Supporting information

Synthesis of 5-trifluoromethyl-1,2,3-triazoles via base-mediated cascade annulation of diazo compounds with trifluoroacetimidoyl chlorides

Hefei Yang,^a Tian-Hui Xu,^a Shu-Ning Lu,^a Zhengkai Chen *^a and Xiao-Feng Wu *^{b,c}

^a Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China

^b Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese

Academy of Sciences, Dalian 116023, Liaoning, China

^c Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Straβe 29a, 18059

Rostock, Germany

E-mail: <u>zkchen@zstu.edu.cn</u>

xwu2020@dicp.ac.cn, xiao-feng.wu@catalysis.de

Contents

1. General Information	S1
1.1 Preparation of Fluorinated Imidoyl Chlorides	S1
1.2 Preparation of Diazo Compounds	S2
2. Experimental Procedures	S3
2.1 Optimization of the Reaction Conditions	S3
2.2 General Procedure for the Synthesis of 3/4	S5
3 The Control Experiments	S5
4 Gram-Scale Reaction and Synthetic Transformations	S7
5 Characterization Data of the Corresponding Products	S9
6 References	S22
7 Copy of ¹ H, ¹³ C and ¹⁹ F NMR Spectra of Products	S23

1. General Information

Unless otherwise noted, all reactions were carried out under N₂ atmosphere. All reagents were from commercial sources and used as received without further purification. All solvents were dried by standard techniques and distilled prior to use. Column chromatography was performed on silica gel (200-300 meshes) using petroleum ether (bp. 60~90 °C) and ethyl acetate as eluent. ¹NMR spectra were recorded on a Bruker Avance operating at for ¹H NMR at 400 MHz, ¹³C NMR at 100 MHz and ¹⁹F NMR at 377 MHz and spectral data were reported in ppm relative to tetramethylsilane (TMS) as internal standard and CDCl₃ (¹H NMR δ 7.26, ¹³C NMR δ 77.16) as solvent. All coupling constants (*J*) are reported in Hz. The following abbreviations were used to describe peak splitting patterns when appropriate: s = singlet, d = doublet, dd = double doublet, ddd = double doublet of doublets, t = triplet, dt = double triplet, q = quatriplet, m = multiplet, br = broad. Gas chromatography (GC) analyses were performed on a Shimadzu GC-2014C chromatograph equipped with a FID detector. Mass spectra (MS) were measured on spectrometer by direct inlet at 70 eV. Mass spectroscopy data of the products were collected on an HRMS-TOF instrument or Waters TOFMS GCT Premier using EI or ESI ionization. Melting points were measured with WRR digital point apparatus and not corrected.

1.1 Preparation of Fluorinated Imidoyl Chlorides¹

$$R-NH_2 + CF_3COOH \xrightarrow{PPh_3, Et_3N} CI$$

$$F_3C \xrightarrow{CI} F_3C \xrightarrow{R} N^{R}$$

A 200 mL two-necked flask equipped with a septum cap, a condenser, and a Tefloncoated magnetic stir bar was charged with PPh₃ (34.5 g, 132 mmol), Et₃N (7.3 mL, 53 mmol), CCl₄ (21.1 mL, 220 mmol), and TFA (3.4 mL, 44 mmol) (or other corresponding fluorinated acids). After the solution was stirred for about 10 min (ice bath), amine (53 mmol) dissolved in CCl₄ (21.1 mL, 220 mmol) was added. The mixture was then refluxed under stirring (3 h). After the reaction was completed, residual solid Ph₃PO, PPh₃ and Et₃N-HC1 were washed with hexane several times. Then the hexane was filtered and concentrated under vacuum. The crude product was purified by column chromatography on silica gel or neutral alumina to afford the corresponding product.

1.2 Preparation of Diazo Compounds²⁻⁴

To a stirred solution of $CF_3CH_2NH_2$ (1.0 mmol, 1.0 equiv) in THF (5 mL), tBuONO (126.1 mg, 1.1 mmol, 90% tech., 1.2 equiv) and HOAc (12.0 mg, 0.2 mmol, 0.2 equiv) were added. The solution was heated at 55 °C for 15 minutes, whereas the mixture became deeply yellow. Then, the heating was stopped and the reaction mixture was cooled down to room temperature. The 2,2,2-trifluorodiazoethane was *in-situ* generated as a THF solutions.

