Supporting Information

Metal-Free Electrochemical C3-Sulfonylation of Imidazo[1, 2-a]pyridines

Jingyun Zhu,^{‡a} Ziyue Chen,^{‡a} Meng He,^b Daoxin Wang,^a Liangsen Li,^a Junchao Qi, ^a Renyi Shi^{†c} and Aiwen Lei^{†ab}

^a National Research Center for Carbohydrate Synthesis, Jiangxi Normal University,

Nanchang 330022, P. R. China. E-mail: aiwenlei@whu.edu.cn.

^b College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS),

Wuhan University, Wuhan 430072, P. R. China.

^c School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China. E-mail: renyi.shi@xjtu.edu.cn

[‡]Jingyun Zhu and Ziyue Chen contributed equally to this work.

Table of contents

General information		
Experimental procedu	ure	
Detailed descriptions	for products	
References		
Copies of ¹ H NMR, ¹³	C NMR and ¹⁹ F NMR Spectra	

General information

Unless otherwise noted, materials were obtained from commercial suppliers and used without further purification. The instrument for electrolysis is dual display potentiostat (DJS-292B) (made in China). The anodic electrode was graphite rod (ϕ 6 mm) and cathodic electrode was Stainless steel (15 mm×15 mm×0.3 mm). Thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates. Flash chromatography columns were packed with 300-400 mesh silica gel in petroleum (boiling point is between 60-90 °C). Gradient flash chromatography was conducted eluting with a continuous gradient from petroleum to the indicated solvent, and they are listed as volume/volume ratios. NMR spectra were recorded on a Bruker spectrometer at 400 MHz (¹H NMR), 101 MHz (¹³C NMR), 376 MHz (¹⁹F NMR). All chemical shifts are reported relative to tetramethylsilane and solvent peaks. And all ¹H, ¹³C and ¹⁹F NMR data spectra were reported in delta (δ) units, parts per million (ppm) downfield from the internal standard. Coupling constants are reported in Hertz (Hz). High resolution mass spectra (HRMS) were measured with a Bruker UltiMate 3000 & Compact, accurate masses are reported for the molecular ion + hydrogen ([M+H]⁺) or sodium ([M+Na]⁺).

Experimental procedure

General procedure for electrocatalytic synthesis of sulfone

In an undivided three-necked bottle (25 mL) equipped with a stir bar, 2-phenylimidazo[1,2-a]pyridine (1a, 0.5 mmol), sodium 4-methylbenzenesulfinate (2a, 3 mmol), and ${}^{n}Bu_{4}NBF_{4}$ (0.1 mmol) were combined and added. The bottle was equipped with graphite rod as the anode and Stainless steel as the cathode and was then charged with nitrogen. Under the protection of N₂, MeCN (10 mL) and H₂O (1 mL) were injected respectively into the tubes via syringes. The reaction mixture was stirred and electrolyzed at a constant current of 10 mA at room temperature for 4.3 h. When the reaction was finished, the pure product was obtained by flash column chromatography on silicagel.

Procedure for gram-scale synthesis of sulfone

In an undivided three-necked bottle (100 mL) equipped with a stir bar, 2-phenylimidazo[1,2-a]pyridine (1a, 5 mmol), sodium 4-methylbenzenesulfinate (2a, 30 mmol), and "Bu₄NBF₄ (1 mmol) were combined and added. The bottle was equipped with graphite rod as the anode and Stainless steel as the cathode and was then charged with nitrogen. Under the protection of N₂, MeCN (70 mL) and H₂O (7 mL) were injected respectively into the tubes via syringes. The reaction mixture was stirred and electrolyzed at a constant current of 10 mA at room temperature for 37 h. When the reaction was finished, the pure product was obtained by flash column chromatography on silicagel.

Procedure for cyclic voltammetry (CV)

Cyclic voltammetry was performed in a three-electrode cell connected to a Schlenk line under air at room temperature. The working electrode was a steady glassy carbon disk electrode while the counter electrode was a platinum wire. The reference was an Ag/AgCl electrode submerged in saturated aqueous KCl solution. A mixed solvent (MeCN/H₂O = 10/1, 11 mL) containing ^{*n*}Bu₄NBF₄ (0.1 mmol) were poured into the electrochemical cell in cyclic voltammetry experiments. The scan rate was 0.10 V/s, ranging from 0.0 V to 2.5 V.

