Aziridine used as a vinylidene unit in palladium-catalyzed [2+2+1] domino annulation

Wen-Qing Zhu,^a Zi-Wei Zhang,^a Wen-Yong Han,^{*b,c} Yu-Chen Fang,^a Ping Yang,^b Lin-Qiang Li^b and Yong-Zheng Chen^{*b,c}

^aXi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, P. R. China.

^bKey Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China.

^cKey Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, P. R. China.

E-mail: hanwy@zmu.edu.cn

Electronic Supplementary Information

Table of Contents

1. General experimental information	S1
2. Optimization of the reaction conditions for the construction of 4a	S2
3. The water effect on the yield of 4a	S10
4. Representative procedure for the synthesis of compound 4a	S10
5. Characterization data of compounds 4a-ab	S11
6. Preparative-scale experiments	S25
7. Transformations of 4a into 5-12	S26
8. Transformation of 4x into 13	S32
9. References	S33
10. X-ray crystal data for 4a, 4x, 4y, 4z, 4aa, 4ab, 7, 9, 10, 11, 12, 4a' and 4a''	S35
11. ¹ H and ¹³ C NMR spectra of 4a-ab and 5-13	S47

1. General experimental information

Unless otherwise noted, all commercially available reagents were used without further purification. All of the solvents were treated according to known methods. Column chromatography was performed on silica gel (200-400 mesh). ¹H NMR (400 MHz) chemical shifts were reported in ppm (δ) relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard. ¹³C NMR (100 MHz) chemical shifts were reported in ppm (δ) from tetramethylsilane (TMS) with the solvent resonance as the internal standard. ¹⁹F NMR (376 MHz) chemical shifts were reported in ppm (δ) (CFCl₃ as an outside standard and low field is positive). Data were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, td = triplet of doublets, tt = triplet of triplets, ddd = doublet of doublets, dt = doublet of doublets, td = doublet of quartets, brs = broad singlet, sext = sextet, m = multiplet), coupling constants (Hz) and integration. HRMS measurements were obtained on a TOF analyzer. Melting points were uncorrected.

3-Iodochromones (1) was prepared according to the reported procedures.¹ *N*-Ts-aziridine (2a) was purchased from commercial suppliers. 2b–2h were prepared according to the reported procedures.² Bridged olefins 3a–3c were purchased from commercial suppliers. Bridged olefins 3d–3f were prepared according to the reported procedures.^{3,4}

	$ \begin{array}{c} 0 \\ 1a \end{array} + \frac{1}{2a} + 1$	[Pd] (10 mol%), liga base (2.0 equiv.), H 3a 3a	and (20 mol%) 20 (3.0 equiv.) 5, 100 °C, 24 h 4a (X-ray	H H CH ₂	
Entry	[Pd]	Ligand	Base	Solvent	Yield $(\%)^b$
1	Pd(OAc) ₂	L1	Cs ₂ CO ₃	PhMe	24
2	Pd(TFA) ₂	L1	Cs_2CO_3	PhMe	13
3	Pd(OPiv) ₂	L1	Cs_2CO_3	PhMe	6
4	PdCl ₂	L1	Cs_2CO_3	PhMe	trace
5	PdBr ₂	L1	Cs_2CO_3	PhMe	14
6	PdI ₂	L1	Cs_2CO_3	PhMe	10
7	PdCl ₂ (nbd)	L1	Cs_2CO_3	PhMe	16
8	PdCl ₂ (PPh ₃) ₂	L1	Cs_2CO_3	PhMe	trace
9	PdCl ₂ (dppb)	L1	Cs_2CO_3	PhMe	trace
10	PdCl ₂ (dppe)	L1	Cs_2CO_3	PhMe	trace
11	PdCl ₂ (dippp)	L1	Cs_2CO_3	PhMe	trace
12	Pd(dppf)Cl ₂	L1	Cs_2CO_3	PhMe	trace
13	Pd(dppf)Cl ₂ ·DCM	L1	Cs_2CO_3	PhMe	trace
14	[(cinnamyl)PdCl] ₂	L1	Cs_2CO_3	PhMe	31
15	Pd(Phos)Cl ₂	L1	Cs_2CO_3	PhMe	14
16	[(SIPr)PdCl ₂] ₂	L1	Cs ₂ CO ₃	PhMe	7

2. Optimization of the reaction conditions for the construction of $4a^a$

S2

17	PdCl ₂ (CH ₃ CN) ₂	L1	Cs_2CO_3	PhMe	13
18	$PdCl_2(CH_3CN)_4(BF_4)_2$	L1	Cs_2CO_3	PhMe	11
19	$(PCy_3)_2PdCl_2$	L1	Cs_2CO_3	PhMe	trace
20	[(NHC)Pd(allyl)Cl]	L1	Cs_2CO_3	PhMe	trace
21	Pd(OTf) ₂ (dippp)	L1	Cs ₂ CO ₃	PhMe	8
22	$[(C_4H_7)PdCl]_2$	L1	Cs_2CO_3	PhMe	28
23	[Pd(allyl)Cl] ₂	L1	Cs_2CO_3	PhMe	45
24	$[Pd(\mu-Br)'Bu_3P]_2$	L1	Cs_2CO_3	PhMe	10
25	dichlorobis(1-methylallyl)dipalladium	L1	Cs_2CO_3	PhMe	28
26	di-mu-chlorobis{2- [(dimethylamino)methyl]phenyl}dipalladium	L1	Cs ₂ CO ₃	PhMe	17
27	dichlorobis(triethylphosphine)palladium	L1	Cs_2CO_3	PhMe	13
28	Pd(dba) ₃	L1	Cs_2CO_3	PhMe	trace
29	Pd(PPh ₃) ₄	L1	Cs_2CO_3	PhMe	trace
30	[Pd(allyl)Cl]2	L2	Cs_2CO_3	PhMe	23
31	[Pd(allyl)Cl] ₂	L3	Cs_2CO_3	PhMe	27
32	[Pd(allyl)Cl] ₂	L4	Cs_2CO_3	PhMe	42
33	[Pd(allyl)Cl] ₂	L5	Cs_2CO_3	PhMe	37
34	[Pd(allyl)Cl]2	L6	Cs ₂ CO ₃	PhMe	45
35	[Pd(allyl)Cl] ₂	L7	Cs_2CO_3	PhMe	45
36	[Pd(allyl)Cl] ₂	L8	Cs_2CO_3	PhMe	43
37	[Pd(allyl)Cl] ₂	L9	Cs_2CO_3	PhMe	36

38	[Pd(allyl)Cl] ₂	L10	Cs_2CO_3	PhMe	55
39	[Pd(allyl)Cl] ₂	L11	Cs_2CO_3	PhMe	10
40	[Pd(allyl)Cl] ₂	L12	Cs_2CO_3	PhMe	17
41	[Pd(allyl)Cl] ₂	L13	Cs_2CO_3	PhMe	trace
42	[Pd(allyl)Cl]2	L14	Cs_2CO_3	PhMe	48
43	[Pd(allyl)Cl] ₂	L15	Cs_2CO_3	PhMe	18
44	[Pd(allyl)Cl] ₂	L16	Cs_2CO_3	PhMe	32
45	[Pd(allyl)Cl] ₂	L17	Cs_2CO_3	PhMe	13
46	[Pd(allyl)Cl]2	L18	Cs_2CO_3	PhMe	35
47	[Pd(allyl)Cl] ₂	L19	Cs_2CO_3	PhMe	31
48	[Pd(allyl)Cl] ₂	L20	Cs_2CO_3	PhMe	28
49	[Pd(allyl)Cl] ₂	L21	Cs_2CO_3	PhMe	45
50	[Pd(allyl)Cl] ₂	L22	Cs_2CO_3	PhMe	21
51	[Pd(allyl)Cl] ₂	L23	Cs_2CO_3	PhMe	25
52	[Pd(allyl)Cl] ₂	L24	Cs_2CO_3	PhMe	35
53	[Pd(allyl)Cl] ₂	L25	Cs_2CO_3	PhMe	13
54	[Pd(allyl)Cl] ₂	L26	Cs_2CO_3	PhMe	25
55	[Pd(allyl)Cl]2	L27	Cs_2CO_3	PhMe	35
56	[Pd(allyl)Cl] ₂	L28	Cs_2CO_3	PhMe	40
57	[Pd(allyl)Cl] ₂	L29	Cs_2CO_3	PhMe	20
58	[Pd(allyl)Cl] ₂	L30	Cs_2CO_3	PhMe	trace
59	[Pd(allyl)Cl] ₂	L31	Cs_2CO_3	PhMe	27

