239, 1061, 688 cm⁻¹;

¹H NMR (400 MHz, Chloroform-*d*) δ 8.65 (d, *J* = 8.5 Hz, 1H), 7.81 – 7.68 (m, 3H), 7.53 – 7.31 (m, 6H), 7.23 (d, J = 7.9 Hz, 2H), 7.11 (d, J = 7.9 Hz, 2H), 6.43 (d, J = 8.2 Hz, 1H), 5.19 (s, 1H), 4.42 (s, 2H), 2.28 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 197.1, 146.9, 140.5, 137.5, 135.0, 134.5, 133.0, 131.8, 130.2, 129.6, 128.1, 127.8, 127.6, 127.1, 125.4, 123.8, 122.8, 119.7, 101.9, 47.9, 21.2;

HRMS (ESI): C₂₅H₂₁KNO⁺ [M+K] ⁺390.1255, found 390.1330.

(4-((4-Methoxybenzyl)amino)naphthalen-1-yl)(phenyl)methanone 2p: yellow solid (39 mg, yield 53%), m.p. 59 - 60 °C;

IR (neat) v 3726, 3391, 2932, 1235, 1054, 723 cm⁻¹;

¹H NMR (400 MHz, Chloroform-*d*) δ 8.65 (d, J = 9.3 Hz, 1H), 7.83 – 7.62 (m, 3H), 7.53 – 7.39 (m, 4H), 7.39 – 7.33 (m, 2H), 7.27 (d, J = 8.7 Hz, 2H), 6.84 (d, J = 8.7 Hz, 2H), 6.45 (d, *J* = 8.2 Hz, 1H), 5.14 (s, 1H), 4.40 (s, 2H), 3.74 (s, 3H);

¹³C NMR (100 MHz, Chloroform-*d*) δ 197.1, 159.2, 146.9, 140.5, 134.4, 133.0, 131.8, 130.2, 130.0, 129.0, 128.1, 127.8, 127.1, 125.4, 123.8, 122.8, 119.7, 114.3, 101.8, 55.4, 47.7; HRMS (ESI): C₂₅H₂₂FNO⁺ [M+H]⁺ 368.1645, found 368.1679.

HN 2q

(4-((4-Fluorobenzyl)amino)naphthalen-1-yl)(phenyl)methanone 2q: yellow solid (21 mg, yield 30%), m.p. 89 − 91 °C;

IR (neat) v 3775, 3367, 2922, 1233, 1044, 789 cm⁻¹;

¹H NMR (400 MHz, Chloroform-*d*) δ 8.70 (d, *J* = 9.0 Hz, 1H), 7.86 (d, *J* = 8.4 Hz, 1H), 7.83 - 7.75 (m, 2H), 7.63 - 7.49 (m, 4H), 7.48 - 7.34 (m, 4H), 7.07 (t, J = 8.6 Hz, 2H), 6.49 (d, *J* = 8.2 Hz, 1H), 5.27 (s, 1H), 4.54 (s, 2H);

¹³C NMR (100 MHz, Chloroform-d) δ 197.1, 162.3 (d, ¹J_{C-F} = 246.0 Hz), 146.6, 140.3, 134.0, 133.7 (d, ⁴J_{C-F} = 3.3 Hz), 132.9, 131.9, 130.1, 129.2 (d, ³*J_{CF}* = 8.1 Hz), 128.1, 127.8, 127.2, 125.5, 124.3, 122.9, 119.6, 115.8 (d, $^{2}J_{C-F} = 21.5$ Hz), 102.0, 47.5;

HRMS (ESI): C₂₄H₁₈FNNaO⁺ [M+Na]⁺ 378.1256, found 378.1294.