Figure S1. Cyclic voltammograms of related compounds (0.1 mmol) in corresponding solvent containing 0.1 mmol ^{*n*}Bu₄NBF₄.

Detailed descriptions for products

2-Phenyl-3-tosylimidazo[1,2-a]pyridine (3a).¹

White solid was obtained in 92% isolated yield, 159.8 mg. ¹H NMR (400 MHz, CDCl₃) δ 9.10 (d, J = 7.0 Hz, 1H), 7.80–7.73 (m, 2H), 7.70 (d, J = 9.0 Hz, 1H), 7.53 (d, J = 8.3 Hz, 2H), 7.49–7.38 (m, 4H), 7.13 (d, J = 8.1 Hz, 2H), 7.06–7.01 (m, 1H), 2.31 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 152.67, 146.47, 144.29, 138.92, 132.59, 130.41, 129.58, 129.19, 128.36, 127.66, 126.68, 126.27, 117.85, 117.65, 114.47, 21.40.

2-(P-tolyl)-3-tosylimidazo[1,2-a]pyridine (3b).

White solid was obtained in 93% isolated yield, 168.4 mg. ¹H NMR (400 MHz, CDCl₃) δ 9.07 (d, J = 6.8 Hz, 1H), 7.86–7.62 (m, 3H), 7.54 (d, J = 8.4 Hz, 2H), 7.51–7.38 (m, 1H), 7.37–7.23 (m, 2H), 7.15 (d, J = 8.0 Hz, 2H), 7.13–6.95 (m, 1H), 2.44 (s, 3H), 2.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 152.89, 146.49, 144.24, 139.22, 138.92, 130.32, 129.59, 128.43, 128.34, 126.63, 126.25, 117.77, 117.31, 114.38, 21.44, 21.41. HRMS (ESI) m/z: [M+H]+ Calcd for C₂₁H₁₉N₂O₂S⁺; 363.1162, found 363.1172.

2-(4-Fluorophenyl)-3-tosylimidazo[1,2-a]pyridine (3c).

White solid was obtained in 54% isolated yield, 98.0 mg. ¹H NMR (400 MHz, CDCl₃) δ 9.15–9.11 (m, 1H), 7.76–7.66 (m, 3H), 7.55–7.43 (m, 5H), 7.42–7.34 (m, 1H), 7.15 (d, *J* = 8.0 Hz, 2H), 2.34 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 153.88 (d, J_{C-F} = 240.0 Hz), 153.25 (d, J_{C-F} = 2.5 Hz), 144.66, 143.96, 138.58, 132.26, 130.34, 129.71, 129.42, 127.81, 126.37, 120.23 (d, J_{C-F} = 25.2 Hz), 118.29 (d, J_{C-F} = 8.9 Hz), 114.43, 114.00, 21.52. ¹⁹F NMR (376 MHz, CDCl₃) δ -135.33.HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₁₆FN₂O₂S⁺; 367.0911, found 367.0905.

2-(4-Chlorophenyl)-3-tosylimidazo[1,2-a]pyridine (3d).

White solid was obtained in 75% NMR quantitative yield. ¹H NMR (400 MHz, CDCl₃) δ 9.08 (d, J = 6.8 Hz, 1H), 7.80–7.69 (m, 3H), 7.54 (d, J = 8.4 Hz, 2H), 7.48–7.43 (m, 3H), 7.17 (d, J = 8.0 Hz, 2H), 7.10–7.05 (m, 1H), 2.34 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 151.32, 146.51, 144.61, 138.73, 135.58, 131.88, 130.98, 129.78, 128.69, 128.05, 126.72, 126.29, 117.93, 117.82, 114.76, 21.52. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₁₆ClN₂O₂S⁺; 383.0616, found 383.0608.

4-(3-Tosylimidazo[1,2-a]pyridin-2-yl)benzonitrile (3e).

White solid was obtained in 92% isolated yield, 171.6 mg. ¹H NMR (400 MHz, CDCl₃) δ 9.07 (d, J = 7.2 Hz, 1H), 7.92 (d, J = 8.4 Hz, 2H), 7.85–7.69 (m, 3H), 7.65–7.44 (m, 3H), 7.19 (d, J = 8.4 Hz, 2H), 7.16–7.07 (m, 1H), 2.35 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 150.23, 146.66, 144.87, 138.50, 137.24, 131.48, 131.29, 129.89, 128.92, 126.66, 126.27, 118.65, 118.35, 118.14, 115.08, 112.90, 21.50. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₁₆N₃O₂S⁺; 374.0958, found 374.0965.

