Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Supporting Information

Regioselective and Diastereodivergent Organocatalytic Asymmetric Vinylogous Michael Addition

A: General Remarks and Starting Materials	2
B: Optimization Tables	6
C: General procedure for γ - and γ' -regioselective AVMA Reaction	14
D: Products of γ - and γ' -regioselective AVMA and [4+2] cycloadducts	
E: NMR spectra of substrates and products	42
F: HPLC Charts of Products.	130
G: Determination of Absolute Configuration	210
H. DFT Calculations Details	217

A: General Remarks and Starting Materials

A1: General Remarks

¹H NMR spectra and ¹³C NMR spectra were recorded on a Bruker AV-400/500 spectrometer (400/500 MHz and 100/125 MHz). Chemical shifts (δ) for protons are reported in parts per million (ppm) downfield from tetramethylsilane and are referenced to residual solvent peak. Chemical shifts (δ) for carbon are reported in parts per million (ppm) downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent. Data are reported as follows: chemical shift, multiplicity (br = broad, s = singlet, d = doublet, dd = doublet of doublets, t = triplet, dt = doublet of triplets, q = quartet, quint = quintet, m = multiplet), coupling constants (*J*) in Hertz (Hz), integration; "app" is used to denote the apparent splitting of a signal.

High resolution mass spectrometry (HRMS) was carried out using MicroMass GCT CA 055 instrument and recorded on a MicroMass LCTTM spectrometer.

Optical rotations were measured on an Autopol III automatic polarimeter (Rudolph Research analytical). $[\alpha]_D^T$ values are reported in 10⁻¹ deg cm² g⁻¹; concentrations (*c*) are quoted in g/100 mL; D refers to the D-line of sodium (589 nm); temperatures (T) are given in degrees Celsius (°C).

Melting points were measured on a XT3A apparatus.

Enantiomeric excesses were determined by HPLC analysis on an Agilent HPLC 1200 or 1220 Series instrument, using the chiral stationary phase column (25 cm x 4.6 mm internal diameter, Daicel Chiralpak IA, IB, AD-H, AS-H as noted) specified in the individual experiment.

A2: Starting Materials.

All solvents and inorganic reagents were from commercial sources (Adamas-beta, TCI, or Energy Chemical) and used without purification unless otherwise noted. Nitroalkenes were synthesized following the literature produre.^[1] The aminocatalysts **3a** and **3b** were prepared according our previous papers.^[2] The different β -alkyl-cyclohex-2-enones **1**^[3] and β -substituted-cyclohex-3-enones **1**'^[4] were achieved as showed in Scheme S1.

Scheme S1. Synthesis of starting materials 1 and 1'

p-Toluenesulfonic acid (400 mg, 2.1 mmol) was added to a stirred solution of 1,3-cyclohexanedione (12.6 g, 112 mmol) in EtOH (50 mL) and PhMe (180 mL) at rt. The reaction mixture was heated at

reflux overnight. The reaction mixture was allowed too cool to rt before concentration to give orange oil under reduced pressure. The crude material was dissolved in EtOAc (100 mL) and neutralized using 1 M NaOH. The organic layer was washed by brine, dried by MgSO₄ and concentrated to afford intermediate 3-ethoxy-cyclohexenones which was used without futher purification.

3-ethoxy-cyclohex-2-enones (20 mmol, 1.0 equiv) in anhydrous THF (15 mL) was added dropwise to a solution of a Grignard regent (30 mmol 1.5 equiv) under argon at 0 °C. Once the addition was completed, the solution was stirred at 45 °C for about 2 h. The reaction was slowly quenched with diluted aqueous acid (1 M HCl) at 0 °C. The layers were separated and the aqueous layer extracted with EtOAc (3×50 mL). The combined organic layers were washed with saturated NaHCO₃ and brine, dried with Na₂SO₄, then filtered and evaporated under reduced pressure. The crude product was purified by flash colume chromatography (PE/EA = 10 :1) to give the product β-alkyl-cyclohex-2enones **1**.

A mixture of β -alkyl-2-cyclohex-2-enones 1 (36.00 mmol), toluenesulfonic acid (100 mg) and ethylene glycol (7 mL) in 100 mL of toluene is refluxed overnight and water formed is removed by Dean-Stark trap. The residue after concentration is chromatographed on silica gel (PE/EA = 95:5) to give the 7-alkyl-1,4-dioxaspiro[4.5]dec-7-enes.

To a solution of 7-alkyl-1,4-dioxaspiro[4.5]dec-7-enes (17 mmol) in CH₂Cl₂ (25 mL) at rt was added FeCl₃·6H₂O (1.66 g, 3.5 equiv). The resulting yellow to amber colored suspension was stirred for about 15 min and TLC was conducted to make sure the reactant was consumed. Then saturated aqueous NaHCO₃ was added to quench the reaction. The aqueous layer was extracted three times with CH₂Cl₂ and the combined organics were washed with brine, dry over MgSO₄, and concentrated under reduced pressure. The resulting oil was chromatographed on silica gel (PE/EA = 95:5) to give different β -alkyl-cyclohex-3-enones 1'.

A3: For some selected Starting Materials NMR data.

1'a: β-ethyl-cyclohex-3-enone

¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.04 (t, J = 7.6 Hz, 3H), 2.00-2.06 (q, $J_1 = 7.2$ Hz, $J_2 = 14.8$ Hz, 2H), 2.45 (s, 4H), 2.81 (s, 2H), 5.61 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 12.0, 24.9, 29.4, 38.5, 42.9, 119.2, 137.7, 211.0. HRMS (EI): exact mass calculated for [M]⁺ (C₈H₁₂O) requires m/z 124.0888, found m/z 124.0891.

1'f: β-benzyl-cyclohex-3-enone

¹H NMR (400 MHz, CDCl₃): δ (ppm) 2.42 (s, 4H), 2.71 (s, 2H), 3.31 (s, 2H), 5.68 (s, 1H), 7.14-7.16 (m, 2H), 7.20-7.21 (m, 1H), 7.26-7.30 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 25.0, 38.4, 42.6, 43.4, 122.4, 126.4, 128.5, 128.9, 135.6, 138.7, 210.4. HRMS (EI): exact mass calculated for [M]⁺ (C₁₃H₁₄O) requires m/z

186.1045, found m/z 186.1044.

1'g: β-phenethyl-cyclohex-3-enone

¹H NMR (400 MHz, CDCl₃): δ (ppm) 2.29-2.33 (m, 2H), 2.42 (s, 4H), 2.71-2.75 (m, 2H), 2.83 (s, 2H), 5.62 (s, 1H), 7.15-7.20 (m, 3H), 7.26-7.29 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 24.9, 34.0, 38.4, 38.4, 43.1, 121.2, 126.0, 128.3, 128.4, 135.5, 141.6, 210.6. HRMS (EI): exact mass calculated for [M]⁺ (C₁₄H₁₆O) requires m/z 200.1201, found m/z 200.1202.

1'q: 4,5-dihydro-[1,1'-biphenyl]-3(2*H*)-one

¹H NMR (400 MHz, CDCl₃): δ (ppm) 2.53-2.57 (m, 2H), 2.62-2.68 (m, 2H), 3.27-3.28 (m, 2H), 6.31-6.34 (m, 1H), 7.25-7.29 (m, 1H), 7.32-7.38 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 25.3, 38.0, 42.0, 123.6, 125.1, 127.6, 128.6, 134.9, 139.7, 210.0. HRMS (EI): exact mass calculated for [M]⁺ (C₁₂H₁₂O) requires m/z 172.0888, found m/z

172.0890.

1'r: 3',5'-dimethoxy-4,5-dihydro-[1,1'-biphenyl]-3(2H)-one

¹H NMR (400 MHz, CDCl₃): δ (ppm) 2.54-2.57 (m, 2H), 2.63-2.66 (m, 2H), 3.25 (s, 2H), 3.80 (s, 6H), 6.32-6.34 (m, 1H), 6.40-6.41 (m, 1H), 6.51-6.51 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 25.2, 38.0, 42.1, 55.4, 99.4, 103.6, 124.0, 134.9, 142.0, 160.8, 209.9. HRMS (EI): exact mass calculated for [M]⁺ (C₁₄H₁₆O₃) requires m/z 232.1099, found m/z 232.1101.

1's: 3',5'-bis(trifluoromethyl)-4,5-dihydro-[1,1'-biphenyl]-3(2H)-one

¹H NMR (400 MHz, CDCl₃): δ (ppm) 2.59-2.62 (m, 2H), 2.71-2.74 (m, 2H), 3.30 (s, 2H), 6.51-6.53 (m, 1H), 7.79 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 25.3, 37.3, 41.5, 121.1, 121.2, 121.2, 121.9, 124.6, 125.2, 127.5, 131.4, 131.8, 132.1, 132.4, 132.9, 141.7, 208.3. HRMS (EI): exact mass calculated for [M]⁺ (C₁₄H₁₀F₆O) requires m/z 308.0636, found m/z 308.0637.

1'u: 3-(phenylethynyl)cyclohex-3-en-1-one

¹H NMR (400 MHz, CDCl₃): δ (ppm) 2.50-2.53 (m, 2H), 2,58-2.63 (m, 2H), 3.09-3.09 (m, 2H), 6.37-6.39 (m, 1H), 7.31-7.33 (m, 3H), 7.42-7.45 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 25.4, 37.7, 43.2, 88.4, 88.5, 119.0, 122.9, 128.4, 131.5, 133.5, 208.0. HRMS (EI): exact mass calculated for [M]⁺ (C₁₄H₁₂O) requires m/z 196.0888, found m/z 196.0891.

1'v: (E)-3-styrylcyclohex-3-en-1-one

0

¹H NMR (400 MHz, CDCl₃): δ (ppm) 2.53-2.57 (m, 2H), 2.63-2.64 (m, 2H), 3.14 (s, 2H), 6.08 (s, 1H), 6.37-6.41 (d, *J* = 16.0 Hz, 1H), 6.83-6.87 (d, *J* = 16.0 Hz, 1H), 7.21-7.26 (m, 1H), 7.30-7.34 (m, 2H), 7.40-7.42 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 25.5, 38.5, 39.6, 126.4, 126.8, 127.6, 128.5, 128.7, 129.8, 134.1,

137.1, 209.7. HRMS (EI): exact mass calculated for $[M]^+$ (C₁₄H₁₄O) requires m/z 198.1045, found m/z 198.1046.

- [1] J. M. Lopchuk, R. P. Hughes, G. W. Gribble. Org. Lett. 2013, 15, 5218-5221.
- [2] a) H. Huang, F. Yu, Z. Jin, W. Li, W. Wu, X. Liang, J. Ye. Chem. Commun. 2010, 46, 5957-5959; b) P. Li, Y. Wang, X. Liang, J. Ye. Chem. Commun. 2008, 3302-3304.
- [3] a) B. K. Bharat, R. M. James, Z. Murray. Synthesis 1991, 2, 176; b) X. Yin, Y. Zheng, X. Feng, K. Jiang, X.-Z. Wei, N. Gao, Y.-C. Chen. Angew. Chem. Int. Ed. 2014, 53, 6245-6248.
- [4] a) J. H. Babler, N. C. Malek, M. J. Coghlan. J. Org. Chem. 1978, 43, 1821-1823; b) D. Becker, Z. Harel, M. Nagler, A. Gillon. J. Org. Chem. 1982, 47, 3297-3306; c) S. E. Sen, S. L. Roach, J. K. Boggs, G. J. Ewing, J. Magrath. J. Org. Chem. 1997, 62, 6684-6686.

B: Optimization Tables

Table S1. The effect of the primary amine on γ -AVMA reaction of β -methyl-cyclohex-2-enone^[a]

	0 + 1 1a' 2a 0.2 mmol 0.1 mmol	cat. 3 (20 mol%) acid (20 mol%) D ₂ solvent, 40 °C, 1M, 2 d	O I I NO ₂ 4a'
R	Ph $3a: R = t-Bu$ 3c: R = Bn A = Ph 3d: R = Ph 3e: R = i-Bu 1_2 NHTs $3f: R = i-Pr$	S NH ₂ NH ₂	H ₂ NH ₂ OH
\neq	$\mathbf{N}_{\mathbf{N}_{2}}^{\mathbf{N}_{2}} \qquad \mathbf{R}_{\mathbf{N}_{2}}^{1_{2}} \qquad \mathbf{N}_{\mathbf{N}_{2}}^{\mathbf{R}_{2}^{1_{2}}} \qquad \mathbf{N}_{\mathbf{N}_{2}}^{1_{2}} $	NH ₂ NH ₂ R	OMe NH ₂
3	3i : $R^1 = R^2 = Me$ 3j : $R^1 = Et$, $R^2 = OMe$	3I : R = NHTs 3m : R= OH	الريم N 3n
	3k : R ¹ = Ph, R ² = OMe		
entry	$3k: R^1 = Ph, R^2 = OMe$ catalyst	conv. (%) ^[b]	ee (%) ^[c]
entry 1 ^[d]	$3k: R^1 = Ph, R^2 = OMe$ catalyst 3a	conv. (%) ^[b] 90	ee (%) ^[c] 87
entry 1 ^[d] 2	$3k: R^1 = Ph, R^2 = OMe$ catalyst 3a 3b	conv. (%) ^[b] 90 74	ee (%) ^[c] 87 90
entry 1 ^[d] 2 3 ^[d]	$3k: R^1 = Ph, R^2 = OMe$ catalyst 3a 3b 3c	conv. (%) ^[b] 90 74 24	ee (%) ^[c] 87 90 47
entry 1 ^[d] 2 3 ^[d] 4 ^[d]	3k: R ¹ = Ph, R ² = OMe catalyst 3a 3b 3c 3d	conv. (%) ^[b] 90 74 24 15	ee (%) ^[c] 87 90 47 -14
entry 1 ^[d] 2 3 ^[d] 4 ^[d] 5 ^[d]	3k: R ¹ = Ph, R ² = OMe catalyst 3a 3b 3c 3d 3e	conv. (%) ^[b] 90 74 24 15 66	ee (%) ^[c] 87 90 47 -14 71
entry 1 ^[d] 2 3 ^[d] 4 ^[d] 5 ^[d] 6 ^[d]	$3k: R^1 = Ph, R^2 = OMe$ catalyst 3a 3b 3c 3d 3e 3f	conv. (%) ^[b] 90 74 24 15 66 50	ee (%) ^[c] 87 90 47 -14 71 81
$\begin{array}{c} \text{entry} \\ 1^{[d]} \\ 2 \\ 3^{[d]} \\ 4^{[d]} \\ 5^{[d]} \\ 6^{[d]} \\ 7 \end{array}$	3k: R ¹ = Ph, R ² = OMe catalyst 3a 3b 3c 3d 3c 3d 3e 3f 3g	conv. (%) ^[b] 90 74 24 15 66 50 79	ee (%) ^[c] 87 90 47 -14 71 81 32
entry 1 ^[d] 2 3 ^[d] 4 ^[d] 5 ^[d] 6 ^[d] 7 8	3k: R ¹ = Ph, R ² = OMe catalyst 3a 3b 3c 3d 3c 3d 3e 3f 3g 3h	conv. (%) ^[b] 90 74 24 15 66 50 79 36	ee (%) ^[c] 87 90 47 -14 71 81 32 35
entry 1 ^[d] 2 3 ^[d] 4 ^[d] 5 ^[d] 6 ^[d] 7 8 9	3k: R ¹ = Ph, R ² = OMe catalyst 3a 3b 3c 3d 3e 3f 3g 3h 3i	conv. (%) ^[b] 90 74 24 15 66 50 79 36 88	ee (%) ^[c] 87 90 47 -14 71 81 32 35 40
entry 1 ^[d] 2 3 ^[d] 4 ^[d] 5 ^[d] 6 ^[d] 7 8 9 10	$3k: R^1 = Ph, R^2 = OMe$ catalyst 3a 3b 3c 3d 3e 3f 3g 3h 3i 3j	conv. (%) ^[b] 90 74 24 15 66 50 79 36 88 88 80	ee (%) ^[c] 87 90 47 -14 71 81 32 35 40 60
entry 1 ^[d] 2 3 ^[d] 4 ^[d] 5 ^[d] 6 ^[d] 7 8 9 10 11	3k: R ¹ = Ph, R ² = OMe catalyst 3a 3b 3c 3d 3c 3d 3e 3f 3g 3h 3i 3j 3k	conv. (%) ^[b] 90 74 24 15 66 50 79 36 88 80 20	ee (%) ^[c] 87 90 47 -14 71 81 32 35 40 60 37
entry 1 ^[d] 2 3 ^[d] 4 ^[d] 5 ^[d] 6 ^[d] 7 8 9 10 11 12	3k: R ¹ = Ph, R ² = OMe catalyst 3a 3b 3c 3d 3c 3d 3e 3f 3g 3h 3i 3j 3k 3l	conv. (%) ^[b] 90 74 24 15 66 50 79 36 88 80 20 84	ee (%) ^[c] 87 90 47 -14 71 81 32 35 40 60 37 43
entry 1 ^[d] 2 3 ^[d] 4 ^[d] 5 ^[d] 6 ^[d] 7 8 9 10 11 12 13	3k: R ¹ = Ph, R ² = OMe catalyst 3a 3b 3c 3d 3c 3d 3e 3f 3g 3h 3i 3j 3k 3l 3m	conv. (%) ^[b] 90 74 24 15 66 50 79 36 88 80 20 84 68	ee (%) ^[c] 87 90 47 -14 71 81 32 35 40 60 37 43 15

[a] All reactions were performed with **2a** (0.1 mmol), **1a'** (0.2 mmol), **cat. 3** (20 mol%) and 2-F-C₆H₄CO₂H (30 mol%) in 100 μ L of toluene. [b] Determined by GC analysis. [c] Determined by chiral HPLC analysis. [d] 2-F-C₆H₄CO₂H (40 mmol%) was added.

O cat. 3 (20 mol%) acid (20 mol%) NO₂ NO_2 solvent, 40 °C, 1M, 2 d 1a' 2a 4a' 0.2 mmol 0.1 mmol Ph S O Ph н $\bar{N}H_2$ **N**HTs $\bar{N}H_2$ 3a 3b

Table S2. The effect of the concentration and acid additives on γ -regioselective AVMA reaction^[a]

entry	catalyst	acid	conv. (%) ^[b]	ee (%) ^[c]
1	3 a	2-F-C ₆ H ₄ CO ₂ H	74	90
2 ^[d]	3 a	$2-F-C_6H_4CO_2H$	60	94
3	3 a	2-F-C ₆ H ₄ CO ₂ H	84	76
4 ^[e]	3 a	2-F-C ₆ H ₄ CO ₂ H	90	87
5 ^[d, e]	3 a	2-F-C ₆ H ₄ CO ₂ H	84	89
6 ^[d, e]	3 a	C6H5CO2H	74	45
7 ^[d, e]	3 a	AcOH	78	-16
8 ^[d, e]	3 a	2-MeO-C ₆ H ₄ CO ₂ H	75	40
9 ^[d, e]	3 a	3-Br-2-F-C ₆ H ₃ CO ₂ H	83	90
10 ^[d, e]	3 b	2-NO ₂ -C ₆ H ₄ CO ₂ H	67	95
11 ^[d, e]	3 b	3,5-(NO ₂) ₂ -C ₆ H ₃ CO ₂ H	36	93
12 ^[d, e]	3 b	4-NO ₂ -C ₆ H ₄ CO ₂ H	61	85

[a] All reactions were performed with 2a (0.1 mmol), 1a' (0.2 mmol), cat. 3 (20 mol%) and acid (30 mol%) in 100 μ L of toluene. [b] Determined by GC analysis. [c] Determined by chiral HPLC analysis. [d] Reaction in 500 μ L of toluene. [e] acid (40 mol%) was added.

[a] All reactions were performed with 2a (0.1 mmol), 1a (0.2 mmol), cat. 3 (20 mol%) in toluene (0.2 M) for 3 days.
[b] Determined by GC analysis. [c] Determined by chiral HPLC analysis. [d] was determined by ¹H NMR analysis of the crude reactions.

Notes:

(1) Figure S1 and Figure S2: Chiral HPLC analysis for racemic stereoiosmers of the reaction in Table S1.

- (2) Figure S3: Chiral HPLC analysis for minor diastereoisomer (5a) of Method A in Table S1.
- (3) Figure S5: Chiral HPLC analysis for major diastereoisomer (4a) of Method A in Table S1.
- (4) Figure S4: Chiral HPLC analysis for major diastereoisomer (**5a**) of Method B in Table S1.
- (5) Figure S6: Chiral HPLC analysis for minor diastereoisomer (4a) of Method B in Table S1.

Table S4. The effect of the acids on γ-regioselective *anti*-AVMA reaction^[a]

	+	NO ₂ 3a (20 mol%) acid (40 mol%) toluene (0.2 M),		
	1a 2a 0.2 mmol 0.1 mmol	40 °C, 2 d	4a	
entry	acid	conv. (%) ^[b]	ee (%) ^[c]	d.r. ^[d]
1	2-F-C ₆ H ₄ CO ₂ H	91	76	80:20
2	2-OH-C ₆ H ₄ CO ₂ H	64	75	83:17
3	2-NO ₂ -C ₆ H ₄ CO ₂ H	96	88	88:12
4	3-NO2-C6H4CO2H	71	75	84:16
5	4-NO ₂ -C ₆ H ₄ CO ₂ H	81	71	81:19
6	2-MeO-C ₆ H ₄ CO ₂ H	85	38	66:34
7	3,5-(NO ₂) ₂ -C ₆ H ₃ CO ₂ H	88	81	77:23
8	$2\text{-}F\text{-}4\text{-}NO_2\text{-}C_6H_3CO_2H$	89	85	88:12
9	$2\text{-}NO_2\text{-}4\text{-}F\text{-}C_6H_3CO_2H$	77	89	90:10
10 ^[e]	$2\text{-}NO_2\text{-}4\text{-}F\text{-}C_6H_3CO_2H$	76	90	92:8
11 ^[e, f]	$2\text{-}NO_2\text{-}4\text{-}F\text{-}C_6H_3CO_2H$	69	91	94:6
12 ^[e, g]	2-NO ₂ -4-F-C ₆ H ₃ CO ₂ H	68	92	94:6

[a] All reactions were performed with 2a (0.1 mmol), 1a (0.2 mmol), cat. 3a (20 mol%), and acid (40 mol%) in toluene.
[b] Determined by GC analysis.
[c] Determined by chiral HPLC analysis.
[d] Determined by GC analysis.
[e] The reaction was reacted at 30 °C.
[f] Acid (50 mol%) was added.
[g] Acid (60 mol%) was added.

	+ NO	3b (20 mol%) acid (20 mol%) toluene (0.2 M),		
	1a 2a 0.2 mmol 0.1 mmol	40 °C, 2 d	Ē	
	0.2 million 0.1 million		5a	
entry	acid	conv. (%) ^[b]	ee (%) ^[c]	d.r. ^[d]
1	$C_6H_5CO_2H$	70	94	37:63
2	2-MeO-C ₆ H ₄ CO ₂ H	74	93	37:63
3	$2-OH-C_6H_4CO_2H$	48	97	26:74
4	2-F-C ₆ H ₄ CO ₂ H	58	96	44:56
5	$2-NO_2-C_6H_4CO_2H$	50	97	21:79
6	3-NO ₂ -C ₆ H ₄ CO ₂ H	75	98	28:72
7	4-NO ₂ -C ₆ H ₄ CO ₂ H	54	97	38:62
8	3,5-(NO ₂) ₂ -C ₆ H ₃ CO ₂ H	29	97	39:61
9	2-NO2-4-F-C6H3CO2H	43	97	25:75
10	2-F-4-NO ₂ -C ₆ H ₃ CO ₂ H	43	96	58:42
11 ^[f]	2-NO ₂ -C ₆ H ₄ CO ₂ H	60	98	15:85
12 ^[g]	$2-NO_2-C_6H_4CO_2H$	42	98	12:88
13 ^[e, f]	$2-NO_2-C_6H_4CO_2H$	48	99	12:88
14 ^[e, h]	$2-NO_2-C_6H_4CO_2H$	35	99	10:90

Table S5. The effect of the acids on γ -regioselective syn-AVMA reaction^[a]

[a] All reactions were performed with **2a** (0.1 mmol), **1a** (0.2 mmol), **cat. 3b** (20 mol%), and acid (20 mol%) in toluene. [b] Determined by GC analysis. [c] Determined by chiral HPLC analysis. [d] Determined by GC analysis. [e] The reaction was reacted at 30 °C. [f] Acid (40 mol%) was added. [g] Acid (60 mol%) was added. [h] Acid (50 mol%) was added.

1 0.1 r	'a 2a mmol 0.2 mmol	3a (20 mol%) acid (20 mol%) CHCl ₃ (0.2 M) 0 °C 3 d	Ph ^{NO₂} +	Ph Ph 4a+5a	NO ₂ +	
entry	acid	conv. ^[b] (6a)	conv. ^[b] (4a+5a)	conv. ^[b] (1a)	d.r. ^[c]	ee (%) ^[d]
1	C ₆ H ₅ CO ₂ H	86.0	0	14.0	>19:1	96
2	4-Me-C ₆ H ₄ CO ₂ H	86.3	0	13.7	>19:1	98
3	4-NO ₂ -C ₆ H ₄ CO ₂ H	90.0	0	trace	>19:1	99
4	$4-OH-C_6H_4CO_2H$	83.4	0	16.7	>19:1	94
5 ^[e]	4-NO ₂ -C ₆ H ₄ CO ₂ H	75%	0	trace	>19:1	97
6 ^[f]	4-NO ₂ -C ₆ H ₄ CO ₂ H	<5	0	trace	N. D.	N. D.
7[g]	4-NO ₂ -C ₆ H ₄ CO ₂ H	<5	0	trace	N. D.	N. D.
8 ^[h]	$4-NO_2-C_6H_4CO_2H$	<5	0	trace	N. D.	N. D.

Table S6. Research on γ' -regioselective syn-AVMA reaction^[a]

[a] Reactions performed using 1.0 equiv of 1'a (0.1 mmol, 0.2 M), 2.0 equiv of 2a, 0.2 equiv of cat. 3a, and 0.2 equiv of acid in TCM at 0 °C. [b] Determined by GC analysis. [c] The dr values were determined by HPLC analysis of the crude reaction mixture. [d] The ee values were determined by chiral HPLC analysis. [e] Toluene (0.2 M) was used as solvent. [f] EtOAc (0.2 M) was used as solvent. [g] MeOH (0.2 M) was used as solvent. [h] CH₃CN (0.2 M) was used as solvent. N. D. = not detected.

Table S7. Research on γ' -regioselective *anti*-AVMA reaction^[a]

	+	3b (20 mol acid (20 mol CHCl ₃ (0.2 0 °C 2 c	$\frac{1\%)}{M}$	+ 0 ₂ +	Ph +	°
1'a 0.1 m	a 2a mol 0.2 mmol		7a	4a+	ōa	1a
entry	acid	conv. ^[b] (7a)	conv. ^[b] (4a+5a)	conv. ^[b] (1a)	dr ^[c]	ee (%) ^[d]
1	C ₆ H ₅ CO ₂ H	0	35	55	N. D.	N. D.

[a] Reactions performed using 1.0 equiv of **1'a** (0.1 mmol, 0.2 M), 2.0 equiv of **2a**, 0.2 equiv of **cat. 3b**, and 0.2 equiv of benzoic acid in solvent at 0 °C. [b] Determined by GC analysis. N. D. = not detected.

°	+ NO2	3b (20 mol%) C ₆ H ₅ CO ₂ H (10 mol%) CHCl ₃ (0.2 M) T, 2 d	Ph	+ Ph	NO2 +	<u>~</u>
1'a 0.1 mmol	2a 0.2 mmol		7a	4a+5a	1a	
ontra	T (°C)		conv. ^[b]	conv. ^[b]	conv. ^[b]	dn [c]
enuy			(7 a)	(4 a +5 a)	(1a)	ur i
1	0		23	20	25	1:6
2	-20		20	15	trace	1:7

Table S8. The effect of temperature on γ' -regioselective anti-AVMA reaction^[a]

[a] Reactions performed using 1.0 equiv of **1'a** (0.1 mmol, 0.2 M), 2.0 equiv of **2a**, 0.2 equiv of **cat. 3b**, and 0.1 equiv of benzoic acid in solvent TCM. [b] Determined by GC analysis. [c] The dr values were determined by HPLC analysis of the crude reaction mixture.

Table S9. The effect of the solvent on γ' -regioselective *anti*-AVMA reaction^[a]

0	+ NO2	3b (20 mol%) C ₆ H ₅ CO ₂ H (10 mol%) solvent (0.2 M) -20 °C, 3 d	Ph NO ₂ +	Ph NO ₂
1'a 0.1 mmol	2a 0.2 mmol		7a	4a+5a
entry	solv	vent	conv. ^[b]	dr ^[c]
1	Tolu	iene	0	N. D.
2	TC	ĊM	35	1:7
3	DCM		40	1:10
4	THF		0	N. D.
5	DCM/Me	OH (1:1)	0	N. D.

[a] Reactions performed using 1.0 equiv of **1'a** (0.1 mmol, 0.2 M), 2.0 equiv of **2a**, 0.2 equiv of **cat. 3b**, and 0.1 equiv of benzoic acid in solvent at -20 °C. [b] Determined by GC analysis. [c] The dr values were determined by HPLC analysis of the crude reaction mixture. N. D. = not detected.

	+ NO ₂	3b (20 mol%) acid (10 mol%) DCM (0.2 M) -20 °C	→	Ph	.NO ₂
	1'a 2a 0.2 mmol 0.1 mmol		7a	4a+5a	
Entry	acid	Time (h)	conv. (7a, 4a+5a)(%) ^[b]	dr ^[c]	ee (%) ^[d]
1	C ₆ H ₅ CO ₂ H	36	46, 36	1:8	97
2	4-MeO-C ₆ H ₄ CO ₂ H	36	27, 40	1:5	N. D.
3	$4-NO_2-C_6H_4CO_2H$	36	52, 42	1:8	N. D.
4	TsOH	36	50, 42	1:5	N. D.
5	3,5-(NO ₂) ₂ -C ₆ H ₃ CO ₂ H	36	39, 48	1:6	N. D.
6	CF ₃ COOH	36	24, 66	1:4	N. D.
7	tBu-COOH	36	58, 34	1:6	N. D.
8	(Ph) ₃ COOH	36	48, 35	1:5	N. D.
9	N-Boc-D-Phg	36	50, 41	1:7	N. D.
10	Ph ₃ CCOOH	36	67, 31	1:7	N. D.
11	Ph ₃ CCOOH (3 Å MS)	36	18, 12	1:9	N. D.
12 ^[e]	2,6-(<i>t</i> Bu) ₂ -4-Me-C ₆ H ₂ OH	72	55, 5	1:19	98
13 ^[f]	2,6-(<i>t</i> Bu) ₂ -4-Me-C ₆ H ₂ OH	72	64, 7	1:19	98
14 ^[g]	2,6-(<i>t</i> Bu) ₂ -4-Me-C ₆ H ₂ OH	72	26, 55	1:19	N. D
15	none	72	37, 7	1:19	N. D

Table S10. The effect of the acids on γ' -regioselective *anti*-AVMA reaction^[a]

[a] Reactions performed using 1.0 equiv of **2a** (0.1 mmol, 0.2 M), 2.0 equiv of **1'a**, 0.2 equiv of **cat. 3b**, and 0.1 equiv of acid in DCM at -20 °C. [b] Determined by GC analysis. [c] The dr values were determined by HPLC analysis of the crude reaction mixture. [d] The ee values were determined by chiral HPLC analysis. [e] c = 0.1 M. [f] c = 0.1 M, additive (20 mol%) was added. [g] c = 0.1 M, T = 0 °C. N. D. = not detected.

C: General procedure for γ- and γ'-regioselective AVMA Reaction C1: General procedure for γ-*anti*-AVMA reaction

 β -Alkyl-cyclohex-2-enones **1** (0.4 mmol, 2.0 equiv) and nitroalkenes **2** (0.2 mmol, 1.0 equiv) were added to a solution of catalyst **3a** (0.04 mmol, 0.2 equiv) and 4-fluoro-2-nitro-benzoic acid (0.12 mmol, 0.6 equiv) in toluene (1 mL, 0.2 M). The reaction mixture was stirred at 30 °C for several days. The toluene was removed under vacuum and the residue was purified by silica gel chromatography (PE/EA= 8:1-5:1) to obtain product **4**. The reactions were also catalyzed by racemic **3i** (Table S1) for synthesis of racemic products **4** that used for chiral HPLC analysis.

C2: General procedure for γ-regioselective syn-AVMA reaction

 β -Alkyl-cyclohex-2-enones 1 (0.4 mmol, 2.0 equiv) and nitroalkenes 2 (0.2 mmol, 1.0 equiv) were added to a solution of catalyst **3b** (0.04 mmol, 0.2 equiv) and 2-nitro-benzoic acid (0.1 mmol, 0.5 equiv) in toluene (1 mL, 0.2 M). The reaction mixture was stirred at 30 °C for several days. The toluene was removed under vacuum and the residue was purified by silica gel chromatography (PE/EA= 8:1-5:1) to obtain product **5**. The reactions were also catalyzed by racemic **3i** (Table S1) for synthesis of racemic products **5** that used for chiral HPLC analysis.

C3: General procedure for γ' -regioselective syn-AVMA reaction

 β -Substituted-cyclohex-3-enones 1' (0.2 mmol, 1.0 equiv) and nitroalkenes 2 (0.4 mmol, 2.0 equiv) were added to a solution of catalyst **3a** (0.04 mmol, 0.2 equiv) and 4-nitro-benzoic acid (0.04 mmol,

0.2 equiv) in chloroform (1 mL, 0.2 M). The reaction mixture was stirred at 0 °C for several days. The solvent was removed under vacuum and the residue was purified by silica gel chromatography (PE/EA= 8:1-5:1) to obtain product 6. The reactions were also catalyzed by racemic 3i (Table S1) for synthesis of racemic products 6 that used for chiral HPLC analysis.

β-Substituted -cyclohex-3-enones 1' (0.4 mmol, 2.0 equiv) and nitroalkenes 2 (0.2 mmol, 1.0 equiv) were added to a solution of catalyst **3b** (0.04 mmol, 0.2 equiv) and 2,6-(*t*-Bu)₂-4-Me-C₆H₂OH (0.04 mmol, 0.2 equiv) in CH₂Cl₂ (2 mL, 0.1 M). The reaction mixture was stirred at -20 °C for several days The solvent was removed under vacuum and the residue was purified by silica gel chromatography (PE/EA= 8:1-5:1) to obtain product 7. For chiral HPLC analysis, the reactions were also conducted under the cat. **3'b** for synthesis of the enantiomers of **7b-7p**, **7r-7s**, and **7u**. Others were procured under the racemic cat. **3i**.

C5: Procedure for γ-AVMA between β-ethyl-cyclohex-2-enone and benzylidenemalononitrile

β-Ethyl-cyclohex-2-enones **1a** (0.4 mmol, 2.0 equiv) and benzylidenemalononitrile **8** (0.2 mmol, 1.0 equiv) were added to a solution toluene of catalyst **3a** (0.04 mmol, 0.2 equiv) and 4-fluoro-2-nitrobenzoic acid (0.12 mmol, 0.6 equiv) in toluene (1 mL, 0.2 M). The reaction mixture was stirred at 30 °C for 2 days. The toluene was removed under vacuum and the residue was purified by silica gel chromatography (PE/EA= 8:1-5:1) to obtain product **10**. The reactions were also catalyzed by racemic **3i** (Table S1) for synthesis of racemic products **10** that used for chiral HPLC analysis

β-Ethyl -cyclohex-2-enones **1a** (0.4 mmol, 2.0 equiv) and benzylidenemalononitrile **8** (0.2 mmol, 1.0 equiv) were added to a solution of catalyst **3b** (0.04 mmol, 0.2 equiv) and 2-nitro-benzoic acid (0.1 mmol, 0.5 equiv) in toluene (1 mL, 0.2 M). The reaction mixture was stirred at 30 °C for 2 days. The toluene was removed under vacuum and the residue was purified by silica gel chromatography (PE/EA= 8:1-5:1) to obtain product **11**. The reactions were also catalyzed by racemic **3i** (Table S1) for synthesis of racemic products **11** that used for chiral HPLC analysis

C6: Procedure for γ' -syn-AVMA between β -styryl-cyclohex-3-enone and N-phenyl-maleimide

β-Substituted-cyclohex-3-enones 1' (0.2 mmol, 1.0 equiv) and *N*-phenyl-maleimide 9 (0.4 mmol, 2.0 equiv) were added to a solution of catalyst 3i (0.04 mmol, 0.2 equiv) and benzoic acid (0.04 mmol, 0.2 equiv) in CH₂Cl₂ (1 mL, 0.2 M). The reaction mixture was stirred at room temperture for 1 days. The solvent was removed under vacuum and the residue was purified by silica gel chromatography (PE/EA= 3:1-1:1) to obtain product 12. The reactions were also catalyzed by racemic 3i (Table S1) for synthesis of racemic products 12 that used for chiral HPLC analysis

C7: Derivation of the adducts

 γ -Anti-adduct **4a** (0.2 mmol, 1.0 equiv), **8** (0.4 mmol, 2.0 equiv) and potassium carbonate (0.3 mmol, 1.5 equiv) were added to CH₃CN (2 mL, 0.1 M). The reaction mixture was stirred at r.t. for 12 h. The solvent was removed under vacuum and the residue was purified by silica gel chromatography (PE/EA= 6:1-4:1) to obtain product **14**.

 γ -Syn-adduct **5a** (0.2 mmol, 1.0 equiv), **8** (0.24 mmol, 1.2 equiv) and potassium carbonate (0.24 mmol, 1.2 equiv) were added to CH₃CN (2 mL, 0.1 M). The reaction mixture was stirred at -10 °C. for 12 h. The solvent was removed under vacuum and the residue was purified by silica gel chromatography (PE/EA= 6:1-4:1) to obtain product **15**.

 γ' -Syn-adduct **6a** (0.2 mmol, 1.0 equiv), **8** (0.24 mmol, 1.2 equiv) and potassium carbonate (0.24 mmol mmol, 1.2 equiv) were added to CH₃CN (2 mL, 0.1 M). The reaction mixture was stirred at r.t. for 12 h. The solvent was removed under vacuum and the residue was purified by silica gel chromatography (PE/EA= 6:1-4:1) to obtain product **16**.

 γ' -Anti-adduct **7a** (0.2 mmol, 1.0 equiv), **8** (0.24 mmol, 1.2 equiv) and potassium carbonate (0.24 mmol mmol, 1.2 equiv) were added to CH₃CN (2 mL, 0.1 M). The reaction mixture was stirred at -10 °C. for 12 h. The solvent was removed under vacuum and the residue was purified by silica gel chromatography (PE/EA= 6:1-4:1) to obtain product **17**.

D: Products of γ - and γ' -regioselective AVMA and [4+2] cycloadducts.

4a: 3-((2R,3R)-4-nitro-3-phenylbutan-2-yl)cyclohex-2-en-1-one

The product was obtained in 77% yield, pale yellow solid. Mp 94-96 °C; $[\alpha]_D^{25}$ 14.6 (*c* 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.25 (d, *J* = 6.8 Hz, 3H), 1.61-1.71 (m, 1H), 1.75-1.84 (m, 1H), 2.08-2.12 (m, 2H), 2.17-2.22 (m, 2H), 2.66-2.74 (m, 1H), 3.54-3.62 (m, 1H), 4.62-4.68 (m, 1H), 4.73-4.78 (m, 1H), 5.74 (s, 1H), 7.10-7.12 (m, 2H), 7.21-7.25 (m, 1H), 7.26-7.31 (m, 2H). ¹³C

NMR (100 MHz, CDCl₃): δ (ppm) 16.9, 22.5, 27.2, 37.4, 45.2, 48.0, 78.5, 127.4, 127.8, 128.0, 128.9, 137.8, 166.5, 199.5. HRMS (EI): exact mass calculated for [M]⁺ (C₁₆H₁₉NO₃) requires m/z 273.1365, found m/z 273.1366. The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), *n*-Hexane / EtOH = 9/1, 1.0 mL/min, λ = 254 nm, 19.90 min (major), 24.98 min (minor), ee = 92%.

4b: 3-((2R,3R)-4-nitro-3-(p-tolyl)butan-2-yl)cyclohex-2-en-1-one

The product was obtained in 79% yield, yellow oil. $[\alpha]_D^{25}$ 12.6 (*c* 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.24 (d, *J* = 6.8 Hz, 3H), 1.65-1.73 (m, 1H), 1.77-1.86 (m, 1H), 2.10-2.13 (m, 2H), 2.19-2.22 (m, 2H), 2.28 (s, 3H), 2.65-2.72 (m, 1H), 3.51-3.57 (m, 1H), 4.59-4.65 (m, 1H), 4.71-4.75 (m, 1H), 5.74 (s, 1H), 6.99 (d, *J* = 8.4 Hz, 2H), 7.07 (d, *J* = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 16.9, 21.1, 22.5, 27.2, 37.4, 45.2, 47.6, 78.7, 127.4, 127.6, 129.6,

134.6, 137.6, 166.9, 199.7. HRMS (EI): exact mass calculated for $[M]^+$ (C₁₇H₂₁NO₃) requires m/z 287.1521, found m/z 287.1524. The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), *n*-Hexane / EtOH = 9/1, 1.0 mL/min, λ = 254 nm, 16.29 min (major), 18.59 min (minor), ee = 92%.

4c: 3-((2R,3R)-3-(4-methoxyphenyl)-4-nitrobutan-2-yl)cyclohex-2-en-1-one

The product was obtained in 73% yield, yellow solid. Mp 98-101°C; $[\alpha]_D^{25}$ 36.4 (*c* 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.92 (d, *J* = 7.2 Hz, 3H), 2.00-2.11 (m, 2H), 2.37-2.45 (m, 4H), 2.53-2.61 (m, 1H), 3.41-3.47 (m, 1H), 3.79 (s, 3H), 4.47-4.54 (m, 2H), 5.97 (s, 1H), 6.86-6.88 (m, 2H), 7.08-7.11 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 17.3, 22.8, 26.1, 37.6, 45.5, 46.8, 55.3, 79.7, 114.4, 127.5, 129.0, 159.3, 166.4, 199.3. HRMS (EI): exact mass calculated

for [M]⁺ (C₁₇H₂₁NO₄) requires m/z 303.1471, found m/z 303.1473. The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), *n*-Hexane / EtOH = 9/1, 1.0 mL/min, λ = 254 nm, 24.37 min (major), 27.07 min (minor), ee = 93%.

4d: 3-((2R,3R)-3-(4-fluorophenyl)-4-nitrobutan-2-yl)cyclohex-2-en-1-one

The product was obtained in 72% yield, yellow oil. $[\alpha]_D^{25}$ 13.8 (*c* 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.26 (d, *J* = 6.8 Hz, 3H), 1.63-1.71 (m, 1H), 1.78-1.87 (m, 1H), 2.09-2.11 (m, 2H), 2.20-2.23 (m, 2H), 2.63-2.71 (m, 1H), 3.54-3.60 (m, 1H), 4.58-4.63 (m, 1H), 4.73-4.78 (m, 1H), 5.73 (s, 1H), 6.97-7.01 (m, 2H), 7.08-7.12 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 17.0, 22.5, 27.2, 37.3, 45.2, 47.3, 78.6, 115.8, 116.0, 127.5, 129.4, 129.4, 133.5, 133.6, 166.5,

199.7. HRMS (EI): exact mass calculated for $[M]^+$ (C₁₆H₁₈FNO₃) requires m/z 291.1271, found m/z 291.1269. The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), *n*-Hexane / EtOH = 9/1, 1.0 mL/min, λ = 254 nm, 22.55 min (major), 28.53 min (minor), ee = 93%.

4e: 3-((2R,3R)-3-(4-chlorophenyl)-4-nitrobutan-2-yl)cyclohex-2-en-1-one

The product was obtained in 69% yield, yellow solid. Mp 64-66°C; $[\alpha]_D^{25}$ 12.1 (*c* 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.26 (d, *J* = 6.8 Hz, 3H), 1.64-1.71 (m, 1H), 1.79-1.88 (m, 1H), 2.10-2.11 (m, 2H), 2.21-2.24 (m, 2H), 2.64-2.71 (m, 1H), 3.54-3.60 (m, 1H), 4.58-4.63 (m, 1H), 4.73-4.77 (m, 1H), 5.74 (s, 1H), 7.07 (d, *J* = 8.4 Hz, 2H), 7.27 (d, *J* = 8.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 16.9, 22.5, 27.2, 37.3, 45.0, 47.3, 78.4, 127.5,

129.1, 133.9, 136.4, 166.0, 199.4. HRMS (EI): exact mass calculated for $[M]^+$ (C₁₆H₁₈ClNO₃) requires m/z 307.0975, found m/z 307.0973. The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), *n*-Hexane / EtOH = 9/1, 1.0 mL/min, λ = 254 nm, 24.56 min (major), 31.53 min (minor), ee = 94%.

4f: 3-((2R,3R)-3-(4-bromophenyl)-4-nitrobutan-2-yl)cyclohex-2-en-1-one

The product was obtained in 65% yield, yellow oil. $[\alpha]_D^{25}$ 11.0 (*c* 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.26 (d, *J* = 6.8 Hz, 3H), 1.68-1.75 (m, 1H), 1.79-1.89 (m, 1H), 2.11-2.12 (m, 2H), 2.21-2.25 (m, 2H), 2.64-2.71 (m, 1H), 3.53-3.59 (m, 1H), 4.57-4.63 (m, 1H), 4.72-4.77 (m, 1H), 5.74 (s, 1H), 7.00 (d, *J* = 8.0 Hz, 2H), 7.43 (d, *J* = 8.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 16.9, 22.5, 27.2, 37.3, 45.0, 47.4, 78.3, 122.0, 127.5, 129.5, 132.1, 136.9, 166.4,

199.7. HRMS (EI): exact mass calculated for $[M]^+$ (C₁₆H₁₈BrNO₃) requires m/z 351.0470, found m/z 351.0469. The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), *n*-Hexane / EtOH = 9/1, 1.0 mL/min, λ = 254 nm, 16.26 min (major), 16.38 min (minor), ee = 93%.

