Dehydrogenative 6π Heterocyclization under Visible Light Irradiation and Mechanistic Insights

Zhao Zhang, $\ddagger^{[a,b]}$ Haohua Chen, $\ddagger^{[c]}$ Niklas Keller, $\ddagger^{[d]}$ Qin Xiong,^[c] Lei Liu,^[b] Yu Lan, *^[c,e] Thomas Bein*^[d] and Jie Li*^[a]

 ^a Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Ren-Ai Road 199, 215123 Suzhou, China
^b School of Pharmaceutical Sciences, Jiangnan University. Lihu road 1800, 214122 Wuxi, China
^c Chongqing Key Laboratory of heoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, P. R. China
^d Department of Chemistry, Ludwig-Maximilians-Universität München (LMU), Butenandtstr. 5-13, 81377 Munich,

Germany

e Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou, Henan 450001, China

- * E-mail: jjackli@suda.edu.cn
- * E-mail: lanyu@cqu.edu.cn
- * *E-mail: tbein@cup.uni-muenchen.de*

Contents

General					
Remarks					
S3					
Optimization					
Studies					•••••S4
Additional					
Experiments					S6
Representative					
Procedures					S9
Characterization	Data	of	3	and	4–33,
35			S10		
Optical					
Data					
S42					
DFT					
calculation					
•••S49					
References					
NMK					
Spectra				••••••	
 869					

General Remarks

Catalytic reactions were carried out in Schlenk tubes under an oxygen atmosphere using predried glassware. The following starting materials were synthesized according to previously described methods: Aryl amidines 1a-11,^[1] maleimides 2e-2p,^[2] Other chemicals were obtained from commercial sources and were used without further purification. Yields refer to isolated compounds, estimated to be > 95% pure as determined by ¹H-NMR. Chromatography: Merck silica gel 60 (40-63 µm). NMR: Spectra were recorded on Bruker Avance III 400 in the solvent indicated; chemical shifts (δ) are given in ppm. All IR spectra were recorded on a Shimadzu IRTracer-100. HRMS was recorded on a Waters Xevo G2 (qTOF MS + c ESI). M. p.: Stuart melting point apparatus SMP3, Barlworld Scientific, values are uncorrected.

Optimizations

Table S1. Optimization of copper-catalyzed oxidative amination of maleimide (2a) with arylamidine 1a.^[a]

С	NH NH H H	tBu ₊	O N-Me O 2a	[Cu] (20 mol %) Ligand 30 mol% Solvent, O ₂ , 12 h, <i>T</i> °C	HN ^{-fBu} CI O Me 3a
Entry	[Cu]	T/°C	Solvent	Ligand	Yield (%) ^[b]
1		100	DCE		0
2	$Cu(OAc)_2$	100	DCE		20%
3	Cu(OAc) ₂	100	DMF		Trace
4	$Cu(OAc)_2$	100	<i>i</i> -propanc	ol	16%
5	$Cu(OAc)_2$	100	toluene		18%
6	$Cu(OAc)_2$	120	DCE		47%
7	$Cu(OAc)_2$	140	DCE		9%
8	$Cu(OAc)_2$	100	DCE		21% ^[c]

9	$Cu(OAc)_2$	100	DCE		32% ^[c, d]
10	$Cu(OAc)_2$	100	DCE		24% ^[e]
11	$Cu(OAc)_2$	120	DCE	dmbbpy	69%
<i>12</i>	$Cu(OAc)_2$	<i>120</i>	DCE	bpy	72%
13	$Cu(OAc)_2$	120	DCE	dtbbpy	62%
14	$Cu(OAc)_2$	120	DCE	phen	53%
15	$Cu(OAc)_2$	120	DCE	3,4,7,8-tetramethyl phen	Trace
16	$Cu(OAc)_2$	120	DCE	4,7-diphenyl phen	49%
17	$Cu(OAc)_2$	120	DCE	TMEDA	Trace
18	$Cu(OAc)_2$	120	DCE	pyridine	Trace
19	$Cu(OAc)_2$	120	DCE	<i>L</i> -Ala	9%
20	$Cu(OAc)_2$	120	DCE	bpy	63% ^[f]
21	Cu(OTf) ₂	120	DCE	bpy	47%
22	CuBr	120	DCE	bpy	69%
23	Cu	120	DCE	bpy	51%
24	CuBr ₂	120	DCE	dmbbpy	39%
25	Cu(OAc) ₂	120	DCE	bpy	48% ^[g]

[a] General reaction conditions: **1a** (0.25 mmol), **2a** (0.50 mmol), [Cu] (20.0 mol %), anhydrous DCE (1.0 mL), under O₂, 100 °C, 12 h. [b] Isolated yield. [c] Under Ar. [d] Cu(OAc)₂ (2.0 equiv). [e] Cu(OAc)₂ (0.5 equiv). [f] **2a** (3.0 equiv). [g] Ligand (40 mol %). (DCE = 1,2-dichloroethane; dmbbpy = dtbbpy = 4,4'-di-methyl-2,2'-bipyridine; dtbbpy = 4,4'-di-*tert*-butyl-2,2'-bipyridine; bpy = 2,2'-bipyridine; phen = 1,10-phenanthroline; TMEDA = tetramethylethylenediamine; DMF = *N*,*N*-dimethylformamide).

Table S2. Optimization for oxidative 6π cyclization of amidine 3a.^[a]

Entry	Modified conditions	Yield (%) ^[b]
1	with $[Ru(bpy)_3]Cl_2$ as the PC	52 ^[c]
2	with <i>fac</i> -Ir(ppy) ₃ as the PC	66 ^[c]
3	with Ir(Fppy) ₃ as the PC	69 ^[c]
4	with Eosin Y as the PC	47 ^[c]
5	with Mes-Are-OMe ⁺ ClO_4^- as the PC	0 ^[c]
6	none	70
7	Ethylene glycol instead of <i>i</i> PrOH	57
8	TFE instead of <i>i</i> PrOH	66
9	MeOH instead of <i>i</i> PrOH	66
10	tBuOH instead of iPrOH	66
11	(CF ₃) ₂ CHOH instead of <i>i</i> PrOH	41
12	MeCN instead of <i>i</i> PrOH	60
13	PhMe instead of <i>i</i> PrOH	54
14	Acetone instead of <i>i</i> PrOH	trace
15	H ₂ O instead of <i>i</i> PrOH	trace

16	CH_2Cl_2 instead of <i>i</i> PrOH	trace	
11	CHCl ₃ instead of <i>i</i> PrOH	trace	
17	under sunshine	65 ^[d]	
18	under air	50	
19	In the dark	0	
20	<i>TEMPO</i> (20 mol %)	84	
21	under N ₂	41	

[a] Reaction conditions: **3a** (0.15 mmol), *i*PrOH (2.0 mL), O₂, 23 °C, 12 h. [b] isolated yield. [c] PC (2 mol %) was used. [d] 24 h. PC = Photoredox catalyst. TFE = 2,2,2-Trifluoroethanol.

Additional Experiments:

A suspension of **3a** (48 mg, 0.15 mmol), or TEMPO (0.03 mmol, 20 mol %; or 0.15 mmol, 1.0 equiv), or BHT (33 mg, 1.0 equiv), or ethene-1,1-diyldibenzene (27 mg, 1.0 equiv) in isopropanol (3.0 mL) was stirred at 23 °C for 12 h under an atmosphere of O_2 with visible light (20W). At ambient temperature, the solvent was evaporated *in vacuo* and the remaining

residue was purified by column chromatography on silica gel (*n*-hexane/EtOAc) to yield product **4**.

A suspension of **3a** (48 mg, 0.15 mmol), TEMPO (0.15 mmol, 1.0 equiv), in isopropanol (3.0 mL) was stirred at 23 °C for 12 h under an atmosphere of O₂ with visible light (20W) or in the dark. At ambient temperature, the solvent was evaporated *in vacuo* and the remaining residue was purified by column chromatography on silica gel (*n*-hexane/EtOAc) to yield product **4**. These results demonstrated the importance of visible light for this oxidative 6π heterocyclization.

A suspension of **3a** (48 mg, 0.15 mmol), Cu(OAc)₂ (2.7 mg, 10 mol %), 2,2'-dipyridyl (3.5 mg, 15 mol %), in isopropanol (3.0 mL) was stirred at 23 °C for 12 h under an atmosphere of O₂ with visible light (20W) or in the dark. At ambient temperature, the solvent was evaporated *in vacuo* and the remaining residue was purified by column chromatography on silica gel (*n*-hexane/EtOAc) to yield product **4**. These results demonstrated the copper salts will inhibit this envisioned oxidative 6π heterocyclization. Again, the reaction was completely stopped in the dark.

A suspension of **31** (48 mg, 0.15 mmol) in isopropanol (3.0 mL) was stirred at 23 °C for 12 h under an atmosphere of O_2 with visible light (20W) or in the dark. At ambient temperature, the solvent was evaporated *in vacuo* and the remaining residue was purified by column chromatography on silica gel (*n*-hexane/EtOAc) to yield product **4**. These results demonstrated the compound **31** is sensitive under visible light, leading to the oxidative polycyclic isoquinoline **4**. Again, the reaction was completely stopped in the dark.

A suspension of **3a or 3f** (0.15 mmol) in isopropanol (2.0 mL) was stirred at 23 °C for 12 h under an atmosphere of O_2 with blue LED (450-465 nm, 15 W). At ambient temperature, the solvent was evaporated *in vacuo* and the remaining residue was purified by column chromatography on silica gel (*n*-hexane/EtOAc) to yield product **4 or 9** in 82% or 87% yields, respectively.

Representative Procedures:

Representative Procedure for the Synthesis of Starting Materials 3 (A): A suspension of amidines **1** (0.25 mmol, 1.00 equiv), maleimides **2** (0.50 mmol, 2.00 equiv), $Cu(OAc)_2$ (9.0 mg, 20.0 mol %), and 2,2'-dipyridyl (11.7 mg, 30.0 mol %), in anhydrous DCE (1.0 mL) was stirred at 120 °C for 12 h under an atmosphere of O₂. At ambient temperature, the solvent was evaporated *in vacuo* and the remaining residue was purified by column chromatography on silica gel (*n*-hexane/EtOAc) to yield products **3**.

Representative Procedure for the Synthesis of π -Conjugated Polycyclic Isoquinolines (B):

A suspension of **3** (0.15 mmol, 1.00 equiv), TEMPO (0.03 mmol, 20 mol %) in isopropanol

(3.0 mL) was stirred at 23 °C for 12 h under an atmosphere of O_2 with white light (distance from the light source to glassware: 5–10 cm; 20 W; 400-780 nm; commercially available from Alibaba). At ambient temperature, the solvent was evaporated *in vacuo* and the remaining residue was purified by column chromatography on silica gel (*n*-hexane/EtOAc) to yield products **4–30**.

N-(tert-Butyl)-4-chloro-N'-(1-methyl-2,5-dioxo-2,5-dihydro-1H-pyrrol-3-

yl)benzimidamide (3a)

The general procedure **A** was followed using **1a** (53.0 mg, 0.25 mmol) and **2a** (56.0 mg, 0.50 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 8:1) yielded **3a** (54 mg, 68%) as a yellow solid. M. p. = 161 - 163 °C. ¹H-NMR (DMSO, 400 MHz): $\delta = 7.98$ (s, 1H), 7.48 (d, J = 8.5 Hz, 2H), 7.34 (d, J = 8.5 Hz, 2H), 5.03 (s, 1H), 2.70 (s, 3H), 1.43 (s, 9H). ¹³C-NMR (DMSO, 100 MHz): $\delta = 172.4$, 168.8, 161.3, 154.4, 135.3, 133.9, 130.7, 128.8, 102.6, 53.2, 28.5, 23.5. IR (ATR): 3343, 2922, 1699, 1536, 1382, 1204 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₁₆H₁₉ClN₃O₂ 320.1160; found 320.1168.

N-(tert-Butyl)-4-fluoro-N'-(1-methyl-2,5-dioxo-2,5-dihydro-1H-pyrrol-3-

yl)benzimidamide (3b)

The general procedure **A** was followed using **1b** (49.0 mg, 0.25 mmol) and **2a** (56.0 mg, 0.50 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 10:1) yielded **3b** (39 mg, 51%) as a yellow solid. M. p. = 186 - 189 °C. ¹H-NMR (CDCl₃, 400 MHz): $\delta = 7.37$

-7.30 (m, 2H), 7.05 (t, J = 8.6 Hz, 2H), 5.22 (s, 1H), 5.16 (s, 1H), 2.84 (s, 3H), 1.52 (s, 9H). ¹³C-NMR (CDCl₃, 100 MHz): $\delta = 172.81$, 168.83, 163.73 (d, ¹ $J_{C-F} = 251.7$ Hz), 160.11, 153.50, 131.78 (d, ⁴ $J_{C-F} = 3.4$ Hz), 129.78 (d, ³ $J_{C-F} = 8.6$ Hz), 116.01 (d, ² $J_{C-F} = 21.9$ Hz), 104.61, 53.54, 28.51, 23.38. ¹⁹F-NMR (CDCl3, 376 MHz): $\delta = -108.51$ (s). IR (ATR): 3318, 2960, 1749, 1538, 1382, 1211 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₁₆H₁₉FN₃O₂ 304.1456; found 304.1451.

4-Bromo-N-(tert-butyl)-N'-(1-methyl-2,5-dioxo-2,5-dihydro-1H-pyrrol-3-

yl)benzimidamide (3c)

The general procedure **A** was followed using **1c** (64.0 mg, 0.25 mmol) and **2a** (56.0 mg, 0.50 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 8:1) yielded **3c** (40 mg, 44%) as a yellow solid. M. p. = $162 - 164 \,^{\circ}$ C. ¹H-NMR (CDCl₃, 400 MHz): $\delta = 7.50 \,(d, J = 8.4 \,\text{Hz}, 2\text{H})$, 7.21 (d, $J = 8.4 \,\text{Hz}, 2\text{H}$), 5.23 (s, 1H), 5.15 (s, 1H), 2.84 (s, 3H), 1.51 (s, 9H). ¹³C-NMR (CDCl₃, 100 MHz): $\delta = 172.7$, 168.8, 159.9, 153.3, 134.4, 132.1, 129.2, 125.0, 104.8, 53.6, 28.4, 23.4. IR (ATR): 3344, 2918, 1699, 1534, 1382, 1204, 1112 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₁₆H₁₉BrN₃O₂ 364.0655, 366.0640; found 364.0663, 366.0651.

N-(tert-Butyl)-*N'-*(1-methyl-2,5-dioxo-2,5-dihydro-1*H*-pyrrol-3-yl)benzimidamide (3d) The general procedure **A** was followed using 1d (44.0 mg, 0.25 mmol) and 2a (56.0 mg, 0.50 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 10:1) yielded 3d (32 mg, 44%) as a yellow solid. M. p. = 100 - 102 °C. ¹H-NMR (CDCl₃, 400 MHz): 7.46 – 7.29 (m, 5H), 5.21 (s, 1H), 5.13 (s, 1H), 2.84 (s, 3H), 1.52 (s, 9H). ¹³C-NMR (CDCl₃, 100 MHz): $\delta = 172.9$, 169.1, 161.3, 153.7, 135.5, 130.6, 128.8, 127.6, 104.3, 53.5, 28.5, 23.3. IR (ATR): 3350, 2974, 1698, 1523, 1379, 1286, 1112 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for $C_{16}H_{20}N_3O_2$ 286.1550; found 286.1557.

N-(tert-Butyl)-4-methyl-*N'-*(1-methyl-2,5-dioxo-2,5-dihydro-1*H*-pyrrol-3-

yl)benzimidamide (3e)

The general procedure **A** was followed using **1e** (48.0 mg, 0.25 mmol) and **2a** (56.0 mg, 0.50 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 10:1) yielded **3e** (24 mg, 36%) as a yellow solid. M. p. = 142 – 144 °C. ¹H-NMR (CDCl₃, 400 MHz): δ = 7.22 (d, *J* = 8.0 Hz, 2H), 7.15 (d, *J* = 8.0 Hz, 2H), 5.21 (s, 1H), 5.11 (s, 1H), 2.84 (s, 3H), 2.35 (s, 3H), 1.51 (s, 9H). ¹³C-NMR (CDCl₃, 100 MHz): δ = 173.1, 169.2, 161.6, 154.0, 141.0, 132.6, 129.5, 127.5, 103.9, 53.4, 28.6, 23.3, 21.4. IR (ATR): 3348, 2976, 1701, 1535, 1381, 1203, 1111 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₁₇H₂₂N₃O₂ 300.1707; found 300.1703.

N-(tert-Butyl)-4-methoxy-N'-(1-methyl-2,5-dioxo-2,5-dihydro-1H-pyrrol-3-

yl)benzimidamide (3f)

The general procedure **A** was followed using **1f** (49.0 mg, 0.25 mmol) and **2a** (56.0 mg, 0.50 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 7:1) yielded **3f** (45 mg, 57%) as a yellow solid. M. p. = 155 - 157 °C. ¹H-NMR (CDCl₃, 400 MHz): $\delta = 7.29$ (d, J = 8.7 Hz, 2H), 6.85 (d, J = 8.7 Hz, 2H), 5.20 (s, 1H), 5.16 (s, 1H), 3.81 (s, 3H), 2.85 (s, 3H), 1.51 (s, 9H). ¹³C-NMR (CDCl₃, 100 MHz): $\delta = 173.1$, 169.0, 161.4, 161.3, 154.1, 129.2,

127.9, 114.1, 103.6, 55.3, 53.3, 28.5, 23.3. IR (ATR): 3352, 2976, 1698, 1505, 1381, 1257, 1173 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₁₇H₂₂N₃O₃ 316.1656; found 316.1657.

N-(tert-Butyl)-2-fluoro-N'-(1-methyl-2,5-dioxo-2,5-dihydro-1H-pyrrol-3-

yl)benzimidamide (3g)

The general procedure **A** was followed using **1g** (49.0 mg, 0.25 mmol) and **2a** (56.0 mg, 0.50 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 10:1) yielded **3g** (44 mg, 57%) as a yellow solid. M. p. = 144 – 146 °C. ¹H-NMR (CDCl₃, 400 MHz): δ = 7.42 - 7.35 (m, 1H), 7.24 (td, *J* = 7.0, 1.4 Hz, 1H), 7.14 (t, *J* = 7.3 Hz, 1H), 7.08 (t, *J* = 9.0 Hz, 1H), 5.19 (s, 1H), 5.08 (s, 1H), 2.84 (s, 3H), 1.53 (s, 9H). ¹³C-NMR (CDCl₃, 100 MHz): δ = 172.7, 169.3, 158.7 (d, ^{*1*}*J*_{C-F} = 250.3 Hz), 155.4, 153.2, 132.1 (d, ^{*3*}*J*_{C-F} = 8.2 Hz), 129.5 (d, ^{*4*}*J*_{C-F} = 3.0 Hz), 124.5 (d, ^{*4*}*J*_{C-F} = 3.6 Hz), 122.7 (d, ^{*2*}*J*_{C-F} = 16.1 Hz), 116.3 (d, ^{*2*}*J*_{C-F} = 21.5 Hz), 104.8, 53.8, 28.5, 23.3. ¹⁹F-NMR (CDCl₃, 376 MHz): δ = -114.35 (s). IR (ATR): 3347, 2960, 1693, 1537, 1435, 1206, 1116 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₁₆H₁₉FN₃O₂ 304.1456; found 304.1459.

N-(tert-Butyl)-2-methyl-N'-(1-methyl-2,5-dioxo-2,5-dihydro-1H-pyrrol-3-

yl)benzimidamide (3h)

The general procedure **A** was followed using **1a** (48.0 mg, 0.25 mmol) and **2a** (56.0 mg, 0.50 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 8:1) yielded **3ha** (27 mg, 36%) as a yellow solid. M. p. = 184 - 186 °C. ¹H-NMR (CDCl₃, 400 MHz): $\delta = 7.26 - 7.18$ (m, 2H), 7.11 (d, J = 9.6 Hz, 2H), 5.20 (s, 1H), 5.09 (s, 1H), 2.85 (s, 3H), 2.34 (s, 3H),

1.52 (s, 9H). ¹³C-NMR (CDCl₃, 100 MHz): $\delta = 173.0$, 169.2, 161.6, 153.8, 138.7, 135.4, 131.3, 128.7, 127.9, 124.7, 104.0, 53.4, 28.5, 23.3, 21.4. IR (ATR): 3347, 2930, 1698, 1526, 1363, 1235, 1112 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₁₇H₂₂N₃O₂ 300.1707; found 300.1713.

N-(tert-Butyl)-N'-(1-methyl-2,5-dioxo-2,5-dihydro-1H-pyrrol-3-yl)-3-

(trifluoromethyl)benzimidamide (3i)

The general procedure **A** was followed using **1i** (61.0 mg, 0.25 mmol) and **2a** (56.0 mg, 0.50 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 10:1) yielded **3i** (45 mg, 51%) as a yellow solid. M. p. = 155 – 156 °C. ¹H-NMR (CDCl₃, 400 MHz): δ = 7.70 – 7.64 (m, 1H), 7.59 (s, 1H), 7.53 – 7.49 (m, 2H), 5.21 (s, 1H), 5.18 (s, 1H), 2.83 (s, 3H), 1.54 (s, 9H).¹³C-NMR (CDCl₃, 100 MHz): δ = 172.5, 168.7, 159.2, 153.0, 136.2, 131.4 (q, ²J_{C-F} = 32.9 Hz), 131.0, 129.5, 127.2 (q, ³J_{C-F} = 3.7 Hz), 124.4 (q, ³J_{C-F} = 3.8 Hz), 123.5 (q, ¹J_{C-F} = 272.0 Hz), 105.2, 53.8, 28.5, 23.4. ¹⁹F-NMR (CDCl₃, 376 MHz): δ = -62.76 (s). IR (ATR): 3320, 2964, 1702, 1513, 1389, 1286, 1110 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₁₇H₁₉F₃N₃O₂ 354.1424; found 354.1422.