8-Methyl-2-phenyl-3-tosylimidazo[1,2-a]pyridine (3f).

White solid was obtained in 87% isolated yield, 157.9 mg.¹H NMR (400 MHz, CDCl₃) δ 8.94 (d, J = 6.8 Hz, 1H), 7.85–7.68 (m, 2H), 7.52 (d, J = 8.4 Hz, 2H), 7.50–7.39 (m, 3H), 7.21 (d, J = 7.2 Hz, 1H), 7.12 (d, J = 8.4 Hz, 2H), 6.93 (t, J = 7.0 Hz, 1H), 2.62 (s, 3H), 2.30 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 152.09, 146.70, 144.15, 138.98, 132.85, 130.47, 129.53, 129.04, 127.93, 127.63, 127.18, 126.27, 124.28, 117.92, 114.48, 21.38, 16.97. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₁₉N₂O₂S⁺; 363.1162, found 363.1157.

8-Fluoro-2-phenyl-3-tosylimidazo[1,2-a]pyridine (3g).

White solid was obtained in 71% isolated yield, 130.6 mg. ¹H NMR (400 MHz, CDCl₃) δ 8.96 (d, J = 6.8 Hz, 1H), 8.19–7.68 (m, 2H), 7.60–7.36 (m, 4H), 7.25–7.09 (m, 2H), 7.08–6.91 (m, 1H), 2.34 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 152.58, 151.13 (d, $J_{C-F} = 255.8$ Hz), 144.71, 138.49, 132.03, 130.59, 129.71, 129.51, 127.77, 126.47, 123.08 (d, $J_{C-F} = 5.4$ Hz), 119.63, 113.67 (d, $J_{C-F} = 6.3$ Hz), 111.09 (d, $J_{C-F} = 15.8$ Hz), 21.54.¹⁹F NMR (376 MHz, CDCl₃) δ -127.72. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₁₆FN₂O₂S⁺; 367.0911, found 367.0902.

8-Methoxy-2-phenyl-3-tosylimidazo[1,2-a]pyridine (3h).

White solid was obtained in 51% NMR quantitative yield. ¹H NMR (400 MHz, DMSO-D⁶) δ 8.54 (d, J = 6.8 Hz, 1H), 7.71–7.67 (m, 2H), 7.64 (d, J = 8.4 Hz, 2H), 7.52–7.45 (m, 3H), 7.33 (d, J = 8.0 Hz, 2H), 7.15 (t, J = 7.4 Hz, 1H), 7.04 (d, J = 8.0 Hz, 1H), 3.95 (s, 3H), 2.30 (s, 3H). ¹³C NMR (101 MHz, DMSO-D⁶) δ 151.15, 148.88, 145.14, 140.84, 138.62, 133.23, 130.76, 130.62, 129.54, 128.09, 126.57,

119.16, 117.92, 116.11, 106.74, 56.68, 21.44. HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{21}H_{19}N_2O_3S^+$; 379.1111, found 379.1102.

7-Methyl-2-phenyl-3-tosylimidazo[1,2-a]pyridine (3i).

White solid was obtained in 93% isolated yield, 168.8 mg. ¹H NMR (400 MHz, CDCl₃) δ 8.95 (d, J = 7.2 Hz, 1H), 7.83–7.68 (m, 2H), 7.51 (d, J = 8.4 Hz, 2H), 7.48–7.40 (m, 4H), 7.12 (d, J = 8.4 Hz, 2H), 6.93–6.77 (m, 1H), 2.43 (s, 3H), 2.31 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 152.82, 146.97, 144.13, 139.95, 139.12, 132.69, 130.40, 129.55, 129.14, 127.64, 126.20, 125.80, 117.03, 116.96, 116.36, 21.40, 21.25. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₁₉N₂O₂S⁺; 363.1162, found 363.1167.

7-Methoxy-2-phenyl-3-tosylimidazo[1,2-a]pyridine (3j).