60	[Pd(allyl)Cl] ₂	L32	Cs_2CO_3	PhMe	9
61	[Pd(allyl)Cl] ₂	L33	Cs_2CO_3	PhMe	24
62	[Pd(allyl)Cl] ₂	L34	Cs_2CO_3	PhMe	trace
63	[Pd(allyl)Cl] ₂	L35	Cs_2CO_3	PhMe	trace
64	[Pd(allyl)Cl] ₂	L36	Cs_2CO_3	PhMe	11
65	[Pd(allyl)Cl] ₂	L37	Cs_2CO_3	PhMe	22
66	[Pd(allyl)Cl] ₂	L38	Cs_2CO_3	PhMe	trace
67	[Pd(allyl)Cl] ₂	L39	Cs_2CO_3	PhMe	trace
68	[Pd(allyl)Cl] ₂	L40	Cs_2CO_3	PhMe	10
69	[Pd(allyl)Cl] ₂	L41	Cs_2CO_3	PhMe	trace
70	[Pd(allyl)Cl] ₂	L42	Cs_2CO_3	PhMe	9
71	[Pd(allyl)Cl] ₂	L43	Cs_2CO_3	PhMe	trace
72	[Pd(allyl)Cl] ₂	L44	Cs_2CO_3	PhMe	13
73	[Pd(allyl)Cl] ₂	L45	Cs_2CO_3	PhMe	trace
74	[Pd(allyl)Cl] ₂	L46	Cs_2CO_3	PhMe	trace
75	[Pd(allyl)Cl] ₂	L47	Cs_2CO_3	PhMe	trace
76	[Pd(allyl)Cl] ₂	L48	Cs_2CO_3	PhMe	trace
77	[Pd(allyl)Cl] ₂	L49	Cs_2CO_3	PhMe	trace
78	[Pd(allyl)Cl] ₂	L50	Cs_2CO_3	PhMe	trace
79	[Pd(allyl)Cl] ₂	L51	Cs_2CO_3	PhMe	trace
80	[Pd(allyl)Cl] ₂	L52	Cs_2CO_3	PhMe	11
81	[Pd(allyl)Cl] ₂	L10	K_2CO_3	PhMe	10
		S5			

82	[Pd(allyl)Cl] ₂	L10	Na ₂ CO ₃	PhMe	trace
83	[Pd(allyl)Cl] ₂	L10	NaHCO ₃	PhMe	trace
84	[Pd(allyl)Cl] ₂	L10	КОН	PhMe	19
85	[Pd(allyl)Cl] ₂	L10	NaOH	PhMe	6
86	[Pd(allyl)Cl]2	L10	LiOH	PhMe	11
87	[Pd(allyl)Cl] ₂	L10	CsOH·H ₂ O	PhMe	42
88	[Pd(allyl)Cl] ₂	L10	NaOPiv	PhMe	trace
89	[Pd(allyl)Cl] ₂	L10	NaOAc	PhMe	trace
90	[Pd(allyl)Cl] ₂	L10	KOAc	PhMe	10
91	[Pd(allyl)Cl]2	L10	K ₃ PO ₄	PhMe	7
92	[Pd(allyl)Cl] ₂	L10	KH ₂ PO ₄	PhMe	trace
93	[Pd(allyl)Cl] ₂	L10	C ₆ H ₅ ONa	PhMe	32
94	[Pd(allyl)Cl] ₂	L10	CsF	PhMe	9
95	[Pd(allyl)Cl]2	L10	KF	PhMe	trace
96	[Pd(allyl)Cl] ₂	L10	Et ₃ N	PhMe	14
97	[Pd(allyl)Cl] ₂	L10	NaOMe	PhMe	trace
98	[Pd(allyl)Cl] ₂	L10	^t BuONa	PhMe	14
99	[Pd(allyl)Cl]2	L10	^t BuOK	PhMe	16
100	[Pd(allyl)Cl] ₂	L10	Cs_2CO_3	mesitylene	25
101	[Pd(allyl)Cl] ₂	L10	Cs_2CO_3	o-xylene	48
102	[Pd(allyl)Cl] ₂	L10	Cs_2CO_3	<i>m</i> -xylene	26
103	[Pd(allyl)Cl] ₂	L10	Cs_2CO_3	<i>p</i> -xylene	41

104	[Pd(allyl)Cl] ₂	L10	Cs_2CO_3	PhF	38
105	[Pd(allyl)Cl] ₂	L10	Cs_2CO_3	PhCl	51
106	[Pd(allyl)Cl] ₂	L10	Cs_2CO_3	PhNO ₂	55
107	[Pd(allyl)Cl] ₂	L10	Cs_2CO_3	PhCF ₃	52
108	[Pd(allyl)Cl] ₂	L10	Cs_2CO_3	1,4-dioxane	39
109	[Pd(allyl)Cl] ₂	L10	Cs_2CO_3	DCE	54
110	[Pd(allyl)Cl] ₂	L10	Cs_2CO_3	DMSO	trace
111	[Pd(allyl)Cl] ₂	L10	Cs_2CO_3	DMF	trace
112	[Pd(allyl)Cl]2	L10	Cs_2CO_3	NMP	17
113	[Pd(allyl)Cl]2	L10	Cs_2CO_3	HMPA	14
114	[Pd(allyl)Cl] ₂	L10	Cs_2CO_3	CPME	31
115	[Pd(allyl)Cl] ₂	L10	Cs_2CO_3	MTBE	15
116	[Pd(allyl)Cl] ₂	L10	Cs_2CO_3	glyme	51
117	[Pd(allyl)Cl] ₂	L10	Cs_2CO_3	anisole	49
118	[Pd(allyl)Cl] ₂	L10	Cs_2CO_3	THF	43
119	[Pd(allyl)Cl] ₂	L10	Cs_2CO_3	<i>t</i> -AmOH	48
120 ^c	[Pd(allyl)Cl] ₂	L10	Cs_2CO_3	PhMe	42
121 ^{<i>d</i>}	[Pd(allyl)Cl]2	L10	Cs_2CO_3	PhMe	46
122 ^e	[Pd(allyl)Cl] ₂	L10	Cs_2CO_3	PhMe	54
123 ^f	[Pd(allyl)Cl] ₂	L10	Cs_2CO_3	PhMe	57
124 ^g	[Pd(allyl)Cl] ₂	L10	Cs_2CO_3	PhMe	62
125 ^{<i>h</i>}	[Pd(allyl)Cl] ₂	L10	Cs_2CO_3	PhMe	65

126^{i}	[Pd(allyl)Cl] ₂	L10	Cs_2CO_3	PhMe	71
127 ^j	[Pd(allyl)Cl] ₂	L10	Cs_2CO_3	PhMe	64
128^{k}	[Pd(allyl)Cl] ₂	L10	Cs_2CO_3	PhMe	66
129 ^{<i>i</i>,<i>l</i>}	[Pd(allyl)Cl] ₂	L10	Cs_2CO_3	PhMe	45
130 ^{<i>i</i>,<i>m</i>}	[Pd(allyl)Cl]2	L10	Cs_2CO_3	PhMe	63
131 ^{<i>i</i>,<i>n</i>}	[Pd(allyl)Cl] ₂	L10	Cs_2CO_3	PhMe	60
132 ^{<i>i</i>,<i>o</i>}	[Pd(allyl)Cl] ₂	L10	Cs_2CO_3	PhMe	56
133 ^{<i>i</i>,<i>p</i>}	[Pd(allyl)Cl] ₂	L10	Cs_2CO_3	PhMe	59
134 ^{<i>i</i>,<i>q</i>}	[Pd(allyl)Cl]2	L10	Cs_2CO_3	PhMe	64
135 ^{<i>i</i>,<i>r</i>}	[Pd(allyl)Cl]2	L10	Cs_2CO_3	PhMe	42
136 ^{<i>i</i>,<i>s</i>}	[Pd(allyl)Cl] ₂	L10	Cs_2CO_3	PhMe	59
137 ^{<i>i</i>,<i>t</i>}	[Pd(allyl)Cl] ₂	L10	Cs_2CO_3	PhMe	60
138 ^{<i>i</i>,<i>u</i>}	[Pd(allyl)Cl] ₂	L10	Cs_2CO_3	PhMe	62
139 ^{<i>i</i>,<i>v</i>}	[Pd(allyl)Cl]2	L10	Cs_2CO_3	PhMe	38
$140^{i,w}$	[Pd(allyl)Cl] ₂	L10	Cs_2CO_3	PhMe	70
$141^{i,x}$	[Pd(allyl)Cl] ₂	L10	Cs_2CO_3	PhMe	39

^{*a*} Unless otherwise noted, all reactions were performed with **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.2 mmol, 1.0 equiv.), **3a** (0.8 mmol, 4.0 equiv.), Pd-catalyst (10 mol%), ligand (20 mol%), base (0.4 mmol, 2.0 equiv.), H₂O (0.6 mmol, 3.0 equiv.) in 2.0 mL of solvent under Ar atmosphere at 100 °C for 24 h. ^{*b*} Isolated yields based on **1a**. ^{*c*} H₂O (0 equiv.) was added. ^{*d*} H₂O (1.0 equiv.) was added. ^{*e*} H₂O (5.0 equiv.) was added. ^{*f*} 1.1 equiv. of **2a** was used. ^{*g*} 1.2 equiv. of **2a** was used. ^{*h*} 1.3 equiv. of **2a** was used. ^{*h*} 1.5 equiv. of **Ca** was used. ^{*h*} 1.5 equiv. of Cs₂CO₃ was used. ^{*m*} 2.5 equiv. of Cs₂CO₃ was used. ^{*n*} 3.0 equiv. of Cs₂CO₃ was used. ^{*n*} 1.0 mL of PhMe was used. ^{*p*} 1.5 mL of PhMe was used. ^{*q*} 2.5 mL of PhMe was used. ^{*r*} 3.0 mL of PhMe was used. ^{*s*} Carried out at 80 °C. ^{*t*} Carried out at 100 °C. ^{*w*} Carried out at 120 °C. ^{*w*} Carried out with 20 mol% [Pd(allyl)Cl]₂ and 40 mol% P(4-CF₃C₆H₄)₃. ^{*x*} Carried out in the absence of water.