4g: 3-((2R,3R)-4-nitro-3-(3-nitrophenyl)butan-2-yl)cyclohex-2-en-1-one

The product was obtained in 58% yield, yellow oil. $[\alpha]_D^{25}$ 4.0 (*c* 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.30 (d, *J* = 6.8 Hz, 3H), 1.67-1.76 (m, 1H), 1.84-1.90 (m, 1H), 2.17-2.24 (m, 4H), 2.72-2.80 (m, 1H), 3.71-3.77 (m, 1H), 5.73 (s, 1H), 7.48-7.52 (m, 2H), 8.05 (s, 1H), 8.10-8.15 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 16.8, 22.5, 27.2, 37.3, 45.0, 47.4, 77.9, 122.5, 123.2, 127.8, 130.1, 134.0, 140.2, 148.4, 165.0, 199.0. HRMS (EI): exact mass calculated for $[M]^+$ (C₁₆H₁₈N₂O₅) requires m/z 318.1216, found m/z 318.1217. The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), *n*-Hexane / EtOH = 9/1, 1.0 mL/min, λ = 254 nm, 34.80 min (major), 73.83 min (minor), ee = 91%.

4h: 3-((2R,3R)-3-(naphthalen-2-yl)-4-nitrobutan-2-yl)cyclohex-2-en-1-one

The product was obtained in 84% yield, yellow solid. Mp 94-95°C; $[\alpha]_D^{25}$ 32.5 (*c* 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.28 (d, *J* = 6.8 Hz, 3H), 1.55-1.66 (m, 1H), 1.70-1.80 (m, 1H), 2.11-2.15 (m, 4H), 2.77-2.85 (m, 1H), 3.73-3.79 (m, 1H), 4.72-4.83 (m, 2H), 5.78 (s, 1H), 7.23-7.25 (m, 1H), 7.43-7.49 (m, 2H), 7.56 (s, 1H), 7.42-7.79 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 16.8, 22.5, 27.3, 37.3, 45.1, 48.0, 78.4, 124.9, 126.4, 126.6, 127.2, 127.4, 127.7,

127.8, 128.9, 132.8, 133.2, 135.2, 166.4, 199.4. HRMS (EI): exact mass calculated for $[M]^+$ (C₂₀H₂₁NO₃) requires m/z 323.1521, found m/z 323.1524. The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), *n*-Hexane / EtOH = 9/1, 1.0 mL/min, λ = 254 nm, 20.96 min (major), 24.24 min (minor), ee = 93%.

4i: 3-((2R,3S)-3-(furan-2-yl)-4-nitrobutan-2-yl)cyclohex-2-en-1-one

The product was obtained in 80% yield, yellow solid. Mp 58-59°C; $[\alpha]_D^{25}$ 19.5 (*c* 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.20 (d, *J* = 6.8 Hz, 3H), 1.84-1.96 (m, 2H), 2.13-2.21 (m, 2H), 2.29-2.33 (m, 2H), 2.76-2.83 (m, 1H), 3.74-3.79 (m, 1H), 4.60-4.73 (m, 2H), 5,80 (s, 1H), 6.13 (d, *J* = 3.2 Hz, 1H), 6.26-6.28 (m, 1H), 7.32-7.33 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm)

16.0, 22.7, 27.1, 37.5, 41.5, 43.4, 76.0, 108.2, 110.5, 127.1, 142.5, 150.8, 165.7, 199.5. HRMS (EI): exact mass calculated for $[M]^+$ (C₁₄H₁₇NO₄) requires m/z 263.1158, found m/z 263.1159. The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), *n*-Hexane / EtOH = 9/1, 1.0 mL/min, $\lambda = 254$ nm, 18.57 min (major), 28.77 min (minor), ee = 91%.

4j: 3-((2R,3R)-1-nitro-2-phenylpentan-3-yl)cyclohex-2-en-1-one

The product was obtained in 72% yield, yellow solid. Mp 72-74°C; $[\alpha]_D^{25}$ 31.1 (*c* 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.88 (t, *J* = 7.2 Hz, 3H), 1.52-1.64 (m, 2 H), 1.69-1.79 (m, 2H), 1.98-2.01 (m, 2H), 2.16-2.19 (m, 2H), 2.43-2.50 (m, 1H), 3.54-3.60 (m, 1H), 4.60-4.66 (m, 1H), 4.79-4.83 (m, 1H), 5.72 (s, 1H), 7.08-7.10 (m, 2H), 7.20-7.24 (m, 1H), 7.25-7.29 (m, 2H). ¹³C NMR

(100 MHz, CDCl₃): δ (ppm) 12.1, 22.4, 23.7, 27.2, 37.4, 47.5, 52.8, 79.2, 128.0, 128.0, 128.8, 129.3, 137.7, 164.7, 199.4. HRMS (ESI): exact mass calculated for [M+H]⁺ (C₁₇H₂₁NO₃) requires m/z 287.1521, found m/z 287.1523. The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), *n*-Hexane / EtOH = 9/1, 0.5 mL/min, λ = 254 nm, 29.08 min (major), 34.08 min (minor), ee = 93%.

4k: 3-((2R,3R)-1-nitro-2-phenylhexan-3-yl)cyclohex-2-en-1-one

The product was obtained in 65% yield, yellow oil. $[\alpha]_D^{25} 53.8 (c \ 1.00, CH_2Cl_2)$. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.91-0.94 (m, 3H), 1.13-1.24 (m, 1H), 1.28-1.37 (m, 1H), 1.54-1.65 (m, 4H), 1.69-1.78 (m, 1H), 1.99-2.01 (m, 2H), 2.15-2.18 (m, 1H), 2.52-2.59 (m, 1H), 3.53-3.59 (m, 1H), 4.60-4.66 (m, 1H), 4.79-4.84 (m, 1H), 5.70 (s, 1H), 7.08-7.10 (m, 2H), 7.20-7.25 (m, 2H), 7.27-7.29 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 14.0, 20.8, 22.4, 27.1, 32.9, 37.5,

47.6, 50.9, 79.2, 128.0, 128.8, 129.2, 137.7, 164.7, 199.2. HRMS (EI): exact mass calculated for $[M]^+$ (C₁₈H₂₃NO₃) requires m/z 301.1678, found m/z 301.1675. The enantiomeric ratio was determined by Daicel Chiralpak AS (25 cm), *n*-Hexane / EtOH = 7/3, 0.55 mL/min, λ = 254 nm, 24.18 min (major), 28.57 min (minor), ee = 92%.

41: 3-((2R,3R)-1-nitro-2-phenylheptan-3-yl)cyclohex-2-en-1-one

The product was obtained in 63% yield, yellow oil. [α]_D²⁵ 128.2 (*c* 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.87-0.91 (m, 3H), 1.12-1.40 (m, 4H), 1.60-1.79 (m, 4H), 1.98-2.01 (m, 2H), 2.15-2.19 (m, 2H), 2,50-2.56 (m, 1H), 3.53-3.59 (m, 1H), 4.60-4.66 (m, 1H), 4.79-4.83 (m, 1H), 5.70 (s, 1H), 7.08-7.10 (m, 2H), 7.20-7.25 (m, 2H), 7.27-7.29 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ

(ppm) 13.9, 22.4, 22.6, 27.1, 29.8, 29.8, 30.5, 37.5, 47.6, 51.2, 79.2, 128.0, 128.8, 129.2, 137.7, 164.8, 199.2. HRMS (EI): exact mass calculated for $[M]^+$ (C₁₉H₂₅NO₃) requires m/z 315.1834, found m/z 315.1832. The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), *n*-Hexane / EtOH = 19/1, 1.0 mL/min, λ = 254 nm, 15.03 min (major), 16.39 min (minor), ee = 94%.

4m: 3-((2R,3R)-1-nitro-2-phenyloctan-3-yl)cyclohex-2-en-1-one

The product was obtained in 67% yield, yellow oil. [α]_D²⁵ 29.7 (*c* 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 0.86-0.89 (m, 3H), 1.16-1.30 (m, 6H), 1.54-1.64 (m, 3H), 1.70-1.78 (m, 1H), 1.98-2.01 (m, 2H), 2.15-2.18 (m, 2H), 2.50-2.56 (m, 1H), 3.52-3.58 (m, 1H), 4.60-4.66 (m, 1H), 4,79-4.83 (m, 1H), 5.70 (s, 1H), 7.07-7.10 (m, 2H), 7.20-7.29 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 14.0,

22.4, 22.5, 27.1, 27.3, 30.7, 31.7, 37.5, 47.6, 51.2, 79.2, 128.0, 128.8, 129.2, 137.7, 164.8, 199.2. HRMS (EI): exact mass calculated for $[M]^+$ (C₂₀H₂₇NO₃) requires m/z 329.1991, found m/z 329.1994. The enantiomeric ratio was determined by Daicel Chiralpak AD (25 cm), *n*-Hexane / EtOH = 19/1, 0.8 mL/min, $\lambda = 254$ nm, 22.43 min (major), 25.26 min (minor), ee = 93%.

4n: 3-((1R,2R)-3-nitro-1,2-diphenylpropyl)cyclohex-2-en-1-one

The product was obtained in 69% yield, yellow oil. $[\alpha]_D^{25}$ 12.5 (*c* 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.49-1.59 (m, 1H), 1.68-1.76 (m, 1H), 2.00-2.12 (m, 3H), 2.18-2.45 (m,1H), 3.79 (d, *J* = 12.0 Hz, 1H), 4.15-4.22 (m, 1H), 4.38-4.49 (m, 2H), 5.93 (s, 1H), 7.25-7.27 (m, 3H), 7.30-7.44 (m, 7H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 22.4, 27.8, 37.1, 46.0, 56.5, 79.8, 127.6, 127.9,

128.0, 128.2, 128.4, 129.1, 129.6, 137.2, 137.8, 163.5, 199.3. HRMS (EI): exact mass calculated for $[M]^+$ (C₂₁H₂₁NO₃) requires m/z 335.1521, found m/z 335.1521. The enantiomeric ratio was determined by Daicel Chiralpak IB (25 cm), *n*-Hexane / EtOH = 7/3, 0.9 mL/min, λ = 220 nm, 10.05 min (minor), 15.31 min (major), ee = 99%.

40: 3-((2R,3R)-4-nitro-1,3-diphenylbutan-2-yl)cyclohex-2-en-1-one

The product was obtained in 58% yield, yellow solid. Mp 101-103°C; $[\alpha]_D^{25}$ 45.2 (*c* 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.42-1.56 (m, 2H), 1.65-1.72 (m, 1H), 1.84-1.92 (m, 1H), 2.01-2.04 (m, 2H), 2.75-2.81 (m, 1H), 2.88-2.94 (m, 1H), 3.09-3.13 (m, 1H), 3.66-3.73 (m, 1H), 4.69-4.74 (m, 1H), 4.86-4.90 (m, 1H), 5.67 (s, 1H), 7.10-7.13 (m, 4H), 7.18-7.25 (m, 3H), 7.26-7.31 (m,

3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 22.1, 28.8, 37.2, 37.8, 47.6, 52.4, 79.0, 126.8, 128.1, 128.7, 128.8, 129.2, 137.4, 138.0, 164.3, 198.9. HRMS (EI): exact mass calculated for [M]⁺ (C₂₂H₂₃NO₃) requires m/z 349.1678, found m/z 349.1682. The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), *n*-Hexane / EtOH = 19/1, 1.0 mL/min, λ = 254 nm, 19.80 min (major), 22.48 min (minor), ee = 99%.

4p: 3-((2*R*,3*R*)-2-(4-bromophenyl)-1-nitrohexan-3-yl)cyclohex-2-en-1-one

The product was obtained in 78% yield, yellow solid. Mp 99-101°C; $[\alpha]_D^{25}$ 40.5 (*c* 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.90-0.94 (t, *J* = 7.2 Hz, 3H), 1.13-1.31 (m, 2H), 1.54-1.65 (m, 3H), 1.74-1.80 (m, 1H), 2.00-2.03 (m, 2H), 2.18-2.21 (m, 2H), 2.49-2.56 (m, 1H), 3.50-3.56 (m, 1H), 4.55-4.61 (m, 1H), 4.78-4.82 (m, 1H), 5.72 (s, 1H), 6.98 (d, *J* = 8 Hz, 2H), 7.42 (m, *J* = 8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 12.9, 19.7, 21.4, 26.1, 31.9, 36.4, 46.0,

49.6, 77.9, 120.9, 128.2, 128.6, 131.0, 135.8, 163.1, 198.0. HRMS (EI): exact mass calculated for $[M]^+$ (C₁₈H₂₂BrNO₃) requires m/z 379.0783, found m/z 379.0784. The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), *n*-Hexane / EtOH = 9/1, 0.95 mL/min, λ = 220 nm, 12.43 min (major), 13.32 min (minor), ee = 95%.

5a: 3-((2*S*,3*R*)-4-nitro-3-phenylbutan-2-yl)cyclohex-2-en-1-one

The product was obtained in 68% yield, pale yellow solid. Mp 138-140 °C; $[\alpha]_D^{25}$ 38.3 (*c* 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.92 (d, *J* = 6.8 Hz, 3H), 2.00-2.12 (m, 2H), 2.33-2.49 (m, 4H), 2.58-2.65 (m, 1H), 3.46-3.53 (m, 1H), 4.49-4.59 (m, 2H), 5.98 (s, 1H), 7.18 (m, 2H), 7.28-7.37 (m, 3H). ¹³C NMR (100

MHz, CDCl₃): δ (ppm) 17.4, 22.8, 26.1, 37.6, 45.4, 47.4, 79.5, 127.5, 128.0, 128.2, 129.1, 137.3, 166.2, 199.3. HRMS (EI): exact mass calculated for [M]⁺ (C₁₆H₁₉NO₃) requires m/z 273.1365, found m/z 273.1367. The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), *n*-Hexane / EtOH = 9/1, 1.0 mL/min, λ = 254 nm, 15.80 min (minor), 23.33 min (major), ee = 99%.

5b: 3-((2S,3R)-4-nitro-3-(p-tolyl)butan-2-yl)cyclohex-2-en-1-one

The product was obtained in 76% yield, pale yellow solid. Mp 145-147 °C; $[\alpha]_D^{25}$ 45.1 (*c* 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.92 (d, *J* = 6.8 Hz, 3H), 1.99-2.11 (m, 2H), 2.33 (s, 3H), 2.38-2.45 (m, 4H), 2.55-2.63 (m, 1H), 3.42-3.49 (m, 1H), 4.47-4.56 (m, 2H), 5.97 (s, 1H), 7.06 (d, *J* = 8.0 Hz, 2H), 7.15 (d, *J* = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 17.3, 21.1, 22.8, 26.1, 37.6, 45.4, 47.1, 79.6, 127.5, 127.8, 129.7, 134.1, 137.9, 166.4, 199.3. HRMS

(EI): exact mass calculated for $[M]^+$ (C₁₇H₂₁NO₃) requires m/z 287.1521, found m/z 287.1522. The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), *n*-Hexane / EtOH = 9/1, 1.0 mL/min, $\lambda = 254$ nm, 14.67 min (minor), 24.36 min (major), ee = 98%.

5c: 3-((2S,3R)-3-(4-methoxyphenyl)-4-nitrobutan-2-yl)cyclohex-2-en-1-one

The product was obtained in 63% yield, pale yellow solid. Mp 136-138 °C; $[\alpha]_D^{25}$ 53.3 (*c* 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.92 (d, *J* = 6.8 Hz, 3H), 1.98-2.13 (m, 2H), 2.37-2.46 (m, 4H), 2.53-2.61 (m, 1H), 3.41-3.48 (m, 1H), 3.79 (s, 3H), 4.47-4.54 (m, 2H), 5.97 (s, 1H), 6.87 (d, *J* = 8.8 Hz, 2H), 7.10 (d, *J* = 8.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 17.3, 22.8, 26.1, 37.6, 45.5, 46.8, 55.3, 79.7, 114.4, 127.5, 129.0, 159.3, 166.4, 199.3. HRMS (EI): exact

mass calculated for $[M]^+$ (C₁₇H₂₁NO₄) requires m/z 303.1471, found m/z 303.1473. The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), *n*-Hexane / EtOH = 9/1, 1.0 mL/min, $\lambda = 254$ nm, 25.22 min (major), 40.32 min (minor), ee = 99%.

5d: 3-((2S,3R)-3-(4-fluorophenyl)-4-nitrobutan-2-yl)cyclohex-2-en-1-one

The product was obtained in 83% yield, pale yellow solid. Mp 111-113 °C; $[\alpha]_D^{25}$ 37.8 (*c* 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.92 (d, *J* = 6.8 Hz, 3H), 2.00-2.12 (m, 2H), 2.37-2.46 (m, 4H), 2.54-2.62 (m, 1H), 3.46-3.52 (m, 1H), 4.48-4.55 (m, 2H), 5.97 (s, 1H), 7.03-7.07 (m, 2H), 7.15-7.19 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 17.4, 22.8, 26.4, 37.6, 45.4, 46.8, 79.5, 116.0, 116.2, 127.6, 129.5, 129.6, 133.0, 133.0, 165.8, 199.1. HRMS (EI): exact mass

calculated for $[M]^+$ (C₁₆H₁₈FNO₃) requires m/z 291.1271, found m/z 291.1269. The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), *n*-Hexane / EtOH = 9/1, 1.0 mL/min, λ = 254 nm, 19.29 min (minor), 26.30 min (major), ee = 99%.

5e: 3-((2S,3R)-3-(4-chlorophenyl)-4-nitrobutan-2-yl)cyclohex-2-en-1-one

The product was obtained in 73% yield, pale yellow solid. Mp 111-113 °C; $[\alpha]^{25}_{D}$ 48.7 (*c* 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.92 (d, *J* = 6.8 Hz, 3H), 1.99-2.14 (m, 2H), 2.33-2.50 (m, 4H), 2.54-2.62 (m, 1H), 3.45-3.51 (m, 1H), 4.48-4.55 (m, 2H), 5.97 (s, 1H), 7.14 (d, *J* = 8.4 Hz, 2H), 7.34 (d, *J* = 8.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 17.4, 22.8, 26.0, 37.6, 45.2, 46.9, 79.3, 127.6, 129.3, 129.3, 134.1, 135.8, 165.6, 199.1. HRMS (EI): exact mass

calculated for $[M]^+$ (C₁₆H₁₈ClNO₃) requires m/z 307.0975, found m/z 307.0973. The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), *n*-Hexane / EtOH = 9/1, 1.0 mL/min, λ = 254 nm, 20.48 min (major), 28.09 min (minor), ee = 97%.

5f: 3-((2S,3R)-3-(4-bromophenyl)-4-nitrobutan-2-yl)cyclohex-2-en-1-one

The product was obtained in 66% yield, pale yellow solid. Mp 126-128 °C; $[\alpha]_D^{25}$ 74.3 (*c* 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.92 (d, *J* = 6.8 Hz, 3H), 1.99-2.14 (m, 2H), 2.32-2.50 (m, 4H), 2.54-2.61 (m, 1H), 3.44-3.50 (m, 1H), 4.48-4.55 (m, 2H), 5.97 (s, 1H), 7.08 (d, *J* = 8.4 Hz, 2H), 7.49 (d, *J* = 8.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 17.4, 22.8, 26.0, 37.6, 45.2, 46.9, 79.2, 122.2, 127.6, 129.6, 136.3, 165.6, 199.1. HRMS (EI): exact mass calculated

for $[M]^+$ (C₁₆H₁₈BrNO₃) requires m/z 351.0470, found m/z 351.0471. The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), *n*-Hexane / EtOH = 9/1, 1.0 mL/min, λ = 254 nm, 22.00 min (minor), 30.13 min (major), ee = 99%.

5g: 3-((2S,3R)-4-nitro-3-(3-nitrophenyl)butan-2-yl)cyclohex-2-en-1-one

The product was obtained in 55% yield, pale yellow solid. Mp 137-140 °C; $[\alpha]_D^{25}$ 40.0 (*c* 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.94 (d, *J* = 6.8 Hz, 3H), 2.02-2.16 (m, 2H), 2.36-2.52 (m, 4H), 2.63-2.71 (m, 1H), 3.62-3.69 (m, 1H), 4.55-4.64 (m, 2H), 6.01 (s, 1H), 7.55-7.60 (m, 2H), 8.11 (s, 1H), 8.19-8.22 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 17.5, 22.8, 26.1, 37.6, 45.0, 47.1,

78.9, 122.8, 123.4, 127.8, 130.2, 134.3, 139.7, 148.7, 164.7, 198.9. HRMS (EI): exact mass calculated for $[M]^+$ (C₁₆H₁₈N₂O₅) requires m/z 318.1216, found m/z 318.1218. The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), *n*-Hexane / EtOH = 9/1, 1.0 mL/min, λ = 254 nm, 42.37 min (minor), 47.95 min (major), ee = 98%.

5h: 3-((2S,3R)-3-(naphthalen-2-yl)-4-nitrobutan-2-yl)cyclohex-2-en-1-one

The product was obtained in 82% yield, pale yellow solid. Mp 171-172 °C; $[\alpha]_D^{25}$ 53.2 (*c* 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.93 (d, *J* = 7.2 Hz, 3H), 2.01-2.15 (m, 2H), 2.39-2.51 (m, 4H), 2.69-2.77 (m, 1H), 3.63-3.70 (m, 1H), 4.56-4.69 (m, 2H), 6.04 (s, 1H), 7.30-7.32 (m, 1H), 7.49-7.51 (m, 2H), 7.65 (s, 1H), 7.80-7.87 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 17.6, 22.9, 26.0, 37.6, 45.3, 47.6, 79.5, 124.7, 126.4, 126.6, 127.7, 127.7, 127.8, 129.1, 133.0,

133.4, 134.6, 166.1, 199.2. HRMS (EI): exact mass calculated for $[M]^+$ (C₂₀H₂₁NO₃) requires m/z 323.1521, found m/z 323.1522. The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), *n*-Hexane / EtOH = 9/1, 1.0 mL/min, λ = 254 nm, 18.38 min (minor), 29.92 min (major), ee = 98%.

5i: 3-((2S,3S)-3-(furan-2-yl)-4-nitrobutan-2-yl)cyclohex-2-en-1-one

The product was obtained in 61% yield, pale yellow oil. $[\alpha]_D^{25}$ 31.5 (*c* 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.01 (d, *J* = 6.8 Hz, 3H), 1.96-2.11 (m, 2H), 2.25-2.43 (m, 4H), 2.66-2.74 (m, 1H), 3.67-3.73 (m, 1H), 4.46-4.50 (m, 1H), 4.60-4.66 (m, 1H), 5.92 (s, 1H), 6.20 (d, *J* = 3.2 Hz, 1H), 6.30-6.32 (m, 1H), 7.38 (d, *J* = 1.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 16.5,

22.8, 26.5, 37.6, 41.1, 43.3, 77.0, 109.2, 110.4, 127.4, 142.7, 150.1, 165.6, 199.3. HRMS (EI): exact mass calculated for $[M]^+$ (C₁₄H₁₇NO₄) requires m/z 263.1158, found m/z 263.1159. The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), *n*-Hexane / EtOH = 9/1, 1.0 mL/min, λ = 254 nm, 21.10 min (major), 22.81 min (minor), ee = 97%.

5j: 3-((2R,3S)-1-nitro-2-phenylpentan-3-yl)cyclohex-2-en-1-one

The product was obtained in 78% yield, pale yellow solid. Mp 192-194 °C; $[\alpha]_D^{25}$ 99.1 (*c* 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.69 (t, *J* = 7.2 Hz, 3H), 1.21-1.35 (m, 2H), 2.04-2.10 (m, 2H), 2.34-2.40 (m, 3H), 2.44-2.47 (m, 2H), 3.46-3.52 (m, 1H), 4.44-4.56 (m, 2H), 6.01 (s, 1H), 7.18-7.20 (m, 2H), 7.28-7.37 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 11.8, 22.8, 23.7, 25.7, 37.8, 47.0,

53.1, 79.7, 127.9, 128.2, 129.1, 129.7, 137.6, 164.2, 198.9. HRMS (ESI): exact mass calculated for $[M+H]^+$ (C₁₇H₂₁NO₃+H) requires m/z 288.1600, found m/z 288.1601. The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), *n*-Hexane / EtOH = 9/1, 1.0 mL/min, λ = 254 nm, 12.33 min (minor), 15.92 min (major), ee = 95%.

5k: 3-((2R,3S)-1-nitro-2-phenylhexan-3-yl)cyclohex-2-en-1-one

The product was obtained in 78% yield, pale yellow solid. Mp 128-130 °C; $[\alpha]_D^{25}$ 53.9 (*c* 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): 0.66 (t, J = 8 Hz, 3H), 0.89-0.96 (m, 1H), 1.00-1.13(m, 2H), 1.23-1.30 (m, 1H), 1.95-2.02 (m, 2H), 2.27-2.28 (m, 2H), 2.36-2.45 (m, 3H), 3.37-3.44 (m, 1H), 4.36-4.48 (m, 2H), 5,93 (s, 1H), 7.10-7.12 (m, 2H), 7.21-7.30 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 12.7, 19.4, 21.7, 24.7, 31.7, 36.7, 46.1, 50.1, 78.8, 126.9, 127.1, 128.1, 128.4,

136.6, 163.5, 197.9. HRMS (EI): exact mass calculated for $[M]^+$ (C₁₈H₂₃NO₃) requires m/z 301.1678, found m/z 301.1679. The enantiomeric ratio was determined by Daicel Chiralpak AS (25 cm), *n*-Hexane / EtOH = 7/3, 0.55 mL/min, λ = 220 nm, 14.87 min (minor), 23.16 min (major), ee = 99%.

51: 3-((2R,3S)-1-nitro-2-phenylheptan-3-yl)cyclohex-2-en-1-one

The product was obtained in 57% yield, white solid. Mp 108-110 °C; $[\alpha]^{25}_{D}99.7$ (*c* 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.74 (t, *J* = 7.2 Hz, 3H), 0.95-1.20 (m, 5H), 1.30-1.34 (m, 1H), 2.04-2.10 (m, 2H), 2.35-2.36 (m, 2H), 2.43-2.50 (m, 3H), 3.44-3.51 (m, 1H), 4.43-4.54 (m, 2H), 6.00 (s, 1H), 7.17-7.19 (m, 2H), 7.28-7.37 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 12.7, 19.4,

21.7, 24.7, 31.7, 36.7, 46.1, 50.1, 78.8, 126.9, 127.1, 128.1, 136.6, 163.5, 197.9.HRMS (EI): exact mass calculated for $[M]^+$ (C₁₉H₂₅NO₃) requires m/z 315.1834, found m/z 315.1833. The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), *n*-Hexane / EtOH = 19/1, 1.0 mL/min, λ = 254 nm, 9.94 min (major), 12.59 min (minor), ee = 99%.

5m: 3-((2R,3S)-1-nitro-2-phenyloctan-3-yl)cyclohex-2-en-1-one

The product was obtained in 58% yield, white solid. Mp 95-97 °C; $[\alpha]_D^{25}$ 67.3 (*c* 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.78 (t, J = 7.2 Hz, 3H), 1.18-0.95 (m, 7H), 1.33-1.28 (m, 1H), 2.10-2.03 (m, 2H), 2.37-2.34(m, 2H), 2.50-2.44 (m, 3H), 3.47 (td, $J_I = 4.8$ Hz, $J_2 = 10.8$ Hz, 1H), 4.55-4.43 (m, 2H), 6.00 (m, 1H), 7.19-7.17 (m, 2H), 7.38-7.28 (m, 3H). ¹³C NMR (100 MHz,

CDCl₃): δ (ppm) 13.9, 22.4, 22.8, 25.7, 26.9, 29.7, 30.5, 31.4, 37.8, 47.1, 51.3, 79.8, 127.9, 128.2, 129.1, 129.5, 137.6, 164.6, 199.0. HRMS (EI): exact mass calculated for [M]⁺ (C₂₀H₂₇NO₃) requires m/z 329.1991, found m/z 329.1994. The enantiomeric ratio was determined by Daicel Chiralpak AD (25 cm), *n*-Hexane / EtOH = 19/1, 0.8 mL/min, λ = 254 nm, 20.21 min (major), 22.48 min (minor), ee = 98%.

5n: 3-((1S,2R)-3-nitro-1,2-diphenylpropyl)cyclohex-2-en-1-one

The product was obtained in 34% yield, yellow oil. [α]_D²⁵ 8.5 (*c* 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.17-7.03 (m, 10H), 6.33 (s, 1H), 4.75-4.61 (m, 2H), 4.20-4.14 (m, 1H), 3.79-3.76 (m, 1H), 2.44-2.24 (m, 4H), 2.03-1.87 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 22.4, 27.8, 37.1, 46.0, 56.6, 79.8, 127.6, 127.9, 128.0, 128.4, 129.1, 129.6, 137.2, 137.9, 163.4, 199.2. HRMS

(EI): exact mass calculated for $[M]^+$ (C₂₁H₂₁NO₃) requires m/z 335.1521, found m/z 335.1522. The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), *n*-Hexane / IPA = 9/1, 1.0 mL/min, $\lambda = 254$ nm, 11.49 min (major), 14.64 min (minor), ee = 92%.

50: 3-((2S,3R)-4-nitro-1,3-diphenylbutan-2-yl)cyclohex-2-en-1-one

The product was obtained in 56% yield, pale yellow solid. Mp 108-110 °C; $[\alpha]_D^{25}$ 57.0 (*c* 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.84-1.95 (m, 2H), 2.05-2.15 (m, 1H), 2.27-2.39 (m, 3H), 2.45 (dd, *J* = 13.8, 11.5 Hz, 1H), 2.63 (dd, *J* = 13.8, 3.7 Hz, 1H), 2.79 (td, *J* = 11.5, 3.7 Hz, 1H), 3.62 (td, *J* = 10.6, 4.9 Hz, 1H), 4.54 (qd, *J* = 12.5, 7.5 Hz, 2H), 5.83 (s, 1H), 6.85-6.94 (m, 2H), 7.10-7.21

(m, 3H), 7.28-7.37 (m, 3H), 7.41 (t, J = 7.3 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 22.4, 27.4,

37.5, 38.0, 47.3, 53.3, 79.5, 126.6, 128.0, 128.1, 128.5, 128.5, 128.7, 128.9, 129.4, 129.4, 137.4, 138.3, 163.7, 198.7. HRMS (EI): exact mass calculated for $[M]^+$ (C₂₂H₂₃NO₃) requires m/z 349.1678, found m/z 349.1680. The enantiomeric ratio was determined by Daicel Chiralpak IB (25 cm), *n*-Hexane / EtOH = 19/1, 1.0 mL/min, λ = 220 nm, 19.65 min (minor), 20.64 min (major), ee = 98%.

5p: 3-((2*R*,3*S*)-2-(4-bromophenyl)-1-nitrohexan-3-yl)cyclohex-2-en-1-one

The product was obtained in 46% yield, pale yellow solid. Mp 56-59 °C; $[\alpha]_D^{25}$ 24.9 (*c* 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.75 (t, *J* = 7.2 Hz, 3H), 0.94-1.20 (m, 3H), 1.22-1.34 (m, 1H), 2.02-2.11 (m, 2H), 2.32-2.37 (m, 2H), 2.40-2.48 (m, 3H), 3.39-3.51 (m, 1H), 4.41-4.52 (m, 2H), 5.99 (s, 1H), 7.08 (d, *J* = 8.4 Hz, 2H), 7.49 (d, *J* = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 13.7, 20.4, 22.7, 25.6, 32.7, 37.7, 46.6, 50.9, 79.5, 122.1, 129.6, 129.6, 132.3,

136.7, 164.0, 198.9. HRMS (EI): exact mass calculated for $[M]^+$ (C₁₈H₂₂BrNO₃) requires m/z 379.0783, found m/z 379.0784. The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), *n*-Hexane / EtOH = 19/1, 1.0 mL/min, λ = 220 nm, 14.60 min (minor), 18.44 min (major), ee = 99%.

6a: (R)-3-ethyl-4-((R)-2-nitro-1-phenylethyl)cyclohex-2-en-1-one

The product was obtained in 68% yield, pale yellow oil. $[\alpha]_D^{25}$ -138 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.01 (t, *J* = 7.2 Hz, 3H), 1.84-1.97 (m, 3H), 1.99-2.08 (m, 1H), 2.31-2.38 (m, 1H), 2.45- 2.53 (m, 1H), 2.67-2.71 (m, 1H), 3.94-3.99 (m, 1H), 4.59-4.63 (m, 1H), 4.88-4.94 (m, 1H), 5.96 (s, 1H), 7.22 (d, *J* = 7.2 Hz, 2H), 7.29-7.32 (m, 1H), 7.35-7.38 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm)

11.6, 24.6, 29.3, 34.3, 43.1, 45.3, 76.6, 126.8, 127.8, 128.2, 129.1, 137.5, 167.4, 198.3. HRMS (EI): exact mass calculated for $[M]^+$ (C₁₆H₁₉NO₃) requires m/z 273.1365, found m/z 273.1366. The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), *n*-Hexane / EtOH = 4/1, 1.0 mL/min, $\lambda = 220$ nm, 10.76 min (major), 13.02 min (minor), ee = 99%.

6b: (R)-3-ethyl-4-((R)-2-nitro-1-(p-tolyl)ethyl)cyclohex-2-en-1-one

The product was obtained in 70% yield, colorless oil. $[\alpha]_D^{25}$ -141 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.02 (t, *J* = 7.2 Hz, 3H), 1.82-1.90 (m, 1H), 1.93-2.07 (m, 3H), 2.29-2.38 (m, 4H), 2.44-2.51 (m, 1H), 2.64-2.69 (m, 1H), 3.90-3.96 (m, 1H), 4.56-4.60 (m, 1H), 4.85-4.91 (m, 1H), 5.95 (s, 1H), 7.10 (d, *J* = 8.4 Hz, 2H), 7.16 (d, *J* = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 10.6, 20.0, 23.6, 28.3, 33.3, 42.0, 44.0, 125.7, 126.6, 128.7, 133.3, 136.9, 166.5,

197.4. HRMS (EI): exact mass calculated for $[M]^+$ (C₁₇H₂₁NO₃) requires m/z 287.1521, found m/z 287.1519. The enantiomeric ratio was determined by Daicel Chiralpak IB, *n*-Hexane / EtOH = 9/1, 1.0 mL/min, $\lambda = 220$ nm, 14.94 min (minor), 22.26 min (major), ee = 98%.

6c: (R)-3-ethyl-4-((R)-1-(4-methoxyphenyl)-2-nitroethyl)cyclohex-2-en-1-one

The product was obtained in 66% yield, colorless oil. $[\alpha]_D^{25}$ -165 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.01 (t, *J* = 7.2 Hz, 3H), 1.84-1.96 (m, 3H), 2.00-2.09 (m, 1H), 2.31-2.38 (m, 1H), 2.45-2.53 (m, 1H), 2.62-2.66 (m, 1H), 3.34 (s, 3H), 3.86-3.92 (m, 1H), 4.58-4.62 (m, 1H), 4.81-4.87 (m, 1H), 5.94 (s, 1H), 6.88 (d, *J* = 8.8 Hz, 2H), 7.13 (d, *J* = 8.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 10.6, 23.7, 28.4, 33.1, 42.0, 43.8, 54.3,

113.4, 125.7, 127.8, 128.2, 158.3, 166.7, 197.3. HRMS (EI): exact mass calculated for $[M]^+$ (C₁₇H₂₁NO₄) requires m/z 303.1471, found m/z 303.1473. The enantiomeric ratio was determined by Daicel Chiralpak IB, *n*-Hexane / EtOH = 9/1, 1.0 mL/min, λ = 220 nm, 16.98 min (minor), 25.70 (major), ee = 95%.

6d: (R)-3-ethyl-4-((R)-1-(4-fluorophenyl)-2-nitroethyl)cyclohex-2-en-1-one

The product was obtained in 74% yield, pale yellow oil. $[\alpha]_D^{25}$ -167 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.94 (t, *J* = 7.2 Hz, 3H), 1.78-1.88 (m, 3H), 1.93-2.02 (m, 1H), 2.25-2.32 (m, 1H), 2.38-2.47 (m, 1H), 2.55-2.60 (m, 1H), 3.84-3.90 (m, 1H), 4.53-4.57 (m, 1H), 4.75-4.81 (m, 1H), 5.88 (s, 1H), 6.97-7.01 (m, 2H), 7.12-7.15 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 10.6, 23.6, 28.4, 33.1, 42.0, 43.8, 115.0, 115.2, 125.9, 128.3, 128.4, 166.1,

197.1. HRMS (EI): exact mass calculated for $[M]^+$ (C₁₆H₁₈FNO₃) requires m/z 291.1271, found m/z 291.1273. The enantiomeric ratio was determined by Daicel Chiralpak IA, *n*-Hexane / EtOH = 9/1, 1.0 mL/min, $\lambda = 220$ nm, 18.95 min (major), 21.35 (minor), ee = 99%.

6e: (R)-4-((R)-1-(4-chlorophenyl)-2-nitroethyl)-3-ethylcyclohex-2-en-1-one

CL

The product was obtained in 76% yield, pale yellow oil. $[\alpha]D^{25}$ -148 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.03 (t, *J* = 7.6 Hz, 3H), 1.82-2.08 (m, 4H), 2.31-2.39 (m, 1H), 2.44-2.52 (m, 1H), 2.63-2.68 (m, 1H), 3.91-3.97 (m, 1H), 4.58-4.62 (m, 1H), 4.82-4.88 (m, 1H), 5.96 (s, 1H), 7.17 (d, *J* = 8.4 Hz, 2H), 7.35 (d, *J* = 8.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 11.6, 24.6, 29.4, 34.2, 42.9, 44.9, 76.4, 127.0, 129.1, 129.4, 134.2, 136.0, 166.8,

198.1. HRMS (EI): exact mass calculated for $[M]^+$ (C₁₆H₁₈ClNO₃) requires m/z 307.0975, found m/z 307.0973. The enantiomeric ratio was determined by Daicel Chiralpak IB, *n*-Hexane / EtOH = 9/1, 1.0 mL/min, λ = 220 nm, 15.75 min (minor), 27.64 (major), ee = 99%.

6f: (R)-4-((R)-1-(4-bromophenyl)-2-nitroethyl)-3-ethylcyclohex-2-en-1-one

The product was obtained in 80% yield, pale yellow oil. $[\alpha]_D^{25}$ -98 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.03 (t, *J* = 7.2 Hz, 3H), 1.82-1.89 (m, 1H), 1.93-2.07 (m, 3H), 2.31-2.38 (m, 1H), 2.44-2.52 (m, 1H), 2.63-2.68 (m, 1H), 3.90-3.96 (m, 1H), 4.58-4.62 (m, 1H), 4.82-4.88 (m, 1H), 5.96 (s, 1H), 7.12 (d, *J* = 8.4 Hz, 2H), 7.50 (d, *J* = 8.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 11.7, 24.5, 29.4, 34.2, 42.9, 44.9, 76.3, 122.2, 127.0, 129.4,

132.3, 136.6, 166.7, 198.0. HRMS (EI): exact mass calculated for [M]⁺ (C₁₆H₁₈BrNO₃) requires m/z

351.0470, found m/z 351.0470. The enantiomeric ratio was determined by Daicel Chiralpak IB (25 cm), *n*-Hexane / EtOH = 9/1, 1.0 mL/min, λ = 220 nm, 19.71 min (minor), 36.38 (major), ee = 98%.

6g: (R)-3-ethyl-4-((R)-2-nitro-1-(3-nitrophenyl)ethyl)cyclohex-2-en-1-one

The product was obtained in 79% yield, pale yellow oil. $[\alpha]_D^{25}$ -102 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.06 (t, *J* = 7.2 Hz, 3H), 1.85-1.94 (m, 1H), 1.97-2.07 (m, 3H), 2.34-2.41 (m, 1H), 2.46-2.55 (m, 1H), 2.73-2.77 (m, 1H), 4.10-4.16 (m, 1H), 4.65-4.69 (m, 1H), 4.95-5.01 (m, 1H), 6.01 (s, 1H), 7.57-7.60 (m, 2H), 8.18 (s, 1H), 8.21-8.22 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 10.6, 23.3, 28.2, 33.3, 41.9, 44.0, 74.8, 121.6, 122.3,

126.5, 129.2, 133.0, 138.9, 147.6, 164.6, 196.8. HRMS (EI): exact mass calculated for $[M]^+$ (C₁₆H₁₈N₂O₅) requires m/z 318.1216, found m/z 318.1219. The enantiomeric ratio was determined by Daicel Chiralpak IB, *n*-Hexane / EtOH = 7/3, 0.8 mL/min, λ = 220 nm, 13.57 min (minor), 20.74 (major), ee = 94%.

6h: (R)-3-ethyl-4-((R)-1-(naphthalen-2-yl)-2-nitroethyl)cyclohex-2-en-1-one

The product was obtained in 80% yield, colorless oil. $[\alpha]_D^{25}$ -144 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.99 (t, *J* = 7.2 Hz, 3H), 1.87-2.06 (m, 4H), 2.30-2.37 (m, 1H), 4.65-4.68 (m, 1H), 4.99-5.06 (m, 1H), 5.98 (s, 1H), 7.35 (d, *J* = 8.4 Hz, 1H), 7.49-7.51 (m, 2H), 7.67 (s, 1H), 7.80-7.86 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 10.6, 23.5, 28.3, 33.3, 41.9, 44.3, 75.4, 124.2, 125.5, 125.7, 125.8, 125.9, 126.7, 126.8, 128.0, 131.8, 132.2,

133.8, 166.3, 197.4. HRMS (EI): exact mass calculated for $[M]^+$ (C₂₀H₂₁NO₃) requires m/z 323.1521, found m/z 323.1526. The enantiomeric ratio was determined by Daicel Chiralpak IB, *n*-Hexane / EtOH = 7/3, 0.8 mL/min, λ = 220 nm, 13.36 (minor), 24.64 min (major), ee = 99%.

6i: (R)-3-ethyl-4-((S)-1-(furan-2-yl)-2-nitroethyl)cyclohex-2-en-1-one

The product was obtained in 82% yield, pale yellow oil. $[\alpha]_D^{25}$ -142 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.01 (t, *J* = 7.2 Hz, 3H), 1.78-1.83 (m, 1H), 2.02-2.13 (m, 3H), 2.33-2.40 (m, 1H), 2.91-2.93 (m, 1H), 4.09-4.13 (m, 1H), 4.49-4.52 (m, 1H), 4.80-4.86 (m, 1H), 5.99 (s, 1H), 6.20 (s, 1H), 6.34 (s, 1H), 7.40 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 11.6, 24.7, 28.5, 34.6, 39.1, 40.7, 75.4, 108.1, 110.7, 127.2, 142.5, 151.0, 166.2, 198.3. HRMS (EI): exact mass calculated

for $[M]^+$ (C₁₄H₁₇NO₄) requires m/z 263.1158, found m/z 263.1160. The enantiomeric ratio was determined by Daicel Chiralpak IB, *n*-Hexane / EtOH = 7/3, 0.8 mL/min, λ = 220 nm, 8.66 min (minor), 13.91 min (major), ee = 96%.

6j: (R)-4-((R)-2-nitro-1-phenylethyl)-3-propylcyclohex-2-en-1-one

The product was obtained in 83% yield, pale yellow solid. [α] $_{D}^{25}$ -141 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.77 (t, *J* = 6.4 Hz, 3H), 1.25-1.34 (m, 1H), 1.40-1.52 (m, 1H), 1.70-1.86 (m, 3H), 1.91-1.99 (m, 1H), 2.23-2.30 (m, 1H), 2.37-2.46 (m, 1H), 2.58-2.63 (m, 1H), 3.85-3.91 (m, 1H), 4.53-4.57 (m, 1H), 4.81-4.87 (m, 1H), 5.87 (s, 1H), 7.15-7.16 (m, 2H), 7.21-7.25 (m, 1H), 7.27-7.31 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 12.7, 19.5, 23.5, 33.2, 37.3, 41.7, 44.4, 75.6, 126.8, 126.8, 127.1, 128.1, 136.5, 165.0, 197.3. HRMS (EI): exact mass calculated for [M]⁺ (C₁₇H₂₁NO₃) requires m/z 287.1521, found m/z 287.1523. The enantiomeric ratio was determined by Daicel Chiralpak IB, *n*-Hexane / EtOH = 4/1, 0.9 mL/min, λ = 220 nm, 11.44 min (minor), 16.49 min (major), ee = 99%.

6k: (R)-3-butyl-4-((R)-2-nitro-1-phenylethyl)cyclohex-2-en-1-one

The product was obtained in 74% yield, pale yellow oil. $[\alpha]_D^{25}$ -145 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.79 (t, *J* = 7.2 Hz, 3H), 1.13-1.23 (m, 3H), 1.34-1.44 (m, 1H), 1.75-1.84 (m, 3H), 1.91-2.00 (m, 1H), 2.23-2.30 (m, 1H), 2.38-2.46 (m, 1H), 2.59-2.63 (m, 1H), 3.85-3.90 (m, 1H), 4.53-4.57 (m, 1H), 4.80-4.86 (m, 1H), 5.87 (s, 1H), 7.14-7.16 (m, 2H), 7.22-7.25 (m, 1H), 7.27-7.31 (m, 1H).

¹³C NMR (100 MHz, CDCl₃): δ (ppm) 13.8, 22.3, 24.6, 29.4, 34.2, 36.1, 42.7, 45.4, 76.7, 127.7, 127.8, 128.2, 129.1, 137.5, 166.4, 198.3. HRMS (EI): exact mass calculated for [M]⁺ (C₁₈H₂₃NO₃) requires m/z 301.1678, found m/z 301.1680. The enantiomeric ratio was determined by Daicel Chiralpak IB, *n*-Hexane / EtOH = 4/1, 0.9 mL/min, λ = 220 nm, 10.81 min (minor), 16.71 min (major), ee = 98%.

