Electronic Supplementary Information

Palladium-catalyzed C8–H arylation and annulation of 1-naphthalene

carboxylic acid derivatives with aryl iodides

Min Zhang,^{*a*} Zhangyi Fu,^{*a*} Anping Luo,^{*a*} Xingwen Pu,^{*a*} Menglei Wang,^{*a*} Ying Huang,^{*b*} Yudong Yang^{**a*} and Jingsong You^{*a*}

 ^a Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.
 ^b State Key Laboratory of Environment-friendly Energy Materials, School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, P. R. China.

E-mail: yangyudong@scu.edu.cn

Table of Contents

I. General InformationS3
II. Preliminary Investigations on the Regioselectivity of C–H ArylationS3
III. Optimization of the Reaction ConditionsS5
IV. Scale-up Synthesis
V. Mechanistic Study
VI. General ProcedureS12
VII. Spectral Data
VIII. Single Crystal X-ray Structures of 4g and 5g S38
IX. Reference
X. NMR Spectra

I. General Information

NMR spectra were obtained on an Agilent 400-MR DD2 spectrometer. The ¹H NMR (400 MHz) chemical shifts were measured relative to CDCl₃ and DMSO-*d*₆ as the internal reference (CDCl₃: δ = 7.26 ppm; DMSO-*d*₆: δ = 2.50 ppm). The ¹³C NMR (100 MHz) chemical shifts were given using CDCl₃ or DMSO-*d*₆ as the internal standard (CDCl₃: δ = 77.16 ppm; DMSO-*d*₆: δ = 39.52 ppm). High-resolution mass spectra (HRMS) were obtained with a Shimadzu LCMS-IT-TOF (ESI). Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. Pd cataltst and Ag salts were purchased from Shanxi Kaida Chemical Engineering (China) CO., Ltd. 1-Naphthioc acids, arylboronic acids and aryl iodides were prepared according to literature procedures.¹⁻³ Solvents were dried with an innovative technology solvent purification system (model no.: PS-MD-5). All syntheses and manipulations were carried out under N₂ unless noted. Flash column chromatographic purification of products was accomplished using forced-flow chromatography on silica gel (200–300 mesh).

II. Preliminary Investigations on the Regioselectivity of C–H Arylation

2.1 Palladium-Catalyzed C7-Selective Arylation of 1-Naphthamide with Phenylboronic Acid in the Presence of NFSI

A Schlenk tube with a magnetic stir bar was charged with *N*-(*tert*-butyl)-1naphthamide **1a** (22.7 mg, 0.1 mmol), Pd(OAc)₂ (2.2 mg, 10 mol%), phenylboronic acid (15.3 mg, 1.25 equiv), *N*-fluoro-*N*-(phenylsulfonyl)benzenesulfonamide (NFSI, 39.4 mg, 0.125 mmol, 1.25 equiv) and 1,2-dichloroethane (DCE, 1 mL) under N₂. The resulting mixture was stirred at 80 °C for 12 h and then diluted with 3 mL of dichloromethane (DCM). The mixture was filtered through a celite pad and washed with 10-20 mL of DCM. The filtrate was concentrated and the residue was purified by column chromatography on silica gel (petroleum ether (PE)/tetrahydrofuran (THF) = 20:1 to petroleum ether/ethyl acetate (EA) = 10:1, v/v) to provide **4a'** and **4a**.

2.2 Palladium-Catalyzed C–H Arylation of 1-Naphthamide with Phenylboronic Acid in the Presence of NFSI and Triflic Acid

A Schlenk tube with a magnetic stir bar was charged with *N*-(*tert*-butyl)-1naphthamide **1a** (22.7 mg, 0.1 mmol), Pd(OAc)₂ (2.2 mg, 10 mol%), phenylboronic acid (15.3 mg, 1.25 equiv), *N*-fluoro-*N*-(phenylsulfonyl)benzenesulfonamide (NFSI, 39.4 mg, 1.25 equiv). The tube was evacuated and refilled with N₂ by three times. Then DCE (1 mL) and triflic acid (HOTf, 18 μ L, 2.0 equiv) were added under N₂. The resulting mixture was stirred at 80 °C for 12 h and then diluted with 3 mL of DCM. The mixture was filtered through a celite pad and washed with 10-20 mL of DCM. The filtrate was concentrated and the residue was purified by column chromatography on silica gel (PE/EA = 20:1 to PE/EA= 10:1, v/v) to provide **4a'** and **4a**.

2.3 Palladium-Catalyzed C8-Selective Arylation of 1-Naphthamide with Iodobenzene in the Presence of Ag₂O

A Schlenk tube with a magnetic stir bar was charged with *N*-(*tert*-butyl)-1naphthamide **1a** (22.7 mg, 0.1 mmol), Pd(OAc)₂ (2.2 mg, 10 mol%), Ag₂O (23.0 mg, 1.0 equiv). The tube was evacuated and refilled with N₂ by three times. Then iodobenzene **2a** (17 μ L, 1.5 equiv), DCE (1 mL) and HOTf (18 μ L, 2.0 equiv) were added under N₂. The reaction mixture was stirred at 80 °C for 24 h. The mixture was filtered through a celite pad and washed with 10-20 mL of DCM. The filtrate was concentrated and the residue was purified by column chromatography on silica gel (PE/THF = 20:1 to PE/EA = 10:1, v/v) to provide **4a** and **4a'**.

III. Optimization of the Reaction Conditions

3.1 General Procedure for C8-Arylation and Annulation of 1-Naphthioc Acid Derivative 1 or 4 with Iodobenzene 2a

A Schlenk tube with a magnetic stir bar was charged with *N*-(*tert*-Butyl)-1naphthamide **1a** or 1-naphthioc acid **4a**, catalyst and additive. The tube was evacuated and refilled with N₂ by three times. Then iodobenzene, solvent (1 mL), HOTf (35μ L, 0.4 mmol) was added under N₂. The reaction mixture was stirred at relevant temperature for 24 h. The mixture was filtered through a celite pad and washed with 10-20 mL of DCM. The filtrate was concentrated and the residue was purified by column chromatography on silica gel to provide corresponding 8-phenyl-1-naphthamide **4a** or benzanthrone **5a**.

Table S1. Optimization of C8-Arylation of 1-Naphthamide 1a.^a

Entry	[Pd]	Ag salt	Solvent	Temp.	Yield of	Yield of
				(°C)	4a [%] ^b	5a [%] ^b
1	Pd(OAc) ₂	Ag ₂ O	DCE	80	51	
2	$Pd(PPh_3)_2Cl_2$	Ag ₂ O	DCE	80	30	
3	Pd(acac) ₂	Ag ₂ O	DCE	80	44	
4	PdCl ₂	Ag ₂ O	DCE	80	59	
5	PdCl ₂	Ag_2CO_3	DCE	80	48	
6 ^{<i>c</i>}	PdCl ₂	AgOAc	DCE	80	31	
7 ^d	PdCl ₂	AgTFA	DCE	80	56	
8	PdCl ₂	Ag ₂ O	DCM	80	61	
9	PdCl ₂	Ag ₂ O	THF	80	68	
10	PdCl ₂	Ag ₂ O	DMF	80		
11	PdCl ₂	Ag ₂ O	toluene	80	26	
12	PdCl ₂	Ag ₂ O	HFIP	80	21	35
13	PdCl ₂	Ag ₂ O	THF	60	74	
14	PdCl ₂	Ag ₂ O	THF	100	60	12
15 ^e	PdCl ₂	Ag ₂ O	THF	60		
16 ^f	PdCl ₂	Ag ₂ O	THF	60		
17	PdCl ₂		THF	60		

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), [Pd] (10 mol%), Ag salt (0.2 mmol), and HOTf (2.0 equiv) in solvent (1 mL) at T °C under N₂ for 24 h. ^{*b*} Isolated yields. ^{*c*} AgOAc (0.4 mmol). ^{*d*} AgTFA (0.4 mmol). ^{*e*} without HOTf. ^{*f*} CH₃COOH instead of HOTf. AgOAc = CH₃COOAg. AgTFA = CF₃COOAg. THF = tetrahydrofuran. DMF = *N*,*N*-dimethylformamide. HFIP = 1,1,1,3,3,3-hexafluoro-2-propanol.

Table S2. Optimization of the Dosages of Iodobenzene 2a and Ag₂O for C8-Arylation of 1-Naphthamide.^{*a*}

H O N Ia	IH ^t Bu + 2a	PdCl ₂ (10 Ag ₂ 0 <u>HOTf (2.0</u> THF, 60	mol%) D equiv) • °C	O NH ⁴ Bu
Entr	ry 2a (mmol) Ag ₂ O (mm	ol) Yield of 4a	ı [%] ^b
1	0.3	0.2	74	
2	0.35	0.2	66	
3	0.3	0.18	73	
4	0.26	0.18	78	
5	0.26	0.16	82	
6	0.24	0.16	76	

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2a** (X mmol), PdCl₂ (10 mol%), Ag₂O (Y mmol), and HOTf (2.0 equiv) in THF (1 mL) at 60 °C under N₂ for 24 h. ^{*b*} Isolated yields. THF = tetrahydrofuran.