Ligands examined in this work:

3. The water effect on the yield of 4a

Reaction conditions: The reaction was performed with **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.28 mmol, 1.4 equiv.), **3a** (0.8 mmol, 4.0 equiv.), $[Pd(allyl)Cl]_2$ (10 mol%), $P(4-CF_3C_6H_4)_3$ (20 mol%), Cs_2CO_3 (0.4 mmol, 2.0 equiv.), H_2O (0.2x mmol, x equiv.) in 2.0 mL of PhMe under an Ar atmosphere at 100 °C for 24 h. Isolated yields of **4a** based on **1a**.

Fig. E1 The water effect on the yield of 4a

4. Representative procedure for the synthesis of compound 4a

To a 4.0 mL flame-dried vial with a stir bar, **1a** (54.5mg, 0.2 mmol), **2a** (55.2 mg, 0.28 mmol), **3a** (75.3 mg, 0.8 mmol), [Pd(allyl)Cl]₂ (7.3 mg, 0.02 mmol), P(4-CF₃C₆H₄)₃ (18.7 mg, 0.04 mmol), Cs₂CO₃ (130.3mg, 0.4 mmol), H₂O (10.8 μ L, 0.6 mmol) and PhMe (2.0 mL) were added. Then, the reaction vial was evacuated and backfilled with argon three times, and the mixture was stirred at 100 °C for 24 h. After completed of the reaction, it was concentrated to remove solvent and purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 50:1 – 30:1) to afford the product **4a** (37.5mg, 71% yield).

5. Characterization data of compounds 4a-ab

Scheme 2, 4a

Compound **4a**: white solid, 37.5 mg, 71% yield, mp 124.6 – 125.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.22 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.62 (td, *J* = 8.6, 1.6 Hz, 1H), 7.47 (d, *J* = 8.4 Hz, 1H), 7.37 (t, *J* = 7.6 Hz, 1H), 5.77 (d, *J* = 2.4 Hz, 1H), 5.32 (d, *J* = 1.8 Hz, 1H), 3.06 (d, *J* = 6.4 Hz, 1H), 2.75 (d, *J* = 6.0 Hz, 1H), 2.57 (d, *J* = 3.6 Hz, 1H), 2.20 (d, *J* = 3.6 Hz, 1H), 1.71 – 1.62 (m, 1H), 1.62 – 1.53 (m, 1H), 1.50 – 1.40 (m, 1H), 1.37 – 1.29 (m, 1H), 1.17 (d, *J* = 10.4 Hz, 1H), 1.05 (d, *J* = 10.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 177.0, 164.7, 156.4, 148.5, 133.3, 126.5, 125.9, 124.9, 118.2, 110.5, 110.1, 48.0, 46.8, 43.7, 38.5, 32.3, 29.4, 28.5; HRMS (ESI-TOF): calcd. for C₁₈H₁₇O₂ [M + H]⁺ 265.1223; found 265.1232.

Scheme 2, 4b

Compound **4b**: white solid, 37.9 mg, 64% yield, mp 119.5 – 120.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.49 (t, J = 8.4 Hz, 1H), 7.03 (d, J = 8.4 Hz, 1H), 6.77 (d, J = 8.4 Hz, 1H), 5.68 (d, J = 2.4 Hz, 1H), 5.26 (d, J = 1.8 Hz, 1H), 3.95 (s, 3H), 3.00 (d, J = 6.4 Hz, 1H), 2.71 (d, J = 5.8 Hz, 1H), 2.59 (d, J = 3.6 Hz, 1H), 2.16 (d, J = 3.4 Hz, 1H), 1.68 – 1.59 (m, 1H), 1.59 – 1.50 (m, 1H), 1.47 – 1.37 (m, 1H), 1.35 – 1.26 (m, 1H), 1.15 (d, J = 10.4 Hz, 1H), 1.02 (d, J = 10.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 177.2, 162.6, 160.3, 158.7, 148.5, 133.3, 127.7, 115.5, 110.5, 109.7, 106.4, 56.5, 48.1, 47.0, 43.6, 38.3, 32.3, 29.4, 28.6; HRMS (ESI-TOF): calcd. for C₁₉H₁₉O₃ [M + H]⁺ 295.1329; found 295.1335.

Scheme 2, 4c

Compound **4c**: white solid, 33.0 mg, 58% yield, mp 146.1 – 147.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (td, J = 8.4, 5.6 Hz, 1H), 7.26 (d, J = 8.4, 1H), 7.00 (dd, J = 10.8, 8.4 Hz, 1H), 5.74 (d, J = 2.4 Hz, 1H), 5.32 (d, J = 2.0 Hz, 1H), 3.03 (d, J = 6.4 Hz, 1H), 2.73 (d, J = 6.2 Hz, 1H), 2.57 (d, J = 3.8 Hz, 1H), 2.18 (d, J = 3.6 Hz, 1H), 1.70 – 1.61 (m, 1H), 1.60 – 1.52 (m, 1H), 1.47 – 1.39 (m, 1H), 1.35 – 1.28 (m, 1H), 1.15 (d, J = 10.4 Hz, 1H), 1.05 (d, J = 10.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 175.5, 163.6, 161.2 (d, J = 263.0 Hz), 157.6 (d, J = 3.8 Hz), 148.1, 133.2 (d, J = 10.8 Hz), 127.3, 115.2 (d, J = 10.0 Hz), 114.2 (d, J = 4.4 Hz), 112.0 (d, J = 21.2 Hz), 110.8, 48.0, 46.8, 43.6, 38.3, 32.3, 29.3, 28.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -112.9 – -113.0 (m, 1F); HRMS (ESI-TOF): calcd. for C₁₈H₁₆FO₂ [M + H]⁺ 283.1129; found 283.1131.

Scheme 2, 4d

Compound **4d**: white solid, 34.0 mg, 61% yield, mp 161.8 – 162.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.01 (dd, J = 1.6, 0.4 Hz, 1H), 7.43 (dd, J = 8.4, 2.2 Hz, 1H), 7.36 (d, J = 8.4 Hz, 1H), 5.76 (d, J = 2.4 Hz, 1H), 5.31 (d, J = 2.0 Hz, 1H), 3.06 (d, J = 6.4 Hz, 1H), 2.75 (d, J = 6.4 Hz, 1H), 2.57 (d, J = 4.0 Hz, 1H), 2.44 (s, 3H), 2.19 (d, J = 3.8 Hz, 1H), 1.71 – 1.62 (m, 1H), 1.61 – 1.53 (m, 1H), 1.50 – 1.41 (m, 1H), 1.37 – 1.29 (m, 1H), 1.16 (dt, J = 10.4, 1.6 Hz, 1H), 1.04 (dt, J = 10.4, 1.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 177.2, 164.7, 154.7, 148.7, 134.9, 134.5, 126.5, 125.4, 124.5, 118.0, 110.3, 48.1, 46.9, 43.8, 38.5, 32.3, 29.5, 28.6, 21.0; HRMS (ESI-TOF): calcd. for C₁₉H₁₉O₂ [M + H]⁺ 279.1380; found 279.1381.

Scheme 2, 4e

Compound **4e**: yellow solid, 36.6 mg, 62% yield, mp 125.8 – 126.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 2.6 Hz, 1H), 7.37 (d, J = 9.2 Hz, 1H), 7.19 (dd, J = 8.8, 2.4 Hz, 1H), 5.73 (s, 1H), 5.28 (s, 1H), 3.86 (s, 3H), 3.04 (d, J = 6.4 Hz, 1H), 2.72 (d, J = 6.2 Hz, 1H), 2.55 (d, J = 2.6 Hz, 1H), 2.17 (d, J = 2.6 Hz, 1H), 1.64 (tt, J = 11.8, 4.2 Hz, 1H), 1.55 (tt, J = 11.6, 3.6 Hz, 1H), 1.48 – 1.37 (m, 1H), 1.35 – 1.26 (m, 1H), 1.14 (d, J = 10.4 Hz, 1H), 1.02 (d, J = 10.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.8, 164.6, 156.8, 151.1, 148.5, 125.8, 125.4, 123.1, 119.5, 110.3, 105.3, 56.0, 48.1, 46.8, 43.7, 38.4, 32.2, 29.4, 28.5; HRMS (ESI-TOF): calcd. for C₁₉H₁₉O₃ [M + H]⁺ 295.1329; found 295.1332.

Scheme 2, 4f

Compound **4f**: white solid, 37.0 mg, 60% yield, mp 113.9 – 115.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 2.4 Hz, 1H), 7.48 (dd, J = 8.6, 2.4 Hz, 1H), 7.37 (d, J = 8.6 Hz, 1H), 5.73 (d, J = 2.4 Hz, 1H), 5.28 (d, J = 1.8 Hz, 1H), 3.04 (d, J = 6.4 Hz, 1H), 2.99 (dd, J = 13.8, 6.8 Hz, 1H), 2.71 (d, J = 6.4 Hz, 1H), 2.55 (d, J = 3.8 Hz, 1H), 2.16 (d, J = 3.8 Hz, 1H), 1.64 (tt, J = 11.4, 4.2 Hz, 1H), 1.54 (tt, J = 11.6, 3.6 Hz, 1H), 1.48 – 1.39 (m, 1H), 1.35 – 1.28 (m, 1H), 1.26 (d, J = 6.8 Hz, 6H), 1.13 (d, J = 10.4 Hz, 1H), 1.01 (d, J = 10.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 177.2, 164.5, 154.8, 148.6, 145.7, 132.1, 126.3, 124.5, 122.6, 118.0, 110.2, 48.0, 46.8, 43.7, 38.4, 33.8, 32.2, 29.4, 28.5, 24.1, 24.0; HRMS (ESI-TOF): calcd. for C₂₁H₂₃O₂ [M + H]⁺ 307.1693; found 307.1703.