$$\underbrace{\bigvee_{\substack{P}} OEt}_{\substack{O O'} OEt} \frac{\text{TsN}_3 (1.1 \text{ equiv})}{\text{NEt}_3, \text{ rt, } 18 \text{ h}} \underbrace{\bigvee_{\substack{P}} OEt}_{\substack{P} OEt} \frac{\text{Na}_2 \text{CO}_3 (1.2 \text{ equiv})}{\text{MeOH, rt, } 15 \text{ min}} H \underbrace{\bigvee_{\substack{P}} OEt}_{\substack{O'} OEt} \frac{\text{Na}_2 \text{CO}_3 (1.2 \text{ equiv})}{\text{MeOH, rt, } 15 \text{ min}} H \underbrace{\bigvee_{\substack{P}} OEt}_{\substack{O'} OEt} \frac{\text{Na}_2 \text{CO}_3 (1.2 \text{ equiv})}{\text{MeOH, rt, } 15 \text{ min}} H \underbrace{\bigvee_{\substack{P}} OEt}_{\substack{O'} OEt} \frac{\text{Na}_2 \text{CO}_3 (1.2 \text{ equiv})}{\text{MeOH, rt, } 15 \text{ min}} H \underbrace{\bigvee_{\substack{P}} OEt}_{\substack{O'} OEt} \frac{\text{Na}_2 \text{CO}_3 (1.2 \text{ equiv})}{\text{MeOH, rt, } 15 \text{ min}} H \underbrace{\bigvee_{\substack{P}} OEt}_{\substack{O'} OEt} \frac{\text{Na}_2 \text{CO}_3 (1.2 \text{ equiv})}{\text{MeOH, rt, } 15 \text{ min}} H \underbrace{\bigvee_{\substack{P}} OEt}_{\substack{O'} OEt} \frac{\text{Na}_2 \text{CO}_3 (1.2 \text{ equiv})}{\text{MeOH, rt, } 15 \text{ min}} H \underbrace{\bigvee_{\substack{P}} OEt}_{\substack{O'} OEt} \frac{\text{Na}_2 \text{CO}_3 (1.2 \text{ equiv})}{\text{MeOH, rt, } 15 \text{ min}} H \underbrace{\bigvee_{\substack{P}} OEt}_{\substack{O'} OEt} \frac{\text{Na}_2 \text{CO}_3 (1.2 \text{ equiv})}{\text{MeOH, rt, } 15 \text{ min}} H \underbrace{\bigvee_{\substack{P}} OEt}_{\substack{O'} OEt} \frac{\text{Na}_2 \text{CO}_3 (1.2 \text{ equiv})}{\text{MeOH, rt, } 15 \text{ min}} H \underbrace{\bigvee_{\substack{P}} OEt}_{\substack{O'} OEt} \frac{\text{Na}_2 \text{CO}_3 (1.2 \text{ equiv})}{\text{MeOH, rt, } 15 \text{ min}} H \underbrace{\bigvee_{\substack{P}} OEt}_{\substack{O'} OEt} \frac{\text{Na}_2 \text{CO}_3 (1.2 \text{ equiv})}{\text{MeOH, rt, } 15 \text{ min}} H \underbrace{\bigvee_{\substack{P}} OEt}_{\substack{O'} OEt} \frac{\text{Na}_2 \text{CO}_3 (1.2 \text{ equiv})}{\text{MeOH, rt, } 15 \text{ min}} H \underbrace{\bigvee_{\substack{P}} OEt}_{\substack{O'} OEt} \frac{\text{Na}_2 \text{CO}_3 (1.2 \text{ equiv})}{\text{MeOH, rt, } 15 \text{ min}} H \underbrace{\bigvee_{\substack{P}} OEt}_{\substack{O'} OEt} \frac{\text{Na}_2 \text{CO}_3 (1.2 \text{ equiv})}{\text{MeOH, rt, } 15 \text{ min}} H \underbrace{\bigvee_{\substack{P}} OEt}_{\substack{O'} OEt} \frac{\text{Na}_2 \text{CO}_3 (1.2 \text{ equiv})}{\text{MeOH, rt, } 15 \text{ min}} H \underbrace{\bigvee_{\substack{P}} OE}_{\substack{O'} OEt} \frac{\text{Na}_2 \text{CO}_3 (1.2 \text{ equiv})}{\text{MeOH, rt, } 15 \text{ min}} H \underbrace{\bigvee_{\substack{P}} OE}_{\substack{O'} OE} \frac{\text{Na}_2 \text{CO}_3 (1.2 \text{ equiv})}{\text{MeOH, rt, } 15 \text{ min}} H \underbrace{\bigvee_{\substack{P}} OE} \frac{\text{Na}_2 \text{CO}_3 (1.2 \text{ equiv})}{\text{MeOH, rt, } 15 \text{ min}} H \underbrace{\bigvee_{\substack{P}} OE} \frac{\text{Na}_2 \text{CO}_3 (1.2 \text{ equiv})}{\text{MeOH, rt, } 15 \text{ min}} H \underbrace{\bigvee_{\substack{P}} OE} \frac{\text{Na}_2 \text{CO}_3 (1.2 \text{ equiv})}{\text{MeOH, rt, } 15 \text{ min}} H \underbrace{\bigvee_{\substack{P}} OE} \frac{\text{Na}_2 \text{CO}_3 (1.2 \text{ equiv})}{\text{MeOH, rt, } 15 \text{ min}} H \underbrace{\bigvee_{\substack{P}}$$

A mixture of diethyl (2-oxopropyl)phosphonate (1.15 mL, 6.00 mmol, 1.0 equiv), tosyl azide (1.3 g, 6.6 mmol, 1.1 equiv) and triethylamine (6 mL) was stirred at room temperature for 18 h. After evaporation of the triethylamine under reduced pressure, the residue was dissolved in diethyl ether (50 mL). The precipitate was filtered off, the filtrate was evaporated and the residue was purified by column chromatography using EtOAc/pentane 50:50 as mobile phase affording the corresponding diethyl (1-diazo-2-oxopropyl)phosphonate as a yellow oil (0.810 g, 3.68 mmol, 61%).

To a solution of diethyl (1-diazo-2-oxopropyl)phosphonate (694 mg, 3.15 mmol, 1.0 equiv) in MeOH (9.0 mL) was added Na_2CO_3 (401 mg, 3.78 mmol, 1.20 equiv). The mixture was stirred at room temperature for 15 min and the precipitate was filtered off. Then, the filtrate was evaporated and the residue was purified by column chromatography using EtOAc/PE 50:50 as mobile phase affording the corresponding diethyl (diazomethyl)phosphonate as a yellow oil (533 mg, 2.99 mmol, 95%).

To (trimethylsilyl)diazomethane (1.2 equiv) and triethylamine (1.0 equiv) was dissolved in MeCN at 0 °C. To this mixture the corresponding benzoyl chloride (1.0 equiv) was added dropwise

under N_2 atmosphere. The reaction mixture was allowed to warm to room temperature and stirred for 4 hours or until the full consumption of the benzoyl chloride. The solvent was evaporated and Na_2CO_3 (sat. aq.) was added before extracting with Et₂O. The combined organic phase was dried and the solvent was evaporated. The residue was purified by flash chromatography using PE/EtOAc (10:1).

CAUTION: Diazo compounds are potentially explosive! Although no accident occurred during the course of this study, stringent safety precautions are necessary for all reactions of diazo compounds.

2. Experimental Procedures

2.1 Optimization of the Reaction Conditions

Entry	Base	Yield (%) ^b
1	NaH	82
2	Cs ₂ CO ₃	94 (86) ^c
3	t-BuOK	66
4	HMPA	trace
5	Et ₃ N	69
6	DABC	60
7	K_3PO_4	trace
8	K ₃ CO ₃	73
9	DBU	20^{c}

2.1.1 Screening of Base^a

^{*a*}Reaction conditions: **1e** (0.2 mmol), **2a** (0.3 mmol), base (2 equiv), 4 Å MS (40 mg), MeCN (2.0 mL) at 60 °C under N₂ atmosphere for 12 h. ^{*b*}Yields determined by GC analysis using dodecane as an internal standard. ^{*c*}Isolated Yield.