Table S3. Optimization of *peri*-Benzocyclization of 1-Naphthioc Acid^a

H O Ja	_OH + [2	PdCi Ag ₂ / HOT HI	₂ (10 mol%) O (Y equiv) f (2.0 equiv) FIP, T °C	5a
Entry	Ag ₂ O	iodobenzene	Temp. (°C)	Yield of 5a [%] ^b
1	1.0 equiv	1.5 equiv	80	68
2	1.0 equiv	1.5 equiv	60	65
3	1.0 equiv	1.5 equiv	100	73
4	1.0 equiv	1.3 equiv	100	79
5	0.8 equiv	1.3 equiv	100	83
6	0.8 equiv	1.2 equiv	100	81
7	0.7 equiv	1.2 equiv	100	84

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2a** (X equiv), PdCl₂ (10 mol%), Ag₂O (Y equiv), and HOTf (2.0 equiv) in HFIP (1 mL) at T °C under N₂ for 24 h. ^{*b*} Isolated yields. HFIP = 1,1,1,3,3,3-hexafluoro-2-propanol.

IV. Scale-up Synthesis

A Schlenk tube with a magnetic stir bar was charged with *N*-(*tert*-Butyl)-4-(*p*-tolyl)-1-naphthamide **1g** (1.0 mmol, 317 mg), PdCl₂ (5.4 mg, 3 mol%) and Ag₂O (185 mg, 0.8 equiv). The tube was evacuated and refilled with N₂ by three times. Then iodobenzene **2a** (145 µL, 1.3 equiv), THF (4.0 mL), HOTf (175 µL, 2.0 equiv) was added under N₂. The reaction mixture was stirred at at 60 °C for 24 h. The mixture was filtered through a celite pad and washed with 40-60 mL of DCM. The filtrate was concentrated and the residue was purified by column chromatography on silica gel to provide a white solid **4g** in 76% yield (298 mg, eluent: DCM/EA = 50:1)

A Schlenk tube with a magnetic stir bar was charged with 4-bromo-1-naphthioc acid **4b** (1.0 mmol, 251 mg), PdCl₂ (3 mol%, 5.4 mg) and Ag₂O (161 mg, 0.7 equiv). The tube was evacuated and refilled with N₂ by three times. Then iodobenzene **2a** (131 µL, 1.2 equiv), HFIP (4.0 mL), HOTf (175 µL, 2.0 equiv) was added under N₂. The reaction mixture was stirred at relevant temperature for 24 h. The mixture was filtered through a celite pad and washed with 40-60 mL of DCM. The filtrate was concentrated and the residue was purified by column chromatography on silica gel to provide a yellow solid **5b** in 88% yield (270 mg, eluent: PE/EA = 40:1)

V. Mechanistic Study

5.1 H/D Exchange Experiment

A Schlenk tube with a magnetic stir bar was charged with *N*-(*tert*-Butyl)-1naphthamide **1a** (0.2 mmol, 45.4 mg), PdCl₂ (3.6 mg, 10 mol%) and Ag₂O (37 mg, 0.8 equiv). The tube was evacuated and refilled with N₂ by three times. Then THF (4.0 mL), D₂O (40 μ L, 20 equiv), HOTf (35 μ L, 2.0 equiv) was added under N₂. The reaction mixture was stirred at 60 °C for 1.5 h. The mixture was filtered through a celite pad and washed with 10-20 mL of DCM. To remove Ag salts, the filtrate was concentrated and the residue was purified by flash column chromatography on silica gel to provide a yellow solid for ¹H NMR analysis.

5.2 Competitive Experiment

A Schlenk tube with a magnetic stir bar was charged with 1-naphthamide derivative **1b** (0.1 mmol, 25.7 mg), **1d** (0.1 mmol, 28.5 mg), PdCl₂ (3.6 mg) and Ag₂O (37.0 mg). The tube was evacuated and refilled with N₂ by three times. Then THF (1.0 mL), iodobenzene **2a** (0.26 mmol, 29 μ L), HOTf (0.4 mmol, 35 μ L) was added under N₂. The reaction mixture was stirred at 60 °C for 0.5 h. The mixture was filtered through a celite pad and washed with 10-20 mL of DCM. To remove Ag salts, the filtrate was concentrated and the residue was purified by flash column chromatography on silica gel to provide yellow oil for ¹H NMR analysis using dibromomethane (0.2 mmol, 14 μ L) as internal standard.

5.3 Kinetic Isotope Experiment

Deuterated *N*-(*tert*-Butyl)-1-naphthamide [D₇]-**1a** was prepared according to the literature.¹

A Schlenk tube with a magnetic stir bar was charged with *N*-(*tert*-Butyl)-1naphthamide **1a** (0.1 mmol, 22.7 mg), [D₇]-**1a** (0.1 mmol, 23.4 mg), PdCl₂ (3.6 mg) and Ag₂O (37.0 mg). The tube was evacuated and refilled with N₂ by three times. Then THF (1.0 mL), iodobenzene **2a** (0.26 mmol, 29 μ L), HOTf (0.40 mmol, 35 μ L) was added under N₂. The reaction mixture was stirred at 60 °C for 0.5 h. The mixture was filtered through a celite pad and washed with 10-20 mL of DCM. To remove Ag salts, the filtrate was concentrated and the the residue was purified by flash column chromatography on silica gel to provide yellow oil for ¹H NMR analysis using dibromomethane (0.2 mmol, 14 μ L) as internal standard.

VI. General Procedure

6.1 General Procedure A

A Schlenk tube with a magnetic stir bar was charged with 1-naphthamide (0.2 mmol) derivatives **1**, PdCl₂ (10 mol%, 3.6 mg) and Ag₂O (0.8 equiv, 37 mg). The tube was evacuated and refilled with N₂ by three times. Then iodoarenes **2** (1.3 equiv), THF (1 mL), HOTf (0.4 mmol, 35 μ L) was added under N₂. The reaction mixture was stirred at relevant temperature for 24 h. The mixture was filtered through a celite pad and washed with 10-20 mL of DCM. The filtrate was concentrated and the residue was purified by column chromatography on silica gel to provide corresponding 8-arylated 1-naphthamides **4**.

6.2 General Procedure B

A Schlenk tube with a magnetic stir bar was charged with 1-naphthioc acid derivatives **3** (0.2 mmol), PdCl₂ (10 mol%, 3.6 mg) and Ag₂O (0.7 equiv, 32 mg). The tube was evacuated and refilled with N₂ by three times. Then iodoarenes **2** (1.2 equiv), THF (1 mL), HOTf (0.4 mmol, 35 μ L) was added under N₂. The reaction mixture was stirred at relevant temperature for 24 h. The mixture was filtered through a celite pad

and washed with 10-20 mL of DCM. The filtrate was concentrated and the residue was purified by column chromatography on silica gel to provide corresponding benzanthrones **5**.

VII. Spectral Data

N-(tert-Butyl)-8-phenyl-1-naphthamide (4a): The reaction was performed following the general procedure A at 60 °C, 4a was obtained in 82% yield as a white solid (49.5 mg, eluent: DCM/ EA = 50:1).

¹H NMR (400 MHz, CDCl₃) δ = 7.94 (dd, J = 8.4, 1.2 Hz, 1H), 7.86 (dd, J = 8.0, 0.8 Hz, 1H), 7. 68 (dd, J = 7.2, 1.6 Hz, 1H), 7.37-7.57 (m, 7H), 7.33 (tt, J = 7.2, 1.6 Hz, 1H), 5.17 (bs, 1H), 0.98 (s, 9H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ = 168.9, 142.9, 139.7, 136.8, 135.1, 131.2, 130.7, 129.0, 128.7, 128.5, 128.2, 127.3, 127.2, 125.7, 125.1, 51.3, 28.2 ppm.

HRMS (ESI) Calcd for C₂₁H₂₂NO⁺ [M+H]⁺ 304.1696 , found: 304.1695.

The analytical data matched those reported in the literature.¹

N-(*tert*-Butyl)-4-methoxy-8-phenyl-1-naphthamide (4b): The reaction was performed following the general procedure A at 60 °C, 4b was obtained in 78% yield as a white solid (52.0 mg, eluent: DCM/ EA = 20:1).

¹H NMR (400 MHz, CDCl₃) δ = 8.35 (d, *J* = 8.4 Hz, 1H), 7.66 (d, *J* = 7.6 Hz, 1H), 7.55 (t, *J* = 8.4 Hz, 1H), 7.44-7.48 (m, 3H), 7.40 (t, *J* = 7.6 Hz, 2H), 7.30-7.33 (m, 1H), 6.82 (d, *J* = 8.0 Hz, 1H), 5.13 (bs, 1H), 4.05 (s, 3H), 0.96 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ = 168.9, 157.0, 143.4, 139.4, 131.9, 129.6, 129.3, 129.0, 128.7, 128.5, 127.3, 127.2, 125.4, 121.9, 102.9, 56.0, 51.2, 28.4 ppm. HRMS (ESI) Calcd for C₂₂H₂₄NO₂⁺ [M+H]⁺ 334.1802 , found: 334.1801.