Scheme 2, 4g

Compound **4g**: white solid, 30.0 mg, 53% yield, mp 138.1 – 139.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.86 (dd, J = 8.4, 3.2 Hz, 1H), 7.48 (dd, J = 9.2, 4.2 Hz, 1H), 7.35 (ddd, J = 9.2, 7.6, 3.2 Hz, 1H), 5.78 (d, J = 2.4 Hz, 1H), 5.35 (d, J = 2.0 Hz, 1H), 3.06 (d, J = 6.6 Hz, 1H), 2.77 (d, J = 6.2 Hz, 1H), 2.56 (d, J = 3.8 Hz, 1H), 2.21 (d, J = 3.8 Hz, 1H), 1.66 (tt, J = 11.4, 3.8 Hz, 1H), 1.58 (tt, J = 11.6, 3.8 Hz, 1H), 1.50 – 1.41 (m, 1H), 1.38 – 1.30 (m, 1H), 1.16 (d, J = 10.4 Hz, 1H), 1.06 (d, J = 10.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.2, 165.1, 159.6 (d, J = 246.2 Hz), 152.6, 148.4, 126.1 (d, J = 8.6 Hz), 126.0, 121.3 (d, J = 25.4 Hz), 120.2 (d, J = 8.0 Hz), 111.0 (d, J = 2.4 Hz), 110.8 , 48.1, 46.8, 43.8, 38.5, 32.3, 29.4, 28.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -117.0 – -117.1 (m, 1F); HRMS (ESI-TOF): calcd. for C₁₈H₁₆FO₂ [M + H]⁺ 283.1129; found 283.1134.

Scheme 2, 4h

Compound **4h**: white solid, 36.0 mg, 60% yield, mp 141.7 – 142.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 2.4 Hz, 1H), 7.57 (dd, J = 8.8, 2.6 Hz, 1H), 7.43 (d, J = 8.8 Hz, 1H), 5.78 (d, J = 2.4 Hz, 1H), 5.35 (d, J = 1.4 Hz, 1H), 3.06 (d, J = 6.6 Hz, 1H), 2.76 (d, J = 6.4 Hz, 1H), 2.56 (d, J = 3.6 Hz, 1H), 2.20 (d, J = 3.6 Hz, 1H), 1.66 (tt, J = 11.4, 3.8 Hz, 1H), 1.58 (tt, J = 11.8, 3.8 Hz, 1H), 1.50 – 1.41 (m, 1H), 1.38 – 1.29 (m, 1H), 1.15 (d, J = 10.4 Hz, 1H), 1.06 (d, J = 10.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 175.8, 165.0, 154.8, 148.3, 133.5, 130.9, 126.6, 125.9, 125.4, 119.9, 111.1, 48.1, 46.8, 43.8, 38.5, 32.3, 29.4, 28.5; HRMS (ESI-TOF): calcd. for C₁₈H₁₆ClO₂ [M + H]⁺ 299.0833; found 299.0843.

Scheme 2, 4i

Compound **4i**: white solid, 27.6 mg, 40% yield, mp 155.2 – 156.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, J = 2.4 Hz, 1H), 7.71 (dd, J = 8.8, 2.4 Hz, 1H), 7.37 (d, J = 8.8 Hz, 1H), 5.78 (d, J = 2.4 Hz, 1H), 5.35 (d, J = 2.0 Hz, 1H), 3.06 (d, J = 6.6 Hz, 1H), 2.77 (d, J = 6.4 Hz, 1H), 2.56 (d, J = 4.0 Hz, 1H), 2.21 (d, J = 3.8 Hz, 1H), 1.67 (tt, J = 11.4, 4.2 Hz, 1H), 1.58 (tt, J = 11.6, 3.2 Hz, 1H), 1.50 – 1.41 (m, 1H), 1.38 – 1.30 (m, 1H), 1.15 (dt, J = 10.4, 1.6 Hz, 1H), 1.06 (dt, J = 10.4, 1.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 175.7, 165.0, 155.2, 148.3, 136.2, 128.6, 126.7, 126.3, 120.2, 118.4, 111.1, 48.1, 46.9, 43.8, 38.5, 32.3, 29.4, 28.6; HRMS (ESI-TOF): calcd. for C₁₈H₁₆BrO₂ [M + H]⁺ 343.0328; found 343.0338.

Scheme 2, 4j

Compound **4j**: white solid, 25.2 mg, 44% yield, mp 166.0 – 167.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.55 (d, J = 2.0 Hz, 1H), 7.86 (dd, J = 8.6, 2.2 Hz, 1H), 7.59 (d, J = 8.8 Hz, 1H), 5.82 (d, J = 2.4 Hz, 1H), 5.40 (d, J = 1.8 Hz, 1H), 3.07 (d, J = 6.4 Hz, 1H), 2.79 (d, J = 6.0 Hz, 1H), 2.55 (s, 1H), 2.22 (s, 1H), 1.68 (tt, J = 11.4, 4.2 Hz, 1H), 1.59 (tt, J = 11.8, 3.6 Hz, 1H), 1.50 – 1.40 (m, 1H), 1.39 – 1.29 (m, 1H), 1.16 (dd, J = 10.6 Hz, 1.4 Hz, 1H), 1.08 (dd, J = 10.4 Hz, 1.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 175.1, 165.2, 158.2, 147.9, 135.7, 131.6, 127.3, 125.3, 119.9, 117.8, 112.0, 109.2, 48.0, 46.8, 43.7, 38.5, 32.4, 29.4, 28.5; HRMS (ESI-TOF): calcd. for C₁₉H₁₆NO₂ [M + H]⁺ 290.1176; found 290.1184.

Scheme 2, 4k

Compound **4k**: white solid, 30.0 mg, 54% yield, mp 106.6 – 107.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 8.0 Hz, 1H), 7.28 (s, 1H), 7.19 (d, J = 8.2 Hz, 1H), 5.75 (d, J = 2.4 Hz, 1H), 5.31 (d, J = 1.6 Hz, 1H), 3.06 (d, J = 6.4 Hz, 1H), 2.75 (d, J = 5.8 Hz, 1H), 2.57 (s, 1H), 2.48 (s, 3H), 2.20 (s, 1H), 1.72 – 1.63 (m, 1H), 1.62 – 1.52 (m, 1H), 1.50 – 1.41 (m, 1H), 1.38 – 1.30 (m, 1H), 1.17 (dd, J = 10.6, 1.0 Hz, 1H), 1.05 (dd, J = 10.4, 1.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 177.2, 164.5, 156.6, 148.7, 144.7, 126.5, 126.4, 125.7, 122.6, 118.1, 110.2, 48.1, 46.9, 43.8, 38.5, 32.3, 29.5, 28.6, 21.9; HRMS (ESI-TOF): calcd. for C₁₉H₁₉O₂ [M + H]⁺ 279.1380; found 279.1391.

Compound **4**I: yellow solid, 36.9 mg, 63% yield, mp 138.9 – 140.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 8.8 Hz, 1H), 6.93 (dd, *J* = 8.8, 2.4 Hz, 1H), 6.87 (d, *J* = 2.4 Hz, 1H), 5.71 (d, *J* = 2.4 Hz, 1H), 5.28 (d, *J* = 1.8 Hz, 1H), 3.89 (s, 3H), 3.03 (d, *J* = 6.4 Hz, 1H), 2.73 (d, *J* = 6.2 Hz, 1H), 2.56 (d, *J* = 3.8 Hz, 1H), 2.18 (d, *J* = 3.8 Hz, 1H), 1.65 (tt, *J* = 11.4, 4.2 Hz, 1H), 1.56 (tt, *J* = 11.8, 3.8 Hz, 1H), 1.49 – 1.39 (m, 1H), 1.36 – 1.28 (m, 1H), 1.17 (dt, *J* = 10.4 Hz, 1.6 Hz, 1H), 1.04 (dt, *J* = 10.4 Hz, 1.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.6, 164.3, 163.9, 158.2, 148.6, 127.2, 126.5, 118.8, 114.0, 109.8, 100.7, 55.9, 48.1, 46.8, 43.7, 38.5, 32.3, 29.5, 28.6; HRMS (ESI-TOF): calcd. for C₁₉H₁₉O₃ [M + H]⁺ 295.1329; found 295.1333.