61: (R)-4-((R)-2-nitro-1-phenylethyl)-3-pentylcyclohex-2-en-1-one

The product was obtained in 75% yield, pale yellow oil. $[\alpha]_D^{25}$ -150 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.86 (t, J = 7.2 Hz, 3H), 1.16-1.37 (m, 5H), 1.41-1.51 (m, 1H), 1.85-1.92 (m, 3H), 1.98-2.07 (m, 1H), 2.30-2.38 (m, 1H), 2.45-2.53 (m, 1H), 2.66-2.71 (m, 1H), 3.92-3.98 (m, 1H), 4.60-4.64 (m, 1H), 4.87-4.93 (m, 1H), 5.94 (s, 1H), 7.23 (d, J = 7.2 Hz, 2H), 7.29-7.32 (m, 1H), 7.34-7.38 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm)

12.7, 21.3, 23.6, 28.4, 33.2, 35.1, 41.7, 44.4, 75.7, 126.7, 126.8, 127.2, 128.1, 136.5, 165.4, 197.3. HRMS (EI): exact mass calculated for $[M]^+$ (C₁₉H₂₅NO₃) requires m/z 315.1834, found m/z 315.1839. The enantiomeric ratio was determined by Daicel Chiralpak IB, *n*-Hexane / EtOH = 4/1, 0.9 mL/min, $\lambda = 220$ nm, 10.68 min (minor), 16.66 min (major), ee = 98%.

6m: (R)-3-hexyl-4-((R)-2-nitro-1-phenylethyl)cyclohex-2-en-1-one

The product was obtained in 75% yield, pale yellow oil. $[\alpha]_D^{25}$ -148 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.87 (t, *J* = 7.2 Hz, 3H), 1.21-1.35 (m, 7H), 1.42-1.47 (m, 1H), 1.80-1.91 (m, 3H), 1.98-2.07 (m, 1H), 2.30-2.38 (m, 1H), 2.45-2.53 (m, 1H), 2.66-2.70 (m, 1H), 3.92-3.97 (m, 1H), 4.60-4.64 (m, 1H), 4.87-4.93 (m, 1H), 5.94 (s, 1H), 7.22 (d, *J* = 7.2 Hz, 2H), 7.29-7.32 (m, 1H), 7.34-7.38 (m, 2H). ¹³C NMR (100 MHz, 2.30-2.38 (m, 2H), 7.29-7.32 (m, 2H), 7.34-7.38 (m, 2H), 7.20-2.38 (m, 2H), 7.29-7.32 (m, 2H), 7.34-7.38 (m, 2H).

CDCl₃): δ (ppm) 14.0, 22.5, 24.6, 27.3, 28.8, 31.4, 34.2, 36.4, 42.7, 45.4, 76.7, 127.7, 127.8, 128.2,

129.1, 137.5, 166.5, 198.4. HRMS (EI): exact mass calculated for $[M]^+$ (C₂₀H₂₇NO₃) requires m/z 329.1991, found m/z 329.1990. The enantiomeric ratio was determined by Daicel Chiralpak IB, *n*-Hexane / EtOH = 4/1, 0.9 mL/min, λ = 220 nm, 10.63 min (minor), 18.92 min (major), ee = 99%.

6n: (R)-3-benzyl-4-((R)-2-nitro-1-phenylethyl)cyclohex-2-en-1-one

The product was obtained in 79% yield, pale yellow oil. $[\alpha]_D^{25}$ -142 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.83-1.99 (m, 2H), 2.33-2.41 (m, 1H), 2.50-2.58 (m, 2H), 2.90 (d, *J* = 15.6 Hz, 1H), 3.20 (d, *J* = 15.6 Hz, 1H), 3.94-4.00 (m, 1H), 4.65-4.69 (m, 1H), 4.84-4.90 (m, 1H), 5.91 (s, 1H), 7.00 (d, *J* = 7.2 Hz, 2H), 7.12 (d, *J* = 7.2 Hz, 2H), 7.27-7.40 (m, 6H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 24.9, 33.9, 41.7, 43.2, 45.2, 77.0, 127.2, 127.9,

128.3, 128.9, 129.1, 129.2, 129.4, 136.4, 137.6, 165.0, 198.3. HRMS (EI): exact mass calculated for $[M]^+$ (C₂₁H₂₁NO₃) requires m/z 335.1521, found m/z 335.1525. The enantiomeric ratio was determined by Daicel Chiralpak IB, *n*-Hexane / EtOH = 4/1, 0.9 mL/min, λ = 220 nm, 15.07 min (minor), 25.50 min (major), ee = 98%.

60: (R)-4-((R)-2-nitro-1-phenylethyl)-3-phenethylcyclohex-2-en-1-one

The product was obtained in 77% yield, pale yellow oil. $[\alpha]_D^{25}$ -146 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.82-1.89 (m, 1H), 1.94-2.02 (m, 1H), 2.09-2.12 (m, 2H), 2.30-2.38 (m, 1H), 2.46-2.54 (m, 2H), 2.55-2.65 (m, 1H), 3.88-3.93 (m, 1H), 4.60-4.64 (m, 1H), 4.83-4.89 (m, 1H), 5.96 (s, 1H), 7.03 (d, *J* = 7.2 Hz, 2H), 7.18-7.21 (m, 3H), 7.25-7.28 (m, 2H), 7.32-7.38 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 23.7, 32.8, 32.8, 37.1, 41.9, 44.5,

75.9, 125.4, 126.8, 127.0, 127.2, 127.2, 127.6, 128.1, 136.4, 139.1, 164.6, 197.2. HRMS (EI): exact mass calculated for $[M]^+$ (C₂₂H₂₃NO₃) requires m/z 349.1678, found m/z 349.1681. The enantiomeric ratio was determined by Daicel Chiralpak IB, *n*-Hexane / EtOH = 4/1, 0.8 mL/min, λ = 220 nm, 16.36 min (minor), 29.11 min (major), ee = 99%.

6p: (R)-4-((R)-1-(4-bromophenyl)-2-nitroethyl)-3-pentylcyclohex-2-en-1-one

The product was obtained in 79% yield, pale yellow soild, Mp 96-99 °C. [α] $_{D}^{25}$ -144 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.87 (t, *J* = 7.2 Hz, 3H), 1.19-1.51 (m, 6H), 1.81-1.92 (m, 3H), 1.97-2.06 (m, 1H), 2.30-2.38 (m, 1H), 2.44-2.52 (m, 1H), 2.63-2.67 (m, 1H), 3.89-3.94 (m, 1H), 4.58-4.63 (m, 1H), 4.82-4.88 (m, 1H), 5.95 (s, 1H), 7.12 (d, *J* = 8.4 Hz, 2H), 7.50 (d, *J* = 8.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 23.7, 32.8, 32.8, 37.1, 41.8, 44.5, 75.9, 125.4, 126.8,

127.0, 127.2, 127.6, 128.1, 136.4, 139.1, 164.6, 197.2. HRMS (EI): exact mass calculated for $[M]^+$ (C₁₉H₂₄BrNO₃) requires m/z 393.0904, found m/z 393.0910. The enantiomeric ratio was determined by Daicel Chiralpak IB, *n*-Hexane / EtOH = 4/1, 0.9 mL/min, λ = 220 nm, 11.432 min (minor), 21.310 min (major), ee = 98%.

6q: (R)-6-((R)-2-nitro-1-phenylethyl)-5,6-dihydro-[1,1'-biphenyl]-3(4H)-one

The product was obtained in 80% yield, white solid, Mp 126-127 °C. [α]D²⁵ -116 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 2.08-2.16 (m, 1H), 2.26-2.43 (m, 3H), 3.46-3.49 (m, 1H), 3.90-3.96 (m, 1H), 4.47-4.51 (m, 1H), 4.63-4.69 (m, 1H), 6.22 (s, 1H), 7.06-7.08 (m, 2H), 7.16-7.21 (m, 3H), 7.28-7.31 (m, 2H), 7.35-7.38 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 25.3, 33.7, 40.7, 46.7, 126.3, 128.0, 128.8, 129.1, 129.3, 129.8, 136.8, 139.1, 161.2, 198.3. HRMS (EI): exact

mass calculated for $[M]^+$ (C₂₀H₁₉NO₃) requires m/z 321.1365, found m/z 321.1368. The enantiomeric ratio was determined by Daicel Chiralpak AD-H (25 cm), *n*-Hexane/iPrOH = 7/3, 0.7 mL/min, λ = 254 nm, 8.35 min (major), 9.14 min (minor), ee = 95%.

6r: (R)-3',5'-dimethoxy-6-((R)-2-nitro-1-phenylethyl)-5,6-dihydro-[1,1'-biphenyl]-3(4H)-one

The product was obtained in 74% yield, yellow oil. $[\alpha]_D^{25}$ -123 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 2.08-2.15 (m, 1H), 2.23-2.37 (m, 3H), 3.39-3.41 (m, 1H), 3.80 (s, 6H), 3.92-3.97 (m, 1H), 4.50-4.55 (m, 1H), 4.63-4.69 (m, 1H), 6.21 (s, 1H), 6.39-6.40 (m, 2H), 6.45-6.46 (m, 1H), 7.07-7.10 (m, 2H), 7.19-7.21 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 25.4, 33.7, 40.8, 46.8, 55.5, 101.3, 104.7, 128.1, 128.2, 128.8, 129.2, 136.9, 141.3, 161.1,

198.4. HRMS (EI): exact mass calculated for $[M]^+$ (C₂₂H₂₃NO₅) requires m/z 381.1576, found m/z 381.1572. The enantiomeric ratio was determined by Daicel Chiralpak AD-H (25 cm), *n*-Hexane/iPrOH = 7/3, 0.7 mL/min, λ = 254 nm, 9.53 min (major), 10.34 min (minor), ee = 93%.

6s: (*R*)-6-((*R*)-2-nitro-1-phenylethyl)-3',5'-bis(trifluoromethyl)-5,6-dihydro-[1,1'-biphenyl]-3(4*H*)-one

The product was obtained in 67% yield, pale yellow oil. $[\alpha]_D^{25}$ -127 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 2.28-2.32 (M, 1H), 2.41-2.50 (m, 1H), 2.59-2.64 (m, 1H), 2.74-2.83 (m, 1H), 3.38-3.40 (m, 1H), 3.74-3.80 (m, 1H), 4.76-4.88 (m, 2H), 6.12 (s, 1H), 6.86-6.87 (m, 2H), 6.93-6.94 (m, 3H), 7.32 (s, 2H), 7.63 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 25.7, 32.3, 41.3, 46.2, 78.4, 121.5, 122.2, 122.2, 124.2, 126.2, 128.2,

128.5, 128.7, 129.7, 131.4, 136.1, 142.0, 160.0, 197.4. HRMS (EI): exact mass calculated for $[M]^+$ (C₂₂H₁₇F₆NO₃) requires m/z 457.1113, found m/z 457.1116. The enantiomeric ratio was determined by Daicel Chiralpak IB (25 cm), *n*-Hexane/*i*PrOH = 7/3, 0.9 mL/min, λ = 254 nm, 8.34 min (minor), 10.01 min (major), ee = 90%.

6t: (R)-6-((R)-1-(4-bromophenyl)-2-nitroethyl)-5,6-dihydro-[1,1'-biphenyl]-3(4H)-one

The product was obtained in 60% yield, white solid, Mp 110-111 °C; $[\alpha]_D^{25}$ - 143 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 2.09-2.15 (m, 1H), 2.28-2.39 (m, 1H), 2.41-2.46 (m, 2H), 3.39-3.43 (m, 1H), 3.83-3.89 (m, 1H), 4.53-4.58 (m, 1H), 4.62-4.68 (m, 1H), 6.19 (s, 1H), 6.89-6.91 (m, 2H), 7.18-7.20 (m, 2H), 7.24-7.26 (m, 2H), 7.31-7.40 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 25.3, 33.5, 40.7, 46.1, 122.1, 126.2, 129.0, 129.1, 129.7, 129.8, 131.8,135.8, 139.0, 161.3, 197.9. HRMS(EI) exact mass calculated for

M⁺(C₂₀H₁₈BrNO₃) requires m/z 399.0470, found m/z 399.0473. The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), *n*-Hexane / *i*PrOH = 4/1, 1.0 mL/min, λ = 254 nm, 22.12 min (minor), 48.63 min (major), ee =92%.

6u: (R)-4-((R)-2-nitro-1-phenylethyl)-3-(phenylethynyl)cyclohex-2-en-1-one

The product was obtained in 74% yield, pale yellow oil. $[\alpha]_D^{25}$ -143 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.69-1.79 (m, 1H), 2.02-2.09 (m, 1H), 2.18-2.26 (m, 1H), 2.33-2.40 (m, 1H), 2.92-2.97 (m, 1H), 4.55-4.60 (m, 1H), 4.80-4.84 (m, 1H), 4.95-5.01 (m, 1H), 6.42-6.43 (d, *J* = 2.0 Hz, 1H), 7.30-7.33 (m, 5H), 7.36-7.43 (m, 5H), 7.57-7.59 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 24.4, 36.3, 43.3, 45.9, 75.0, 86.5, 102.9, 121.3, 128.0, 128.2, 128.7, 129.1, 130.1, 132.3, 134.7, 137.1, 143.0, 197.4. HRMS (EI): exact mass

calculated for [M]⁺ (C₂₂H₁₉NO₃) requires m/z 345.1365, found m/z 345.1363. The enantiomeric ratio was determined by Daicel Chiralpak AS-H (25 cm), *n*-Hexane / *i*PrOH = 4/1, 0.9 mL/min, λ = 254 nm, 26.10 min (minor), 29.63 min (major), ee >99%.

7a: (S)-3-ethyl-4-((R)-2-nitro-1-phenylethyl)cyclohex-2-en-1-one

The product was obtained in 66% yield, colorless oil. $[\alpha]_D^{25}$ 43 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.20 (t, *J* = 7.6 Hz, 3H), 1.77-1.82 (m, 1H), 1.93-2.05 (m, 2H), 2.10-2.19 (m, 1H), 2.29-2.38 (m, 1H), 2.42-2.51 (m, 1H), 2.56-2.58 (m, 1H), 3.78-3.84 (m, 1H), 4.70-4.75 (m, 1H), 4.78-4.84 (m, 1H), 5.98 (s, 1H), 7.16-7.18 (m, 2H), 7.30-7.36 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 12.0, 24.7, 30.4, 32.6, 40.8, 45.8, 78.9, 126.9, 127.5, 128.4, 129.2, 137.0, 166.4, 198.4.

HRMS (EI): exact mass calculated for $[M]^+$ (C₁₆H₁₉NO₃) requires m/z 273.1365, found m/z 273.1363. The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), *n*-Hexane / EtOH = 9/1, 1.0 mL/min, $\lambda = 220$ nm, 11.26 min (minor), 16.83 min (major), ee = 98%.

7c: (S)-3-ethyl-4-((R)-1-(4-methoxyphenyl)-2-nitroethyl)cyclohex-2-en-1-one

The product was obtained in 66% yield, colorless oil. $[\alpha]_D^{25} 34 (c \ 1.0, CH_2Cl_2)$. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.20 (t, J = 7.6 Hz, 3H), 1.78-1.86 (m, 1H), 1.93-1.99 (m, 1H), 2.02-2.06 (m, 1H), 2.10-2.18 (m, 1H), 2.93-2.37 (m, 1H), 2.40-2.48 (m, 1H), 2.48-2.54 (m, 1H), 3.75-3.81 (m, 4H), 4.67-4.79 (m, 2H), 5.97 (s, 1H), 6.86 (d, J = 8.4 Hz, 2H), 7.08 (d, J = 8.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 12.0, 24.7, 30.4, 32.6, 40.9, 45.1, 55.3,

79.1, 114.5, 126.9, 128.6, 128.7, 159.4, 166.6, 198.5. HRMS (EI): exact mass calculated for $[M]^+$ (C₁₇H₂₁NO₄) requires m/z 303.1471, found m/z 303.1469. The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), *n*-Hexane / EtOH = 9/1, 1.0 mL/min, λ = 254 nm, 19.83 min (minor), 34.59 min (major), ee = 99%.

7d: (S)-3-ethyl-4-((R)-1-(4-fluorophenyl)-2-nitroethyl)cyclohex-2-en-1-one

The product was obtained in 57% yield, pale yellow oil. $[\alpha]_D^{25}$ 22 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.20 (t, *J* = 7.2 Hz, 3H), 1.74-1.79 (m, 1H), 1.98-2.04 (m, 1H), 2.07-2.12 (m, 1H), 2.17-2.23 (m, 1H), 2.29-2.35 (m, 1H), 2.39-2.45 (m, 1H), 2.53-2.56 (m, 1H), 3.76-3.82 (m, 1H), 4.66-4.71 (m, 1H), 4.74-4.79 (m, 1H), 5.99 (s, 1H), 7.03-7.08 (m, 2H), 7.15-7.18 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 12.0, 24.8, 30.6, 32.5, 41.0, 45.3, 79.0, 116.2, 116.4, 127.0, 129.1, 129.2, 166.2, 198.1. HRMS (EI): exact mass

calculated for $[M]^+$ (C₁₆H₁₈FNO₃) requires m/z 291.1271, found m/z 291.1271. The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), *n*-Hexane / EtOH = 9/1, 1.0 mL/min, λ = 254 nm, 13.42 min (minor), 22.98 min (major), ee = 96%.

7e: (S)-4-((R)-1-(4-chlorophenyl)-2-nitroethyl)-3-ethylcyclohex-2-en-1-one

The product was obtained in 52% yield, pale yellow oil. $[\alpha]_D^{25}$ 18 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.20 (t, *J* = 7.6 Hz, 3H), 1.73-1.79 (m, 1H), 1.94-2.03 (m, 1H), 2.10-2.14 (m, 1H), 2.17-2.24 (m, 1H), 2.29-2.37 (m, 1H), 2.39-2.47 (m, 1H), 2.53-2.57 (m, 1H), 3.75-3.81 (m, 1H), 4.65-4.70 (m, 1H), 4.73-4.78 (m, 1H), 5.99 (s, 1H), 7.13 (d, *J* = 8.4 Hz, 2H), 7.33 (d, *J* = 8.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 12.0, 24.9, 30.6, 32.5, 40.9, 45.5, 78.9, 127.0, 128.9, 129.4, 130.8, 135.6, 166.2, 198.1. HRMS (EI):

exact mass calculated for $[M]^+$ (C₁₆H₁₈ClNO₃) requires m/z 307.0975, found m/z 307.0979. The enantiomeric ratio was determined by Daicel Chiralpak IB (25 cm), *n*-Hexane / EtOH = 4/1, 1.0 mL/min, $\lambda = 254$ nm, 11.80 min (minor), 12.45 min (major), ee = 97%.

7f: (S)-4-((R)-1-(4-bromophenyl)-2-nitroethyl)-3-ethylcyclohex-2-en-1-one

The product was obtained in 70% yield, pale yellow oil. $[\alpha]_D^{25}$ 21 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.20 (t, *J* = 7.6 Hz, 3H), 1.73-1.78 (m, 1H), 1.94-2.03 (m, 1H), 2.06-2.15 (m, 1H), 2.18-2.24 (m, 1H), 2.27-2.36 (m, 1H), 2.39-2.47 (m,1H), 2.53-2.57 (m, 1H), 3.74-3.80 (m, 1H), 4.65-4.70 (m, 1H), 4.73-4.78 (m, 1H), 5.99 (s, 1H), 7.07 (d, *J* = 8.4 Hz, 2H), 7.48 (d, *J* = 8.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 12.0, 24.9, 30.6, 32.5, 40.8, 45.6, 78.8, 122.4, 127.0, 129.2, 132.4, 136.1, 166.1, 198.0. HRMS (EI):

exact mass calculated for $[M]^+$ (C₁₆H₁₈BrNO₃) requires m/z 351.0470, found m/z 351.0474. The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), *n*-Hexane / EtOH = 9/1, 1.0 mL/min, $\lambda = 254$ nm, 16.40 min (minor), 33.03min (major), ee = 94%.

7h: (S)-3-ethyl-4-((R)-1-(naphthalen-2-yl)-2-nitroethyl)cyclohex-2-en-1-one

The product was obtained in 63% yield, colorless oil. $[\alpha]_D^{25} 22$ (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.22 (t, *J* = 7.2 Hz, 3H), 1.77-1.83 (m, 1H), 1.93-2.02 (m, 1H), 2.17-2.21 (m, 2H), 2.32-2.42 (m, 1H), 2.45-2.54 (m, 1H), 2.66-2.70 (m, 1H), 3.93-3.99 (m, 1H), 4.75-4.79 (m, 1H), 4.87-4.92 (m, 1H), 6.00 (s, 1H), 7.29-7.32 (m, 1H), 7.48-7.53 (m, 2H), 7.64 (s, 1H), 7.78-7.85 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 12.0, 25.2, 30.8, 32.6,

41.0, 46.3, 79.1, 124.6, 126.6, 126.8, 126.9, 127.1, 127.8, 129.2, 132.9, 133.3, 134.6, 166.7, 198.4. HRMS (EI): exact mass calculated for $[M]^+$ (C₂₀H₂₁NO₃) requires m/z 323.1521, found m/z 323.1524. The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), *n*-Hexane / EtOH = 9/1, 1.0 mL/min, $\lambda = 254$ nm, 15.25 min (minor), 19.78 min (major), ee = 98%.

7i: (S)-3-ethyl-4-((S)-1-(furan-2-yl)-2-nitroethyl)cyclohex-2-en-1-one

The product was obtained in 52% yield, pale yellow oil. $[\alpha]_D^{25}$ 40 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.17 (t, *J* = 7.2 Hz, 3H), 1.71-1.79 (m, 1H), 1.89-1.97 (m, 1H), 2.02-2.11 (m, 1H), 2.14-2.21 (m, 1H), 2.30-2.50 (m, 2H), 4.09-4.14 (m, 1H), 4.74-4.80 (m, 1H), 4.86-4.92 (m, 1H), 5.98 (s, 1H), 6.08 (d, *J* = 3.2 Hz, 2H), 6.30-6.31 (m, 1H), 7.35 (d, *J* = 1.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 11.8, 23.3, 28.7, 33.4, 38.4, 39.6, 76.1, 108.7, 110.9, 127.2,

142.4, 149.2, 165.0, 198.4. HRMS (EI): exact mass calculated for $[M]^+$ (C₁₄H₁₇NO₃) requires m/z 263.1158, found m/z 263.1162. The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), *n*-Hexane/EtOH = 9/1, 1.0 mL/min, $\lambda = 254$ nm, 11.69 min (minor), 15.08 min (major), ee = 93%.

7j: (S)-4-((R)-2-nitro-1-phenylethyl)-3-propylcyclohex-2-en-1-one

The product was obtained in 63% yield, pale yellow oil. $[\alpha]_D^{25}$ 37 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.01 (t, *J* = 7.2 Hz, 3H), 1.50-1.60 (m, 1H), 1.64-1.71 (m, 1H), 1.76-1.80 (m, 1H), 1.93-2.06 (m, 2H), 2.10-2.18 (m, 1H), 2.26-2.41 (m, 2H), 2.55-2.58 (m, 1H), 3.77-3.83 (m, 1H), 4.71-4.76 (m, 1H), 4.79-4.84 (m, 1H), 5.97 (s, 1H), 7.17 (m, 2H), 7.30-7.36 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 13.9, 21.3, 24.7, 32.5, 39.6, 40.7, 45.9, 79.0, 127.5, 127.9, 128.3, 129.2, 137.0, 165.0, 198.4. HRMS (EI): exact mass calculated for $[M]^+$ (C₁₇H₂₁NO₃) requires m/z 287.1521, found m/z 287.1520. The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), *n*-Hexane / EtOH = 9/1, 1.0 mL/min, λ = 254 nm, 10.72 min (minor), 18.97 min (major), ee = 97%.

7k: (S)-3-butyl-4-((R)-2-nitro-1-phenylethyl)cyclohex-2-en-1-one

The product was obtained in 66% yield, colorless oil. $[\alpha]_D^{25}$ 36 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.97 (t, *J* = 7.6 Hz, 3H), 1.37-1.45 (m, 2H), 1.48-1.54 (m, 1H), 1.58-1.65 (m, 1H), 1.77-1.80 (m, 1H), 1.91-2.06 (m, 2H), 2.09-2.17 (m, 1H), 2.26-2.33 (m, 1H), 2.36-2.44 (m, 1H), 2.56-2.59 (m, 1H), 3.77-3.83 (m, 1H), 4.71-4.76 (m, 1H), 4.78-4.84 (m, 1H), 5.97 (s, 1H), 7.12-7.19 (m, 2H), 7.30-7.36 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm)

13.9, 22.5, 24.7, 30.2, 32.5, 37.3, 40.7, 45.9, 79.0, 127.5, 127.8, 128.3, 129.2, 137.0, 165.3, 198.4. HRMS (EI): exact mass calculated for $[M]^+$ (C₁₈H₂₃NO₃) requires m/z 301.1678, found m/z 301.1680. The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), *n*-Hexane / EtOH = 9/1, 1.0 mL/min, $\lambda = 254$ nm, 10.71 min (minor), 13.08 min (major), ee = 94%.

71: (S)-4-((R)-2-nitro-1-phenylethyl)-3-pentylcyclohex-2-en-1-one

The product was obtained in 55% yield, pale yellow oil. $[\alpha]_D^{25}$ 24 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.97 (t, *J* = 7.2 Hz, 3H), 1.39-1.43 (m, 2H), 1.46-1.51 (m, 1H), 1.56-1.65 (m, 3H), 1.76-1.81 (m, 1H), 1.92-2.01 (m, 2H), 2.12-2.28 (m, 1H), 2.26-2.33 (m, 1H), 2.36-2.44 (m, 1H), 2.55-2.59 (m, 1H), 3.78-3.83 (m, 1H), 4.71-4.76 (m, 1H), 4.78-4.83 (m, 1H), 5.97 (s, 1H), 7.16-7.18 (m, 2H), 7.31-7.36 (m, 3H).¹³C NMR (100 MHz, 2.12-2.12, 2.12,

CDCl₃): δ (ppm) 13.9, 22.5, 24.7, 30.2, 32.5, 37.3, 40.7, 45.9, 79.0, 127.5, 127.9, 128.4, 129.2, 137.0, 175.7, 198.4. HRMS (EI): exact mass calculated for [M]⁺ (C₁₉H₂₅NO₃) requires m/z 315.1834, found m/z 315.1830. The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), *n*-Hexane / EtOH = 9/1, 1.0 mL/min, λ = 254 nm, 9.60 min (minor), 11.53 min (major), ee = 96%.

7m: (S)-3-hexyl-4-((R)-2-nitro-1-phenylethyl)cyclohex-2-en-1-one

The product was obtained in 64% yield, pale yellow oil. $[\alpha]_D^{25}$ 36 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.91(t, *J* = 6.8 Hz, 3H), 1.32-1.42 (m, 6H), 1.46-1.53 (m, 1H), 1.60-1.65 (m, 1H), 1.76-1.83 (m, 1H), 1.91-2.06 (m, 2H), 2.12-2.17 (m, 1H), 2.25-2.33 (m, 1H), 2.36-2.43 (m, 1H), 2.55-2.58 (m, 1H), 3.77-3.83 (m, 1H), 4.70-4.75 (m, 1H), 4.78-4.84 (m, 1H), 5.96 (s, 1H), 7.16-7.18 (m, 2H), 7.30-7.36 (m, 3H). ¹³C

NMR (100 MHz, CDCl₃): δ (ppm) 14.0, 22.5, 24.7, 28.0, 29.0, 31.6, 32.5, 37.6, 40.7, 45.9, 79.0, 127.5, 127.8, 128.3, 129.2, 137.0, 165.4, 198.4. HRMS (EI): exact mass calculated for [M]⁺ (C₂₀H₂₇NO₃) requires m/z 329.1991, found m/z 329.1996. The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), *n*-Hexane / EtOH = 9/1, 1.0 mL/min, λ = 254 nm, 8.85 min (minor), 11.77 min (major), ee = 99%.
7n: (S)-3-benzyl-4-((R)-2-nitro-1-phenylethyl)cyclohex-2-en-1-one

The product was obtained in 58% yield, pale yellow oil. $[\alpha]_D^{25}$ 60 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.77-1.90 (m, 3H), 2.04-2.14 (m, 1H), 2.55-2.56 (m, 1H), 3.60 (d, *J* = 15.2 Hz, 1H), 3.78 (d, *J* = 15.2 Hz, 1H), 3.89-3.95 (m, 1H), 4.77-4.82 (m, 1H), 4.84-4.89 (m, 1H), 5.96 (s, 1H), 7.14-7.16 (m, 2H), 7.20-7.22 (m, 2H), 7.28-7.38 (m, 6H).¹³C NMR (100 MHz, CDCl₃): δ (ppm) 24.6, 32.5, 39.4, 43.8, 45.4, 78.8, 127.4, 128.4, 129.1, 129.2,

129.5, 136.4, 136.7, 163.0, 198.3. HRMS (EI): exact mass calculated for $[M]^+$ (C₂₁H₂₁NO₃) requires m/z 335.1521, found m/z 335.1527. The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), *n*-Hexane / EtOH = 4/1, 0.8 mL/min, $\lambda = 254$ nm, 12.09 min (major), 13.16 min (minor), ee = 97%.

70: (S)-4-((R)-2-nitro-1-phenylethyl)-3-phenethylcyclohex-2-en-1-one

The product was obtained in 68% yield, pale yellow oil. $[\alpha]_D^{25}$ 27 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.72-1.79 (m, 1H), 1.85-1.95 (m, 2H), 2.01-2.11 (m, 1H), 2.43-2.46 (m, 1H), 2.59-2.67 (m, 1H), 2.70-2.77 (m, 1H), 2.84-2.96 (m, 2H), 3.76-3.81 (m, 1H), 4.65-4.70 (m, 1H), 4.73-4.78 (m, 1H), 6.02 (s, 1H), 7.07-7.11 (m, 2H), 7.22-7.24 (m, 3H), 7.28-7.35 (m, 5H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 24.4, 32.4, 34.5, 39.1,

40.8, 45.6, 78.7, 126.6, 127.5, 128.4, 128.4, 128.8, 129.2, 136.8, 140.1, 163.9, 198.2. HRMS (EI): exact mass calculated for $[M]^+$ (C₂₂H₂₃NO₃) requires m/z 349.1678, found m/z 349.16740. The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), *n*-Hexane / EtOH = 9/1, 1.0 mL/min, $\lambda = 254$ nm, 13.73 min (minor), 14.52 min (major), ee = 99%

7p: (S)-4-((R)-1-(4-bromophenyl)-2-nitroethyl)-3-butylcyclohex-2-en-1-one

The product was obtained in 56% yield, pale yellow soild. $[\alpha]_D^{25} 30 (c \ 1.0, CH_2Cl_2)$. ¹H NMR (400 MHz, CDCl_3): δ (ppm) 0.96 (t, J = 7.2 Hz, 3H), 1.35-1.46 (m, 2H), 1.47-1.65 (m, 2H), 1.71-1.77 (m, 1H), 1.92-2.19 (m, 3H), 2.21-2.30 (m, 1H), 2.34-2.42 (m, 1H), 2.53-2.57 (m, 1H), 3.72-3.78 (m, 1H), 4.66-4.78 (m, 2H), 5.97 (s, 1H), 7.08 (d, J = 8.4 Hz, 2H), 7.48 (d, J = 8.4 Hz, 2H).¹³C NMR (100 MHz, CDCl_3): δ (ppm) 13.9, 22.5, 24.9, 30.2, 32.4, 37.5, 40.7, 45.7, 78.8, 122.4, 127.9, 129.2, 132.4, 136.2, 165.1,

198.0. HRMS (EI): exact mass calculated for $[M]^+$ (C₁₈H₂₂BrNO₃) requires m/z 379.0783, found m/z 379.0786. The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), *n*-Hexane / EtOH = 9/1, 0.8 mL/min, λ = 254 nm, 18.18 min (minor), 29.87 min (major), ee = 99%.

7q: (S)-6-((R)-2-nitro-1-phenylethyl)-5,6-dihydro-[1,1'-biphenyl]-3(4H)-one

The product was obtained in 69% yield, yellow oil. $[\alpha]_D^{25}$ 107 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.85-1.91 (m, 1H), 2.11-2.21 (m, 1H), 2.29-2.35 (m, 1H), 2.37-2.47 (m, 1H), 3.34-3.38 (m, 1H), 3.74-3.80 (m, 1H), 4.27-4.37 (m, 2H), 6.35 (s, 1H), 7.17-7.19 (m, 2H), 7.30-7.38 (m, 3H), 7.51-7.53 (m, 3H), 7.54-7.58 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 25.1, 32.3, 38.9, 46.8, 79.4, 126.3, 127.5, 128.2, 128.4, 129.2, 129.7, 130.7, 137.5, 139.2, 160.7, 198.6.

HRMS(EI) exact mass calculated for M⁺(C₂₀H₁₉NO₃) requires m/z 321.1365, found m/z 321.1368. The enantiomeric ratio was determined by Daicel Chiralpak AD-H (25 cm), *n*-Hexane / EtOH = 7/3, 0.7 mL/min, $\lambda = 254$ nm, 11.51 min (minor), 14.95 min (major), ee = 97%.

7r: (S)-3',5'-dimethoxy-6-((R)-2-nitro-1-phenylethyl)-5,6-dihydro-[1,1'-biphenyl]-3(4H)-one

The product was obtained in 72% yield, pale yellow oil. $[\alpha]_D^{25}$ 72 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.82-1.87 (m, 1H), 2.09-2.18 (m, 1H), 2.28-2.45 (m, 2H), 3.25-3.29 (m, 1H), 3.73-3.77 (m, 1H), 3.87 (s, 6H), 4.38-4.40 (m, 2H), 6.34 (s, 1H), 6.57-6.58 (m, 1H), 6.66-6.66 (m, 2H), 7.18-7.19 (m, 2H), 7.30-7.37 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 24.0, 31.3, 38.0, 45.8, 54.6, 78.4, 100.9, 103.5, 126.5, 127.1, 127.3, 128.2, 136.5, 140.2, 159.6, 160.6, 197.6. HRMS (EI): exact mass calculated for [M]⁺

(C₂₂H₂₃NO₅) requires m/z 381.1576, found m/z 381.1579. The enantiomeric ratio was determined by Daicel Chiralpak IB (25 cm), *n*-Hexane/*i*PrOH = 7/3, 0.9 mL/min, λ = 254 nm, 6.50 min (major), 10.08 min (minor), ee = 99%.

7s: (S)-6-((R)-2-nitro-1-phenylethyl)-3',5'-bis(trifluoromethyl)-5,6-dihydro-[1,1'-biphenyl]-3(4H)-one

The product was obtained in 49% yield, pale yellow oil. $[\alpha]_D^{25}$ 45 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 2.04-2.10 (m, 1H), 2.18-2.34 (m, 3H), 3.37-3.40 (m, 1H), 3.73-3.79 (m, 1H), 4.42-4.47 (m, 1H), 4.53-4.58 (m, 1H), 6.34 (s, 1H), 7.03-7.05 (m, 2H), 7.32-7.36 (m, 3H), 7.96 (s, 2H), 8.02 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 23.1, 31.7, 37.4, 44.8, 77.3, 120.5, 122.8, 123.2, 125.6, 126.5, 127.7, 128.3, 129.9, 131.6,

131.9, 132.2, 135.1, 140.1, 196.5. HRMS (EI): exact mass calculated for $[M]^+$ (C₂₂H₁₇F₆NO₃) requires m/z 457.1113, found m/z 457.1110. The enantiomeric ratio was determined by Daicel Chiralpak IB (25 cm), *n*-Hexane/*i*PrOH = 7/3, 0.9 mL/min, λ = 254 nm, 10.11 min (major), 11.07 min (minor), ee = 91%.

7t: (S)-6-((R)-1-(4-bromophenyl)-2-nitroethyl)-5,6-dihydro-[1,1'-biphenyl]-3(4H)-one

The product was obtained in 68% yield, pale yellow oil. $[\alpha]_D^{25}$ 133 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.82-1.88 (m, 1H), 2.13-2.22 (m, 1H), 2.32-2.49 (m, 2H), 3.30-3.35 (m, 1H), 3.72-3.78 (m, 1H), 4.21-4.33 (m, 2H), 6.35 (s, 1H), 7.06-7.09 (m, 2H), 7.47-7.56 (m, 7H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 25.2, 32.3, 38.8, 46.4, 79.2, 122.4, 126.2, 128.3, 129.2, 129.7, 130.8, 132.4, 136.6, 139.1, 160.3, 198.2. HRMS (EI): exact mass calculated for [M]⁺ (C₂₀H₁₈BrNO₃) requires m/z 399.0470, found m/z 399.0468.

The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), *n*-Hexane / *i*-PrOH = 4/1, 1.0 mL/min, $\lambda = 254$ nm, 13.4 min (major), 16.07 min (minor), ee = 97%.

7u: (S)-4-((R)-2-nitro-1-phenylethyl)-3-(phenylethynyl)cyclohex-2-en-1-one

The product was obtained in 55% yield, pale yellow oil. $[\alpha]_D^{25}$ 47 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.68-1.76 (m, 1H), 2.03-2.12 (m, 1H), 2.26-2.41 (m, 2H), 2.85-2.89 (m, 1H), 4.08-4.14 (m, 1H), 4.86-4.92 (m, 1H), 5.10-5.14 (m, 1H), 6.37 (s, 1H), 7.28-7.36 (m, 5H), 7.42-7.45 (m, 3H), 7.56-7.58 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 23.6, 32.4, 40.5, 45.3, 77.9, 87.3, 101.4, 120.4, 126.8, 127.3, 127.7, 128.2, 129.0, 131.0, 133.0, 135.8,

142.3, 196.3. HRMS (EI): exact mass calculated for $[M]^+$ (C₂₂H₁₉NO₃) requires m/z 345.1365, found m/z 345.1367. The enantiomeric ratio was determined by Daicel Chiralpak AS-H (25 cm), *n*-Hexane / *i*-PrOH = 4/1, 0.9 mL/min, λ = 254 nm, 19.80 min (minor), 20.67 min (major), ee = 99%.

10: 2-((1S,2R)-2-(3-oxocyclohex-1-en-1-yl)-1-phenylpropyl)malononitrile

The product was obtained in 66% yield, white solid. $[\alpha]_D^{25} 20 (c \ 1.0, CH_2Cl_2)$. ¹H NMR (400 MHz, CDCl_3): δ (ppm) 1.37-1.39 (d, J = 6.8 Hz, 3H), 1.62-1.78 (m, 2H), 2.02-2.05 (m, 2H), 2.15-2.18 (m, 2H), 3.06-3.11 (m, 1H), 3.20-3.24 (m, 1H), 4.26-4.28 (d, J = 4.8 Hz, 1H), 5.80 (s, 1H), 7.28-7.32 (m, 2H), 7.35-7.40 (m, 3H). ¹³C NMR (100 MHz, CDCl_3): δ (ppm) 17.0, 21.4, 26.3, 26.7, 36.2, 42.7, 48.9,

110.4, 110.6, 126.8, 127.1, 128.2, 128.3, 134.5, 164.2, 198.3. HRMS (EI): exact mass calculated for $[M]^+$ (C₁₈H₁₂N₂O) requires m/z 278.1419, found m/z 278.1417. The enantiomeric ratio was determined by Daicel Chiralpak AY-H (25 cm), *n*-Hexane / *i*-PrOH = 7/3, 0.7 mL/min, λ = 254 nm, 20.38 min (minor), 29.24 min (major), ee = 38%.

11: 2-((1*S*,2*S*)-2-(3-oxocyclohex-1-en-1-yl)-1-phenylpropyl)malononitrile

The product was obtained in 57% yield, white solid. $[\alpha]_D^{25}$ 47 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.98 (d, *J* = 6.8 Hz, 3H), 2.04-2.16 (m, 2H), 2.35-2.54 (m, 4H), 3.02-3.10 (m, 1H), 3.19-3.22 (m, 1H), 4.06-4.07 (m, 1H), 6.15 (s, 1H), 7.39-7.41 (m, 2H), 7.43-7.48 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 16.9, 21.6, 25.7, 27.4, 36.5, 42.7, 48.1, 110.3, 110.7, 126.9, 127.3, 128.4,

128.5, 133.8, 163.6, 197.9. HRMS (EI): exact mass calculated for $[M]^+$ (C₁₈H₁₂N₂O) requires m/z 278.1419, found m/z 278.1416. The enantiomeric ratio was determined by Daicel Chiralpak AY-H (25 cm), *n*-Hexane / *i*-PrOH = 7/3, 0.7 mL/min, λ = 254 nm, 13.72 min (minor), 20.86 min (major), ee =

40%.

12a: (S)-3-((R)-4-oxo-2-((E)-styryl)cyclohex-2-en-1-yl)-1-phenylpyrrolidine-2,5-dione

The product was obtained in 68% yield, white solid. Mp 170-171°C. ¹H NMR (400MHz, CDCl₃): δ 2.20-2.25(m, 1H), 2.33-2.50 (m, 2H), 2.54-2.59 (m, 1H), 2.69-2.75 (m, 1H), 2.96-3.03 (m, 1H), 3.28-3.33 (m, 1H), 3.83-3.85 (m, 1H), 6.32 (s, 1H), 6.74-6.78 (d, J = 16 Hz, 1H), 7.03-7.07 (m, 3H), 7.31-7.38 (m, 5H), 7.44-7.46 (m, 2H). ¹³C NMR(100MHz, CDCl₃): δ 29.7, 32.1, 34.2, 35.1, 43.7, 126.5, 127.0, 127.6, 128.7, 128.9, 129.0, 129.0, 129.7, 131.4, 135.2, 137.3, 156.1, 174.6, 178.2, 198.3; HRMS(EI) exact mass calculated for M⁺(C₂₄H₂₁NO₃) requires m/z 371.1521,

found m/z 371.1524; The enantiomeric excess was determined by Daicel Chiralpak AS-H, *n*-Hexane / EtOH = 4:1, 0.7 mL/min, λ = 254 nm, 38.06 min (minor), 43.63 min (major), ee = 99%.

12b: (S)-3-((R)-2-((E)-4-chlorostyryl)-4-oxocyclohex-2-en-1-yl)-1-phenylpyrrolidine-2,5-dione

The product was obtained in 50% yield, white solid. Mp 183-184°C. ¹H NMR(400MHz, CDCl₃): δ 2.21-2.27(m, 1H), 2.38-2.48(m, 2H), 2.54-2.58(m, 1H), δ 2.65-2.71 (m, 1H), 2.94-3.01 (m, 1H), 3.26-3.31(m, 1H), 3.80-3.82 (m, 1H), 6.32 (s, 1H), 6.72-6.76 (d, *J* = 16.4 Hz, 1H), 6.89-6.91(m, 2H), 7.00-7.05 (d, *J* = 16.4 Hz, 1H), δ 7.24-7.7.34 (m, 7H); ¹³C NMR(100MHz, CDCl₃): δ 29.7, 32.1, 34.2, 35.0, 43.7, 126.3, 127.7, 128.7, 128.8, 129.0, 129.2, 129.3, 131.4, 133.8, 135.5, 135.8, 155.7, 174.6, 178.2,

198.1. HRMS(EI) exact mass calculated for M⁺ (C₂₄H₂₀ClNO₃) requires m/z 405.1132, found m/z 405.1133; The enantiomeric excess was determined by Daicel Chiralpak AS-H, *n*-Hexane / EtOH = 7:3, 0.7 mL/min, λ = 254 nm, 27.61 min (minor), 36.87 min (major), ee = 98%.

14: (2R,3R,4R,5R,6S)-5-methyl-3-nitro-8-oxo-2,4-diphenylspiro[5.5]undecane-1,1-dicarbonitrile

The product was obtained in 75% yield, white soild. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.11 (d, J = 7.6 Hz, 3H), 1.66-1.83 (m, 1H), 2.02-2.26 (m, 3H), 2.44-2.60 (m, 3H), 2.96 (d, J = 13.6 Hz, 1H), 3.38-3.44 (m, 1H), 3.88 (dd, J_I = 4.0 Hz, J_2 = 12.0 Hz, 1H), 4.07 (d, J = 12.0 Hz, 1H), 5.82 (t, J = 12.0 Hz, 1H), 7.20-7.25 (m, 2H), 7.26-7.37 (m, 3H), 7.43-7.48 (m, 3H), 7.57 (s, 2H). ¹³C NMR (100 MHz, d6-DMSO): δ (ppm) 9.54, 19.8, 31.9, 39.0, 46.1, 47.7, 47.8, 48.1, 49.0, 79.6, 84.2,

113.9, 128.1, 128.8, 128.9, 130.2, 132.4, 137.4, 208.4. HRMS (EI): exact mass calculated for $[M]^+$ (C₂₆H₂₅N₃O₃) requires m/z 427.1896, found m/z 427.1898. The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), *n*-Hexane / EtOH = 9/1, 1.0 mL/min, λ = 220 nm, 11.38 min (minor), 13.87 min (major), ee = 84%.

15: (2R,3R,4R,5S,6R)-5-methyl-3-nitro-8-oxo-2,4-diphenylspiro[5.5]undecane-1,1-dicarbonitrile

The product was obtained in 70% yield, white soild; ¹H NMR (400 MHz, d6-DMSO) δ (ppm) 0.64 (d, J = 6.8 Hz, 3H), 2.00-2.16 (m, 2H), 2.22-2.42 (m, 4H), 2.46-2.47 (m, 1H), 2.68-2.83 (m, 2H), 3.29-3.32 (m, 1H), 4.39 (d, J = 12 Hz, 1H), 5.60-5.66 (t, J = 11.6 Hz, 1H), 7.10-7.11 (m, 1H), 7.26-7.33 (m, 2H), 7.45-7.47 (m, 4H), 7.64-7.65 (m, 1H), 7.77-7.78 (m, 2H). ¹³C NMR (100 MHz, d6-DMSO): δ (ppm) 13.8, 20.55, 24.8, 38.5, 42.8, 46.4, 46.7, 49.2, 49.3, 52.8, 55.4, 90.6, 113.2, 113.9, 126.3,

128.6, 129.0, 129.2, 129.8, 130.3, 131.0, 132.4, 137.2, 209.5. HRMS (EI): exact mass calculated for $[M]^+$ (C₂₆H₂₅N₃O₃) requires m/z 427.1896, found m/z 427.1892. The enantiomeric ratio was determined by Daicel Chiralpak IA (25 cm), *n*-Hexane / EtOH = 9/1, 1.0 mL/min, λ = 220 nm, 13.50 min (minor), 15.73 min (major), ee = 83%.