N-(tert-Butyl)-*N'-*(1-methyl-2,5-dioxo-2,5-dihydro-1*H*-pyrrol-3-yl)benzo[*d*][1,3]dioxole-5-carboximidamide (3j)

The general procedure **A** was followed using **1j** (55.0 mg, 0.25 mmol) and **2a** (56.0 mg, 0.50 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 8:1) yielded **3j** (35 mg, 43%) as a yellow solid. M. p. = 186 - 188 °C. ¹H-NMR (CDCl₃, 400 MHz): $\delta = 6.85$ (dd,

J = 8.0, 1.6 Hz, 1H), 6.79 (d, J = 1.6 Hz, 1H), 6.76 (d, J = 8.0 Hz, 1H), 6.00 (s, 2H), 5.19 (s, 1H), 2.87 (s, 3H), 1.50 (s, 9H). ¹³C-NMR (CDCl₃, 100 MHz): $\delta = 173.1, 169.1, 160.9, 153.8, 149.6, 148.0, 129.5, 122.2, 108.5, 108.0, 103.9, 101.7, 53.4, 28.5, 23.4. IR (ATR): 3349, 2958, 1694, 1535, 1377, 1250, 1112 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₁₇H₂₀N₃O₄ 330.1448; found 330.1454.$

N-(tert-Butyl)-3-methyl-N'-(1-methyl-2,5-dioxo-2,5-dihydro-1H-pyrrol-3-

yl)benzimidamide (3k)

The general procedure **A** was followed using **1k** (49.0 mg, 0.25 mmol) and **2a** (56.0 mg, 0.50 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 12:1) yielded **3k** (36 mg, 48%) as a yellow solid. M. p. = 188–190 °C. ¹H-NMR (CDCl₃, 400 MHz): δ = 7.25 – 7.19 (m, 2H), 7.15 – 7.09 (m, 2H), 5.19 (s, 1H), 5.09 (s, 1H), 2.85 (s, 3H), 2.34 (s, 3H), 1.52 (s, 9H). ¹³C-NMR (CDCl₃, 100 MHz): δ = 173.1, 169.3, 161.6, 153.8, 138.8, 135.4, 131.3, 128.7, 127.9, 124.7, 104.0, 53.4, 28.5, 23.3, 21.4. IR (ATR): 3352, 2971, 1698, 1522, 1374, 1085 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₁₇H₂₂N₃O₂ 300.1707; found 300.1703.

N-(tert-Butyl)-3-fluoro-N'-(1-methyl-2,5-dioxo-2,5-dihydro-1H-pyrrol-3-

yl)benzimidamide (3l)

The general procedure **A** was followed using **11** (49.0 mg, 0.25 mmol) and **2a** (56.0 mg, 0.50 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 10:1) yielded **31** (32 mg, 42%) as a yellow solid. M. p. = 165 - 167 °C. ¹H-NMR (CDCl₃, 400 MHz): $\delta = 7.34$ (td, J = 8.0, 5.7 Hz, 1H), 7.15 – 7.08 (m, 2H), 7.08 – 7.02 (m, 1H), 5.22 (s, 1H), 5.18 (s, 1H),

2.85 (s, 3H), 1.52 (s, 9H). ¹³C-NMR (CDCl₃, 100 MHz): $\delta = 172.73$, 168.85, 162.53 (d, ¹*J*_{C-F} = 249.3 Hz), 159.43, 153.22, 137.46 (d, ³*J*_{C-F} = 7.1 Hz), 130.66 (d, ³*J*_{C-F} = 8.2 Hz), 123.40 (d, ⁴*J*_{C-F} = 3.2 Hz), 117.67 (d, ²*J*_{C-F} = 21.1 Hz), 114.84 (d, ²*J*_{C-F} = 22.8 Hz), 104.83, 53.63, 28.47, 23.39. ¹⁹F-NMR (CDCl₃, 376 MHz): $\delta = -110.69$ (s). IR (ATR): 3341, 2964, 1695, 1540, 1362, 1287, 1187 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₁₆H₁₉FN₃O₂ 304.1456; found 304.1458.

N-(tert-Butyl)-4-chloro-*N'-*(1-ethyl-2,5-dioxo-2,5-dihydro-1*H*-pyrrol-3-yl)benzimidamide (3m)

The general procedure **A** was followed using **1a** (53.0 mg, 0.25 mmol) and **2b** (53.0 mg, 0.50 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 10:1) yielded **3m** (30 mg, 35%) as a yellow solid. M. p. = $165 - 167 \,^{\circ}$ C. ¹H-NMR (CDCl₃, 400 MHz): $\delta = 7.37 - 7.31 \,(\text{m}, 2\text{H})$, 7.29 – 7.25 (m, 2H), 5.21 (s, 1H), 5.14 (s, 1H), 3.39 (q, $J = 7.2 \,\text{Hz}$, 2H), 1.52 (s, 9H), 1.04 (t, $J = 7.2 \,\text{Hz}$, 3H). ¹³C-NMR (CDCl₃, 100 MHz): $\delta = 172.5$, 168.6, 159.9, 153.3, 136.7, 134.1, 129.1, 129.0, 105.0, 53.6, 32.4, 28.5, 13.9. IR (ATR): 3343, 2974, 1693, 1533, 1397, 1202 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₁₇H₂₁ClN₃O₂ 334.1317; found 334.1319.

N-(tert-Butyl)-4-chloro-N'-(1-cyclohexyl-2,5-dioxo-2,5-dihydro-1H-pyrrol-3-

yl)benzimidamide (3n)

The general procedure **A** was followed using **1a** (53.0 mg, 0.25 mmol) and **2c** (89 mg, 0.50 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 10:1) yielded **3n**

(24 mg, 25%) as a yellow solid. M. p. = 160 - 162 °C. ¹H-NMR (CDCl₃, 400 MHz): δ = 7.33 (d, *J* = 8.5 Hz, 2H), 7.26 (d, *J* = 8.5 Hz, 2H), 5.20 (s, 1H), 5.12 (s, 1H), 3.73 (tt, *J* = 12.3, 3.8 Hz, 1H), 1.95 - 1.81 (m, 2H), 1.74 (d, *J* = 13.1 Hz, 2H), 1.51 (s, 9H), 1.51 - 1.38 (m, 2H), 1.33 - 1.06 (m, 4H). ¹³C-NMR (CDCl₃, 100 MHz): δ = 172.6, 168.6, 159.8, 152.9, 136.6, 134.2, 129.0, 129.0, 105.0, 53.5, 50.1, 30.0 28.5, 26.0, 25.1. IR (ATR): 3336, 2932, 1698, 1576, 1363, 1206, 1090 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₂₁H₂₆ClN₃O₂ 387.1714; found 387.1721.

N'-(1-Benzyl-2,5-dioxo-2,5-dihydro-1H-pyrrol-3-yl)-N-(tert-butyl)-4-

chlorobenzimidamide (30)

The general procedure **A** was followed using **1a** (53.0 mg, 0.25 mmol) and **2d** (93 mg, 0.50 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 12:1) yielded **3o** (43 mg, 53%) as a yellow solid. M. p. = $176 - 178 \,^{\circ}$ C. ¹H-NMR (CDCl₃, 400 MHz): $\delta = 7.34 - 7.26 \,(\text{m}, 4\text{H})$, 7.25 – 7.18 (m, 3H), 7.09 – 7.03 (m, 2H), 5.34 (s, 1H), 5.18 (s, 1H), 4.49 (s, 2H), 1.50 (s, 9H). ¹³C-NMR (CDCl₃, 100 MHz): $\delta = 172.0$, 168.2, 160.02 153.5, 136.9, 136.6, 134.3, 129.1, 129.0, 128.4, 127.8, 127.3, 105.3, 53.6, 40.9, 28.5. IR (ATR): 3346, 2919, 1695, 1530, 1385, 1204, 1090 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₂₂H₂₃ClN₃O₂ 396.1479; found 396.1483.

Methyl 2-(3-{[(*tert*-butylamino)(4-chlorophenyl)methylene]amino}-2,5-dioxo-2,5dihydro-1*H*-pyrrol-1-yl)acetate (3p)

The general procedure **A** was followed using **1a** (53.0 mg, 0.25 mmol) and **2e** (85.0 mg, 0.50 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 8:1) yielded **3p** (40 mg, 42%) as a yellow solid. M. p. = 135 - 137 °C. ¹H-NMR (CDCl₃, 400 MHz): $\delta = 7.35$ (d, J = 8.5 Hz, 2H), 7.29 (d, J = 8.5 Hz, 2H), 5.30 (s, 1H), 5.23 (s, 1H), 4.10 (s, 2H), 3.65 (s, 3H), 1.52 (s, 9H). ¹³C-NMR (CDCl₃, 100 MHz): $\delta = 171.3$, 168.0, 167.9, 160.1, 153.6, 136.8, 133.8, 129.1, 129.0, 105.1, 53.7, 52.3, 38.3, 28.5. IR (ATR): 3344, 2975, 1694, 1533, 1397, 1283, 1202 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₁₈H₂₁ClN₃O₄ 378.1221; found 378.1230.

Methyl 2-(3-{[(tert-butylamino)(4-chlorophenyl)methylene]amino}-2,5-dioxo-2,5-

dihydro-1*H*-pyrrol-1-yl)propanoate (3q)

The general procedure **A** was followed using **1a** (53.0 mg, 0.25 mmol) and **2f** (91.0 mg, 0.50 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 8:1) yielded **3q** (63 mg, 64%) as a yellow solid. M. p. = 223 – 224 °C. ¹H-NMR (CDCl₃, 400 MHz): δ = 7.35 (d, *J* = 8.5 Hz, 2H), 7.29 (d, *J* = 8.5 Hz, 2H), 5.31 (s, 1H), 5.19 (s, 1H), 4.61 (q, *J* = 7.3 Hz, 1H), 3.59 (s, 3H), 1.52 (s, 9H), 1.46 (d, *J* = 7.3 Hz, 3H). ¹³C-NMR (CDCl₃, 100 MHz): δ = 171.4, 170.6, 167.7, 160.1, 153.4, 136.7, 134.0, 129.1, 129.0, 105.2, 53.7, 52.5, 46.8, 28.5, 15.2. IR (ATR): 3342, 2967, 1698, 1521, 1388, 1082 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₁₉H₂₃ClN₃O₄ 392.1377; found 392.1369.

Methyl 2-(3-{[(*tert*-butylamino)(4-chlorophenyl)methylene]amino}-2,5-dioxo-2,5dihydro-1*H*-pyrrol-1-yl)-2-methylpropanoate (3r)

The general procedure **A** was followed using **1a** (53.0 mg, 0.25 mmol) and **2g** (98.0 mg, 0.50 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 8:1) yielded **3r** (40 mg, 25%) as a yellow solid. M. p. = $126 - 128 \,^{\circ}$ C. ¹H-NMR (CDCl₃, 400 MHz): $\delta = 7.35$ (d, $J = 8.5 \,\text{Hz}$, 2H), 7.27 (d, $J = 8.5 \,\text{Hz}$, 2H), 5.23 (s, 1H), 5.13 (s, 1H), 3.58 (s, 3H), 1.58 (s, 6H), 1.51 (s, 9H). ¹³C-NMR (CDCl₃, 100 MHz): $\delta = 173.7$, 172.3, 168.3, 159.9, 152.8, 136.6, 134.2, 129.1, 129.0, 105.4, 59.4, 53.6, 52.4, 28.5, 24.3. IR (ATR): 3360, 2963, 1747, 1615, 1417, 1267, 1089 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₂₀H₂₅ClN₃O₄ 406.1534; found 406.1537.

Methyl 2-(3-{[(*tert*-butylamino)(4-chlorophenyl)methylene]amino}-2,5-dioxo-2,5dihydro-1*H*-pyrrol-1-yl)propanoate (3s)

The general procedure **A** was followed using **1a** (53.0 mg, 0.25 mmol) and **2h** (91.0 mg, 0.50 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 8:1) yielded **3s** (57 mg, 58%) as a yellow solid. M. p. = 225 - 227 °C. ¹H-NMR (CDCl₃, 400 MHz): $\delta = 7.35$ (d, J = 8.5 Hz, 2H), 7.29 (d, J = 8.5 Hz, 2H), 5.31 (s, 1H), 5.19 (s, 1H), 4.61 (q, J = 7.3 Hz, 1H), 3.59 (s, 3H), 1.52 (s, 9H), 1.46 (d, J = 7.3 Hz, 3H). ¹³C-NMR (CDCl₃, 100 MHz): $\delta = 171.4$, 170.6, 167.7, 160.0, 153.4, 136.7, 134.0, 129.1, 129.0, 105.2, 53.7, 52.5, 46.8, 28.5, 15.2. IR (ATR): 3335, 2931, 1697, 1531, 1345, 1205, 1090 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₁₉H₂₃ClN₃O₄ 392.1377; found 392.1378.

Methyl 2-(3-{[(*tert*-butylamino)(4-chlorophenyl)methylene]amino}-2,5-dioxo-2,5dihydro-1*H*-pyrrol-1-yl)-3-methylbutanoate (3t)

The general procedure **A** was followed using **1a** (53.0 mg, 0.25 mmol) and **2i** (106.0 mg, 0.50 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 8:1) yielded **3t** (36 mg, 35%) as a yellow solid. M. p. = 144 – 147 °C. ¹H-NMR (CDCl₃, 400 MHz): δ = 7.35 – 7.27 (m, 4H), 5.46 (s, 1H), 5.17 (s, 1H), 4.24 (d, *J* = 8.6 Hz, 1H), 3.57 (s, 3H), 2.34 – 2.17 (m, 1H), 1.52 (s, 9H), 0.90 (d, *J* = 6.0 Hz, 3H), 0.73 (d, *J* = 6.0 Hz, 3H). ¹³C-NMR (CDCl₃, 100 MHz): δ = 171.6, 169.7, 167.5, 160.0, 153.3, 136.6, 134.6, 129.3, 128.9, 105.5, 56.3, 53.6, 52.0, 34.2, 28.5, 25.4, 16.6. IR (ATR): 3340, 2969, 1698, 1522, 1385, 1086 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₂₁H₂₇ClN₃O₄ 420.1690; found 420.1693.

Methyl 2-(3-{[(*tert*-butylamino)(4-chlorophenyl)methylene]amino}-2,5-dioxo-2,5dihydro-1*H*-pyrrol-1-yl)-3,3-dimethylbutanoate (3u)

The general procedure **A** was followed using **1a** (53.0 mg, 0.25 mmol) and **2j** (112.0 mg, 0.50 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 8:1) yielded **3u** (35 mg, 32%) as a yellow solid. M. p. = 80 - 81 °C. ¹H-NMR (CDCl₃, 400 MHz): $\delta = 7.35 - 7.27$ (m, 4H), 5.49 (s, 1H), 5.17 (s, 1H), 4.23 (s, 1H), 3.50 (s, 3H), 1.52 (s, 9H), 0.91 (s, 9H). ¹³C-NMR (CDCl₃, 100 MHz): $\delta = 171.7$, 168.6, 167.7, 159.9, 153.3, 136.7, 134.6, 129.3, 128.9, 105.6, 58.8, 53.6, 51.7, 35.4, 28.5, 27.4. IR (ATR): 3351, 2962, 1749, 1525, 1382, 1207 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₂₂H₂₉ClN₃O₄ 434.1847; found 434.1849.

Methyl 3-(*tert*-butoxy)-2-(3-{[(*tert*-butylamino)(4-chlorophenyl)methylene]amino}-2,5dioxo-2,5-dihydro-1*H*-pyrrol-1-yl)propanoate (3v)

The general procedure **A** was followed using **1a** (53.0 mg, 0.25 mmol) and **2k** (128.0 mg, 0.50 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 8:1) yielded **3v** (69 mg, 59%) as a yellow solid. M. p. = 92 - 94 °C. ¹H-NMR (CDCl₃, 400 MHz): $\delta = 7.35 - 7.27$ (m, 4H), 5.36 (s, 1H), 5.14 (s, 1H), 4.67 (dd, J = 9.7, 5.0 Hz, 1H), 3.86 (dd, J = 9.7, 5.0 Hz, 1H), 3.77 (t, J = 9.7 Hz, 1H), 3.61 (s, 3H), 1.51 (s, 9H), 1.04 (s, 9H). ¹³C-NMR (CDCl₃, 100 MHz): $\delta = 171.5, 168.7, 167.7, 159.8, 153.0, 136.6, 134.1, 129.1, 129.0, 105.2, 73.3, 59.0, 53.6, 52.3, 52.2, 28.5, 27.3. IR (ATR): 3348, 2988, 1708, 1573, 1379, 1276 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₂₃H₃₁ClN₃O₅ 464.1952; found 464.1953.$

Methyl 2-(3-{[(*tert*-butylamino)(4-chlorophenyl)methylene]amino}-2,5-dioxo-2,5dihydro-1*H*-pyrrol-1-yl)-4-methylpentanoate (3w)

The general procedure **A** was followed using **1a** (53.0 mg, 0.25 mmol) and **2l** (113.0 mg, 0.50 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 8:1) yielded **3w** (45 mg, 42%) as a yellow solid. M. p. = 172 - 174 °C. ¹H-NMR (CDCl₃, 400 MHz): $\delta = 7.34 - 7.27$ (m, 4H), 5.44 (s, 1H), 5.16 (s, 1H), 4.54 (dd, J = 11.9, 4.2 Hz, 1H), 3.60 (s, 3H), 2.03

(ddd, J = 14.2, 11.0, 4.0 Hz, 1H), 1.68 (ddd, J = 14.2, 11.0, 4.0 Hz, 1H), 1.52 (s, 9H), 1.14 – 1.01 (m, 1H), 0.81 (d, J = 6.5 Hz, 3H), 0.75 (d, J = 6.5 Hz, 3H).¹³C-NMR (CDCl₃, 100 MHz): $\delta = 171.6, 170.7, 167.6, 159.9, 153.4, 136.6, 134.5, 129.2, 128.9, 105.7, 53.6, 52.4, 49.9, 37.1, 28.5, 24.9, 23.1, 20.8. IR (ATR): 3347, 2963, 1698, 1522, 1394, 1207 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₂₂H₂₉ClN₃O₄ 434.1847; found 434.1845.$

Methyl 2-(3-{[(*tert*-butylamino)(4-chlorophenyl)methylene]amino}-2,5-dioxo-2,5dihydro-1*H*-pyrrol-1-yl)-3-methylpentanoate (3x)

The general procedure **A** was followed using **1a** (53.0 mg, 0.25 mmol) and **2m** (113.0 mg, 0.50 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 8:1) yielded **3x** (43 mg, 40%) as a yellow solid. M. p. = 122 - 125 °C. ¹H-NMR (CDCl₃, 400 MHz): $\delta = 7.34 - 7.27$ (m, 4H), 5.45 (d, J = 12.5 Hz, 1H), 5.16 (s, 1H), 4.24 (d, J = 8.6 Hz, 1H), 3.57 (s, 3H), 2.32 - 2.20 (m, 1H), 1.63 - 1.58 (m, 2H), 1.52 (s, 9H), 0.90 (d, J = 6.7 Hz, 3H), 0.73 (t, J = 6.3 Hz, 3H). ¹³C-NMR (CDCl₃, 100 MHz): $\delta = 171.6$, 169.7, 167.4, 160.0, 153.3, 136.6, 134.5, 129.2, 128.9, 105.5, 56.3, 53.6, 52.0, 34.1, 28.5, 25.3, 16.5, 10.8. IR (ATR): 3355, 2968, 1697, 1522, 1386, 1285, 1199 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₂₂H₂₉ClN₃O₄ 434.1841; found 434.1844.

Methyl 3-[4-(tert-butoxy)phenyl]-2-(3-{[(tert-butylamino)(4-

chlorophenyl)methylene]amino}-2,5-dioxo-2,5-dihydro-1*H*-pyrrol-1-yl)propanoate (3y) The general procedure **A** was followed using **1a** (53.0 mg, 0.25 mmol) and **2n** (166.0 mg, 0.50 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 8:1) yielded **3y** (60 mg, 44%) as a yellow solid. M. p. = 161 – 164 °C. ¹H-NMR (CDCl₃, 400 MHz): δ = 7.39 – 7.31 (m, 2H), 7.20 – 7.14 (m, 2H), 6.91 – 6.79 (m, 4H), 5.12 (s, 1H), 5.10 (s, 1H), 4.77 (dd, *J* = 11.4, 5.1 Hz, 1H), 3.65 (s, 3H), 3.33 (dd, *J* = 14.3, 5.1 Hz, 1H), 3.23 (dd, *J* = 14.2, 11.5 Hz, 1H), 1.49 (s, 9H), 1.31 (s, 9H). ¹³C-NMR (CDCl₃, 100 MHz): δ = 171.1, 169.8, 167.7, 159.9, 154.0, 153.0, 136.6, 133.7, 131.9, 129.3, 129.1, 129.0, 124.1, 104.8, 78.2, 53.6, 52.6, 52.5, 33.9, 28.8, 28.5. IR (ATR): 3336, 2984, 1684, 1522, 1361, 1236 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₂₉H₃₅ClN₃O₅ 540.2265; found 540.2269.