Scheme 2, 4m

Compound **4m**: white solid, 32.2 mg, 57% yield, mp 90.8 – 92.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.23 (dd, J = 8.8, 6.4 Hz, 1H), 7.15 (dd, J = 9.2, 2.2 Hz, 1H), 7.10 (td, J = 8.6, 2.2 Hz, 1H), 5.75 (d, J = 2.4 Hz, 1H), 5.33 (d, J = 1.6 Hz, 1H), 3.05 (d, J = 6.4 Hz, 1H), 2.76 (d, J = 5.8 Hz, 1H), 2.56 (d, J = 3.2 Hz, 1H), 2.20 (d, J = 3.0 Hz, 1H), 1.66 (tt, J = 11.6, 4.2 Hz, 1H), 1.57 (tt, J = 11.8, 3.8 Hz, 1H), 1.50 – 1.40 (m, 1H), 1.37 – 1.29 (m, 1H), 1.16 (d, J = 10.4 Hz, 1H), 1.06 (d, J = 10.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.2, 165.5 (d, J = 253.0 Hz), 164.9, 157.4 (d, J = 13.2 Hz), 148.3, 128.3 (d, J = 10.6 Hz), 126.7, 121.7 (d, J = 2.4 Hz), 113.6 (d, J = 22.6 Hz), 110.8, 105.0 (d, J = 25.4 Hz), 48.1, 46.8, 43.7, 38.5, 32.3, 29.4, 28.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -103.9 – -104.0 (m, 1F); HRMS (ESI-TOF): calcd. for C₁₈H₁₆FO₂ [M + H]⁺ 283.1129; found 283.1136.

Scheme 2, 4n

Compound **4n**: white solid, 31.6 mg, 53% yield, mp 149.4 – 150.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 8.4 Hz, 1H), 7.51 (d, *J* = 1.8 Hz, 1H), 7.34 (dd, *J* = 8.4, 1.8 Hz, 1H), 5.76 (d, *J* = 2.4 Hz, 1H), 5.34 (d, *J* = 1.8 Hz, 1H), 3.05 (d, *J* = 6.4 Hz, 1H), 2.76 (d, *J* = 6.2 Hz, 1H), 2.56 (d, *J* = 3.8 Hz, 1H), 2.21 (d, *J* = 3.8 Hz, 1H), 1.67 (tt, *J* = 10.8, 4.0 Hz, 1H), 1.58 (tt, *J* = 11.6, 4.2 Hz, 1H), 1.50 – 1.41 (m, 1H), 1.38 – 1.30 (m, 1H), 1.16 (dt, *J* = 10.4 Hz, 2.0 Hz, 1H), 1.07 (dt, *J* = 10.4 Hz, 1.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.2, 164.8, 156.6, 148.3, 139.3, 127.3, 126.9, 125.8, 123.5, 118.4, 110.9, 48.1, 46.9, 43.8, 38.5, 32.3, 29.5, 28.6; HRMS (ESI-TOF): calcd. for C₁₈H₁₆ClO₂ [M + H]⁺ 299.0833; found 299.0842.

Scheme 2, 4o

Compound **40**: white solid, 28.3 mg, 41% yield, mp 143.6 – 144.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.08 (dd, J = 8.4, 3.2 Hz, 1H), 7.68 (s, 1H), 7.54 – 7.46 (m, 1H), 5.76 (s, 1H), 5.34 (s, 1H), 3.05 (d, J = 6.4 Hz, 1H), 2.76 (d, J = 4.6 Hz, 1H), 2.56 (s, 1H), 2.21 (s, 1H), 1.67 (tt, J = 11.8, 3.8 Hz, 1H), 1.58 (tt, J = 11.8, 3.8 Hz, 1H), 1.50 – 1.40 (m, 1H), 1.38 – 1.30 (m, 1H), 1.16 (d, J = 10.4 Hz, 1H), 1.07 (d, J = 10.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.3, 164.7, 156.5, 148.3, 128.6, 127.5, 127.4, 126.9, 123.8, 121.4, 111.0, 48.1, 46.8, 43.7, 38.5, 32.3, 29.4, 28.5; HRMS (ESI-TOF): calcd. for C₁₈H₁₆BrO₂ [M + H]⁺ 343.0328; found 343.0338.

Scheme 2, 4p

Compound **4p**: white solid, 34.5 mg, 62% yield, mp 110.0 – 111.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 8.0 Hz, 1H), 7.46 (d, *J* = 8.0 Hz, 1H), 7.26 (t, *J* = 7.6 Hz, 1H), 5.77 (d, *J* = 2.4 Hz, 1H), 5.33 (d, *J* = 1.8 Hz, 1H), 3.07 (d, *J* = 6.4 Hz, 1H), 2.76 (d, *J* = 5.8 Hz, 1H), 2.58 (d, *J* = 3.2 Hz, 1H), 2.51 (s, 3H), 2.20 (d, *J* = 3.2 Hz, 1H), 1.67 (tt, *J* = 11.4, 4.2 Hz, 1H), 1.58 (tt, *J* = 11.8, 4.0 Hz, 1H), 1.50 – 1.41 (m, 1H), 1.38 – 1.30 (m, 1H), 1.18 (d, *J* = 10.4 Hz, 1H), 1.05 (dd, *J* = 10.4, 1.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 177.4, 164.4, 154.8, 148.8, 134.4, 127.6, 126.3, 124.7, 124.5, 123.6, 110.2, 48.1, 46.9, 43.7, 38.5, 32.3, 29.4, 28.6, 15.7; HRMS (ESI-TOF): calcd. for C₁₉H₁₉O₂ [M + H]⁺ 279.1380; found 279.1386.

Scheme 2, 4q

Compound **4q**: white solid, 30.2 mg, 51% yield, mp 99.9 – 101.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.12 (dd, J = 8.0, 1.6 Hz, 1H), 7.68 (dd, J = 7.6, 1.6 Hz, 1H), 7.30 (t, J = 7.8 Hz, 1H), 5.87 (d, J = 2.4 Hz, 1H), 5.37 (d, J = 1.8 Hz, 1H), 3.06 (d, J = 6.4 Hz, 1H), 2.77 (d, J = 6.2 Hz, 1H), 2.56 (d, J = 3.8 Hz, 1H), 2.21 (d, J = 3.8 Hz, 1H), 1.67 (tt, J = 11.4, 4.2 Hz, 1H), 1.58 (tt, J = 11.8, 4.2 Hz, 1H), 1.49 – 1.40 (m, 1H), 1.37 – 1.29 (m, 1H), 1.17 (d, J = 10.4 Hz, 1H), 1.06 (d, J = 10.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.3, 164.7, 152.0, 148.0, 133.7, 126.5, 126.3, 125.0, 124.6, 123.4, 111.5, 48.0, 46.9, 43.7, 38.4, 32.3, 29.4, 28.5; HRMS (ESI-TOF): calcd. for C₁₈H₁₆ClO₂ [M + H]⁺ 299.0833; found 299.0834.

Scheme 2, 4r

Compound **4r**: yellow solid, 25.6 mg, 41% yield, mp 139.6 – 140.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.51 (dd, J = 8.0, 1.8 Hz, 1H), 8.29 (dd, J = 8.0, 1.8 Hz, 1H), 7.49 (t, J = 8.0 Hz, 1H), 5.90 (d, J = 2.4 Hz, 1H), 5.42 (d, J = 2.0 Hz, 1H), 3.09 (d, J = 6.6 Hz, 1H), 2.81 (d, J = 6.4 Hz, 1H), 2.57 (d, J = 3.8 Hz, 1H), 2.24 (d, J = 3.8 Hz, 1H), 1.69 (tt, J = 11.6, 4.2 Hz, 1H), 1.60 (tt, J = 12.0, 4.2 Hz, 1H), 1.50 – 1.42 (m, 1H), 1.39 – 1.32 (m, 1H), 1.20 (d, J = 10.6 Hz, 1H), 1.10 (d, J = 10.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 174.9, 165.0, 148.7, 147.4, 139.2, 131.9, 129.5, 126.9, 126.8, 124.2, 112.8, 48.0, 47.0, 43.7, 38.5, 32.4, 29.4, 28.5; HRMS (ESI-TOF): calcd. for C₁₈H₁₆NO₄ [M + H]⁺ 310.1074; found 310.1085.

Scheme 2, 4s

Compound **4s**: white solid, 42.0 mg, 72% yield, mp 110.1 – 110.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.90 (s, 1H), 7.20 (s, 1H), 5.69 (d, J = 2.4 Hz, 1H), 5.25 (d, J = 1.8 Hz, 1H), 3.02 (d, J = 6.4 Hz, 1H), 2.70 (d, J = 6.0 Hz, 1H), 2.54 (d, J = 3.6 Hz, 1H), 2.33 (s, 3H), 2.30 (s, 3H), 2.16 (d, J = 3.6 Hz, 1H), 1.63 (tt, J = 11.4, 3.8 Hz, 1H), 1.54 (tt, J = 11.6, 4.2 Hz, 1H), 1.47 – 1.39 (m, 1H), 1.34 – 1.26 (m, 1H), 1.13 (d, J = 10.4 Hz, 1H), 1.01 (d, J = 10.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 177.0, 164.2, 154.9, 148.7, 143.6, 134.0, 126.3, 125.5, 122.6, 118.3, 109.9, 48.0, 46.8, 43.7, 38.4, 32.2, 29.4, 28.5, 20.4, 19.3; HRMS (ESI-TOF): calcd. for C₂₀H₂₁O₂ [M + H]⁺ 293.1536; found 293.1545.