16: (2*R*,3*R*,4*R*,4a*R*,8a*R*)-8a-ethyl-3-nitro-7-oxo-2,4-diphenyloctahydronaphthalene-1,1(2*H*)-dicarbonitrile

The product was obtained in 72% yield, white soild; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.20-1.23 (t, J = 6.8 Hz, 3H), 1.80-1.90 (m, 2H), 2.04-2.13 (m, 1H), 2.39-2.48 (m, 3H), 2.53-2.57 (m, 2H), 2.63-2.67 (m, 1H), 3.79-3.83 (m, 1H), 4.04-4.06 (d, J = 12 Hz, 1H), 5.75-5.81 (t, J = 12 Hz, 3H), 7.20-7.21 (m, 2H), 7.26-7.34 (m, 3H), 7.37-7.39 (m, 3H), 7.49 (m, 2H).¹³C NMR (100 MHz, CDCl₃): δ (ppm) 8.1, 22.2, 28.6, 39.3, 40.3, 45.9, 46.3, 46.7, 48.6, 49.9, 84.0, 112.2, 113.9, 128.1, 128.6, 129.2, 129.3,

130.4, 130.6, 135.2, 205.5. HRMS (EI): exact mass calculated for $[M]^+$ (C₂₆H₂₅N₃O₃) requires m/z 427.1896, found m/z 427.1894. The enantiomeric ratio was determined by Daicel Chiralpak AD (25 cm), *n*-Hexane / EtOH = 7/3, 0.55 mL/min, λ = 220 nm, 15.23 min (minor), 16.89 min (major), ee = 88%.

17: (2*R*,3*R*,4*R*,4a*S*,8a*S*)-8a-ethyl-3-nitro-7-oxo-2,4-diphenyloctahydronaphthalene-1,1(2*H*)-dicarbonitrile

The product was obtained in 80% yield, white soild; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.22-1.26 (t, J = 7.6 Hz, 3H), 1.58-1.62 (m, 1H), 1.85-2.04 (m, 3H), 2.29-2.51 (m, 3H), 2.90-2.93 (m, 1H), 3.00-3.04 (m, 1H), 3.66-3.72 (t, J = 11.6 Hz, 1H), 3.94 (d, J = 12 Hz, 1H), 5.44-5.50 (t, J = 11.6 Hz, 1H), 7.07-7.09 (m, 1H), 7.32-7.38 (m, 2H), 7.40-7.44 (m, 3H), 7.51-7.54 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 7.7, 12.1, 21.6, 28.7, 31.0, 34.1, 39.6, 40.9, 46.0, 46.2, 47.4, 48.1, 89.8, 111.0, 111.4,

128.2, 128.3, 129.2, 129.5, 134.6, 204.4 HRMS (EI): exact mass calculated for $[M]^+$ (C₂₆H₂₅N₃O₃) requires m/z 427.1896, found m/z 427.1897. The enantiomeric ratio was determined by Daicel Chiralpak AD (25 cm), *n*-Hexane / EtOH = 7/3, 0.55 mL/min, λ = 220 nm, 13.50 min (minor), 15.25 min (major), ee = 84%.

E: NMR spectra of substrates and products

1'a: 3-ethylcyclohex-3-en-1-one

1'f: 3-benzylcyclohex-3-en-1-one

1'g: 3-phenethylcyclohex-3-en-1-one

1'q:4,5-dihydro-[1,1'-biphenyl]-3(2H)-one

1'r: 3',5'-dimethoxy-4,5-dihydro-[1,1'-biphenyl]-3(2*H*)-one

1's: 3',5'-bis(trifluoromethyl)-4,5-dihydro-[1,1'-biphenyl]-3(2H)-one

1'u: 3-(phenylethynyl)cyclohex-3-en-1-one

1'v: (E)-3-styrylcyclohex-3-en-1-one

4a: 3-((2R,3R)-4-nitro-3-phenylbutan-2-yl)cyclohex-2-en-1-one

4b: 3-((2R,3R)-4-nitro-3-(p-tolyl)butan-2-yl)cyclohex-2-en-1-one

4c: 3-((2R,3R)-3-(4-methoxyphenyl)-4-nitrobutan-2-yl)cyclohex-2-en-1-one

4d: 3-((2R,3R)-3-(4-fluorophenyl)-4-nitrobutan-2-yl)cyclohex-2-en-1-one

4f: 3-((2*R*,3*R*)-3-(4-bromophenyl)-4-nitrobutan-2-yl)cyclohex-2-en-1-one

4g: 3-((2R,3R)-4-nitro-3-(3-nitrophenyl)butan-2-yl)cyclohex-2-en-1-one

4h: 3-((2R,3R)-3-(naphthalen-2-yl)-4-nitrobutan-2-yl)cyclohex-2-en-1-one

4i: 3-((2R,3S)-3-(furan-2-yl)-4-nitrobutan-2-yl)cyclohex-2-en-1-one

4j:3-((2*R*,3*R*)-1-nitro-2-phenylpentan-3-yl)cyclohex-2-en-1-one

4k: 3-((2*R*,3*R*)-1-nitro-2-phenylhexan-3-yl)cyclohex-2-en-1-one

4l: 3-((2*R*,3*R*)-1-nitro-2-phenylheptan-3-yl)cyclohex-2-en-1-one

4m: 3-((2R,3R)-1-nitro-2-phenyloctan-3-yl)cyclohex-2-en-1-one

4n: 3-((1*R*,2*R*)-3-nitro-1,2-diphenylpropyl)cyclohex-2-en-1-one

40: 3-((2*R*,3*R*)-4-nitro-1,3-diphenylbutan-2-yl)cyclohex-2-en-1-one

4p: 3-((2*R*,3*R*)-2-(4-bromophenyl)-1-nitrohexan-3-yl)cyclohex-2-en-1-one

5a: 3-((2*S*,3*R*)-4-nitro-3-phenylbutan-2-yl)cyclohex-2-en-1-one

5b: 3-((2S,3R)-4-nitro-3-(p-tolyl)butan-2-yl)cyclohex-2-en-1-one

5c: 3-((2S,3R)-3-(4-methoxyphenyl)-4-nitrobutan-2-yl)cyclohex-2-en-1-one

5d: 3-((2S,3R)-3-(4-fluorophenyl)-4-nitrobutan-2-yl)cyclohex-2-en-1-one

5e: 3-((2*S*,3*R*)-3-(4-chlorophenyl)-4-nitrobutan-2-yl)cyclohex-2-en-1-one

5f: 3-((2S,3R)-3-(4-bromophenyl)-4-nitrobutan-2-yl)cyclohex-2-en-1-one

5g: 3-((2*S*,3*R*)-4-nitro-3-(3-nitrophenyl)butan-2-yl)cyclohex-2-en-1-one

5h: 3-((2*S*,3*R*)-3-(naphthalen-2-yl)-4-nitrobutan-2-yl)cyclohex-2-en-1-one

5i: 3-((2*S*,3*S*)-3-(furan-2-yl)-4-nitrobutan-2-yl)cyclohex-2-en-1-one

5j: 3-((2R,3S)-1-nitro-2-phenylpentan-3-yl)cyclohex-2-en-1-one

5k: 3-((2*R*,3*S*)-1-nitro-2-phenylhexan-3-yl)cyclohex-2-en-1-one

5l: 3-((2*R*,3*S*)-1-nitro-2-phenylheptan-3-yl)cyclohex-2-en-1-one

5m: 3-((2*R*,3*S*)-1-nitro-2-phenyloctan-3-yl)cyclohex-2-en-1-one

5n: 3-((1*S*,2*R*)-3-nitro-1,2-diphenylpropyl)cyclohex-2-en-1-one

5p: 3-((2*R*,3*S*)-2-(4-bromophenyl)-1-nitrohexan-3-yl)cyclohex-2-en-1-one

6a: (R)-3-ethyl-4-((R)-2-nitro-1-phenylethyl)cyclohex-2-en-1-one

6b: (R)-3-ethyl-4-((R)-2-nitro-1-(p-tolyl)ethyl)cyclohex-2-en-1-one

6c: (R)-3-ethyl-4-((R)-1-(4-methoxyphenyl)-2-nitroethyl)cyclohex-2-en-1-one

6d: (R)-3-ethyl-4-((R)-1-(4-fluorophenyl)-2-nitroethyl)cyclohex-2-en-1-one

6e: (R)-4-((R)-1-(4-chlorophenyl)-2-nitroethyl)-3-ethylcyclohex-2-en-1-one

6f: (R)-4-((R)-1-(4-bromophenyl)-2-nitroethyl)-3-ethylcyclohex-2-en-1-one

6g: (R)-3-ethyl-4-((R)-2-nitro-1-(3-nitrophenyl)ethyl)cyclohex-2-en-1-one

6h: (R)-3-ethyl-4-((R)-1-(naphthalen-2-yl)-2-nitroethyl)cyclohex-2-en-1-one

6j: (R)-4-((R)-2-nitro-1-phenylethyl)-3-propylcyclohex-2-en-1-one

6k: (R)-3-butyl-4-((R)-2-nitro-1-phenylethyl)cyclohex-2-en-1-one

6l: (R)-4-((R)-2-nitro-1-phenylethyl)-3-pentylcyclohex-2-en-1-one

6m: (R)-3-hexyl-4-((R)-2-nitro-1-phenylethyl)cyclohex-2-en-1-one

6n: (R)-3-benzyl-4-((R)-2-nitro-1-phenylethyl)cyclohex-2-en-1-one

60: (R)-4-((R)-2-nitro-1-phenylethyl)-3-phenethylcyclohex-2-en-1-one

6p: (R)-4-((R)-1-(4-bromophenyl)-2-nitroethyl)-3-pentylcyclohex-2-en-1-one

6q: (*R*)-6-((*R*)-2-nitro-1-phenylethyl)-5,6-dihydro-[1,1'-biphenyl]-3(4*H*)-one

 $\label{eq:constraint} 6r: (R)-3', 5'-dimethoxy-6-((R)-2-nitro-1-phenylethyl)-5, 6-dihydro-[1,1'-biphenyl]-3(4H)-one$

6s: (S)-6-((R)-2-nitro-1-phenylethyl)-3',5'-bis(trifluoromethyl)-5,6-dihydro-[1,1'-biphenyl]-3(4H)-one

6t: (*R*)-6-((*R*)-1-(4-bromophenyl)-2-nitroethyl)-5,6-dihydro-[1,1'-biphenyl]-3(4*H*)-one

6u: (R)-4-((R)-2-nitro-1-phenylethyl)-3-(phenylethynyl)cyclohex-2-en-1-one

7a: (S)-3-ethyl-4-((R)-2-nitro-1-phenylethyl)cyclohex-2-en-1-one

7c: (S)-3-ethyl-4-((R)-1-(4-methoxyphenyl)-2-nitroethyl)cyclohex-2-en-1-one

7d: (S)-3-ethyl-4-((R)-1-(4-fluorophenyl)-2-nitroethyl)cyclohex-2-en-1-one

7e: (S)-4-((R)-1-(4-chlorophenyl)-2-nitroethyl)-3-ethylcyclohex-2-en-1-one

7f: (S)-4-((R)-1-(4-bromophenyl)-2-nitroethyl)-3-ethylcyclohex-2-en-1-one

7h: (S)-3-ethyl-4-((R)-1-(naphthalen-2-yl)-2-nitroethyl)cyclohex-2-en-1-one

7i: (S)-3-ethyl-4-((S)-1-(furan-2-yl)-2-nitroethyl)cyclohex-2-en-1-one

7k: (S)-3-butyl-4-((R)-2-nitro-1-phenylethyl)cyclohex-2-en-1-one

7l: (S)-4-((R)-2-nitro-1-phenylethyl)-3-pentylcyclohex-2-en-1-one

7m: (S)-3-hexyl-4-((R)-2-nitro-1-phenylethyl)cyclohex-2-en-1-one

7n: (S)-3-benzyl-4-((R)-2-nitro-1-phenylethyl)cyclohex-2-en-1-one

70: (S)-4-((R)-2-nitro-1-phenylethyl)-3-phenethylcyclohex-2-en-1-one

7p: (S)-4-((R)-1-(4-bromophenyl)-2-nitroethyl)-3-butylcyclohex-2-en-1-one

7q: (S)-6-((R)-2-nitro-1-phenylethyl)-5,6-dihydro-[1,1'-biphenyl]-3(4H)-one

7r: (*S*)-3',5'-dimethoxy-6-((*R*)-2-nitro-1-phenylethyl)-5,6-dihydro-[1,1'-biphenyl]-3(4*H*)-one

7s: (S)-6-((R)-2-nitro-1-phenylethyl)-3',5'-bis(trifluoromethyl)-5,6-dihydro-[1,1'-biphenyl]-3(4H)-one

7t: (*S*)-6-((*R*)-1-(4-bromophenyl)-2-nitroethyl)-5,6-dihydro-[1,1'-biphenyl]-3(4*H*)-one

7u: (S)-4-((R)-2-nitro-1-phenylethyl)-3-(phenylethynyl)cyclohex-2-en-1-one

10: 2-((1*S*,2*R*)-2-(3-oxocyclohex-1-en-1-yl)-1-phenylpropyl)malononitrile

11: 2-((1*S*,2*S*)-2-(3-oxocyclohex-1-en-1-yl)-1-phenylpropyl)malononitrile

12a: (S)-3-((R)-4-oxo-2-((E)-styryl)cyclohex-2-en-1-yl)-1-phenylpyrrolidine-2,5-dione

12b: (S)-3-((R)-2-((E)-4-chlorostyryl)-4-oxocyclohex-2-en-1-yl)-1-phenylpyrrolidine-2,5-dione

14: (2R,3R,4R,5R,6S)-5-methyl-3-nitro-8-oxo-2,4-diphenylspiro[5.5]undecane-1,1-dicarbonitrile

15: (2R,3R,4R,5S,6R)-5-methyl-3-nitro-8-oxo-2,4-diphenylspiro[5.5]undecane-1,1-dicarbonitrile

16: (2*R*,3*R*,4*R*,4a*R*,8a*R*)-8a-ethyl-3-nitro-7-oxo-2,4-diphenyloctahydronaphthalene-1,1(2*H*)-dicarbonitrile

17: (2*R*,3*R*,4*R*,4a*S*,8a*S*)-8a-ethyl-3-nitro-7-oxo-2,4-diphenyloctahydronaphthalene-1,1(2*H*)-dicarbonitrile

F: HPLC Charts of Products.

4a: 3-((2R,3R)-4-nitro-3-phenylbutan-2-yl)cyclohex-2-en-1-one

4b: 3-((2R,3R)-4-nitro-3-(p-tolyl)butan-2-yl)cyclohex-2-en-1-one

4c: 3-((2R,3R)-3-(4-methoxyphenyl)-4-nitrobutan-2-yl)cyclohex-2-en-1-one

4d: 3-((2R,3R)-3-(4-fluorophenyl)-4-nitrobutan-2-yl)cyclohex-2-en-1-one

4f: 3-((2R,3R)-3-(4-bromophenyl)-4-nitrobutan-2-yl)cyclohex-2-en-1-one

4g: 3-((2R,3R)-4-nitro-3-(3-nitrophenyl)butan-2-yl)cyclohex-2-en-1-one

4h: 3-((2R,3R)-3-(naphthalen-2-yl)-4-nitrobutan-2-yl)cyclohex-2-en-1-one

4i: 3-((2*R*,3*S*)-3-(furan-2-yl)-4-nitrobutan-2-yl)cyclohex-2-en-1-one

4j:3-((2R,3R)-1-nitro-2-phenylpentan-3-yl)cyclohex-2-en-1-one

4k: 3-((2R,3R)-1-nitro-2-phenylhexan-3-yl)cyclohex-2-en-1-one

4l: 3-((2*R*,3*R*)-1-nitro-2-phenylheptan-3-yl)cyclohex-2-en-1-one

4m: 3-((2R,3R)-1-nitro-2-phenyloctan-3-yl)cyclohex-2-en-1-one

4n: 3-((1R,2R)-3-nitro-1,2-diphenylpropyl)cyclohex-2-en-1-one

40: 3-((2R,3R)-4-nitro-1,3-diphenylbutan-2-yl)cyclohex-2-en-1-one

4p: 3-((2*R*,3*R*)-2-(4-bromophenyl)-1-nitrohexan-3-yl)cyclohex-2-en-1-one

5a: 3-((2S,3R)-4-nitro-3-phenylbutan-2-yl)cyclohex-2-en-1-one

5b: 3-((2S,3R)-4-nitro-3-(p-tolyl)butan-2-yl)cyclohex-2-en-1-one

5c: 3-((2S,3R)-3-(4-methoxyphenyl)-4-nitrobutan-2-yl)cyclohex-2-en-1-one

5d: 3-((2S,3R)-3-(4-fluorophenyl)-4-nitrobutan-2-yl)cyclohex-2-en-1-one

5e: 3-((2S,3R)-3-(4-chlorophenyl)-4-nitrobutan-2-yl)cyclohex-2-en-1-one

5f: 3-((2S,3R)-3-(4-bromophenyl)-4-nitrobutan-2-yl)cyclohex-2-en-1-one

5h: 3-((2S,3R)-3-(naphthalen-2-yl)-4-nitrobutan-2-yl)cyclohex-2-en-1-one

5i: 3-((2S,3S)-3-(furan-2-yl)-4-nitrobutan-2-yl)cyclohex-2-en-1-one

5j: 3-((2R,3S)-1-nitro-2-phenylpentan-3-yl)cyclohex-2-en-1-one

5l: 3-((2R,3S)-1-nitro-2-phenylheptan-3-yl)cyclohex-2-en-1-one

5m: 3-((2R,3S)-1-nitro-2-phenyloctan-3-yl)cyclohex-2-en-1-one

5n: 3-((1*S*,2*R*)-3-nitro-1,2-diphenylpropyl)cyclohex-2-en-1-one

50: 3-((2S,3R)-4-nitro-1,3-diphenylbutan-2-yl)cyclohex-2-en-1-one

 $\label{eq:constraint} 6r: (R)-3', 5'-dimethoxy-6-((R)-2-nitro-1-phenylethyl)-5, 6-dihydro-[1,1'-biphenyl]-3(4H)-one (R)-3', 5'-dimethoxy-6-((R)-2-nitro-1-phenylethyl)-5, 6-dihydro-[1,1'-biphenyl]-3(4H)-one (R)-3', 5'-dimethoxy-6-((R)-2-nitro-1-phenylethyl)-5, 6-dihydro-[1,1'-biphenyl]-3(4H)-one (R)-3', 5'-dihydro-[1,1'-biphenyl]-3(4H)-one (R)-3', 5'-dihydro-[1,1'-biphenyl]-3(4H)-3', 5'-dihydro-[1,1'-biphenyl]-3(4H)-3(4H$

6s: (*R*)-6-((*R*)-2-nitro-1-phenylethyl)-3',5'-bis(trifluoromethyl)-5,6-dihydro-[1,1'-biphenyl]-3(4*H*)-one

6t: (R)-6-((R)-1-(4-bromophenyl)-2-nitroethyl)-5,6-dihydro-[1,1'-biphenyl]-3(4H)-one

6u: (R)-4-((R)-2-nitro-1-phenylethyl)-3-(phenylethynyl)cyclohex-2-en-1-one

7a: (S)-3-ethyl-4-((R)-2-nitro-1-phenylethyl)cyclohex-2-en-1-one

7c: (S)-3-ethyl-4-((R)-1-(4-methoxyphenyl)-2-nitroethyl)cyclohex-2-en-1-one

7d: (S)-3-ethyl-4-((R)-1-(4-fluorophenyl)-2-nitroethyl)cyclohex-2-en-1-one

7e: (S)-4-((R)-1-(4-chlorophenyl)-2-nitroethyl)-3-ethylcyclohex-2-en-1-one

7f: (S)-4-((R)-1-(4-bromophenyl)-2-nitroethyl)-3-ethylcyclohex-2-en-1-one

7h: (S)-3-ethyl-4-((R)-1-(naphthalen-2-yl)-2-nitroethyl)cyclohex-2-en-1-one

7i: (S)-3-ethyl-4-((S)-1-(furan-2-yl)-2-nitroethyl)cyclohex-2-en-1-one

7j: (S)-4-((R)-2-nitro-1-phenylethyl)-3-propylcyclohex-2-en-1-one

7k: (S)-3-butyl-4-((R)-2-nitro-1-phenylethyl)cyclohex-2-en-1-one

71: (S)-4-((R)-2-nitro-1-phenylethyl)-3-pentylcyclohex-2-en-1-one

7m: (S)-3-hexyl-4-((R)-2-nitro-1-phenylethyl)cyclohex-2-en-1-one

7n: (S)-3-benzyl-4-((R)-2-nitro-1-phenylethyl)cyclohex-2-en-1-one

70: (S)-4-((R)-2-nitro-1-phenylethyl)-3-phenethylcyclohex-2-en-1-one

7q: (S)-6-((R)-2-nitro-1-phenylethyl)-5,6-dihydro-[1,1'-biphenyl]-3(4H)-one

 $\label{eq:started_st$

7s: (S)-6-((R)-2-nitro-1-phenylethyl)-3',5'-bis(trifluoromethyl)-5,6-dihydro-[1,1'-biphenyl]-3(4H)-one

7t: (*S*)-6-((*R*)-1-(4-bromophenyl)-2-nitroethyl)-5,6-dihydro-[1,1'-biphenyl]-3(4*H*)-one WDIA/Vadergh=254m(DHRCZCC20191223ZCF101R0822D)

12a: (*S*)-3-((*R*)-4-oxo-2-((*E*)-styryl)cyclohex-2-en-1-yl)-1-phenylpyrrolidine-2,5-dione

12b: (S)-3-((R)-2-((E)-4-chlorostyryl)-4-oxocyclohex-2-en-1-yl)-1-phenylpyrrolidine-2,5-dione

14: (2*R*,3*R*,4*R*,5*R*,6*S*)-5-methyl-3-nitro-8-oxo-2,4-diphenylspiro[5.5]undecane-1,1-dicarbonitrile WDIA Wadargh=220rm(DV+RCZCC221/C510XL-15/FR302877.D)

15: (2R,3R,4R,5S,6R)-5-methyl-3-nitro-8-oxo-2,4-diphenylspiro[5.5]undecane-1,1-dicarbonitrile

16:(2*R*,3*R*,4*R*,4a*R*,8a*R*)-8a-ethyl-3-nitro-7-oxo-2,4-diphenyloctahydronaphthalene-1,1(2*H*)-dicarbonitrile

17: (2*R*,3*R*,4*R*,4a*S*,8a*S*)-8a-ethyl-3-nitro-7-oxo-2,4-diphenyloctahydronaphthalene-1,1(2*H*)-dicarbonitrile

G: Determination of Absolute Configuration

The absolute configuration of compound **4p** (CCDC 1957050), **5f** (CCDC 1957048), **6p** (CCDC 1957049), **7p** (CCDC 1957051), **12b** (CDCC 1978462), **14** (CDCC 1978463) and **16** (CDCC 1978464) were unambiguously assigned by single crystal X-ray analysis.

Crystal data and structure refinement for 4p	(CCDC 1957050)	
Identification code	4p	
Empirical formula	$C_{18}H_{22}BrNO_3$	
Formula weight	380.27	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P 21 21 21	
Unit cell dimensions	a = 8.9889(10) Å	a= 90°.
	b = 10.1859(11) Å	b= 90°.
	c = 20.073(2) Å	g = 90°.
Volume	1837.9(3) Å ³	
Z	4	
Density (calculated)	1.374 Mg/m ³	
Absorption coefficient	2.250 mm ⁻¹	
F(000)	784	
Crystal size	0.211 x 0.175 x 0.123 mm ³	
Theta range for data collection	2.029 to 25.999°.	
Index ranges	-11<=h<=9, -12<=k<=11, -24<=l<=20	
Reflections collected	11129	
Independent reflections	3617 [R(int) = 0.0387]	
Completeness to theta = 25.242°	99.9 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7457 and 0.5215	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3617 / 36 / 242	
Goodness-of-fit on F ²	1.035	
Final R indices [I>2sigma(I)]	R1 = 0.0416, $wR2 = 0.0934$	
R indices (all data)	R1 = 0.0626, $wR2 = 0.1018$	
Absolute structure parameter	0.005(8)	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.407 and -0.223 e.Å ⁻³	

Crystal data and structure refinement for **5f** (CCDC 1957048)Identification code**5f**Empirical formulaC16H18BrNO3Formula weight352.22Temperature293(2) K

Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P 21 21 21	
Unit cell dimensions	a = 8.4827(10) Å	a= 90°.
	b = 10.4094(12) Å	b= 90°.
	c = 17.8022(19) Å	$g = 90^{\circ}$.
Volume	1571.9(3) Å ³	
Z	4	
Density (calculated)	1.488 Mg/m ³	
Absorption coefficient	2.624 mm ⁻¹	
F(000)	720	
Crystal size	0.211 x 0.175 x 0.123 mm ³	
Theta range for data collection	2.266 to 25.997°.	
Index ranges	-9<=h<=10, -12<=k<=12, -21<=l<=16	
Reflections collected	9482	
Independent reflections	3090 [R(int) = 0.0523]	
Completeness to theta = 25.242°	100.0 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7457 and 0.5346	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3090 / 1 / 192	
Goodness-of-fit on F ²	1.009	
Final R indices [I>2sigma(I)]	R1 = 0.0355, wR2 = 0.0811	
R indices (all data)	R1 = 0.0488, wR2 = 0.0863	
Absolute structure parameter	0.016(9)	
Extinction coefficient	0.0097(14)	
Largest diff. peak and hole	0.238 and -0.292 e.Å ⁻³	

Crystal data and structure refinement for 6p	(CCDC 1957049)	
Identification code	6р	
Empirical formula	C ₁₈ H ₂₂ BrNO ₃	
Formula weight	380.27	
Temperature	173(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21	
Unit cell dimensions	a = 10.5022(3) Å b = 7.3534(2) Å	$\alpha = 90^{\circ}.$ $\beta = 101.5450(10)^{\circ}.$

	$c = 11.4093(3) \text{ Å}$ $\gamma = 90^{\circ}$	
Volume	863.28(4) Å ³	
Z	2	
Density (calculated)	1.463 Mg/m ³	
Absorption coefficient	2.395 mm ⁻¹	
F(000)	392	
Crystal size	0.180 x 0.150 x 0.120 mm ³	
Theta range for data collection	2.947 to 25.992°.	
Index ranges	-12<=h<=12, -8<=k<=9, -14<=l<=14	
Reflections collected	14120	
Independent reflections	3291 [R(int) = 0.0364]	
Completeness to theta = 25.242°	99.2 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7456 and 0.4350	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3291 / 1 / 210	
Goodness-of-fit on F ²	1.039	
Final R indices [I>2sigma(I)]	R1 = 0.0232, wR2 = 0.0563	
R indices (all data)	R1 = 0.0244, wR2 = 0.0568	
Absolute structure parameter	0.032(5)	
Largest diff. peak and hole	0.387 and -0.391 e.Å ⁻³	

Crystal data and structure refinement for 7p	(CCDC 1957051)	
Identification code	7p	
Empirical formula	C ₁₈ H ₂₂ BrNO ₃	
Formula weight	380.27	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P 21 21 21	
Unit cell dimensions	a = 5.5537(11) Å	$\alpha = 90^{\circ}$.
	b = 10.753(2) Å	$\beta = 90^{\circ}$.
	c = 29.963(5) Å	$\gamma = 90^{\circ}$.
Volume	1789.3(6) Å ³	
Z	4	
Density (calculated)	1.412 Mg/m ³	
Absorption coefficient	2.311 mm ⁻¹	

784
0.200 x 0.160 x 0.120 mm ³
1.359 to 25.494°.
$\hbox{-}6{<}=h{<}=6, \hbox{-}13{<}=k{<}=12, \hbox{-}36{<}=l{<}=31$
10277
3326 [R(int) = 0.0498]
100.0 %
Semi-empirical from equivalents
0.7456 and 0.5127
Full-matrix least-squares on F ²
3326 / 40 / 228
1.026
R1 = 0.0405, wR2 = 0.0927
R1 = 0.0594, wR2 = 0.1000
0.020(9)
n/a
0.421 and -0.297 e.Å ⁻³

Crystal data and structure refinement for **12b** (CCDC 1978462)

Identification code	12b		
Empirical formula	C24H20ClNO3	C24H20ClNO3	
Formula weight	405.86		
Temperature	130 K	130 K	
Wavelength	0.71073 Å	0.71073 Å	
Crystal system	Orthorhombic	Orthorhombic	
Space group	P 21 21 21		
Unit cell dimensions	a = 10.9525(7) Å	a= 90°.	
	b = 13.3638(9) Å	b= 90°.	
	c = 13.3808(9) Å	$\gamma = 90^{\circ}.$	
Volume	1958.5(2) Å ³		
Z	4		
Density (calculated)	1.376 Mg/m ³	1.376 Mg/m ³	
Absorption coefficient	0.221 mm ⁻¹	0.221 mm ⁻¹	
F(000)	848	848	
Crystal size	0.35 x 0.3 x 0.22 mm	0.35 x 0.3 x 0.22 mm ³	
Theta range for data collection	2.154 to 30.543°.	2.154 to 30.543°.	
Index ranges	-15<=h<=15, -17<=k<	-15<=h<=15, -17<=k<=19, -19<=l<=18	
Reflections collected	19828	19828	

Independent reflections	5979 [R(int) = 0.0274]
Completeness to theta = 25.242°	100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7461 and 0.6990
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	5979 / 0 / 262
Goodness-of-fit on F ²	1.034
Final R indices [I>2sigma(I)]	R1 = 0.0357, wR2 = 0.0836
R indices (all data)	R1 = 0.0430, wR2 = 0.0876
Absolute structure parameter	0.012(18)
Extinction coefficient	n/a
Largest diff. peak and hole	0.228 and -0.236 e.Å ⁻³

Crystal data and structure refinement for 14 (CCDC 1978463) Identification code 14 Empirical formula C26 H25 N3 O3 427.49 Formula weight 293(2) K Temperature 1.54178 Å Wavelength Crystal system Monoclinic Space group P 21/n Unit cell dimensions a = 6.56750(10) Åa= 90°. b = 28.7020(6) Åb= 99.5090(10)°. c = 12.4932(3) Å $\gamma = 90^{\circ}$. 2322.61(8) Å³ Volume 4 Ζ 1.223 Mg/m³ Density (calculated) 0.652 mm⁻¹ Absorption coefficient F(000) 904 0.200 x 0.140 x 0.100 mm³ Crystal size 3.904 to 67.466°. Theta range for data collection Index ranges -7<=h<=7, -34<=k<=34, -14<=l<=14 Reflections collected 31317 Independent reflections 4115 [R(int) = 0.0595] 98.3 % Completeness to theta = 67.679° Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.7456 and 0.6132 Full-matrix least-squares on F^2 Refinement method

Data / restraints / parameters	4115 / 1 / 291		
Goodness-of-fit on F ²	1.031		
Final R indices [I>2sigma(I)]	R1 = 0.0453, wR2 = 0.0453, w	R1 = 0.0453, $wR2 = 0.1129$	
R indices (all data)	R1 = 0.0543, wR2 = 0.0543, w	R1 = 0.0543, $wR2 = 0.1208$	
Extinction coefficient	0.0066(10)	0.0066(10)	
Largest diff. peak and hole	0.171 and -0.136 e.Å	-3	
Crystal data and structure refinement	for 16 (CCDC 1978464)		
Identification code	16		
Empirical formula	C28 H28 N4 O3		
Formula weight	468.54		
Temperature	293(2) K		
Wavelength	1.54178 Å		
Crystal system	Hexagonal		
Space group	P 63	P 63	
Unit cell dimensions	a = 24.6130(6) Å	a= 90°.	
	b = 24.6130(6) Å	b= 90°.	
	c = 8.0200(2) Å	$\gamma = 120^{\circ}$.	
Volume	4207.6(2) Å ³		
Z	6		
Density (calculated)	1.109 Mg/m ³		
Absorption coefficient	0.590 mm ⁻¹		
F(000)	1488		
Crystal size	0.200 x 0.160 x 0.120) mm ³	
Theta range for data collection	5.491 to 66.976°.	5.491 to 66.976°.	
Index ranges	-29<=h<=27, -28<=k	-29<=h<=27, -28<=k<=28, -8<=l<=9	
Reflections collected	69597	69597	
Independent reflections	4925 [R(int) = 0.0583	4925 [R(int) = 0.0583]	
Completeness to theta = 67.679°	97.6 %	97.6 %	
Absorption correction	Semi-empirical from	Semi-empirical from equivalents	
Max. and min. transmission	0.7533 and 0.5333	0.7533 and 0.5333	
Refinement method	Full-matrix least-squa	Full-matrix least-squares on F^2	
Data / restraints / parameters	4925 / 1 / 319		
Goodness-of-fit on F ²	1.085		
Final R indices [I>2sigma(I)]	R1 = 0.0363, wR2 = 0.0363, w	R1 = 0.0363, wR2 = 0.0939	
R indices (all data)	R1 = 0.0388, wR2 = 0.03888, wR2 = 0.03888, wR2 = 0.03888, wR2 = 0.03888, wR2 = 0.038	R1 = 0.0388, wR2 = 0.0956	
Absolute structure parameter	0.04(8)	0.04(8)	
Extinction coefficient	0.0045(5)	0.0045(5)	

0.129 and -0.135 e.Å⁻³

Largest diff. peak and hole
H. DFT Calculations details

To make the calculation more efficiently, the reaction models were simplified and named as followings:

Simplified reaction models

All the structure were optimized with the Gaussian 09 program using the M06-2X functional together with the 6-31+G(d) basis set, the –D3 dispersion correction, and the SMD continuum solvent model with parameters for toluene, followed by frequency calculations at the same level of theory. Gas-phase single point energy calculations at these optimized structures were performed using M06-2X-D3 and the larger 6-311+G(2d,p) basis set. Combining the gas-phase 6-31+G(d) and 6-311+G(2d,p) electronic energies, the SMD-corrected 6-31+G(d) energy, and the free-energy correction yields the solution-phase free energies that were used to compare the various reaction pathways. That is, the relative free energy was calculated using the following equation:

$$\Delta G_A = \Delta E^{elec} + \Delta E^{thermal} - T\Delta S + \Delta G^{sol}$$

where ΔG is the free energy change relative to the separated reactants for species A; ΔE^{elec} is the total electronic energy change in vacuum; $\Delta E^{thermal}$ is the total internal thermal energy change including the

contributions due to translation, rotational, and vibrational motions; ΔS is the total solute entropy change; and ΔG^{solv} is the solvation free energy change in a specific solvent. Unless we specify otherwise, the Gibbs freen energy should be taken as referring to combination of the single-point electronic energies at M06-2X-D3/6-311+G(2d,p) level of theory and the SMD solvation free energies and the vibrational free-energy corrections at M06-2X-D3/6-31+G(d) level.

Gaussian 09, Revision E.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, **2009**.

Figure S7. Optimized geometries of the transition states for $3a-\gamma/\gamma'$ -addition. The bond lengths are in angstrom.

3b-γ-addition TS2c-3c

3b-γ-addition TS2d-3d

 $\textbf{3b-}\gamma'\text{-}addition \text{ TS2b-}3b$

Figure S8. Optimized geometries of the transition states for $3b-\gamma/\gamma'$ -addition. The bond lengths are in angstrom.

Figure S9. Gibbs free energy profiles for the four additions. All the energies are in kcal/mol, and ralative to the catalyst-die namine-additive plus a free nitrostyrene.

nitro	ethylene			Н	1.17321	2.94275	0.98476
Geor	netry with	18 atoms:		Н	0.99609	3.39137	-0.72971
Ν	2.98034	0.03463	0.00865	Н	0.80878	0.80740	-0.99430
С	1.59180	0.45278	0.03396	Н	3.41116	1.72778	0.02711
С	0.61748	-0.45904	-0.03419	Н	2.82446	-0.25443	-2.21963
0	3.25326	-1.15338	-0.07624	Н	3.00818	-0.89584	0.72060
0	3.81232	0.92942	0.07648	Н	-3.22095	1.74417	-0.68594
С	-0.81989	-0.18032	-0.02090	Н	-5.23854	1.18286	-1.71216
С	-1.34413	1.12198	-0.05606	Н	-7.37212	-0.22411	-1.48380
С	-1.70405	-1.26702	0.02789	Н	-6.39970	-0.78927	-2.83717
С	-2.71778	1.32550	-0.03539	Н	-6.38579	-1.68450	-1.31697
С	-3.08097	-1.06160	0.05051	Н	3.91376	2.25034	-2.48475
С	-3.58979	0.23492	0.02008	Н	2.16614	2.19399	-2.74344
Н	1.49543	1.52670	0.11604	Н	2.88806	3.41904	-1.67140
Н	0.91421	-1.50442	-0.09647	Н	5.23965	0.05121	-0.35723
Н	-0.67790	1.97844	-0.10810	Н	5.06382	-1.11533	-1.67979
Н	-1.30461	-2.27805	0.05067	Н	5.20476	0.61445	-2.04391
Н	-3.11270	2.33669	-0.06577	Н	-1.41735	-1.40701	1.05370
Н	-3.75410	-1.91280	0.09018	Н	-1.76524	-0.51598	2.53583
Н	-4.66333	0.39954	0.03557	Н	-3.42918	-2.38942	2.06261
				Н	-4.17973	-0.79952	2.23915
3a- γ-	-addition-1			Н	-3.47380	-2.14828	-0.41470
Geor	netry with	58 atoms:		Н	-5.09802	-2.02084	0.26403
С	-0.76543	2.47725	0.09176	С	-1.40557	3.79505	0.53185
Ν	-1.10877	1.36532	0.94540	Н	-1.03525	4.08392	1.52182
С	-2.18547	0.53827	0.72362	Н	-1.18800	4.60318	-0.17614
С	0.75342	2.63805	0.01997	Н	-2.49074	3.67831	0.59984
Ν	1.39934	1.34259	-0.33873	Н	1.39621	0.77082	0.55342
С	2.81483	1.39983	-0.83385	0	1.32929	0.46356	2.20156
С	3.26700	-0.02558	-1.23980	С	2.29921	-0.01254	2.86398
Ν	2.81584	-1.04574	-0.29710	0	3.30000	-0.59208	2.39728
С	-2.14617	-0.73538	1.52974	Н	2.23564	0.09663	3.96482
С	-3.18966	0.79590	-0.15274	Н	2.20172	-3.38103	1.10614
С	-4.26077	-0.15863	-0.45008	Н	1.01805	-2.12060	1.62888
S	1.52369	-1.98520	-0.67743	Н	0.46452	-3.54761	0.68308
0	0.32839	-1.16308	-0.95547				
0	1.89377	-2.92434	-1.73544	3а- ү	-addition-2a		
С	1.28410	-2.84541	0.85608	Geor	metry with	76 atoms:	
С	-5.26221	0.17670	-1.28846	С	1.35141	-2.92894	-0.10496
С	-3.51672	-1.39897	1.60232	Ν	0.83686	-2.14161	-1.20334
С	-4.12911	-1.51771	0.20519	С	-0.48344	-1.83126	-1.39068
С	4.78878	-0.11323	-1.34224	С	2.65909	-2.32355	0.41277
С	2.94647	2.37736	-1.99467	Ν	2.48608	-0.85934	0.63707
С	-6.40749	-0.67911	-1.74473	С	3.58547	-0.15025	1.37769
Н	-1.11683	2.23083	-0.92252	С	3.25232	1.35760	1.41811
Н	-0.44973	1.08895	1.66858	Ν	3.08715	1.89599	0.06245