N-(*tert*-Butyl)-4-methyl-8-phenyl-1-naphthamide (4c): The reaction was performed following the general procedure A at 60 °C, 4c was obtained in 79% yield as a white solid (50.1 mg, eluent: DCM/ EA = 40:1).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.04 (d, *J* = 8.4 Hz, 1H), 7.57-7.61 (m, 2H), 7.44-7.47 (m, 3H), 7.30-7.41 (m, 4H), 5.16 (bs, 1H), 2.75 (s, 3H), 0.98 (s, 9H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ = 169.1, 143.4, 140.3, 137.0, 135.5, 134.4, 131.0, 129.2, 128.6, 128.5, 127.7, 127.2, 126.1, 125.8, 124.0, 51.3, 28.4, 20.5 ppm. **HRMS** (ESI) Calcd for C₂₂H₂₄NO⁺ [M+H]⁺ 318.1852 , found: 318.1851.

Methyl 4-(*tert*-butylcarbamoyl)-5-phenyl-1-naphthoate (4d): The reaction was performed following the general procedure A at 80°C, 4d was obtained in 62% yield as a white solid (44.8 mg, eluent: DCM/ EA = 16:1).

¹H NMR (400 MHz, CDCl₃) ppm. δ = 8.82 (d, J = 8.8 Hz, 1H), 8.07 (d, J = 7.6 Hz, 1H), 7.63-7.67 (m, 2H), 7.49 (d, J = 7.2 Hz, 1H), 7.32-7.42 (m, 5H), 5.18 (bs, 1H), 4.03 (s, 3H), 0.97 (s, 9H) ppm.

¹³**C NMR** (100 MHz, CDCl₃) δ = 168.2, 168.0, 142.7, 141.1, 140.2, 133.0, 131.6, 129.8, 129.4, 128.9, 128.7, 127.9, 127.6, 127.4, 127.3, 125.4, 52.7, 51.6, 28.3 ppm. **HRMS** (ESI) Calcd for C₂₃H₂₄NO₃⁺ [M+H]⁺ 362.1751 , found: 362.1750.

4-Bromo-*N***-(tert-butyl)-8-phenyl-1-naphthamide (4e):** The reaction was performed following the general procedure A at 60 °C, **4c** was obtained in 76% yield as a white solid (58.4 mg, eluent: DCM/ EA = 50:1).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.36 (d, *J* = 8.4 Hz, 1H), 7.81 (d, *J* = 7.6 Hz, 1H), 7.65 (t, *J* = 8.0 Hz, 1H), 7.49-7.67 (m, 2H), 7.32-7.43 (m, 5H), 5.16 (bs, 1H), 0.98 (s, 9H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ = 168.2, 142.5, 140.4, 137.1, 133.5, 132.2, 129.5, 129.30, 128.8, 128.74, 128.67, 127.6, 127.4, 127.2, 125.6, 51.6, 28.3 ppm. **HRMS** (ESI) Calcd for C₂₁H₂₁⁷⁹BrNO⁺ [M+H]⁺ 382.0801, found: 382.0803; Calcd for C₂₁H₂₁⁸¹BrNO⁺ [M+H]⁺ 384.0781, found: 384.0785.

N-(*tert*-Butyl)-4-fluoro-8-phenyl-1-naphthamide (4f): The reaction was performed following the general procedure A at 60 °C, 4f was obtained in 70% yield as a white solid (45.0 mg, eluent: DCM/ EA = 45:1).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.16 (d, *J* = 8.4 Hz, 1H), 7.61 (t, *J* = 7.2 Hz, 2H), 7.50 (d, *J* = 7.2 Hz, 1H), 7.43-7.31 (m, 5H), 7.16 (t, *J* = 8.8 Hz, 1H), 5.19 (bs, 1H), 0.98 (s, 9H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ = 168.3, 159.8 (d, *J* = 253 Hz), 142.6, 139.9 (d, *J* = 3 Hz), 133.3, (d, *J* = 4 Hz), 132.3, 129.1, 129.0 (d, *J* = 4 Hz), 128.9, 128.8 (d, *J* = 10 Hz), 127.5, 126.3 (d, *J* = 1 Hz), 125.4 (d, *J* = 15 Hz), 120.4 (d, *J* = 7 Hz), 108.7 (d, *J* = 21 Hz), 51.5, 28.3 ppm.

HRMS (ESI) Calcd for C₂₁H₂₁FNO⁺ [M+H]⁺ 322.1602, found: 322.1602.

N-(*tert*-Butyl)-8-phenyl-4-(*p*-tolyl)-1-naphthamide (4g): The reaction was performed following the general procedure A at 60 °C, 4g was obtained in 79% yield as a white solid (61.8 mg, eluent: DCM/ EA = 50:1).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.92 (dd, *J* = 7.6 Hz, 2.4 Hz, 1H), 7.70 (d, *J* = 7.2 Hz, 1H), 7.32-7.50 (m, 12H), 5.25 (bs, 1H), 2.48 (s, 3H), 1.01 (s, 9H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ = 169.0, 143.3, 142.8, 140.0, 137.8, 137.5, 136.3, 133.7, 131.1, 130.0, 129.3, 129.2, 128.6, 128.2, 127.9, 127.3, 126.4, 126.3, 125.8, 51.4, 28.4, 21.4 ppm.

HRMS (ESI) Calcd for C₂₈H₂₈NO⁺ [M+H]⁺ 394.2165, found: 394.2160.

N-(tert-Butyl)-2-methyl-8-phenyl-1-naphthamide (4h): The reaction was performed

following the general procedure A at 60 °C, **4h** was obtained in 70% yield as a white solid (44.3 mg, eluent: DCM/ EA = 50:1).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.83 (d, *J* = 8.4 Hz, 1H), 7.80 (d, *J* = 8.0 Hz, 1H), 7.29-7.51 (m, 8H), 4.99 (bs, 1H), 2.50 (s, 3H), 0.95 (s, 9H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ = 168.8, 142.2, 139.7, 135.4, 134.7, 133.3, 132.2, 131.9, 129.5, 129.3, 128.9, 128.2, 127.5, 127.4, 124.7, 51.5, 28.5, 20.6 ppm.

HRMS (ESI): calcd for C₂₂H₂₄NO⁺ [M+H]⁺ 318.1852, found 318.1854.

N-(*tert*-Butyl)-2-methoxy-8-phenyl-1-naphthamide (4i): The reaction was performed following the general procedure A at 60 °C, 4i was obtained in 92% yield as a white solid (61.3 mg, eluent: DCM/ EA = 16:1).

¹**H NMR** (400 MHz, DMSO-*d*₆): δ = 8.02 (d, *J* = 9.2 Hz, 1H), 7.88 (d, *J* = 8.0 Hz, 1H), 7.49 (d, *J* = 9.2 Hz, 1H), 7.28-7.39 (m, 7H), 7.09 (d, *J* = 6.8 Hz, 1H), 3.83 (s, 3H), 0.91 (s, 9H) ppm.

¹³**C NMR** (100 MHz, DMSO) δ = 165.3, 155.1, 142.0, 139.0, 131.2, 130.5, 130.4, 129.6, 128.2, 128.0, 127.1, 126.6, 124.1, 122.9, 114.6, 56.9, 50.3, 28.3 ppm.

HRMS (ESI) Calcd for $C_{22}H_{23}NO_2Na^+[M+Na]^+$ 356.1621 , found: 356.1623.

N-(*tert*-Butyl)-5,8-diphenyl-1-naphthamide (4j): The reaction was performed following the general procedure A at 60 °C, 4j was obtained in 79% yield as a white

solid (60.1 mg, eluent: DCM/ EA = 40:1).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.00 (d, *J* = 8.4 Hz, 1H), 7.69 (d, *J* = 6.8 Hz, 1H), 7.40-7.54 (m, 12H), 7.33-7.36 (m, 1H), 5.25 (bs, 1H), 1.00 (s, 9H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ = 169.0, 143.1, 140.7, 140.2, 139.3, 137.2, 133.5, 130.7, 130.3, 129.2, 128.9, 128.73, 128.66, 128.5, 127.8, 127.6, 127.4, 127.1, 125.2, 51.4, 28.4 ppm.

HRMS (ESI) Calcd for C₂₇H₂₆NO⁺ [M+H]⁺ 380.2009 , found: 380.2006.

N-(*tert*-Butyl)-6-phenyl-1,2-dihydroacenaphthylene-5-carboxamide (4k): The reaction was performed following the general procedure A at 60 °C, 4k was obtained in 69% yield as a white solid (45.6 mg, eluent: DCM/ EA = 30:1). ¹H NMR (400 MHz, CDCl₃) δ = 7.69 (d, *J* = 6.8 Hz, 1H), 7.47 (d, *J* = 7.2 Hz, 2H), 7.43-7.37 (m, 4H), 7.33 (t, *J* = 7.2 Hz, 2H), 5.12 (bs, 1H), 3.45 (s, 4H), 0.96 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ = 169.0, 148.8, 146.1, 142.8, 140.5, 135.5, 132.9, 132.5, 130.8, 128.8, 128.7, 127.2, 125.6, 119.9, 119.2, 51.3, 30.5, 30.1, 28.3 ppm. HRMS (ESI) Calcd for C₂₃H₂₄NO⁺ [M+H]⁺ 330.1852, found: 330.1852.

N-(*tert*-Butyl)-8-phenylphenanthrene-9-carboxamide (4I): The reaction was performed following the general procedure A at 60 °C, 4I was obtained in 82% yield as a white solid (58.0 mg, eluent: DCM/ EA = 40:1).