(4-((4-Chlorobenzyl)amino)naphthalen-1-yl)(phenyl)methanone2r: yellow oil (39 mg, yield 30%);

IR (neat) v 3395, 2936, 1537, 1260, 1056, 737 cm⁻¹;

¹H NMR (400 MHz, Chloroform-*d*) δ 8.69 (d, *J* = 8.5 Hz, 1H), 7.86 (d, *J* = 8.4 Hz, 1H), 7.78 (d, J = 7.4 Hz, 2H), 7.60 - 7.37 (m, 8H), 7.28 - 7.19 (m, 2H), 6.42 (d, J = 8.1 Hz, 1H), 5.38 (s, 1H), 4.52 (s, 2H);

¹³C NMR (100 MHz, Chloroform-*d*) δ 197.1, 146.5, 140.3, 136.6, 133.9, 133.4, 132.9, 131.9, 130.1, 129.0, 128.8, 128.1, 127.8, 127.2, 125.5, 124.4, 122.9, 119.6, 102.1, 47.4;

HRMS (ESI): C₂₄H₁₈ClNNaO⁺ [M+Na]⁺ 416.0645, found 416.0614.

(4-((4-Bromobenzyl)amino)naphthalen-1-yl)(phenyl)methanone 2s: yellow solid (25 mg, yield 30%), m.p. 49 − 51 °C;

IR (neat) v 3727, 3390, 2921, 1242, 1056, 756 cm⁻¹;

¹H NMR (400 MHz, Chloroform-*d*) δ 8.62 (d, *J* = 8.4 Hz, 1H), 7.79 (d, *J* = 8.4 Hz, 1H), 7.72 (d, J = 7.2 Hz, 2H), 7.54 - 7.31 (m, 7H), 7.25 - 7.12 (m, 3H), 6.37 (d, J = 8.1 Hz, 1H), 5.26 (s, 1H), 4.46 (d, *J* = 4.9 Hz, 2H);

¹³C NMR (100 MHz, Chloroform-*d*) δ 197.1, 146.4, 140.3, 137.1, 134.0, 132.9, 132.0, 131.9, 130.2, 129.1, 128.1, 127.8, 127.2, 125.6, 124.3, 122.9, 121.5, 119.6, 102.1, 47.4; HRMS (ESI): C₂₄H₁₈NO⁺ [M+H]⁺ 416.0645, found 416.0614.

(4-((2-chlorobenzyl)amino)naphthalen-1-yl)(phenyl)methanone 2t: yellow oil (32.7 mg, yield 44%);

IR (neat) v 3395, 1528, 1248, 751, 702, 461 cm⁻¹;

¹H NMR (400 MHz, Chloroform-d) δ 8.71 (d, J = 8.5 Hz, 1H), 7.90 (d, J = 8.3 Hz, 1H), 7.84 - 7.72 (m, 2H), 7.61 - 7.48 (m, 4H), 7.47 - 7.35 (m, 4H), 7.25 - 7.19 (m, 2H), 6.45 (d, J = 8.2 Hz, 1H), 5.45 (s, 1H), 4.68 (d, J = 5.2 Hz, 2H);

¹³C NMR (100 MHz, Chloroform-*d*) δ 197.1, 146.5, 140.3, 135.3, 134.1, 133.5, 133.0, 131.8, 130.1, 129.8, 129.0, 128.9, 128.1, 127.8, 127.2, 127.1, 125.5, 124.3, 122.9, 119.7, 102.1, 45.7; HRMS (ESI): C₂₄H₁₈ClNNaO⁺ [M+Na]⁺394.0969, found 394.0995.

HN

2v

HN

2w

(4-((2-Bromobenzyl)amino)naphthalen-1-yl)(phenyl)methanone **2u**: yellow solid (42.7 mg, yield 51%), m.p. 109 − 111 °C;

IR (neat) v 3395, 1528, 1438, 1240, 706, 461 cm⁻¹;

¹H NMR (400 MHz, Chloroform-d) δ 8.72 (d, J = 8.4 Hz, 1H), 7.91 (d, J = 8.3 Hz, 1H), 7.79 (d, J = 7.5 Hz, 2H), 7.62 - 7.51 (m, 5H), 7.46 - 7.36 (m, 3H), 7.31 - 7.23 (m, 1H), 7.17 (t, J = 7.5 Hz, 1H), 6.43 (d, J = 8.1 Hz, 1H), 5.49 (s, 1H), 4.65 (d, J = 5.3 Hz, 2H);

¹³C NMR (100 MHz, Chloroform-*d*) δ 197.1, 146.4, 140.3, 136.8, 134.2, 133.1, 132.9, 131.9, 130.2, 129.2, 129.1, 128.1, 127.8, 127.7, 127.2, 125.5, 124.2, 123.5, 122.9, 119.7, 102.1, 48.2; HRMS (ESI): C₂₄H₁₉BrNO⁺ [M+H] ⁺416.0645, found 416.0629.