2.1.2 Screening of Solvent^a

Entry	Solvent	Yield $(\%)^b$
1	Dioxane	81
2	MeCN	94 (86) ^c
3	DMF	83
4	DMSO	68 ^c
5	Toluene	63
6	DCE	68

^{*a*}Reaction conditions: **1e** (0.2 mmol), **2a** (0.3 mmol), Cs₂CO₃ (2 equiv), 4 Å MS (40 mg) solvent (2 mL) at 60 °C under N₂ atmosphere for 12 h. ^{*b*}Yields determined by GC analysis using dodecane as an internal standard. ^{*c*}Isolated Yield.

2.1.3 Screening of Temperature^a

Entry	Temperature	Yield (%) ^{b}
1	30	86
2	80	83

^{*a*}Reaction conditions: **1e** (0.2 mmol), **2a** (0.3 mmol), Cs_2CO_3 (2 equiv), 4 Å MS (40 mg) MeCN (2.0 mL) at the specified temperature under N₂ atmosphere for 12 h. ^{*b*}Yields determined by GC analysis using dodecane as an internal standard.

2.1.4 Screening of Time^a

Entry	Time (h)	Yield (%) ^{b}
1	6	84
2	12	94 (86) ^c

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), Cs₂CO₃ (2 equiv), 4 Å MS (40 mg) MeCN (2.0 mL) at specified temperature under N₂ atmosphere for the specified time. ^{*b*}Yields determined by GC analysis using dodecane as an internal standard. ^{*c*}Isolated yield.

2.2 General Procedure for the Synthesis of 3/4

Under nitrogen atmosphere, trifluoroacetimidoyl chloride **1** (0.2 mmol, 1.0 equiv), diazo compound **2** (0.3 mmol, 1.5 equiv), Cs_2CO_3 (0.1304 g, 0.4 mmol, 2.0 equiv), 4 Å MS (40 mg), MeCN (2 mL) (extra dry) were added to an oven-dried 15 mL *In-Ex* tube. Then the tube was sealed and the mixture was stirred at 60 °C (oil bath) for 12 h. After the reaction was completed, the mixture was slowly cooled to room temperature, and extracted with EtOAc for three times (3×10 mL). The extract was combined and concentrated under vacuum. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc) to yield the product **3/4**.

3 The Control Experiments

Eq a: Under nitrogen atmosphere, trifluoroacetimidoyl chloride **1e** (0.2 mmol, 1.0 equiv), ethyl 2-diazoacetate **2a** (0.3 mmol, 1.5 equiv), Cs₂CO₃ (0.1304 g, 0.4 mmol, 2.0 equiv), 4 Å MS (40 mg),

TEMPO (62.5 mg, 0.4 mmol, 2.0 equiv) or BHT (88.1mg, 0.4 mmol, 2.0 equiv), MeCN (2 mL) (extra dry) were added to an oven-dried 15 mL *In-Ex* tube. Then the tube was sealed and the mixture was stirred at 60 °C (oil bath) for 12 h. After the reaction was completed, the mixture was slowly cooled to room temperature, and extracted with EtOAc for three times (3×10 mL). The extract was combined and concentrated under vacuum. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc) to yield the product **3e** as a yellow oily liquid in 72% (TEMPO) or 74% (BHT) yield.

Eq b: Under nitrogen atmosphere, trifluoroacetimidoyl chloride 1e (0.2 mmol, 1.0 equiv), ethyl 2-diazo-2-phenylacetate 2i (0.3 mmol, 1.5 equiv), Cs_2CO_3 (0.1304 g, 0.4 mmol, 2.0 equiv), 4 Å MS (40 mg), MeCN (2 mL) (extra dry) were added to an oven-dried 15 mL *In-Ex* tube. Then the tube was sealed and the mixture was stirred at 60 °C (oil bath) for 12 h. After the reaction was completed, the mixture was slowly cooled to room temperature, and extracted with EtOAc for three times (3× 10 mL). The extract was combined and concentrated under vacuum. The desired product 4 was not detected.

Eq c: Under nitrogen atmosphere, trifluoroacetimidoyl chloride 1e (0.2 mmol, 1.0 equiv), ethyl 2-(2-tosylhydrazono)acetate 2j (0.3 mmol, 1.5 equiv), Cs_2CO_3 (0.1304 g, 0.4 mmol, 2.0 equiv), 4 Å MS (40 mg), MeCN (2 mL) (extra dry) were added to an oven-dried 15 mL *In-Ex* tube. Then the tube was sealed and the mixture was stirred at 60 °C (oil bath) for 12 h. After the reaction was completed, the mixture was slowly cooled to room temperature, and extracted with EtOAc for three times (3×10 mL). The extract was combined and concentrated under vacuum. The desired product **3e** was not detected.

4 Gram-Scale Reaction and Synthetic Transformations

Eq a: Gram-Scale Reaction: Under nitrogen atmosphere, trifluoroacetimidoyl chloride 1e (1.315 g, 5 mmol, 1.0 equiv), ethyl 2-diazoacetate 2a (0.855 g, 7.5 mmol, 1.5 equiv), Cs_2CO_3 (3.26 g, 10 mmol, 2.0 equiv), 4 Å MS (1 g), MeCN (30 mL) (extra dry) were added to an oven-dried 100 mL *In-Ex* tube. Then the tube was sealed and the mixture was stirred at 60 °C (oil bath) for 12 h. After the reaction was completed, the mixture was slowly cooled to room temperature, and extracted with EtOAc for three times (3×50 mL). The extract was combined and concentrated under vacuum. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc) to yield the product 3e as a yellow oily liquid in 83% yield (1.42 g).

Eq b:⁵ Under nitrogen atmosphere, LiAlH₄ (0.8 mmol) was added in dry THF (2 mL). Compound **3e** (0.2 mmol) was solved in dry THF (1 mL) and added slowly to the above mixture at room temperature. After stirring 30 min at room temperature, the mixture was refluxed for 8 hours. After cooling, excess LiAlH₄ was destroyed by the addition of ice-cold water. Then, 5% H₂SO₄ (3 mL) was added and the mixture was extracted with EtOAc for three times (3×10 mL). The organic phase was washed with water and dried over sodium sulphate. The solvent was removed under reduced

pressure and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5:1, Rf = 0.4) to give the product **5** as a yellow oily liquid (44.9 mg, 75%).