White solid was obtained in 94% isolated yield, 179.2 mg. ¹H NMR (400 MHz, CDCl₃) δ 8.90 (d, J = 7.6 Hz, 1H), 7.88–7.63 (m, 2H), 7.55–7.40 (m, 5H), 7.12 (d, J = 8.0 Hz, 2H), 6.95 (d, J = 2.4 Hz, 1H), 6.78–6.64 (m, 1H), 3.86 (s, 3H), 2.31 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.13, 152.90, 148.47, 143.96, 139.01, 132.51, 130.21, 129.45, 129.03, 127.50, 126.90, 125.97, 116.18, 108.85, 95.19, 55.60, 21.24. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₁₉N₂O₃S⁺; 379.1111, found 379.1101.

6-Bromo-2-phenyl-3-tosylimidazo[1,2-a]pyridine (3k).

White solid was obtained in 43% NMR quantitative yield. ¹H NMR (400 MHz, CDCl₃) δ 9.31 (d, J = 0.8 Hz, 1H), 7.84–7.66 (m, 2H), 7.60 (d, J = 9.6 Hz, 1H), 7.56–7.42 (m, 6H), 7.15 (d, J = 8.4 Hz, 2H), 2.34 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 152.87, 144.85, 144.67, 138.63, 132.14, 131.87, 130.39, 129.71, 129.48, 127.82, 126.86, 126.42, 118.44, 118.35, 109.38, 21.53. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₁₆BrN₂O₂S⁺; 427.0110, found 427.0115.

2-(Naphthalen-2-yl)-3-tosylimidazo[1,2-a]pyridine (3l).

White solid was obtained in 61% isolated yield, 121.8 mg. ¹H NMR (400 MHz, CDCl₃) δ 9.15 (d, J = 7.2 Hz, 1H), 8.27 (s, 1H), 8.02–7.84 (m, 4H), 7.74 (d, J = 8.8 Hz, 1H), 7.67–7.50 (m, 4H), 7.52–7.41 (m, 1H), 7.22–6.96 (m, 3H), 2.28 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 152.63, 146.64, 144.39, 138.97, 133.59, 132.67, 130.46, 130.01, 129.62, 128.67, 128.48, 127.73, 127.67, 127.29, 126.84, 126.74, 126.38, 126.17, 118.00, 117.95, 114.56, 21.44. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₄H₁₈N₂NaO₂S⁺; 421.0981, found 421.0976.

8-Methyl-2-(p-tolyl)-3-tosylimidazo[1,2-a]pyridine (3m).

White solid was obtained in 76% isolated yield, 143.7 mg. ¹H NMR (400 MHz, CDCl₃) δ 8.91 (d, J = 7.2 Hz, 1H), 7.65 (d, J = 8.0 Hz, 2H), 7.54 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 7.6 Hz, 2H), 7.22–7.16 (m, 1H), 7.13 (d, J = 8.4 Hz, 2H), 6.92 (t, J = 7.0 Hz, 1H), 2.61 (s, 3H), 2.42 (s, 3H), 2.30 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 152.26, 146.67, 144.05, 138.97, 138.93, 130.33, 129.90, 129.49, 128.33, 127.79, 127.09, 126.20, 124.18, 117.56, 114.34, 21.36, 21.34, 16.94. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₂₀N₂NaO₂S⁺; 399.1138, found 399.1136.

7-Methyl-2-(p-tolyl)-3-tosylimidazo[1,2-a]pyridine (3n).

White solid was obtained in 86% isolated yield, 161.9 mg. ¹H NMR (400 MHz, CDCl₃) δ 8.93 (d, J = 7.2 Hz, 1H), 7.65 (d, J = 8.0 Hz, 2H), 7.53 (d, J = 8.4 Hz, 2H), 7.44 (d, J = 0.4 Hz, 1H), 7.26 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 8.4 Hz, 2H), 6.88–6.83 (m, 1H), 2.43 (s, 6H), 2.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.09, 147.01, 144.08, 139.89, 139.17, 130.32, 129.75, 129.58, 128.43, 126.20, 125.79, 116.93, 116.65, 116.33, 21.46, 21.44, 21.31. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₂₀N₂NaO₂S⁺; 399.1138, found 399.1145.

6-Methyl-2-(p-tolyl)-3-tosylimidazo[1,2-a]pyridine (30).