¹H NMR (400 MHz, CDCl₃) δ = 8.73 (d, J = 8.4 Hz, 1H), 8.69 (d, J = 8.4 Hz, 1H), 7.98 (s, 1H), 7.92 (d, J = 8.0 Hz, 1H), 7.69-7.75 (m, 2H), 7.64 (t, J = 7.2 Hz, 1H), 7.57 (d, J = 7.2 Hz, 1H), 7.48 (d, J = 7.2 Hz, 2H), 7.42 (t, J = 7.6 Hz, 2H), 7.34 (t, J = 7.2 Hz, 1H), 5.29 (bs, 1H), 1.01 (s, 9H) ppm.

¹³**C NMR** (100 MHz, CDCl₃) δ = 168.7, 143.2, 140.8, 135.2, 132.5, 131.4, 131.2, 130.7, 130.2, 129.2, 128.7, 128.1, 127.40, 127.37, 126.7, 126.0, 123.0, 122.3, 51.4, 28.4. ppm. **HRMS** (ESI) Calcd for C₂₅H₂₃NONa⁺ [M+Na]⁺ 376.1672, found: 376.1669.

8-(4-Bromophenyl)-*N***-(***tert***-butyl)-1-naphthamide (4m):** The reaction was performed following the general procedure A at 80 °C, **4m** was obtained in 68% yield as a white solid (52.0 mg, eluent: DCM/ EA = 80:1).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.94 (d, *J* = 8.0 Hz, 1H), 7.87 (d, *J* = 8.0 Hz, 1H), 7.62 (d, *J* = 7.2 Hz, 1H), 7.56-7.47 (m, 4H), 7.39 (d, *J* = 7.2 Hz, 1H), 7.31 (d, *J* = 7.2 Hz, 2H), 5.27 (bs, 1H), 1.06 (s, 9H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ = 169.0, 141.9, 138.7, 136.8, 135.2, 131.6, 131.0, 130.9, 128.8, 128.7, 127.4, 125.9, 125.3, 121.5, 51.6, 28.4. ppm.

HRMS (ESI) Calcd for $C_{21}H_{21}^{79}BrNO^+$ [M+H]⁺ 382.0801, found: 382.0802; Calcd for $C_{21}H_{21}^{81}BrNO^+$ [M+H]⁺ 384.0781, found: 384.0779.

8-(4-Methoxyphenyl)-*N*-(*tert*-butyl)-1-naphthamide (4n): The reaction was performed following the general procedure A at 80 °C, 4n was obtained in 72% yield as a white solid (48.1 mg, eluent: DCM/ EA = 20:1).

¹H NMR (400 MHz, CDCl₃) δ = 7.92 (d, J = 8.4 Hz, 1H), 7.84 (d, J = 7.2 Hz, 1H), 7.66 (d, J = 7.2 Hz, 1H), 7.53 (t, J = 7.6 Hz, 1H), 7.48 (t, J = 7.6 Hz, 1H), 7.42 (dd, J = 7.2 Hz, 1.2Hz, 1H), 7.37 (d, J = 8.4 Hz, 2H), 6.95 (d, J = 8.8 Hz, 2H), 5.15 (bs, 1H), 3.84 (s, 3H), 1.02 (s, 9H) ppm.

¹³**C NMR** (100 MHz, CDCl₃) δ = 169.2, 159.3, 139.4, 137.1, 135.6, 135.3, 131.0, 130.7, 130.2, 128.8, 127.9, 127.6, 125.9, 125.2, 114.2, 55.5, 51.4, 28.4 ppm. **HRMS** (ESI) Calcd for C₂₂H₂₄NO₂⁺ [M+H]⁺ 334.1802 , found: 334.1802.

8-(4-Nitrophenyl)-*N*-(*tert*-butyl)-**1**-naphthamide (40): The reaction was performed following the general procedure A at 80 °C, **40** was obtained in 78% yield as a white solid (53.9 mg, eluent: DCM/ EA = 20:1).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.26 (d, *J* = 8.8 Hz, 2H), 7.99 (d, *J* = 7.6 Hz, 1H), 7.94 (d, *J* = 8.0 Hz, 1H), 7.64 (d, *J* = 7.2 Hz 1H), 7.60-7.56 (m, 3H), 7.52 (t, *J* = 7.6 Hz, 1H), 7.41 (d, *J* = 7.2 Hz, 1H), 5.45 (bs, 1H), 1.03 (s, 9H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ = 168.9, 150.0, 146.9, 137.8, 136.3, 135.3, 131.3, 131.2, 129.8, 129.6, 128.9, 127.3, 125.9, 125.5, 123.8, 51.7, 28.4 ppm.

HRMS (ESI) Calcd for $C_{21}H_{21}N_2O_3^+$ [M+H]⁺ 349.1547 , found: 349.1547.

8-(4-Acetylphenyl)-*N*-(*tert*-butyl)-**1**-naphthamide (**4**p): The reaction was performed following the general procedure A at 80 °C, **4p** was obtained in 77% yield as a white solid (53.0 mg, eluent: DCM/ EA = 12:1).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.99 (d, J = 8.8 Hz, 2H), 7.96 (d, J = 8.4 Hz, 1H), 7.90 (d, J = 8.0 Hz, 1H), 7.65 (d, J = 6.8 Hz 1H), 7.59-7.48 (m, 4H), 7.43 (d, J = 6.8 Hz, 1H), 5.32 (bs, 1H), 2.62 (s, 3H), 0.98 (s, 9H) ppm.

¹³**C NMR** (100 MHz, CDCl₃) δ = 198.1, 168.9, 148.0, 138.7, 136.6, 135.8, 135.2, 131.2, 131.1, 129.3, 129.1, 128.9, 128.7, 127.3, 125.9, 125.4, 51.6, 28.3, 26.9 ppm. **HRMS** (ESI) Calcd for C₂₃H₂₄NO₂⁺ [M+H]⁺ 346.1802, found: 346.1802.

Methyl 4-(8-(*tert*-butylcarbamoyl)naphthalen-1-yl)benzoate (4q): The reaction was performed following the general procedure A at 80 °C, 4q was obtained in 83% yield as a white solid (59.9 mg, eluent: DCM/ EA = 15:1).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.07 (d, *J* = 8.4 Hz, 2H), 7.96 (dd, *J* = 8.4 Hz, 1.6 Hz, 1H), 7.90 (dd, *J* = 8.0 Hz, 1.6 Hz, 1H), 7.65 (dd, *J* = 7.2 Hz, 1.6 Hz, 1H), 7.58-7.48 (m, 4H), 7.42 (dd, *J* = 7.2 Hz, 1.6 Hz, 1H), 5.29 (bs, 1H), 3.94 (s, 3H), 0.98 (s, 9H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ = 168.9, 167.2, 147.8, 138.9, 136.7, 135.3, 131.2, 131.0, 129.9, 129.1, 129.0, 128.9, 128.8, 127.4, 125.9, 125.4, 52.2, 51.6, 28.3 ppm. **HRMS** (ESI) Calcd for C₂₂H₂₄NO₃⁺ [M+H]⁺ 362.1751 , found: 362.1751.

N-(*tert*-Butyl)-8-(4-fluorophenyl)-1-naphthamide (4r): The reaction was performed following the general procedure A at 80 °C, 4r was obtained in 71% yield as a white solid (45.5 mg, eluent: DCM/ EA = 50:1).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.94 (d, *J* = 8.0 Hz, 1H), 7.87 (d, *J* = 8.0 Hz, 1H), 7.63 (d, *J* = 6.8 Hz, 1H), 7.55 (t, *J* = 7.6 Hz, 1H), 7.49 (t, *J* = 8.0 Hz, 1H), 7.42-7.38 (m, 3H), 7.09 (t, *J* = 8.4 Hz, 2H), 5.23 (bs, 1H), 1.05 (s, 9H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ = 169.1, 162.5 (d, J = 245 Hz), 139.0 (d, J = 4 Hz), 138.8, 136.9, 135.2, 131.2, 130.9, 130.7, 128.8, 128.5, 127.6, 125.9, 125.2, 115.4 (d, J = 21 Hz), 51.5, 28.4 ppm.

HRMS (ESI) Calcd for C₂₁H₂₁FNO⁺ [M+H]⁺ 322.1602, found: 322.1600.

N-(*tert*-Butyl)-8-(4-(trifluoromethyl)phenyl)-1-naphthamide (4s): The reaction was performed following the general procedure A at 80 °C, 4s was obtained in 62 % yield as a white solid (46.3 mg, eluent: DCM/ EA = 50:1).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.97 (d, *J* = 8.0 Hz, 1H), 7.91 (d, *J* = 8.0 Hz, 1H), 7.67-7.62 (m, 3H), 7.59-7.48 (m, 4H), 7.40 (d, *J* = 7.2 Hz, 1H), 5.34 (bs, 1H), 1.01 (s, 9H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ = 168.9, 146.7, 138.5, 136.6, 135.2, 131.3, 131.1, 129.4, 129.1, 128.8, 127.4, 125.9, 125.4 (q, J = 3 Hz), 125.3, 124.6 (q, J = 277 Hz), 51.6, 28.3 ppm.

HRMS (ESI) Calcd for C₂₂H₂₁F₃NO⁺ [M+H]⁺ 372.1570, found: 372.1561.