Eq c:⁶ Under air atmosphere, LiOH·H₂O (0.3 mmol) was added in one portion to a solution of compound **3e** (0.2 mmol) in THF/water (1:1, 4 mL). The reaction mixture was stirred until the solid had dissolved and was then left overnight at room temperature. The solvents were removed in vacuo, and the residue was dissolved in water (3 mL). The resulting solution was washed with diethyl ether (2 mL). The aqueous layer was concentrated to half of its volume and then acidified with 30% hydrochloric acid (3 mL). The mixture was extracted with EtOAc for three times (3 × 10 mL). The organic phase was washed with water and dried over sodium sulphate. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (ethyl acetate = 1, Rf = 0.2) to give the product **6** as a white solid (38.8 mg, 62%).

Eq d:⁶ Under air atmosphere, LiOH·H₂O (0.3 mmol) was added in one portion to a solution of compound **3a** (0.2 mmol) in THF/water (1:1, 4 mL). The reaction mixture was stirred until the solid had dissolved and was then left overnight at room temperature. The solvents were removed in vacuo, and the residue was dissolved in water (3 mL). The resulting solution was washed with diethyl ether (2 mL). The aqueous layer was concentrated to half of its volume and then acidified with 30% hydrochloric acid (3 mL). The mixture was extracted with EtOAc for three times (3×10 mL). The organic phase was washed with water and dried over sodium sulphate. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (ethyl acetate = 1, Rf = 0.2) to give the product **7** as a yellow oily liquid (27.3 mg, 53%).

5 Characterization Data of the Corresponding Products

Ethyl 1-phenyl-5-(trifluoromethyl)-1H-1,2,3-triazole-4-carboxylate (3a)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 20:1, Rf = 0.3) to give the titled product **3a** as a yellow oily liquid (45.7 mg, 80%).

¹**H NMR** (**400 MHz**, **CDCl**₃) δ 7.65 – 7.53 (m, 3H), 7.46 (d, *J* = 7.2 Hz, 2H), 4.49 (q, *J* = 7.1 Hz, 2H), 1.44 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 159.0, 139.4, 135.4, 131.2, 129.6, 129.5 (q, $J_{(C-F)} = 42.3$ Hz), 125.7, 118.8 (q, $J_{(C-F)} = 271.2$ Hz), 62.4, 14.1.

¹⁹F NMR (377 MHz, CDCl₃) δ -55.5.

HRMS (ESI): $[M+H]^+$ calcd. for $C_{12}H_{11}F_3N_3O_2$ 286.0798, found 286.0801.

Ethyl 1-(p-tolyl)-5-(trifluoromethyl)-1H-1,2,3-triazole-4-carboxylate (3b)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 20:1, Rf = 0.3) to give the titled product **3b** as a yellow oily liquid (47.9 mg, 80%).

¹**H** NMR (400 MHz, CDCl₃) δ 7.37 – 7.30 (m, 4H), 4.48 (q, J = 7.1 Hz, 2H), 2.45 (s, 3H), 1.43 (t, J = 7.1 Hz, 3H).

¹³**C NMR (101 MHz, CDCl₃)** δ 159.1, 141.7, 139.3, 133.0, 130.1, 129.5 (q, $J_{(C-F)} = 42.2$ Hz), 125.5, 118.9 (q, $J_{(C-F)} = 271.2$ Hz), 62.4, 21.3, 14.1.

¹⁹F NMR (377 MHz, CDCl₃) δ -55.6.

HRMS (ESI): $[M+H]^+$ calcd. for $C_{13}H_{13}F_3N_3O_2$ 300.0954, found 300.0963.

Ethyl 1-(m-tolyl)-5-(trifluoromethyl)-1H-1,2,3-triazole-4-carboxylate (3c)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 20:1, Rf = 0.3) to give the titled product **3c** as a yellow oily liquid (54.4 mg, 91%).

¹**H** NMR (400 MHz, CDCl₃) δ 7.50 – 7.39 (m, 2H), 7.29 – 7.24 (m, 2H), 4.51 (q, *J* = 7.1 Hz, 2H), 2.47 (s, 3H), 1.46 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 159.1, 140.0, 139.3, 135.4, 131.9, 129.9 (q, $J_{(C-F)} = 42.1$ Hz), 129.3, 126.2, 122.8, 118.8 (q, $J_{(C-F)} = 271.2$ Hz), 62.4, 21.2, 14.1.

¹⁹F NMR (377 MHz, CDCl₃) δ -55.6.

HRMS (**ESI**): [M+H]⁺ calcd. for C₁₃H₁₃F₃N₃O₂ 300.0954, found 300.0960.

$$F_3C$$
 CO_2Et

Ethyl 1-(o-tolyl)-5-(trifluoromethyl)-1H-1,2,3-triazole-4-carboxylate (3d)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 20:1, Rf = 0.4) to give the titled product **3d** as a yellow oily liquid (49.1 mg, 82%).

¹**H** NMR (**400** MHz, CDCl₃) δ 7.50 (t, *J* = 7.5 Hz, 1H), 7.43 – 7.32 (m, 2H), 7.26 (d, *J* = 7.7 Hz, 1H), 4.50 (q, *J* = 7.1 Hz, 2H), 2.04 (s, 3H), 1.44 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 159.0, 138.9, 135.1, 134.7, 131.5, 131.3, 130.3 (q, $J_{(C-F)} = 42.0$ Hz),

126.9, 126.9, 118.8 (q, $J_{(C-F)} = 271.2$ Hz), 62.4, 16.9, 14.1.

¹⁹F NMR (377 MHz, CDCl₃) δ -56.8.

HRMS (ESI): $[M+H]^+$ calcd. for $C_{13}H_{13}F_3N_3O_2$ 300.0954, found 300.0962.

Ethyl 1-(4-(tert-butyl)phenyl)-5-(trifluoromethyl)-1H-1,2,3-triazole-4-carboxylate (3e)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 20:1, Rf = 0.3) to give the titled product **3e** as a yellow oily liquid (58.7 mg, 86%).