С	-0.73391	-0.89464	-2.54805	Н	4.02109	-1.79537	2.74573
С	-1.51386	-2.29372	-0.62753	Н	5.31062	1.99398	1.67091
С	-2.89589	-1.86469	-0.81261	Н	4.09147	3.22773	2.03751
S	1.57254	2.26244	-0.44716	Н	4.39243	1.92293	3.19762
Ο	0.66677	1.09929	-0.32417	Н	-0.54368	0.13034	-2.20069
0	1.10196	3.47274	0.22881	Н	-0.00441	-1.10095	-3.34163
С	1.85828	2.57722	-2.16880	Н	-2.34795	-0.27915	-3.84620
С	-3.86842	-2.29121	0.02282	Н	-2.27786	-2.01855	-3.54368
С	-2.15844	-1.03354	-3.07465	Н	-3.10481	0.13956	-1.53915
С	-3.16768	-0.88591	-1.93649	Н	-4.18525	-1.01447	-2.31866
С	4.33199	2.16636	2.13399	С	1.55772	-4.39694	-0.47567
С	3.76055	-0.73538	2.77204	Н	2.29234	-4.48717	-1.28371
С	-5.32279	-1.91511	-0.03918	Н	1.90544	-4.98094	0.38404
Н	0.62724	-2.86573	0.71405	Н	0.61284	-4.82435	-0.82410
Н	1.51100	-1.75740	-1.86176	Н	2.40447	-0.44313	-0.31520
Н	3.47448	-2.43638	-0.30878	0	3.03485	-0.54473	-2.07076
Н	2.92891	-2.80686	1.35164	С	4.18421	-0.12082	-2.37845
Н	1.58507	-0.69691	1.11454	0	4.80535	0.80644	-1.81316
Н	4.49028	-0.29640	0.77364	Н	4.68265	-0.61543	-3.23760
Н	2.30195	1.48373	1.95760	Н	2.62408	3.34914	-2.26512
Н	3.72404	1.50382	-0.67377	Н	2.15900	1.63964	-2.64218
Н	-1.33369	-3.01291	0.16961	Н	0.90526	2.92830	-2.57271
Н	-3.58362	-2.98397	0.81675				
п	5 01551			2	1.11.1		
п	-3.91331	-2.66141	-0.58784	3a-y	-addition-TS	2a-3a	
Н	-5.75128	-2.66141 -1.86014	-0.58784 0.96887	3a -γ Geo	-addition-TS metry with	2a-3a 76 atoms:	
н Н Н	-5.75128 -5.48604	-2.66141 -1.86014 -0.94551	-0.58784 0.96887 -0.51998	3α -γ Geo C	metry with 1.55407	2a-3a 76 atoms: -2.90245	-0.02404
H H N	-5.75128 -5.48604 -0.92030	-2.66141 -1.86014 -0.94551 -1.14217	-0.58784 0.96887 -0.51998 2.45969	3a -γ Geo C N	-addition-TS metry with 1.55407 1.02335	2a-3a 76 atoms: -2.90245 -2.19721	-0.02404 -1.18461
H H N C	-5.75128 -5.48604 -0.92030 -1.44610	-2.66141 -1.86014 -0.94551 -1.14217 -0.02460	-0.58784 0.96887 -0.51998 2.45969 1.73609	3 α -γ Geo C N C	-addition-18 metry with 1.55407 1.02335 -0.25977	2a-3a 76 atoms: -2.90245 -2.19721 -1.89417	-0.02404 -1.18461 -1.41188
H H N C C	-5.75128 -5.48604 -0.92030 -1.44610 -2.76822	-2.66141 -1.86014 -0.94551 -1.14217 -0.02460 0.20127	-0.58784 0.96887 -0.51998 2.45969 1.73609 1.72383	3 α -γ Geo C N C C	-addition-18 metry with 1.55407 1.02335 -0.25977 2.73601	2a-3a 76 atoms: -2.90245 -2.19721 -1.89417 -2.12901	-0.02404 -1.18461 -1.41188 0.56443
H H N C C O	-5.75128 -5.75128 -0.92030 -1.44610 -2.76822 -1.65994	-2.66141 -1.86014 -0.94551 -1.14217 -0.02460 0.20127 -1.93001	-0.58784 0.96887 -0.51998 2.45969 1.73609 1.72383 3.02252	3 α -γ Geo C N C C N	-addition-18 metry with 1.55407 1.02335 -0.25977 2.73601 2.35647	2a-3a 76 atoms: -2.90245 -2.19721 -1.89417 -2.12901 -0.71003	-0.02404 -1.18461 -1.41188 0.56443 0.79805
H H N C C O O	-5.91331 -5.75128 -5.48604 -0.92030 -1.44610 -2.76822 -1.65994 0.31567	-2.66141 -1.86014 -0.94551 -1.14217 -0.02460 0.20127 -1.93001 -1.25499	-0.58784 0.96887 -0.51998 2.45969 1.73609 1.72383 3.02252 2.48106	3α-γ Geo C N C N C	-addition-18 metry with 1.55407 1.02335 -0.25977 2.73601 2.35647 3.36068	2a-3a 76 atoms: -2.90245 -2.19721 -1.89417 -2.12901 -0.71003 0.12419	-0.02404 -1.18461 -1.41188 0.56443 0.79805 1.54486
H H N C C O O C	-5.75128 -5.75128 -0.92030 -1.44610 -2.76822 -1.65994 0.31567 -3.40480	-2.66141 -1.86014 -0.94551 -1.14217 -0.02460 0.20127 -1.93001 -1.25499 1.29772	-0.58784 0.96887 -0.51998 2.45969 1.73609 1.72383 3.02252 2.48106 0.99836	3a-γ Geo C N C C N C C	-addition-18 metry with 1.55407 1.02335 -0.25977 2.73601 2.35647 3.36068 2.92354	2a-3a 76 atoms: -2.90245 -2.19721 -1.89417 -2.12901 -0.71003 0.12419 1.60168	-0.02404 -1.18461 -1.41188 0.56443 0.79805 1.54486 1.46958
H H N C C O O C C	-5.91331 -5.75128 -5.48604 -0.92030 -1.44610 -2.76822 -1.65994 0.31567 -3.40480 -2.67081	-2.66141 -1.86014 -0.94551 -1.14217 -0.02460 0.20127 -1.93001 -1.25499 1.29772 2.20427	-0.58784 0.96887 -0.51998 2.45969 1.73609 1.72383 3.02252 2.48106 0.99836 0.21302	3 a -γ Geo C N C N C C N	-addition-18 metry with 1.55407 1.02335 -0.25977 2.73601 2.35647 3.36068 2.92354 2.86885	2a-3a 76 atoms: -2.90245 -2.19721 -1.89417 -2.12901 -0.71003 0.12419 1.60168 2.05435	-0.02404 -1.18461 -1.41188 0.56443 0.79805 1.54486 1.46958 0.07080
H H N C C O O C C C C	-5.91331 -5.75128 -5.48604 -0.92030 -1.44610 -2.76822 -1.65994 0.31567 -3.40480 -2.67081 -4.79790	-2.66141 -1.86014 -0.94551 -1.14217 -0.02460 0.20127 -1.93001 -1.25499 1.29772 2.20427 1.43335	-0.58784 0.96887 -0.51998 2.45969 1.73609 1.72383 3.02252 2.48106 0.99836 0.21302 1.07334	3 a -γ Geo C N C C N C N C	-addition-18 metry with 1.55407 1.02335 -0.25977 2.73601 2.35647 3.36068 2.92354 2.86885 -0.52639	2a-3a 76 atoms: -2.90245 -2.19721 -1.89417 -2.12901 -0.71003 0.12419 1.60168 2.05435 -1.07715	-0.02404 -1.18461 -1.41188 0.56443 0.79805 1.54486 1.46958 0.07080 -2.64934
H H N C C O O C C C C C C	-5.91331 -5.75128 -5.48604 -0.92030 -1.44610 -2.76822 -1.65994 0.31567 -3.40480 -2.67081 -4.79790 -3.32454	-2.66141 -1.86014 -0.94551 -1.14217 -0.02460 0.20127 -1.93001 -1.25499 1.29772 2.20427 1.43335 3.21490	-0.58784 0.96887 -0.51998 2.45969 1.72383 3.02252 2.48106 0.99836 0.21302 1.07334 -0.48000	3 a -γ Geo C N C C N C C N C C	-addition-18 metry with 1.55407 1.02335 -0.25977 2.73601 2.35647 3.36068 2.92354 2.86885 -0.52639 -1.31597	2a-3a 76 atoms: -2.90245 -2.19721 -1.89417 -2.12901 -0.71003 0.12419 1.60168 2.05435 -1.07715 -2.25734	-0.02404 -1.18461 -1.41188 0.56443 0.79805 1.54486 1.46958 0.07080 -2.64934 -0.58346
H H N C C O O C C C C C C C	-5.91331 -5.75128 -5.48604 -0.92030 -1.44610 -2.76822 -1.65994 0.31567 -3.40480 -2.67081 -4.79790 -3.32454 -5.45097	-2.66141 -1.86014 -0.94551 -1.14217 -0.02460 0.20127 -1.93001 -1.25499 1.29772 2.20427 1.43335 3.21490 2.44409	-0.58784 0.96887 -0.51998 2.45969 1.73609 1.72383 3.02252 2.48106 0.99836 0.21302 1.07334 -0.48000 0.37253	3a-γ Geo C N C C N C C N C C C	-addition-18 metry with 1.55407 1.02335 -0.25977 2.73601 2.35647 3.36068 2.92354 2.86885 -0.52639 -1.31597 -2.63391	2a-3a 76 atoms: -2.90245 -2.19721 -1.89417 -2.12901 -0.71003 0.12419 1.60168 2.05435 -1.07715 -2.25734 -1.80798	-0.02404 -1.18461 -1.41188 0.56443 0.79805 1.54486 1.46958 0.07080 -2.64934 -0.58346 -0.81679
H H N C C O O C C C C C C C C C C	-5.91331 -5.75128 -5.48604 -0.92030 -1.44610 -2.76822 -1.65994 0.31567 -3.40480 -2.67081 -4.79790 -3.32454 -5.45097 -4.71505	-2.66141 -1.86014 -0.94551 -1.14217 -0.02460 0.20127 -1.93001 -1.25499 1.29772 2.20427 1.43335 3.21490 2.44409 3.33575	-0.58784 0.96887 -0.51998 2.45969 1.73609 1.72383 3.02252 2.48106 0.99836 0.21302 1.07334 -0.48000 0.37253 -0.40594	3a-γ Geo C N C C N C C C C S	-addition-18 metry with 1.55407 1.02335 -0.25977 2.73601 2.35647 3.36068 2.92354 2.86885 -0.52639 -1.31597 -2.63391 1.38806	2a-3a 76 atoms: -2.90245 -2.19721 -1.89417 -2.12901 -0.71003 0.12419 1.60168 2.05435 -1.07715 -2.25734 -1.80798 2.29694	-0.02404 -1.18461 -1.41188 0.56443 0.79805 1.54486 1.46958 0.07080 -2.64934 -0.58346 -0.81679 -0.59837
H H N C C O O C C C C C C H	-5.91331 -5.75128 -5.48604 -0.92030 -1.44610 -2.76822 -1.65994 0.31567 -3.40480 -2.67081 -4.79790 -3.32454 -5.45097 -4.71505 -0.67744	-2.66141 -1.86014 -0.94551 -1.14217 -0.02460 0.20127 -1.93001 -1.25499 1.29772 2.20427 1.43335 3.21490 2.44409 3.33575 0.53289	-0.58784 0.96887 -0.51998 2.45969 1.73609 1.72383 3.02252 2.48106 0.99836 0.21302 1.07334 -0.48000 0.37253 -0.40594 1.21666	3a-γ Geo C N C C N C C N C C S O	-addition-18 metry with 1.55407 1.02335 -0.25977 2.73601 2.35647 3.36068 2.92354 2.86885 -0.52639 -1.31597 -2.63391 1.38806 0.55751	2a-3a 76 atoms: -2.90245 -2.19721 -1.89417 -2.12901 -0.71003 0.12419 1.60168 2.05435 -1.07715 -2.25734 -1.80798 2.29694 1.07420	-0.02404 -1.18461 -1.41188 0.56443 0.79805 1.54486 1.46958 0.07080 -2.64934 -0.58346 -0.81679 -0.59837 -0.52719
H H N C C O O C C C C C C C H H	-5.91331 -5.75128 -5.48604 -0.92030 -1.44610 -2.76822 -1.65994 0.31567 -3.40480 -2.67081 -4.79790 -3.32454 -5.45097 -4.71505 -0.67744 -3.41389	-2.66141 -1.86014 -0.94551 -1.14217 -0.02460 0.20127 -1.93001 -1.25499 1.29772 2.20427 1.43335 3.21490 2.44409 3.33575 0.53289 -0.46478	-0.58784 0.96887 -0.51998 2.45969 1.73609 1.72383 3.02252 2.48106 0.99836 0.21302 1.07334 -0.48000 0.37253 -0.40594 1.21666 2.29196	3a-γ Geo C N C C N C C C C S O O	-addition-18 metry with 1.55407 1.02335 -0.25977 2.73601 2.35647 3.36068 2.92354 2.86885 -0.52639 -1.31597 -2.63391 1.38806 0.55751 0.77929	2a-3a 76 atoms: -2.90245 -2.19721 -1.89417 -2.12901 -0.71003 0.12419 1.60168 2.05435 -1.07715 -2.25734 -1.80798 2.29694 1.07420 3.48978	-0.02404 -1.18461 -1.41188 0.56443 0.79805 1.54486 1.46958 0.07080 -2.64934 -0.58346 -0.81679 -0.59837 -0.52719 -0.01046
H H N C C O O C C C C C C H H H	-5.91331 -5.75128 -5.48604 -0.92030 -1.44610 -2.76822 -1.65994 0.31567 -3.40480 -2.67081 -4.79790 -3.32454 -5.45097 -4.71505 -0.67744 -3.41389 -1.58996	-2.66141 -1.86014 -0.94551 -1.14217 -0.02460 0.20127 -1.93001 -1.25499 1.29772 2.20427 1.43335 3.21490 2.44409 3.33575 0.53289 -0.46478 2.11374	-0.58784 0.96887 -0.51998 2.45969 1.73609 1.72383 3.02252 2.48106 0.99836 0.21302 1.07334 -0.48000 0.37253 -0.40594 1.21666 2.29196 0.13500	3a-γ Geo C N C C N C C C S O O C	-addition-18 metry with 1.55407 1.02335 -0.25977 2.73601 2.35647 3.36068 2.92354 2.86885 -0.52639 -1.31597 -2.63391 1.38806 0.55751 0.77929 1.82472	2a-3a 76 atoms: -2.90245 -2.19721 -1.89417 -2.12901 -0.71003 0.12419 1.60168 2.05435 -1.07715 -2.25734 -1.80798 2.29694 1.07420 3.48978 2.58373	-0.02404 -1.18461 -1.41188 0.56443 0.79805 1.54486 1.46958 0.07080 -2.64934 -0.58346 -0.81679 -0.59837 -0.52719 -0.01046 -2.29326
H H N C C O O C C C C C C C H H H H H H	-5.91331 -5.75128 -5.48604 -0.92030 -1.44610 -2.76822 -1.65994 0.31567 -3.40480 -2.67081 -4.79790 -3.32454 -5.45097 -4.71505 -0.67744 -3.41389 -1.58996 -5.36824	-2.66141 -1.86014 -0.94551 -1.14217 -0.02460 0.20127 -1.93001 -1.25499 1.29772 2.20427 1.43335 3.21490 2.44409 3.33575 0.53289 -0.46478 2.11374 0.73560	-0.58784 0.96887 -0.51998 2.45969 1.73609 1.72383 3.02252 2.48106 0.99836 0.21302 1.07334 -0.48000 0.37253 -0.40594 1.21666 2.29196 0.13500 1.68202	3a-γ Geo C N C C N C C C C S O O C C	-addition-18 metry with 1.55407 1.02335 -0.25977 2.73601 2.35647 3.36068 2.92354 2.86885 -0.52639 -1.31597 -2.63391 1.38806 0.55751 0.77929 1.82472 -3.56697	2a-3a 76 atoms: -2.90245 -2.19721 -1.89417 -2.12901 -0.71003 0.12419 1.60168 2.05435 -1.07715 -2.25734 -1.80798 2.29694 1.07420 3.48978 2.58373 -1.89672	-0.02404 -1.18461 -1.41188 0.56443 0.79805 1.54486 1.46958 0.07080 -2.64934 -0.58346 -0.81679 -0.59837 -0.52719 -0.01046 -2.29326 0.21504
H H N C C O O C C C C C C H H H H H H H H	-5.91331 -5.75128 -5.48604 -0.92030 -1.44610 -2.76822 -1.65994 0.31567 -3.40480 -2.67081 -4.79790 -3.32454 -5.45097 -4.71505 -0.67744 -3.41389 -1.58996 -5.36824 -2.74767	-2.66141 -1.86014 -0.94551 -1.14217 -0.02460 0.20127 -1.93001 -1.25499 1.29772 2.20427 1.43335 3.21490 2.44409 3.33575 0.53289 -0.46478 2.11374 0.73560 3.91212	-0.58784 0.96887 -0.51998 2.45969 1.73609 1.72383 3.02252 2.48106 0.99836 0.21302 1.07334 -0.48000 0.37253 -0.40594 1.21666 2.29196 0.13500 1.68202 -1.08099	3a-γ Geo C N C C N C C C C S O O C C C C	-addition-18 metry with 1.55407 1.02335 -0.25977 2.73601 2.35647 3.36068 2.92354 2.86885 -0.52639 -1.31597 -2.63391 1.38806 0.55751 0.77929 1.82472 -3.56697 -1.92381	2a-3a 76 atoms: -2.90245 -2.19721 -1.89417 -2.12901 -0.71003 0.12419 1.60168 2.05435 -1.07715 -2.25734 -1.80798 2.29694 1.07420 3.48978 2.58373 -1.89672 -1.35808	-0.02404 -1.18461 -1.41188 0.56443 0.79805 1.54486 1.46958 0.07080 -2.64934 -0.58346 -0.81679 -0.59837 -0.52719 -0.01046 -2.29326 0.21504 -3.19344
н н н С С С С С С С С С С С С С С С С С	-5.91331 -5.75128 -5.48604 -0.92030 -1.44610 -2.76822 -1.65994 0.31567 -3.40480 -2.67081 -4.79790 -3.32454 -5.45097 -4.71505 -0.67744 -3.41389 -1.58996 -5.36824 -2.74767 -6.53137	-2.66141 -1.86014 -0.94551 -1.14217 -0.02460 0.20127 -1.93001 -1.25499 1.29772 2.20427 1.43335 3.21490 2.44409 3.33575 0.53289 -0.46478 2.11374 0.73560 3.91212 2.53594	-0.58784 0.96887 -0.51998 2.45969 1.73609 1.72383 3.02252 2.48106 0.99836 0.21302 1.07334 -0.48000 0.37253 -0.40594 1.21666 2.29196 0.13500 1.68202 -1.08099 0.43599	3a-γ Geo C N C C N C C C S O O C C C C C C C	-addition-18 metry with 1.55407 1.02335 -0.25977 2.73601 2.35647 3.36068 2.92354 2.86885 -0.52639 -1.31597 -2.63391 1.38806 0.55751 0.77929 1.82472 -3.56697 -1.92381 -2.97626	2a-3a 76 atoms: -2.90245 -2.19721 -1.89417 -2.12901 -0.71003 0.12419 1.60168 2.05435 -1.07715 -2.25734 -1.80798 2.29694 1.07420 3.48978 2.58373 -1.89672 -1.35808 -1.11881	-0.02404 -1.18461 -1.41188 0.56443 0.79805 1.54486 1.46958 0.07080 -2.64934 -0.58346 -0.81679 -0.59837 -0.52719 -0.01046 -2.29326 0.21504 -3.19344 -2.11349
н Н Н С С С С С С С С С С С С С С С С С	-5.91331 -5.75128 -5.48604 -0.92030 -1.44610 -2.76822 -1.65994 0.31567 -3.40480 -2.67081 -4.79790 -3.32454 -5.45097 -4.71505 -0.67744 -3.41389 -1.58996 -5.36824 -2.74767 -6.53137 -5.22132	-2.66141 -1.86014 -0.94551 -1.14217 -0.02460 0.20127 -1.93001 -1.25499 1.29772 2.20427 1.43335 3.21490 2.44409 3.33575 0.53289 -0.46478 2.11374 0.73560 3.91212 2.53594 4.12701	-0.58784 0.96887 -0.51998 2.45969 1.72383 3.02252 2.48106 0.99836 0.21302 1.07334 -0.48000 0.37253 -0.40594 1.21666 2.29196 0.13500 1.68202 -1.08099 0.43599 -0.95158	3a-γ Geo C N C C N C C C C S O O C C C C C C C C C C	-addition-18 metry with 1.55407 1.02335 -0.25977 2.73601 2.35647 3.36068 2.92354 2.86885 -0.52639 -1.31597 -2.63391 1.38806 0.55751 0.77929 1.82472 -3.56697 -1.92381 -2.97626 3.87013	2a-3a 76 atoms: -2.90245 -2.19721 -1.89417 -2.12901 -0.71003 0.12419 1.60168 2.05435 -1.07715 -2.25734 -1.80798 2.29694 1.07420 3.48978 2.58373 -1.89672 -1.35808 -1.11881 2.51838	-0.02404 -1.18461 -1.41188 0.56443 0.79805 1.54486 1.46958 0.07080 -2.64934 -0.58346 -0.81679 -0.59837 -0.52719 -0.01046 -2.29326 0.21504 -3.19344 -2.11349 2.24054
н н н С С О О С С С С С С С С С С С С С	-5.91331 -5.75128 -5.48604 -0.92030 -1.44610 -2.76822 -1.65994 0.31567 -3.40480 -2.67081 -4.79790 -3.32454 -5.45097 -4.71505 -0.67744 -3.41389 -1.58996 -5.36824 -2.74767 -6.53137 -5.22132 4.57739	-2.66141 -1.86014 -0.94551 -1.14217 -0.02460 0.20127 -1.93001 -1.25499 1.29772 2.20427 1.43335 3.21490 2.44409 3.33575 0.53289 -0.46478 2.11374 0.73560 3.91212 2.53594 4.12701 -0.22558	-0.58784 0.96887 -0.51998 2.45969 1.73609 1.72383 3.02252 2.48106 0.99836 0.21302 1.07334 -0.48000 0.37253 -0.40594 1.21666 2.29196 0.13500 1.68202 -1.08099 0.43599 -0.95158 3.28606	3a-γ Geo C N C C N C C C S O O C C C C C C C C C C C C C C	-addition-18 metry with 1.55407 1.02335 -0.25977 2.73601 2.35647 3.36068 2.92354 2.86885 -0.52639 -1.31597 -2.63391 1.38806 0.55751 0.77929 1.82472 -3.56697 -1.92381 -2.97626 3.87013 3.48349	2a-3a 76 atoms: -2.90245 -2.19721 -1.89417 -2.12901 -0.71003 0.12419 1.60168 2.05435 -1.07715 -2.25734 -1.80798 2.29694 1.07420 3.48978 2.58373 -1.89672 -1.35808 -1.11881 2.51838 -0.36724	-0.02404 -1.18461 -1.41188 0.56443 0.79805 1.54486 1.46958 0.07080 -2.64934 -0.58346 -0.81679 -0.59837 -0.52719 -0.01046 -2.29326 0.21504 -3.19344 -2.11349 2.24054 2.98069
н н н С С С С С С С С С С С С С С С С С	-5.91331 -5.75128 -5.48604 -0.92030 -1.44610 -2.76822 -1.65994 0.31567 -3.40480 -2.67081 -4.79790 -3.32454 -5.45097 -4.71505 -0.67744 -3.41389 -1.58996 -5.36824 -2.74767 -6.53137 -5.22132 4.57739 2.84644	-2.66141 -1.86014 -0.94551 -1.14217 -0.02460 0.20127 -1.93001 -1.25499 1.29772 2.20427 1.43335 3.21490 2.44409 3.33575 0.53289 -0.46478 2.11374 0.73560 3.91212 2.53594 4.12701 -0.22558 -0.61376	-0.58784 0.96887 -0.51998 2.45969 1.73609 1.72383 3.02252 2.48106 0.99836 0.21302 1.07334 -0.48000 0.37253 -0.40594 1.21666 2.29196 0.13500 1.68202 -1.08099 0.43599 -0.95158 3.28606 3.36468	3a-γ Geo C N C C N C C C C C C C C C C C C C C	-addition-18 metry with 1.55407 1.02335 -0.25977 2.73601 2.35647 3.36068 2.92354 2.86885 -0.52639 -1.31597 -2.63391 1.38806 0.55751 0.77929 1.82472 -3.56697 -1.92381 -2.97626 3.87013 3.48349 -5.03730	2a-3a 76 atoms: -2.90245 -2.19721 -1.89417 -2.12901 -0.71003 0.12419 1.60168 2.05435 -1.07715 -2.25734 -1.80798 2.29694 1.07420 3.48978 2.58373 -1.89672 -1.35808 -1.11881 2.51838 -0.36724 -1.65184	-0.02404 -1.18461 -1.41188 0.56443 0.79805 1.54486 1.46958 0.07080 -2.64934 -0.58346 -0.81679 -0.59837 -0.52719 -0.01046 -2.29326 0.21504 -3.19344 -2.11349 2.24054 2.98069 0.01760

Н	0.77749	-2.93423	0.74358	Н	1.11566	-4.88165	-0.76688
Н	1.71906	-1.80096	-1.82309	Н	2.19194	-0.29292	-0.13749
Н	3.59904	-2.12954	-0.10827	0	3.01352	-0.44304	-1.99014
Н	3.01177	-2.58673	1.51487	С	4.22468	-0.10890	-2.12695
Н	1.45142	-0.70053	1.32209	0	4.81003	0.80517	-1.50710
Н	4.30792	0.00955	1.00264	Н	4.81905	-0.67902	-2.87171
Н	1.91695	1.68737	1.90389	Н	2.53170	3.41404	-2.33956
Н	3.56932	1.61342	-0.56864	Н	2.24668	1.65847	-2.69362
Н	-1.14103	-2.84182	0.31520	Н	0.89446	2.84224	-2.80590
Н	-3.29770	-2.56649	1.03209				
Н	-5.50964	-2.50233	-0.49354	3a-	y-addition-3a		
Н	-5.54442	-1.53794	0.98180	Geo	metry with	76 atoms:	
Н	-5.24101	-0.75251	-0.57252	С	2.00942	-2.73182	0.39262
Ν	-0.95048	-1.27858	2.36955	Ν	1.60000	-2.29320	-0.94870
С	-1.51009	-0.27334	1.63828	С	0.39028	-2.11098	-1.40642
С	-2.89646	-0.21213	1.46375	С	2.87286	-1.64041	1.02487
0	-1.64523	-2.18775	2.85595	Ν	2.11084	-0.37666	1.13443
0	0.31263	-1.28209	2.54103	С	2.86649	0.75757	1.75923
С	-3.48509	0.98070	0.82873	С	2.15587	2.07687	1.40468
С	-2.76672	1.75246	-0.09965	Ν	2.24257	2.31624	-0.04687
С	-4.78678	1.37798	1.16702	С	0.25945	-1.53299	-2.78810
С	-3.33936	2.88567	-0.66908	С	-0.77360	-2.37035	-0.61392
С	-5.35991	2.50988	0.59305	С	-1.96757	-1.80867	-0.93609
С	-4.63812	3.26699	-0.32920	S	0.88064	2.17286	-0.94309
Н	-0.79861	0.39885	1.17935	0	0.29049	0.81860	-0.82422
Н	-3.50410	-0.69658	2.22461	0	-0.04134	3.26353	-0.62333
Н	-1.75026	1.47365	-0.37013	С	1.53564	2.36581	-2.58032
Н	-5.34770	0.79924	1.89719	С	-3.06181	-1.90718	0.09667
Н	-2.76353	3.47906	-1.37426	С	-1.17691	-1.60499	-3.29675
Н	-6.36778	2.80432	0.87201	С	-2.15033	-1.08450	-2.23884
Н	-5.08095	4.15385	-0.77367	С	2.75770	3.27477	2.13297
Н	4.27972	0.17788	3.49119	С	2.97700	0.53738	3.26329
Н	2.54440	-0.21666	3.52470	С	-4.46544	-2.04176	-0.49151
Н	3.74397	-1.42691	3.03109	Н	1.11960	-2.86433	1.01415
Н	4.89990	2.38950	1.88671	Н	2.36658	-1.91416	-1.52889
Н	3.57452	3.55479	2.06133	Н	3.78034	-1.45975	0.43879
Н	3.83572	2.33062	3.31663	Н	3.14954	-1.96772	2.02895
Н	-0.42410	-0.02059	-2.36484	Н	1.21395	-0.59903	1.77971
Н	0.24455	-1.28580	-3.39945	Н	3.86269	0.77036	1.29657
Н	-2.12279	-0.72100	-4.06103	Н	1.09610	1.98581	1.68463
Н	-1.97768	-2.39981	-3.53389	Н	3.09983	1.94070	-0.51796
Н	-3.07283	-0.03891	-1.91789	Н	-0.68701	-2.89240	0.33503
Н	-3.96136	-1.45371	-2.45851	Н	-2.84007	-2.80769	0.67702
С	1.97709	-4.32167	-0.39184	Н	-4.51633	-2.89978	-1.17149
Н	2.74489	-4.30229	-1.17348	Н	-5.18906	-2.21423	0.31261
Н	2.37796	-4.84742	0.48105	Н	-4.78515	-1.14874	-1.03632

Ν	-0.89180	-1.37273	2.31476	Ν	0.86345	2.15123	1.35001
С	-1.62062	-0.46711	1.72201	С	-0.43951	1.77946	1.55378
С	-2.99222	-0.74945	1.18138	С	2.61882	2.32414	-0.34454
0	-1.24994	-2.58892	2.44199	Ν	2.42953	0.86732	-0.60266
0	0.29692	-1.03130	2.79938	С	3.51122	0.16899	-1.38043
С	-3.63996	0.54208	0.71398	С	3.13675	-1.32415	-1.50774
С	-2.92262	1.49484	-0.01803	Ν	2.96570	-1.93836	-0.18505
С	-4.98443	0.79944	1.00374	С	-0.60995	0.79856	2.68983
С	-3.53467	2.66806	-0.45714	С	-1.50022	2.22978	0.82245
С	-5.60284	1.96714	0.55959	С	-2.85414	1.71946	1.01358
С	-4.87940	2.90535	-0.17613	S	1.44377	-2.27728	0.32233
Н	-1.19418	0.52604	1.70014	0	0.58194	-1.07700	0.28714
Н	-3.60347	-1.15558	2.00176	0	0.91764	-3.42173	-0.42572
Н	-1.86949	1.33280	-0.23570	С	1.73916	-2.71331	2.01539
Н	-5.55213	0.07911	1.58956	С	-3.94539	2.17866	0.36269
Н	-2.94691	3.39920	-1.00576	С	-2.05482	0.72852	3.17348
Н	-6.64752	2.14851	0.79797	С	-2.98442	0.55740	1.97385
Н	-5.35666	3.82109	-0.51444	С	4.19123	-2.11831	-2.27618
Н	3.66760	1.26524	3.69495	С	3.71436	0.82910	-2.73676
Н	1.99953	0.63644	3.74653	С	-4.01103	3.28810	-0.64739
Н	3.36840	-0.45649	3.49638	Н	0.57552	2.85832	-0.56508
Н	3.83409	3.34189	1.93488	Н	1.56732	1.73325	1.95503
Н	2.28400	4.18693	1.76215	Н	3.45667	2.41383	0.35479
Н	2.59685	3.21401	3.21254	Н	2.86388	2.82927	-1.27858
Н	0.59277	-0.49071	-2.70954	Н	1.51929	0.72293	-1.06712
Н	0.95703	-2.04699	-3.45846	Н	4.41700	0.25234	-0.76599
Н	-1.26777	-1.02084	-4.21718	Н	2.18109	-1.39418	-2.04812
Н	-1.43281	-2.64320	-3.54107	Н	3.61992	-1.60850	0.56615
Н	-1.97701	-0.01256	-2.06129	Н	-1.34598	2.99718	0.06920
Н	-3.18415	-1.18000	-2.58331	Н	-4.89859	1.70095	0.59630
С	2.77892	-4.04283	0.28504	Н	-3.03748	3.74203	-0.84613
Н	3.66967	-3.92064	-0.34169	Н	-4.40280	2.93085	-1.60952
Н	3.09425	-4.37585	1.27811	Н	-4.68799	4.08360	-0.30911
Н	2.14628	-4.81873	-0.15460	Ν	-1.02424	1.23687	-2.33081
Н	1.78816	-0.10174	0.19253	С	-1.53423	0.05409	-1.70080
0	3.20936	-0.33492	-1.82042	С	-2.85549	-0.15835	-1.63542
С	4.33823	0.22682	-1.74643	0	-1.77600	2.08393	-2.77757
0	4.58109	1.32611	-1.20354	0	0.21042	1.33855	-2.39139
Н	5.19486	-0.30620	-2.21164	С	-3.45783	-1.32459	-0.99201
Н	2.05124	3.32609	-2.63883	С	-2.69024	-2.41158	-0.53975
Н	2.20969	1.52743	-2.77799	С	-4.84475	-1.33598	-0.78976
Н	0.67597	2.35127	-3.25574	С	-3.30329	-3.47476	0.11138
				С	-5.45503	-2.39965	-0.13089
3a-y-	addition-2b			С	-4.68450	-3.46941	0.32263
Geor	netry with	76 atoms:		Н	-0.75135	-0.55536	-1.26911
С	1.33214	2.92829	0.22389	Н	-3.52605	0.58089	-2.06801

Η	-1.61402	-2.43222	-0.69324	С	1.69387	-2.73704	2.14495
Н	-5.43910	-0.49495	-1.13948	С	-3.52249	1.81642	0.36434
Н	-2.70098	-4.31230	0.45173	С	-1.51796	0.80415	3.36014
Н	-6.52934	-2.39356	0.02844	С	-2.43287	0.48157	2.18074
Н	-5.15923	-4.30154	0.83483	С	3.51532	-2.57590	-2.47091
Н	4.49887	0.30630	-3.28668	С	3.39695	0.36532	-3.03256
Н	2.79349	0.79983	-3.33095	С	-3.76984	3.09263	-0.40182
Н	4.03810	1.86774	-2.64424	Н	0.76229	2.89193	-0.62368
Н	5.17811	-1.99043	-1.81621	Н	1.97997	1.83301	1.84946
Н	3.92811	-3.17768	-2.23123	Н	3.64897	2.08157	-0.01503
Н	4.24586	-1.82183	-3.32655	Н	2.94043	2.54226	-1.58954
Н	-0.27772	-0.18377	2.32779	Н	1.37862	0.69120	-1.29115
Н	0.06402	1.08269	3.50820	Н	4.20398	-0.17262	-1.08805
Н	-2.17253	-0.10530	3.87451	Н	1.66073	-1.59903	-1.99895
Н	-2.31302	1.64956	3.71191	Н	3.41637	-1.80778	0.40097
Н	-2.69975	-0.36944	1.45070	Н	-1.10109	2.97092	0.13872
Н	-4.02778	0.44255	2.28813	Н	-4.42776	1.30511	0.68926
С	1.54896	4.39976	0.57415	Н	-2.87514	3.48005	-0.89022
Н	2.31492	4.49948	1.35130	Н	-4.52099	2.93863	-1.18466
Н	1.85906	4.97816	-0.30341	Н	-4.16203	3.86295	0.27550
Н	0.61756	4.82628	0.95791	Ν	-1.00911	1.36514	-2.20559
Н	2.36475	0.42374	0.34006	С	-1.60162	0.38572	-1.46570
0	3.01879	0.41044	2.05859	С	-2.97768	0.41295	-1.20121
С	4.14812	-0.07846	2.34485	0	-1.64336	2.34239	-2.63819
0	4.72698	-1.00717	1.73949	0	0.23508	1.25447	-2.47037
Н	4.66737	0.35613	3.22374	С	-3.65874	-0.82190	-0.74877
Н	2.47541	-3.51846	2.05086	С	-2.95747	-1.94430	-0.28341
Н	2.08389	-1.82016	2.54169	С	-5.05943	-0.88513	-0.80735
Н	0.77847	-3.05176	2.41186	С	-3.64249	-3.08938	0.11779
				С	-5.74278	-2.02812	-0.40709
3a-γ-	-addition-TS2	2b-3b		С	-5.03446	-3.13644	0.06105
Geor	netry with	76 atoms:		Н	-0.91326	-0.35068	-1.07890
С	1.61850	2.89324	0.05643	Н	-3.56491	1.05871	-1.85042
Ν	1.21904	2.23272	1.29263	Н	-1.87145	-1.94077	-0.23962
С	-0.01974	1.86037	1.63015	Н	-5.61325	-0.02214	-1.17352
С	2.73521	2.09249	-0.61819	Н	-3.07869	-3.95092	0.46532
Ν	2.31255	0.68048	-0.81818	Н	-6.82730	-2.05760	-0.46548
С	3.24476	-0.18541	-1.62167	Н	-5.56519	-4.03270	0.36987
С	2.68880	-1.62497	-1.60868	Н	4.10370	-0.24972	-3.59275
Ν	2.65626	-2.14818	-0.23431	Н	2.43495	0.36728	-3.55733
С	-0.09097	0.98364	2.85605	Н	3.79699	1.38155	-3.03462
С	-1.16791	2.23268	0.93109	Н	4.56836	-2.55396	-2.16629
С	-2.40145	1.59662	1.16854	Н	3.13842	-3.59111	-2.32662
S	1.19725	-2.32747	0.49234	Н	3.44496	-2.33020	-3.53347
0	0.44922	-1.05212	0.52972	Н	0.33625	0.01492	2.56798
0	0.47265	-3.44085	-0.12136	Н	0.56161	1.40784	3.62828

Н	-1.54902	-0.00141	4.10058	Н	1.09117	-1.99919	-1.71361
Н	-1.86427	1.72003	3.85477	Н	3.10329	-1.96891	0.48454
Н	-2.06927	-0.43704	1.69114	Н	-0.78541	2.83173	-0.22517
Н	-3.46071	0.28879	2.50387	Н	-3.98319	1.35246	0.87454
С	2.07018	4.32711	0.31525	Н	-2.77254	3.53213	-0.89217
Н	2.92786	4.34454	0.99696	Н	-4.48068	3.12048	-0.68883
Н	2.35511	4.82008	-0.61978	Н	-3.58745	3.81849	0.67234
Н	1.25616	4.89680	0.77250	Ν	-0.95814	1.25120	-2.17700
Н	2.20057	0.26382	0.12548	С	-1.68033	0.39413	-1.51125
0	3.12358	0.30427	1.88518	С	-3.03919	0.72020	-0.96326
С	4.27476	-0.20250	2.00576	0	-1.26850	2.48057	-2.31043
0	4.71612	-1.18912	1.37723	0	0.17461	0.84310	-2.74009
Н	4.95310	0.27158	2.74561	С	-3.76210	-0.57042	-0.61461
Н	2.32825	-3.62458	2.11445	С	-3.12014	-1.59953	0.08492
Н	2.21822	-1.87616	2.56690	С	-5.11252	-0.72338	-0.94211
Н	0.77223	-2.94179	2.69598	С	-3.81373	-2.75483	0.44253
				С	-5.80931	-1.87664	-0.58278
3 a-γ-	addition-3b			С	-5.16112	-2.89690	0.11235
Geor	netry with	76 atoms:		Н	-1.28162	-0.60979	-1.47851
С	1.90522	2.71326	-0.49793	Н	-3.59769	1.22514	-1.76444
Ν	1.60937	2.29732	0.88000	Н	-2.06562	-1.51236	0.34084
С	0.44338	2.08948	1.43121	Н	-5.62166	0.06723	-1.49025
С	2.80238	1.65362	-1.13872	Н	-3.29161	-3.54817	0.97065
Ν	2.10426	0.35034	-1.16868	Н	-6.85677	-1.98034	-0.85334
С	2.86400	-0.77691	-1.79652	Н	-5.70017	-3.79953	0.38636
С	2.15094	-2.09439	-1.43470	Н	3.62343	-1.31434	-3.74015
Ν	2.23721	-2.32700	0.01717	Н	1.97685	-0.63220	-3.77298
С	0.44546	1.51152	2.82003	Н	3.38828	0.41492	-3.54334
С	-0.78667	2.31508	0.73098	Н	3.82416	-3.36695	-1.96498
С	-1.92295	1.70433	1.15121	Н	2.27336	-4.20715	-1.77629
S	0.88229	-2.17332	0.92244	Н	2.57920	-3.24694	-3.23606
0	0.29289	-0.81989	0.80534	Н	0.82815	0.48884	2.71610
0	-0.04453	-3.26466	0.61897	Н	1.16683	2.06255	3.43344
С	1.55810	-2.35902	2.55277	Н	-0.93606	0.91329	4.35881
С	-3.14538	1.72203	0.27317	Н	-1.22752	2.53384	3.72234
С	-0.94536	1.51142	3.44292	Н	-1.78008	-0.09914	2.24507
С	-1.97378	0.96439	2.45578	Н	-2.98666	1.02232	2.86859
С	2.74668	-3.29890	-2.15711	С	2.58261	4.07803	-0.49101
С	2.96322	-0.56263	-3.30190	Н	3.51478	4.04964	0.08444
С	-3.50738	3.14214	-0.18592	Н	2.81266	4.38635	-1.51506
Н	0.97199	2.75791	-1.06741	Н	1.92054	4.82625	-0.04654
Н	2.42363	1.94433	1.40799	Н	1.84881	0.09274	-0.20257
Н	3.74662	1.54463	-0.59329	0	3.26311	0.34616	1.69242
Н	3.00859	1.96485	-2.16432	С	4.37979	-0.24316	1.64636
Н	1.16224	0.51014	-1.77115	0	4.59760	-1.37425	1.16204
Н	3.86346	-0.78743	-1.34043	Н	5.24808	0.29535	2.08254

S227

	359 -3.32936	2.61826	Н	3.59501	2.69735	-1.87465	
Н 2.25	620 -1.53531	2.72743	С	-0.90780	2.44766	3.34207	
Н 0.71	090 -2.31407	3.24262	Н	-1.73259	3.15965	3.22542	
			Н	-0.98015	1.98453	4.33301	
3a-y-additio	n-2c		Н	0.03231	3.00458	3.28837	
Geometry w	ith 76 atoms:		Н	-2.72311	0.35585	0.36267	
C -0.95	548 1.39808	2.23140	Н	-4.67828	0.32106	-3.43836	
N -0.82	166 1.96026	0.90865	Н	-3.79825	1.50138	-2.37577	
C 0.36	977 2.13801	0.25658	Н	-3.06551	0.94674	-3.92037	
С -2.252	0.58927	2.32484	Ν	0.97544	-1.51797	1.48049	
N -2.402	506 -0.28388	1.12418	С	2.39658	-1.63877	1.30734	
C -3.36	-1.43325	1.26748	С	2.94348	-1.36778	0.11463	
C -3.608	-2.06803	-0.11752	0	0.25469	-1.33451	0.50282	
N -4.02	-1.06358	-1.10929	0	0.54287	-1.60689	2.62521	
C 0.20	973 2.60003	-1.17193	С	4.36503	-1.44917	-0.21055	
C 1.59	658 1.90080	0.79607	С	5.34843	-1.76906	0.73954	
C 2.84	132 2.00720	0.03236	С	4.75333	-1.19631	-1.53354	
S -2.888	-0.66467	-2.25125	С	6.68398	-1.84491	0.36631	
O -1.65	-0.16528	-1.63445	С	6.09263	-1.27168	-1.90611	
O -2.73	629 -1.80871	-3.15183	С	7.05926	-1.59891	-0.95766	
C -3.708	0.67101	-3.08073	Н	2.89594	-1.92044	2.22371	
C 4.03	927 1.83433	0.62951	Н	2.27116	-1.06953	-0.68860	
C 1.49	726 3.20890	-1.71526	Н	5.07336	-1.95268	1.77455	
C 2.68	013 2.27708	-1.44894	Н	3.99539	-0.94219	-2.27078	
C -4.67	-3.15824	-0.05383	Н	7.43797	-2.09117	1.10822	
C -2.81	350 -2.45884	2.25184	Н	6.37936	-1.07293	-2.93453	
Н -0.12	0.69463	2.37621	Н	8.10536	-1.65716	-1.24443	
Н -1.67	009 2.28810	0.45077	0	-3.49308	1.99738	-0.13435	
Н -3.13	395 1.23690	2.35362	С	-4.71109	1.98159	0.20114	
Н -2.23	-0.02492	3.22516	0	-5.42856	0.96201	0.30189	
Н -1.47	-0.63240	0.81817	Н	-5.18143	2.96289	0.42080	
Н -4.29	-0.99108	1.62806	С	5.40118	1.89347	0.00119	
Н -2.66	-2.51649	-0.45802	Н	5.36744	2.02956	-1.08287	
Н -4.54	-0.26091	-0.70793	Н	5.99560	2.71595	0.42245	
Н 1.68	928 1.62007	1.84453	Н	5.96252	0.96997	0.19681	
Н -3.56	945 -3.22129	2.45039	Н	4.03289	1.61944	1.70109	
Н -1.92	268 -2.94924	1.84310					
Н -2.54	531 -2.01611	3.21338	3a-	/-addition-TS	2c-3c		
Н -5.61	-2.75172	0.34562	Geo	metry with	76 atoms:		
Н -4.86	-3.52050	-1.06711	С	0.90554	-0.99999	2.43484	
Н -4.36	-4.00663	0.56145	Ν	0.92553	-1.79949	1.21931	
	1 5 2 2 5 2	-1.77218	С	-0.14096	-2.14657	0.49061	
Н -0.09	9/8 1.73352						
H -0.099 H -0.614	978 1.73352 406 3.32363	-1.22449	С	1.94439	0.13043	2.36704	
H -0.099 H -0.614 H 1.39	978 1.73352 406 3.32363 750 3.39698	-1.22449 -2.78999	C N	1.94439 2.06467	0.13043 0.71246	2.36704 1.00097	
H -0.09 H -0.61 H 1.39 H 1.68	1.73352 406 3.32363 750 3.39698 289 4.17542	-1.22449 -2.78999 -1.22927	C N C	1.94439 2.06467 2.87870	0.13043 0.71246 1.97981	2.36704 1.00097 0.94748	