N-(*tert*-Butyl)-8-(4-formylphenyl)-1-naphthamide (4t): The reaction was performed following the general procedure A at 80 °C, 4s was obtained in 61 % yield as a white solid (41.0 mg, eluent: DCM/ EA = 15:1).

¹H NMR (400 MHz, CDCl₃) δ = 10.04 (s, 1H), 7.97 (d, J = 8.4 Hz, 1H), 7.93-7.89 (m, 3H),
7.66 (d, J = 7.2 Hz, 1H), 7.62-7.55 (m, 3H), 7.51 (t, J = 7.6 Hz, 1H), 7.43 (d, J = 7.2 Hz,
1H), 5.36 (bs, 1H), 0.98 (s, 9H) ppm.

¹³**C NMR** (100 MHz, CDCl₃) δ = 192.1, 168.8, 149.4, 138.4, 136.4, 135.1, 135.0, 131.1, 131.0, 129.9, 129.6, 129.1, 128.8, 127.1, 125.8, 125.3, 51.5, 28.2 ppm. **HRMS** (ESI) Calcd for C₂₂H₂₁NO₂Na⁺ [M+Na]⁺ 354.1465, found: 354.1467.

N-(*tert*-Butyl)-8-(3-chlorophenyl)-1-naphthamide (4u): The reaction was performed following the general procedure A at 80 °C, 4u was obtained in 85% yield as a white solid (57.6 mg, eluent: DCM/ EA = 50:1).

¹H NMR (400 MHz, CDCl₃) δ = 7.94 (d, J = 8.0 Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.62 (d, J = 6.8 Hz, 1H), 7.54 (t, J = 7.6 Hz, 1H), 7.48 (t, J = 7.6 Hz, 1H), 7.42-7.27 (m, 5H), 5.39 (bs, 1H), 1.08 (s, 9H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ = 168.9, 144.8, 138.5, 136.7, 135.2, 131.1, 131.0, 130.0, 128.8, 128.7, 127.5, 127.3, 125.9, 125.2, 51.6, 28.4 ppm.

HRMS (ESI) Calcd for $C_{21}H_{21}NO^{35}Cl^+$ [M+H]⁺ 338.1306, found: 338.1301, Calcd for $C_{21}H_{21}NO^{37}Cl^+$ [M+H]⁺ 340.1277, found: 340.1284.

N-(*tert*-Butyl)-8-(3,4-dichlorophenyl)-1-naphthamide (4v): The reaction was performed following the general procedure A at 80 °C, 4v was obtained in 71% yield as a white solid (53.0 mg, eluent: DCM/ EA = 100:1).

¹**H NMR** (400 MHz, CDCl₃) *δ* = 7.94 (d, *J* = 8.0 Hz, 1H), 7.89 (d, *J* = 8.0 Hz, 1H), 7.59-7.46 (m, 4H), 7.40-7.34 (m, 3H), 5.50 (bs, 1H), 1.12 (s, 9H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ = 169.0, 142.9, 137.5, 135.2, 131.3, 131.1, 130.8, 130.6, 129.0, 128.8, 128.6, 127.6, 125.9, 125.3, 124.5, 51.8, 28.3 ppm.

HRMS (ESI) Calcd for C₂₁H₁₉NO³⁵Cl₂Na⁺ [M+Na]⁺ 394.0736, found: 394.0734, Calcd for C₂₁H₁₉NO³⁵Cl³⁷ClNa⁺ [M+Na]⁺ 396.0706, found: 396.0704, Calcd for C₂₁H₁₉NO³⁷Cl₂Na⁺ [M+Na]⁺ 398.0677, found: 398.0676.

N-(*tert*-Butyl)-8-(3-methoxyphenyl)-1-naphthamide (4w): The reaction was performed following the general procedure A at 80 °C, 4w was obtained in 90% yield as a white solid (60.0 mg, eluent: DCM/ EA = 30:1).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.95 (d, *J* = 8.0 Hz, 1H), 7.87 (d, *J* = 8.0 Hz, 1H), 7.68 (d, *J* = 7.2 Hz, 1H), 7.57-7.47 (m, 3H), 7.33 (t, *J* = 8.0 Hz, 1H), 7.09 (d, *J* = 7.6 Hz, 1H), 6.97 (s, 1H), 6.89 (dd, *J* = 8.4 Hz, 1.6 Hz, 1H), 5.17 (bs, 1H), 3.84 (s, 3H), 1.02 (s, 9H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ = 169.1, 159.4, 144.3, 139.6, 137.0, 135.2, 131.2, 130.9, 129.7, 129.0, 128.5, 127.3, 125.9, 125.3, 114.6, 55.4, 51.4, 28.3 ppm. **HRMS** (ESI) Calcd for C₂₂H₂₄NO₂⁺ [M+H]⁺ 334.1802 , found: 334.1803.

N-(*tert*-Butyl)-8-(*9H*-fluoren-2-yl)-1-naphthamide (4x): The reaction was performed following the general procedure A at 100 °C, 4x was obtained in 66% yield as a white solid (51.4 mg, eluent: DCM/ EA = 80:1).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.96 (d, *J* = 8.0 Hz, 1H), 7.88 (dd, *J* = 8.0 Hz, 1.6 Hz, 1H), 7.85-7.80 (m, 2H), 7.71 (d, *J* = 6.8 Hz, 1H), 7.62 (s, 1H), 7.59-7.50 (m, 5H), 7.39 (t, *J* = 7.2 Hz, 1H), 7.32 (t, *J* = 7.2 Hz, 1H), 5.17 (bs, 1H), 3.94 (dd, *J* = 32.0 Hz, 20.8 Hz, 2H), 0.87 (s, 9H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ = 169.1, 143.6, 143.4, 141.6, 141.1, 140.0, 137.1, 135.3, 131.2, 130.8, 128.9, 128.2, 127.5, 126.8, 126.7, 125.9, 125.3, 125.1, 120.2, 120.0, 51.4, 37.1, 28.2 ppm.

HRMS (ESI) Calcd for C₂₈H₂₆NO⁺[M+H]⁺: 392.2009, found: 392.2008.

N-(*tert*-Butyl)-8-(*o*-tolyl)-1-naphthamide (4y): The reaction was performed following the general procedure A at 80 °C, 4y was obtained in 74% yield as a white solid (47.0 mg, eluent: DCM/ EA = 80:1).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.94 (dd, *J* = 7.6, 2.0 Hz, 1H), 7.86 (d, *J* = 8.0 Hz, 1H), 7.52 (t, *J* = 7.6 Hz, 1H), 7.48-7.42 (m, 2H), 7.28-7.14 (m, 5H), 5.26 (bs, 1H), 2.15 (s, 3H), 1.05 (s, 9H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ = 169.3, 141.9, 139.3, 137.5, 134.9, 130.9, 130.7, 130.3, 128.3, 128.2, 127.9, 127.6, 125.7, 125.3, 124.8, 51.4, 28.6, 20.7 ppm.

HRMS (ESI): calcd for C₂₂H₂₄NO⁺ [M+H]⁺ 318.1852, found 318.1850.

N-(*tert*-Butyl)-[1,1'-binaphthalene]-8-carboxamide (4z): The reaction was performed following the general procedure A at 80 °C, 4z was obtained in 65% yield as a white solid (46.0 mg, eluent: DCM/ EA = 80:1).

¹H NMR (400 MHz, CDCl₃) δ = 7.99 (dd, J = 6.8, 2.8 Hz, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.90 (d, J = 8.4 Hz, 1H), 7.86 (d, J = 8.4 Hz, 1H), 7.62-7.43 (m, 8H), 7.32 (t, J 7.6 Hz, 1H), 4.81 (bs, 1H), 0.62 (s, 9H) ppm.

¹³**C NMR** (100 MHz, CDCl₃) δ = 169.3, 137.6, 135.0, 134.2, 132.8, 132.0, 130.7, 128.9, 128.7, 128.6, 128.3, 127.9, 126.2, 125.9, 125.8, 125.7, 125.6, 125.1, 50.9, 28.0 ppm. **HRMS** (ESI): calcd for C₂₅H₂₄NO⁺ [M+H]⁺ 354.1852, found 354.1848.

N-(*tert*-Butyl)-8-(thiophen-2-yl)-1-naphthamide (4aa): The reaction was performed following the general procedure A at 80 °C, 4aa was obtained in 52% yield as a grey solid (32.3 mg, eluent: DCM/ EA = 40:1).

¹H NMR (400 MHz, CDCl₃) δ = 7.92 (d, J = 8.0 Hz, 1H), 7.86 (d, J = 8.4 Hz, 1H), 7.72 (d, J = 7.2 Hz, 1H), 7.61 (dd, J = 7.2 Hz, 1.2 Hz, 1H), 7.54-7.48 (m, 2H), 7.31 (dd, J = 5.6 Hz, 1.2 Hz, 1H), 7.08-7.03(m, 2H), 5.19 (bs, 1H), 1.11 (s, 9H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ = 169.0, 143.8, 136.9, 135.3, 132.1, 131.7, 130.7, 129.4, 128.9, 128.0, 127.9, 125.8, 125.5, 125.2, 51.5, 28.6 ppm.