Scheme 2, 4t

Compound **4t**: white solid, 35.8 mg, 61% yield, mp 142.6 – 143.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (s, 1H), 7.29 (s, 1H), 5.75 (d, J = 2.4 Hz, 1H), 5.31 (d, J = 2.0 Hz, 1H), 3.07 (d, J = 6.6 Hz, 1H), 2.76 (d, J = 6.2 Hz, 1H), 2.58 (d, J = 3.6 Hz, 1H), 2.47 (s, 3H), 2.40 (s, 3H), 2.20 (d, J = 3.6 Hz, 1H), 1.69 – 1.62 (m, 1H), 1.58 (tt, J = 11.4, 4.2 Hz, 1H), 1.49 – 1.42 (m, 1H), 1.37 – 1.30 (m, 1H), 1.17 (d, J = 10.4 Hz, 1H), 1.05 (d, J = 10.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 177.5, 164.3, 153.1, 149.0, 135.7, 134.3, 127.3, 126.2, 124.4, 123.0, 109.9, 48.1, 46.9, 43.8, 38.5, 32.3, 29.5, 28.6, 21.0, 15.6; HRMS (ESI-TOF): calcd. for C₂₀H₂₁O₂ [M + H]⁺ 293.1536; found 293.1540.

Scheme 2, 4u

Compound **4u**: white solid, 37.2 mg, 60% yield, mp 132.8 – 133.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.17 (s, 1H), 7.37 (s, 1H), 5.75 (d, J = 2.4 Hz, 1H), 5.33 (d, J = 1.8 Hz, 1H), 3.05 (d, J = 6.4 Hz, 1H), 2.76 (d, J = 6.0 Hz, 1H), 2.56 (d, J = 3.2 Hz, 1H), 2.49 (s, 3H), 2.20 (d, J = 3.2 Hz, 1H), 1.67 (tt, J = 11.8, 4.4 Hz, 1H), 1.59 – 1.54 (m, 1H), 1.49 – 1.42 (m, 1H), 1.38 – 1.30 (m, 1H), 1.16 (d, J = 10.4 Hz, 1H), 1.06 (d, J = 10.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 175.9, 164.8, 154.7, 148.5, 142.4, 131.6, 126.5, 125.7, 124.0, 120.1, 110.7, 48.1, 46.9, 43.8, 38.5, 32.3, 29.5, 28.6, 20.9; HRMS (ESI-TOF): calcd. for C₁₉H₁₈ClO₂ [M + H]⁺ 313.0990; found 313.0989.

Scheme 2, 4v

Compound **4v**: yellow solid, 33.5 mg, 53% yield, mp 135.4 – 136.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, *J* = 8.0 Hz, 1H), 8.19 (d, *J* = 8.8 Hz, 1H), 7.91 (d, *J* = 7.2 Hz, 1H), 7.75 (d, *J* = 8.8 Hz, 1H), 7.72 – 7.62 (m, 2H), 5.92 (s, 1H), 5.39 (s, 1H), 3.14 (d, *J* = 6.4 Hz, 1H), 2.82 (d, *J* = 5.8 Hz, 1H), 2.64 (d, *J* = 2.4 Hz, 1H), 2.24 (d, *J* = 2.0 Hz, 1H), 1.72 – 1.66 (m, 1H), 1.61 (tt, *J* = 11.4, 3.8 Hz, 1H), 1.53 – 1.46 (m, 1H), 1.40 – 1.33 (m, 1H), 1.23 (d, *J* = 15.8 Hz, 1H), 1.09 (d, *J* = 10.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 177.0, 164.0, 153.6, 148.7, 136.0, 129.1, 128.2, 127.9, 127.1, 125.1, 124.4, 122.4, 121.2, 121.1, 110.0, 48.3, 47.0, 43.8, 38.5, 32.4, 29.5, 28.6; HRMS (ESI-TOF): calcd. for C₂₂H₁₉O₂ [M + H]⁺ 315.1380; found 315.1387.

Scheme 2, 4w

Compound **4w**: white solid, 26.6 mg, 42% yield, mp 161.7 – 162.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.15 (d, J = 7.8 Hz, 1H), 8.06 (d, J = 8.6 Hz, 1H), 7.89 (d, J = 6.6 Hz, 1H), 7.80 – 7.69 (m, 1H), 7.65 – 7.51 (m, 2H), 5.79 (s, 1H), 5.34 (s, 1H), 3.16 (s, 1H), 2.82 (s, 1H), 2.68 (s, 1H), 2.24 (s, 1H), 1.75 – 1.66 (m, 1H), 1.66 – 1.58 (m, 1H), 1.55 – 1.46 (m, 1H), 1.41 – 1.33 (m, 1H), 1.22 (d, J = 10.2 Hz, 1H), 1.09 (d, J = 10.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 179.4, 162.4, 157.7, 148.4, 135.2, 131.2, 130.8, 129.2, 129.1, 128.2, 127.2, 126.5, 118.0, 109.8, 48.4, 47.2, 43.7, 38.5, 32.4, 29.5, 28.6; HRMS (ESI-TOF): calcd. for C₂₂H₁₉O₂ [M + H]⁺ 315.1380; found 315.1388.

Compound **4x**: yellow solid, 12.9 mg, 25% yield, mp 148.2 – 149.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.25 (dd, J = 8.0, 1.6 Hz, 1H), 7.65 (ddd, J = 8.6, 7.2, 1.6 Hz, 1H), 7.49 (dd, J = 8.4, 1.0 Hz, 1H), 7.39 (ddd, J = 8.0, 7.2, 1.0 Hz, 1H), 6.33 (dd, J = 5.8, 3.2 Hz, 1H), 6.18 (dd, J = 5.8, 3.0 Hz, 1H), 5.84 (d, J = 2.4 Hz, 1H), 5.42 (d, J = 2.0 Hz, 1H), 3.25 – 3.05 (m, 2H), 2.85 – 2.71 (m, 2H), 1.42 – 1.37 (m, 1H), 1.27 (dd, J = 11.2, 3.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.9, 165.0, 156.5, 146.8, 139.1, 136.3, 133.4, 126.6, 126.0, 125.1, 125.0, 118.3, 111.1, 48.4, 45.7, 44.6, 43.6, 42.0; HRMS (ESI-TOF): calcd. for C₁₈H₁₅O₂ [M + H]⁺ 263.1067; found 263.1075.

Compound **4y**: white solid, 35.0 mg, 53% yield, mp 142.9 – 144.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.23 (dd, J = 8.0, 1.6 Hz, 1H), 7.66 – 7.61 (m, 1H), 7.47 (d, J = 8.4 Hz, 1H), 7.41 – 7.35 (m, 1H), 5.77 (d, J = 2.4 Hz, 1H), 5.30 (d, J = 2.0 Hz, 1H), 3.45 (d, J = 6.2 Hz, 1H), 3.09 (d, J = 5.6 Hz, 1H), 2.64 (d, J = 4.6 Hz, 1H), 2.42 (s, 1H), 2.27 (s, 1H), 2.22 (d, J = 4.4 Hz, 1H), 1.87 (dd, J = 10.0, 4.8 Hz, 1H), 1.76 (dd, J = 10.0, 4.6 Hz, 1H), 1.65 (d, J = 11.0 Hz, 1H), 1.52 (d, J = 7.2 Hz, 2H), 1.19 (d, J = 10.4 Hz, 1H), 1.09 – 0.99 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 176.9, 164.5, 156.4, 149.1, 133.3, 126.5, 125.9, 125.0, 124.9, 118.2, 110.2, 50.7, 50.0, 48.8, 43.3, 43.1, 42.1, 36.6, 36.5, 35.5, 35.3, 31.4, 31.3; HRMS (ESI-TOF): calcd. for C₂₃H₂₃O₂ [M + H]⁺ 331.1693; found 331.1706.

Compound **4z**: white solid, 51.2 mg, 70% yield, mp 189.9 – 190.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.26 (dd, J = 8.0, 1.6 Hz, 1H), 7.65 (td, J = 7.0, 1.6 Hz, 1H), 7.49 (dd, J = 8.4, 0.4 Hz, 1H), 7.40 (td, J = 7.6, 1.0 Hz, 1H), 6.90 (s, 2H), 5.86 (d, J = 2.4 Hz, 1H), 5.44 (d, J = 2.0 Hz, 1H), 3.46 (d, J = 3.6 Hz, 1H), 3.31 (d, J = 3.6 Hz, 1H), 3.13 (d, J = 6.4 Hz, 1H), 2.82 (d, J = 5.4 Hz, 1H), 2.71 (s, 1H), 2.31 (s, 1H), 2.18 (s, 3H), 2.17 (s, 3H), 0.96 (d, J = 11.2 Hz, 1H), 0.77 (d, J = 11.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 177.0, 164.4, 156.4, 147.9, 143.8, 143.1, 133.4, 129.7, 129.2, 128.8, 128.6, 126.2, 125.9, 125.0, 124.8, 118.2, 111.1, 49.2, 47.8, 46.6, 45.6, 42.9, 38.0, 26.5, 16.4, 16.3; HRMS (ESI-TOF): calcd. for C₂₆H₂₃O₂ [M + H]⁺ 367.1693; found 367.1700.

Compound **4aa**: white solid, 44.5 mg, 51% yield, mp 224.6 – 225.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.76 – 8.69 (m, 2H), 8.28 (d, *J* = 7.8 Hz, 1H), 7.91 – 7.81 (m, 2H), 7.64 – 7.57 (m, 5H), 7.49 (d, *J* = 8.4 Hz, 1H), 7.40 (t, *J* = 7.2 Hz, 1H), 5.88 (s, 1H), 5.49 (s, 1H), 3.84 (s, 1H), 3.70 (s, 1H), 3.30 (d, *J* = 3.6 Hz, 1H), 2.98 (s, 1H), 2.89 (s, 1H), 2.50 (s, 1H), 0.98 (d, *J* = 11.0 Hz, 1H), 0.77 (d, *J* = 11.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 164.5, 156.5, 147.9, 140.1, 139.1, 133.5, 131.1, 131.0, 128.3, 128.2, 126.9, 126.7, 126.0, 125.9, 125.8, 125.1, 124.0, 123.8, 123.4, 122.9, 118.3, 111.3, 49.5, 48.1, 47.0, 46.0, 42.4, 37.7, 26.5; HRMS (ESI-TOF): calcd. for C₃₂H₂₃O₂ [M + H]⁺439.1693; found 439.1703.