White solid was obtained in 71% isolated yield, 133.5 mg. ¹H NMR (400 MHz, CDCl₃) δ 8.86 (s, 1H), 7.63 (d, *J* = 8.0 Hz, 2H), 7.60 (d, *J* = 9.2 Hz, 1H), 7.54 (d, *J* = 8.4 Hz, 2H), 7.27 (d, *J* = 18.0 Hz,2H), 7.15 (d, *J* = 8.4 Hz, 2H), 2.43 (s, 3H), 2.41 (s, 3H), 2.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 152.63, 147.44, 145.46, 144.15, 139.10, 139.06, 131.39, 130.27, 129.69, 129.57, 128.39, 126.20, 124.43, 124.38, 116.97, 116.85, 21.44, 21.39, 18.53. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₂₀N₂NaO₂S⁺; 399.1138, found 399.1128.

2-Phenyl-3-(o-tolylsulfonyl)imidazo[1,2-a]pyridine (4a).

White solid was obtained in 71% isolated yield, 49.2 mg. ¹H NMR (400 MHz, CDCl₃) δ 9.05 (d, J = 6.8 Hz, 1H), 7.92–7.69 (m, 2H), 7.70–7.57 (m, 2H), 7.47 (d, J = 1.2 Hz, 1H), 7.40–7.23 (m, 4H), 7.18–6.96 (m, 3H), 2.09 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 152.78, 146.35, 139.06, 137.68, 133.22, 132.48, 132.19, 130.35, 129.16, 128.77, 128.37, 127.68, 127.00, 125.67, 117.92, 116.70, 114.46, 19.19. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₁₇N₂O₂S⁺; 349.1005, found 349.1002.

2-Phenyl-3-(m-tolylsulfonyl)imidazo[1,2-a]pyridine (4b).

White solid was obtained in 93% isolated yield, 64.7 mg. ¹H NMR (400 MHz, CDCl₃) δ 9.14 (d, J = 7.2 Hz, 1H), 7.87–7.62 (m, 3H), 7.53–7.40 (m, 5H), 7.37 (s, 1H), 7.35–7.14 (m, 2H), 7.13–6.99 (m, 1H), 2.25 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 152.88, 146.54, 141.68, 139.24, 134.07, 132.58, 130.42, 129.27, 128.80, 128.44, 127.71, 126.81, 126.69, 123.35, 117.90, 117.58, 114.53, 21.14. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₁₇N₂O₂S⁺; 349.1005, found 349.0097.

2-Phenyl-3-(phenylsulfonyl)imidazo[1,2-a]pyridine (4c).¹

White solid was obtained in 87% isolated yield, 58.3 mg. ¹H NMR (400 MHz, CDCl₃) δ 9.13 (d, *J* = 7.2 Hz, 1H), 7.78–7.69 (m, 3H), 7.63 (d, *J* = 7.6 Hz, 2H), 7.55–7.42 (m, 5H), 7.34 (t, *J* = 7.8 Hz, 2H), 7.06 (t, *J* = 6.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 153.06, 146.64, 141.86, 133.30, 132.50, 130.45, 129.33, 129.00, 128.54, 127.76, 126.78, 126.26, 117.96, 117.35, 114.61.

3-((4-Fluorophenyl)sulfonyl)-2-phenylimidazo[1,2-a]pyridine (4d).¹

White solid was obtained in 87% isolated yield, 70.0 mg. ¹H NMR (400 MHz, CDCl₃) δ 9.14 (d, J = 7.2 Hz, 1H), 7.77–7.69 (m, 3H), 7.67–7.58 (m, 2H), 7.54–7.44 (m, 4H), 7.13–7.06 (m, 1H), 7.04–6.97 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 165.28 (d, J_{C-F} = 256.3 Hz), 152.82, 146.51, 137.75 (d, J_{C-F} = 3.1 Hz), 132.20, 130.35, 129.40, 129.08 (d, J_{C-F} = 9.6 Hz), 128.72, 127.76, 126.63, 117.90, 117.23, 116.20 (d, J_{C-F} = 22.7 Hz), 114.77. ¹⁹F NMR (376 MHz, CDCl₃) δ -103.54.

3-((4-(Tert-butyl)phenyl)sulfonyl)-2-phenylimidazo[1,2-a]pyridine (4e).