HRMS (ESI) Calcd for C₁₉H₂₀NOS⁺[M+H]⁺: 310.1260, found: 310.1261.

7H-Benzo[*de*]anthracen-7-one (5a): The reaction was performed following the general procedure B at 100 °C, 5a was obtained in 84% yield as a yellow solid (38.9 mg, eluent: PE/EA = 40:1). Methyl 1-naphthoate instead of 1-naphthoic acid, 5a was

obtained in 76% yield. **1a** instead of 1-naphthoic acid, **5a** was obtained in 62% yield. **¹H NMR** (400 MHz, CDCl₃) δ = 8.77 (d, *J* = 6.8 Hz, 1H), 8.51 (d, *J* = 8.0 Hz, 1H), 8.46 (d, *J* = 7.2 Hz, 1H), 8.34 (d, *J* = 8.4 Hz, 1H), 8.22 (d, *J* = 8.0Hz, 1H), 8.00 (d, *J* = 8.0 Hz, 1H), 7.80-7.65 (m, 3H), 7.56 (t, *J* = 7.6, 1H) ppm. **¹³C NMR** (100 MHz, CDCl₃) δ = 184.0, 136.3, 135.3, 133.5, 133.1, 131.3, 130.4, 130.0, 128.7, 128.4, 128.3, 128.0, 127.0, 126.74, 126.70, 124.3, 123.2 ppm.

HRMS (ESI): calcd for C₁₇H₁₀ONa⁺ [M+Na]⁺ 253.0624, found 253.0622.

The analytical data matched those reported in the literature.⁴

4-Bromo-7H-benzo[*de*]anthracen-7-one (5b): The reaction was performed following the general procedure B at 100 °C, **5b** was obtained in 93% yield as a yellow solid (58.2 mg, eluent: PE/EA = 40:1).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.49 (d, *J* = 7.6 Hz, 1H), 8.45-8.42 (m, 2H), 8.34 (d, *J* = 8.4 Hz, 1H), 8.26 (d, *J* = 8.0 Hz, 1H), 8.02 (d, *J* = 7.6 Hz, 1H), 7.75-7.68 (m, 2H), 7.54 (t, *J* = 7.2, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ = 183.4, 135.9, 133.8, 131.9, 131.6, 131.2, 130.8, 129.9, 129.5, 128.9, 128.7, 128.2, 128.1, 127.8, 127.4, 125.0, 123.3 ppm.

HRMS (ESI): Calcd for $C_{17}H_{10}^{79}BrO^+$ [M+H]⁺ 308.9910, found: 308.9900, Calcd for $C_{17}H_{10}^{81}BrO^+$ [M+H]⁺310.9889, found: 310.9889.

The analytical data matched those reported in the literature.⁴

4-Fluoro-7H-benzo[de]anthracen-7-one (5c): The reaction was performed following

the general procedure B at 100 °C, **5c** was obtained in 82% yield as a yellow solid (40.2 mg, eluent: PE/EA = 40:1).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.73 (dd, *J* = 8.0 Hz, 5.6 Hz, 1H), 8.50-8.46 (m, 2H), 8.31 (d, *J* = 8.4 Hz, 1H), 8.23 (d, *J* = 8.4 Hz, 1H), 7.76-7.69 (m, 2H), 7.56 (t, *J* = 8.0 Hz, 1H), 7.44-7.38 (m, 1H) ppm.

¹³**C NMR** (100 MHz, CDCl₃) δ = 182.8, 163.4 (d, *J* = 260 Hz), 136.0, 133.5, 131.5 (d, *J* = 11 Hz), 131.2, 129.6 (d, *J* = 5 Hz), 128.8, 128.3, 127.1 (d, *J* = 2 Hz), 127.0 (d, *J* = 2 Hz), 125.2 (d, *J* = 4 Hz), 125.0, 123.2, 123.1, 129.9 (d, *J* = 5 Hz), 111.5 (d, *J* = 21 Hz) ppm. HRMS (ESI): calcd for C₁₇H₁₀FO⁺ [M+H]⁺ 249.0710, found 249.0703. The analytical data matched those reported in the literature.⁴

4-Methoxy-7H-benzo[*de*]anthracen-7-one (5d): The reaction was performed following the general procedure B at 60 °C, 5d was obtained in 56% yield as a yellow solid (29.0 mg, eluent: PE/EA = 20:1).

¹H NMR (400 MHz, CDCl₃) δ = 8.78 (d, J = 8.4 Hz, 1H), 8.53-8.48 (m, 2H), 8.42 (d, J = 8.4 Hz, 1H), 8.36 (d, J = 8.0 Hz, 1H), 7.75-7.70 (m, 1H), 7.67 (t, J = 8.0, 1H), 7.55 (t, J = 7.6, 1H), 7.12 (d, J = 8.4, 1H), 4.14 (s, 3H) ppm.

¹³**C NMR** (100 MHz, CDCl₃) δ = 183.0, 161.7, 136.4, 133.0, 132.6, 131.5, 129.2, 128.3, 128.1, 126.7, 125.7, 124.7, 124.6, 124.5, 123.1, 122.1, 105.7 ppm. **HRMS** (ESI): calcd for C₁₈H₁₃O₂⁺ [M+H]⁺ 261.0910, found 261.0907.

The analytical data matched those reported in the literature.⁴

9-Fluoro-7H-benzo[de]anthracen-7-one (5e): The reaction was performed following the general procedure B at 60 °C, **5e** was obtained in 83% yield as a yellow solid (41.1 mg, eluent: PE/EA = 50:1).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.76 (d, *J* = 7.6 Hz, 1H), 8.37 (d, *J* = 7.6 Hz, 1H), 8.31 (dd, *J* = 8.8 Hz, 4.8 Hz, 1H), 8.23 (d, *J* = 8.0 Hz, 1H), 8.13 (dd, *J* = 9.2 Hz, 3.2 Hz, 1H), 8.00 (d, *J* = 8.0 Hz, 1H), 7.78 (t, *J* = 7.6 Hz, 1H), 7.68 (t, *J* = 8.0 Hz, 1H), 7.43 (td, *J* = 8.8 Hz, 2.8 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ = 183.0, 162.8 (d, J = 248 Hz), 135.7, 133.2 (d, J = 6 Hz), 133.1, 132.7 (d, J = 3 Hz), 130.33, 130.32 (d, J = 1 Hz), 128.3, 127.6, 126.83, 126.76, 126.3, 125.6 (d, J = 8 Hz), 124.3 (d, J = 1 Hz), 121.2 (d, J = 23 Hz), 113.8 (d, J = 22 Hz) ppm.

HRMS (ESI): calcd for C₁₇H₁₀FO⁺ [M+H]⁺ 249.0710, found 249.0708.

The analytical data matched those reported in the literature.⁴

9-Bromo-7H-benzo[*de*]anthracen-7-one (5f): The reaction was performed following the general procedure B at 100 °C, 5f was obtained in 81% yield as a yellow solid (49.8 mg, eluent: PE/EA = 40:1).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.75 (dd, *J* = 7.2 Hz, 1.2 Hz, 1H), 8.59 (d, *J* = 2.4 Hz, 1H), 8.40 (d, *J* = 7.6 Hz, 1H), 8.24 (dd, *J* = 8.4 Hz, 1.2 Hz, 1H), 8.17 (d, *J* = 8.4 Hz, 1H), 8.03 (d, *J* = 8.0 Hz, 1H), 7.83-7.76 (m, 2H), 7.68 (t, *J* = 8.0, 1H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ = 182.7, 136.3, 135.7, 135.1, 133.1, 132.6, 131.0, 130.8, 130.3, 128.3, 127.8, 126.9, 126.8, 126.1, 125.1, 124.6, 122.9 ppm. **HRMS** (ESI): calcd for C₁₇H₁₀⁷⁹BrO⁺ [M+H]⁺ 308.9910, found: 308.9911, calcd for

C₁₇H₁₀⁸¹BrO⁺ [M+H]⁺310.9889, found: 310.9877.

The analytical data matched those reported in the literature.⁴

9-Iodo-7H-benzo[*de*]anthracen-7-one (5g): The reaction was performed following the general procedure B at 100 °C, 5g was obtained in 46% yield as a yellow solid (32.8 mg, eluent: PE/EA = 50:1).

¹H NMR (400 MHz, CDCl₃) δ = 8.76 (s, 1H), 8.71 (d, J = 7.2 Hz, 1H), 8.36 (d, J = 7.6 Hz, 1H), 8.21 (d, J = 8.0 Hz, 1H), 8.02-7.95 (m, 3H), 7.77 (t, J = 8.0 Hz, 1H), 7.67 (t, J = 8.0, 1H) ppm.

¹³**C NMR** (100 MHz, CDCl₃) δ = 182.6, 142.0, 137.1, 135.6, 135.5, 133.1, 132.4, 130.9, 130.3, 128.2, 127.8, 126.9, 126.7, 126.1, 124.9, 124.5, 94.2 ppm. **HRMS** (ESI): calcd for C₁₇H₁₀IO⁺ [M+H]⁺ 356.9771, found 356.9773.