Ν	4.11620	1.11662	-1.01282	0	-0.65945	1.66105	1.94675
С	0.18476	-2.75558	-0.84693	С	-4.76957	1.00638	-0.26894
С	-1.46087	-1.92195	0.86717	С	-5.61165	1.22282	0.83265
С	-2.52185	-2.04001	-0.06129	С	-5.30021	1.13996	-1.55862
S	3.41073	0.21155	-2.20428	С	-6.94652	1.56172	0.64529
0	2.15423	-0.39891	-1.74069	С	-6.63701	1.48547	-1.74616
0	3.31375	1.03989	-3.40607	С	-7.46507	1.69418	-0.64544
С	4.62535	-1.06043	-2.42601	Н	-3.03512	1.42436	1.90871
С	-3.79882	-1.58006	0.24832	Н	-2.79884	0.47241	-1.03810
С	-1.00617	-3.49084	-1.44131	Н	-5.22646	1.10897	1.84286
С	-2.22731	-2.57577	-1.44357	Н	-4.65550	0.97237	-2.41862
С	4.11043	3.53084	-0.64329	Н	-7.58757	1.72206	1.50770
С	2.08963	3.14612	1.52559	Н	-7.03133	1.58895	-2.75305
Н	-0.07689	-0.53042	2.50129	Н	-8.50875	1.95864	-0.78932
Н	1.85445	-2.07465	0.88400	0	3.65516	-1.72112	0.62003
Н	2.94343	-0.21880	2.64072	С	4.73204	-1.41303	1.20094
Н	1.63667	0.91780	3.05595	0	5.28500	-0.29064	1.17304
Н	1.12079	0.87859	0.58632	Н	5.23275	-2.21260	1.78748
Н	3.77483	1.77414	1.54541	С	-5.00731	-1.93352	-0.57992
Н	2.39811	2.32430	-1.11953	Н	-4.89182	-1.65667	-1.63409
Н	4.57383	0.54965	-0.26973	Н	-5.20285	-3.01470	-0.54518
Н	-1.69669	-1.56023	1.86397	Н	-5.90201	-1.42841	-0.20592
Н	2.75495	4 00201	1 66094	Н	-3 98901	-1 33728	1 29310
	2.70.50	4.00201	11000071	11	-5.76701	-1.55720	1.27510
Н	1.27123	3.43481	0.85727		-5.76701	-1.55726	1.27510
H H	1.27123 1.65388	3.43481 2.90916	0.85727 2.49803	3a-γ	-addition-3c	-1.55720	1.27510
H H H	1.27123 1.65388 4.97960	3.43481 2.90916 3.51491	0.85727 2.49803 0.02496	3a -γ Geo	-addition-3c metry with	76 atoms:	1.27510
H H H H	1.27123 1.65388 4.97960 4.47133	3.43481 2.90916 3.51491 3.61062	0.85727 2.49803 0.02496 -1.67156	3a -γ Geo C	-addition-3c metry with -1.00034	76 atoms: 1.50365	2.36499
Н Н Н Н	1.27123 1.65388 4.97960 4.47133 3.50530	3.43481 2.90916 3.51491 3.61062 4.41357	0.85727 2.49803 0.02496 -1.67156 -0.41954	3a -γ Geo C N	-addition-3c metry with -1.00034 -1.23819	76 atoms: 1.50365 2.17526	2.36499 1.08227
H H H H H	1.27123 1.65388 4.97960 4.47133 3.50530 0.49539	3.43481 2.90916 3.51491 3.61062 4.41357 -1.92987	0.85727 2.49803 0.02496 -1.67156 -0.41954 -1.50173	3a- γ Geo C N C	-addition-3c metry with -1.00034 -1.23819 -0.35015	76 atoms: 1.50365 2.17526 2.45341	2.36499 1.08227 0.17255
H H H H H	1.27123 1.65388 4.97960 4.47133 3.50530 0.49539 1.05738	3.43481 2.90916 3.51491 3.61062 4.41357 -1.92987 -3.41138	0.85727 2.49803 0.02496 -1.67156 -0.41954 -1.50173 -0.74270	3a -γ Geo C N C C	-addition-3c metry with -1.00034 -1.23819 -0.35015 -1.90549	76 atoms: 1.50365 2.17526 2.45341 0.26956	2.36499 1.08227 0.17255 2.46210
H H H H H H	1.27123 1.65388 4.97960 4.47133 3.50530 0.49539 1.05738 -0.77379	3.43481 2.90916 3.51491 3.61062 4.41357 -1.92987 -3.41138 -3.81389	0.85727 2.49803 0.02496 -1.67156 -0.41954 -1.50173 -0.74270 -2.46082	3a- γ Geo C N C C N	-addition-3c metry with -1.00034 -1.23819 -0.35015 -1.90549 -1.85732	76 atoms: 1.50365 2.17526 2.45341 0.26956 -0.54589	2.36499 1.08227 0.17255 2.46210 1.22411
H H H H H H H	1.27123 1.65388 4.97960 4.47133 3.50530 0.49539 1.05738 -0.77379 -1.22599	3.43481 2.90916 3.51491 3.61062 4.41357 -1.92987 -3.41138 -3.81389 -4.38981	0.85727 2.49803 0.02496 -1.67156 -0.41954 -1.50173 -0.74270 -2.46082 -0.85194	3a -γ Geo C N C C N C	-addition-3c metry with -1.23819 -0.35015 -1.90549 -1.85732 -2.51148	76 atoms: 1.50365 2.17526 2.45341 0.26956 -0.54589 -1.89283	2.36499 1.08227 0.17255 2.46210 1.22411 1.33397
H H H H H H H H	1.27123 1.65388 4.97960 4.47133 3.50530 0.49539 1.05738 -0.77379 -1.22599 -2.04409	3.43481 2.90916 3.51491 3.61062 4.41357 -1.92987 -3.41138 -3.81389 -4.38981 -1.72612	0.85727 2.49803 0.02496 -1.67156 -0.41954 -1.50173 -0.74270 -2.46082 -0.85194 -2.12158	3a- γ Geo C N C C N C C	-addition-3c metry with -1.00034 -1.23819 -0.35015 -1.90549 -1.85732 -2.51148 -2.70452	76 atoms: 1.50365 2.17526 2.45341 0.26956 -0.54589 -1.89283 -2.45496	2.36499 1.08227 0.17255 2.46210 1.22411 1.33397 -0.08629
H H H H H H H H	1.27123 1.65388 4.97960 4.47133 3.50530 0.49539 1.05738 -0.77379 -1.22599 -2.04409 -3.10100	3.43481 2.90916 3.51491 3.61062 4.41357 -1.92987 -3.41138 -3.81389 -4.38981 -1.72612 -3.10640	0.85727 2.49803 0.02496 -1.67156 -0.41954 -1.50173 -0.74270 -2.46082 -0.85194 -2.12158 -1.83406	3a -γ Geo C N C C N C C N	-addition-3c metry with -1.00034 -1.23819 -0.35015 -1.90549 -1.85732 -2.51148 -2.70452 -3.56107	76 atoms: 1.50365 2.17526 2.45341 0.26956 -0.54589 -1.89283 -2.45496 -1.55518	2.36499 1.08227 0.17255 2.46210 1.22411 1.33397 -0.08629 -0.88280
H H H H H H H H C	1.27123 1.65388 4.97960 4.47133 3.50530 0.49539 1.05738 -0.77379 -1.22599 -2.04409 -3.10100 1.15652	3.43481 2.90916 3.51491 3.61062 4.41357 -1.92987 -3.41138 -3.81389 -4.38981 -1.72612 -3.10640 -1.85725	0.85727 2.49803 0.02496 -1.67156 -0.41954 -1.50173 -0.74270 -2.46082 -0.85194 -2.12158 -1.83406 3.67276	3a- γ Geo C N C C N C C N C C	-addition-3c metry with -1.00034 -1.23819 -0.35015 -1.90549 -1.85732 -2.51148 -2.70452 -3.56107 -0.86197	76 atoms: 1.50365 2.17526 2.45341 0.26956 -0.54589 -1.89283 -2.45496 -1.55518 2.92406	2.36499 1.08227 0.17255 2.46210 1.22411 1.33397 -0.08629 -0.88280 -1.16153
H H H H H H H H C H	1.27123 1.65388 4.97960 4.47133 3.50530 0.49539 1.05738 -0.77379 -1.22599 -2.04409 -3.10100 1.15652 2.12045	3.43481 2.90916 3.51491 3.61062 4.41357 -1.92987 -3.41138 -3.81389 -4.38981 -1.72612 -3.10640 -1.85725 -2.37144	0.85727 2.49803 0.02496 -1.67156 -0.41954 -1.50173 -0.74270 -2.46082 -0.85194 -2.12158 -1.83406 3.67276 3.58766	3a -γ Geo C N C C N C C N C C C	-addition-3c metry with -1.00034 -1.23819 -0.35015 -1.90549 -1.85732 -2.51148 -2.70452 -3.56107 -0.86197 1.06759	76 atoms: 1.50365 2.17526 2.45341 0.26956 -0.54589 -1.89283 -2.45496 -1.55518 2.92406 2.28440	2.36499 1.08227 0.17255 2.46210 1.22411 1.33397 -0.08629 -0.88280 -1.16153 0.38397
H H H H H H H H H H H H H	1.27123 1.65388 4.97960 4.47133 3.50530 0.49539 1.05738 -0.77379 -1.22599 -2.04409 -3.10100 1.15652 2.12045 1.16936	3.43481 2.90916 3.51491 3.61062 4.41357 -1.92987 -3.41138 -3.81389 -4.38981 -1.72612 -3.10640 -1.85725 -2.37144 -1.23999	0.85727 2.49803 0.02496 -1.67156 -0.41954 -1.50173 -0.74270 -2.46082 -0.85194 -2.12158 -1.83406 3.67276 3.58766 4.57774	3a -γ Geo C N C C N C C N C C C C	-addition-3c metry with -1.00034 -1.23819 -0.35015 -1.90549 -1.85732 -2.51148 -2.70452 -3.56107 -0.86197 1.06759 1.80835	76 atoms: 1.50365 2.17526 2.45341 0.26956 -0.54589 -1.89283 -2.45496 -1.55518 2.92406 2.28440 1.81067	2.36499 1.08227 0.17255 2.46210 1.22411 1.33397 -0.08629 -0.88280 -1.16153 0.38397 -0.64653
H H H H H H H H H H H H H H H	1.27123 1.65388 4.97960 4.47133 3.50530 0.49539 1.05738 -0.77379 -1.22599 -2.04409 -3.10100 1.15652 2.12045 1.16936 0.37034	3.43481 2.90916 3.51491 3.61062 4.41357 -1.92987 -3.41138 -3.81389 -4.38981 -1.72612 -3.10640 -1.85725 -2.37144 -1.23999 -2.61065	0.85727 2.49803 0.02496 -1.67156 -0.41954 -1.50173 -0.74270 -2.46082 -0.85194 -2.12158 -1.83406 3.67276 3.58766 4.57774 3.77827	3a- γ Geo C N C C N C C N C C C S	-addition-3c metry with -1.00034 -1.23819 -0.35015 -1.90549 -1.85732 -2.51148 -2.70452 -3.56107 -0.86197 1.06759 1.80835 -2.83030	76 atoms: 1.50365 2.17526 2.45341 0.26956 -0.54589 -1.89283 -2.45496 -1.55518 2.92406 2.28440 1.81067 -0.76589	2.36499 1.08227 0.17255 2.46210 1.22411 1.33397 -0.08629 -0.88280 -1.16153 0.38397 -0.64653 -2.13384
H H H H H H H H H H H H H H	1.27123 1.65388 4.97960 4.47133 3.50530 0.49539 1.05738 -0.77379 -1.22599 -2.04409 -3.10100 1.15652 2.12045 1.16936 0.37034 2.51238	3.43481 2.90916 3.51491 3.61062 4.41357 -1.92987 -3.41138 -3.81389 -4.38981 -1.72612 -3.10640 -1.85725 -2.37144 -1.23999 -2.61065 -0.01629	0.85727 2.49803 0.02496 -1.67156 -0.41954 -1.50173 -0.74270 -2.46082 -0.85194 -2.12158 -1.83406 3.67276 3.58766 4.57774 3.77827 0.41106	3a -γ Geo C N C C N C C N C C C S O	-addition-3c metry with -1.00034 -1.23819 -0.35015 -1.90549 -1.85732 -2.51148 -2.70452 -3.56107 -0.86197 1.06759 1.80835 -2.83030 -1.72875	76 atoms: 1.50365 2.17526 2.45341 0.26956 -0.54589 -1.89283 -2.45496 -1.55518 2.92406 2.28440 1.81067 -0.76589 0.09420	2.36499 1.08227 0.17255 2.46210 1.22411 1.33397 -0.08629 -0.88280 -1.16153 0.38397 -0.64653 -2.13384 -1.66509
H H H H H H H H H H H H H H H	1.27123 1.65388 4.97960 4.47133 3.50530 0.49539 1.05738 -0.77379 -1.22599 -2.04409 -3.10100 1.15652 2.12045 1.16936 0.37034 2.51238 5.58970	3.43481 2.90916 3.51491 3.61062 4.41357 -1.92987 -3.41138 -3.81389 -4.38981 -1.72612 -3.10640 -1.85725 -2.37144 -1.23999 -2.61065 -0.01629 -0.59379	0.85727 2.49803 0.02496 -1.67156 -0.41954 -1.50173 -0.74270 -2.46082 -0.85194 -2.12158 -1.83406 3.67276 3.58766 4.57774 3.77827 0.41106 -2.63336	3a-γ Geo C N C C N C C N C C S O O	-addition-3c metry with -1.00034 -1.23819 -0.35015 -1.90549 -1.85732 -2.51148 -2.70452 -3.56107 -0.86197 1.06759 1.80835 -2.83030 -1.72875 -2.47536	76 atoms: 1.50365 2.17526 2.45341 0.26956 -0.54589 -1.89283 -2.45496 -1.55518 2.92406 2.28440 1.81067 -0.76589 0.09420 -1.74715	2.36499 1.08227 0.17255 2.46210 1.22411 1.33397 -0.08629 -0.88280 -1.16153 0.38397 -0.64653 -2.13384 -1.66509 -3.15868
H H H H H H H H H H H H H H H	1.27123 1.65388 4.97960 4.47133 3.50530 0.49539 1.05738 -0.77379 -1.22599 -2.04409 -3.10100 1.15652 2.12045 1.16936 0.37034 2.51238 5.58970 4.64462	3.43481 2.90916 3.51491 3.61062 4.41357 -1.92987 -3.41138 -3.81389 -4.38981 -1.72612 -3.10640 -1.85725 -2.37144 -1.23999 -2.61065 -0.01629 -0.59379 -1.67105	0.85727 2.49803 0.02496 -1.67156 -0.41954 -1.50173 -0.74270 -2.46082 -0.85194 -2.12158 -1.83406 3.67276 3.58766 4.57774 3.77827 0.41106 -2.63336 -1.52071	3a -γ Geo C N C C N C C N C C C S O O C	-addition-3c metry with -1.00034 -1.23819 -0.35015 -1.90549 -1.85732 -2.51148 -2.70452 -3.56107 -0.86197 1.06759 1.80835 -2.83030 -1.72875 -2.47536 -4.15988	76 atoms: 1.50365 2.17526 2.45341 0.26956 -0.54589 -1.89283 -2.45496 -1.55518 2.92406 2.28440 1.81067 -0.76589 0.09420 -1.74715 0.26587	2.36499 1.08227 0.17255 2.46210 1.22411 1.33397 -0.08629 -0.88280 -1.16153 0.38397 -0.64653 -2.13384 -1.66509 -3.15868 -2.69864
H H H H H H H H H H H H H H H H	1.27123 1.65388 4.97960 4.47133 3.50530 0.49539 1.05738 -0.77379 -1.22599 -2.04409 -3.10100 1.15652 2.12045 1.16936 0.37034 2.51238 5.58970 4.64462 4.29212	3.43481 2.90916 3.51491 3.61062 4.41357 -1.92987 -3.41138 -3.81389 -4.38981 -1.72612 -3.10640 -1.85725 -2.37144 -1.23999 -2.61065 -0.01629 -0.59379 -1.67105 -1.65326	0.85727 2.49803 0.02496 -1.67156 -0.41954 -1.50173 -0.74270 -2.46082 -0.85194 -2.12158 -1.83406 3.67276 3.58766 4.57774 3.77827 0.41106 -2.63336 -1.52071 -3.28167	3a-γ Geo C N C C N C C N C C S O O C C	-addition-3c metry with -1.00034 -1.23819 -0.35015 -1.90549 -1.85732 -2.51148 -2.70452 -3.56107 -0.86197 1.06759 1.80835 -2.83030 -1.72875 -2.47536 -4.15988 3.24200	76 atoms: 1.50365 2.17526 2.45341 0.26956 -0.54589 -1.89283 -2.45496 -1.55518 2.92406 2.28440 1.81067 -0.76589 0.09420 -1.74715 0.26587 1.39813	2.36499 1.08227 0.17255 2.46210 1.22411 1.33397 -0.08629 -0.88280 -1.16153 0.38397 -0.64653 -2.13384 -1.66509 -3.15868 -2.69864 -0.43257
H H H H H H H H H H H H H H H H H H H	1.27123 1.65388 4.97960 4.47133 3.50530 0.49539 1.05738 -0.77379 -1.22599 -2.04409 -3.10100 1.15652 2.12045 1.16936 0.37034 2.51238 5.58970 4.64462 4.29212 -1.24819	3.43481 2.90916 3.51491 3.61062 4.41357 -1.92987 -3.41138 -3.81389 -4.38981 -1.72612 -3.10640 -1.85725 -2.37144 -1.23999 -2.61065 -0.01629 -0.59379 -1.67105 -1.65326 1.23248	0.85727 2.49803 0.02496 -1.67156 -0.41954 -1.50173 -0.74270 -2.46082 -0.85194 -2.12158 -1.83406 3.67276 3.58766 4.57774 3.77827 0.41106 -2.63336 -1.52071 -3.28167 0.92570	3a -γ Geo C N C C N C C C N C C C S O O C C C C C	-addition-3c metry with -1.00034 -1.23819 -0.35015 -1.90549 -1.85732 -2.51148 -2.70452 -3.56107 -0.86197 1.06759 1.80835 -2.83030 -1.72875 -2.47536 -4.15988 3.24200 0.18202	76 atoms: 1.50365 2.17526 2.45341 0.26956 -0.54589 -1.89283 -2.45496 -1.55518 2.92406 2.28440 1.81067 -0.76589 0.09420 -1.74715 0.26587 1.39813 2.75355	2.36499 1.08227 0.17255 2.46210 1.22411 1.33397 -0.08629 -0.88280 -1.16153 0.38397 -0.64653 -2.13384 -1.66509 -3.15868 -2.69864 -0.43257 -2.27236
H H H H H H H H H H H H H H H H N C	1.27123 1.65388 4.97960 4.47133 3.50530 0.49539 1.05738 -0.77379 -1.22599 -2.04409 -3.10100 1.15652 2.12045 1.16936 0.37034 2.51238 5.58970 4.64462 4.29212 -1.24819 -2.61287	3.43481 2.90916 3.51491 3.61062 4.41357 -1.92987 -3.41138 -3.81389 -4.38981 -1.72612 -3.10640 -1.85725 -2.37144 -1.23999 -2.61065 -0.01629 -0.59379 -1.67105 -1.65326 1.23248 1.09510	0.85727 2.49803 0.02496 -1.67156 -0.41954 -1.50173 -0.74270 -2.46082 -0.85194 -2.12158 -1.83406 3.67276 3.58766 4.57774 3.77827 0.41106 -2.63336 -1.52071 -3.28167 0.92570 0.97025	3a- γ Geo C N C C N C C N C C C S O O C C C C C C C C C	-addition-3c metry with -1.00034 -1.23819 -0.35015 -1.90549 -1.85732 -2.51148 -2.70452 -3.56107 -0.86197 1.06759 1.80835 -2.83030 -1.72875 -2.47536 -4.15988 3.24200 0.18202 1.14366	76 atoms: 1.50365 2.17526 2.45341 0.26956 -0.54589 -1.89283 -2.45496 -1.55518 2.92406 2.28440 1.81067 -0.76589 0.09420 -1.74715 0.26587 1.39813 2.75355 1.59655	2.36499 1.08227 0.17255 2.46210 1.22411 1.33397 -0.08629 -0.88280 -1.16153 0.38397 -0.64653 -2.13384 -1.66509 -3.15868 -2.69864 -0.43257 -2.27236 -1.97907
H H H H H H H H H H H H H H H H H H H	1.27123 1.65388 4.97960 4.47133 3.50530 0.49539 1.05738 -0.77379 -1.22599 -2.04409 -3.10100 1.15652 2.12045 1.16936 0.37034 2.51238 5.58970 4.64462 4.29212 -1.24819 -2.61287 -3.35075	3.43481 2.90916 3.51491 3.61062 4.41357 -1.92987 -3.41138 -3.81389 -4.38981 -1.72612 -3.10640 -1.85725 -2.37144 -1.23999 -2.61065 -0.01629 -0.59379 -1.67105 -1.65326 1.23248 1.09510 0.63770	0.85727 2.49803 0.02496 -1.67156 -0.41954 -1.50173 -0.74270 -2.46082 -0.85194 -2.12158 -1.83406 3.67276 3.58766 4.57774 3.77827 0.41106 -2.63336 -1.52071 -3.28167 0.92570 0.97025 -0.11584	3a- γ Geo C N C C N C C C N C C C C C C C C C C	-addition-3c metry with -1.00034 -1.23819 -0.35015 -1.90549 -1.85732 -2.51148 -2.70452 -3.56107 -0.86197 1.06759 1.80835 -2.83030 -1.72875 -2.47536 -4.15988 3.24200 0.18202 1.14366 -3.32789	76 atoms: 1.50365 2.17526 2.45341 0.26956 -0.54589 -1.89283 -2.45496 -1.55518 2.92406 2.28440 1.81067 -0.76589 0.09420 -1.74715 0.26587 1.39813 2.75355 1.59655 -3.84739	2.36499 1.08227 0.17255 2.46210 1.22411 1.33397 -0.08629 -0.88280 -1.16153 0.38397 -0.64653 -2.13384 -1.66509 -3.15868 -2.69864 -0.43257 -2.27236 -1.97907 -0.07542

Н	0.03127	1.14809	2.37758	Н 8.41
Н	-2.23709	2.26739	0.81508	O -3.74
Н	-2.95028	0.54807	2.63843	C -4.818
Н	-1.54139	-0.33283	3.29431	O -5.24
Н	-0.82960	-0.67264	0.88485	Н -5.433
Н	-3.49947	-1.72038	1.78085	C 4.13
Н	-1.71531	-2.51018	-0.56255	Н 3.99
Н	-4.20343	-0.95435	-0.32722	Н 3.92
Н	1.48679	2.36886	1.38256	Н 5.18
Н	-2.24278	-3.73913	2.40180	Н 3.60
Н	-0.73841	-3.08494	1.69643	
Н	-1.41525	-2.37760	3.15842	3a-y-additio
Н	-4.26982	-3.84218	0.48601	Geometry w
Н	-3.54402	-4.14365	-1.10483	C 0.84
Н	-2.65539	-4.58883	0.36409	N 0.74
Н	-1.77067	2.35626	-1.38211	С -0.424
Н	-1.14590	3.97825	-1.04868	C 2.13
Н	-0.33288	2.57584	-3.22053	N 2.32
Н	0.76508	3.67503	-2.38264	C 3.28
Н	0.59051	0.64791	-1.93142	C 3.64
Н	1.88148	1.51251	-2.77988	N 4.09
С	-1.26332	2.45650	3.52374	С -0.233
Н	-2.29015	2.83765	3.48836	С -1.663
Н	-1.11728	1.93832	4.47642	С -2.874
Н	-0.57609	3.30677	3.48554	S 3.02
Н	-2.33345	-0.00290	0.48377	O 1.74
Н	-5.01654	-0.36461	-2.94227	O 2.94
Н	-4.38981	0.98812	-1.91129	C 3.87
Н	-3.79063	0.77421	-3.59325	C -4.111
Ν	1.39167	-0.73897	1.35069	С -1.522
С	2.65865	-0.44733	1.22130	С -2.670
С	3.29332	-0.14151	-0.10262	С 4.73
0	0.60816	-0.78094	0.30352	C 2.67
0	0.85463	-0.97428	2.49613	Н 0.00
С	4.72735	-0.64093	-0.11126	Н 1.60
С	5.66192	-0.14992	0.80895	Н 3.01
С	5.14541	-1.59190	-1.04408	Н 2.08
С	6.97988	-0.59868	0.79641	Н 1.41
С	6.46512	-2.04612	-1.05973	Н 4.18
С	7.38661	-1.55029	-0.13995	Н 2.74
Н	3.22437	-0.45625	2.14406	Н 4.56
Н	2.73565	-0.66505	-0.88885	Н -1.772
Н	5.35696	0.59486	1.54244	Н 3.42
Н	4.42916	-1.98382	-1.76300	Н 1.83
Н	7.69092	-0.20624	1.51838	Н 2.30
Н	6.77131	-2.78865	-1.79174	Н 5.63

Η	8.41425	-1.90238	-0.15035
0	-3.74026	1.58196	0.26854
С	-4.81866	1.18219	0.79977
0	-5.24626	0.01108	0.79291
Н	-5.43506	1.94915	1.31467
С	4.13539	1.75989	-1.62484
Н	3.99996	1.06392	-2.45982
Н	3.92320	2.77374	-1.98359
Н	5.18867	1.71944	-1.33510
Н	3.60810	1.92516	0.45893

on-2d

Geor	metry with	76 atoms:	
С	0.84128	1.94681	-1.67880
Ν	0.74597	2.10768	-0.24622
С	-0.42479	2.06601	0.45645
С	2.13182	1.20977	-2.04208
Ν	2.32731	0.02518	-1.15487
С	3.28342	-1.01263	-1.67061
С	3.64573	-1.99488	-0.53706
Ν	4.09836	-1.29058	0.67263
С	-0.23302	2.09675	1.95467
С	-1.66387	1.97335	-0.10819
С	-2.87479	1.80765	0.68731
S	3.02785	-1.26417	1.93907
0	1.74923	-0.64529	1.55639
0	2.94434	-2.62137	2.48070
С	3.87730	-0.19854	3.07526
С	-4.11137	1.81557	0.14675
С	-1.52294	2.44062	2.69509
С	-2.67053	1.57927	2.16779
С	4.73997	-2.96599	-0.97438
С	2.67289	-1.74556	-2.85875
Η	0.00794	1.30862	-1.99416
Η	1.60878	2.28637	0.26580
Η	3.01484	1.84345	-1.91364
Η	2.08103	0.88204	-3.08080
Η	1.41469	-0.41200	-0.93414
Η	4.18294	-0.45773	-1.96051
Η	2.74413	-2.56855	-0.28033
Η	4.56752	-0.38572	0.47640
Η	-1.77293	2.02114	-1.18931
Η	3.42592	-2.38222	-3.32804
Η	1.83666	-2.37655	-2.53670
Η	2.30496	-1.06299	-3.62788
Н	5.63219	-2.41384	-1.29203

Н	5.01182	-3.59466	-0.12322	С	0.91348	1.99444	-1.78892
Н	4.41319	-3.61480	-1.79171	Ν	0.96920	2.26918	-0.35969
Н	0.14275	1.11118	2.26203	С	-0.07924	2.26237	0.46979
Н	0.55845	2.81790	2.19652	С	1.97109	0.95668	-2.18643
Н	-1.38571	2.28515	3.77081	Ν	2.05184	-0.16685	-1.21175
Н	-1.76715	3.50000	2.54415	С	2.82901	-1.35864	-1.70982
Н	-2.41118	0.52185	2.33997	С	3.18083	-2.26613	-0.51868
Н	-3.60144	1.77572	2.71125	Ν	3.98108	-1.53017	0.47649
С	0.76101	3.27233	-2.43692	С	0.27429	2.26557	1.93528
Н	1.59790	3.92050	-2.15381	С	-1.40425	2.20506	0.04553
Н	0.78897	3.11447	-3.52121	С	-2.42699	1.79650	0.92967
Н	-0.17001	3.78949	-2.18652	S	3.22450	-1.24717	1.92048
Н	2.67017	0.41564	-0.25045	0	1.98162	-0.48250	1.72798
Н	4.86818	-0.61282	3.26870	0	3.08760	-2.52365	2.62195
Н	3.92044	0.80118	2.63562	С	4.42211	-0.22527	2.73898
Н	3.27702	-0.19285	3.98846	С	-3.72308	1.54363	0.49372
Ν	-1.09084	-1.05203	-1.73032	С	-0.94766	2.44319	2.82770
С	-2.50768	-1.21801	-1.55632	С	-2.04951	1.49426	2.35992
С	-3.01979	-1.31021	-0.32158	С	3.95271	-3.50815	-0.95661
0	-0.34082	-1.14392	-0.76216	С	2.03554	-2.10888	-2.77095
0	-0.69277	-0.81592	-2.86662	Н	-0.06235	1.55126	-1.99734
С	-4.43733	-1.45058	-0.00021	Н	1.90716	2.36007	0.04554
С	-5.44765	-1.36879	-0.97173	Н	2.97176	1.39475	-2.24372
С	-4.79500	-1.63868	1.34213	Н	1.70072	0.55556	-3.16395
С	-6.78272	-1.46562	-0.60150	Н	1.09438	-0.46573	-0.91319
С	-6.13265	-1.74044	1.71092	Н	3.75698	-0.94783	-2.12556
С	-7.12862	-1.64959	0.73978	Н	2.24022	-2.58384	-0.04664
Н	-3.03471	-1.22074	-2.50002	Н	4.48810	-0.70544	0.09506
Н	-2.32260	-1.27543	0.51428	Н	-1.64554	2.35579	-1.00193
Н	-5.19436	-1.20917	-2.01645	Н	2.68517	-2.83832	-3.25979
Н	-4.01450	-1.69758	2.09695	Н	1.18507	-2.63448	-2.32387
Н	-7.55858	-1.39045	-1.35782	Н	1.64483	-1.44526	-3.54441
Н	-6.39678	-1.88434	2.75437	Н	4.85456	-3.22421	-1.51168
Н	-8.17449	-1.72012	1.02476	Н	4.25920	-4.06129	-0.06558
0	3.44703	1.88928	0.67685	Н	3.34263	-4.16726	-1.58019
С	4.62237	2.02564	0.23350	Н	0.76255	1.30410	2.14358
0	5.32839	1.11552	-0.25429	Н	1.02547	3.04492	2.11460
Н	5.06192	3.04371	0.28643	Н	-0.67752	2.23373	3.86726
С	-4.39676	1.98486	-1.32053	Н	-1.30985	3.47758	2.78072
Н	-4.02934	2.94572	-1.70504	Н	-1.67061	0.46167	2.42174
Н	-3.91439	1.20039	-1.92505	Н	-2.93441	1.55634	3.00168
Н	-5.47132	1.94014	-1.52069	С	1.09319	3.26417	-2.61562
Н	-4.96495	1.66185	0.80660	Н	2.05319	3.73885	-2.38331
				Н	1.06654	3.03865	-3.68718
3a-γ∙	-addition-TS2	2d-3d		Н	0.29381	3.97667	-2.39161
, Geoi	netry with	76 atoms:		Н	2.50816	0.22018	-0.36138
	•						

Н	5.37614	-0.75445	2.76171	0	2.35449	-2.91761	2.18698
Н	4.48465	0.72415	2.20280	С	4.06547	-0.92189	2.63004
Н	4.04339	-0.07045	3.75253	С	-3.26001	1.13482	0.92029
Ν	-1.29584	-0.68283	-1.38055	С	-0.24920	1.59370	3.20427
С	-2.66784	-0.62411	-1.29406	С	-1.21375	0.68356	2.43672
С	-3.31900	-0.62649	-0.06628	С	3.28609	-3.57784	-1.47153
0	-0.58144	-0.82937	-0.35667	С	1.70527	-1.67986	-3.16134
0	-0.76175	-0.62716	-2.51085	Н	0.00378	2.02041	-1.68599
С	-4.73357	-1.02904	0.06067	Н	2.24958	2.35916	0.23262
С	-5.62258	-1.03754	-1.02385	Н	2.98788	1.55759	-2.13450
С	-5.20383	-1.43995	1.31713	Н	1.58799	1.04483	-3.11832
С	-6.94285	-1.44526	-0.85256	Н	0.82754	-0.25867	-1.08325
С	-6.52096	-1.85273	1.48681	Н	3.52001	-0.87501	-2.27605
С	-7.39722	-1.85522	0.40078	Н	1.66523	-2.53614	-0.51554
Н	-3.14504	-0.57934	-2.26154	Н	4.17017	-1.06452	-0.02568
Н	-2.69743	-0.82576	0.80219	Н	-1.44170	2.78254	-0.31852
Н	-5.28827	-0.72588	-2.00942	Н	2.27509	-2.43104	-3.71357
Н	-4.52144	-1.43564	2.16494	Н	0.75378	-2.11141	-2.83529
Н	-7.61787	-1.44659	-1.70376	Н	1.47117	-0.86703	-3.85134
Н	-6.86382	-2.17584	2.46560	Н	4.24894	-3.35798	-1.94812
Н	-8.42630	-2.17817	0.52958	Н	3.46118	-4.28129	-0.65386
0	3.64212	1.75839	0.27374	Н	2.62771	-4.05479	-2.20257
С	4.74940	1.70256	-0.33168	Н	1.72601	1.56427	2.27251
0	5.28855	0.66612	-0.77768	Н	1.11905	3.18967	2.61989
Н	5.28943	2.66212	-0.47714	Н	0.23915	1.02818	4.00261
С	-4.26320	2.06532	-0.80704	Н	-0.82341	2.39885	3.67577
Н	-4.29085	3.16317	-0.81070	Н	-0.66780	-0.17702	2.02428
Н	-3.65056	1.75654	-1.66412	Н	-1.99118	0.30031	3.10547
Н	-5.28417	1.70894	-0.97387	С	1.31825	3.67683	-2.16783
Н	-4.45690	1.31730	1.26445	Н	2.34495	4.00033	-1.96282
				Н	1.18595	3.60301	-3.25161
3a-γ-	-addition-3d			Н	0.63136	4.43855	-1.78749
Geor	metry with	76 atoms:		Н	2.32449	0.16509	-0.41259
С	1.03659	2.32974	-1.51449	Н	4.91150	-1.61085	2.61079
Ν	1.25596	2.40561	-0.06501	Н	4.31800	0.05456	2.20951
С	0.34855	2.31379	0.86305	Н	3.67666	-0.81723	3.64628
С	1.93962	1.24054	-2.10527	Ν	-1.39143	-0.11915	-1.55684
Ν	1.86555	-0.01527	-1.32146	С	-2.66446	0.07552	-1.32533
С	2.51878	-1.20228	-1.96575	С	-3.26548	-0.16940	0.02387
С	2.66804	-2.30475	-0.90198	0	-0.60420	-0.56367	-0.61047
Ν	3.50344	-1.82650	0.21621	0	-0.85333	0.12798	-2.69796
С	0.82662	2.18673	2.28360	С	-4.67342	-0.73811	-0.03671
С	-1.06383	2.28245	0.56773	С	-5.60801	-0.35355	-1.00423
С	-1.83564	1.43982	1.29457	С	-5.07255	-1.65553	0.94183
S	2.74347	-1.60826	1.66378	С	-6.90275	-0.87179	-0.99315
0	1.66234	-0.61034	1.56849	С	-6.36469	-2.17666	0.95698

С	-7.28653	-1.78491	-0.01297	Н	2.98374	-0.17653	-2.01771
Н	-3.22122	0.43064	-2.18112	Н	2.82868	-0.58083	0.91022
Н	-2.63180	-0.90336	0.53395	Н	-3.56476	1.47443	-1.08944
Н	-5.33260	0.35750	-1.77866	Н	3.46063	2.40171	-2.44318
Н	-4.35486	-1.97162	1.69708	Н	1.79007	1.92126	-2.76158
Н	-7.61143	-0.56026	-1.75585	Н	2.14856	3.38815	-1.81927
Н	-6.64864	-2.89359	1.72273	Н	5.01179	0.66395	0.11485
Н	-8.29420	-2.19089	-0.00720	Н	5.27172	-0.49612	-1.20353
Ο	3.74413	1.51011	0.46353	Н	5.07004	1.22936	-1.57030
С	4.83411	1.33922	-0.15878	Н	-2.16683	-1.82999	0.46004
0	5.25670	0.25627	-0.60933	Н	-2.22255	-1.07185	2.05430
Н	5.46727	2.23862	-0.31149	Н	-4.18132	-2.63482	1.59466
С	-3.99321	2.30047	0.26057	Н	-4.65543	-0.99885	2.04648
Н	-3.90992	3.20562	0.87132	Н	-5.75921	-2.12793	-0.25406
Н	-3.59618	2.52277	-0.73569	С	-1.97008	3.41812	0.54246
Н	-5.05636	2.06669	0.15136	Н	-1.70967	3.60383	1.59036
Н	-3.78766	0.86721	1.84533	Н	-1.73566	4.31420	-0.04334
				Н	-3.04788	3.24278	0.48868
3 α-γ′	-addition-1			Н	1.05923	0.59733	0.54510
Geor	netry with	55 atoms:		0	0.74623	0.07820	2.16150
С	-1.21075	2.19733	0.01859	С	1.76943	0.41147	2.83486
Ν	-1.55868	0.97240	0.69911	0	2.91340	0.58260	2.36948
С	-2.66339	0.22418	0.39446	Н	1.61956	0.55397	3.92357
С	0.29251	2.44032	0.13140	Н	2.42436	-3.28419	1.31990
Ν	1.06442	1.23605	-0.29714	Н	1.01272	-2.19439	1.64900
С	2.47215	1.50022	-0.74948	Н	0.79540	-3.70352	0.69204
С	3.23587	0.17453	-1.00807	Н	-4.81537	-0.14709	-2.98672
Ν	2.89655	-0.89851	-0.07052	Н	-6.25208	-0.89088	-2.25284
С	-2.73069	-1.11961	1.08408	Н	-5.94602	0.84731	-2.06666
С	-3.60827	0.54349	-0.52919				
С	-4.68397	-0.40292	-0.84894	3a -γ′-	addition-2a	l	
S	1.78576	-2.02055	-0.57072	Geom	etry with	73 atoms:	
0	0.53577	-1.37884	-1.01804	С	1.06758	-2.90376	-0.54415
0	2.42988	-2.89660	-1.54677	Ν	0.31702	-1.86235	-1.21250
С	1.47876	-2.88885	0.94465	С	-1.05129	-1.78681	-1.20055
С	-5.46927	-0.14073	-2.10579	С	2.45740	-2.37229	-0.18144
С	-4.17320	-1.59454	1.25331	Ν	2.34699	-0.98686	0.36641
С	-4.94935	-1.43684	-0.02991	С	3.50289	-0.51562	1.20240
С	4.74176	0.41540	-0.91723	С	3.38615	1.00590	1.41958
С	2.45877	2.35834	-2.00984	Ν	3.27355	1.72371	0.13852
Н	-1.44667	2.06021	-1.04881	С	-1.61025	-0.55097	-1.87002
Н	-0.96540	0.65733	1.46377	С	-1.88363	-2.63663	-0.54058
Н	0.58760	2.64514	1.16657	С	-3.31872	-2.35130	-0.44374
Н	0.57015	3.29347	-0.48753	S	1.79858	2.38504	-0.19305
Н	0.55428	0.69987	-1.01444	О	0.73629	1.35928	-0.20067
Н	2.94832	2.01949	0.08967	О	1.57467	3.50512	0.72141

С	2.04162	2.96799	-1.84873	Н	1.73466	-4.96258	-0.81201
С	-4.10443	-3.14949	0.56247	Н	0.19427	-4.57351	-1.60481
С	-3.07565	-0.70764	-2.28175	Н	2.22547	-0.37608	-0.47121
С	-3.88637	-1.41506	-1.22599	О	2.38841	-0.20725	-2.35404
С	4.58367	1.55560	2.18976	С	3.62147	-0.20129	-2.62349
С	3.52709	-1.25867	2.53296	Ο	4.53523	0.18397	-1.85837
Н	0.54644	-3.11972	0.39733	Н	3.91814	-0.56799	-3.62806
Н	0.81738	-1.29635	-1.89674	Н	2.91411	3.62314	-1.86559
Н	3.11118	-2.31038	-1.05602	Н	2.15807	2.09770	-2.49862
Н	2.92114	-3.02488	0.55880	Н	1.13648	3.52262	-2.10885
Н	1.46850	-0.89980	0.90438	Н	-3.68953	-3.02895	1.57069
Н	4.39936	-0.72599	0.60762	Н	-5.15723	-2.84924	0.57819
Н	2.47260	1.19517	2.00214	Н	-4.06074	-4.22067	0.32625
Н	3.72146	1.23514	-0.66640				
Н	-1.50213	-3.50498	-0.00808	3 a-y	/-addition-T	S2a-3a	
N	-1.05309	-1.18436	2.25506	Geo	metry with	73 atoms:	
С	-1.50366	-0.00599	1.56680	С	1.25279	-2.92763	-0.56308
С	-2.81340	0.26612	1.49445	Ν	0.45915	-1.95787	-1.30380
0	-1.83726	-1.90248	2.84722	С	-0.88078	-1.85416	-1.24327
0	0.16412	-1.40947	2.21940	С	2.54553	-2.27166	-0.06712
С	-3.38589	1.42083	0.80291	Ν	2.27320	-0.91866	0.49761
С	-2.58895	2.41679	0.21415	С	3.36088	-0.37674	1.38380
С	-4.78139	1.52105	0.71390	С	3.16565	1.14038	1.55186
С	-3.18323	3.48091	-0.45323	Ν	3.16706	1.81185	0.23858
С	-5.37361	2.58614	0.04184	С	-1.44373	-0.62973	-1.92865
С	-4.57471	3.56726	-0.54377	С	-1.69688	-2.76199	-0.58603
Н	-0.68702	0.54634	1.11668	С	-3.06047	-2.47157	-0.32794
Н	-3.50966	-0.42174	1.97061	S	1.72686	2.46636	-0.23094
Н	-1.50452	2.35777	0.27310	0	0.67621	1.43307	-0.32897
Н	-5.39858	0.74787	1.16630	0	1.42010	3.59047	0.65207
Н	-2.55932	4.24807	-0.90296	С	2.11565	3.03933	-1.86262
Н	-6.45569	2.65026	-0.02557	С	-3.88552	-3.43465	0.48134
Н	-5.03460	4.40047	-1.06762	С	-2.97621	-0.58308	-1.94675
Н	4.47392	-1.07397	3.04489	С	-3.60606	-1.27505	-0.76489
Н	2.70954	-0.92296	3.18052	С	4.25081	1.75910	2.42798
Н	3.43636	-2.34035	2.40839	С	3.33805	-1.10126	2.72380
Н	5.51537	1.31984	1.66257	Н	0.67258	-3.20820	0.32141
Н	4.49182	2.64242	2.25381	Н	0.97210	-1.30361	-1.90175
Н	4.63713	1.15301	3.20485	Н	3.27609	-2.13960	-0.86924
Н	-1.49600	0.28001	-1.16050	Н	2.98704	-2.89975	0.70785
Н	-0.99587	-0.28929	-2.73993	Н	1.37324	-0.94087	1.02919
Н	-3.49787	0.27969	-2.50218	Н	4.29916	-0.55736	0.84546
Н	-3.12775	-1.28555	-3.21906	Н	2.18874	1.30553	2.02874
Н	-4.95362	-1.21159	-1.15740	Н	3.66120	1.28698	-0.51466
С	1.18908	-4.18804	-1.36310	Н	-1.27290	-3.65969	-0.14669
Н	1.71586	-3.98801	-2.30286	Ν	-1.16136	-1.31641	1.94791

С	-1.59529	-0.22473	1.22798	С	1.31597	-2.94501	-0.38635
С	-2.95334	-0.02985	1.02041	Ν	0.54677	-2.02983	-1.23844
0	-1.96538	-2.12472	2.42651	С	-0.75970	-1.92626	-1.25895
0	0.08594	-1.46578	2.12420	С	2.53482	-2.20390	0.17291
С	-3.48305	1.25881	0.53287	Ν	2.16237	-0.85568	0.67156
С	-2.65990	2.25054	-0.02185	С	3.19868	-0.21592	1.55027
С	-4.85991	1.50490	0.63086	С	2.95189	1.30107	1.58234
С	-3.20627	3.45224	-0.46391	Ν	3.06638	1.86002	0.21910
С	-5.40504	2.70569	0.18639	С	-1.33835	-0.75634	-2.01123
С	-4.57832	3.68430	-0.36618	С	-1.61305	-2.89292	-0.63485
Н	-0.79791	0.40820	0.86530	С	-2.88334	-2.55985	-0.28227
Н	-3.62580	-0.61622	1.64004	S	1.67890	2.47423	-0.42746
Н	-1.58678	2.09439	-0.10245	0	0.64616	1.42772	-0.57131
Н	-5.50607	0.74360	1.06361	0	1.28150	3.64698	0.34834
Н	-2.55248	4.21303	-0.88159	С	2.23094	2.95195	-2.04308
Н	-6.47385	2.87932	0.27470	С	-3.79992	-3.52010	0.39598
Н	-4.99930	4.62370	-0.71314	С	-2.86250	-0.69694	-1.90847
Н	4.23773	-0.86021	3.29382	С	-3.38018	-1.17073	-0.54527
Н	2.45947	-0.80860	3.30888	C	3.93202	2.02138	2.50219
Н	3.31480	-2.18734	2.60267	C	3.14323	-0.83424	2.94203
Н	5.24343	1.54625	2.01427	Н	0.67398	-3.21048	0.45892
Н	4 11231	2 84279	2.44532	Н	1 10685	-1 36348	-1 79747
н	4 20489	1 38905	3 45571	Н	3 31839	-2 07842	-0 57898
Н	-1 01948	0 24611	-1 42667	Н	2,93580	-2.78899	1 00269
н	-1 05548	-0 59954	-2 95426	Н	1 22746	-0.92878	1 23568
н	-3 31356	0.45669	-2 01914	Н	4 16828	-0 40418	1.07139
н	-3 34171	-1 09074	-2 85155	Н	1.10020	1 47131	1.07155
н	-4 67143	-1 10944	-0.60965	н	3 59987	1.1/151	-0.45201
C	1 57432	-4 16665	-1 39420	н	-1 21090	-3 86210	-0 35598
н	2 13564	-3 88611	-1.59420	II N	-1.13675	-1.22810	1 84640
н	2.15504	-4.88215	-2.29231	R C	-1.156173	-0.26148	1.04040
и П	2.17071	4 66107	1 70706	C C	-1.50175	0.20140	0.67347
и П	2 12266	0.20212	0.21857	e	1 00225	-0.21991	2 25024
0	2.12500	-0.29213	-0.51857	0	-1.90323	-2.15101	2.23024
C C	2.41000	-0.17023	-2.29039	0	2 51127	-1.20/10	0.28268
0	1 52506	-0.10302	-2.40312	C	-5.51127	2 18820	0.36206
0	4.32300	0.22065	-1.001/5	C	-2.09405	2.10029	-0.14505
п	4.02812	-0.35580	-3.40083	C	-4.80303	1.40/91	0.00430
п	2.98/30	3.09317	-1.80004	C	-3.21847	5.44/9/ 2.72205	-0.43383
Н	2.28/02	2.10043	-2.49623	C	-5.38992	2.72395	0.31122
Н	1.23775	3.59444	-2.2031/	U U	-4.56665	3./2114	-0.21098
Н	-3.26299	-4.08648	1.09804	Н	-0.83203	0.49355	0.80484
Н	-4.57507	-2.89740	1.1414/	Н	-3.57205	-0.62090	1.52269
Н	-4.49113	-4.06164	-0.18565	H 	-1.63784	2.00644	-0.32301
_				Н	-5.50912	0.69765	1.02274
3a-7'	-addition-3a			Н	-2.56225	4.21885	-0.82910
Geoi	netry with	73 atoms:		Н	-6.44074	2.92626	0.50040

Η	-4.97132	4.70468	-0.43317	С	2.08769	1.31502	-2.79963
Н	4.01846	-0.53077	3.52082	С	3.29027	1.44581	-1.90267
Н	2.23582	-0.52391	3.46995	С	-4.44267	-2.76257	1.69596
Н	3.14526	-1.92686	2.89913	С	-2.43733	-1.01526	3.17695
Н	4.96579	1.79032	2.21943	Н	-0.07508	2.39926	1.63335
Н	3.78195	3.09920	2.40372	Н	-1.33629	1.74523	-0.94908
Н	3.77830	1.74537	3.54907	Н	-3.06572	2.18400	1.51930
Н	-0.86626	0.15142	-1.61950	Н	-1.90417	1.62081	2.73896
Н	-1.02233	-0.83919	-3.05914	Н	-1.31275	-0.10015	0.93371
Н	-3.20322	0.32280	-2.11028	Н	-4.04229	-0.04939	2.06847
Н	-3.30744	-1.34293	-2.67409	Н	-2.51301	-2.38743	0.82843
Н	-4.47689	-1.18722	-0.57578	Н	-4.47712	-0.51390	-0.29248
С	1.74788	-4.18598	-1.15858	Н	1.75870	2.81544	0.80352
Н	2.34465	-3.90345	-2.03254	Н	-3.14234	-1.55962	3.80918
Н	2.35016	-4.84160	-0.52158	Н	-1.57703	-1.66403	2.97659
Н	0.87482	-4.74757	-1.50368	Н	-2.08625	-0.15378	3.74915
Н	1.99043	-0.25905	-0.15568	Н	-5.36301	-2.21936	1.94030
0	2.45925	-0.33969	-2.28202	Н	-4.69663	-3.57730	1.01359
С	3.71828	-0.31580	-2.37065	Н	-4.03177	-3.19570	2.61219
0	4.50609	0.14894	-1.51762	Н	0.87403	-0.10058	-1.67256
Н	4.16390	-0.74356	-3.29350	Н	-0.06308	1.03941	-2.61383
Н	3.07393	3.63638	-1.93628	Н	2.25409	0.56793	-3.58300
Н	2.49632	2.04879	-2.59643	Н	1.91645	2.27518	-3.31421
Н	1.38323	3.45347	-2.51680	Н	4.28080	1.21925	-2.29363
Н	-3.29179	-4.44620	0.67423	С	-1.33475	3.95474	0.83477
Н	-4.20763	-3.05834	1.30188	Н	-2.18741	4.04749	0.15265
Н	-4.64400	-3.75654	-0.26550	Н	-1.61021	4.39166	1.80222
				Н	-0.49562	4.52477	0.42382
3 α-γ′	-addition-2b			Н	-2.63431	0.48443	0.14555
Geor	netry with	73 atoms:		Н	-4.93862	-1.43505	-2.91598
С	-0.95048	2.48418	0.98463	Н	-4.01892	0.11905	-2.73322
Ν	-0.58371	1.86683	-0.27388	Н	-3.41667	-1.16692	-3.83203
С	0.69755	1.78449	-0.74672	Ν	1.08307	-0.44807	1.59449
С	-2.09768	1.69767	1.66870	С	2.51526	-0.55474	1.55231
Ν	-2.24019	0.32876	1.09912	С	3.10851	-1.11152	0.48734
С	-3.11785	-0.60672	1.87708	О	0.39953	-1.00603	0.74069
С	-3.44679	-1.83491	1.00482	О	0.59292	0.20187	2.51548
Ν	-3.99627	-1.43484	-0.30186	С	4.54970	-1.26260	0.29701
С	0.83925	0.95094	-1.99904	С	5.48336	-1.00968	1.31414
С	1.81650	2.25165	-0.12479	С	5.01033	-1.66409	-0.96555
С	3.14599	1.93885	-0.65705	С	6.84424	-1.14140	1.06507
S	-2.98833	-1.66781	-1.59978	С	6.37278	-1.79197	-1.21491
0	-1.73592	-0.91024	-1.46229	С	7.29212	-1.52772	-0.20017
0	-2.84779	-3.11128	-1.79554	Н	2.98004	-0.10259	2.41765
С	-3.95741	-0.95776	-2.90551	Н	2.46568	-1.46476	-0.31679
С	4.32227	2.20918	0.23990	Н	5.14818	-0.71747	2.30559