Compound **4ab**: white solid, 72.1 mg, 82% yield, mp 238.5 – 239.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, *J* = 8.0 Hz, 1H), 7.61 (t, *J* = 7.8 Hz, 1H), 7.43 (d, *J* = 8.4 Hz, 1H), 7.36 (t, *J* = 7.6 Hz, 1H), 7.29 (dd, *J* = 8.8, 4.2 Hz, 2H), 7.20 – 7.13 (m, 2H), 7.10 (t, *J* = 4.2 Hz, 2H), 7.05 (t, *J* = 3.8 Hz, 2H), 5.73 (d, *J* = 2.0 Hz, 1H), 5.31 (d, *J* = 1.2 Hz, 1H), 4.38 (d, *J* = 2.4 Hz, 1H), 4.31 (d, *J* = 2.6 Hz, 1H), 2.97 (d, *J* = 6.4 Hz, 1H), 2.65 (d, *J* = 5.6 Hz, 1H), 2.43 (s, 1H), 2.21 (dd, *J* = 8.4 Hz, 2.4 Hz, 1H), 2.07 (dd, *J* = 8.6 Hz, 2.2 Hz, 1H), 2.03 (s, 1H), 0.36 (d, *J* = 11.6 Hz, 1H), -0.53 (d, *J* = 11.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 177.0, 165.0, 156.3, 147.5, 144.7, 144.5, 142.3, 142.0, 133.4, 126.2, 126.1, 125.9, 125.8, 125.7, 125.4, 125.0, 124.7, 124.5, 124.3, 123.5, 123.3, 118.2, 110.9, 49.8, 49.1, 48.5, 48.4, 48.3, 48.1, 46.8, 41.7, 27.0; HRMS (ESI-TOF): calcd. for C₃₂H₂₅O₂ [M + H]⁺441.1849; found 441.1851.

6. Preparative-scale experiments

6.1 Synthesis of 4a on a gram-scale (Scheme 3a)

To a 350 mL flame-dried pressure tube with a stir bar, **1a** (2.18 g, 8.0 mmol), **2a** (2.21 g, 11.2 mmol), **3a** (3.01 g, 32.0 mmol), [Pd(allyl)Cl]₂ (292.7 mg, 0.8 mmol), P(4-CF₃C₆H₄)₃ (746.1 mg, 1.6 mmol), Cs₂CO₃ (5.21 g, 16.0 mmol), H₂O (432.0 μ L, 24.0 mmol) and PhMe (80 mL) were added. The reaction tube was evacuated and backfilled with argon three times, and the mixture was stirred at 100 °C for 24 h. After completed of the reaction, it was concentrated to remove solvent and purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 50:1 – 30:1) to afford the product **4a** (1.12 g, 53% yield).

6.2 Synthesis of 4ab on a gram-scale (Scheme 3b)

To a 350 mL flame-dried pressure tube with a stir bar, **1a** (1.36 g, 5.0 mmol), **2a** (1.38 g, 7.0 mmol), **3f** (5.41 g, 20.0 mmol), [Pd(allyl)Cl]₂ (183.0 mg, 0.5 mmol), P(4-CF₃C₆H₄)₃ (466.3 mg, 1.0 mmol), Cs₂CO₃ (3.26 g, 10.0 mmol), H₂O (270.0 μ L, 15.0 mmol) and PhMe (50 mL) were added. The reaction tube was evacuated and backfilled with argon three times, and the mixture was stirred at 100 °C for 24 h. After completed of the reaction, it was concentrated to remove solvent and purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 50:1 – 20:1) to afford the product **4ab** (1.25 g, 57% yield).

7. Transformations of 4a into 5-12

7.1 Synthesis of 5 from 4a (Scheme 4)

To a solution of **4a** (52.8 mg, 0.2 mmol) in extra dry PhMe (2.0 mL) was added Lawesson's reagent (45.2 mg, 0.1 mmol), and the mixture was stirred at 30 °C for 24 h. After completion, the reaction mixture was directly purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 30:1 - 10:1) to afford the product **5** (47.7 mg, 85% yield).⁵ Brown solid, mp 182.8 – 184.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.62 (dd, *J* = 8.2, 1.2 Hz, 1H), 7.66 (td, *J* = 6.8, 1.6 Hz, 1H), 7.49 (dd, *J* = 8.4, 0.8 Hz, 1H), 7.39 (td, *J* = 7.6, 1.0 Hz, 1H), 5.95 (d, *J* = 2.4 Hz, 1H), 5.50 (d, *J* = 2.0 Hz, 1H), 3.20 (d, *J* = 6.8 Hz, 1H), 2.84 (d, *J* = 3.6 Hz, 1H), 2.80 (d, *J* = 6.4 Hz, 1H), 2.25 (d, *J* = 3.6 Hz, 1H), 1.67 (tt, *J* = 12.0, 4.2 Hz, 1H), 1.60 (tt, *J* = 11.8, 3.8 Hz, 1H), 1.52 – 1.44 (m, 1H), 1.40 – 1.33 (m, 1H), 1.13 (d, *J* = 10.4 Hz, 1H), 1.05 (d, *J* = 10.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 200.2, 155.9, 151.4, 148.5, 137.7, 133.4, 130.8, 128.3, 126.0, 118.6, 112.9, 49.8, 47.9, 43.8, 37.7, 32.7, 29.4, 28.5; HRMS (ESI-TOF): calcd. for C₁₈H₁₇SO [M + H]⁺ 281.0995; found 281.1008.

7.2 Synthesis of 6 from 4a (Scheme 4)

To a solution of **4a** (52.8 mg, 0.2 mmol) in dry pyridine (2.0 mL) was added a solution of OsO₄ in PhMe (0.2 M, 4.4 mL, 0.22 mmol), and the dark reaction mixture was stirred at room temperature for 24 h. Aqueous NaHSO₃ solution was added. After further reaction for 90 min, the mixture was diluted with water and extracted with DCM (3×10 mL) and ethyl acetate (3×10 mL). Drying over anhydrous Na₂SO₄ and evaporation of the solvent from the organic phase gave residue that can be

used directly for the next step. To a solution of the above crude product in THF/H₂O (1:1, 3.0 mL) was added NaIO₄ (47.06 mg, 0.22 mmol) at 0 °C. The solution was warmed to room temperature and stirred for additional 3 h. Then diluted with ethyl acetate before it was quenched with aqueous Na₂S₂O₃ solution. The organic layer was separated, washed with water and brine, dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 50:1 – 30:1) to afford the product **6** (33.2 mg, 62% yield).⁶ White solid, mp 171.5 – 172.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, *J* = 7.8 Hz, 1H), 7.75 (t, *J* = 7.8 Hz, 1H), 7.62 (d, *J* = 8.6 Hz, 1H), 7.47 (t, *J* = 7.6 Hz, 1H), 3.14 (d, *J* = 5.4 Hz, 1H), 2.69 (d, *J* = 2.4 Hz, 1H), 2.59 (d, *J* = 2.0 Hz, 1H), 2.49 (d, *J* = 5.0 Hz, 1H), 1.77 (tt, *J* = 12.0, 4.0 Hz, 1H), 1.06 (tt, *J* = 11.8, 4.2 Hz, 1H), 1.56 – 1.47 (m, 1H), 1.43 – 1.35 (m, 1H), 1.09 (d, *J* = 11.0 Hz, 1H), 1.01 (d, *J* = 10.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 202.7, 178.1, 159.6, 156.2, 141.5, 135.2, 126.3, 126.0, 125.2, 119.3, 53.3, 42.3, 40.0, 37.5, 32.2, 29.1, 28.8; HRMS (ESI-TOF): calcd. for C₁₇H₁₅O₃ [M + H]⁺ 267.1016; found 267.1022.

7.3 Synthesis of 7 from 4a (Scheme 4)

To a 4.0 mL flame-dried vial with a stir bar, **4a** (52.8 mg, 0.2 mmol), iodobenzene (81.6 mg, 0.4 mmol), Pd(PPh₃)₄ (11.6 mg, 0.01 mmol), K₂CO₃ (55.3 mg, 0.4 mmol), and DMF (2.0 mL) were added. The reaction vial was evacuated and backfilled with argon three times, and the mixture was stirred at 100 °C for 24 h. After completed of the reaction, the reaction solution was extracted with ethyl acetate. The organic phase was separated, washed with water (3 × 10 mL), and dried over anhydrous Na₂SO₄. After filtration, the solvent was removed by concentration. The residue was subjected to flash column chromatography on silica gel (petroleum ether/ethyl acetate = 70:1 – 40:1) to afford the product **7** (60.7 mg, 89% yield).⁷ White solid, mp 189.0 – 189.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, *J* = 7.8 Hz, 1H), 7.68 – 7.59 (m, 3H), 7.53 (d, *J* = 8.4 Hz, 1H), 7.43 (t, *J* = 7.6 Hz, 2H), 7.37 (d, *J* = 7.6 Hz, 1H), 7.32 (t, *J* = 7.2 Hz, 1H), 7.12 (s, 1H), 3.25 (s, 2H), 2.69 (s,

1H), 2.44 (s, 1H), 1.76 – 1.66 (m, 1H), 1.65 – 1.56 (m, 1H), 1.55 – 1.41 (m, 2H), 1.22 (d, J = 10.4 Hz, 1H), 1.02 (d, J = 10.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.6, 165.8, 156.4, 139.9, 135.7, 133.3, 129.7, 128.9, 128.3, 125.9, 125.8, 125.5, 125.0, 124.9, 118.1, 48.0, 47.7, 39.4, 39.3, 32.6, 29.0, 28.8; HRMS (ESI-TOF): calcd. for C₂₄H₂₁O₂ [M + H]⁺341.1536; found 341.1546.