Methyl 2-(3-{[(*tert*-butylamino)(4-chlorophenyl)methylene]amino}-2,5-dioxo-2,5dihydro-1*H*-pyrrol-1-yl)-3-phenylpropanoate (3z)

The general procedure **A** was followed using **1a** (53.0 mg, 0.25 mmol) and **2o** (130 mg, 0.50 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 8:1) yielded **3z** (32 mg, 27%) as a yellow solid. M. p. = 85 - 87 °C. ¹H-NMR (CDCl₃, 400 MHz): $\delta = 7.31 - 7.26$

(m, 2H), 7.23 – 7.14 (m, 5H), 7.01 – 6.96 (m, 2H), 5.20 (s, 1H), 5.11 (s, 1H), 4.80 (dd, J = 11.5, 5.0 Hz, 1H), 3.66 (s, 3H), 3.43 – 3.27 (m, 2H), 1.49 (s, 9H). ¹³C-NMR (CDCl₃, 100 MHz): $\delta = 171.3, 169.8, 167.7, 159.8, 153.0, 137.1, 136.6, 133.9, 129.0, 128.8, 128.4, 128.3, 126.6, 105.0, 53.6, 52.7, 52.6, 34.6, 28.5. IR (ATR): 3350, 2971, 1704, 1521, 1388, 1205, 1088 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₂₅H₂₇ClN₃O₄ 468.1690; found 468.1692.$

N-(tert-Butyl)-4-chloro-*N'-*[2,5-dioxo-1-(1-phenylethyl)-2,5-dihydro-1*H*-pyrrol-3yl]benzimidamide (3aa)

The general procedure **A** was followed using 1a (53.0 mg, 0.25 mmol) and **2p** (100.0 mg, 0.50 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 10:1) yielded **3aa** (65 mg, 63%) as a yellow solid. M. p. = 291 – 293 °C. ¹H-NMR (CDCl₃, 400 MHz): δ = 7.29 – 7.09 (m, 7H), 7.12 (d, *J* = 6.5 Hz, 2H), 5.32 (s, 1H), 5.18 (dd, *J* = 14.7, 7.4 Hz, 1H), 5.14 (s, 1H), 1.66 (d, *J* = 7.4 Hz, 3H), 1.50 (s, 9H). ¹³C-NMR (CDCl₃, 100 MHz): δ = 172.1, 168.1, 159.9, 153.2, 141.0, 136.5, 134.4, 129.0, 128.9, 128.2, 127.1, 126.7, 105.3, 53.5, 48.8, 28.5, 17.7. IR (ATR): 3344, 2973, 1690, 1578, 1352, 1205 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₂₃H₂₅ClN₃O₂ 410.1635; found 410.1637.

5-(*tert*-Butylamino)-8-chloro-2-methyl-1*H*-pyrrolo[3,4-*c*]isoquinoline-1,3(2*H*)-dione (4) The general procedure **B** was followed using **3a** (48.0 mg, 0.15 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 5:1) yielded **4** (40 mg, 84%; without TEMPO:

33 mg, 70%) as a yellow solid. M. p. = 222 - 224 °C. ¹H-NMR (CDCl₃, 400 MHz): δ = 8.60 (d, J = 2.1 Hz, 1H), 7.67 (d, J = 9.0 Hz, 1H), 7.50 (dd, J = 9.0, 2.1 Hz, 1H), 5.83 (s, 1H), 3.17 (s, 3H), 1.65 (s, 9H). ¹³C-NMR (CDCl₃, 100 MHz): δ = 169.0, 168.1, 159.2, 149.6, 138.6, 132.6, 128.4, 123.9, 123.7, 116.8, 109.2, 53.8, 28.9, 23.5. IR (ATR): 3428, 2973, 1696, 1538, 1434, 1205 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₁₆H₁₇ClN₃O₂ 318.1009; found 318.1014.

5-(*tert*-Butylamino)-8-fluoro-2-methyl-1*H*-pyrrolo[3,4-*c*]isoquinoline-1,3(2*H*)-dione (5) The general procedure **B** was followed using **3b** (45.5 mg, 0.15 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 5:1) yielded **5** (38 mg, 85%; without TEMPO: 31 mg, 68%) as a yellow solid. M. p. = 243 – 244 °C. ¹H-NMR (CDCl₃, 400 MHz): δ = 8.23 (dd, *J* = 9.3, 2.6 Hz, 1H), 7.78 (dd, *J* = 9.2, 5.0 Hz, 1H), 7.30 (dd, *J* = 8.6, 2.2 Hz, 1H), 5.84 (s, 1H), 3.17 (s, 3H), 1.65 (s, 9H). ¹³C-NMR (CDCl₃, 100 MHz): δ =169.1, 168.2, 164.4 (d, ^{*i*}*J*_{C-F} = 254.5 Hz), 159.2, 149.7, 133.6 (d, ³*J*_{C-F} = 11.6 Hz), 125.0 (d, ³*J*_{C-F} = 9.8 Hz), 117.2 (d, ²*J*_{C-F} = 24.8 Hz), 115.5 (d, ⁴*J*_{C-F} = 1.7 Hz), 109.8 (d, ³*J*_{C-F} = 4.5 Hz), 109.3 (d, ²*J*_{C-F} = 22.3 Hz), 53.8, 29.0, 23.5. ¹⁹F-NMR (CDCl₃, 376 MHz): δ = -105.05 (s). IR (ATR): 3360, 2971, 1698, 1522, 1347, 1199 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₁₆H₁₇FN₃O₂ 302.1305; found 302.1311.

8-Bromo-5-(*tert*-butylamino)-2-methyl-1*H*-pyrrolo[3,4-*c*]isoquinoline-1,3(2*H*)-dione (6) The general procedure **B** was followed using **3c** (726 mg, 2.0 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 5:1) yielded **6** [643 mg, 89%; 0.15 mmol scale:

(without TEMPO) 40 mg, 72%] as a yellow solid. M. p. = 250 - 251 °C. ¹H-NMR (CDCl₃, 400 MHz): $\delta = 8.75$ (d, J = 2.1 Hz, 1H), 7.64 – 7.58 (m, 2H), 5.87 (s, 1H), 3.16 (s, 3H), 1.64 (s, 9H). ¹³C-NMR (CDCl₃, 100 MHz): $\delta = 168.9$, 168.0, 159.3, 149.5, 132.8, 132.7, 131.0, 127.1, 123.7, 117.1, 109.0, 53.8, 28.9, 23.5. IR (ATR): 3456, 2987, 1706, 1539, 1429, 1215 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₁₆H₁₇BrN₃O₂ 362.0504; found 362.0501.

5-(*tert*-Butylamino)-2-methyl-1*H*-pyrrolo[3,4-*c*]isoquinoline-1,3(2*H*)-dione (7)

The general procedure **B** was followed using **3d** (43.0 mg, 0.15 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 6:1) yielded **7** (30 mg, 71%; without TEMPO: 18.2 mg, 43%) as a yellow solid. M. p. = 220 - 222 °C. ¹H-NMR (CDCl₃, 400 MHz): δ = 8.61 (d, *J* = 8.0 Hz, 1H), 7.74 (t, *J* = 8.0 Hz, 2H), 7.56 (td, *J* = 8.0, 1.5Hz, 1H), 5.90 (s, 1H), 3.17 (s, 3H), 1.65 (s, 9H). ¹³C-NMR (CDCl₃, 100 MHz): δ = 169.5, 168.5, 159.3, 148.6, 131.8, 131.6, 127.8, 124.9, 122.0, 118.8, 110.2, 53.5, 29.0, 23.4. IR (ATR): 3467, 2918, 1684, 1521, 1363, 1211 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₁₆H₁₈N₃O₂ 284.1399; found 284.1403.

5-(*tert*-Butylamino)-2,8-dimethyl-1*H*-pyrrolo[3,4-*c*]isoquinoline-1,3(2*H*)-dione (8)

The general procedure **B** was followed using **3e** (45.0 mg, 0.15 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 6:1) yielded **8** (33.4 mg, 75%; without TEMPO: 26.2 mg, 59%) as a yellow solid. M. p. = 288 - 290 °C. ¹H-NMR (CDCl₃, 400 MHz): $\delta = 8.40$ (s, 1H), 7.62 (d, J = 8.6 Hz, 1H), 7.38 (dd, J = 8.6, 1.3 Hz, 1H), 5.79 (s, 1H), 3.16 (s, 3H), 2.54 (s, 3H), 1.64 (s, 9H). ¹³C-NMR (CDCl₃, 100 MHz): $\delta = 169.7$, 168.6, 159.2, 148.7, 142.6, 131.8, 129.6, 124.1, 121.8, 116.8, 109.9, 53.4, 29.0, 23.4, 21.8. IR (ATR): 3608, 2919, 1685,

1508, 1430, 1361, 1059 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for $C_{17}H_{20}N_3O_2$ 298.1556; found 298.1553.

5-(*tert*-Butylamino)-8-methoxy-2-methyl-1*H*-pyrrolo[3,4-*c*]isoquinoline-1,3(2*H*)-dione (9) The general procedure **B** was followed using **3f** (48.0 mg, 0.15 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 4:1) yielded **9** (36.2 mg, 77%; without TEMPO: 33.8 mg, 72%) as a yellow solid. M. p. = 230 – 232 °C. ¹H-NMR (CDCl₃, 400 MHz): δ = 7.92 (d, *J* = 2.6 Hz, 1H), 7.64 (d, *J* = 9.3 Hz, 1H), 7.13 (dd, *J* = 9.3, 2.6 Hz, 1H), 5.73 (s, 1H), 3.97 (s, 3H), 3.16 (s, 3H), 1.63 (s, 9H). ¹³C-NMR (CDCl₃, 100 MHz): δ = 169.8, 168.5, 162.2, 159.2, 149.4, 133.9, 123.8, 119.4, 113.1, 109.6, 103.3, 55.7, 53.4, 29.1, 23.4. IR (ATR): 3426, 2920, 1704, 1538, 1433, 1229 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₁₇H₂₀N₃O₃ 314.1505; found 314.1506.

5-(*tert*-Butylamino)-6-fluoro-2-methyl-1*H*-pyrrolo[3,4-*c*]isoquinoline-1,3(2*H*)-dione (10) The general procedure **B** was followed using **3g** (45.0 mg, 0.15 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 5:1) yielded **10** (31.6 mg, 70%; without TEMPO: 11 mg, 24%;) as a yellow solid. M. p. = 196 – 198 °C. ¹H-NMR (CDCl₃, 400 MHz): $\delta = 8.40$ (d, J = 8.1 Hz, 1H), 7.65 (td, J = 8.1, 5.5 Hz, 1H), 7.19 (dd, J = 14.7, 8.0 Hz, 1H), 7.09 (s, 1H), 3.16 (s, 3H), 1.63 (s, 9H). ¹³C-NMR (CDCl₃, 100 MHz): $\delta = 169.1$, 168.0, 160.1 (d, ^{*1*}*J*_{C-F} = 248.7 Hz), 158.5 (d, ³*J*_{C-F} = 6.0 Hz), 149.8, 134.2 (d, ³*J*_{C-F} = 2.5 Hz), 132.6 (d, ³*J*_{C-F} = 10.9 Hz), 120.7 (d, ³*J*_{C-F} = 4.1 Hz), 113.2 (d, ²*J*_{C-F} = 25.6 Hz), 108.9 (d, ³*J*_{C-F} = 8.9 Hz), 108.4 (d, ³*J*_{C-F} = 3.5 Hz), 53.8, 28.9, 23.5. ¹⁹F-NMR (CDCl₃, 376 MHz): $\delta = -111.17$ (s). IR (ATR): 2918, 1698, 1540, 1497, 1448 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₁₆H₁₇FN₃O₂ 302.1305; found 302.1309.

5-(*tert*-Butylamino)-2,6-dimethyl-1*H*-pyrrolo[3,4-*c*]isoquinoline-1,3(2*H*)-dione (11)

The general procedure **B** was followed using **3h** (45.0 mg, 0.15 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 10:1) yielded **11** (24 mg, 54%; without TEMPO: 14.3 mg, 32%) as a yellow solid. M. p. = 204 – 206 °C. ¹H-NMR (CDCl₃, 400 MHz): $\delta = 8.51$ (d, J = 7.7 Hz, 1H), 7.55 (t, J = 7.7 Hz, 1H), 7.30 (d, J = 7.7 Hz, 1H), 6.31 (s, 1H), 3.15 (s, 3H), 2.91 (s, 3H), 1.64 (s, 9H). ¹³C-NMR (CDCl₃, 100 MHz): $\delta = 169.5$, 168.4, 160.8, 148.3, 133.7, 133.6, 131.6, 131.2, 122.8, 119.5, 109.8, 54.0, 29.0, 24.9, 23.4. IR (ATR): 3453, 2918, 1674, 1531, 1363, cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₁₇H₂₀N₃O₂ 298.1556; found 298.1563.

5-(*tert*-Butylamino)-2-methyl-7-(trifluoromethyl)-1*H*-pyrrolo[3,4-*c*]isoquinoline-1,3(2*H*)dione (12)

The general procedure **B** was followed using **3i** (53.0 mg, 0.15 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 5:1) yielded **12** (37.4 mg, 71%; 29 mg, 55%) as a yellow solid. M. p. = 233 – 235 °C. ¹H-NMR (CDCl₃, 400 MHz): δ = 8.75 (d, *J* = 8.6 Hz, 1H), 7.98 (s, 1H), 7.94 (d, *J* = 8.6 Hz, 1H), 5.94 (s, 1H), 3.19 (s, 3H), 1.68 (s, 9H). ¹³C-NMR (CDCl₃, 100 MHz): δ = 168.8, 167.8, 159.5, 150.4, 133.7, 129.3 (q, ²*J*_{C-F} = 32.8 Hz), 127.8 (q, ³*J*_{C-F} = 3.2 Hz), 125.9, 123.7 (q, ^{*1*}*J*_{C-F} = 272.7 Hz), 119.7 (q, ³*J*_{C-F} = 4.1 Hz), 117.8, 109.5, 54.1, 28.9, 23.6. ¹⁹F-NMR (CDCl₃, 376 MHz): δ = -62.37 (s). IR (ATR): 3393, 2921, 1705, 1543,

1434, 1298, 1121 cm⁻¹. HRMS (ESI) m/z: $[M+H^+]$ calcd for $C_{17}H_{17}F_3N_3O_2$ 352.1273; found 352.1279.

5-(*tert*-Butylamino)-2-methyl-1*H*-[1,3]dioxolo[4,5-*g*]pyrrolo[3,4-*c*]isoquinoline-1,3(2*H*)dione (13)

The general procedure **B** was followed using **4j** (49.4 mg, 0.15 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 3:1) yielded **13** (32.9 mg, 67%; without TEMPO: 21.6 mg, 44%) as a yellow solid. M. p. = 267 – 269 °C. ¹H-NMR (CDCl₃, 400 MHz): δ = 7.97 (s, 1H), 7.01 (s, 1H), 6.12 (s, 2H), 5.37 (s, 1H), 3.14 (s, 3H), 1.62 (s, 9H). ¹³C-NMR (CDCl₃, 100 MHz): δ = 169.6, 168.6, 158.4, 151.8, 149.1, 129.6, 114.8, 110.7, 102.2, 101.9, 99.5, 53.3, 29.7, 29.2, 23.4. IR (ATR): 3433, 2920, 1694, 1511, 1363, 1245 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₁₇H₁₈N₃O₄ 328.1297; found 328.1303.

5-(*tert*-Butylamino)-2,9-dimethyl-1*H*-pyrrolo[3,4-*c*]isoquinoline-1,3(2*H*)-dione (14) & 5-(*tert*-butylamino)-2,7-dimethyl-1*H*-pyrrolo[3,4-*c*]isoquinoline-1,3(2*H*)-dione (14')

The general procedure **B** was followed using **3k** (45.0 mg, 0.15 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 5:2) yielded mixture products **14 & 14'** (4:5) (28.5 mg, 64%; without TEMPO: 22 mg, 49%) as a yellow solid. ¹H-NMR (CDCl₃, 400 MHz): $\delta = 8.49$ (d, J = 8.4 Hz, 1.4 H), 7.62 -7.53 (m , 3.4 H), 7.50 (s, 1.4 H), 7.48 – 7.42 (m, 1H), 5.90 (s, 1H), 5.81 (s, 1.4 H), 3.17 (s, 3H), 3.15 (s, 4.2 H), 3.00 (s, 3H), 2.54 (s, 4.2H), 1.65 (s, 21.7H). ¹³C-NMR (CDCl₃, 100 MHz): δ = 169.6, 168.8, 168.7, 167.9, 159.8, 158.8, 149.9, 147.7, 138.1, 136.5, 134.3, 133.7, 132.4, 129.5, 127.6, 124.6, 121.4, 119.8, 119.7, 118.9, 110.8, 110.4, 53.5, 53.3, 29.0, 29.0, 25.0, 23.8, 23.4, 22.1. IR (ATR): 3338, 2920, 1684, 1523, 1355, 1206 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₁₇H₂₀N₃O₂ 298.1556; found 298.1557.

5-(*tert*-Butylamino)-9-fluoro-2-methyl-1*H*-pyrrolo[3,4-*c*]isoquinoline-1,3(2*H*)-dione (15) The general procedure **B** was followed using **31** (45.5 mg, 0.15 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 3:1) yielded **15** (19.9 mg, without TEMPO: 12.2 mg) & **15'** (15.6 mg, without TEMPO: 10.8 mg) as yellow solids, respectively. M. p. = 253 – 256 °C. ¹H-NMR (CDCl₃, 400 MHz): δ = 8.66 (dd, *J* = 9.0, 5.8 Hz, 1H), 7.53 (td, *J* = 9.0, 2.4 Hz, 1H), 7.38 (dd, *J* = 9.0, 2.3 Hz, 1H), 5.65 (s, 1H), 3.17 (s, 3H), 1.65 (s, 9H). ¹³C-NMR (CDCl₃, 100 MHz): δ =169.2, 168.3, 161.7 (d, ^{*i*}*J*_{C-F} = 250.9 Hz), 158.6, 147.8 (d, ³*J*_{C-F} = 2.3 Hz), 128.4, 127.6 (d, ³*J*_{C-F} = 8.5 Hz), 121.4 (d, ²*J*_{C-F} = 23.6 Hz), 120.0 (d, ³*J*_{C-F} = 7.3 Hz), 110.3, 107.2 (d, ²*J*_{C-F} = 22.7 Hz), 53.67, 28.92, 23.47. ¹⁹F-NMR (CDCl₃, 376 MHz): δ = -109.11 (s). IR (ATR): 3491, 2919, 1698, 1522, 1362, 1207 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₁₆H₁₇FN₃O₂ 302.1305; found 302.1308.

5-(*tert*-Butylamino)-7-fluoro-2-methyl-1*H*-pyrrolo[3,4-*c*]isoquinoline-1,3(2*H*)-dione (15') M. p. = 265 – 267 °C. ¹H-NMR (CDCl₃, 400 MHz): δ = 7.55 (dd, *J* = 5.5, 3.2 Hz, 2H), 7.51 – 7.43 (m, 1H), 5.91 (s, 1H), 3.20 (s, 3H), 1.66 (s, 9H). ¹³C-NMR (CDCl₃, 100 MHz): δ = 167.6, 166.6, 158.7, 158.3 (d, ^{*1*}*J*_{C-F} = 260.1 Hz), 150.0, 128.32 (d, ³*J*_{C-F} = 7.5 Hz), 121.81 (d, ²*J*_{C-F} = 22.2 Hz), 120.62 (d, ³*J*_{C-F} = 6.7 Hz), 117.91 (d, ³*J*_{C-F} = 4.2 Hz), 117.45 (d, ²*J*_{C-F} = 20.4 Hz), 108.14 (d, ³*J*_{C-F} = 6.0 Hz), 53.8, 28.9, 23.8. ¹⁹F-NMR (CDCl₃, 376 MHz): δ = -102.84 (s). IR (ATR): 3483, 2918, 1698, 1498, 1362, 1206 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for $C_{16}H_{17}FN_3O_2$ 302.1305; found 302.1311.

5-(*tert*-Butylamino)-8-chloro-2-ethyl-1*H*-pyrrolo[3,4-*c*]isoquinoline-1,3(2*H*)-dione (16) The general procedure **B** was followed using **3m** (50.0 mg, 0.15 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 5:1) yielded **16** (42 mg, 85%; without TEMPO: 34 mg, 68%) as a yellow solid. M. p. = 204 – 206 °C. ¹H-NMR (CDCl₃, 400 MHz): δ = 8.59 (d, *J* = 2.0 Hz, 1H), 7.70 (d, *J* = 9.0 Hz, 1H), 7.48 (dd, *J* = 9.0, 2.0 Hz, 1H), 5.89 (s, 1H), 3.73 (q, *J* = 7.2 Hz, 2H), 1.64 (s, 9H), 1.28 (t, *J* = 7.2 Hz, 3H). ¹³C-NMR (CDCl₃, 100 MHz): δ = 168.8, 167.8, 159.3, 149.5, 138.6, 132.6, 128.4, 123.9, 123.8, 116.9, 109.1, 53.7, 32.5, 28.9, 14.2. IR (ATR): 3407, 2973, 1701, 1537, 1434, 1206 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₁₇H₁₉ClN₃O₂ 332.1166; found 332.1170.

5-(*tert*-Butylamino)-8-chloro-2-cyclohexyl-1*H*-pyrrolo[3,4-*c*]isoquinoline-1,3(2*H*)-dione (17)

The general procedure **B** was followed using **3n** (58.0 mg, 0.15 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 7:1) yielded **17** (41 mg, 71%; without TEMPO: 34 mg, 59%) as a yellow solid. M. p. = 240 – 242 °C. ¹H-NMR (CDCl₃, 400 MHz): δ = 8.61 (d, *J* = 2.1 Hz, 1H), 7.68 (d, *J* = 9.0 Hz, 1H), 7.48 (dd, *J* = 9.0, 2.1 Hz, 1H), 5.83 (s, 1H), 4.10 (tt, *J* = 12.4, 3.5 Hz, 1H), 2.21 (td, *J* = 12.4, 3.5 Hz, 2H), 1.87 (d, *J* = 13.3 Hz, 2H), 1.75 (d, *J* = 10.9 Hz, 2H), 1.64 (s, 9H), 1.45 – 1.17 (m, 4H). ¹³C-NMR (CDCl₃, 100 MHz): δ = 169.1, 168.0, 159.2, 149.1, 138.6, 132.6, 128.3, 123.9, 123.7, 117.0, 108.8, 53.7, 50.5, 30.2, 28.9, 26.1, 25.3. ¹³C-NMR (CDCl₃, 100 MHz): δ = 169.08, 167.95, 159.24, 149.10, 138.55, 132.65, 128.27, 123.92, 123.70, 116.98, 108.83, 53.72, 50.45, 30.21, 28.96, 26.14, 25.27. IR (ATR): 2919, 1700, 1507, 1363, 1176 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₂₁H₂₅ClN₃O₂ 386.1635; found 386.1632.