> (4-((3-Bromobenzyl)amino)naphthalen-1-yl)(phenyl)methanone 2v: yellow solid (42.7 mg, yield 51%), m.p. $94 - 96^{\circ}$ C;

IR (neat) v 3363, 2921, 1518, 1223, 1051, 687 cm⁻¹;

¹H NMR (400 MHz, Chloroform-*d*) δ 8.70 (d, *J* = 8.5 Hz, 1H), 7.89 (d, *J* = 8.2 Hz, 1H), 7.80 (d, J = 8.4 Hz, 2H), 7.66 – 7.49 (m, 5H), 7.44 (t, J = 7.6 Hz, 3H), 7.35 (d, J = 7.6Hz, 1H), 7.24 (s, 1H), 6.46 (d, *J* = 8.2 Hz, 1H), 5.35 (s, 1H), 4.56 (d, *J* = 5.1 Hz, 2H);

¹³C NMR (100 MHz, Chloroform-*d*) δ 197.2, 146.4, 140.6, 140.2, 134.0, 132.9, 131.9, 130.8, 130.5, 130.4, 130.2, 128.1, 127.8, 127.2, 126.0, 125.6, 124.5, 123.0, 122.9, 119.7, 102.2, 47.5;

HRMS (ESI-TOF): C₂₄H₁₈BrKNO⁺ [M+H]⁺454.0203, found 454.0233.

(4-((2,4-Dichlorobenzyl)amino)naphthalen-1-yl)(phenyl)methanone 2w: yellow oil (38.2 mg, yield 47%);

IR (neat) v 3361, 2926, 1418, 1242, 1064, 719 cm⁻¹;

¹H NMR (400 MHz, Chloroform-*d*) δ 8.61 (d, *J* = 8.5 Hz, 1H), 7.83 (d, *J* = 8.2 Hz, 1H), 7.72 (d, *J* = 7.3 Hz, 2H), 7.53 – 7.44 (m, 4H), 7.38 – 7.34 (m, 3H), 7.24 (d, *J* = 8.3 Hz, 1H), 7.11 (dd, J = 8.3, 1.9 Hz, 1H), 6.30 (d, J = 8.2 Hz, 1H), 5.39 (s, 1H), 4.57 (d, J = 4.2 Hz, 2H);

¹³C NMR (100 MHz, Chloroform-*d*) δ 197.1, 146.1, 140.2, 134.0, 133.9, 133.8, 133.0, 131.9, 130.2, 129.6, 129.6, 128.1, 127.8, 127.4, 127.2, 125.6, 124.6, 122.9, 119.6, 102.2, 45.2;

HRMS (ESI-TOF): $C_{24}H_{18}Cl_2NO^+$ [M+H]⁺405.0687, found 405.0719.

References

(1) Liu-Zhu Yu, Yin Wei, Min Shi, Synthesis of Polysubstituted Polycyclic Aromatic Hydrocarbons by Gold-Catalyzed Cyclization–Oxidation of Alkylidenecyclopropane-Containing 1,5-Enynes, *ACS Catal.* 2017, **7**, 4242–4247.

(2) Xiaoyu Liang, Pan Guo, Wenjie Yang, Meng Li, Chengzhou Jiang, Wangbin Sun, Teck-Peng Loh and Yaojia Jiang, Stereoselective Synthesis of Trifluoromethyl-substituted 2*H*-Furan-amines from Enaminones, *Chem. Commun.*, 2020, **56**, 2043—2046.

Product 1h:¹H NMR. \$197.20000 \$197.20000 \$197.20000 \$197.20000 \$197.20000 \$197.2

-5.261 $< \frac{4.462}{4.450}$

Product 2u:¹H NMR.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Product 2v:¹H NMR.