9-Methyl-*7H***-benzo**[*de*]**anthracen-7-one (5h):** The reaction was performed following the general procedure B at 100 °C, **5h** was obtained in 75% yield as a yellow solid (36.6 mg, eluent: PE/EA = 50:1).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.76 (d, J = 7.2 Hz, 1H), 8.41 (d, J = 7.6 Hz, 1H), 8.30 (s,

1H), 8.24-8.20 (m, 2H), 7.98 (d, J = 8.0 Hz, 1H), 7.77 (t, J = 8.0 Hz, 1H), 7.67 (t, J = 8.0, 1H), 7.55 (d, J = 8.0 Hz, 1H), 2.51 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) $\delta = 184.2$, 138.5, 135.2, 134.7, 133.8, 133.1, 131.1, 129.9, 128.8, 128.2, 127.8, 127.1, 126.69, 126.66, 123.9, 123.2, 21.4 ppm. HRMS (ESI): calcd for C₁₈H₁₂ONa⁺ [M+Na]⁺ 267.0780, found 267.0781. The analytical data matched those reported in the literature.⁴

9-(tert-Butyl)-7H-benzo[de]anthracen-7-one (5i): The reaction was performed following the general procedure B at 60 °C, **5i** was obtained in 70% yield as a yellow solid (40.3 mg, eluent: PE/EA = 50:1).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.77 (d, J = 7.2 Hz, 1H), 8.54 (d, J = 2.4 Hz, 1H), 8.43 (d, J = 7.6 Hz, 1H), 8.28 (d, J = 7.6 Hz, 1H), 8.21 (t, J = 8.0 Hz, 1H), 7.98 (t, J = 8.0 Hz, 1H), 7.82-7.75 (m, 2H), 7.68 (t, J = 8.0 Hz, 1H), 1.44 (s, 9H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ = 184.4, 151.7, 135.2, 133.9, 133.1, 130.9, 129.9, 128.9, 127.9, 127.1, 126.71, 126.68, 124.6, 124.0, 123.2, 35.1, 31.4 ppm.

HRMS (ESI): calcd for C₂₁H₁₉O⁺ [M+H]⁺ 287.1430, found 287.1429.

The analytical data matched those reported in the literature.⁴

9-(Methoxy)-7H-benzo[de]anthracen-7-one (5j): The reaction using 1-iodo-4-methoxybenzene (0.2 mmol) and 1-naphthioc acid (0.3 mmol) was performed

following the general procedure B at 60 °C, **5j** was obtained in 54% yield as a yellow solid (28.2 mg, eluent: PE/EA = 25:1).

¹H NMR (400 MHz, CDCl₃) δ = 8.78 (dd, *J* = 7.6 Hz, 1.6 Hz, 1H), 8.37 (d, *J* = 7.2 Hz, 1H), 8.27 (d, *J* = 8.8 Hz, 1H), 8.23 (d, *J* = 8.0 Hz, 1H), 7.98-7.95 (m, 2H), 7.79 (t, *J* = 8.0 Hz, 1H), 7.68 (t, *J* = 8.0 Hz, 1H), 7.33 (dd, *J* = 8.8 Hz, 2.8 Hz, 1H), 3.99 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ = 183.9, 159.9, 135.5, 133.1, 132.6, 130.1, 129.8, 129.5, 128.6, 127.3, 127.1, 126.8, 126.7, 125.0, 123.6, 122.5, 109.3, 55.8 ppm. HRMS (ESI): calcd for C₁₈H₁₃O₂⁺ [M+H]⁺ 261.0910, found 261.0901. The analytical data matched those reported in the literature.⁴

COOMe

Methyl 7-oxo-7H-benzo[*de*]**anthracene-9-carboxylate (5k)**: The reaction was performed following the general procedure B at 100 °C, **5k** was obtained in 74% yield as a yellow solid (43.0 mg, eluent: PE/EA = 10:1).

¹H NMR (400 MHz, CDCl₃) δ = 9.09 (s, 1H), 8.75 (dd, J = 7.6 Hz, 1.6 Hz, 1H), 8.46 (d, J = 7.6 Hz, 1H), 8.37-8.31 (m, 2H), 8.23 (dd, J = 8.0 Hz, 1.2 Hz, 1H), 8.04 (d, J = 7.6 Hz, 1H), 7.78 (t, J = 7.6 Hz, 1H), 7.69 (t, J = 8.0 Hz, 1H), 4.00 (s, 3H) ppm.

¹³**C NMR** (100 MHz, CDCl₃) δ = 183.2, 166.5, 139.9, 135.5, 133.7, 133.1, 131.5, 131.1, 130.4, 129.9, 129.8, 128.4, 128.3, 126.9, 126.7, 126.0, 125.5, 123.5, 52.5 ppm. **HRMS** (ESI): calcd for C₁₉H₁₃O₃⁺ [M+H]⁺ 289.0859, found 289.0860.

The analytical data matched those reported in the literature.⁴

9-(Trifluoromethyl)-7H-benzo[de]anthracen-7-one (5I): The reaction was performed following the general procedure B at 80 °C, **5I** was obtained in 78% yield as a yellow solid (46.5 mg, eluent: PE/EA = 50:1).

¹H NMR (400 MHz, CDCl₃) δ = 8.73-8.70 (m, 2H), 8.41 (d, J = 7.6 Hz, 1H), 8.36 (d, J = 8.4 Hz, 1H), 8.22 (d, J = 8.0 Hz, 1H), 8.02 (d, J = 8.4 Hz, 1H), 7.90 (dd, J = 8.4 Hz, 1.6 Hz, 1H), 7.77 (t, J = 8.0 Hz, 1H), 7.69 (t, J = 8.0 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ = 182.7, 139.0, 135.8, 133.0, 131.6, 131.1, 130.5, 130.4, 130.1, 129.4 (q, J = 3 Hz), 128.11, 128.08, 127.0, 126.7, 125.5 (q, J = 4 Hz), 125.4, 124.0 (q, J = 275 Hz), 123.9 ppm.

HRMS (ESI): calcd for C₁₈H₁₀F₃O⁺ [M+H]⁺ 299.0678, found 299.0675.

The analytical data matched those reported in the literature.⁴

11-Methyl-*7H***-benzo**[*de*]**anthracen-7-one (5m):** The reaction was performed following the general procedure B at 100 °C, **5m** was obtained in 76% yield as a yellow solid (36.9 mg, eluent: PE/EA = 50:1).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.73 (dd, *J* = 7.2 Hz, 1.6 Hz, 1H), 8.53 (d, *J* = 8.4 Hz, 1H), 8.48 (d, *J* = 7.6 Hz, 1H), 8.22 (d, *J* = 7.6 Hz, 1H), 7.98 (d, *J* = 8.0 Hz, 1H), 7.77 (t, *J* = 8.0 Hz, 1H), 7.67 (t, *J* = 8.0, 1H), 7.62 (d, *J* = 7.2 Hz, 1H), 7.45 (t, *J* = 7.6, 1H), 2.96 (s, 3H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ = 184.5, 138.4, 136.1, 136.0, 135.4, 133.08, 133.06, 129.7, 129.5, 129.4, 128.9, 128.4, 128.3, 127.6, 127.0, 126.5, 126.1, 26.6 ppm.
HRMS (ESI): calcd for C₁₈H₁₂ONa⁺ [M+Na]⁺ 267.0780, found 267.0780.

The analytical data matched those reported in the literature.⁴

9,11-Dimethyl-*7H***-benzo***[de]***anthracen-7-one (5n):** The reaction was performed following the general procedure B at 100 °C, **5n** was obtained in 66% yield as a yellow solid (34.4 mg, eluent: PE/EA = 50:1).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.72 (dd, *J* = 7.2 Hz, 1.2 Hz, 1H), 8.48 (d, *J* = 7.6 Hz, 1H), 8.27 (s, 1H), 8.20 (d, *J* = 8.0 Hz, 1H), 7.94 (d, *J* = 8.0 Hz, 1H), 7.75 (t, *J* = 7.6 Hz, 1H), 7.64 (t, *J* = 8.0, 1H), 7.41 (s, 1H), 2.91 (s, 3H), 2.46 (s, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ = 184.7, 139.5, 137.5, 135.9, 135.4, 133.5, 133.0, 132.9, 129.4, 129.2, 129.0, 128.6, 128.5, 128.4, 127.1, 126.3, 126.2, 26.5, 21.1 ppm. **HRMS** (ESI): calcd for C₁₉H₁₅O⁺ [M+H]⁺ 259.1117, found 259.1120.

The analytical data matched those reported in the literature.⁴

11-Chloro-7H-benzo[*de*]anthracen-7-one (5o): The reaction was performed following the general procedure B at 100 °C, **50** was obtained in 67% yield as a yellow solid (35.4 mg, eluent: PE/EA = 50:1).

¹**H NMR** (400 MHz, CDCl₃) δ = 9.65 (dd, *J* = 8.8 Hz, 1.2 Hz, 1H), 8.75 (dd, *J* = 7.2 Hz, 1.2 Hz, 1H), 8.56 (dd, *J* = 7.6 Hz, 1.6 Hz, 1H), 8.26 (dd, *J* = 8.0 Hz, 1.2 Hz, 1H), 8.04 (d, *J* = 8.0 Hz, 1H), 7.81 (dd, *J* = 8.0 Hz, 1.6 Hz, 1H), 7.78 (t, *J* = 7.6 Hz, 1H), 7.71 (t, *J* = 8.0, 1H), 7.45 (t, *J* = 8.0, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ = 183.3, 137.6, 136.0, 134.4, 133.8, 133.0, 131.9, 130.9, 130.1, 129.9, 128.7, 128.2, 127.8, 127.7, 126.5, 126.3, 125.7 ppm.