2-Benzyl-5-(*tert*-butylamino)-8-chloro-1*H*-pyrrolo[3,4-*c*]isoquinoline-1,3(2*H*)-dione (18) The general procedure **B** was followed using **3o** (59.0 mg, 0.15 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 7:1) yielded **18** (48.3 mg, 82%; without TEMPO: 36 mg, 61%) as a yellow solid. M. p. = 228 - 230 °C. ¹H-NMR (CDCl₃, 400 MHz): $\delta = 8.58$ (d, J = 2.0 Hz, 1H), 7.63 (d, J = 9.0 Hz, 1H), 7.46 (dd, J = 9.0, 2.0 Hz, 3H), 7.31 (t, J= 7.5 Hz, 2H), 7.24 (d, J = 7.5 Hz, 1H), 5.83 (s, 1H), 4.84 (s, 2H), 1.63 (s, 9H). ¹³C-NMR (CDCl₃, 100 MHz): $\delta = 168.5$, 167.6, 159.2, 149.4, 138.7, 136.9, 132.6, 128.6, 128.6, 128.4, 127.7, 124.0, 123.7, 116.9, 109.1, 53.8, 41.2, 28.9. IR (ATR): 2972, 1704, 1539, 1392, 1208 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₂₂H₂₁ClN₃O₂ 394.1322; found 394.1324.

The general procedure **B** was followed using **3p** (57.0 mg, 0.15 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 3:1) yielded **19** (45.6 mg, 81%; without TEMPO: 30 mg, 53%) as a yellow solid. M. p. = 222 – 225 °C. ¹H-NMR (CDCl₃, 400 MHz): $\delta = 8.37$ (d, J = 2.0 Hz, 1H), 7.72 (d, J = 9.0 Hz, 1H), 7.46 (dd, J = 9.0, 2.0 Hz, 1H), 6.08 (s, 1H), 4.45 (s, 2H), 3.81 (s, 3H), 1.61 (s, 9H). ¹³C-NMR (CDCl₃, 100 MHz): δ = 168.6, 167.7, 167.1, 159.4, 149.3, 138.7, 132.3, 128.7, 123.9, 123.7, 116.8, 109.0, 54.00 52.7, 38.4, 28.9. IR (ATR): 3416, 2919, 1706, 1539, 1435, 1206 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₁₈H₁₉ClN₃O₄ 376.1064; found 376.1067.

Methyl 2-[5-(tert-butylamino)-8-chloro-1,3-dioxo-1,3-dihydro-2H-pyrrolo[3,4-

c]isoquinolin-2-yl]propanoate (20)

The general procedure **B** was followed using **3q** (58.5 mg, 0.15 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 3:1) yielded **20** (43.8 mg, 75%; without TEMPO: 31.5 mg, 54%) as a yellow solid. M. p. = 292 – 294 °C. ¹H-NMR (CDCl₃, 400 MHz): $\delta = 8.48$ (d, J = 2.0 Hz, 1H), 7.71 (d, J = 9.0 Hz, 1H), 7.48 (dd, J = 9.0, 2.0 Hz, 1H), 5.97 (s, 1H), 4.98 (q, J = 7.3 Hz, 1H), 3.77 (s, 3H), 1.72 (d, J = 7.3 Hz, 3H), 1.63 (s, 9H). ¹³C-NMR (CDCl₃, 100 MHz): $\delta = 170.8$, 167.9, 167.0, 159.4, 149.2, 138.7, 132.4, 128.6, 123.9, 123.8, 117.0, 109.0, 53.9, 52.7, 47.1, 28.9, 15.5. IR (ATR): 3430, 2918, 1694, 1551, 1333, 1271 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₁₉H₂₁ClN₃O₄ 390.1221; found 390.1227.

Methyl 2-[5-(*tert*-butylamino)-8-chloro-1,3-dioxo-1,3-dihydro-2*H*-pyrrolo[3,4*c*]isoquinolin-2-yl]-2-methylpropanoate (21)

The general procedure **B** was followed using 3r (61.0 mg, 0.15 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 3:1) yielded **21** (49 mg, 81%; without TEMPO:

40.5 mg, 67%) as a yellow solid. M. p. = $192 - 194 \,^{\circ}$ C. ¹H-NMR (CDCl₃, 400 MHz): $\delta = 8.52$ (d, $J = 2.0 \,\text{Hz}$, 1H), 7.70 (d, $J = 9.0 \,\text{Hz}$, 1H), 7.48 (dd, $J = 9.0, 2.0 \,\text{Hz}$, 1H), 5.92 (s, 1H), 3.79 (s, 3H), 1.85 (s, 6H), 1.63 (s, 9H). ¹³C-NMR (CDCl₃, 100 MHz): $\delta = 173.8$, 168.9, 167.7, 159.4, 148.9, 138.7, 132.4, 128.5, 123.9, 123.8, 117.1, 108.5, 59.9, 53.8, 52.7, 28.9, 24.7. IR (ATR): 3429, 2921, 1698, 1542, 1334, 1267, 1149 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₂₀H₂₃ClN₃O₄ 404.1377; found 404.1381.

The general procedure **B** was followed using **3s** (59.0 mg, 0.15 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 3:1) yielded **21** (42.6 mg, 73%; without TEMPO: 36 mg, 62%) as a yellow solid. M. p. = 292 – 294 °C. ¹H-NMR (CDCl₃, 400 MHz): $\delta = 8.52$ (d, J = 2.0 Hz, 1H), 7.69 (d, J = 9.0 Hz, 1H), 7.49 (dd, J = 9.0, 2.0 Hz, 1H), 5.93 (s, 1H), 4.98 (q, J = 7.3 Hz, 1H), 3.77 (s, 3H), 1.72 (d, J = 7.3 Hz, 3H), 1.64 (s, 9H). ¹³C-NMR (CDCl₃, 100 MHz): $\delta = 170.7$, 167.9, 167.0, 159.3, 149.2, 138.7, 132.5, 128.6, 123.9, 123.7, 117.0, 109.0, 53.9, 52.7, 47.1, 28.9, 15.5. IR (ATR): 3430, 2918, 1694, 1551, 1333, 1271 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₁₉H₂₁ClN₃O₄ 390.1221; found 390.1228.

Methyl (*S*)-2-[5-(*tert*-butylamino)-8-chloro-1,3-dioxo-1,3-dihydro-2*H*-pyrrolo[3,4*c*]isoquinolin-2-yl]-3-methylbutanoate (23) The general procedure **B** was followed using **3t** (63.0 mg, 0.15 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 3:1) yielded **23** (48.8 mg, 78%; without TEMPO: 39 mg, 62%) as a yellow solid. M. p. = $175 - 177 \,^{\circ}$ C. ¹H-NMR (CDCl₃, 400 MHz): $\delta = 8.57$ (d, $J = 2.2 \,\text{Hz}$, 1H), 7.70 (d, $J = 9.0 \,\text{Hz}$, 1H), 7.49 (dd, $J = 9.0, 2.2 \,\text{Hz}$, 1H), 5.94 (s, 1H), 4.66 (d, $J = 8.2 \,\text{Hz}$, 1H), 3.73 (s, 3H), 2.65 – 2.47 (m, 1H), 1.65 (s, 9H), 1.13 (d, $J = 7.0 \,\text{Hz}$, 3H), 0.90 (d, $J = 7.0 \,\text{Hz}$, 3H). ¹³C-NMR (CDCl₃, 100 MHz): $\delta = 169.8, 168.2, 167.3, 159.4, 149.0, 138.7, 132.5, 128.6, 124.1, 123.7, 117.1, 108.9, 56.7, 53.9, 52.3, 34.7, 29.0, 25.9, 16.9. IR (ATR): 3467, 2901, 1704, 1540, 1436, 1248 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd$ for C₂₁H₂₅ClN₃O₄ 418.1534; found 418.1531.

Methyl (*S*)-2-[5-(*tert*-butylamino)-8-chloro-1,3-dioxo-1,3-dihydro-2*H*-pyrrolo[3,4*c*]isoquinolin-2-yl]-3,3-dimethylbutanoate (24)

The general procedure **B** was followed using **3u** (65.0 mg, 0.15 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 4:1) yielded **24** (56.2 mg, 87%; without TEMPO: 48 mg, 74%) as a yellow solid. M. p. = 93 – 95 °C. ¹H-NMR (CDCl₃, 400 MHz): δ = 8.59 (d, *J* = 2.1 Hz, 1H), 7.71 (d, *J* = 9.0 Hz, 1H), 7.49 (dd, *J* = 9.0, 2.1 Hz, 1H), 5.94 (s, 1H), 4.63 (s, 1H), 3.68 (s, 3H), 1.65 (s, 9H), 1.20 (s, 9H). ¹³C-NMR (CDCl₃, 100 MHz): δ = 168.7, 168.4, 167.6, 159.5, 149.0, 138.7, 132.6, 128.6, 124.1, 123.7, 117.1, 108.9, 59.4, 53.9, 51.9, 35.7, 28.9, 27.9. IR (ATR): 3447, 2966, 1699, 1540, 1339, 1207 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₂₂H₂₇ClN₃O₄ 432.1690; found 432.1694.

Methyl (*S*)-3-(*tert*-butoxy)-2-[5-(*tert*-butylamino)-8-chloro-1,3-dioxo-1,3-dihydro-2*H*pyrrolo[3,4-*c*]isoquinolin-2-yl]propanoate (25)

The general procedure **B** was followed using **3v** (69.5 mg, 0.15 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 2:1) yielded **25** (57 mg, 82%; without TEMPO: 42 mg, 61%) as a yellow solid. M. p. = 173 – 175 °C. ¹H-NMR (CDCl₃, 400 MHz): δ = 8.52 (d, *J* = 2.1 Hz, 1H), 7.71 (d, *J* = 9.0 Hz, 1H), 7.47 (dd, *J* = 9.0, 2.1 Hz, 1H), 5.95 (s, 1H), 5.04 (dd, *J* = 8.4, 6.5 Hz, 1H), 4.10 (s, 1H), 4.08 (d, *J* = 1.9 Hz, 1H), 3.77 (s, 3H), 1.64 (s, 9H), 1.14 (s, 9H). ¹³C-NMR (CDCl₃, 100 MHz): δ = 168.9, 168.0, 167.1, 159.4, 149.1, 138.6, 132.5, 128.5, 123.9, 123.8, 117.0, 109.0, 73.7, 59.2, 53.6, 52.7, 52.6, 28.9, 27.5.IR (ATR): 3412, 2920, 1705, 1539, 1392, 1208 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₂₃H₂₉ClN₃O₅ 462.1796; found 462.1794.

Methyl (*S*)-2-[5-(*tert*-butylamino)-8-chloro-1,3-dioxo-1,3-dihydro-2*H*-pyrrolo[3,4*c*]isoquinolin-2-yl]-4-methylpentanoate (26)

The general procedure **B** was followed using **3w** (65.0 mg, 0.15 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 3:1) yielded **26** (51 mg, 79%; without TEMPO: 36 mg, 56%) as a yellow solid. M. p. = 97 – 99 °C. ¹H-NMR (CDCl₃, 400 MHz): δ = 8.50 (d, J = 2.1 Hz, 1H), 7.71 (d, J = 9.0 Hz, 1H), 7.47 (dd, J = 9.0, 2.1 Hz, 1H), 5.98 (s, 1H), 4.95 (dd,
J = 11.7, 4.3 Hz, 1H), 3.76 (s, 3H), 2.37 (ddd, J = 14.3, 11.7, 4.3 Hz, 1H), 1.96 (ddd, J = 14.3, 11.7, 4.3 Hz, 1H), 1.63 (s, 9H), 1.53 (dd, J = 6.7, 2.7 Hz, 1H), 0.97 (d, J = 6.7 Hz, 3H), 0.94 (d, J = 6.7 Hz, 3H). ¹³C-NMR (CDCl₃, 100 MHz): $\delta = 170.9, 168.2, 167.3, 159.4, 149.1, 138.7, 132.4, 128.6, 123.9, 123.8, 117.0, 108.9, 53.9, 52.6, 50.3, 37.5, 28.9, 25.1, 23.2, 21.0. IR (ATR): 3411, 2958, 1707, 1539, 1435, 1207 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₂₂H₂₇ClN₃O₄432.1690; found 432.1697.$

The general procedure **B** was followed using **3x** (65.0 mg, 0.15 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 3:1) yielded **27** (52.4 mg, 81%; without TEMPO: 41 mg, 63%) as a yellow solid. M. p. = 116 – 118 °C. ¹H-NMR (CDCl₃, 400 MHz): $\delta = 8.55$ (d, J = 1.8 Hz, 1H), 7.71 (d, J = 9.0 Hz, 1H), 7.48 (dd, J = 9.0, 1.8 Hz, 1H), 5.97 (s, 1H), 4.66 (d, J = 8.2 Hz, 1H), 3.73 (s, 3H), 2.65 – 2.47 (m, 1H), 1.64 (s, 9H), 1.62 – 1.51 (m, 2H), 1.13 (d, J = 7.0 Hz, 3H), 0.90 (d, J = 7.0 Hz, 3H). ¹³C-NMR (CDCl₃, 100 MHz): $\delta =$ 169.9, 168.2, 167.3, 159.5, 149.0, 138.7, 132.5, 128.6, 124.0, 123.8, 117.1, 108.9, 56.7, 53.9, 52.3, 34.7, 28.9, 25.9, 16.8, 11.0. IR (ATR): 3420, 2968, 1706, 1540, 1373, 1207 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₂₂H₂₇ClN₃O₄ 432.1690; found 432.1694.

The general procedure **B** was followed using **3y** (81.0 mg, 0.15 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 2:1) yielded **28** (59 mg, 73%; without TEMPO: 41 mg, 50%) as a yellow solid. M. p. = 114 – 116 °C. ¹H-NMR (CDCl₃, 400 MHz): δ = 8.43 (d, *J* = 2.2 Hz, 1H), 7.64 (d, *J* = 9.0 Hz, 1H), 7.44 (dd, *J* = 9.0, 2.2 Hz, 1H), 7.08 (d, *J* = 8.4 Hz, 2H), 6.80 (d, *J* = 8.4 Hz, 2H), 5.88 (s, 1H), 5.11 (dd, *J* = 10.8, 5.8 Hz, 1H), 3.79 (s, 3H), 3.59 – 3.46 (m, 2H), 1.60 (s, 9H), 1.20 (s, 9H). ¹³C-NMR (CDCl₃, 100 MHz): δ = 169.9, 167.8, 166.9, 159.3, 154.0, 148.8, 138.6, 132.4, 131.9, 129.4, 128.5, 124.3, 123.9, 123.7, 116.9, 108.7, 78.2, 53.8, 52.9, 52.7, 34.2, 28.9, 28.7. IR (ATR): 3407, 2923, 1705, 1540, 1435, 1206 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₂₉H₃₃ClN₃O₅ 538.2109; found 538.2116.

Methyl (*S*)-2-[5-(*tert*-butylamino)-8-chloro-1,3-dioxo-1,3-dihydro-2*H*-pyrrolo[3,4*c*]isoquinolin-2-yl]-3-phenylpropanoate (29)

The general procedure **B** was followed using 3z (70.0 mg, 0.15 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 4:1) yielded **29** (51.6 mg, 74%; without

TEMPO: 36 mg, 52%) as a yellow solid. M. p. = 183 – 185 °C. ¹H-NMR (CDCl₃, 400 MHz): $\delta = 8.46$ (d, J = 1.1 Hz, 1H), 7.63 (d, J = 9.0 Hz, 1H), 7.44 (dd, J = 9.0, 1.4 Hz, 1H), 7.26 (s, 1H), 7.22 (s, 1H), 7.22 –7.18 (m, 2H), 7.17 –7.10(m, 1H), 5.88 (s, 1H), 5.17 (dd, J = 10.4, 5.9 Hz, 1H), 3.79 (s, 3H), 3.65 – 3.44 (m, 2H), 1.61 (s, 9H). ¹³C-NMR (CDCl₃, 100 MHz): $\delta =$ 169.9, 167.9, 167.1, 159.3, 149.0, 138.6, 137.1, 132.5, 129.0, 128.9, 128.6, 126.7, 124.0, 123.7, 117.0, 108.9, 53.9, 52.9, 52.8, 34.9, 28.9. IR (ATR): 3427, 2918, 1702, 1541, 1363, 1208 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₂₅H₂₅ClN₃O₄ 466.1534; found 466.1538.

(S)-5-(Tert-butylamino)-8-chloro-2-(1-phenylethyl)-1H-pyrrolo[3,4-c]isoquinoline-

1,3(2*H*)-dione (30)

The general procedure **B** was followed using **3aa** (61.5 mg, 0.15 mmol) for 12 h. Purification by column chromatography (*n*-hexane/EtOAc 5:1) yielded **30** (57 mg, 93%; without TEMPO: 43.5 mg, 70%) as a yellow solid. M. p. = 181 – 183 °C. ¹H-NMR (CDCl₃, 400 MHz): δ = 8.60 (d, *J* = 2.1 Hz, 1H), 7.63 (d, *J* = 9.0 Hz, 1H), 7.54 (d, *J* = 7.5 Hz, 2H), 7.47 (dd, *J* = 9.0, 2.1 Hz, 1H), 7.33 (t, *J* = 7.5 Hz, 2H), 7.25 – 7.18 (m, 1H), 5.80 (s, 1H), 5.56 (q, *J* = 7.3 Hz, 1H), 1.94 (d, *J* = 7.3 Hz, 3H), 1.63 (s, 9H). ¹³C-NMR (CDCl₃, 100 MHz): δ = 168.7, 167.7, 159.2, 149.1, 149.0, 140.8, 138.6, 132.6, 128.4, 128.4, 127.5, 124.0, 123.6, 117.0, 108.9, 53.8, 49.2, 29.0, 17.7. IR (ATR): 3417, 2973, 1697, 1533, 1337, 1222 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₂₃H₂₃ClN₃O₂ 408.1479; found 408.1482.

5-(*Tert*-butylamino)-8-chloro-2-methyl-3a,9b-dihydro-1*H*-pyrrolo[3,4-*c*]isoquinoline-1,3(2*H*)-dione (31)

A suspension of **3a** (48.0 mg, 0.15 mmol) with Trifluoroacetic acid (35.0 mg, 0.30 mmol) in HFIP (1,1,1,3,3,3-hexafluoro-2-propanol) (3.0 mL) was stirred at 23 °C for 12 h with visible light (20 W). The solvent was diluted with EtOAc and washed with NaHCO₃ (2 x 10mL), The combined organic layers were concentrated in vacuum and the remaining residue was purified by column chromatography (*n*-hexane/EtOAc 3:1) yielded **31** (42 mg, 88%) as a white solid. M. p. = 135 - 137 °C. ¹H-NMR (CDCl₃, 400 MHz): δ = 7.65 (s, 1H), 7.38 - 7.28 (m, 2H), 4.92 (d, *J* = 8.7 Hz, 1H), 4.64 (s, 1H), 3.90 (d, *J* = 8.7 Hz, 1H), 3.02 (s, 3H), 1.45 (s, 9H). ¹³C-NMR (CDCl₃, 100 MHz): δ = 177.0, 175.8, 150.1, 136.8, 131.7, 130.2, 128.3, 123.6, 122.5, 58.1, 51.8, 39.9, 28.8, 25.1. IR (ATR): 3404, 2929, 1698, 1530, 1431, 1271, 1117 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₁₆H₁₉ClN₃O₂ 320.1166; found 320.1172.

5-(*Tert*-butylamino)-2,8-dimethyl-3a,9b-dihydro-1*H*-pyrrolo[3,4-*c*]isoquinoline-1,3(2*H*)dione (32)

A suspension of **3e** (45.0 mg, 0.15 mmol) with Trifluoroacetic acid (35.0 mg, 0.30 mmol) in HFIP (3.0 mL) was stirred at 23 °C for 12 h with visible light (20 W). The solvent was diluted with EtOAc and washed with NaHCO₃ (2 x 10mL), The combined organic layers were concentrated in vacuum and the remaining residue was purified by column chromatography (*n*-hexane/EtOAc 3:1) yielded **32** (21 mg, 47%) as a white solid. M. p. = 130 – 133 °C. ¹H-NMR (CDCl₃, 400 MHz): δ = 7.45 (s, 1H), 7.25 (d, *J* = 8.0 Hz, 1H), 7.15 (d, *J* = 8.0 Hz, 1H), 4.90 (d, *J* = 8.7 Hz, 1H), 4.69 (s, 1H), 3.89 (d, *J* = 8.7 Hz, 1H), 3.00 (s, 3H), 2.41 (s, 3H), 1.45 (s, 9H). ¹³C-NMR (CDCl₃, 100 MHz): δ = 177.6, 176.6, 151.1, 141.3, 130.7, 129.7, 128.9, 122.2, 121.6, 58.2, 51.6, 40.3, 28.9, 25.1, 21.4. IR (ATR): 3398, 2924, 1698, 1533, 1449, 1266, 1115 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₁₇H₂₂N₃O₂ 300.1712; found 300.1715.