White solid was obtained in 58% isolated yield, 45.4 mg. ¹H NMR (400 MHz, CDCl₃) δ 9.13 (d, J = 6.8 Hz, 1H), 7.82–7.67 (m, 3H), 7.58 (d, J = 8.8 Hz, 2H), 7.52–7.42 (m, 4H), 7.35 (d, J = 8.4 Hz, 2H), 7.06 (t, J = 6.8 Hz, 1H), 1.25 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 157.24, 152.69, 146.50, 138.78, 132.61, 130.44, 129.22, 128.39, 127.71, 126.83, 126.22, 126.02, 117.90, 117.76, 114.50, 35.10, 30.89. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₂₃N₂O₂S⁺; 391.1475, found 391.1465.

2-Phenyl-3-((4-(trifluoromethyl)phenyl)sulfonyl)imidazo[1,2-a]pyridine (4f).¹

White solid was obtained in 79% NMR quantitative yield. ¹H NMR (400 MHz, CDCl₃) δ 9.17 (d, J = 6.8 Hz, 1H), 7.82–7.67 (m, 5H), 7.59 (d, J = 8.4 Hz, 2H), 7.55–7.43 (m, 4H), 7.12 (t, J = 7.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 153.77, 146.95, 145.24, 134.80 (d, $J_{C-F} = 33.1$ Hz), 132.13, 130.44, 129.64, 129.07, 127.91, 126.77, 126.14 (d, $J_{C-F} = 3.7$ Hz), 122.93 (d, $J_{C-F} = 273.1$ Hz), 118.16, 116.50, 115.02. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.24.

4-((2-Phenylimidazo[1,2-a]pyridin-3-yl)sulfonyl)benzonitrile (4g).

White solid was obtained in 66% isolated yield, 47.1 mg. ¹H NMR (400 MHz, CDCl₃) δ 9.17 (d, J = 7.2 Hz, 1H), 7.76 (d, J = 8.8 Hz, 1H), 7.72–7.57 (m, 6H), 7.57–7.43 (m, 4H), 7.13 (t, J = 7.0 Hz, 1H).¹³C NMR (101 MHz, CDCl₃) δ 154.04, 147.07, 145.73, 132.72, 132.00, 130.39, 129.74, 129.22, 127.95, 126.77, 126.74, 118.21, 116.99, 116.80, 116.07, 115.13. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₁₄N₃O₂S⁺; 360.0801, found 360.0795.

2-Phenyl-3-(thiophen-2-ylsulfonyl)imidazo[1,2-a]pyridine (4h).

White solid was obtained in 69% NMR quantitative yield. ¹H NMR (400 MHz, DMSO-D⁶) δ 8.99 (d, J = 6.8 Hz, 1H), 8.03 (d, J = 4.8 Hz, 1H), 7.91 (d, J = 2.8 Hz, 1H), 7.86 (d, J = 8.8 Hz, 1H), 7.79–7.62 (m, 3H), 7.55–7.48 (m, 3H), 7.33 (t, J = 7.0 Hz, 1H), 7.21–7.13 (m, 1H). ¹³C NMR (101 MHz, DMSO-D⁶) δ 152.08, 146.78, 142.52, 136.12, 133.83, 133.11, 130.70, 130.29, 129.68, 128.78, 128.17, 127.27, 118.16, 117.29, 116.21. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₇H₁₂N₂NaO₂S₂⁺; 363.0232, found 363.0232.

References:

1. Yu-Jing Guo, Shuai Lu, Lu-Lu Tian, En-Ling Huang, Xin-Qi Hao, Xinju Zhu,* Tian Shao,*and Mao-Ping Song, Iodine-Mediated Difunctionalization of Imidazopyridines with Sodium Sulfinates Synthesis of Sulfones and Sulfides. *J. Org. Chem.* 2018, **83**, 338–349

S29

¹H NMR (400 MHz, DMSO-D⁶) spectrum of 4h

(7, 0, 0) (7, 0) (7, 0) (7, 0) (7, 0) (7, 7)(

¹³C NMR (101 MHz, DMSO-D⁶) spectrum of 4h

182.08 146.78 146.78 135.12 133.81 133.81 133.81 133.82 133.83 14.83 14.83 14.83 14.83 14.83 14.83 14.83 14.83 14.83 14.8