¹**H NMR (400 MHz, CDCl₃)** δ 7.56 (d, *J* = 8.7 Hz, 2H), 7.38 (d, *J* = 8.6 Hz, 2H), 4.49 (q, *J* = 7.1 Hz, 2H), 1.43 (t, *J* = 7.1 Hz, 3H), 1.36 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 159.1, 154.7, 139.3, 132.8, 129.5 (q, $J_{(C-F)} = 42.1$ Hz), 126.5, 125.2, 118.9 (q, $J_{(C-F)} = 271.2$ Hz), 62.4, 35.0, 31.2, 14.1.

¹⁹F NMR (377 MHz, CDCl₃) δ -55.6.

HRMS (ESI): $[M+H]^+$ calcd. for $C_{16}H_{19}F_3N_3O_2$ 342.1424, found 342.1433.

Ethyl 1-(4-methoxyphenyl)-5-(trifluoromethyl)-1H-1,2,3-triazole-4-carboxylate (3f)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 20:1, Rf = 0.3) to give the titled product **3f** as a yellow oily liquid (54.9 mg, 87%).

¹**H NMR (400 MHz, CDCl₃)** δ 7.36 (d, *J* = 8.9 Hz, 2H), 7.03 (d, *J* = 9.0 Hz, 2H), 4.48 (q, *J* = 7.1 Hz, 2H), 3.88 (s, 3H), 1.43 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 161.5, 159.1, 139.2, 129.5 (q, $J_{(C-F)} = 42.1$ Hz), 128.1, 127.1, 118.9 (q, $J_{(C-F)} = 271.1$ Hz), 114.6, 62.4, 55.7, 14.1.

¹⁹F NMR (377 MHz, CDCl₃) δ -55.7.

HRMS (**ESI**): [M+H]⁺ calcd. for C₁₃H₁₃F₃N₃O₃ 316.0904, found 316.0910.

Ethyl 1-(4-fluorophenyl)-5-(trifluoromethyl)-1H-1,2,3-triazole-4-carboxylate (3g)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 20:1, Rf = 0.3) to give the titled product **3g** as a yellow oily liquid (43.7 mg, 72%).

¹**H** NMR (400 MHz, CDCl₃) δ 7.52 – 7.46 (m, 2H), 7.31 – 7.26 (m, 2H), 4.51 (q, *J* = 7.1 Hz, 2H), 1.46 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 163.9 (d, $J_{(C-F)} = 252.9$ Hz), 158.9, 139.5, 131.4 (d, $J_{(C-F)} = 2.5$ Hz), 129.7 (q, $J_{(C-F)} = 42.2$ Hz), 127.9 (d, $J_{(C-F)} = 9.2$ Hz), 118.8(q, $J_{(C-F)} = 271.3$ Hz), 116.8 (d, $J_{(C-F)} = 23.5$ Hz), 62.5, 14.0.

¹⁹F NMR (**377** MHz, CDCl₃) δ -55.5, -107.8.

HRMS (ESI): $[M+H]^+$ calcd. for $C_{12}H_{10}F_4N_3O_2$ 304.0704, found 304.0712.

Ethyl 1-(4-chlorophenyl)-5-(trifluoromethyl)-1H-1,2,3-triazole-4-carboxylate (3h)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 20:1, Rf = 0.3) to give the titled product **3h** as a yellow oily liquid (51.8 mg, 81%).

¹**H NMR (400 MHz, CDCl₃)** δ 7.56 (d, *J* = 8.7 Hz, 2H), 7.42 (d, *J* = 8.7 Hz, 2H), 4.50 (q, *J* = 7.1 Hz, 2H), 1.44 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 158.9, 139.6, 137.6, 133.8, 129.9, 129.5 (q, $J_{(C-F)} = 42.3$ Hz), 127.0,

118.7 (q, $J_{(C-F)} = 271.1$ Hz), 62.5, 14.0.

¹⁹F NMR (377 MHz, CDCl₃) δ -55.4.

HRMS (ESI): $[M+H]^+$ calcd. for $C_{12}H_{10}ClF_3N_3O_2$ 320.0408, found 320.0414.

Ethyl 1-(4-bromophenyl)-5-(trifluoromethyl)-1H-1,2,3-triazole-4-carboxylate (3i)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 20:1, Rf = 0.3) to give the titled product **3i** as a yellow oily liquid (38.6 mg, 53%).

¹**H** NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.6 Hz, 2H), 7.35 (d, *J* = 8.6 Hz, 2H), 4.50 (q, *J* = 7.1 Hz, 2H), 1.44 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 158.9, 139.6, 134.3, 132.9, 129.5 (q, $J_{(C-F)} = 42.1$ Hz), 127.2, 125.7, 118.7 (q, $J_{(C-F)} = 271.4$ Hz), 62.5, 14.0.

¹⁹F NMR (377 MHz, CDCl₃) δ -55.4.

HRMS (**ESI**): [M+H]⁺ calcd. for C₁₂H₁₀BrF₃N₃O₂ 363.9903, found 363.9909.

Ethyl 1-(3,4-dimethylphenyl)-5-(trifluoromethyl)-1H-1,2,3-triazole-4-carboxylate (3k)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 20:1, Rf = 0.3) to give the titled product **3k** as a yellow oily liquid (48.9 mg, 78%).

¹**H NMR (400 MHz, CDCl**₃) δ 7.29 (d, *J* = 8.0 Hz, 1H), 7.21 (s, 1H), 7.16 (d, *J* = 9.8 Hz, 1H), 4.48 (q, *J* = 7.1 Hz, 2H), 2.34 (d, *J* = 6.6 Hz, 6H), 1.43 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 159.1, 140.3, 139.2, 138.3, 133.1, 130.4, 129.4 (q, $J_{(C-F)} = 42.1$ Hz),

126.5, 122.9, 118.9 (q, $J_{(C-F)} = 271.4 \text{ Hz}$), 62.3, 19.8, 19.7, 14.0.

¹⁹F NMR (**377** MHz, CDCl₃) δ -55.7.

HRMS (**ESI**): [M+H]⁺ calcd. for C₁₄H₁₅F₃N₃O₂ 314.1111, found 314.1118.

Ethyl 1-(naphthalen-1-yl)-5-(trifluoromethyl)-1H-1,2,3-triazole-4-carboxylate (3l)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 20:1, Rf = 0.2) to give the titled product **31** as a yellow oily liquid (36.9 mg, 55%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 8.1 Hz, 1H), 7.98 (d, J = 8.1 Hz, 1H), 7.65 – 7.49 (m, 4H), 7.10 (d, J = 8.4 Hz, 1H), 4.54 (q, J = 7.1 Hz, 2H), 1.47 (t, J = 7.1 Hz, 3H).