5-Amino-8-chloro-2-methyl-1*H*-pyrrolo[3,4-*c*]isoquinoline-1,3(2*H*)-dione (33)

A suspension of **4** (96.0 mg, 0.30 mmol) and TBDMSOTF (79.0 mg, 0.30 mmol) in DCM (10mL) was stirred at 23 °C for 12 h.^[3] Purification by column chromatography (*n*-hexane/EtOAc 1:2, 5% Et₃N) yielded **33** (72 mg, 92%) as a yellow solid. M. p. > 300 °C. ¹H-NMR (DMSO, 400 MHz): δ = 8.39 (s, 1H), 8.37 (s, 2H), 8.27 (d, *J* = 2.2 Hz, 1H), 7.68 (dd, *J* = 9.0, 2.2 Hz, 1H), 2.99 (s, 3H). ¹³C-NMR (DMSO, 100 MHz): δ = 168.8, 167.9, 163.1, 151.2, 138.3, 132.8, 128.2, 128.0, 122.0, 116.2, 108.4, 23.7. IR (ATR): 3344, 2973, 1689, 1521, 1362, 1205 cm⁻¹. HRMS (ESI) m/z: [M+H⁺] calcd for C₁₂H₉ClN₃O₂ 262.0383; found 262.0391.

8-[2-(1H-Pyrazol-1-yl)phenyl]-5-(tert-butylamino)-2-methyl-1H-pyrrolo[3,4-

c]isoquinoline-1,3(2*H*)-dione (35)

A suspension of **4** (48 mg, 0.15 mmol), *N*-phenylpyrazole (14.0 mg, 0.10 mmol) [RuCl₂(pcymene)]₂ (3.0 mg, 5 mmol %) and K₂CO₃ (28.0 mg, 0.20 mmol) in toluene (2 mL) was stirred at 120 °C for 12 h under an atmosphere of Ar. At ambient temperature, the solvent was evaporated *in vacuo* and the remaining residue was purified column chromatography (*n*hexane/EtOAc 4:1) yielded **35** (17 mg, 40%) as a yellow solid. ¹H-NMR (CDCl₃, 400 MHz): $\delta = 8.61$ (d, J = 1.8 Hz, 1H), 7.65 – 7.50 (m, 6H), 7.20 (d, J = 2.3 Hz, 1H), 7.03 (dd, J = 8.7, 1.8 Hz, 1H), 6.22 (t, J = 2.3 Hz, 1H), 5.81 (s, 1H), 3.17 (s, 3H), 1.63 (s, 9H). ¹³C-NMR (CDCl₃, 100 MHz): $\delta = 169.3$, 168.4, 159.1, 149.0, 142.7, 140.5, 138.7, 135.3, 131.9, 131.4, 131.3, 129.4, 128.7, 128.2, 126.8, 124.2, 121.8, 117.6, 110.1, 106.8, 53.6, 28.9, 23.5. IR (ATR): 3438, 2971, 1682, 1543, 1205 cm⁻¹. HRMS (ESI) m/z: $[M+H^+]$ calcd for $C_{25}H_{24}N_5O_2$ 426.1930; found 426.1937.

Optical Data

UV-VIS-NIR spectra were recorded using a Perkin-Elmer Lambda 1050 spectrometer equipped with a 150 mm integrating sphere and photomultiplier tube (PMT) and InGaAs detectors.

Steady-state photoluminescence (PL) measurements and time-correlated single **photon counting** (TCSPC) measurements were performed using a PicoQuant FluoTime 300 spectrometer equipped with a 378 nm picosecond diode laser (pulse power 0.99 nJ cm⁻², pulse rate 40 MHz). Quantum yields were measured with the same setup but equipped with an integrating sphere.

UV-Vis and PL spectroscopy

Figure S1: Normalized absorption and photoluminescence spectra of compound 4ba, 4ca, 4da, 4ea, 4fa and 4ja in solution (50 μ M in CHCl3).

Figure S2: Normalized absorption and photoluminescence spectra of compound **4aa**, **4ah**, **4ai**, **4ak**, **4ap** and **6** in solution (50 μM in CHCl3).

PL quantum yield

Table S3: We measured the photoluminescence quantum yield PLQY using a PicoQuant FluoTime
 300 spectrometer and the software *easytau*.

Compound	PLQY / %
4ap	69.54
4ah	66.62
4aa	66.06
4ai	65.5
4ak	64.87
4ba	59.52
4ca	47.87
4da	40.72
4ea	55.62
4fa	43.82
4ja	59.19
6	60.79

Time-correlated single photon counting

Figure S3: PL decay of compounds **4ba**, **4ca**, **4da**, **4ea**, **4fa** and **4ja** excited at 378 nm and measured at the corresponding maxima of the PL emissions. All samples were measured in solution (50 μ M in CHCl₃). Experimental decay is shown in dots and the corresponding mono-exponential fit of the decay as light cyan line.

Figure S4: PL decay of compounds **4aa**, **4ah**, **4ai**, **4ak**, **4ap** and **6** excited at 378 nm and measured at the corresponding maxima of the PL emissions. All samples were measured in solution (50 μ M in CHCl₃). Experimental decay is shown in dots and the corresponding mono-exponential fit of the decay as light cyan line.

	τ / ns	error / ns
4aa	25.52	±0.04
4ah	23.43	±0.04
4ai	23.96	±0.04
4ak	22.85	±0.06
4ap	25.88	±0.04
4ba	26.16	±0.04
4ca	23.99	±0.04
4da	26.44	±0.04
4ea	26.43	±0.04
4fa	27.83	±0.04
4ja	25.46	±0.04
6	32.20	±0.05

Table S4: PL decay times of compounds shown above. The given errors are uncertainties from the fit and hence do not reflect the real time-resolution of the setup. The latter is limited by the laser pulse duration of around 100 ps.

DFT Calculation

Complete Reference for Gaussian 09

Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, **2013**.

Computational Methods

All the DFT calculations were carried out with the GAUSSIAN 09 series of programs. DFT method B3-LYP^[4] with a standard 6–31G(d) basis set was used for geometry optimizations. Harmonic vibrational frequency calculations were performed for all of the stationary points to confirm them as local minima or transition structures, and to derive the thermochemical corrections for the enthalpies and free energies. The M06-2x functional in combination with the 6-311+G(d,p) basis set was used to calculate the solvation single point energies to give more accurate energy information. The solvent effects were considered by single-point calculations on the gas-phase stationary points with an SMD^[5] solvation model in the methanol solvent. In order to evaluate accurately the entropy of the multi-component system, the solution translational entropy correction has been calculated with the THERMO program developed by Fang et al., ^[6] which is based on the free volume that a solute molecule could move along three axes within the cavity. The TDDFT/B3LYP/6-31G(d) method was applied to optimize the geometry of the lowest singlet excited state.

The equation of thermal correction to Gibbs free energy with Fang's THERMO program:

 $G_{(corr-THERMO)} = E_{(elec-THERMO)} \cdot E_{(elec-B3LYP)}$ The equation of Gibbs free energy with Fang's THERMO program: $G_{(solv-M062x)} = E_{(solv-M062x)} + G_{(corr-THERMO)}$

Calculated free energy profiles for the competitive hydrogen shift pathways of dihydroisoquinoline derivative IM-3⁸.

The calculated competitive hydrogen shift pathways of dihydroisoquinoline derivative **IM-3^s** are shown in Figure S5. The calculated relative free energy of intramolecular 1,5-hydrogen shift via transition state **ts-14^s** is 31.1 kcal/mol, which is 4.4 kcal/mol higher than that of the arylamidine reactant **IM-1** and TFA assisted deprotonation process via transition state **ts-4^s**. Therefore, the intramolecular 1,5-hydrogen shift pathway is unfavorable.

Figure S5. Calculated free energy profiles for the competitive hydrogen shift pathways of dihydroisoquinoline derivative **IM-3**^S. The values given in kcal/mol are the relative free energies calculated by the M06-2x/6-311+G(d,p)//B3LYP/6-31G(d) method in Methanol solvent with the Fang's THERMO correction. The values in square brackets are the electronic energy calculated at B3LYP/6-31G(d) level of theory without the Fang's THERMO correction.

Figure S6: Possible hydrogen-bond adducts between TFA and intermediate IM-3^s.

Geometry	$E_{(\text{elec-B3LYP})}^{1}$	$E_{(\text{elec-THERMO})}^2$	$G_{(\text{corr-B3LYP})}^3$	$H_{(\text{corr-B3LYP})}^4$	$E_{(solv-M062x)}^5$	IF ⁶
IM-1	-1395.444497	-1395.16174	0.267064	0.343071	-1395.36408	-
1M-1*	-1395.371020	-	-	-	-	-
IM-1 ^T	-1395.371737	-1395.09207	0.264559	0.339368	-1395.290808	-
ts-2 ^T	-1395.359008	-1395.07801	0.26673	0.339781	-1395.277103	-373.20
IM-3 ^T	-1395.385393	-1395.10269	0.268409	0.341539	-1395.306226	-
MECP	-1395.385254	-	-	-	-	-
IM-3 ⁸	-1395.406029	-1395.12117	0.270037	0.342862	-1395.328086	-
IM-3 ^s · TFA	-1922.203156	-1921.88583	0.298911	0.391429	-1922.139968	-
IM-3 ^s ·TFA-1	-1922.195516	-1921.87917	0.296541	0.391485	-1922.137576	-
IM-3 ^s ·TFA-2	-1922.200238	-1921.87955	0.296231	0.391628	-1922.140179	-
IM-3 ^s ·TFA-3	-1922.18475	-1921.86541	0.294975	0.391033	-1922.126378	-
IM-3 ^s ·TFA-4	-1922.199546	-1921.87904	0.296589	0.391331	-1922.136831	-
ts-4 ^s	-3317.610926	-3316.99812	0.58836	0.729796	-3317.470463	-1690.52
ts-4 ^T	-3317.599255	-3316.98818	0.586776	0.729333	-3317.455601	-2020.31
IM-5 ⁸	-3317.683324	-3317.0655	0.590681	0.737601	-3317.559349	-
IM-5 ^T	-3317.671889	-3317.05826	0.585113	0.736715	-3317.52425	-
ts-6	-3317.667285	-3317.05254	0.589592	0.732332	-3317.537808	-302.60
IM-7	-1395.464661	-1395.17721	0.272904	0.344686	-1395.392829	-
ts-8	-3317.655109	-3317.04136	0.588029	0.731663	-3317.530184	-1139.10
IM-9	-1395.457172	-1395.16936	0.273993	0.344574	-1395.383707	-
ts-10 ⁸	-2790.805181	-2790.22554	0.558574	0.681569	-2790.656926	-1777.88
IM-11 ⁸	-2790.856645	-2790.2718	0.562971	0.688248	-2790.71645	-
ts-12	-1395.380252	-1395.0965	0.269174	0.341209	-1395.296954	-412.51
IM-13	-1395.393821	-1395.10873	0.270277	0.342898	-1395.316407	-
ts-14 ^s	-1395.341714	-1395.07132	0.265926	0.337636	-1395.264063	-1674.10
TFA	-526.775232	-526.75382	0.009672	0.045406	-526.797115	-

Absolute Calculation Energies, Enthalpies, and Free Energies

¹The electronic energy calculated by B3LYP in gas phase without the Fang's

THERMO correction. ² The electronic energy calculated by B3LYP in gas phase with the Fang's THERMO correction. ³The thermal correction to Gibbs free energy calculated by B3LYP in gas phase without the Fang's THERMO correction. ⁴The thermal correction to enthalpy calculated by B3LYP in gas phase without the Fang's THERMO correction. ⁵The electronic energy calculated by M06-2x in Methanol without the Fang's THERMO correction. ⁶The B3LYP calculated imaginary frequencies for the transition states.

B3LYP Geometries for All the Optimized Compounds and Transition State

IM-	1					
С	3.74473000 0.47501	-0.18592800	С	-1.44307100	0.77527400	0.23755100
С	2.75061300 0.92496200	-1.05735600	С	-2.41570300	1.56075300	-0.64028400
С	1.47358800 0.37691200	-0.97348200	Н	-0.32311100	1.39809800	2.02842400
С	1.18349900 -0.62241100	-0.03375400	0	-1.47234000	3.95360100	1.67792300
С	2.19901800 -1.06299300	0.82681800	0	-3.01611000	1.16540000	-1.62063900
С	3.47963200 -0.51437900	0.76006800	Ν	-2.46352800	2.83681400	-0.10742300
Н	2.97656400 1.69147000	-1.79061400	С	-3.25318000	3.92809100	-0.64105800
Н	0.69790400 0.71689900	-1.65237600	Н	-3.05948500	4.80312500	-0.01812500
Н	1.98235300 -1.82465600	1.57045000	Н	-2.97007600	4.14084500	-1.67696200
Н	4.26098400 -0.84637900	1.43513700	Н	-4.32014900	3.68462100	-0.61404700
Cl	5.35416400 1.16468800	-0.28432500				
С	-0.18910500 -1.22486300	0.02826000	IM-	1*		
Ν	-0.19951100 -2.58468100	0.07122200	С	-4.06110300	-0.98567500	-0.08133300
Н	0.67732600 -3.02471500	-0.17316800	С	-2.97602300	-1.59712700	-0.72700400
С	-1.38756500 -3.47929900	0.06358400	С	-1.73772200	-0.98650600	-0.72919300
С	-0.82844500 -4.91051300	0.12680200	С	-1.51748400	0.27688700	-0.08169200
Н	-0.23785500 -5.06625600	1.03748700	С	-2.66803300	0.88636200	0.52915500
Н	-1.64936900 -5.63376200	0.12784900	С	-3.90015200	0.26404300	0.53586000
Н	-0.19522400 -5.12983700	-0.74265800	Н	-3.11478600	-2.54941800	-1.22834800
С	-2.25849200 -3.21057500	1.30363700	Н	-0.91878700	-1.46882900	-1.24861000
Н	-1.67194500 -3.33106800	2.22140900	Н	-2.60004600	1.87343400	0.97730600
Н	-2.67155700 -2.20051800	1.28083100	Н	-4.75150700	0.74574100	1.00585000
Н	-3.08899600 -3.92486400	1.33124200	Cl	-5.62822900	-1.77367800	-0.06145000
С	-2.19846500 -3.28595600	-1.23288600	С	-0.24396300	0.87287000	-0.05493900
Н	-2.55778900 -2.25813700	-1.31924400	Ν	0.05213000	2.01666700	0.64953300
Н	-1.58310100 -3.51690300	-2.11039700	Н	-0.72392900	2.31597500	1.22552800
Н	-3.06171800 -3.96136900	-1.23694600	С	0.82453100	3.19171400	0.12103300
N	-1.29936800 -0.55507600	0.00024200	С	0.56357700	4.32888900	1.12284500
С	-1.61978200 2.93599800	1.02656000	Н	0.90052900	4.05140100	2.12826500
С	-1.00078600 1.60936900	1.21291500	Н	1.10326900	5.23074400	0.81924600

Н	-0.50348100	4.58250000	1.17029100
С	2.33321400	2.89246000	0.07957900
Н	2.67923000	2.51537900	1.04809300
Н	2.57785500	2.16188800	-0.69423800
Н	2.88199500	3.81417500	-0.14432700
С	0.31486400	3.58172400	-1.27838200
Н	0.46923000	2.76262900	-1.98701200
Н	-0.75385100	3.82372400	-1.25356300
Н	0.85486700	4.46093700	-1.64794100
Ν	0.84931400	0.34188600	-0.82142800
С	2.70437400	-2.04699900	1.18453100
С	1.57180200	-1.13463200	1.06672800
С	1.59705800	-0.51386800	-0.22680300
С	2.83436100	-1.07893600	-0.94243900
Н	0.84281700	-1.00092300	1.85029600
0	3.03292400	-2.75498600	2.12035700
0	3.25085800	-0.80977700	-2.04645700
Ν	3.40975200	-1.96894500	-0.04622000
С	4.61689000	-2.72403900	-0.32736500
Н	4.79964200	-3.38210500	0.52277300
Н	4.48596700	-3.31027600	-1.24107100
Н	5.46510500	-2.04660300	-0.46576000

IM-1^T

С	3.85659100	0.61043500	-0.15738700
С	2.83628700	1.14369400	-0.94773000
С	1.56799900	0.57302300	-0.90502200
С	1.29538400	-0.53440000	-0.07556300
С	2.34826000	-1.05412900	0.70562300
С	3.61858500	-0.48690400	0.67284500
Н	3.03700800	1.98968500	-1.59619200
Н	0.78757700	0.97082600	-1.54478400
Н	2.15835300	-1.88414500	1.37997600
Н	4.41532100	-0.88071000	1.29490100
Cl	5.45552400	1.32685200	-0.20620100
С	-0.03579600	-1.17375400	-0.08176000
N	-0.05095700	-2.53289200	0.05753500
Н	0.83912000	-2.99023800	-0.09054600
С	-1.22746100	-3.43909800	0.11202500
С	-0.65184200	-4.84400200	0.36073100
Н	-0.09761200	-4.88486500	1.30605900
Н	-1.46240500	-5.57684000	0.41108900
Н	0.01969300	-5.14917200	-0.45225600

Н	-1.59680100	-3.03357500	2.22564400
Н	-2.59361100	-2.06112800	1.11601900
Н	-2.96216100	-3.77550700	1.36663500
С	-1.99883800	-3.41485600	-1.22377900
Н	-2.41153800	-2.42261500	-1.41653600
Н	-1.34032300	-3.69285000	-2.05493900
Н	-2.82209300	-4.13762500	-1.18652500
Ν	-1.20342600	-0.55625000	-0.28946200
С	-1.62677000	2.95181600	0.71171500
С	-0.79470300	1.75905900	0.71478200
С	-1.50179900	0.69906300	-0.02494000
С	-2.79652300	1.26560300	-0.45375100
Н	0.14665100	1.69501900	1.23901000
0	-1.41539300	4.04935800	1.21874500
0	-3.71397300	0.74948800	-1.07662700
Ν	-2.79293000	2.60005800	-0.00071900
С	-3.89988500	3.50700000	-0.21823500
Н	-3.64231800	4.46045100	0.24507300
Н	-4.07475000	3.64184800	-1.29061800
Н	-4.81449500	3.10398700	0.22884700

ts-2^T

С	2.79017900	-2.12044100	0.16113900
С	2.50166900	-0.90913600	0.76123300
С	1.17053700	-0.41338200	0.74599500
С	0.11986700	-1.22768100	0.18444900
С	0.45925800	-2.45925700	-0.39012100
С	1.77687400	-2.91276500	-0.41186300
Н	3.28649700	-0.32667200	1.23072500
Н	-0.30815400	-3.05196100	-0.88003000
Н	2.02973500	-3.85715600	-0.88084200
Cl	4.44096200	-2.71122000	0.13406900
С	-1.23806000	-0.66752600	0.08908700
N	-2.28372700	-1.54534100	0.09322200
Н	-2.06939100	-2.46123800	0.46458300
С	-3.73213700	-1.23510100	-0.01828800
С	-4.44656600	-2.59744400	-0.01842600
Н	-4.25352900	-3.14915400	0.91105300
Н	-5.52833700	-2.45415100	-0.09729400
Н	-4.12284100	-3.21500400	-0.86460000
С	-4.20321500	-0.39283900	1.18426200
Н	-4.01264800	-0.92180500	2.12557000
Н	-3.68408000	0.56746800	1.20887300
Н	-5.28118800	-0.20806300	1.11094500

С	-4.01699900	-0.50333200 -1.34196700
Н	-3.52686300	0.47178100 -1.36302700
Н	-3.66620100	-1.09557300 -2.19463000
Н	-5.09650100	-0.35083000 -1.45088600
Ν	-1.47157800	0.64348000 0.01478700
С	1.69689800	2.39444800 -0.50814700
С	0.89347200	1.16264100 -0.70307800
С	-0.47865500	1.48159300 -0.28138200
С	-0.52327100	2.90656500 0.09573800
0	2.88546000	2.58098500 -0.72163400
0	-1.45277800	3.58912400 0.49390400
Ν	0.81194600	3.36907000 -0.03402200
С	1.21459000	4.73185900 0.25021800
Η	0.33476000	5.26267500 0.61713800
Η	2.00660600	4.74464200 1.00528500
Η	1.59402600	5.21688800 -0.65520300
Η	0.90835200	0.32321800 1.49965200
Η	1.12881500	0.53513100 -1.55565000

IM-3[⊤]

С	-2.79773000	-2.08628200	-0.06185700
С	-2.58086100	-0.77813000	-0.38442600
С	-1.19113100	-0.21917600	-0.45964700
С	-0.09934800	-1.20600300	-0.09235900
С	-0.41239200	-2.50229900	0.24211600
С	-1.74315700	-2.98214100	0.23981500
Н	-3.40065600	-0.09816400	-0.58689300
Н	0.36980000	-3.18436700	0.56703400
Н	-1.96064600	-4.01097000	0.50012400
Cl	-4.44340500	-2.70876300	0.00214400
С	1.27000600	-0.64747400	-0.01894100
Ν	2.31029300	-1.52100700	-0.11039900
Н	2.07319600	-2.43416800	-0.47323500
С	3.76451500	-1.21891700	-0.06055100
С	4.47205200	-2.58029600	-0.17000800
Н	4.23147200	-3.08057100	-1.11727800
Н	5.55676800	-2.44247800	-0.13611300
Н	4.18862500	-3.24210600	0.65706100
С	4.17215900	-0.31610000	-1.24179500
Н	3.92527200	-0.79285100	-2.19773700
Н	3.66015800	0.64636000	-1.18427100
Н	5.25390100	-0.14134000	-1.21853700
С	4.12177200	-0.55584200	1.28202100
Н	3.62995200	0.41346100	1.38062300