	Н	4.28831	-1.85806	-1.75550	F	ł	-5.01947	-2.12551	2.48919
	Н	7.55948	-0.94554	1.85848	H	ł	-4.32767	-3.53238	1.65822
	Н	6.71672	-2.09741	-2.19861	H	ł	-3.55674	-2.91700	3.13227
	Н	8.35678	-1.62780	-0.39144	H	ł	0.47840	-0.37764	-1.44034
	0	-3.34305	1.69544	-1.10153	H	ł	0.06687	0.58334	-2.84292
	С	-4.51409	1.90983	-0.68487	H	ł	2.36531	-0.71781	-2.85086
	0	-5.18908	1.13767	0.03481	H	ł	2.34659	0.92888	-3.46324
	Н	-4.98562	2.86900	-0.98614	H	ł	4.29282	0.53389	-1.81795
	Н	4.20783	1.70294	1.20762	C	2	-1.55780	4.03461	0.08153
	Н	5.26119	1.87608	-0.21372	H	ł	-2.42595	3.91639	-0.57496
	Н	4.40519	3.28288	0.45383	H	ł	-1.85751	4.60758	0.96613
					H	ł	-0.78789	4.60055	-0.45219
3	Ba-γ'	-addition-T	S2b-3b		H	ł	-2.54365	0.39969	0.11385
(Geor	netry with	73 atoms:		H	ł	-5.09043	-1.98934	-2.43417
	С	-1.02548	2.66489	0.48844	H	ł	-4.27008	-0.37768	-2.57117
	Ν	-0.63381	1.86762	-0.67224	H	ł	-3.68089	-1.77531	-3.52870
	С	0.61698	1.66327	-1.08220	Ν	J	1.13694	-0.01034	1.44615
	С	-2.06134	1.91459	1.36678	C	2	2.48763	0.01679	1.27083
	Ν	-2.12760	0.46162	1.06221	C	2	3.11073	-0.58458	0.16737
	С	-2.95275	-0.36099	2.00847	C)	0.40145	-0.75471	0.73526
	С	-3.22723	-1.72051	1.33892	C)	0.60717	0.68826	2.34923
	Ν	-3.90256	-1.52860	0.04097	C	2	4.53494	-0.98591	0.22115
	С	0.78939	0.49970	-2.02325	C	2	5.44681	-0.44316	1.13736
	С	1.71756	2.37551	-0.59370	C	2	4.99448	-1.95472	-0.68365
	С	3.02758	1.94363	-0.85279	C	2	6.77802	-0.85301	1.14007
	S	-3.01407	-1.91619	-1.30300	C	2	6.32276	-2.36808	-0.67810
	0	-1.80517	-1.08472	-1.42168	C	2	7.22270	-1.81492	0.23353
	0	-2.79877	-3.36302	-1.29631	H	ł	2.99065	0.62799	2.00666
	С	-4.14781	-1.46290	-2.59116	H	ł	2.47179	-1.23998	-0.42092
	С	4.15239	2.63372	-0.14215	H	ł	5.12177	0.29785	1.86209
	С	2.21276	0.32584	-2.55314	H	ł	4.29459	-2.38722	-1.39585
	С	3.26184	0.76680	-1.56408	H	ł	7.46970	-0.42336	1.85934
	С	-4.08272	-2.62684	2.21848	H	ł	6.65599	-3.12454	-1.38309
	С	-2.23565	-0.51825	3.34186	H	ł	8.26039	-2.13565	0.24165
	Н	-0.12466	2.77174	1.09518	C)	-3.37345	1.50224	-1.29436
	Н	-1.39014	1.42183	-1.19795	C	2	-4.53982	1.71100	-0.86635
	Н	-3.07076	2.30445	1.21253	C)	-5.14598	1.02584	-0.00913
	Н	-1.78469	2.03827	2.41391	H	ł	-5.07974	2.58458	-1.29031
	Н	-1.17077	0.04042	0.99129	H	ł	4.06518	2.46045	0.94079
	Н	-3.90170	0.17644	2.12485	H	ł	5.12937	2.27360	-0.47331
	Н	-2.25910	-2.20955	1.15936	H	ł	4.10319	3.71766	-0.29412
	Н	-4.41491	-0.62651	-0.04454					
	Н	1.56923	3.23195	0.05714	3a	ι-γ'-	-addition-3b)	
	Н	-2.91265	-0.96660	4.07270	Ge	eon	netry with	73 atoms:	
	Н	-1.35193	-1.15598	3.23405	C	2	-1.57734	2.94554	0.16329
	Н	-1.90401	0.44155	3.74423	Ν	J	-0.98879	2.23806	-0.98265

С	0.29282	2.04870	-1.15734	Ν	1.27379	0.55684	1.71309
С	-2.64905	2.06445	0.82295	С	2.52914	0.37630	1.38133
Ν	-2.21769	0.64580	0.89105	С	2.88387	-0.05637	-0.01861
С	-2.92960	-0.19473	1.90925	Ο	0.36103	0.32190	0.80643
С	-2.67132	-1.66946	1.56177	Ο	0.89017	0.96128	2.85998
Ν	-3.24137	-1.96768	0.23012	С	4.13351	-0.91652	-0.01630
С	0.71868	0.97257	-2.11273	С	5.38438	-0.38096	0.31320
С	1.27646	2.84534	-0.46448	С	4.04977	-2.27731	-0.32174
С	2.56608	2.44544	-0.39787	С	6.52226	-1.18377	0.33648
S	-2.15534	-2.48213	-0.91013	С	5.18769	-3.08501	-0.30451
0	-1.13232	-1.46401	-1.18281	С	6.42689	-2.54078	0.02451
0	-1.66709	-3.80043	-0.50551	Н	3.25676	0.54750	2.16390
С	-3.21075	-2.62553	-2.33128	Н	2.05142	-0.67787	-0.36570
С	3.60304	3.27073	0.29343	Н	5.47117	0.67759	0.55619
С	2.23050	0.92301	-2.33328	Н	3.08183	-2.70864	-0.56854
С	3.01219	1.15022	-1.03374	Н	7.48414	-0.75093	0.59841
С	-3.26475	-2.62933	2.58697	Н	5.10214	-4.14073	-0.54719
С	-2.43186	0.16921	3.30082	Н	7.31392	-3.16776	0.03921
Н	-0.77668	3.07732	0.89498	0	-3.15768	0.77408	-1.89480
Н	-1.65542	1.69115	-1.55239	С	-4.40041	0.69930	-1.68822
Н	-3.59737	2.09653	0.28111	0	-4.95309	0.10691	-0.73470
Н	-2.81261	2.43911	1.83472	Н	-5.06067	1.20443	-2.42456
Н	-1.14759	0.56429	1.04840	Н	4.16793	2.66091	1.00672
Н	-4.00128	0.01658	1.79767	Н	4.32231	3.64444	-0.44780
Н	-1.58121	-1.81221	1.52464	Н	3.16814	4.12119	0.82461
Н	-3.89189	-1.24732	-0.13962				
Н	0.96746	3.76034	0.03160	3b -γ	-addition-1		
Н	-3.00235	-0.37481	4.05684	Geo	metry with	70 atoms:	
Н	-1.36603	-0.06416	3.40590	С	3.06671	0.52752	-0.65243
Н	-2.55909	1.23556	3.50802	С	3.17791	-0.71036	0.25891
Н	-4.33517	-2.43506	2.72342	Ν	2.11355	1.47994	-0.10954
Н	-3.14622	-3.65114	2.21822	С	3.79393	-1.93099	-0.46525
Н	-2.76030	-2.55116	3.55400	С	2.72841	-3.02881	-0.61115
Н	0.35360	0.03823	-1.66945	С	2.34513	-3.54292	0.78385
Н	0.17974	1.09918	-3.05945	С	1.99152	-2.33316	1.66890
Н	2.49859	-0.05010	-2.75978	Ν	1.83091	-1.12571	0.79461
Н	2.52940	1.68846	-3.05953	С	0.84375	-1.41618	-0.29156
Н	4.07255	1.26273	-1.28850	С	1.47725	-2.42563	-1.26870
С	-2.16008	4.28960	-0.25143	Н	2.13489	1.62078	0.90322
Н	-2.92480	4.15267	-1.02346	С	1.05432	2.00207	-0.78788
Н	-2.62011	4.78661	0.60869	S	0.91663	1.87062	-2.48815
Н	-1.37832	4.94223	-0.65100	Ν	0.15669	2.60012	-0.00047
Н	-2.37682	0.25335	-0.05610	Н	0.32715	2.55798	1.02066
Н	-4.06085	-3.26148	-2.08028	С	-1.12344	3.18392	-0.38182
Н	-3.52059	-1.62235	-2.63117	С	-2.23419	2.13582	-0.16450
Н	-2.60285	-3.08347	-3.11563	Ν	-2.06977	1.07773	-1.14671

С	-2.41288	-0.23051	-0.95970	Н	1.74274	-1.92847	-2.20905
Н	0.75496	-3.21311	-1.50749	Н	1.51735	-0.34841	1.42584
Н	3.17264	-4.10056	1.23239	0	1.86484	0.60223	2.78790
Н	-2.07465	1.70995	0.83796	С	1.29068	1.58838	3.33583
Н	-1.07606	3.44240	-1.44578	0	0.65355	2.49539	2.76615
Н	0.57319	-0.47345	-0.77160	Н	1.38039	1.64808	4.44020
Н	-0.04958	-1.80636	0.20506				
Н	2.77094	-2.08747	2.39289	3b-	γ-addition-2a		
Н	1.05015	-2.45670	2.20863	Geo	metry with	88 atoms:	
Н	3.11962	-3.84605	-1.22304	С	2.83699	-1.44093	-0.51082
Н	4.65773	-2.31311	0.08898	С	1.75758	-0.66636	-0.67293
Н	4.15026	-1.62882	-1.45605	Ν	0.58865	-0.87457	0.13682
Н	3.74659	-0.43979	1.15548	0	-0.33229	-0.08143	-0.01832
Н	2.68117	0.21968	-1.62923	0	0.53435	-1.82161	0.91852
С	-2.12026	-1.11557	-2.15327	Н	2.78561	-2.22915	0.23730
С	-2.98889	-0.72731	0.17375	Н	1.62274	0.15706	-1.36133
Н	-2.34888	-0.55572	-3.06829	С	-4.15017	0.15374	-0.96966
Н	-1.04147	-1.32957	-2.19247	С	-3.96138	-1.37027	-0.90624
С	-3.27863	-2.14608	0.35272	Ν	-2.87965	0.80422	-1.22617
С	-3.92496	-2.62916	1.43379	С	-5.17244	-2.10714	-0.28721
С	-2.77935	-3.07221	-0.73531	С	-4.75873	-2.72947	1.05476
С	-4.42936	-1.78594	2.57542	С	-3.70360	-3.81571	0.79924
Н	1.49155	-4.22508	0.70825	С	-2.58064	-3.21662	-0.06842
С	-2.91229	-2.42055	-2.11051	Ν	-2.74169	-1.72738	-0.10011
Н	-3.31893	-4.02469	-0.69620	С	-2.80080	-1.19135	1.29660
Н	-3.97042	-2.21175	-2.31128	С	-4.13326	-1.63298	1.92955
Н	-3.24353	-0.05286	0.98648	Н	-2.31887	0.47357	-2.02612
Н	-2.55727	-3.09696	-2.89618	С	-2.42371	1.92275	-0.61780
Н	-1.49141	1.29063	-1.95466	S	-3.21532	2.64153	0.72120
Н	-4.92649	-2.40393	3.32853	Ν	-1.28227	2.39438	-1.14195
Н	-5.15440	-1.03292	2.23958	Н	-0.85225	1.80690	-1.86374
Н	-4.09642	-3.70342	1.49207	С	-0.52926	3.56842	-0.72572
Н	-3.61743	-1.24504	3.08046	С	0.69826	3.15762	0.10766
Н	-1.71513	-3.30040	-0.56058	Ν	0.25357	2.51246	1.32976
С	-3.64577	2.72127	-0.24185	С	1.00506	1.58982	2.00135
Н	-4.37980	1.90901	-0.23728	Н	-3.95444	-2.00618	2.94258
Н	-3.86033	3.37876	0.60631	Н	-4.15018	-4.67395	0.28798
Н	-3.77488	3.28870	-1.17153	Н	1.26730	2.42098	-0.48665
С	-1.33423	4.44757	0.44714	Н	-1.19003	4.17506	-0.09808
Н	-2.22758	4.98778	0.12367	Н	-2.68277	-0.10689	1.24903
Н	-1.43813	4.20563	1.51162	Н	-1.92842	-1.60412	1.80812
Н	-0.47220	5.11115	0.33217	Н	-2.60946	-3.54966	-1.10736
С	4.44394	1.16341	-0.83119	Н	-1.58032	-3.41112	0.32383
Н	4.37248	1.98865	-1.54484	Н	-5.63382	-3.15892	1.55037
Н	4.80505	1.56031	0.12423	Н	-5.54109	-2.88090	-0.96905
Н	5.17739	0.44232	-1.20738	Н	-5.99129	-1.39782	-0.12548

Η	-3.72980	-1.73855	-1.91184	Н -1.92405 -1.35060 -0.62047
Н	-4.50999	0.51858	-0.00310	O -1.06458 -1.75572 -2.23592
С	0.27081	0.84972	3.09149	С -0.48370 -0.92557 -2.97735
С	2.30706	1.29758	1.71945	O -0.74989 0.29631 -3.10577
Н	-0.47482	1.51608	3.54262	Н 0.35659 -1.31619 -3.59388
Н	-0.28212	0.01872	2.62580	
С	3.04884	0.23968	2.39067	3b -γ-addition-TS2a-3a
С	4.29447	-0.09911	1.99359	Geometry with 88 atoms:
С	2.33826	-0.52043	3.49295	C 3.00230 -1.20157 0.00453
Н	-3.30181	-4.17440	1.75288	C 1.84342 -0.55637 -0.42245
С	1.23480	0.31205	4.14621	N 0.67954 -0.70715 0.28417
Н	3.05998	-0.84900	4.24922	O -0.34614 -0.07382 -0.08685
Н	1.68279	1.15552	4.68667	O 0.62397 -1.47953 1.27037
Н	2.83085	1.83177	0.92939	Н 2.86786 -2.03476 0.68997
Н	0.69010	-0.29315	4.87939	Н 1.74631 0.09569 -1.28041
Н	-0.75210	2.47529	1.48226	C -4.18297 -0.01605 -0.69144
Н	1.89174	-1.42981	3.06365	C -3.82020 -1.50580 -0.68996
С	5.11579	-1.21681	2.57950	N -3.03138 0.73865 -1.14523
Н	5.94541	-1.47671	1.91421	C -4.89277 -2.40693 -0.04761
Н	5.55728	-0.94617	3.54962	C -4.19654 -3.50367 0.77290
Н	4.52367	-2.12665	2.74218	C -3.09416 -4.13890 -0.08908
Н	4.74992	0.47482	1.18580	C -1.98438 -3.09401 -0.31648
С	4.08643	-1.31583	-1.26268	N -2.52713 -1.74377 0.04501
С	5.11244	-2.23668	-1.00843	C -2.70040 -1.64982 1.52935
С	4.30251	-0.30517	-2.21353	C -3.54390 -2.84967 2.00033
С	6.32508	-2.15584	-1.68748	Н -2.48353 0.29163 -1.90332
Н	4.95231	-3.01748	-0.26836	C -2.57141 1.89244 -0.62188
С	5.51354	-0.22465	-2.88973	S -3.31477 2.65632 0.72940
Н	3.52434	0.42297	-2.42547	N -1.48460 2.37277 -1.23853
С	6.52839	-1.14871	-2.62955	Н -1.02775 1.75644 -1.93858
Н	7.11032	-2.87729	-1.48104	C -0.75506 3.58486 -0.91260
Н	5.66848	0.56115	-3.62325	C 0.49496 3.24289 -0.08191
Н	7.47373	-1.08149	-3.16038	N 0.06539 2.62309 1.17009
С	-5.16568	0.50767	-2.05691	C 0.81820 1.82706 1.92045
Н	-4.77652	0.22823	-3.04275	Н -2.91414 -3.57896 2.52166
Н	-6.12255	-0.00222	-1.90425	Н -3.51146 -4.46997 -1.04636
Н	-5.34720	1.58609	-2.05038	H 1.06440 2.48750 -0.64432
Н	-4.81691	-0.78002	2.01112	H -1.41282 4.22268 -0.31242
С	-0.14291	4.35522	-1.97651	H -3.17041 -0.68644 1.74088
Н	0.32212	5.31085	-1.72158	Н -1.69254 -1.63769 1.94869
Н	0 55831	3 78321	-2 59775	H -1 65231 -3 02038 -1 35398
Н	-1.03716	4.55853	-2.57233	Н -1.11454 -3.25145 0.32698
C	1.60099	4 35183	0 43062	Н -4.92110 -4.26039 1.08591
Н	2,15320	4 69408	-0.45031	Н -5.52149 -2.84276 -0.83011
Н	1.00204	5.18497	0.81791	Н -5.54505 -1 81269 0.60578
Н	2,32689	4.07673	1.20117	H -3.60447 -1.81331 -1.71906

Н	-4.42082	0.31277	0.32494	Ο	-1.52713	-1.04393	-2.70074
С	0.14186	1.13396	3.06786	С	-0.43060	-0.53247	-3.05598
С	2.15050	1.52845	1.62569	Ο	-0.12881	0.68201	-3.07485
Н	-0.65334	1.77126	3.47024	Н	0.35354	-1.24665	-3.39656
Н	-0.33345	0.23521	2.64552				
С	2.83896	0.49177	2.28056	3b -γ	-addition-3a		
С	3.96069	-0.06089	1.65829	Geor	metry with	88 atoms:	
С	2.27924	-0.10725	3.55180	С	3.28615	-0.62344	0.30761
Н	-2.67558	-5.01933	0.40808	С	2.01765	-0.38726	-0.44905
С	1.15191	0.74074	4.14326	Ν	0.86442	-0.48444	0.16705
Н	3.08908	-0.21504	4.28466	О	-0.23655	-0.10835	-0.41242
Н	1.57204	1.65088	4.58933	Ο	0.78862	-0.91624	1.37722
Н	2.62755	1.99069	0.76671	Н	3.09698	-1.40013	1.05774
Н	0.64827	0.19036	4.94430	Н	1.97623	-0.03266	-1.47094
Н	-0.93383	2.67607	1.38645	С	-4.09056	-0.72063	-0.31906
Н	1.91393	-1.11887	3.33321	С	-3.36983	-2.07180	-0.30938
С	4.82411	-1.09267	2.33038	Ν	-3.22334	0.23441	-0.98066
Н	5.54741	-1.51510	1.62632	С	-4.14165	-3.19929	0.40236
Н	5.39727	-0.65733	3.16100	С	-3.13277	-4.10995	1.12038
Н	4.22951	-1.91726	2.74257	С	-1.97573	-4.42413	0.15901
Н	4.44856	0.56436	0.91205	С	-1.17834	-3.12821	-0.08415
С	4.16503	-1.27941	-0.90374	Ν	-2.01844	-1.96266	0.34451
С	4.99654	-2.40694	-0.87574	С	-2.13323	-1.94057	1.83656
С	4.46256	-0.24898	-1.80889	С	-2.56938	-3.33652	2.32111
С	6.08932	-2.50882	-1.73478	Н	-2.72274	-0.14477	-1.81079
Н	4.77439	-3.21429	-0.18127	С	-2.94163	1.48303	-0.58034
С	5.55213	-0.35053	-2.66659	S	-3.63405	2.18571	0.83679
Н	3.83916	0.64162	-1.83911	Ν	-2.07623	2.12595	-1.37587
С	6.37060	-1.48161	-2.63341	Н	-1.63598	1.57322	-2.14070
Н	6.71835	-3.39413	-1.70398	С	-1.56474	3.47272	-1.21919
Н	5.76438	0.45536	-3.36354	С	-0.20620	3.43225	-0.49579
Н	7.22107	-1.55918	-3.30470	Ν	-0.43369	2.89195	0.85523
С	-5.39411	0.22715	-1.59188	С	0.45018	2.31288	1.61548
Н	-5.16584	-0.06391	-2.62364	Н	-1.71830	-3.87699	2.75113
Н	-6.27048	-0.33537	-1.25221	Н	-2.36782	-4.81846	-0.78497
Н	-5.64515	1.29150	-1.58124	Н	0.42582	2.71299	-1.03193
Н	-4.30772	-2.51031	2.70665	Н	-2.27509	4.04410	-0.61031
С	-0.39087	4.29611	-2.21393	Н	-2.85812	-1.16332	2.09085
Н	0.06042	5.27345	-2.02393	Н	-1.15320	-1.63799	2.20645
Н	0.30881	3.69311	-2.80512	Н	-0.93591	-2.95532	-1.13589
Н	-1.29561	4.44630	-2.80954	Н	-0.26195	-3.07226	0.50935
С	1.36433	4.46955	0.19911	Н	-3.61889	-5.03230	1.45059
Н	1.88532	4.79848	-0.70448	Н	-4.72591	-3.75947	-0.33443
Н	0.74714	5.29675	0.56963	Н	-4.84786	-2.78105	1.13244
Н	2.11763	4.24562	0.96002	H	-3.14882	-2.34523	-1.34634
Н	-1.81632	-1.03201	-0.23290	Н	-4.26299	-0.37227	0.70400

С	0.00163	1.71960	2.91646	С	-0.83266	-0.55608	-3.29489
С	1.80336	2.10404	1.18250	О	-0.80290	0.68961	-3.42557
Н	-0.83239	2.29768	3.32644	Н	0.06924	-1.11442	-3.63438
Н	-0.36525	0.71456	2.66216				
С	2.62339	1.26116	1.86459	3b -γ-	addition-2b		
С	3.78251	0.65951	1.11708	Geom	netry with	88 atoms:	
С	2.33277	0.83827	3.27496	С	2.74820	-1.71569	-0.18865
Н	-1.31825	-5.18801	0.58590	С	1.74366	-0.88699	-0.49606
С	1.17273	1.62014	3.89118	Ν	0.51981	-0.93367	0.26006
Н	3.23950	0.97171	3.87822	0	-0.31514	-0.07378	0.01226
Н	1.51182	2.63008	4.15461	0	0.34291	-1.81908	1.09452
Н	2.08950	2.42984	0.18792	Н	2.59939	-2.39732	0.64624
Н	0.84343	1.13800	4.81606	Н	1.71555	-0.11815	-1.25705
Н	-1.41802	2.86524	1.16572	С	-4.16812	0.09257	-0.95331
Н	2.11712	-0.23852	3.25638	С	-3.99845	-1.42026	-0.74448
С	4.97913	0.30267	1.99664	Ν	-2.88937	0.69632	-1.27373
Н	5.82507	-0.01211	1.37919	С	-5.22383	-2.07929	-0.06853
Н	5.30212	1.16213	2.59430	С	-4.82745	-2.58177	1.32728
Н	4.73956	-0.52021	2.68037	С	-3.78673	-3.70007	1.17988
Н	4.09655	1.38942	0.35900	С	-2.64636	-3.19509	0.27575
С	4.39488	-1.09268	-0.61446	Ν	-2.78807	-1.71278	0.10259
С	5.06450	-2.29337	-0.36589	С	-2.85572	-1.04464	1.44105
С	4.78052	-0.32984	-1.72316	С	-4.19514	-1.41765	2.10362
С	6.09423	-2.72579	-1.20175	Н	-2.33930	0.28337	-2.04195
Н	4.77440	-2.89564	0.49248	С	-2.42066	1.86782	-0.78641
С	5.80661	-0.75821	-2.56215	S	-3.19224	2.72526	0.47983
Н	4.27046	0.60745	-1.93958	Ν	-1.28159	2.27515	-1.36703
С	6.46882	-1.95858	-2.30299	Н	-0.86115	1.61410	-2.02808
Н	6.60198	-3.66341	-0.99218	С	-0.52559	3.48727	-1.08898
Н	6.08700	-0.15606	-3.42201	С	0.71985	3.16369	-0.24479
Н	7.26866	-2.29368	-2.95730	Ν	0.30253	2.65241	1.04901
С	-5.42997	-0.83560	-1.04684	С	1.07257	1.80742	1.79592
Н	-5.27499	-1.17398	-2.07793	Н	-4.02346	-1.70035	3.14678
Н	-6.10529	-1.53541	-0.54354	Н	-4.24092	-4.59330	0.74008
Н	-5.91226	0.14566	-1.07536	Н	1.27355	2.36515	-0.77017
Н	-3.32594	-3.23565	3.10579	Н	-1.17640	4.15133	-0.51087
С	-1.43994	4.10823	-2.60188	Н	-2.73431	0.03004	1.28999
Н	-1.17151	5.16574	-2.53349	Н	-1.98958	-1.40840	1.99749
Н	-0.68569	3.58666	-3.20253	Н	-2.66693	-3.62293	-0.72830
Н	-2.39866	4.02961	-3.12142	Н	-1.65336	-3.36340	0.69654
С	0.46937	4.79819	-0.39652	Н	-5.71193	-2.95204	1.85319
Н	0.81221	5.13141	-1.37926	Н	-5.60198	-2.90612	-0.67909
Н	-0.22875	5.54295	0.00321	Н	-6.03152	-1.34511	0.02378
Н	1.33909	4.75707	0.26667	Н	-3.76447	-1.88491	-1.70887
Н	-1.47363	-1.10017	0.02588	Н	-4.52174	0.55325	-0.02576
0	-1.77637	-1.25356	-2.83782	С	0.36228	1.18166	2.97149

С	2.37681	1.51234	1.51787	О	-0.77181	-0.02626	-3.10153
Η	-0.34608	1.90677	3.39086	Н	0.32928	-1.68844	-3.39700
Н	-0.23515	0.33544	2.59675				
С	3.15210	0.54646	2.28223	3b -γ-	addition-TS	2b-3b	
С	4.43671	0.24136	1.99677	Geon	netry with	88 atoms:	
С	2.41539	-0.18458	3.38674	С	2.99138	-1.17966	0.29589
С	5.26036	0.84099	0.88994	С	1.84475	-0.62754	-0.27659
Н	-3.39958	-3.98070	2.16534	Ν	0.66311	-0.64343	0.41847
С	1.34710	0.69652	4.03328	О	-0.33892	-0.05431	-0.06876
Н	3.12879	-0.55091	4.13338	О	0.55300	-1.26754	1.50230
Н	1.82151	1.56172	4.51363	Н	2.83042	-1.75474	1.20342
Н	2.86783	2.00488	0.68489	Н	1.76866	-0.12245	-1.23020
Н	0.81308	0.14078	4.81195	С	-4.18063	-0.21977	-0.60976
Н	-0.70016	2.62797	1.22315	С	-3.74050	-1.68098	-0.48231
Н	6.04925	0.14949	0.57311	Ν	-3.06817	0.54202	-1.14166
Н	5.75204	1.77312	1.20257	С	-4.77537	-2.59970	0.19119
Н	4.93435	-0.49694	2.62682	С	-4.03318	-3.62423	1.06392
Н	4.66084	1.07368	0.00224	С	-2.87079	-4.21811	0.25157
Н	1.91679	-1.06680	2.95757	С	-1.81813	-3.11645	0.02380
С	1.62736	4.38600	-0.07445	Ν	-2.45905	-1.78938	0.30425
Н	2.36862	4.20409	0.70854	С	-2.69373	-1.63995	1.77657
Н	2.16174	4.62513	-0.99924	С	-3.45229	-2.88395	2.27822
Н	1.03388	5.25827	0.22491	Н	-2.50886	0.05613	-1.86787
С	-0.16849	4.14653	-2.41926	С	-2.65249	1.75408	-0.72597
Н	0.29557	5.12418	-2.26804	S	-3.40339	2.59859	0.57151
Н	0.52454	3.51927	-2.99449	Ν	-1.59793	2.22543	-1.40260
Н	-1.07576	4.28514	-3.01407	Н	-1.12135	1.57453	-2.05619
С	-5.18127	0.35417	-2.06891	С	-0.95017	3.51086	-1.22467
Н	-5.34459	1.43097	-2.16852	С	0.34286	3.34463	-0.40838
Н	-4.80002	-0.02777	-3.02284	Ν	-0.00459	2.81594	0.91179
Н	-6.14592	-0.12208	-1.86554	С	0.82217	2.14246	1.70045
Н	-4.87129	-0.55492	2.10623	Н	-2.77856	-3.54519	2.83446
С	4.04315	-1.77098	-0.86578	Н	-3.23960	-4.60143	-0.70608
С	5.05795	-2.55146	-0.29442	Н	0.95384	2.58402	-0.91666
С	4.31308	-1.06390	-2.04765	Н	-1.63763	4.15929	-0.67073
С	6.31922	-2.61431	-0.87845	Н	-3.25306	-0.71288	1.92160
Н	4.85231	-3.09840	0.62294	Н	-1.70802	-1.52103	2.22901
С	5.57258	-1.12888	-2.63188	Н	-1.45081	-3.06578	-1.00364
Н	3.53411	-0.46877	-2.51713	Н	-0.96827	-3.19224	0.70692
С	6.57960	-1.90084	-2.04803	Н	-4.71631	-4.41357	1.38897
Н	7.09817	-3.21772	-0.42136	Н	-5.37496	-3.09709	-0.57739
Н	5.77106	-0.57918	-3.54736	Н	-5.46097	-2.00979	0.81389
Н	7.56282	-1.94924	-2.50740	Н	-3.47403	-2.05001	-1.47863
Н	-1.96259	-1.39662	-0.44703	Н	-4.42798	0.18924	0.37465
0	-1.09095	-1.96054	-1.99547	С	0.24805	1.54790	2.95451
С	-0.50922	-1.22451	-2.83026	С	2.15671	1.89422	1.35811

Н	-0.53049	2.20820	3.35262	Н	0.38190	-1.48776	-3.25138
Н	-0.23649	0.60350	2.66255				
С	2.94319	0.96815	2.05825	3b -γ	-addition-3b		
С	4.07180	0.41999	1.44317	Geor	netry with	88 atoms:	
С	2.46359	0.42778	3.38895	С	3.31048	-0.53105	0.34060
С	4.79944	1.13455	0.33140	С	2.04558	-0.37317	-0.43991
Н	-2.41579	-5.05693	0.78700	Ν	0.89204	-0.48226	0.17911
С	1.34332	1.28081	3.98643	О	-0.21236	-0.13933	-0.41113
Н	3.31199	0.38051	4.08161	О	0.81157	-0.89587	1.39542
Н	1.75460	2.23801	4.33056	Н	3.08100	-1.18278	1.18930
Н	2.54491	2.30927	0.43605	Н	1.97777	0.00251	-1.45181
Н	0.91382	0.77948	4.85965	С	-4.05679	-0.87963	-0.25995
Н	-0.99482	2.84855	1.17047	С	-3.28156	-2.19975	-0.27422
Н	5.68421	0.57189	0.02187	Ν	-3.23662	0.11895	-0.91641
Н	5.13098	2.12981	0.65593	С	-4.00439	-3.36826	0.42177
Н	4.67520	-0.25672	2.04877	С	-2.95725	-4.24983	1.12069
Н	4.17373	1.27260	-0.56017	С	-1.79213	-4.50096	0.14970
Н	2.10945	-0.59989	3.24319	С	-1.04793	-3.17018	-0.07247
С	1.12100	4.65403	-0.27281	Ν	-1.93335	-2.04664	0.37793
Н	1.91622	4.55644	0.47206	С	-2.04572	-2.05296	1.87053
Н	1.58094	4.93817	-1.22349	С	-2.41894	-3.47462	2.33195
Н	0.45343	5.46210	0.04945	Н	-2.74076	-0.22464	-1.76475
С	-0.67400	4.10924	-2.60274	С	-3.00907	1.37541	-0.50748
Н	-0.29802	5.13305	-2.52750	S	-3.70052	2.02799	0.93324
Н	0.05847	3.50414	-3.15045	Ν	-2.19476	2.06952	-1.31420
Н	-1.60085	4.12705	-3.18262	Н	-1.74141	1.54908	-2.09382
С	-5.40570	-0.11596	-1.51878	С	-1.76979	3.44616	-1.16207
Н	-5.69479	0.93415	-1.61745	С	-0.39015	3.48735	-0.48190
Н	-5.17409	-0.50612	-2.51668	Ν	-0.53703	2.92142	0.87067
Н	-6.25916	-0.66951	-1.11268	С	0.40493	2.37848	1.58646
Н	-4.25083	-2.57817	2.96111	Н	-1.54299	-3.98619	2.74697
С	4.13876	-1.60538	-0.52794	Н	-2.17208	-4.89335	-0.80006
С	5.13659	-2.40030	0.05580	Н	0.26576	2.81588	-1.04882
С	4.27585	-1.24273	-1.87571	Н	-2.49768	3.96496	-0.52761
С	6.24371	-2.81293	-0.67828	Н	-2.80474	-1.31394	2.13819
Н	5.03866	-2.69133	1.09993	Н	-1.08054	-1.71202	2.24521
С	5.38520	-1.65344	-2.61033	Н	-0.81490	-2.97031	-1.12149
Н	3.51200	-0.64190	-2.36196	Н	-0.13261	-3.08803	0.51963
С	6.37488	-2.43560	-2.01565	Н	-3.40445	-5.19632	1.43721
Н	7.00485	-3.42941	-0.20795	Н	-4.57006	-3.93872	-0.32159
Н	5.47366	-1.36265	-3.65337	Н	-4.72269	-2.98966	1.16175
Н	7.23946	-2.75331	-2.59145	Н	-3.05362	-2.44717	-1.31629
Н	-1.78737	-1.04509	0.00807	Н	-4.23587	-0.55142	0.76855
0	-1.50959	-1.27787	-2.59065	С	0.05243	1.76975	2.90863
С	-0.42521	-0.76757	-2.98107	С	1.74097	2.22507	1.07924
0	-0.15623	0.44806	-3.10645	Н	-0.79431	2.30018	3.35489

Η	-0.26255	0.74160	2.67703	
С	2.63923	1.44210	1.73015	3b -γ-addition-2c
С	3.79818	0.85701	0.97125	Geometry with 88 atoms:
С	2.44200	1.02508	3.15826	C 1.98045 -0.15587 -1.30840
С	4.37229	1.78305	-0.10305	C 1.74705 -1.41484 -1.69036
Н	-1.10285	-5.24519	0.56046	N 0.52208 -2.06023 -1.29842
С	1.27373	1.74937	3.82692	O 0.29732 -3.16857 -1.77341
Н	3.37555	1.21287	3.70473	O -0.23754 -1.49892 -0.51541
Н	1.56741	2.77972	4.06423	Н 1.19902 0.35559 -0.74845
Н	1.94775	2.55057	0.06689	Н 2.37113 -2.05136 -2.30274
Н	1.01704	1.25971	4.77056	C -3.47146 1.75356 -0.11193
Н	-1.50462	2.85185	1.22369	C -3.78273 0.67256 -1.15906
Н	5.33290	1.39828	-0.45594	N -2.03438 1.92266 -0.00636
Н	4.53383	2.79184	0.29144	C -5.24973 0.18640 -1.11858
Н	4.59216	0.60315	1.68526	С -5.29090 -1.27117 -0.63660
Н	3.71183	1.85718	-0.97443	С -4.59823 -2.16476 -1.67626
Н	2.28105	-0.06134	3.16352	С -3.21482 -1.56778 -1.99464
С	0.20676	4.88946	-0.39024	N -2.89219 -0.52694 -0.96513
Н	1.10825	4.88866	0.23057	C -3.02512 -1.11411 0.40566
Н	0.48251	5.25511	-1.38263	C -4.51772 -1.36552 0.68739
Н	-0.51356	5.58682	0.05309	Н -1.51338 2.10537 -0.87975
С	-1.72934	4.09935	-2.54133	C -1.33625 2.11234 1.13546
Н	-1.52211	5.17026	-2.46871	S -2.03946 1.96498 2.68709
Н	-0.96525	3.63044	-3.17231	N -0.03738 2.40563 0.92968
Н	-2.69839	3.96827	-3.03019	Н 0.25069 2.47166 -0.05069
С	-5.39600	-1.04059	-0.98001	C 0.98255 2.68685 1.93499
Н	-5.92278	-0.08207	-0.98463	C 1.85698 1.43907 2.15894
Н	-5.23429	-1.35044	-2.01900	N 1.01835 0.38714 2.70429
Н	-6.03423	-1.78096	-0.48639	C 1.13894 -0.93584 2.37628
Н	-3.17365	-3.41953	3.12301	Н -4.64360 -2.35479 1.13742
С	4.46256	-1.15494	-0.42612	Н -5.19496 -2.22469 -2.59140
С	5.50143	-1.75445	0.29650	Н 2.22080 1.11398 1.17120
С	4.55653	-1.12577	-1.82058	Н 0.45947 2.92105 2.86880
С	6.60541	-2.30469	-0.34979	Н -2.56581 -0.42257 1.11625
Η	5.43756	-1.79650	1.38275	Н -2.43909 -2.03457 0.39214
С	5.66070	-1.67613	-2.47274	Н -3.17164 -1.06313 -2.96154
Н	3.76497	-0.67642	-2.41312	Н -2.40606 -2.30160 -1.95521
С	6.68990	-2.26504	-1.74169	Н -6.32817 -1.58654 -0.49412
Н	7.39599	-2.77141	0.23179	Н -5.71120 0.27535 -2.10773
Н	5.71182	-1.64463	-3.55773	Н -5.82753 0.81421 -0.43197
Н	7.54719	-2.69647	-2.25079	Н -3.50520 1.05157 -2.14888
Н	-1.42729	-1.16035	0.06717	Н -3.83929 1.43463 0.86797
0	-1.77050	-1.26992	-2.82997	C -0.02750 -1.78732 2.81646
С	-0.85353	-0.53129	-3.27558	C 2.19260 -1.48111 1.70785
0	-0.86831	0.71659	-3.38738	Н -0.40353 -1.41198 3.77643
Н	0.06814	-1.05149	-3.62386	Н -0.83720 -1.65994 2.08528

С	2.18978	-2.86089	1.24019	3b -γ-addition-TS2c-3c			
С	3.15900	-3.33282	0.42616	Geometry with 88 atoms:			
С	1.00803	-3.72910	1.62023	C 2.75535 -1.05797 -0.07240			
С	3.17612	-4.71059	-0.18038	C 2.18802 -2.19662 0.48712			
Н	-4.49607	-3.18186	-1.28330	N 0.88084 -2.17967 0.91847			
С	0.35700	-3.25904	2.91962	O 0.40339 -3.21038 1.44357			
Н	1.32428	-4.77446	1.70863	O 0.17516 -1.15351 0.76394			
Н	1.06214	-3.39103	3.75016	Н 2.07778 -0.23095 -0.27786			
Н	3.04541	-0.86536	1.42684	Н 2.66956 -3.15600 0.60805			
Н	-0.52831	-3.86449	3.14387	C -3.92506 0.11634 -0.70949			
Н	0.10474	0.67731	3.04433	C -3.67062 -1.38034 -0.89822			
Н	3.96367	-4.79447	-0.93559	N -2.70139 0.84137 -1.00164			
Н	2.22363	-4.95146	-0.67146	C -4.87380 -2.24805 -0.47445			
Н	3.98276	-2.66418	0.17264	C -4.36069 -3.53030 0.19521			
Н	3.36135	-5.49593	0.56585	С -3.26696 -4.13747 -0.69458			
Н	0.26161	-3.69657	0.81017	C -2.04282 -3.20589 -0.66482			
С	1.79204	3.90067	1.48801	N -2.47078 -1.86719 -0.12374			
Н	2.46372	4.23712	2.28203	C -2.76311 -1.98370 1.34263			
Н	2.40059	3.66742	0.60528	C -3.74139 -3.15492 1.54990			
Н	1.11877	4.72537	1.23694	Н -2.05869 0.39974 -1.68386			
С	3.06276	1.70466	3.06073	C -2.44055 2.10631 -0.60791			
Н	3.80682	2.33839	2.56738	S -3.41033 2.91891 0.54915			
Н	2.74628	2.18729	3.99349	N -1.35628 2.64705 -1.18877			
Н	3.54271	0.75544	3.31857	Н -0.72196 1.99640 -1.68748			
С	-4.13913	3.07331	-0.49907	C -0.77510 3.94599 -0.88542			
Н	-3.72093	3.44852	-1.44022	C 0.44700 3.74095 0.02565			
Н	-5.22186	2.96501	-0.61971	N 0.00216 3.03226 1.21989			
Н	-3.95473	3.81692	0.28144	C 0.70414 2.07546 1.84326			
Н	-4.90176	-0.62925	1.40262	Н -3.21414 -4.01735 1.97249			
С	3.20991	0.58247	-1.61764	Н -3.64059 -4.25667 -1.71759			
С	3.16080	1.98193	-1.70089	Н 1.13374 3.07521 -0.51423			
С	4.43367	-0.07314	-1.81974	Н -1.53110 4.53010 -0.35101			
С	4.31139	2.70952	-1.99208	Н -3.17368 -1.02411 1.66516			
Н	2.20291	2.48427	-1.57991	Н -1.80145 -2.13804 1.83220			
С	5.58259	0.65812	-2.10408	Н -1.60882 -3.00933 -1.64606			
Н	4.48822	-1.15534	-1.73006	Н -1.26155 -3.56135 0.01011			
С	5.52395	2.05005	-2.19234	Н -5.18098 -4.23962 0.33399			
Н	4.25937	3.79221	-2.06657	Н -5.48165 -2.48092 -1.35396			
Н	6.52759	0.14292	-2.25025	Н -5.50877 -1.69092 0.22652			
Н	6.42281	2.61801	-2.41503	Н -3.40318 -1.56115 -1.94578			
Н	-1.92025	-0.21582	-1.16726	H -4.20601 0.32248 0.32895			
0	-1.01684	0.40825	-2.68108	C -0.04066 1.26522 2.86784			
C	-0.22724	1.37222	-2.80841	C 2.02308 1.77738 1.54824			
0	-0.09511	2.34987	-2.02166	Н -0.83077 1.87423 3.32203			
Н	0.42488	1.37020	-3.70831	Н -0.52577 0.43699 2.32876			
			2.7,0001	C 2.66803 0.64441 2 10402			
				2 2100000 0101111 2110402			

С	3.82499	0.12928	1.53005	Geo	metry with	88 atoms:	
С	2.04513	-0.07874	3.27004	С	2.81509	-0.64488	0.28980
С	4.66309	-0.91747	2.20783	С	2.18527	-1.74443	1.08299
Н	-2.97925	-5.12872	-0.33146	Ν	0.90100	-1.75057	1.35342
С	0.91101	0.70909	3.92227	0	0.37744	-2.67256	2.08301
Н	2.82238	-0.30273	4.01090	0	0.12232	-0.79859	0.92290
Н	1.33376	1.54113	4.49925	Н	2.03882	-0.20723	-0.34597
Н	2.55343	2.33235	0.77935	Н	2.73152	-2.57639	1.50575
Н	0.36446	0.07012	4.62325	С	-3.57473	-0.28922	-0.84308
Н	-0.98680	3.11596	1.45400	С	-3.24773	-1.78341	-0.81359
Н	5.50411	-1.21372	1.57499	Ν	-2.34475	0.44425	-1.09391
Н	4.07663	-1.81639	2.44243	С	-4.47232	-2.65929	-0.47635
Н	4.31672	0.74916	0.78227	С	-4.01206	-3.86608	0.35444
Н	5.08245	-0.54884	3.15412	С	-2.77522	-4.47748	-0.31937
Н	1.68426	-1.05851	2.91846	С	-1.60543	-3.48528	-0.18560
С	-0.40662	4.64883	-2.18823	Ν	-2.16294	-2.13280	0.17029
Н	-0.05996	5.66930	-2.00205	С	-2.67689	-2.14892	1.57874
Н	0.38428	4.10297	-2.71682	С	-3.60864	-3.36193	1.74797
Н	-1.28394	4.69796	-2.83918	Н	-1.62797	-0.07282	-1.64581
С	1.16191	5.03906	0.39433	С	-2.17692	1.76001	-0.89103
Н	1.65958	5.48223	-0.47329	S	-3.36515	2.73920	-0.12926
Н	0.45102	5.76749	0.80219	Ν	-0.99213	2.24830	-1.31646
Н	1.92257	4.84365	1.15698	Н	-0.32290	1.57372	-1.73747
С	-5.06919	0.55671	-1.62640	С	-0.69724	3.65785	-1.45770
Н	-4.82269	0.34127	-2.67251	С	-0.09263	4.30884	-0.17059
Н	-6.00770	0.05318	-1.37282	Ν	-0.47848	3.56564	1.02488
Н	-5.22217	1.63354	-1.51775	С	0.18381	2.59660	1.59627
Н	-4.51982	-2.86320	2.26154	Н	-3.10003	-4.15869	2.30204
С	3.92346	-1.15633	-0.96887	Н	-2.98880	-4.68972	-1.37312
С	4.07077	-0.18268	-1.96829	Н	0.99809	4.27712	-0.23055
С	4.86148	-2.19526	-0.88774	Н	-1.63914	4.17667	-1.66592
С	5.13662	-0.24419	-2.86206	Н	-3.19102	-1.19768	1.73963
Н	3.32142	0.60356	-2.05053	Н	-1.78963	-2.18772	2.21297
С	5.93041	-2.24954	-1.77697	Н	-1.04337	-3.34270	-1.11072
Н	4.76062	-2.96368	-0.12554	Н	-0.91494	-3.73754	0.62199
С	6.07256	-1.27421	-2.76542	Н	-4.81530	-4.60445	0.43020
Н	5.23372	0.50983	-3.63808	Н	-4.95370	-2.98106	-1.40510
Н	6.65319	-3.05718	-1.70115	Н	-5.21062	-2.07637	0.09087
Н	6.90575	-1.32177	-3.46094	Н	-2.82917	-2.05812	-1.78767
Η	-1.67042	-1.22738	-0.26383	Н	-3.98113	0.03354	0.12238
0	-0.91504	-0.84342	-2.29706	С	-0.46159	1.85576	2.72287
С	0.26204	-0.38723	-2.27044	С	1.47670	2.16118	1.15432
0	0.60684	0.80616	-2.12237	Н	-1.31946	2.41133	3.11394
Н	1.07578	-1.13513	-2.40471	Н	-0.81336	0.90340	2.29390
				С	2.15653	1.20518	1.84076
3b -γ-	addition-3c			С	3.34485	0.55310	1.18258