¹³**C NMR (101 MHz, CDCl₃)** δ 159.0, 139.0, 133.9, 132.0, 131.7, 131.4 (q, $J_{(C-F)} = 42.2$ Hz), 129.3, 128.5, 128.4, 127.5, 125.1, 124.7, 121.2, 118.7 (q, $J_{(C-F)} = 271.5$ Hz), 62.5, 14.1.

¹⁹F NMR (377 MHz, CDCl₃) δ -56.6.

HRMS (ESI): $[M+H]^+$ calcd. for $C_{16}H_{13}F_3N_3O_2$ 336.0954, found 336.0953.

$$Ph$$
 N-N F_3C CO₂Et

Ethyl 1-phenethyl-5-(trifluoromethyl)-1H-1,2,3-triazole-4-carboxylate (3m)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 20:1, Rf = 0.3) to give the titled product **3m** as a yellow oily liquid (36.3 mg, 58%).

¹**H** NMR (400 MHz, CDCl₃) δ 7.35 – 7.27 (m, 3H), 7.15 (d, J = 6.7 Hz, 2H), 4.78 (t, 2H), 4.46 (q, J = 7.1 Hz, 2H), 3.24 (t, 2H), 1.43 (t, J = 7.1 Hz, 3H).

¹³**C NMR (101 MHz, CDCl₃)** δ 159.0, 139.3, 135.6, 129.0, 128.7, 128.6 (q, $J_{(C-F)} = 42.1$ Hz), 127.5, 119.3 (q, $J_{(C-F)} = 270.7$ Hz), 62.3, 52.8, 36.8, 14.1.

¹⁹F NMR (**377** MHz, CDCl₃) δ -56.8.

HRMS (ESI): $[M+H]^+$ calcd. for $C_{14}H_{15}F_3N_3O_2$ 314.1111, found 314.1124.

Ethyl 5-(difluoromethyl)-1-phenyl-1H-1,2,3-triazole-4-carboxylate (3n)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 20:1, Rf = 0.3) to give the titled product **3n** as a yellow oily liquid (42.2 mg, 79%).

¹**H** NMR (400 MHz, CDCl₃) δ 7.62 – 7.56 (m, 5H), 4.52 (q, J = 7.1 Hz, 2H), 1.48 (t, J = 7.1 Hz, 3H).

¹³**C** NMR (101 MHz, CDCl₃) δ 160.4, 135.9, 133.5 (t, $J_{(C-F)} = 25.3$ Hz), 130.8, 129.4, 125.6, 120.3, 106.7 (t, $J_{(C-F)} = 238.8$ Hz), 62.3, 14.2.

¹⁹F NMR (**377** MHz, CDCl₃) δ -113.2.

HRMS (ESI): $[M+H]^+$ calcd. for $C_{12}H_{12}F_2N_3O_2$ 268.0892, found 268.0899.

Ethyl 5-(chlorodifluoromethyl)-1-phenyl-1H-1,2,3-triazole-4-carboxylate (30)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 20:1, Rf = 0.3) to give the titled product **30** as a yellow oily liquid (59.1 mg, 98%).

¹**H** NMR (**400** MHz, CDCl₃) δ 7.63 – 7.52 (m, 3H), 7.47 (d, *J* = 7.2 Hz, 2H), 4.49 (q, *J* = 7.1 Hz, 2H), 1.44 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 159.2, 137.7, 135.6, 134.3 (t, $J_{(C-F)} = 34.8$ Hz), 131.1, 129.5, 126.1, 119.5 (t, $J_{(C-F)} = 289.6$ Hz), 62.4, 14.1.

¹⁹F NMR (377 MHz, CDCl₃) δ -45.7.

HRMS (ESI): $[M+H]^+$ calcd. for $C_{12}H_{11}ClF_2N_3O_2$ 302.0502, found 302.0511.

Ethyl 5-(perfluoroethyl)-1-phenyl-1H-1,2,3-triazole-4-carboxylate (3p)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 20:1, Rf = 0.3) to give the titled product **3p** as a yellow oily liquid (64.4 mg, 96%).

¹**H NMR (400 MHz, CDCl**₃) δ 7.61 (t, *J* = 7.4 Hz, 1H), 7.54 (t, *J* = 7.6 Hz, 2H), 7.38 (d, *J* = 7.7 Hz, 2H), 4.48 (q, *J* = 7.1 Hz, 2H), 1.42 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 158.9, 140.7, 135.6, 131.3, 129.2, 128.1 (t, $J_{(C-F)} = 30.9$ Hz), 126.8, 118.1 (tq, $J_{(C-F)} = 287.4$ Hz, 37.1 Hz), 109.8 (qt, $J_{(C-F)} = 260.1$ Hz, 41.9 Hz), 62.4, 14.0.

¹⁹F NMR (**377** MHz, CDCl₃) δ -83.1, -107.0.

HRMS (ESI): $[M+H]^+$ calcd. for $C_{13}H_{11}F_5N_3O_2$ 336.0766, found 336.0775.

Ethyl 5-(perfluoropropyl)-1-phenyl-1H-1,2,3-triazole-4-carboxylate (3q)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 20:1, Rf = 0.3) to give the titled product **3q** as a yellow oily liquid (75.5 mg, 98%).

¹**H NMR** (**400 MHz**, **CDCl**₃) δ 7.60 (t, *J* = 7.4 Hz, 1H), 7.53 (t, *J* = 7.6 Hz, 2H), 7.38 (d, *J* = 7.8 Hz, 2H), 4.47 (q, *J* = 7.1 Hz, 2H), 1.41 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 158.9, 140.9, 135.6, 131.3, 129.1, 127.9 (t, $J_{(C-F)} = 31.4$ Hz), 126.9, 117.4 (qt, $J_{(C-F)} = 288.0$ Hz, 33.8 Hz), 112.1 (tt, $J_{(C-F)} = 259.8$ Hz, 34.3 Hz),108.2 (tm, $J_{(C-F)} = 267.7$ Hz), 62.4, 13.9.

¹⁹F NMR (**377** MHz, CDCl₃) δ -80.1, -103.9, -123.6.