Н	3.82096700	-1.19422100	2.12034300
Н	5.20559100	-0.40474400	1.33782100
N	1.51075100	0.65219400	0.11330400
С	-1.74993600	2.29992200	0.11699400
С	-0.96095800	1.03007200	0.45079300
С	0.46849300	1.46843800	0.31371800
С	0.52299800	2.91456300	0.13996400
0	-2.95400900	2.40227800	-0.05031100
0	1.47116000	3.67591400	0.03995200
Ν	-0.84362300	3.33910000	0.06224200
С	-1.22593300	4.71753500	-0.18229300
Н	-0.30724000	5.30418500	-0.23092900
Н	-1.77591700	4.80031900	-1.12479800
Н	-1.86468200	5.08644100	0.62613000
Н	-1.01981200	0.13640100	-1.49305400
Н	-1.21132700	0.74300600	1.48283600

МЕСР

С	2.79140000	-2.09563400	0.06450400
С	2.57906700	-0.78594600	0.38306900
С	1.19017700	-0.22468100	0.46328300
С	0.09364900	-1.20749000	0.09578900
С	0.40278200	-2.50542300	-0.23724700
С	1.73245500	-2.98903800	-0.23168100
Н	3.40127300	-0.10707200	0.58020400
Н	-0.38098300	-3.18436800	-0.56571400
Н	1.94660400	-4.01968200	-0.48575100
Cl	4.43585700	-2.72268700	-0.00019700
С	-1.27389000	-0.64453700	0.02867700
N	-2.31778300	-1.51672000	0.09156200
Н	-2.08726100	-2.43611200	0.44314900
С	-3.77139800	-1.20922700	0.04894400
С	-4.47855000	-2.57572400	0.04862300
Н	-4.23447100	-3.15614200	0.94796300
Н	-5.56362800	-2.43758900	0.03092000
Н	-4.19713900	-3.16464900	-0.83257700
С	-4.18105100	-0.39019700	1.28881100
Н	-3.96046500	-0.94052400	2.21111400
Н	-3.64534000	0.56130800	1.30795900
Н	-5.25744800	-0.18487200	1.26493900
С	-4.12349400	-0.44955800	-1.24280700
Н	-3.66935500	0.54230500	-1.24874400
Н	-3.77783100	-1.00250200	-2.12295400
Н	-5.21146600	-0.33925700	-1.31237000

Ν	-1.51079200	0.65904600	-0.07573200
С	1.75820300	2.29361100	-0.12916700
С	0.95633800	1.02670500	-0.44186400
С	-0.46794700	1.47254600	-0.27896300
С	-0.51201700	2.91908300	-0.10836000
0	2.96581400	2.39100800	0.01415200
0	-1.45397900	3.68581600	0.00789300
Ν	0.85790800	3.33749700	-0.06475200
С	1.25176300	4.71870500	0.14108200
Н	0.33819700	5.29892300	0.27829900
Н	1.89229000	4.80392900	1.02339100
Н	1.80318400	5.09498900	-0.72677200
Н	1.02374300	0.12751400	1.49848100
Н	1.18561100	0.73695900	-1.47825700

IM-3^s

С	2.82983700	-2.02700000	0.09134800
С	2.62284700	-0.70277800	0.02305500
С	1.25315000	-0.14031800	0.35106300
С	0.12935300	-1.16603700	0.16518700
С	0.47185100	-2.54800900	0.35834700
С	1.76289900	-2.97679600	0.36209400
Н	3.42194700	0.00028100	-0.18494200
Н	-0.32112400	-3.27844200	0.50771300
Н	2.01350200	-4.01930900	0.52094400
Cl	4.43390200	-2.70222100	-0.19040300
С	-1.16349600	-0.72271400	-0.07273500
Ν	-2.22077200	-1.55218900	-0.36648300
Н	-1.96574200	-2.52262600	-0.47924400
С	-3.66144800	-1.32613800	-0.07103900
С	-4.34686600	-2.68100800	-0.32051700
Н	-3.96564800	-3.45213000	0.36118600
Н	-5.42502400	-2.59423100	-0.15582100
Н	-4.18856800	-3.01719300	-1.35230000
С	-3.87345200	-0.90116200	1.39492700
Н	-3.46262400	-1.65180700	2.08032800
Н	-3.39266200	0.05911100	1.59712300
Н	-4.94406800	-0.79744000	1.60575800
С	-4.25126100	-0.27553100	-1.03207100
Н	-3.79050700	0.70133400	-0.87298400
Н	-4.08727100	-0.57536800	-2.07305200
Н	-5.33107100	-0.18215200	-0.86658200
N	-1.48356800	0.64012800	0.00592900
С	1.65110400	2.40114300	-0.18602100

С	0.90160100	1.10267300	-0.46994100
С	-0.52622300	1.46958400	-0.17108700
С	-0.63028300	2.94986400	0.02362400
0	2.85153200	2.57963700	-0.14112500
0	-1.60959800	3.64350100	0.19785000
N	0.70068600	3.40883900	-0.00336600
С	1.06501500	4.79994700	0.21385100
Н	0.14557100	5.35370400	0.40783700
Н	1.74437900	4.87916000	1.06684900
Н	1.56622300	5.20333200	-0.67085400
Н	1.26706800	0.16521300	1.42000400
Н	1.02161700	0.86944700	-1.54197900

IM-3^S · TFA

С	4.73949100	-0.98518100	0.61242300
С	4.11503400	0.17805800	0.37032800
С	2.60008100	0.22203500	0.34619900
С	1.96461400	-1.13541100	0.03160900
С	2.70223800	-2.30157200	0.43112700
С	4.02458500	-2.24368100	0.74705500
Н	4.65162700	1.11489000	0.26777300
Н	2.19377400	-3.26182400	0.48402600
Н	4.56997400	-3.12692500	1.05927200
Cl	6.49395700	-1.05511600	0.74361400
С	0.68803800	-1.18725200	-0.51346500
Ν	0.09075700	-2.34634800	-0.95665600
Н	0.71254600	-3.14305200	-0.94250500
С	-1.34978100	-2.71915700	-0.83255900
С	-1.85739200	-2.48006600	0.60143200
Н	-1.76591600	-1.42898800	0.88743100
Н	-2.91341100	-2.75799400	0.68249300
Н	-1.28851400	-3.08297500	1.31928900
С	-2.19841300	-1.94964000	-1.86162000
Н	-2.20788900	-0.87948300	-1.65235600
Н	-1.80219800	-2.10502300	-2.87116500
Н	-3.23264500	-2.30929600	-1.83449600
С	-1.40950700	-4.22139300	-1.16054000
Н	-1.02528000	-4.41916100	-2.16823700
Н	-0.82678600	-4.81166200	-0.44123600
Н	-2.44413400	-4.57415900	-1.11767000
Ν	-0.08786700	-0.02583600	-0.62631800
С	2.22668200	2.72605000	-0.35349300
С	2.04012200	1.24276800	-0.64590800
С	0.54356800	1.08727600	-0.67194600

С	-0.08202700	2.43736000	-0.63850200
0	3.25140700	3.32028000	-0.09878500
0	-1.25672900	2.77540000	-0.72717900
Ν	0.96199300	3.33618100	-0.45838600
С	0.74922500	4.76970000	-0.31427000
Н	0.34565900	5.18525000	-1.24181200
Н	0.03882100	4.95828700	0.49483300
Н	1.71375100	5.22366600	-0.08604300
Н	2.26104900	0.52686800	1.36011700
Н	2.46408300	1.04005100	-1.64458800
С	-4.99039900	0.04813900	0.79301300
F	-6.02773000	0.76807100	0.33446900
F	-5.23125700	-0.28728800	2.06315100
F	-4.91806100	-1.08832900	0.06260600
С	-3.66580200	0.83535300	0.67880300
0	-2.90828800	0.96075700	1.61186100
0	-3.51215600	1.29304300	-0.55440500
Н	-2.63852400	1.77226900	-0.61912700

IM-3^s · TFA-1

С	4.41800900	-0.10709500	0.98079100
С	3.56001100	-1.00742700	0.47781000
С	2.36518000	-0.53591500	-0.32417600
С	1.95617100	0.91279600	-0.02657300
С	3.00509000	1.79695200	0.41600000
С	4.19526700	1.32637800	0.87222200
Н	3.72322300	-2.07657100	0.55797500
Н	2.83959000	2.87087700	0.39615700
Н	4.97818500	2.00193900	1.19821500
Cl	5.86523100	-0.61782200	1.84155900
С	0.66345000	1.33184800	-0.27170100
Ν	0.16988100	2.59447700	0.06237300
Н	0.78191300	3.04849800	0.73079400
С	-0.31773800	3.59518800	-0.94461100
С	0.71636500	3.79259800	-2.06987900
Н	0.89057500	2.85633400	-2.61116400
Н	0.36247100	4.53695100	-2.79229000
Н	1.67692000	4.14073800	-1.67132500
С	-1.67178100	3.17714600	-1.54042500
Н	-1.58236200	2.28344100	-2.16213000
Н	-2.40050000	2.97793600	-0.74937800
Н	-2.05838500	3.98814300	-2.16808100
С	-0.49998000	4.90328000	-0.15711000
Н	-1.21548800	4.76628100	0.66068900

Н	0.45080700	5.25081500	0.26899800
Н	-0.87507800	5.69397100	-0.81431600
Ν	-0.27858800	0.47428500	-0.87239500
С	1.13829900	-2.83240600	-0.73218700
С	1.13477700	-1.42233800	-0.14785600
С	-0.03107500	-0.78200300	-0.83378400
С	-0.83977200	-1.83652900	-1.51979600
0	1.99814500	-3.68153900	-0.62469700
0	-1.90408000	-1.73726900	-2.09374300
Ν	-0.07160800	-3.00329800	-1.41799800
С	-0.48035100	-4.26501500	-2.01676600
Н	-1.23237500	-4.75786000	-1.39253300
Н	-0.91146800	-4.07005000	-3.00113100
Н	0.40220800	-4.90032800	-2.09929100
Н	2.65685300	-0.57596600	-1.39534400
Н	0.89651400	-1.51297500	0.92681600
С	-4.52479400	-0.42744400	1.52571800
F	-4.75927300	0.75966400	2.11566700
F	-4.58899200	-1.38429900	2.45548200
F	-5.49142900	-0.64437000	0.61761000
С	-3.13572400	-0.42509600	0.84911700
0	-2.26315800	-1.20268800	1.16288100
0	-3.08034300	0.52675300	-0.07079400
Н	-2.18601800	0.53205700	-0.50180300

IM-3^s ·TFA-2

С	-1.23934100 -3.27904100 -0.98667000	
С	-2.12462400 -2.45075400 -0.41383800	
С	-1.97032600 -0.95371900 -0.57090800	
С	-0.55552300 -0.50703600 -0.97147300	
С	0.26797700 -1.47740600 -1.65097500	
С	-0.05820200 -2.79512800 -1.68421800	
Н	-3.00381800 -2.80905600 0.11018500	
Н	1.19968800 -1.17058200 -2.11623300	
Н	0.57935500 -3.51291100 -2.18790500	
C1	1 44120000 5 02353700 0 80255800	
CI	-1.44120000 -5.02555700 -0.89255800	
C	-0.18674400 0.80118900 -0.73871400	
C N	-0.18674400 0.80118900 -0.73871400 1.10039400 1.32178100 -1.00813000	
C N H	-0.18674400 0.80118900 -0.73871400 1.10039400 1.32178100 -1.00813000 1.67750100 0.61962100 -1.46640400	
C C N H C	-0.18674400 0.80118900 -0.73871400 1.10039400 1.32178100 -1.00813000 1.67750100 0.61962100 -1.46640400 1.30154300 2.66141500 -1.68547700	
C N H C C	-0.18674400 0.80118900 -0.73871400 1.10039400 1.32178100 -1.00813000 1.67750100 0.61962100 -1.46640400 1.30154300 2.66141500 -1.68547700 0.32119000 2.84351400 -2.85648700	
C N H C C H	-0.18674400 0.80118900 -0.73871400 1.10039400 1.32178100 -1.00813000 1.67750100 0.61962100 -1.46640400 1.30154300 2.66141500 -1.68547700 0.32119000 2.84351400 -2.85648700 -0.71335700 2.88237800 -2.50495700	
CI C N H C C H H	-0.18674400 0.80118900 -0.73871400 1.10039400 1.32178100 -1.00813000 1.67750100 0.61962100 -1.46640400 1.30154300 2.66141500 -1.68547700 0.32119000 2.84351400 -2.85648700 -0.71335700 2.88237800 -2.50495700 0.53467900 3.78239300 -3.37938000	

С	1.15501600	3.79968300	-0.66166800
Н	0.14057100	3.84873100	-0.26350400
Н	1.85244100	3.65950500	0.17221200
Н	1.39115200	4.75644100	-1.14133100
С	2.74675900	2.63612900	-2.21334700
Н	3.46393400	2.47476500	-1.40138300
Н	2.89127000	1.84619600	-2.96078400
Н	2.98510000	3.59283700	-2.68822700
Ν	-1.07772700	1.73508200	-0.20443200
С	-3.85653100	-0.15681400	1.07797100
С	-2.38258300	-0.17291900	0.67809200
С	-2.08630000	1.28191700	0.43910400
С	-3.22494500	2.10888400	0.94597300
0	-4.60152500	-1.10657800	1.20920100
0	-3.34244700	3.31307300	1.02140700
Ν	-4.21600200	1.17587500	1.30180900
С	-5.52807100	1.57877400	1.78485400
Н	-5.48116100	1.84850200	2.84486000
Н	-5.86599400	2.44774800	1.21601400
Н	-6.20991600	0.73822100	1.65106300
Н	-2.65134800	-0.64444200	-1.39206400
Н	-1.80759800	-0.54393700	1.54438700
С	4.52955200	-0.65082700	1.63443700
F	5.35889700	0.34130400	2.00655400
F	5.25679800	-1.64302700	1.11530600
F	3.89914100	-1.10731400	2.73084500
С	3.50521800	-0.13007800	0.60198000
0	3.44919100	-0.56883900	-0.52858300
0	2.75110100	0.81956800	1.12648000
Н	2.08743700	1.12543600	0.41948800

IM-3^S ·TFA-3

С	2.11467200	3.53209500	-0.13292100
С	1.14026000	2.79994300	0.42939800
С	1.40225500	1.34811300	0.77990300
С	2.52478300	0.72584100	-0.05638000
С	3.55604700	1.61253600	-0.51753800
С	3.39213800	2.96338500	-0.52978700
Н	0.18846800	3.22815600	0.72336200
Н	4.49830100	1.19802300	-0.87032300
Н	4.17979300	3.62578200	-0.86986200
Cl	1.87764000	5.24625500	-0.46140100
С	2.56123900	-0.65053300	-0.23559100
Ν	3.45959500	-1.29677900	-1.05172000

Н	4.04720300	-0.67844800	-1.59192900
С	3.99465300	-2.67752300	-0.90190000
С	4.49664900	-2.93043700	0.53263200
Н	3.67540100	-2.87128100	1.25118400
Н	4.94110900	-3.92967800	0.60479100
Н	5.26170200	-2.19638100	0.81152400
С	2.92712500	-3.71641200	-1.29659700
Н	2.08074600	-3.68915400	-0.60752500
Н	2.55990800	-3.52094000	-2.31012400
Н	3.36019100	-4.72330800	-1.27535600
С	5.17468900	-2.76613800	-1.88564100
Н	4.84633300	-2.56552000	-2.91252900
Н	5.96554700	-2.05116000	-1.62492200
Н	5.61119300	-3.76901500	-1.86149500
Ν	1.67610100	-1.48740900	0.45439900
С	-0.96157600	0.64022700	1.66484900
С	0.16144300	0.46333600	0.64817000
С	0.58133600	-0.96616800	0.86368600
С	-0.41110200	-1.65487500	1.74234900
0	-1.48087400	1.66742300	2.04366900
0	-0.45827200	-2.80636400	2.11406200
Ν	-1.34025600	-0.64287200	2.10636800
С	-2.34860900	-0.84048800	3.14937100
Н	-3.35244500	-0.67496900	2.74953100
Н	-2.25273900	-1.86814000	3.50273600
Н	-2.16911200	-0.13593700	3.96545700
Н	1.71538800	1.31766300	1.84662200
Н	-0.26916000	0.58867000	-0.36091700
С	-5.15332200	-0.24995700	-1.60248200
F	-4.62914900	0.83747500	-2.19236000
F	-6.44861800	-0.03561400	-1.37287100
F	-5.02629000	-1.29181000	-2.44166400
С	-4.41796800	-0.54111200	-0.27701300
0	-4.96368700	-0.56483300	0.79654700
0	-3.11718900	-0.75745600	-0.50804200
Н	-2.68736800	-0.93288200	0.35539700

IM-3^s·TFA-4

С	-0.30541100	-3.42840000	-0.44070900
С	0.16706300	-2.25315300	-0.88428100
С	-0.45452700	-0.95974000	-0.39363500
С	-1.89848700	-1.14196600	0.08813400
С	-2.24533600	-2.42770800	0.62706400
С	-1.47644100	-3.52960500	0.41475700

Н	1.03711000	-2.18661200	-1.52788500	С	-4.51669300	-1.88721800	-0.14194400
Н	-3.14933600	-2.52915200	1.22418600	С	-3.27598900	-2.25510900	-0.57548600
Н	-1.73906300	-4.49326800	0.83572100	С	-2.36757900	-1.26528200	-1.12028500
Cl	0.45920600	-4.94301500	-0.91570000	С	-2.92298900	0.05598200	-1.46717000
С	-2.76264300	-0.05624000	0.08548700	С	-4.24491200	0.35633300	-1.03197300
Ν	-4.10463000	-0.13504100	0.38261100	С	-5.01562300	-0.57090500	-0.37451400
Н	-4.43655400	-1.07796400	0.52742900	Н	-2.94161300	-3.28354100	-0.50535700
С	-4.94715200	0.91100700	1.02698500	Н	-4.66558500	1.32489000	-1.27595400
С	-4.26317000	1.48389400	2.28283900	Н	-6.02878600	-0.32965800	-0.06933500
Н	-3.33116000	1.99183600	2.02276600	Cl	-5.58425500	-3.06132200	0.62006800
Н	-4.92157700	2.20991600	2.77339900	С	-2.09797900	1.01794300	-2.11952800
Н	-4.03896700	0.68723800	3.00189100	Ν	-2.58719300	2.32331900	-2.27889000
С	-5.27131500	2.03414100	0.02322600	Н	-2.90072700	2.70579600	-1.39096300
Н	-4.36608100	2.56891400	-0.27073400	С	-1.94424400	3.35872300	-3.11704600
Н	-5.74032000	1.61934000	-0.87580600	С	-0.59910400	3.84809000	-2.53336200
Н	-5.96714700	2.75042000	0.47574500	Н	0.12547200	3.03182900	-2.50114800
С	-6.25029500	0.19638900	1.42517700	Н	-0.18666100	4.66241800	-3.14205900
Н	-6.74044200	-0.24371800	0.54848700	Н	-0.74577200	4.23377500	-1.51544700
Н	-6.06142600	-0.59990000	2.15662500	С	-1.74809900	2.83002600	-4.54796800
Н	-6.94698100	0.90702900	1.87964400	Н	-1.01553300	2.02015300	-4.57763200
Ν	-2.29102700	1.23152000	-0.19744200	Н	-2.69755700	2.46143200	-4.95237800
С	0.88805800	0.78662000	-1.81142500	Н	-1.38861200	3.63762900	-5.19571200
С	-0.44513500	0.15277600	-1.44786100	С	-2.93941300	4.53437600	-3.14676100
С	-1.22070800	1.31790000	-0.89209200	Н	-3.89907800	4.22039800	-3.57105300
С	-0.46607600	2.58001400	-1.14385300	Н	-3.12280300	4.92094200	-2.13527600
0	1.90252900	0.20437800	-2.18612800	Н	-2.54380300	5.35941800	-3.74909500
0	-0.76652500	3.73338600	-0.93577900	Ν	-0.82766600	0.72497600	-2.47065000
Ν	0.77289300	2.15389800	-1.69022600	С	-0.43918800	-2.87122200	-2.04919800
С	1.85277900	3.08153000	-1.99193000	С	-1.38485600	-1.69203400	-2.19972600
Н	2.30954700	2.81445600	-2.94734000	С	-0.45332400	-0.53623500	-2.46966700
Н	1.42444900	4.08343700	-2.03787700	С	0.87310500	-1.04162600	-2.69915100
Н	2.61140000	3.04629900	-1.20422500	0	-0.69290800	-4.00608400	-1.67027500
Н	0.15471500	-0.60153800	0.46216400	0	1.92744400	-0.45852100	-3.00718200
Н	-0.91440000	-0.22169300	-2.37362800	Ν	0.80246000	-2.44345500	-2.50104500
С	4.82865900	0.46105100	1.59393100	С	1.93673500	-3.32962700	-2.70073200
F	5.41423300	-0.74805400	1.58354000	Н	2.44487900	-3.05342000	-3.62833100
F	4.35738300	0.69885900	2.82035000	Н	2.64410900	-3.25331300	-1.87045900
F	5.76326100	1.38580400	1.30553900	Н	1.55835200	-4.35080500	-2.76708900
С	3.68669300	0.52116200	0.55515500	Н	-1.62374600	-0.92318400	0.10555000
0	2.54791700	0.80172000	0.85766400	Н	-1.96701500	-1.92638000	-3.11650800
0	4.14921800	0.24566600	-0.65517500	С	2.92710300	2.78209600	1.35911300
Н	3.39072900	0.26487200	-1.29959900	С	1.69342600	2.86794400	0.70917100
				С	0.86087900	1.75450700	0.67809200
ts-4	s			С	1.25081600	0.55053600	1.29414800