HRMS (ESI): calcd for $C_{17}H_{10}^{35}ClO^+$ [M+H]⁺ 265.0415, found 265.0419, calcd for $C_{17}H_{10}^{37}ClO^+$ [M+H]⁺ 267.0835, found: 267.0835.

The analytical data matched those reported in the literature.⁵

11-Phenyl-*7H***-benzo***[de]***anthracen-7-one (5p):** The reaction was performed following the general procedure B at 100 °C, **5p** was obtained in 72% yield as a yellow solid (44.0 mg, eluent: PE/EA = 50:1).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.77 (dd, *J* = 7.2 Hz, 1.2 Hz, 1H), 8.61 (dd, *J* = 6.8 Hz, 2.4 Hz, 1H), 8.19 (dd, *J* = 8.0 Hz, 1.2 Hz, 1H), 7.83 (d, *J* = 8.0 Hz, 1H), 7.77 (t, *J* = 7.6 Hz, 1H), 7.63-7.54 (m, 3H), 7.50-7.42 (m, 3H), 7.41-7.38 (m, 2H), 7.17 (t, *J* = 8.0 Hz, 1H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ = 184.1, 144.2, 141.2, 137.6, 135.6, 134.9, 133.1, 133.0, 131.0, 129.8, 129.7, 129.4, 129.0, 128.8, 128.3, 127.9, 127.6, 127.5, 126.7, 126.3, 125.8 ppm.

HRMS (ESI): calcd for C₂₃H₁₅O⁺ [M+H]⁺ 307.1117, found 307.1112.

7H-benzo[*no*]**tetraphen-7-one (5q)**: The reaction was performed following the general procedure B at 80 °C, **5q** was obtained in 45% yield as a yellow solid (25.1 mg, eluent: PE/EA = 50:1).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.79-8.74 (m, 2H), 8.63 (d, *J* = 7.6 Hz, 1H), 8.51 (d, *J* = 8.8 Hz, 1H), 8.27 (d, *J* = 8.0 Hz, 1H), 8.05 (d, *J* = 8.4 Hz, 1H), 7.99-7.96 (m, 1H), 7.93 (d, *J* = 8.8 Hz, 1H), 7.82 (t, *J* = 7.6 Hz, 1H), 7.73 (t, *J* = 8.0 Hz, 1H), 7.68-7.61 (m, 2H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ = 183.8, 137.3, 136.6, 135.3, 133.0, 131.6, 130.3, 130.2, 130.0, 129.8, 129.03, 129.00, 128.8, 128.5, 128.04. 128.00, 127.2, 126.84, 126.78, 126.2, 123.3 ppm.

HRMS (ESI): calcd for $C_{21}H_{13}O^+$ [M+H]⁺ 281.0961, found 281.0956. The analytical data matched those reported in the literature.⁶

10-Bromo-7H-benzo[*de*]anthracen-7-one (5r): The reaction was performed following the general procedure B at 100 °C, 5r was obtained in 68% yield as a yellow solid (42.1 mg, eluent: PE/EA = 50:1).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.74 (dd, *J* = 7.6 Hz, 1.2 Hz, 1H), 8.44 (d, *J* = 1.6 Hz, 1H), 8.37 (d, *J* = 7.6 Hz, 1H), 8.34 (d, *J* = 8.4 Hz, 1H), 8.23 (d, *J* = 8.0 Hz, 1H), 8.03 (d, *J* = 8.0 Hz, 1H), 7.78 (t, *J* = 8.0, 1H), 7.70-7.63 (m, 2H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ = 183.2, 137.9, 135.5, 133.1, 131.6, 131.1, 130.2, 130.0, 129.9, 129.1, 128.3, 128.0, 126.9, 126.7, 126.3, 125.7, 124.8 ppm.

HRMS (ESI): calcd for $C_{17}H_9^{79}BrONa^+$ [M+Na]⁺ 330.9729, found 330.9727, calcd for $C_{17}H_9^{81}BrONa^+$ [M+Na]⁺332.9709, found: 332.9709.

10-Chloro-7H-benzo[*de*]anthracen-7-one (5s): The reaction was performed following the general procedure B at 100 °C, 5s was obtained in 76% yield as a yellow solid (40.1 mg, eluent: PE/EA = 50:1).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.68 (d, *J* = 7.6 Hz, 1H), 8.36 (d, *J* = 8.4 Hz, 1H), 8.27 (d, *J* = 7.2 Hz, 1H), 8.18-8.15 (m, 2H), 7.96 (d, *J* = 8.0 Hz, 1H), 7.74 (t, *J* = 8.0 Hz, 1H), 7.62 (t, *J* = 8.0, 1H), 7.45 (dd, *J* = 8.4 Hz, 1.6 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ = 182.9, 140.1, 137.6, 135.4, 133.0, 131.0, 130.1, 129.9, 129.5, 128.6, 128.2, 128.0, 126.8, 126.6, 125.6, 124.6, 123.2 ppm.
HRMS (ESI): calcd for $C_{17}H_{10}^{35}ClO^+$ [M+H]⁺ 265.0415, found 265.0414, calcd for $C_{17}H_{10}^{37}ClO^+$ [M+H]⁺ 267.0385, found: 267.0389.

The analytical data matched those reported in the literature.⁵

10-Methoxy-7H-benzo[*de*]anthracen-7-one (5t): The reaction was performed following the general procedure B at 80 °C, **5t** was obtained in 71% yield as a yellow solid (37.0 mg, eluent: PE/EA = 20:1).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.71 (dd, *J* = 7.2 Hz, 1.2 Hz,1H), 8.44 (d, *J* = 8.8 Hz, 1H), 8.33 (d, *J* = 7.2 Hz, 1H), 8.16 (d, *J* = 8.0 Hz, 1H), 7.96 (d, *J* = 8.0 Hz, 1H), 7.74 (t, *J* = 7.6 Hz, 1H), 7.68 (d, *J* = 2.4 Hz, 1H), 7.63 (t, *J* = 8.0, 1H), 7.06 (dd, *J* = 8.4 Hz, 2.8 Hz, 1H), 3.98 (s, 3H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ = 183.0, 163.9, 138.4, 134.8, 133.0, 130.7, 130.5, 129.6, 128.7, 128.3, 126.9, 126.6, 126.5, 125.2, 124.1, 55.7 ppm.

HRMS (ESI): calcd for C₁₈H₁₃O₂⁺ [M+H]⁺ 261.0910, found 261.0906.

The analytical data matched those reported in the literature.⁷

VIII. Single Crystal X-ray Structures of 4g and 5g

Figure S1. ORTEP diagram of **4g**. CCDC 2060396 (**4g**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

Figure S2. ORTEP diagram of **5g**. CCDC 2060393 (**5g**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

IX. Reference

1) M. Zhang, A. Luo, Y. Shi, R. Su, Y. Yang and J. You, F⁺ Reagent-Promoted Pd-Catalyzed C7–H Arylation of 1-Naphthamides, *ACS Catal.* 2019, **9**, 11802–11807.

2) M. Wang, M. Zhang, Y. Luo, Z. Liu, C. Yang, J. Lan, D. Wu and J. You, Pd(II)-Catalyzed Regioselective Multiple C–H Arylations of 1⁻Naphthamides with Cyclic Diaryliodonium Salts: One-Step Access to [4]- and [5]Carbohelicenes *Org. Lett.* 2020, **22**, 135–139.

3) A. Luo, M. Zhang, Z. Fu, J. Lan, D. Wu, J. You, Copper-catalyzed Remote C–H Arylation of Polycyclic Aromatic Hydrocarbons (PAHs), *Beilstein J. Org. Chem.* 2020, **16**, 530–536.

4) C. Xue, L. Wang and J. Han, Palladium-Catalyzed Site-Selective Benzocyclization of Naphthoic Acids with Diaryliodonium Salts: Efficient Access to Benzanthrones, *J. Org. Chem.*, 2020, **85**, 15406–15414.

5) M Takekawa, J. Aoki, Satoshi and I. and T. Ueda; Complete Assignment of ¹H and ¹³C NMR Spectra of Chlorobenzanthrones, *Magn. Reson. Chem.*, 1994, 32, 87–92.

6) L. L. Ansell, T. Rangarajan, W. M. Burgess, E. J. Eisenbraun, G. W. Keen and M.

C. Hamming, The Synthesis of 1,2,3,7,8,9-Hexahydrodibenzo[*def, mno*]chrysene and the Use of Hydriodic Acid-red Phosphorus in the Deoxygenation of Ketones, *Org. Prep. Proced. Int.* 1976, **8**, 133–140.

7) R.C. Fuson, W. A. Hills and B. Vittimberga, Ring Interconversion by Transacylation in the Benzofluorenone and Benzanthrone Series, *J. Am. Chem. Soc.* 1960, **82**, 2559–2561.

X. NMR Spectra

8,785 8,767 8,767 8,8767 8,8618 8,8618 8,8528 8,8558 8,8528 8,8558 7,7988 8,5558 7,7988 8,556 8