HRMS (ESI): $[M+H]^+$ calcd. for $C_{14}H_{11}F_7N_3O_2$ 386.0734, found 386.0741.

Ethyl 5-(perfluorobutyl)-1-phenyl-1H-1,2,3-triazole-4-carboxylate (3r)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 20:1, Rf = 0.4) to give the titled product **3r** as a yellow oily liquid (77.5 mg, 89%).

¹**H NMR (400 MHz, CDCl**₃) δ 7.60 (t, *J* = 7.4 Hz, 1H), 7.53 (t, *J* = 7.7 Hz, 2H), 7.38 (d, *J* = 7.8 Hz, 2H), 4.47 (q, *J* = 7.1 Hz, 2H), 1.41 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 158.9, 140.9, 135.6, 131.3, 129.1, 128.0 (t, $J_{(C-F)} = 31.3$ Hz), 126.9, 118.5 (tt, $J_{(C-F)} = 287.9$ Hz, 33.1 Hz), 111.4 (qt, $J_{(C-F)} = 261.7$ Hz, 35.5 Hz), 62.4, 13.9.

¹⁹F NMR (**377** MHz, CDCl₃) δ -81.0, -103.2, -120.0, -126.1.

HRMS (ESI): $[M+H]^+$ calcd. for $C_{15}H_{11}F_9N_3O_2 436.0702$, found 436.0709.

Phenyl(1-phenyl-5-(trifluoromethyl)-1H-1,2,3-triazol-4-yl)methanone (4a)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 20:1, Rf = 0.4) to give the titled product **4a** as a yellow oily liquid (35.5 mg, 56%).

¹**H NMR** (400 MHz, CDCl₃) δ 8.21 (d, J = 8.5 Hz, 2H), 7.70 – 7.53 (m, 8H).

¹³C NMR (101 MHz, CDCl₃) δ 185.2, 145.9, 135.8, 135.4, 134.3, 131.2, 130.7, 129.6, 129.1 (q, $J_{(C-F)} = 41.9 \text{ Hz}$), 128.7, 125.6, 119.1 (q, $J_{(C-F)} = 270.9 \text{ Hz}$).

¹⁹F NMR (377 MHz, CDCl₃) δ -56.0.

HRMS (EI) m/z: [M] calcd. for $C_{16}H_{10}F_3N_3O$ 317.0776, found 317.0777.

(1-phenyl-5-(trifluoromethyl)-1H-1,2,3-triazol-4-yl)(p-tolyl)methanone (4b)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 20:1, Rf = 0.3) to give the titled product **4b** as a yellow oily liquid (45.1 mg, 68%).

¹**H** NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 6.8 Hz), 7.66 – 7.54 (m), 7.49 (d, J = 7.4 Hz), 7.46 – 7.41 (m), 2.46 (s).

¹³**C NMR (101 MHz, CDCl₃)** δ 185.5, 146.0, 138.6, 135.7 (q, $J_{(C-F)} = 40.0$ Hz), 135.2, 131.2, 131.1, 129.7, 128.6, 128.1, 125.7, 119.1 (q, $J_{(C-F)} = 270.9$ Hz), 21.4.

¹⁹F NMR (377 MHz, CDCl₃) δ -56.0.

HRMS (EI) m/z: [M] calcd. for C₁₇H₁₂F₃N₃O 331.0932, found 331.0934.

(4-methoxyphenyl)(1-phenyl-5-(trifluoromethyl)-1H-1,2,3-triazol-4-yl)methanone (4c)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 20:1, Rf = 0.3) to give the titled product **4c** as a white solid (20.8 mg, 30%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.20 (d, J = 8.9 Hz), 7.66 – 7.58 (m), 7.56 (d, J = 7.3 Hz), 7.02 (d, J = 8.9 Hz), 3.91 (s).

¹³C NMR (101 MHz, CDCl₃) δ 183.6, 164.6, 146.2, 135.5, 133.2, 131.1, 129.6, 129.2 (q, $J_{(C-F)} =$ 42.3 Hz), 128.9, 125.6, 119.1 (q, $J_{(C-F)} =$ 270.7 Hz), 114.0, 55.6.

¹⁹F NMR (377 MHz, CDCl₃) δ -56.0.

M.p. 90.6 - 92.8 °C

HRMS (EI) m/z: [M] calcd. for C₁₇H₁₂F₃N₃O₂ 347.0882, found 347.0881.

(4-fluorophenyl)(1-phenyl-5-(trifluoromethyl)-1H-1,2,3-triazol-4-yl)methanone (4d)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 20:1, Rf = 0.3) to give the titled product **4d** as a white solid (55.7 mg, 83%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.33 – 8.24 (m, 2H), 7.69 – 7.58 (m, 3H), 7.56 (d, J = 7.4 Hz, 2H), 7.23 (t, J = 8.6 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 183.4, 166.5 (d, $J_{(C-F)} = 257.1$ Hz), 145.7, 135.4, 133.6 (d, $J_{(C-F)} = 9.6$ Hz), 132.2, 132.2, 131.3, 129.7 (q, $J_{(C-F)} = 42.2$ Hz), 129.7, 125.6, 119.0 (q, $J_{(C-F)} = 270.9$ Hz), 115.9 (d, $J_{(C-F)} = 22.0$ Hz).

¹⁹F NMR (377 MHz, CDCl₃) δ -56.1, -102.8.

M.p. 68.3 - 70.2 °C

HRMS (EI) m/z: [M] calcd. for C₁₆H₉F₄N₃O 335.0682, found 335.0684.

(4-nitrophenyl)(1-phenyl-5-(trifluoromethyl)-1H-1,2,3-triazol-4-yl)methanone (4e)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 20:1, Rf = 0.3) to give the titled product **4e** as a white solid (34.8 mg, 48%).

¹**H NMR (400 MHz, CDCl₃)** δ 8.47 – 8.36 (m), 7.70 – 7.59 (m), 7.55 (d, J = 7.5 Hz).

¹³C NMR (101 MHz, CDCl₃) δ 183.3, 150.7, 144.9, 140.3, 135.2, 131.8, 131.5, 130.5 (q, $J_{(C-F)} =$ 42.5 Hz), 129.7, 125.6, 123.7, 118.9 (q, $J_{(C-F)} =$ 271.4 Hz).