С	2.50261900	0.48721400	1.93343500
С	3.34167600	1.59622200	1.97028900
Н	1.39925700	3.78764300	0.21587800
Н	-0.08261500	1.80856500	0.14693100
Н	2.82559400	-0.43070100	2.41273600
Н	4.30694900	1.54239200	2.46045700
Cl	3.97835800	4.17890600	1.39855200
С	0.36598800	-0.63582900	1.22529200
Ν	0.94506600	-1.83581300	1.05528200
Н	1.91712900	-1.78346000	0.74921100
С	0.64723900	-3.13957600	1.75995200
С	1.43496500	-4.23033300	1.01698200
Н	2.49552500	-3.96730500	0.92906100
Н	1.36815000	-5.16825800	1.57798800
Н	1.02131400	-4.40099200	0.02019100
С	1.18786400	-2.99843400	3.19940200
Н	2.26330100	-2.78677200	3.20190600
Н	0.67619800	-2.19403500	3.73920000
Н	1.02910700	-3.93097700	3.75164100
С	-0.83913600	-3.50130400	1.78489500
Н	-1.44543200	-2.75895200	2.30806900
Н	-1.21954500	-3.63037200	0.77154100
Н	-0.95018300	-4.45788800	2.30738400
N	-0.97178700	-0.49537400	1.20342500
С	-2.44598900	1.22502800	4.08774500
С	-1.59099400	0.18378500	3.48286000
С	-1.59742300	0.31981200	2.13429100
С	-2.43812800	1.55237000	1.81324000
Н	-1.08820300	-0.56469700	4.07956200
0	-2.69660500	1.43119500	5.25826200
0	-2.58129000	2.11115500	0.73966300
N	-2.95505700	1.99278900	3.01302600
С	-3.77260000	3.18191400	3.16996300
Н	-4.73052800	3.06160700	2.65541400
Н	-3.94480000	3.31650800	4.23894400
Н	-3.25958100	4.05838300	2.76239000
С	5.68521600	-0.43331200	-0.04339800
F	6.72312300	-1.08343900	-0.59751400
F	5.62899200	-0.75888600	1.25916000
F	5.90749300	0.88531800	-0.13679400
С	4.36944100	-0.83694700	-0.74972200
0	3.60431000	-1.62948700	-0.22526100
0	4.25046100	-0.25135300	-1.90773400
Н	3.34771900	-0.45272300	-2.34571600

IM-5^s

С	-6.48712000	-1.89497800	0.27134500
С	-5.26142900	-2.49055700	-0.02226000
С	-4.21891200	-1.69649000	-0.49962300
С	-4.39777100	-0.31069500	-0.69887500
С	-5.63955500	0.25853000	-0.37306800
С	-6.68727200	-0.52451200	0.10604000
Н	-5.10297100	-3.55375600	0.11976500
Н	-5.78512100	1.33152200	-0.45211800
Н	-7.64297100	-0.07767800	0.35806500
Cl	-7.80716700	-2.88858300	0.87014300
С	-3.23844100	0.50895000	-1.16455700
Ν	-3.57519800	1.74588600	-1.68641100
Н	-4.51437500	1.76854900	-2.05952900
С	-2.66666200	2.70582500	-2.34958900
С	-1.70174300	3.29866000	-1.30952500
Н	-1.09983800	2.50925000	-0.85733800
Н	-1.03612500	4.03144300	-1.77991700
Н	-2.26465200	3.80509600	-0.51765800
С	-1.89153800	2.04735400	-3.50954700
Н	-1.28703400	1.21491100	-3.14217300
Н	-2.58337500	1.66069200	-4.26720800
Н	-1.23664000	2.78153500	-3.99425500
С	-3.56510900	3.82590900	-2.90199700
Н	-4.26093700	3.44161000	-3.65943200
Н	-4.14856600	4.29193500	-2.09951400
Н	-2.95585500	4.60215800	-3.37543900
Ν	-1.99584400	0.13239500	-1.01639100
С	-2.32629400	-3.46990700	-0.12872900
С	-2.85849800	-2.23674100	-0.86295500
С	-1.80857500	-1.18006100	-0.61243400
С	-0.76557900	-1.76917600	0.02084500
0	-2.88586200	-4.54397700	0.04320700
0	0.37549300	-1.22831200	0.48765700
Ν	-1.04870600	-3.14544600	0.27475900
С	-0.20642100	-4.05787400	1.02935800
Н	0.76929400	-4.16884100	0.55018600
Н	-0.06651500	-3.70377100	2.05814000
Н	-0.72677600	-5.01690500	1.05051400
Н	1.06183800	0.93892100	2.68851000
Н	-2.86526300	-2.51209800	-1.93355800
С	3.34501600	1.83109500	-2.81229600
С	2.02496300	1.57027100	-2.43372200

С	1.74274500	1.25636800	-1.10841100
С	2.78515200	1.19733500	-0.16710400
С	4.10889700	1.43254900	-0.57016900
С	4.39259200	1.76160400	-1.89193900
Н	1.22942500	1.60126200	-3.16945200
Н	0.72716300	1.00420400	-0.81932200
Н	4.91555000	1.36762500	0.15257900
Н	5.41147100	1.95401300	-2.20824000
Cl	3.69356300	2.24492500	-4.47510000
С	2.49970000	0.82752300	1.23374800
N	3.23232000	-0.09447600	1.80491100
Н	3.77076500	-0.72716800	1.11758600
С	3.26388500	-0.57352100	3.22638300
С	4.63331600	-1.26486800	3.38302300
Н	5.44952000	-0.54073900	3.28373400
Н	4.69796200	-1.72011800	4.37593500
Н	4.77660500	-2.04269200	2.62897100
С	3.18380000	0.58446300	4.24146800
Н	3.87395100	1.39176600	3.97333700
Н	2.18366100	1.00746500	4.36913200
Н	3.48802900	0.19889100	5.21955900
С	2.13317700	-1.59938900	3.43457900
Н	1.13943700	-1.16258600	3.29041100
Н	2.23458700	-2.42611800	2.72629700
Н	2.18497600	-1.99782600	4.45338100
Ν	1.47918400	1.43588400	1.90485700
С	0.19962100	4.82612000	1.40876500
С	1.13542000	3.76325200	0.95603800
С	0.94439600	2.69409500	1.75101400
С	-0.10827800	3.02894200	2.78820100
Н	1.79874500	3.90426600	0.11697200
0	0.04492800	5.94033900	0.95944200
0	-0.46278300	2.28059300	3.68344200
N	-0.52350700	4.30516800	2.51776500
С	-1.53131100	5.03955300	3.26391200
Н	-1.23168700	5.14685800	4.31044000
Н	-1.62029600	6.02409600	2.80221300
Н	-2.49301500	4.52079400	3.21930700
С	4.34909900	-3.74672500	-1.15506500
F	3.77455400	-4.94432900	-0.93330900
F	5.66367200	-3.86946600	-0.90357900
F	4.20587500	-3.45773900	-2.46759600
С	3.68310800	-2.63586300	-0.29845900
0	4.46355000	-1.76401100	0.16553100

0	2.44012700	-2.73197000	-0.18964000	
н	1 17576700	-1 78199500	0 23479900	

IM-5[⊤]

С	-6.79905600	-0.66779300	-0.88583200
С	-6.18894600	0.49699900	-0.42008800
С	-5.05576600	0.39635400	0.38525700
С	-4.53715400	-0.86894100	0.74516000
С	-5.16402800	-2.02073100	0.24171000
С	-6.29296400	-1.92900300	-0.56617700
Н	-6.57772800	1.47369400	-0.68475700
Н	-4.75056100	-3.00572000	0.43853700
Н	-6.76869800	-2.82239700	-0.95517100
Cl	-8.22129700	-0.54531000	-1.89927100
С	-3.30461500	-0.92410800	1.57383300
N	-3.01232100	-2.07281900	2.22123200
Н	-3.72987700	-2.78288700	2.20481000
С	-1.83887300	-2.37465900	3.09018700
С	-0.53360400	-2.27249300	2.28151000
Н	-0.37879800	-1.25476500	1.91727200
Н	0.31068000	-2.54004700	2.92716900
Н	-0.54731000	-2.96381200	1.43254700
С	-1.81747800	-1.42237600	4.30073600
Н	-1.68155200	-0.38735400	3.97955600
Н	-2.74888500	-1.49683600	4.87385800
Н	-0.98670000	-1.68984200	4.96270700
С	-2.04296300	-3.82319400	3.56418800
Н	-2.97473800	-3.93048100	4.13466300
Н	-2.06365300	-4.51732200	2.71581500
Н	-1.21804400	-4.11961500	4.21829100
Ν	-2.45541300	0.10054400	1.62279100
С	-4.28198900	2.90161300	0.14657400
С	-4.34585800	1.60329500	0.95875000
С	-2.89909000	1.27949500	1.19405300
С	-2.08126200	2.38559100	0.76003600
0	-5.19811500	3.49189700	-0.39134800
0	-0.85109500	2.52174900	0.81067100
Ν	-2.95753900	3.33145100	0.18322200
С	-2.50650800	4.56630100	-0.43901200
Н	-1.95361800	5.17492800	0.28132800
Н	-1.85566500	4.35262400	-1.29301700
Н	-3.39192400	5.10336000	-0.78083800
Н	0.76565200	-2.05751200	-0.55705200
Н	-4.83840500	1.87973600	1.90975600

С	6.19906700	0.07164500	0.93717900
С	5.51150700	-1.06955800	1.36131800
С	4.26393000	-1.35819400	0.82632300
С	3.67108900	-0.52037200	-0.15577600
С	4.39545200	0.63284900	-0.55589700
С	5.64005500	0.92660100	-0.01757900
Н	5.94900200	-1.71770700	2.11348700
Н	3.72862900	-2.23033300	1.18320900
Н	3.97572100	1.30154800	-1.29832300
Н	6.18058800	1.81068100	-0.33877100
Cl	7.77706700	0.43861900	1.61650800
С	2.36016500	-0.78672900	-0.68890300
N	1.54758200	0.21470000	-1.15999100
Н	1.77029100	1.14894000	-0.82903600
С	0.72275400	0.17543600	-2.40439300
С	0.41508000	1.64143000	-2.75612200
Н	1.33468900	2.20822800	-2.93385400
Н	-0.19846600	1.68808200	-3.66152500
Н	-0.13189400	2.12611700	-1.94006800
С	1.50946100	-0.47984600	-3.55478500
Н	2.43446400	0.07145400	-3.75583500
Н	1.77290400	-1.51707200	-3.32558100
Н	0.90635200	-0.48291900	-4.46994500
С	-0.61560700	-0.56256600	-2.17728200
Н	-0.49089500	-1.64691100	-2.08698700
Н	-1.10476300	-0.19080100	-1.27068300
Н	-1.28697300	-0.39224800	-3.02715400
Ν	1.78043400	-2.04193400	-0.63296100
С	3.38276900	-5.24809300	-1.27525900
С	3.53332000	-3.80341900	-1.12263200
С	2.29619200	-3.28545400	-0.84427500
С	1.29180500	-4.39656200	-0.81681700
Н	4.48158400	-3.29990500	-1.22588700
0	4.20714000	-6.11078800	-1.52765800
0	0.08131700	-4.27475600	-0.62284500
N	1.98880100	-5.54532500	-1.07211300
С	1.42082200	-6.87332500	-1.16224200
Н	0.66031900	-6.92005700	-1.94875900
Н	2.23944700	-7.55504100	-1.40077900
Н	0.96140000	-7.16836900	-0.21279400
С	2.84896200	5.49704800	-0.16647200
F	2.25615300	6.43805700	-0.92622100
F	4.01873000	5.17486800	-0.72527900
F	3.08115700	6.02080900	1.04841400

С	1.93655000	4.25430700	-0.06094000
0	2.27524800	3.17737200	-0.50400100
0	0.80515800	4.56253100	0.53779600
Н	0.19766000	3.76106600	0.60439500

ts-6

С	-5.86636200	-2.42712100	-0.75850800
С	-4.69797100	-2.46982100	-0.00192900
С	-3.72680500	-1.48157000	-0.17818000
С	-3.92540600	-0.43821700	-1.10370400
С	-5.10031400	-0.44768600	-1.87506400
С	-6.07578900	-1.42604000	-1.70528100
Н	-4.52806900	-3.26964100	0.71001600
Н	-5.24593800	0.29290800	-2.65402000
Н	-6.97860100	-1.41936200	-2.30629100
Cl	-7.09160400	-3.66493600	-0.52666100
С	-2.85565600	0.58777400	-1.29665800
N	-3.21589100	1.65106800	-2.10653700
Н	-4.19186400	1.90347400	-2.04136300
С	-2.35444100	2.73158000	-2.62607300
С	-1.78755600	3.61093700	-1.49424900
Н	-1.16046500	3.02210500	-0.82379100
Н	-1.18641800	4.42990800	-1.90711100
Н	-2.60194300	4.05341800	-0.90801400
С	-1.22483000	2.12561300	-3.47952800
Н	-0.61649900	1.43331500	-2.89428900
Н	-1.64416500	1.57552700	-4.32908800
Н	-0.58359700	2.92379300	-3.87206400
С	-3.25995700	3.58980700	-3.52784900
Н	-3.69580000	2.98647900	-4.33220100
Н	-4.07706000	4.04529700	-2.95248500
Н	-2.68391800	4.40228200	-3.98202000
N	-1.64775200	0.45842800	-0.83688000
С	-1.79530800	-2.86518100	0.78750200
С	-2.44627400	-1.48453500	0.63621800
С	-1.35953000	-0.64821500	-0.01922400
С	-0.26050000	-1.50690500	-0.31736100
0	-2.25154200	-3.85234800	1.33933000
0	0.82850400	-1.22471400	-0.87875800
Ν	-0.53194500	-2.78784200	0.21831100
С	0.39021400	-3.90658800	0.17695500
Н	0.68369100	-4.12899000	-0.85309300
Н	1.29384000	-3.69355800	0.75993600
Н	-0.12546600	-4.76633500	0.60781300

Н	-0.41679000	0.12024100	1.19589500
Н	-2.68555400	-1.12594800	1.64820300
С	3.93504900	2.63105700	-1.54026600
С	2.56384300	2.44463000	-1.74391200
С	1.81931600	1.75979500	-0.79278200
С	2.43957600	1.25429600	0.36643200
С	3.82206800	1.44625500	0.54646300
С	4.57226700	2.13609100	-0.40078400
Н	2.09231700	2.82010000	-2.64530400
Н	0.76430000	1.56870000	-0.95708300
Н	4.30929600	1.07509900	1.44263100
Н	5.63558200	2.29405800	-0.25821300
Cl	4.87144900	3.49870600	-2.73762100
С	1.64851500	0.53459900	1.37221300
Ν	2.19941500	-0.48833300	2.02372500
Н	2.98639400	-0.93415600	1.54266200
С	1.88301500	-1.01549100	3.39274300
С	2.99348900	-2.03643900	3.69644700
Н	3.98443200	-1.56974100	3.66585400
Н	2.84574300	-2.45420100	4.69655400
Н	2.98357200	-2.86175700	2.97674900
С	1.95342600	0.14811200	4.39957000
Н	2.93864600	0.62660400	4.37658300
Н	1.19219700	0.90554300	4.19418900
Н	1.78374700	-0.23350500	5.41189700
С	0.51166200	-1.70722600	3.46628400
Н	-0.30682300	-1.00250200	3.30554300
Н	0.43330700	-2.51318500	2.73247500
Н	0.38751400	-2.14788700	4.46157200
Ν	0.34110700	0.84313000	1.64126900
С	-0.58407000	4.32680800	2.27092500
С	0.45831000	3.33003800	1.94955600
С	-0.13183700	2.11831400	1.82528400
С	-1.61438700	2.27722800	2.13978300
Н	1.49703500	3.60329000	1.83676400
0	-0.47175800	5.52301600	2.44961800
0	-2.44787800	1.39564900	2.23340900
Ν	-1.81384000	3.62375600	2.35011300
С	-3.08395100	4.22688200	2.70597200
Н	-3.47723000	3.78510400	3.62674300
Н	-2.90480400	5.29313300	2.85374200
Н	-3.81651100	4.08280500	1.90599600
С	5.15640900	-3.20529500	-1.37830700
F	4.86540700	-4.50474100	-1.57367300

F	6.21798400	-3.12569000	-0.56891700
F	5.47991600	-2.66142500	-2.56315000
С	3.93961900	-2.47657600	-0.76007700
0	4.01829300	-1.98182900	0.35333000
0	2.92136900	-2.50610000	-1.57259400
Н	2.08021500	-2.02208900	-1.21127000

IM-7

С	3.45434900	-1.00896900	-0.04555900
С	2.79390600	0.18638000	-0.31959800
С	1.40102400	0.20005000	-0.41334400
С	0.66479500	-0.97866500	-0.20786600
С	1.35800000	-2.17566900	0.02682900
С	2.74743100	-2.20045100	0.11442100
Н	3.35798900	1.10245700	-0.45645100
Н	0.81777300	-3.11308500	0.10986300
Н	3.27592800	-3.13019700	0.29469500
Cl	5.20437500	-1.02025200	0.07214200
С	-0.82778500	-0.90031200	-0.27121800
Ν	-1.49534000	-2.01591200	0.18243300
Н	-0.97933300	-2.55856200	0.86067300
С	-2.96653100	-2.18087300	0.28656000
С	-3.17996900	-3.58462200	0.87934100
Н	-2.73821400	-3.66607100	1.88174100
Н	-4.24950600	-3.79646600	0.97290600
Н	-2.73320200	-4.35411900	0.23910100
С	-3.59120500	-1.12256300	1.21767500
Н	-3.14559400	-1.17479600	2.21869200
Н	-3.43903000	-0.11883500	0.81629300
Н	-4.66861000	-1.29901100	1.31763100
С	-3.60327000	-2.11731600	-1.11346400
Н	-3.46123800	-1.13214300	-1.56062400
Н	-3.15734900	-2.87191400	-1.77112300
Н	-4.67817000	-2.31804600	-1.03843600
N	-1.48328800	0.10528400	-0.74495300
С	0.54612400	2.46840600	0.41094700
С	0.67260400	1.47126800	-0.75611100
С	-0.77876300	1.26823500	-1.24727100
С	-1.51810000	2.49857000	-0.67814000
0	1.39079200	2.75641000	1.23264800
0	-2.61364800	2.90986600	-0.98552400
N	-0.70747000	3.05563900	0.31704500
С	-1.13199800	4.15197100	1.17401600
Н	-0.38344400	4.94821100	1.15687400

Н	-2.08609200	4.51606000	0.79069800
Н	-1.25162300	3.80496400	2.20474300
Н	-0.85754400	1.29816400	-2.34161400
Н	1.24475200	2.00974200	-1.52402900

ts-8

С	5.19737400	-0.22151500	3.24805700
С	3.92763400	0.24214900	2.91106000
С	3.37909900	-0.09589900	1.67239900
С	4.10352200	-0.88707800	0.75997800
С	5.36785400	-1.36356700	1.14551400
С	5.92464000	-1.03173700	2.37778500
Н	3.36251800	0.85823400	3.60183800
Н	5.91292400	-2.03911000	0.49477100
Н	6.90201300	-1.40500600	2.66374000
Cl	5.89120900	0.21513400	4.80313200
С	3.46868300	-1.27626700	-0.53401000
Ν	4.33324000	-1.85075600	-1.45244600
Н	5.27447100	-1.48626300	-1.39296900
С	3.98870900	-2.35959400	-2.79624700
С	3.04393600	-3.56731500	-2.66059000
Н	2.12142400	-3.28603900	-2.15071700
Н	2.79500100	-3.96324400	-3.65234700
Н	3.52782300	-4.36322000	-2.08374300
С	3.36638100	-1.25932800	-3.67993200
Н	2.45320300	-0.87544600	-3.22229800
Н	4.06652700	-0.42461200	-3.80509800
Н	3.12819300	-1.65602300	-4.67430200
С	5.31563600	-2.82613200	-3.42059600
Н	6.01680800	-1.98903500	-3.53828800
Н	5.79213500	-3.59316100	-2.79940900
Н	5.13892800	-3.25099800	-4.41394100
Ν	2.19175100	-1.19377500	-0.75207700
С	0.97221400	0.43595800	2.35259500
С	2.01300100	0.40524000	1.23763400
С	1.39413800	-0.51995100	0.19108200
С	0.27249700	-1.16619500	0.81362000
0	0.93487300	1.17253400	3.32622500
0	-0.45271500	-2.10391200	0.40466600
N	0.00856300	-0.50996700	2.03953700
С	-1.11963400	-0.80459400	2.90396200
Н	-2.06324900	-0.48897000	2.44553400
Н	-1.16946800	-1.87609200	3.11436100
Н	-0.96952800	-0.24961000	3.83124800

Н	0.44295700	0.55312700	-0.77935700
Н	2.14060200	1.43012600	0.86769400
С	-4.51014700	2.56948100	1.48513600
С	-3.14879700	2.67272000	1.78795000
С	-2.21567000	2.10385800	0.93030700
С	-2.62505900	1.42394100	-0.23432200
С	-4.00285000	1.33401500	-0.51465000
С	-4.94367200	1.90188800	0.33760400
Н	-2.82743000	3.18525100	2.68786200
Н	-1.16255200	2.17076000	1.17938000
Н	-4.34130100	0.83446400	-1.41633100
Н	-6.00254300	1.83542200	0.11352600
Cl	-5.68674900	3.28761500	2.55918400
С	-1.63500100	0.81064800	-1.13619700
N	-1.98274500	-0.27686000	-1.81220900
Н	-2.74891500	-0.82314800	-1.40258300
С	-1.46805300	-0.86969600	-3.08966000
С	-2.74644700	-1.22099200	-3.88306000
Н	-3.31357600	-0.31952700	-4.14209400
Н	-2.47036800	-1.73016100	-4.81195000
Н	-3.39670300	-1.89152800	-3.31076400
С	-0.62742000	0.12694900	-3.89704800
Н	-1.14241100	1.08666400	-4.01801300
Н	0.34996900	0.30671100	-3.44758700
Н	-0.46673600	-0.29484700	-4.89459200
С	-0.67228800	-2.14804900	-2.78459100
Н	0.21408800	-1.93324400	-2.18476100
Н	-1.28476700	-2.86928100	-2.23583600
Н	-0.36179400	-2.60816400	-3.72955600
N	-0.34648300	1.27002500	-1.20250600
С	0.06914900	4.80593600	-2.03643400
С	-0.80475900	3.63519000	-1.83177700
С	-0.04195800	2.58724000	-1.43415500
С	1.41022400	3.04666100	-1.41127200
Н	-1.87216600	3.68303100	-1.99119500
0	-0.22434800	5.93392400	-2.37789900
0	2.39604900	2.37886700	-1.15634900
N	1.39325700	4.37809400	-1.75906300
С	2.57074200	5.21948800	-1.86601500
Н	3.26715400	4.81547300	-2.60696400
Н	2.23209200	6.20895100	-2.17732700
Н	3.08301600	5.29000700	-0.90177200
С	-4.92068000	-3.69062100	0.87663100
F	-4.70087000	-5.00193100	0.67864000