S247

С	1.73047	0.74387	3.20406	С	2.01172	-0.90726	-1.02900
С	4.44377	0.13531	2.15737	С	1.35352	-1.97225	-0.55710
Н	-2.50711	-5.42510	0.15812	Ν	0.07647	-1.76755	0.06678
С	0.58533	1.56283	3.79577	0	-0.52074	-2.77223	0.45185
Н	2.60084	0.77210	3.87011	0	-0.36129	-0.63306	0.20444
Н	0.96965	2.50781	4.20013	Н	1.50097	0.05136	-0.95761
Н	1.85109	2.48691	0.18903	Н	1.65372	-3.01077	-0.56363
Н	0.12308	1.01658	4.62259	С	-3.92814	1.09250	-0.73094
Н	-1.45839	3.68005	1.29693	С	-4.23479	-0.38145	-1.02689
Н	5.33162	-0.18689	1.60673	Ν	-2.50371	1.33603	-0.86411
Н	4.12403	-0.69199	2.80125	С	-5.65511	-0.80858	-0.58707
Н	3.76024	1.27763	0.47000	С	-5.55092	-1.79351	0.58734
Н	4.73922	0.97286	2.79926	С	-4.87887	-3.08420	0.09850
Н	1.44914	-0.31634	3.13187	С	-3.58248	-2.70999	-0.64302
С	0.27081	3.84451	-2.62236	Ν	-3.24723	-1.28186	-0.33400
Н	0.55467	4.89719	-2.72336	С	-3.22513	-1.06421	1.14829
Н	1.18085	3.25320	-2.46773	С	-4.66878	-1.16188	1.67488
Н	-0.18929	3.51760	-3.55898	Н	-2.03744	1.01839	-1.72655
С	-0.55114	5.75399	-0.02397	С	-1.78098	2.17837	-0.09001
Н	-0.31712	6.31371	-0.93464	S	-2.38036	2.83816	1.37011
Н	-1.63587	5.79543	0.12774	Ν	-0.54269	2.41923	-0.55375
Н	-0.05462	6.24351	0.81888	Н	-0.27941	1.90991	-1.40343
С	-4.61262	-0.02804	-1.93884	С	0.41940	3.37929	-0.02935
Н	-4.23613	-0.38362	-2.90502	С	1.56785	2.65398	0.68976
Н	-5.56082	-0.53039	-1.72233	Ν	1.02350	1.87809	1.78833
Н	-4.80581	1.04475	-2.01128	С	1.58867	0.70763	2.21840
Н	-4.49305	-3.07239	2.32438	Н	-4.68683	-1.76960	2.58459
С	3.93197	-1.13510	-0.61614	Н	-5.54318	-3.63734	-0.57255
С	4.05479	-0.57746	-1.89493	Н	2.02421	1.95861	-0.03540
С	4.85991	-2.10463	-0.21981	Н	-0.10975	3.99943	0.70154
С	5.08058	-0.97462	-2.75203	Н	-2.75972	-0.09477	1.33785
Н	3.31395	0.15071	-2.22453	Н	-2.57124	-1.83952	1.55158
С	5.88654	-2.50356	-1.07492	Н	-3.67600	-2.77306	-1.72904
Н	4.78758	-2.55895	0.76529	Н	-2.72105	-3.30554	-0.33889
С	6.00184	-1.93852	-2.34430	Н	-6.54775	-2.00709	0.98292
Н	5.15229	-0.53763	-3.74462	Н	-6.19490	-1.26690	-1.42264
Н	6.59516	-3.25976	-0.74738	Н	-6.22383	0.07393	-0.27588
Н	6.79903	-2.25279	-3.01244	Н	-4.06466	-0.56937	-2.09313
Н	-1.35313	-1.46350	0.15663	Н	-4.20219	1.32432	0.30254
0	-0.59620	-1.32377	-2.28095	С	0.73674	-0.06890	3.19611
С	0.55648	-0.82415	-2.35396	С	2.82278	0.27033	1.83501
0	0.85098	0.39570	-2.36899	Н	0.26360	0.63984	3.88760
Н	1.40071	-1.54532	-2.42124	Н	-0.07798	-0.55360	2.63912
				С	3.35819	-1.02465	2.23678
3b-γ	-addition-2d			С	4.61441	-1.42572	1.94798
Geoi	netry with	88 atoms:		С	2.40198	-1.92553	2.98811

С	5.65002	-0.60316	1.22702	С	2.22106	-2.12600	0.71222
Н	-4.65836	-3.73526	0.95142	Ν	0.88310	-2.06244	1.02859
С	1.54746	-1.11213	3.96101	0	0.36569	-3.02586	1.63877
Н	2.95530	-2.71376	3.51016	0	0.19567	-1.06803	0.69699
Н	2.20138	-0.61156	4.68632	Н	2.22520	-0.29742	-0.36466
Н	3.43729	0.89157	1.18965	Н	2.68723	-3.05667	1.00338
Н	0.87401	-1.76766	4.52413	С	-3.96844	-0.02378	-0.70325
Н	0.02928	1.99393	1.97199	С	-3.67270	-1.51839	-0.83772
Н	6.44624	-1.24011	0.82864	Ν	-2.76380	0.72115	-1.02061
Н	6.12366	0.12765	1.89793	С	-4.85287	-2.40288	-0.38671
Н	4.92615	-2.41123	2.29438	С	-4.30787	-3.64359	0.33389
Н	5.23030	-0.04124	0.38333	С	-3.19259	-4.25403	-0.52620
Н	1.72843	-2.42517	2.27326	С	-1.99593	-3.28717	-0.52931
С	0.91285	4.25188	-1.18107	Ν	-2.46326	-1.94140	-0.04202
Н	1.55813	5.05750	-0.82171	С	-2.76008	-2.00707	1.42664
Н	1.47684	3.65702	-1.91125	С	-3.70721	-3.19695	1.67550
Н	0.05916	4.70128	-1.69641	Н	-2.11752	0.27659	-1.69855
С	2.64328	3.62272	1.18852	С	-2.53377	2.00360	-0.66883
Н	3.24449	4.02209	0.36537	S	-3.51808	2.82823	0.46795
Н	2.18068	4.45880	1.72691	Ν	-1.46497	2.55205	-1.26977
Н	3.31612	3.10984	1.88197	Н	-0.81572	1.90448	-1.75333
С	-4.72022	1.99483	-1.67838	С	-0.94091	3.88868	-1.03796
Н	-4.40771	1.82361	-2.71496	С	0.29094	3.79132	-0.12233
Н	-5.79833	1.81835	-1.60699	Ν	-0.11356	3.11490	1.10625
Н	-4.52848	3.04208	-1.42813	С	0.63132	2.20752	1.75165
Н	-5.04800	-0.16770	1.93787	Н	-3.15881	-4.02632	2.13554
С	3.33850	-0.91679	-1.63789	Н	-3.55695	-4.42538	-1.54522
С	3.77244	0.24432	-2.29324	Н	1.01134	3.13736	-0.63166
С	4.19898	-2.02355	-1.56408	Н	-1.72171	4.46644	-0.53337
С	5.03562	0.29928	-2.87459	Н	-3.20036	-1.04791	1.70844
Н	3.10460	1.10097	-2.35249	Н	-1.79798	-2.11631	1.92762
С	5.45972	-1.96691	-2.14457	Н	-1.56481	-3.11571	-1.51652
Н	3.89391	-2.91626	-1.02534	Н	-1.20711	-3.59365	0.16047
С	5.88111	-0.80670	-2.79924	Н	-5.10883	-4.36963	0.49693
Н	5.35991	1.20265	-3.38267	Н	-5.44963	-2.68540	-1.25921
Н	6.12390	-2.82366	-2.07619	Н	-5.50664	-1.83808	0.29042
Н	6.87080	-0.76468	-3.24539	Н	-3.39545	-1.72854	-1.87698
Н	-2.31947	-1.08942	-0.76524	Н	-4.25654	0.21292	0.32647
0	-1.43343	-1.35286	-2.36738	С	-0.06836	1.38764	2.79877
С	-0.60569	-0.60149	-2.93924	С	1.96230	1.96668	1.45265
0	-0.52470	0.64967	-2.84543	Н	-0.87560	1.97270	3.25434
Н	0.13111	-1.09581	-3.60996	Н	-0.52952	0.53294	2.27854
				С	2.65738	0.86539	2.01033
3b-γ·	-addition-TS	3d-3d		С	3.84785	0.40828	1.45694
Geor	netry with	88 atoms:		С	2.06308	0.12059	3.17989
С	2.85557	-1.09184	0.03625	С	4.66299	1.24881	0.50852

Η	-2.87849	-5.22124	-0.12229	Ν	0.75465	-1.74347	1.32612
С	0.92063	0.88419	3.84653	0	0.15142	-2.60826	2.06679
Н	2.85568	-0.09348	3.90593	0	0.04523	-0.77128	0.82508
Н	1.32632	1.74004	4.40044	Н	2.12881	-0.29074	-0.35223
Н	2.45087	2.54973	0.68082	Н	2.53138	-2.66193	1.58960
Н	0.40851	0.23982	4.56828	С	-3.58353	-0.12874	-0.91708
Н	-1.10528	3.15915	1.34108	С	-3.36447	-1.64013	-0.83021
Н	5.56921	0.72374	0.19493	Ν	-2.29924	0.51231	-1.14404
Н	4.96930	2.18854	0.98874	С	-4.65856	-2.40843	-0.49025
Н	4.38170	-0.36580	2.00666	С	-4.31012	-3.61105	0.39748
Н	4.10620	1.51512	-0.39884	С	-3.11268	-4.34170	-0.22693
Н	1.70745	-0.86070	2.83351	С	-1.87271	-3.43710	-0.10510
С	-0.60931	4.53510	-2.37960	Ν	-2.32703	-2.03201	0.18861
Н	-0.30452	5.57770	-2.25224	С	-2.86845	-1.95413	1.58419
Н	0.19959	3.99430	-2.88563	С	-3.89325	-3.08560	1.77928
Н	-1.49204	4.51399	-3.02486	Н	-1.60970	-0.06270	-1.67345
С	0.93571	5.14244	0.17836	С	-2.04010	1.81098	-0.93924
Н	1.39630	5.57147	-0.71654	S	-3.18354	2.88489	-0.23830
Н	0.18937	5.84814	0.56210	Ν	-0.80285	2.20694	-1.31171
Н	1.71475	5.02524	0.93846	Н	-0.17330	1.48219	-1.70622
С	-5.12200	0.35224	-1.63694	С	-0.41970	3.59276	-1.47987
Н	-4.86720	0.10708	-2.67451	С	0.13882	4.26306	-0.18009
Н	-6.04698	-0.16789	-1.36729	Ν	-0.31791	3.56562	1.01903
Н	-5.30513	1.42762	-1.56719	С	0.28193	2.57390	1.61927
Н	-4.49788	-2.89855	2.37064	Н	-3.45680	-3.89734	2.37215
С	4.10055	-1.38370	-0.70280	Н	-3.32368	-4.57612	-1.27655
С	4.28083	-0.81093	-1.96831	Н	1.23024	4.20705	-0.18553
С	5.09678	-2.22484	-0.18745	Н	-1.31678	4.15359	-1.76248
С	5.43146	-1.08038	-2.70749	Н	-3.31224	-0.96172	1.69754
Н	3.51005	-0.15576	-2.36986	Н	-1.99954	-2.03370	2.23977
С	6.24799	-2.48520	-0.92223	Н	-1.28399	-3.37529	-1.02240
Н	4.98028	-2.65774	0.80362	Н	-1.21764	-3.71040	0.72396
С	6.41870	-1.91426	-2.18613	Н	-5.16969	-4.28175	0.48376
Н	5.55677	-0.63361	-3.68974	Н	-5.14201	-2.73153	-1.41747
Н	7.01677	-3.13201	-0.50869	Н	-5.36360	-1.74980	0.03497
Н	7.31900	-2.11979	-2.75822	Н	-2.94838	-1.98082	-1.78372
Н	-1.68060	-1.28461	-0.20413	Н	-3.99937	0.25137	0.02304
0	-0.96850	-0.95752	-2.28758	С	-0.41015	1.88862	2.75305
С	0.20299	-0.48696	-2.24947	С	1.55425	2.06813	1.19344
0	0.53263	0.71573	-2.16639	Н	-1.23247	2.50095	3.13512
Н	1.02551	-1.23578	-2.30887	Н	-0.82182	0.95683	2.33268
				С	2.17865	1.08741	1.89370
3 b -γ-	-addition-3d			C	3.36036	0.36833	1.29501
Geor	netry with	88 atoms:		C	1.70436	0.64746	3.24774
С	2.80821	-0.77625	0.35694	C	4.30078	1.30480	0.52751
С	2.04663	-1.81709	1.11753	H	-2.92680	-5.28853	0.28970

С	0.61358	1.54104	3.83320	С	-4.61939	0.05517	-0.66751
Н	2.57320	0.60132	3.91668	С	-4.32354	1.20553	-1.64114
Н	1.05548	2.46364	4.23027	С	-4.01353	2.47547	-0.83682
Н	1.94432	2.37334	0.22993	С	-2.93375	2.14324	0.21042
Н	0.11526	1.03191	4.66266	Ν	-2.33438	0.80747	-0.12718
Н	-1.29493	3.74101	1.26780	С	-1.85942	0.80907	-1.55219
Н	5.23782	0.79211	0.29478	С	-3.08898	0.83600	-2.47675
Н	4.53586	2.19734	1.11749	Н	-1.34086	-1.55721	1.42371
Н	3.92026	-0.11174	2.10881	С	-0.36154	-2.35730	-0.15645
Н	3.86319	1.62297	-0.42581	S	-0.32356	-2.83223	-1.80156
Н	1.34443	-0.38784	3.15865	Ν	0.66946	-2.49277	0.69108
С	0.62312	3.68830	-2.58932	Н	0.52614	-2.07080	1.62392
Н	0.95812	4.72330	-2.71461	С	1.99786	-3.00769	0.38997
Н	1.49638	3.06736	-2.35696	С	2.98290	-1.84305	0.17630
Н	0.20597	3.34092	-3.53852	Ν	2.50590	-1.03422	-0.92923
С	-0.28676	5.72291	-0.09607	С	2.80464	0.28455	-1.09780
Н	0.01110	6.24915	-1.00805	Н	-2.93095	1.56773	-3.27431
Н	-1.37624	5.79822	-0.00373	Н	-4.91267	2.84301	-0.33387
Н	0.17995	6.22279	0.75777	Н	2.96213	-1.21803	1.08479
С	-4.56246	0.17078	-2.05617	Н	1.92315	-3.57887	-0.54175
Н	-4.17664	-0.23360	-2.99916	Н	-1.22856	-0.07231	-1.69753
Н	-5.54955	-0.26143	-1.86328	Н	-1.23880	1.70304	-1.65399
Н	-4.67971	1.25199	-2.16086	Н	-3.33383	2.05492	1.22323
Н	-4.76254	-2.70790	2.32724	Н	-2.11141	2.86043	0.23110
С	3.95106	-1.40177	-0.42078	Н	-5.18586	1.36987	-2.29261
С	4.06215	-1.17107	-1.79517	Н	-5.44058	0.32652	0.00376
С	4.92942	-2.17603	0.21353	Н	-4.93641	-0.82735	-1.23188
С	5.12626	-1.70639	-2.52168	Н	-3.52771	-0.22047	1.22316
Н	3.30269	-0.56733	-2.29087	Н	-2.65181	-1.77817	-1.26180
С	5.99384	-2.71018	-0.50962	C	2.01847	0.99093	-2.17770
н	4.86448	-2.36171	1.28442	C	3.64145	1.01659	-0.31111
C	6.09555	-2.47676	-1.88173	Н	1.72304	0.28317	-2.96136
н	5 19585	-1 52008	-3 59020	н	1.09210	1 35960	-1 70642
н	6 74545	-3 30899	-0.00179	C	3 77476	2 46114	-0 51698
н	6 92475	-2.89465	-2.44619	C	3 35296	3 03410	-1 66166
н	-1 46622	-1 42366	0 16634	н	-3 66473	3 26748	-1 50779
0	-0.68102	-1 40549	-2.25709	C	2 79663	2 16765	-2.76340
C	0.51262	-1.00665	-2 24617	н	3 46791	4 10381	-1 82406
0	0.91436	0.17873	-2 33462	н	3 62257	1 77547	-3 37980
н	1 29027	-1 79817	-2 15783	н	4 15758	0.56760	0 53362
11	1.27027	-1.79017	-2.13705	н	2 15020	2 74432	-3 43354
3h_v/	-addition-1			н	1 82162	-1 45245	-1 55352
Geor	netry with	75 atoms:			-3 68008	-1.7 <i>52</i> 75	0 35/10
C	_2 76163	-1 66527	-0 17877	с ц	_3 75146	_2.70500	1 44620
C	_3 34630	-0 28246	0 14260	и П	-4 69002	_2.70037	-0.06517
N	-1 44242	-0.20270	0.14209	и П	-3 26252	-2.70133	0.00017
τN	-1.44342	-1./0000	0.40701	r1	-3.20333	-3./4120	0.00920

Η	-3.23042	-0.14158	-2.95068	Н	2.31149	0.22499	1.88769
С	2.43048	-3.93066	1.52561	С	2.11959	1.97278	0.88221
Н	3.37331	-4.43169	1.29163	S	2.71416	3.13140	-0.23220
Н	2.55926	-3.36850	2.45886	Ν	0.94971	2.10181	1.52572
Н	1.66746	-4.69682	1.68938	Н	0.70228	1.31737	2.15238
С	4.41352	-2.33053	-0.06615	С	0.09879	3.28253	1.55946
Н	4.86191	-2.73563	0.84625	С	-1.17495	3.07921	0.72072
Н	4.42500	-3.10747	-0.84041	Ν	-0.79554	2.78678	-0.64919
Н	5.03765	-1.50098	-0.41154	С	-1.60910	2.12094	-1.51879
Н	-1.50761	0.66021	0.48121	Н	4.70210	-0.57614	-3.56202
С	4.38930	3.24962	0.60753	Н	5.14559	-3.70645	-1.50641
Н	5.39938	2.88374	0.83153	Н	-1.71359	2.20478	1.13135
Н	4.45677	4.31418	0.36312	Н	0.66786	4.10594	1.11545
Н	3.79877	3.13990	1.52630	Н	3.05285	0.70825	-1.60112
0	-0.46259	-0.97192	2.82155	Н	2.55847	-0.66661	-2.59970
С	-0.34535	0.30248	2.60559	Н	3.27001	-3.21869	-0.19110
С	-1.02706	1.26982	3.40443	Н	2.40250	-2.83822	-1.68979
С	0.44233	0.82916	1.53425	Н	6.44795	-1.74337	-2.25560
С	-0.88389	2.63460	3.18290	Н	6.14718	-2.03966	0.22583
Н	-1.63756	0.90258	4.22677	Н	6.31758	-0.34336	-0.22960
С	0.57841	2.20386	1.32727	Н	4.06680	-1.58112	1.15450
Н	0.99147	0.13423	0.89934	Н	4.46819	1.24079	0.05530
С	-0.07871	3.12425	2.14633	С	-0.99654	1.81300	-2.86849
Н	-1.40317	3.33393	3.83633	С	-2.91653	1.80580	-1.29668
Н	1.22578	2.55193	0.52185	Н	-1.19573	2.67427	-3.52346
Н	0.04212	4.19254	1.99091	Н	0.09299	1.72806	-2.77305
				С	-3.69193	1.07933	-2.30332
3b-γ	-addition-2a			С	-3.08172	0.48796	-3.34955
Geor	netry with	93 atoms:		Н	4.38576	-3.04530	-2.95469
С	-2.49453	-1.70480	-0.52219	С	-1.58177	0.54482	-3.49390
С	-1.49084	-0.88073	-0.19662	Н	-3.66087	-0.07226	-4.08122
Ν	-0.20270	-1.05019	-0.78848	Н	-1.29111	0.49634	-4.54918
0	0.61213	-0.14840	-0.57876	Н	-3.42020	2.09221	-0.37652
0	0.06108	-2.03468	-1.46981	Н	-1.13550	-0.34261	-3.01893
Н	-2.29779	-2.49902	-1.23948	Н	0.20181	2.76284	-0.84682
Н	-1.52228	-0.01436	0.44726	С	-3.85588	-1.57840	-0.01109
С	4.16017	0.54381	0.84123	С	-4.87930	-2.30344	-0.63863
С	4.29040	-0.89576	0.32763	С	-4.17709	-0.74243	1.07108
Ν	2.77274	0.81619	1.15952	С	-6.19721	-2.18731	-0.20771
С	5.66187	-1.21725	-0.30944	Н	-4.63230	-2.94781	-1.47920
С	5.47312	-1.57546	-1.78998	С	-5.49347	-0.63348	1.50547
С	4.60901	-2.83938	-1.90293	Н	-3.39140	-0.19956	1.58950
С	3.30259	-2.62794	-1.11000	С	-6.50638	-1.35215	0.86584
Ν	3.22454	-1.18848	-0.69869	Н	-6.98242	-2.74647	-0.70805
С	3.32508	-0.30424	-1.91014	Н	-5.73162	0.00912	2.34820
С	4,74898	-0.41159	-2.48143	Н	-7.53370	-1.26300	1.20765
С	5.04506	0.74048	2.07325	С	2.60262	-3.09773	-0.50168
-------	--------------	-----------	----------	---	----------	----------	----------
Н	4.69557	0.10728	2.89684	Ν	2.86347	-1.62259	-0.47168
Н	6.09376	0.50062	1.86888	С	3.03855	-1.10763	-1.87246
Н	4.98977	1.78394	2.39603	С	4.36148	-1.64730	-2.43994
Н	5.29534	0.52356	-2.31547	Н	2.58006	0.47535	1.76971
С	-0.22045	3.60343	3.01838	С	2.54021	1.92588	0.35985
Н	-0.75187	4.55405	3.11081	S	3.14111	2.64745	-1.07970
Н	-0.83822	2.81462	3.46646	Ν	1.48888	2.41079	1.03940
Н	0.70789	3.67382	3.59241	Н	1.20265	1.85221	1.86240
С	-2.08700	4.30818	0.78269	С	0.80781	3.66745	0.79719
Н	-2.60106	4.38300	1.74606	С	-0.56453	3.45625	0.12995
Н	-1.49924	5.22051	0.62500	Ν	-0.39156	2.64106	-1.06774
Н	-2.84460	4.25907	-0.00414	С	-1.36790	1.94504	-1.65648
Н	2.29997	-0.98353	-0.28355	Н	4.20040	-2.02557	-3.45405
0	1.03465	-0.30994	2.93403	Н	4.09628	-4.65315	-0.75227
С	-5.18161	1.01212	-2.09875	Н	-1.20151	2.88402	0.82316
Н	-5.62596	2.01486	-2.14236	Н	1.43258	4.24841	0.11096
Н	-5.66433	0.38807	-2.85753	Н	2.99592	-0.01632	-1.82595
Н	-5.42106	0.59818	-1.11082	Н	2.16090	-1.45919	-2.41807
С	0.31655	-1.34840	2.63632	Н	2.56854	-3.43114	0.53854
С	0.81639	-2.41007	1.82859	Н	1.61452	-3.23208	-0.94399
С	-1.02221	-1.50495	3.10265	Н	5.73478	-3.26228	-1.96408
С	0.04074	-3.51657	1.49809	Н	5.57733	-2.91389	0.53266
Н	1.85149	-2.34275	1.49140	Н	6.10942	-1.46705	-0.32378
С	-1.78192	-2.62262	2.78036	Н	3.77525	-1.72563	1.38830
Н	-1.42850	-0.72192	3.74097	Н	4.62391	0.57174	-0.43929
С	-1.27038	-3.63922	1.96554	С	-0.92946	1.09763	-2.82842
Н	0.46497	-4.29699	0.86781	С	-2.70906	2.03636	-1.29158
Н	-2.79840	-2.70240	3.16237	Н	-0.63542	1.79491	-3.62211
Н	-1.87421	-4.50500	1.70983	Н	-0.00945	0.56947	-2.54570
				С	-3.67770	1.15057	-1.81457
3b-γ′	-addition-TS	52a-3a		С	-3.28860	0.07032	-2.58785
Geor	netry with	93 atoms:		Н	3.35647	-4.13075	-2.26643
С	-2.74993	-1.29815	-0.85809	С	-1.99096	0.10837	-3.36287
С	-1.68897	-0.69278	-0.20142	Н	-4.06383	-0.58050	-2.99087
Ν	-0.39766	-0.87462	-0.63217	Н	-2.25046	0.39757	-4.38955
0	0.50153	-0.17053	-0.11537	Н	-3.02082	2.75268	-0.53803
0	-0.10859	-1.71280	-1.51631	Н	-1.55917	-0.89394	-3.43162
Н	-2.49392	-2.02881	-1.62154	Н	0.56743	2.47818	-1.37833
Н	-1.75085	-0.05458	0.66870	С	-4.06033	-1.47312	-0.21020
С	4.30168	0.16343	0.52402	С	-4.98175	-2.37555	-0.76221
С	4.06205	-1.34665	0.39976	С	-4.42508	-0.76455	0.94386
Ν	3.05481	0.79878	0.89255	С	-6.23228	-2.56512	-0.18157
С	5.25892	-2.14050	-0.17426	Н	-4.70775	-2.93339	-1.65550
С	4.86703	-2.76743	-1.51936	С	-5.67577	-0.95444	1.52524
С	3.73230	-3.77872	-1.30003	Н	-3.73154	-0.05982	1.39360

С	-6.58480	-1.85227	0.96559	Ν	2.99506	0.95140	0.87731
Н	-6.93105	-3.27185	-0.62044	С	5.26101	-1.95020	-0.18085
Н	-5.94056	-0.39772	2.42016	С	4.82412	-3.08679	-1.11501
Н	-7.55926	-1.99939	1.42254	С	3.70614	-3.88061	-0.42387
С	5.36925	0.44560	1.58360	С	2.46079	-2.97906	-0.33578
Н	5.02945	0.09732	2.56577	Ν	2.86596	-1.55632	-0.57506
Н	6.32283	-0.03911	1.35157	С	3.22780	-1.38563	-2.01500
Н	5.53961	1.52419	1.64392	С	4.26136	-2.46363	-2.40200
Н	5.10778	-0.84719	-2.50246	Н	2.57211	0.67635	1.79217
С	0.67153	4.41235	2.12378	С	2.39484	1.98862	0.27234
Н	0.25391	5.41251	1.98155	S	2.87284	2.59895	-1.26716
Н	0.02386	3.85907	2.81526	Ν	1.35786	2.49784	0.96232
Н	1.65559	4.51538	2.58922	Н	1.15976	2.01948	1.86471
С	-1.21696	4.80180	-0.20560	С	0.66434	3.73236	0.66699
Н	-1.61351	5.28435	0.69253	С	-0.67555	3.50293	-0.06942
Н	-0.48151	5.47204	-0.66605	Ν	-0.46911	2.53340	-1.15641
Н	-2.04010	4.67628	-0.91358	С	-1.39130	1.83428	-1.75270
Н	2.02815	-1.12103	-0.09564	Н	3.79600	-3.23955	-3.02038
0	1.41504	0.43211	3.01015	Н	4.03271	-4.19471	0.57403
С	-5.11593	1.33250	-1.41415	Н	-1.39331	3.05246	0.62900
Н	-5.58010	2.09373	-2.05497	Н	1.30886	4.32400	0.00858
Н	-5.68802	0.40663	-1.52680	Н	3.60783	-0.36867	-2.13573
Н	-5.20866	1.67482	-0.37806	Н	2.28884	-1.46499	-2.56678
С	0.43083	-0.41592	2.99285	Н	1.97312	-3.01383	0.64187
С	0.58145	-1.74657	2.50848	Н	1.70859	-3.20572	-1.09290
С	-0.86772	-0.07133	3.46224	Н	5.67317	-3.73665	-1.34489
С	-0.48096	-2.64167	2.46829	Н	5.83638	-2.33593	0.66672
Н	1.57087	-2.04923	2.16498	Н	5.91052	-1.25356	-0.72793
С	-1.91882	-0.98401	3.43933	Н	3.70981	-1.58983	1.31915
Н	-1.01123	0.93080	3.86275	Н	4.48907	0.71670	-0.52233
С	-1.74861	-2.27581	2.93438	С	-0.96622	0.95525	-2.89635
Н	-0.32123	-3.64347	2.07115	С	-2.80126	1.98165	-1.44622
Н	-2.89345	-0.68128	3.82047	Н	-0.70511	1.63366	-3.71883
Н	-2.57970	-2.97440	2.90017	Н	-0.04123	0.43385	-2.62390
				С	-3.68154	1.01208	-1.79165
3b-γ′	-addition-3a			С	-3.16344	-0.29062	-2.32363
Geor	netry with	93 atoms:		Н	3.46587	-4.78604	-0.98969
С	-2.69278	-1.23467	-1.13670	С	-2.05457	-0.03073	-3.35800
С	-1.54819	-0.65975	-0.37303	Н	-3.98302	-0.82360	-2.82130
Ν	-0.30946	-0.88856	-0.74018	Н	-2.54013	0.36962	-4.25473
0	0.64814	-0.23643	-0.15313	Н	-3.14646	2.87632	-0.93748
0	0.00598	-1.67230	-1.70424	Н	-1.58185	-0.97794	-3.62963
Н	-2.33399	-2.14142	-1.63626	Н	0.51063	2.38750	-1.44685
Н	-1.64150	-0.03498	0.50609	С	-3.87374	-1.60356	-0.25800
С	4.21758	0.30470	0.45373	С	-4.64667	-2.72186	-0.58734
С	4.00920	-1.20853	0.33379	С	-4.25948	-0.83007	0.84226

С	-5.77568	-3.06180	0.15703	Н	1.74446	-0.38040	-0.55314
Н	-4.35523	-3.33698	-1.43683	Н	1.81760	-2.59221	1.61547
С	-5.38705	-1.16533	1.59019	С	3.64704	-1.42239	-0.24466
Н	-3.67943	0.04463	1.12525	С	4.23109	-0.80116	-1.35779
С	-6.15022	-2.28207	1.25054	С	4.41484	-2.32009	0.51367
Н	-6.35720	-3.93897	-0.11327	С	5.54962	-1.07149	-1.71199
Н	-5.66600	-0.55484	2.44514	Н	3.63895	-0.10396	-1.94689
Н	-7.02541	-2.54614	1.83743	С	5.73211	-2.58790	0.16114
С	5.33504	0.60064	1.45701	Н	3.99014	-2.79824	1.39151
Н	5.06841	0.22065	2.45051	С	6.30248	-1.96656	-0.95216
Н	6.28571	0.15110	1.15343	Н	5.98916	-0.58468	-2.57755
Н	5.47522	1.68256	1.53290	Н	6.32033	-3.27751	0.75951
Н	5.06534	-2.01203	-2.99183	Н	7.33319	-2.17783	-1.22251
С	0.43696	4.48510	1.97666	С	-4.03359	0.98752	-0.71385
Н	-0.02398	5.46204	1.80956	С	-4.40813	-0.37598	-0.12165
Н	-0.20716	3.90594	2.64875	Ν	-2.66789	0.95302	-1.19902
Н	1.39582	4.64081	2.47844	С	-5.69866	-0.34975	0.73048
С	-1.20461	4.82151	-0.64044	С	-5.35518	-0.64480	2.19743
Н	-1.50026	5.50061	0.16328	С	-4.80695	-2.07502	2.30886
Н	-0.42400	5.30713	-1.23677	С	-3.68753	-2.26067	1.26648
Н	-2.07332	4.67119	-1.28635	Ν	-3.29428	-0.90986	0.74455
Н	1.98563	-0.94527	-0.37584	С	-2.96664	0.01343	1.88571
0	1.43269	0.79663	3.11218	С	-4.26330	0.33668	2.64642
С	-5.15808	1.19021	-1.62594	Н	-2.43905	0.29864	-1.98607
Н	-5.60819	1.31968	-2.61997	С	-1.77612	1.96070	-1.03864
Н	-5.62106	0.30363	-1.18200	S	-2.05584	3.28706	0.01228
Н	-5.40332	2.06761	-1.02084	Ν	-0.64341	1.81109	-1.74865
С	0.40829	-0.00629	3.13707	Н	-0.63233	0.99101	-2.37611
С	0.52469	-1.39153	2.83672	С	0.35629	2.84824	-1.97500
С	-0.89854	0.45048	3.46399	С	1.61270	2.68242	-1.09449
С	-0.57622	-2.23833	2.83179	Ν	1.21331	2.47891	0.28203
Η	1.51753	-1.76985	2.59589	С	2.02073	1.97720	1.25355
С	-1.99308	-0.41160	3.47340	Н	-4.08755	0.25085	3.72288
Η	-1.01833	1.49898	3.73250	Н	-5.59903	-2.80857	2.13183
С	-1.85357	-1.76252	3.14956	Н	2.15430	1.77799	-1.42475
Η	-0.44195	-3.28845	2.57580	Н	-0.10874	3.80286	-1.70607
Η	-2.97491	-0.02061	3.73909	Н	-2.48121	0.89677	1.46377
Н	-2.71476	-2.42448	3.13643	Н	-2.23683	-0.52396	2.49486
				Н	-4.01371	-2.84238	0.40072
3b- γ′	-addition-2b			Н	-2.78511	-2.71559	1.67536
Geor	netry with	93 atoms:		Н	-6.24807	-0.53080	2.81801
С	2.24447	-1.13529	0.05212	Н	-6.42149	-1.08010	0.35225
С	1.50765	-1.79532	0.95505	Н	-6.16423	0.63862	0.65500
Ν	0.10391	-1.52698	1.06014	Н	-4.49231	-1.10133	-0.93813
0	-0.52781	-2.18965	1.88386	Н	-4.08781	1.74941	0.06943
0	-0.41500	-0.66777	0.35544	С	1.31342	1.58734	2.53195

С	3.35258	1.70811	1.12257	С	-2.12672	-2.28569	-0.87911
Н	0.43505	2.22579	2.68594	Ν	-0.74964	-2.31865	-0.90117
Н	0.93826	0.56150	2.38891	0	-0.18390	-3.32912	-1.37974
С	4.10739	1.09992	2.21856	0	-0.07929	-1.37268	-0.42931
С	3.57382	0.99954	3.45300	Н	-2.20043	-0.40070	0.05298
Н	-4.41894	-2.24762	3.31828	Н	-2.58081	-3.19595	-1.24341
С	2.23623	1.62912	3.74828	С	-4.19259	-1.29844	0.09544
Н	4.15428	0.58009	4.27258	С	-4.59325	-0.48456	1.16244
Н	2.39486	2.68125	4.03860	С	-5.11445	-2.20887	-0.44018
Н	3.87688	1.90007	0.18993	С	-5.87789	-0.58441	1.69221
Н	1.74443	1.14319	4.59770	Н	-3.88738	0.23409	1.57494
Н	0.24048	2.65967	0.51461	С	-6.40129	-2.30125	0.08131
С	-4.99955	1.34826	-1.84294	Н	-4.83083	-2.83909	-1.27981
Н	-4.89220	0.64176	-2.67417	С	-6.78737	-1.49185	1.15182
Н	-6.04247	1.33739	-1.50924	Н	-6.16757	0.04848	2.52641
Н	-4.76896	2.35131	-2.21273	Н	-7.10600	-3.00862	-0.34691
Н	-4.57538	1.36775	2.44531	Н	-7.79026	-1.57122	1.56139
С	0.71118	2.85222	-3.46009	С	4.14954	0.39268	0.26075
Н	1.37502	3.68448	-3.70729	С	4.05882	-1.13233	0.36258
Н	1.20797	1.91632	-3.74605	Ν	2.89797	0.98262	0.70015
Н	-0.19730	2.95009	-4.06158	С	5.22573	-1.86970	-0.33872
С	2.52927	3.90344	-1.24887	С	4.69658	-2.64273	-1.55559
Н	3.06647	3.88839	-2.20241	С	3.74839	-3.75133	-1.07725
Н	1.93767	4.82526	-1.19466	С	2.74013	-3.14381	-0.08711
Н	3.26838	3.93592	-0.44464	Ν	2.77307	-1.64843	-0.23181
Н	-2.43396	-0.99796	0.17440	С	2.62135	-1.26730	-1.68001
С	5.52696	0.69443	1.91964	С	3.90115	-1.66707	-2.43291
Н	6.14904	1.59034	1.78861	Н	2.57544	0.77744	1.67616
Н	5.95697	0.10056	2.73254	С	2.39884	2.13936	0.19945
Н	5.59926	0.11883	0.99062	S	2.92458	2.79912	-1.29533
0	-1.48256	-0.50404	-3.14124	Ν	1.43429	2.69420	0.95336
С	-1.03382	-1.59326	-2.59913	Н	1.20942	2.18097	1.82730
С	-1.88218	-2.48838	-1.88185	С	0.82510	3.99995	0.74073
С	0.34052	-1.96523	-2.67484	С	-0.55088	3.88952	0.04573
С	-1.38197	-3.62055	-1.24477	Ν	-0.41663	2.98879	-1.09273
Н	-2.95189	-2.28125	-1.88377	С	-1.35753	2.14085	-1.51788
С	0.82002	-3.10990	-2.05404	Н	3.62953	-2.13671	-3.38315
Н	1.00623	-1.32300	-3.24987	Н	4.30493	-4.55503	-0.58591
С	-0.02421	-3.94251	-1.31051	Н	-1.25304	3.41693	0.74818
Н	-2.06239	-4.27517	-0.70089	Н	1.49284	4.56557	0.08207
Н	1.87900	-3.35290	-2.13346	Н	2.41497	-0.19423	-1.71667
Н	0.36225	-4.82930	-0.81668	Н	1.73915	-1.80715	-2.02751
				Н	2.99753	-3.35379	0.95381
3b-γ	'-addition-TS	2b-3b		Н	1.71077	-3.45287	-0.27480
Geor	netry with	93 atoms:		Н	5.53279	-3.06771	-2.11748
С	-2.81210	-1.16840	-0.41924	Н	5.72194	-2.55009	0.36140

S256

Η	5.97203	-1.14018	-0.66918	
Н	4.00229	-1.40692	1.42068	3b -γ'-addition-3b
Н	4.30619	0.68176	-0.78286	Geometry with 93 atoms:
С	-0.84024	0.96685	-2.30490	С -2.73691 -0.95584 -0.94884
С	-2.70093	2.24733	-1.18335	С -2.00138 -1.99736 -1.72716
Н	-0.11197	1.31610	-3.04674	N -0.69120 -1.95995 -1.85196
Н	-0.27882	0.36127	-1.57717	O -0.05332 -2.86598 -2.49658
С	-3.63061	1.24950	-1.56598	O -0.00317 -1.00136 -1.30866
С	-3.21939	0.08537	-2.20616	Н -1.98533 -0.41200 -0.36609
Н	3.22291	-4.18971	-1.93265	Н -2.48653 -2.83947 -2.20288
С	-1.91844	0.10155	-2.96280	C -3.72011 -1.58123 0.02453
Н	-3.99403	-0.57579	-2.59164	C -3.62861 -1.30903 1.39212
Н	-2.12843	0.48023	-3.97405	С -4.74984 -2.41550 -0.42644
Н	-3.05624	3.10433	-0.61850	C -4.54814 -1.85197 2.29079
Н	-1.53755	-0.92029	-3.09194	Н -2.82476 -0.67331 1.75796
Н	0.53530	2.83922	-1.43307	C -5.67039 -2.95877 0.46708
С	5.31080	0.90853	1.11337	Н -4.83592 -2.64363 -1.48764
Н	5.12714	0.69117	2.17203	C -5.57391 -2.67507 1.83059
Н	6.26679	0.45950	0.82574	Н -4.45437 -1.63460 3.35131
Н	5.39462	1.99263	0.99431	Н -6.46193 -3.60671 0.10008
Н	4.50672	-0.78326	-2.66343	Н -6.28962 -3.09958 2.52904
С	0.71343	4.70384	2.09020	C 3.89357 0.54449 0.14292
Н	0.32339	5.71875	1.97847	C 3.74690 -0.98001 0.23350
Н	0.05020	4.14853	2.76454	N 2.65111 1.13677 0.60975
Н	1.69923	4.76732	2.55946	C 5.00676 -1.78205 -0.17678
С	-1.08252	5.25770	-0.38205	C 4.70303 -2.64462 -1.40880
Н	-1.34689	5.87307	0.48281	C 3.61930 -3.67443 -1.05946
Н	-0.32813	5.78849	-0.97439	C 2.42666 -2.94567 -0.41171
Н	-1.97689	5.14325	-1.00172	N 2.60442 -1.46758 -0.61580
Н	1.95877	-1.26608	0.27912	C 2.79357 -1.19191 -2.08348
С	-5.08160	1.48217	-1.25164	C 4.17388 -1.71589 -2.50980
Н	-5.48420	2.20694	-1.97209	Н 2.39127 0.92395 1.59713
Н	-5.67237	0.56573	-1.33070	C 2.07876 2.26638 0.15048
Н	-5.21990	1.90681	-0.25175	S 2.44904 2.96044 -1.37292
0	1.49102	0.81691	2.99846	N 1.14975 2.77056 0.99176
С	0.78845	-0.27293	2.87089	Н 1.03381 2.23534 1.87683
С	1.40118	-1.55725	2.81616	C 0.52412 4.07747 0.88674
С	-0.63182	-0.25828	2.77511	C -0.91336 3.96292 0.34043
С	0.65536	-2.72322	2.64760	N -0.85502 3.14037 -0.87612
Н	2.47895	-1.60885	2.96839	C -1.77385 2.32791 -1.31609
С	-1.36185	-1.42915	2.61984	Н 4.08009 -2.25227 -3.45911
Н	-1.13377	0.70655	2.84109	Н 4.01311 -4.42586 -0.36826
С	-0.73337	-2.67613	2.53685	Н -1.51669 3.41253 1.07206
Н	1.16461	-3.68583	2.62065	Н 1.11211 4.67004 0.17694
Н	-2.44733	-1.38079	2.56240	Н 2.66180 -0.11856 -2.23847
Н	-1.31501	-3.58371	2.40306	Н 1.96451 -1.70869 -2.57044

Н	2.36413	-3.10383	0.66802	I	H	0.15737	5.77068	2.20470
Н	1.47025	-3.19919	-0.87531	ł	Η	-0.05921	4.18301	2.97785
Н	5.61591	-3.14821	-1.73971	I	Η	1.56930	4.78985	2.63044
Н	5.34190	-2.40486	0.65917	(С	-1.53686	5.32203	0.03362
Η	5.82464	-1.09743	-0.41913	I	Η	-1.71531	5.88169	0.95529
Η	3.44964	-1.22358	1.26165	I	Η	-0.87442	5.90991	-0.61159
Η	4.05899	0.85509	-0.89325	I	Η	-2.49610	5.20564	-0.47988
С	-1.40508	1.42938	-2.45603	I	Η	1.70798	-1.02498	-0.34615
С	-3.08904	2.27068	-0.72704	(С	-5.33628	1.24059	-0.48662
Η	-0.92026	2.02501	-3.23808	I	Η	-6.03906	1.26330	-1.33011
Η	-0.64720	0.72846	-2.06579	Ι	Η	-5.53848	0.31471	0.06317
С	-3.94007	1.25242	-1.01923	I	Η	-5.53725	2.09574	0.16376
С	-3.47468	0.10049	-1.86991	(О	1.44158	0.93232	3.05685
Η	3.29483	-4.19727	-1.96577	(С	0.97581	-0.28372	2.96140
С	-2.59214	0.63984	-2.99989	(С	1.19291	-1.25567	3.97743
Н	-4.35008	-0.39660	-2.30615	(С	0.25806	-0.72615	1.81332
Η	-3.20839	1.27806	-3.64519	(С	0.71991	-2.55749	3.85077
Η	-3.40269	3.06162	-0.05252	I	Η	1.74062	-0.94650	4.86507
Η	-2.22253	-0.18963	-3.60961	(С	-0.20250	-2.03608	1.69484
Η	0.05850	3.12875	-1.35721	I	Η	0.06460	-0.01206	1.01217
С	5.04515	1.04323	1.02108	(С	0.01652	-2.96790	2.71177
Η	4.89097	0.73603	2.06234	I	Η	0.90137	-3.26856	4.65510
Η	6.01829	0.67369	0.68736	I	Η	-0.74015	-2.32804	0.79306
Η	5.07114	2.13632	0.98755	I	Η	-0.35263	-3.98527	2.61958
Н	4.87695	-0.88941	-2.66672					
С	0.54260	4.74899	2.25689					