¹⁹F NMR (377 MHz, CDCl₃) δ -56.2.

М.р. 183.4 - 185.7 °С

HRMS (EI) m/z: [M] calcd. for C₁₆H₉F₃N₄O₃ 362.0627, found 362.0625.

Diethyl (1-phenyl-5-(trifluoromethyl)-1H-1,2,3-triazol-4-yl)phosphonate (4f)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 20:1, Rf = 0.4) to give the titled product **4f** as a yellow oily liquid (44.0 mg, 63%).

¹**H** NMR (400 MHz, CDCl₃) δ 7.64 – 7.51 (m, 3H), 7.44 (d, J = 7.5 Hz, 2H), 4.38 – 4.29 (m, 4H), 1.41 (t, J = 7.1 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 138.8 (d, $J_{(C-P)} = 236.2$ Hz), 135.0, 132.4 (q, $J_{(C-F)} = 42.0$ Hz), 131.2, 129.6, 125.7, 118.9 (q, $J_{(C-F)} = 271.0$ Hz), 63.9, 63.8, 16.3, 16.2.

¹⁹F NMR (377 MHz, CDCl₃) δ -55.2.

HRMS (EI) m/z: [M] calcd. for C₁₃H₁₅F₃N₃O₃P 349.0803, found 349.0802.

1-phenyl-4,5-bis(trifluoromethyl)-1H-1,2,3-triazole(**4g**)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 20:1, Rf = 0.3) to give the titled product **4g** as a yellow oily liquid (22.5 mg, 40%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.71 – 7.56 (m, 3H), 7.50 (d, J = 7.6 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 138.1 (q, $J_{(C-F)} = 41.0$ Hz), 134.8, 131.6, 129.7, 127.5 (q, $J_{(C-F)} = 43.9$ Hz), 125.7, 119.4 (q, $J_{(C-F)} = 269.7$ Hz), 118.4 (q, $J_{(C-F)} = 271.0$ Hz).

¹⁹F NMR (**377** MHz, CDCl₃) δ -56.1, -60.4.

HRMS (ESI): $[M+Na]^+$ calcd. for $C_{10}H_5F_6N_3Na$ 304.0280, found 304.0281.

(1-(4-(tert-butyl)phenyl)-5-(trifluoromethyl)-1H-1,2,3-triazol-4-yl)methanol (5)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 5:1, Rf = 0.4) to give the titled product **5** as a yellow oily liquid (44.9 mg, 75%).

¹**H NMR (400 MHz, DMSO**) δ 7.69 (d, *J* = 8.6 Hz, 2H), 7.55 (d, *J* = 8.5 Hz, 2H), 5.62 (t, *J* = 5.6 Hz, 1H), 4.72 (d, *J* = 5.2 Hz, 2H), 1.37 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 154.3, 147.3, 132.9, 126.4, 125.2 (q, $J_{(C-F)} = 40.2$ Hz), 125.2, 119.9 (q, $J_{(C-F)} = 269.2$ Hz), 55.7, 35.0, 31.2.

¹⁹F NMR (377 MHz, CDCl₃) δ -56.2.

HRMS (EI) m/z: [M] calcd. for C₁₄H₁₆F₃N₃O 299.1245, found 299.1245.

1-(4-(tert-butyl)phenyl)-5-(trifluoromethyl)-1H-1,2,3-triazole-4-carboxylic acid (6)

Upon completion the mixture was concentrated and purified via flash column chromatography (ethyl acetate = 1, Rf = 0.2) to give the titled product **6** as a white solid (38.8 mg, 62%).

¹**H NMR** (**400 MHz, DMSO**) δ 7.66 (d, *J* = 8.5 Hz, 2H), 7.53 (d, *J* = 8.4 Hz, 2H), 1.36 (s, 9H).

¹³**C NMR (101 MHz, DMSO)** δ 167.4, 158.7, 152.4, 138.5, 131.5, 130.8, 129.7 (q, $J_{(C-F)} = 41.2$ Hz), 124.8 (q, $J_{(C-F)} = 269.2$ Hz), 39.9, 36.1.

¹⁹F NMR (377 MHz, CDCl₃) δ -55.3.

М.р. 157.2 - 160.1 °С

HRMS (**ESI**): [M+Na]⁺ calcd. for C₁₄H₁₄F₃N₃NaO₂ 336.0930, found 336.0930.

1-phenyl-5-(trifluoromethyl)-1H-1,2,3-triazole-4-carboxylic acid (7)⁷

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 2:1, Rf = 0.3) to give the titled product 7 as a yellow oily liquid (27.3 mg, 53%).

¹**H NMR (400 MHz, CDCl₃)** δ 10.75 (s, 1H), 7.67 – 7.55 (m, 3H), 7.49 (d, *J* = 7.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 162.8, 138.3, 135.3, 131.4, 130.5 (q, *J*_(*C*-*F*) = 42.7 Hz), 129.6, 125.8, 118.6 (q, *J*_(*C*-*F*) = 271.7 Hz).

¹⁹F NMR (377 MHz, CDCl₃) δ -55.5.

6 References

- (1) K. Tamura, H. Mizukami, K. Maeda, H. Watanabe, K. Uneyama, J. Org. Chem. 1993, 58, 32-35.
- (2) Z. Chen, Y. Zheng, J.-A. Ma, Angew. Chem. Int. Ed. 2017, 56, 4569-4574.
- (3) G. Pisella, A. Gagnebin, J. Waser, Org. Lett. 2020, 22, 3884-3889.
- (4) M. A. Cortes Gonzalez, X. Jiang, P. Nordeman, G. Antoni, K. J. Szabo, Chem. Commun. 2019, 55, 13358-13361.
- (5) K. Dabak, A. Akar, *Heterocyclic Communications* 2002, 8, 385-390.
- (6) V. G. Reddy, S. R. Bonam, T. S. Reddy, R. Akunuri, V. G. M. Naidu, V. L. Nayak, S. K. Bhargava, H. M. S. Kumar, P. Srihari, A. Kamal, *Eur. J. Med. Chem.* **2018**, *144*, 595-611.
- (7) S. L. Raeppel, F. Raeppel, E. Therrien, Bioorg. Med. Chem. Lett. 2015, 25, 2527-2531.

7 Copy of ¹H, ¹³C and ¹⁹F NMR Spectra of Products