F	-6.01761700	-3.33608600	0.19856600
F	-5.14641200	-3.49194600	2.18702000
С	-3.69599400	-2.86817700	0.40954400
0	-3.80607400	-2.07278700	-0.51186600
0	-2.64383200	-3.16389600	1.11569100
Н	-1.77678900	-2.66166100	0.83219000

IM-9

С	-2.67408900	-2.23523100	-0.06830000
С	-2.48640600	-0.88469100	0.23237200
С	-1.19488900	-0.36460200	0.20566800
С	-0.08387200	-1.18809100	-0.09650800
С	-0.31182500	-2.53345700	-0.41044500
С	-1.60175600	-3.06422200	-0.39594800
Н	-3.32527700	-0.24010600	0.46880000
Н	0.51667300	-3.17220600	-0.70174300
Н	-1.77476500	-4.10576800	-0.64385700
Cl	-4.29777700	-2.89948500	-0.04945200
С	1.28975800	-0.56922800	-0.09007900
Ν	2.32819100	-1.45322900	0.07037200
Н	2.07371700	-2.31476200	0.53369300
С	3.76909800	-1.11133400	0.16851300
С	4.49988700	-2.45120400	0.35844600
Н	4.30717600	-3.12732500	-0.48263700
Н	5.57972000	-2.28603000	0.42324900
Н	4.18516800	-2.94941300	1.28529300
С	4.24040500	-0.45029900	-1.13928800
Н	4.04596900	-1.10941700	-1.99289600
Н	3.72544800	0.49789800	-1.30287800
Н	5.31893200	-0.26183400	-1.08910100
С	4.04182000	-0.19035500	1.37441200
Н	3.49996400	0.75166700	1.26766700
Н	3.73087600	-0.67317200	2.30902200
Н	5.11347300	0.02878600	1.44681900
Ν	1.50055700	0.70167200	-0.25535300
С	-1.79398200	2.23490100	0.36323400
С	-0.83141700	1.06454700	0.47883700
С	0.29711300	1.45299400	-0.48241900
С	0.32043000	2.97618500	-0.36022200
0	-2.98720000	2.28650300	0.58893000
0	1.20587500	3.76800200	-0.58404400
Ν	-1.00241500	3.32654600	-0.00224200
С	-1.50128300	4.69292200	-0.02296200
Н	-0.65514500	5.34637200	-0.24031400

Н	-2.27098000	4.80732800	-0.79225500
Н	-1.93530700	4.95026200	0.94704300
Н	-0.41030500	1.13342800	1.49709000
Н	-0.07081700	1.28156200	-1.51270000

ts-10^s

С	2.65617100	3.07776100	-0.92525900
С	1.53628500	2.46050600	-1.39535300
С	1.38141100	1.02222700	-1.27245100
С	2.58231400	0.24119200	-0.93336200
С	3.72460600	0.95187500	-0.46135700
С	3.76559600	2.32185300	-0.43701800
Н	0.72927900	3.02001800	-1.85361800
Н	4.60623700	0.39073400	-0.17288300
Н	4.65520700	2.84380800	-0.10050900
Cl	2.80724000	4.83318100	-0.99014200
С	2.54234600	-1.17593400	-0.98827000
Ν	3.59032000	-1.90488400	-0.42212300
Н	3.81190900	-1.56686600	0.50967100
С	3.76792100	-3.36972700	-0.52924600
С	2.67748100	-4.15316500	0.23521800
Н	1.69502400	-3.97718100	-0.20700500
Н	2.88768300	-5.22958500	0.20910500
Η	2.64927600	-3.84178800	1.28740100
С	3.79910200	-3.79177300	-2.00794600
Н	2.82903800	-3.63905100	-2.48599300
Н	4.55653900	-3.21803100	-2.55384300
Н	4.05284300	-4.85530100	-2.08360000
С	5.14123600	-3.65899500	0.10613200
Н	5.93586300	-3.12204600	-0.42307300
Н	5.16200200	-3.35049200	1.15999900
Η	5.36190900	-4.73112000	0.07195200
N	1.46472700	-1.84027800	-1.48681100
С	-0.86231700	0.65826100	-2.71241100
С	0.58702100	0.32477800	-2.36662600
С	0.53767400	-1.15865800	-2.10180200
С	-0.72279400	-1.69820000	-2.61547000
0	-1.39423700	1.75779300	-2.80584800
0	-1.13791200	-2.84036400	-2.72231700
N	-1.48596900	-0.54310200	-2.98678000
С	-2.84860400	-0.63617000	-3.47610000
Н	-3.03670900	-1.68300400	-3.71882500
Η	-3.55919600	-0.30588400	-2.71034500
Η	-2.97104900	-0.00870800	-4.36288500

Н	0.57883500 0.97123400	-0.01970700	С	-5.42749600	-0.83858900	0.43857400
Н	1.12354000 0.49540900	-3.32516100	С	-4.50564100	-1.39098700	-0.44971700
С	-4.33786500 -2.12688500	0.13939500	С	-3.46239100	-0.59701500	-0.92413500
С	-2.96425500 -2.37933700	0.15094100	С	-3.33959000	0.75435900	-0.52318200
С	-2.07827000 -1.31959400	0.30625100	С	-4.27786800	1.27080700	0.38579200
С	-2.54459700 0.00698900	0.42407700	С	-5.32328600	0.48593900	0.86452300
С	-3.93880000 0.23023500	0.40635300	Н	-4.58839500	-2.42077600	-0.77878800
С	-4.83266600 -0.82576100	0.27178500	Н	-4.16840200	2.28136500	0.76755500
Н	-2.59171400 -3.38859600	0.01964200	Н	-6.04130100	0.89007300	1.56997900
Н	-1.01331600 -1.52034800	0.30361700	Cl	-6.75081900	-1.83182100	1.03618500
Н	-4.32954400 1.23489000	0.53806600	С	-2.17297800	1.53552600	-1.00396500
Н	-5.90285400 -0.64911600	0.27694600	Ν	-2.25639600	2.91506300	-0.91466100
Cl	-5.46140700 -3.45613800	-0.03995000	Н	-3.21491500	3.23365800	-0.85523800
С	-1.60020900 1.12647400	0.53967400	С	-1.39682600	3.87821800	-1.65193000
Ν	-1.96800800 2.32349900	0.03927100	С	0.03655000	3.85723300	-1.09491600
Н	-2.71794100 2.27788100	-0.64299600	Н	0.48761200	2.87354400	-1.23404900
С	-1.74658400 3.71611400	0.54220500	Н	0.64738300	4.60583700	-1.61301700
С	-3.00800700 4.09035600	1.35386600	Н	0.03717400	4.09710800	-0.02641600
Н	-3.12485800 3.42970400	2.21979300	С	-1.39014300	3.57616300	-3.16475400
Н	-2.93131000 5.12097300	1.71741900	Н	-0.96398900	2.58918500	-3.35981300
Н	-3.91323800 4.02092900	0.73820700	Н	-2.40839300	3.60400700	-3.57143000
С	-0.50903600 3.84373400	1.43589600	Н	-0.79140200	4.32355200	-3.69816200
Н	-0.59368200 3.23393600	2.34002600	С	-2.01796500	5.26343000	-1.40292900
Н	0.40512900 3.56445400	0.91041700	Н	-3.03580600	5.32471900	-1.81085600
Н	-0.42016000 4.89081300	1.74492300	Н	-2.06089200	5.48658300	-0.33060700
С	-1.63259800 4.63798300	-0.68276300	Н	-1.41982000	6.04018500	-1.88944900
Н	-0.72808300 4.43040500	-1.25697800	Ν	-1.06534200	0.95235800	-1.40874800
Н	-2.49242300 4.51973700	-1.35278600	С	-2.05189200	-2.55216500	-2.00806400
Н	-1.60129000 5.68250700	-0.35621600	С	-2.43498300	-1.07269200	-1.92310700
Ν	-0.32115600 0.93459100	0.95872900	С	-1.12609200	-0.37714100	-1.66263500
С	-0.17740400 -0.46867200	4.33069500	С	-0.06249300	-1.29185700	-1.81351600
С	-0.90955500 0.19128200	3.24296300	0	-2.79731300	-3.52118200	-2.06819600
С	-0.09145500 0.32076800	2.16133900	0	1.18016200	-1.17794200	-1.74152900
С	1.26590100 -0.25585200	2.54937100	Ν	-0.67765400	-2.58207200	-2.06550200
Н	-1.94111600 0.49502500	3.34718100	С	0.09253500	-3.78502300	-2.27705600
0	-0.54987600 -0.77318100	5.44746100	Н	0.88458600	-3.59264400	-3.00581700
0	2.28100100 -0.31350100	1.87822900	Н	0.56341600	-4.13148100	-1.34621900
Ν	1.13364400 -0.71346200	3.84039100	Н	-0.58403900	-4.56058500	-2.64071000
С	2.19132400 -1.34698300	4.60228800	Н	0.18433600	-0.65551200	0.91398500
Н	3.03922900 -0.66674500	4.73096600	Н	-2.80091500	-0.81600100	-2.93737200
Н	1.77473600 -1.60496600	5.57736500	С	5.88595400	-0.07391400	-0.94809500
Н	2.54006400 -2.25396000	4.09826100	С	4.73806300	0.63610700	-1.31626900
			С	3.50223600	0.24876000	-0.81614300
IM	-11 ^s		С	3.39911700	-0.84796700	0.06591700

С	4.56955800	-1.55124500	0.41454300	Н	3.11985200	-0.97621900	-1.36730000
С	5.81013200	-1.16956200	-0.08659100	Н	0.79901400	-0.78297600	-2.31933600
Н	4.81534900	1.47099000	-2.00424700	Н	-0.95170100	-2.56604700	1.04540300
Н	2.59791900	0.74478700	-1.14476100	Н	1.26911600	-3.48549500	1.60135200
Н	4.51195400	-2.38347900	1.10981200	Cl	3.87678300	-2.89182700	0.61741500
Н	6.71028700	-1.70518400	0.19478800	С	-1.44960000	-0.44392100	-0.48655400
Cl	7.44431500	0.41645200	-1.58229300	Ν	-2.66698000	-1.04488900	-0.43061100
С	2.10450200	-1.27271700	0.59273600	Н	-2.65414800	-2.03981300	-0.60543900
Ν	1.87928500	-2.58306000	0.84744400	С	-3.95537100	-0.47733400	0.04888600
Н	2.40934100	-3.21151600	0.25775100	С	-4.96827000	-1.63226700	-0.02097700
С	1.07174800	-3.23803400	1.92408000	Н	-4.67195000	-2.46162900	0.63358900
С	1.43748000	-4.73076600	1.84284000	Н	-5.95394800	-1.28702000	0.30467200
Н	2.51451200	-4.88350000	1.98089900	Н	-5.06597800	-2.01265000	-1.04517400
Н	0.91571100	-5.28590300	2.62734900	С	-3.82374500	0.01864000	1.50157700
Н	1.14192600	-5.15935600	0.87788600	Н	-3.52512600	-0.80188600	2.16437800
С	1.48642700	-2.67778300	3.29740100	Н	-3.08345800	0.81815800	1.57697000
Н	2.55508800	-2.83685800	3.47819700	Н	-4.78839600	0.40386900	1.85120500
Н	1.27678800	-1.60790000	3.37913700	С	-4.41109200	0.66507400	-0.87882600
Н	0.92527800	-3.18789100	4.08761300	Н	-3.70582000	1.49824000	-0.84568900
С	-0.44873800	-3.08028100	1.71150000	Н	-4.49237800	0.31316000	-1.91341200
Н	-0.80166500	-2.06575100	1.92153100	Н	-5.39431200	1.03101700	-0.56181600
Н	-0.73861900	-3.34795200	0.69164500	Ν	-1.35759000	0.87694600	-0.24864800
Н	-0.98114900	-3.74586300	2.39987100	С	2.04991600	1.94977400	-0.79453400
Ν	1.16462800	-0.38392200	1.02405500	С	0.85867400	1.15307500	-1.27759400
С	1.73867200	2.91843900	2.46850800	С	-0.22375700	1.51901200	-0.41400100
С	2.32148700	1.71310400	1.84847800	С	0.24945100	2.55754000	0.55751300
С	1.29855200	0.87987400	1.53420700	Н	0.71253400	1.22403500	-2.34998900
С	0.00064900	1.50182400	1.98056400	0	3.18101100	1.93828200	-1.24009600
Н	3.38295800	1.60111700	1.69285100	0	-0.36262700	3.14139700	1.42894100
0	2.29262900	3.91850200	2.88297200	Ν	1.61725400	2.72649200	0.28548600
0	-1.10141800	0.97916600	1.90070900	С	2.47838800	3.60851900	1.05174400
Ν	0.32682100	2.72175000	2.51595400	Н	2.11492100	4.63868900	0.99177100
С	-0.62029200	3.67299000	3.06324000	Н	2.49699600	3.30573600	2.10316400
Н	-1.12753100	3.25810800	3.94029400	Н	3.48057800	3.54101600	0.62615100
Н	-0.05543200	4.56101400	3.35230500				
Н	-1.37018500	3.93419600	2.31048900	IM-	13 ^s		
				С	-2.18237300	-2.42340400	-0.12440800
ts-1	2 ⁸			С	-2.26989000	-1.13353200	0.24918800
С	2.30778800 -	-2.24174600	0.14914900	С	-1.11623100	-0.54127200	1.02860400
С	2.23036400	-1.31264100	-0.84633200	С	0.22764500	-1.17651200	0.65710000

С	0.22764500	-1.17651200	0.65710000
С	0.18714200	-2.58707100	0.39146400
С	-0.97628900	-3.20882600	0.04134100
Н	-3.18028500	-0.55915600	0.12837000
Н	1.11005200	-3.15929500	0.33909600

C 0.93928400 -0.75905200 -1.24061600

C -0.24247200 -1.23566900 -0.49930300

 $C \quad \text{-}0.08149400 \quad \text{-}2.24394500 \quad 0.47907600$

C 1.15744000 -2.74945900 0.81397700

Н	-0.99127700	-4.25872400	-0.22771200	Н	2.01346800	-3.91395600	-0.67705700
Cl	-3.55067000	-3.22948500	-0.89226600	Cl	4.46160100	-2.62737900	-0.10299500
С	1.37274900	-0.40313600	0.50783700	С	-1.22854900	-0.65624000	0.14045200
N	2.65379600	-0.89634800	0.60885900	Ν	-2.25572400	-1.53838900	0.03888600
Η	2.69060600	-1.86345400	0.89934500	Н	-2.00817100	-2.51173600	0.13832800
С	3.85202300	-0.45486500	-0.15986700	С	-3.71483200	-1.25937400	-0.02761400
С	4.92410300	-1.52584800	0.10658500	С	-4.38248400	-2.62682200	-0.25341200
Η	4.61171700	-2.50639400	-0.27568000	Н	-4.16717900	-3.31646200	0.57315300
Η	5.85929300	-1.25707200	-0.39379700	Н	-5.46856600	-2.50910100	-0.31133700
Η	5.12865500	-1.61833800	1.17985500	Н	-4.04096700	-3.08454900	-1.18956000
С	3.55453700	-0.38153100	-1.66967400	С	-4.21332900	-0.64856200	1.29681800
Η	3.21112300	-1.35202700	-2.04688800	Н	-3.98828900	-1.31415700	2.13836900
Η	2.78718100	0.36738600	-1.88024900	Н	-3.73917100	0.31813500	1.47738100
Н	4.46154100	-0.10487100	-2.21945400	Н	-5.29933300	-0.50460900	1.25705900
С	4.35304800	0.90487100	0.36289200	С	-4.03178300	-0.32920800	-1.21238900
Η	3.61803100	1.69041600	0.17697300	Н	-3.56430800	0.64825200	-1.07925200
Н	4.54571800	0.85276200	1.44021000	Н	-3.67816700	-0.76729900	-2.15262700
Η	5.28752300	1.17671700	-0.14185600	Н	-5.11577400	-0.18743900	-1.28736100
N	1.26921000	0.92630500	0.10470000	Ν	-1.52899400	0.65737800	0.32194700
С	-2.15467100	1.90273300	0.59853000	С	1.68785600	2.27413000	-0.02214800
С	-1.00062900	1.02094300	1.08703400	С	0.85971200	1.03274800	0.08570400
С	0.16713600	1.54310700	0.30512300	С	-0.48932400	1.45822900	0.20739300
С	-0.21486500	2.82082200	-0.36760600	С	-0.55171000	2.94666300	-0.00122600
0	-3.33944700	1.78994200	0.84086700	0	2.89806600	2.39659300	-0.00614100
0	0.46709600	3.60752600	-0.99000900	0	-1.51846400	3.67879800	-0.03887000
N	-1.60326400	2.93718000	-0.15576300	Ν	0.78495800	3.34504000	-0.14822000
С	-2.40465600	4.01583700	-0.71175200	С	1.19817100	4.71697800	-0.38185700
Η	-1.73519700	4.65937600	-1.28390600	Н	0.33645000	5.35899600	-0.19208900
Η	-3.18501900	3.60806200	-1.36005500	Н	2.01999600	4.97250300	0.29160400
Η	-2.87995400	4.58682100	0.09109200	Н	1.53463200	4.85493700	-1.41498500
Η	-1.29767400	-0.83841900	2.07603800	Н	0.98025300	-0.25777000	1.84686700
Η	-0.85268900	1.29386200	2.14133100	Н	0.55643400	0.06540900	-0.96103300

ts-14^s

C 2.81978600 -2.01368500 0.071356 C 2.59644100 -0.77771400 0.53893 C 1.18413600 -0.28368000 0.75918 C 0.14165600 -1.09407600 -0.04794 C 0.47689400 -2.46398800 -0.42564 C 1.75077800 -2.91078800 -0.36006 H 3.40985000 -0.11341600 0.80809 H -0.28737600 -3.11129900 -0.84808				
C 2.59644100 -0.77771400 0.53893 C 1.18413600 -0.28368000 0.75918 C 0.14165600 -1.09407600 -0.04794 C 0.47689400 -2.46398800 -0.42564 C 1.75077800 -2.91078800 -0.36006 H 3.40985000 -0.11341600 0.80809 H -0.28737600 -3.11129900 -0.84808	2	2.81978600	-2.01368500	0.07135600
C 1.18413600 -0.28368000 0.75918 C 0.14165600 -1.09407600 -0.04794 C 0.47689400 -2.46398800 -0.42564 C 1.75077800 -2.91078800 -0.36006 H 3.40985000 -0.11341600 0.80809 H -0.28737600 -3.11129900 -0.84808	С	2.59644100	-0.77771400	0.53893000
C 0.14165600 -1.09407600 -0.04794 C 0.47689400 -2.46398800 -0.42564 C 1.75077800 -2.91078800 -0.36006 H 3.40985000 -0.11341600 0.80809 H -0.28737600 -3.11129900 -0.84808	С	1.18413600	-0.28368000	0.75918500
C 0.47689400 -2.46398800 -0.42564 C 1.75077800 -2.91078800 -0.36006 H 3.40985000 -0.11341600 0.80809 H -0.28737600 -3.11129900 -0.84808	С	0.14165600	-1.09407600	-0.04794200
C1.75077800-2.91078800-0.36006H3.40985000-0.113416000.80809H-0.28737600-3.11129900-0.84808	С	0.47689400	-2.46398800	-0.42564300
H 3.40985000 -0.11341600 0.80809 H -0.28737600 -3.11129900 -0.84808	С	1.75077800	-2.91078800	-0.36006700
Н -0.28737600 -3.11129900 -0.84808	Н	3.40985000	-0.11341600	0.80809600
	Н	-0.28737600	-3.11129900	-0.84808600

TFA

0	-1.56149700	1.04505500	-0.0000	1000
0	-1.46652000	-1.22013200	-0.0000	01200
С	-0.93597600	-0.14007900	0.0000	4000
F	0.98777700	1.30121800	-0.00055	500
F	1.10365700	-0.57990700	1.08950	500
F	1.10371400	-0.58086500	-1.08895	300
С	0.60064200	0.02019200	-0.00000)600

References:

- [1] J. Li, M. John and L. Ackermann, *Chem. Eur. J.* **2014**, *20*, 5403.
- [2] A. Bodtke and H. H. Otto, *Pharmazie*. **2005**, *60*, 803.
- [3] J. Li, Z. Zhang, M. Tang, X. Zhang, and J. Jin, Org. Lett. 2016, 18, 3898.
- [4] a) A. D. Becke, *J. Chem. Phys.* **1993**, *98*, 5648; b) C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B* **1988**, *37*, 785.
- [5] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378.
- [6] D.-C. Fang, THERMO; Beijing Normal University, Beijing, People's

Republic of China, 2013.

-70 -80

10 Ó -10 -20 -30 -40 -50 -60

150 140 130 120 110 100 90 80 70 60 50 fl (ppm)

^{110 100} fl (ppm)

0 -90 fl (ppm) -10 -20 -30 -40 -60 -70 -80 -18 -50 -100 -110 -120 -130 -140 -150 -160 -170