7.4 Synthesis of 8 from 4a (Scheme 4)

Into a mixture of Fe(TPP)Cl (7.04 mg, 0.01 mmol) and zinc powder (2.6 mg, 0.04 mmol) was added DMF (0.5 mL) under Ar atmosphere, and the mixture was stirred at 60 °C for 10 min. Substrate 4a (52.8 mg, 0.2 mmol), sulfonium salt Ph₂S⁺CH₂CF₂H·TfO⁻ (160.0 mg, 0.4 mmol), CsF (121.5 mg, 0.8 mmol) and DMF (2.0 mL) were then added. The resulting mixture was stirred at 60 °C for another 24 h, then diluted with DCM (10.0 mL) and water (10.0 mL). The organic phase was separated and washed with water (3 \times 10 mL), and then dried over anhydrous Na₂SO₄. After filtration, the solvent was removed by concentration. The residue was subjected to flash column chromatography on silica gel (petroleum ether/ethyl acetate = 40:1 - 20:1) to afford the product 8 (59.1 mg, 90% yield).⁸ White solid, mp 115.0 – 116.3 °C; 55:45 dr; ¹H NMR (400 MHz, CDCl₃) δ (major + minor) 8.22 (d, J = 8.0 Hz, 1H), 7.60 (q, J = 7.2 Hz, 1H), 7.41 - 7.30 (m, 2H), 5.94 (td, J = 55.6, 7.6 Hz, 0.55H), 5.71 (td, J = 55.8, 5.4 Hz, 0.45H), 3.29 (d, J = 7.6 Hz, 0.55H), 3.25 (d, J = 7.6 Hz, 0.45H), 2.64 (s, 1H), 2.31 (d, J = 7.6 Hz, 0.45H), 2.17 (d, J = 7.6 Hz, 0.55H), 2.11 – 2.04 (m, 0.45H), 1.99 (dd, J = 11.2, 3.6 Hz, 1H), 1.83 (sext, J = 8.0 Hz, 0.55H), 1.64 – 1.39 (m, 4.45H), 1.39 – 1.27 (m, 1.55H), 1.22 – 1.06 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ (major + minor) 175.4, 175.3, 169.0, 168.1, 156.4, 156.2, 133.1, 132.9, 126.1, 126.0, 125.3, 125.1, 124.7, 124.6, 123.3, 121.3, 117.8, 117.7, 116.4 (t, J = 238.0 Hz), 116.3 (t, J = 235.0 Hz), 48.9, 48.3, 47.9, 43.6, 39.7, 39.4, 39.3, 39.0, 33.9, 33.6, 32.9, 32.8, 32.3 (t, *J* = 30.0 Hz), 29.0, 28.9, 27.9, 27.7, 26.2 (t, *J* = 28.0 Hz), 14.4, 13.0; ¹⁹F NMR (376 MHz, CDCl₃) δ (major + minor) -107.01 (ABdd, J = 289.6, 56.0 Hz, major), -110.24 (ABddd, J = 289.6, 55.4, 9.6 Hz, major), -112.60 (ABddd, J = 287.0, 55.8, 10.4 Hz, minor), -116.02 (ABddd, J = 287.0, 55.8, 9.6 Hz, minor); HRMS (ESI-TOF): calcd. for C₂₀H₁₉F₂O₂ [M + H]⁺ 329.1348; found 329.1356.

7.5 Synthesis of 9 from 4a (Scheme 4)

Into a mixture of Fe(TPP)Cl (14.1 mg, 0.02 mmol) and zinc powder (2.6 mg, 0.04 mmol) was added DMF (0.5 mL) under Ar atmosphere, and the mixture was stirred at 60 °C for 10 min. Substrate 4a (52.8 mg, 0.2 mmol), sulfonium salt Ph₂S⁺CH₂CF₃·TfO⁻ (167.4 mg, 0.4 mmol), CsF (121.5 mg, 0.8 mmol) and DMF (2.0 mL) were then added. The resulting mixture was stirred at 60 °C for another 24 h, then diluted with DCM (10.0 mL) and water (10.0 mL). The organic phase was separated and washed with water (3 \times 10 mL), and then dried over anhydrous Na₂SO₄. After filtration, the solvent was removed by concentration. The residue was subjected to flash column chromatography on silica gel (petroleum ether/ethyl acetate = 40:1 - 20:1) to afford the product 9 (55.4 mg, 80% yield).⁸ White solid, mp 134.8 – 135.9 °C; 99:1 dr; ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, J = 7.8 Hz, 1H), 7.60 (t, J = 7.8 Hz, 1H), 7.41 – 7.33 (m, 2H), 3.30 (d, J = 7.4 Hz, 1H), 2.66 (d, J = 3.8 Hz, 1H), 2.16 (d, J = 7.4 Hz, 1H), 2.02 – 1.91 (m, 2H), 1.86 (t, J = 6.8 Hz, 1H), 1.66 – $1.50 \text{ (m, 3H)}, 1.50 - 1.40 \text{ (m, 1H)}, 1.30 \text{ (d, } J = 10.6 \text{ Hz}, 1\text{H)}, 1.17 - 1.06 \text{ (m, 2H)}; {}^{13}\text{C NMR} (100)$ MHz, CDCl₃) δ 175.7, 166.8, 156.4, 133.1, 125.9, 125.2, 125.1 (q, J = 273.2 Hz), 124.5, 123.8, 118.1, 49.7, 47.6, 39.1, 38.9, 34.9 (q, J = 2.0 Hz), 32.8, 31.7 (q, J = 38.8 Hz), 28.8, 28.0, 14.31 (q, J = 3.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -59.6 (s, 3F); HRMS (ESI-TOF): calcd. for C₂₀H₁₈F₃O₂ [M + H]⁺ 347.1253; found 347.1261.

7.6 Synthesis of 10 from 4a (Scheme 4)

To a solution of **4a** (52.8 mg, 0.2 mmol) and Rh₂(OAc)₄ (0.89 mg, 0.002 mmol) in extra dry PhMe (1.0 mL) was added a solution of 3-diazooxindole (57.7 mg, 0.4 mmol) in extra dry DCM (1.0 mL) under Ar atmosphere. The mixture was stirred at 50 °C for 24 h. After completion, the reaction mixture was directly purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 5:1 - 3:1) to afford the product **10** (74.8 mg, 91% yield).⁹ White solid, mp 186.5 – 187.7 °C; 99:1 dr; ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, *J* = 7.8 Hz, 1H), 7.76 – 7.64 (m, 2H), 7.57 (d, *J* = 8.4 Hz, 1H), 7.39 (t, *J* = 7.6 Hz, 1H), 7.23 (t, *J* = 7.6 Hz, 1H), 7.00 (t, *J* = 7.6 Hz, 1H), 6.87 (d, *J* = 7.8 Hz, 1H), 3.28 (s, 3H), 3.11 (d, *J* = 7.4 Hz, 1H), 2.64 (s, 1H), 2.52 (t, *J* = 7.2 Hz, 2H), 2.39 (s, 1H), 2.33 (d, *J* = 5.6 Hz, 1H), 1.68 – 1.57 (m, 2H), 1.47 – 1.27 (m, 3H), 1.11 (d, *J* = 10.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 173.7, 167.4, 156.1, 144.5, 133.3, 127.6, 126.5, 126.3, 125.4, 123.3, 121.6, 117.6, 108.2, 49.3, 46.8, 44.9, 41.8, 40.3, 39.3, 32.7, 28.8, 28.2, 26.8, 23.4; HRMS (ESITOF): calcd. for C₂₇H₂₄NO₃ [M + H]⁺ 410.1751; found 410.1759.

7.7 Synthesis of 11 from 4a (Scheme 4)

To a THF (1.0 mL) solution of **4a** (52.8 mg, 0.2 mmol) was added 1M borane tetrahydrofuran (BH₃-THF, 0.35 mL, 0.35 mmol) under Ar atmosphere, and the mixture was stirred at -10 °C for 24 h. The reaction was quenched by careful addition of ethanol (0.50 mL), 3N NaOH (0.30 mL) and 30% aqueous H₂O₂ solution (0.40 mL) at 0 °C. The resulting solution was extracted with DCM (3 \times 5 mL) and washed with brine (2.0 mL). The organic layers were combined, dried over anhydrous

Na₂SO₄, concentrated under reduced pressure, and purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 5:1 - 3:1) to afford the product **11** (29.6 mg, 52% yield).¹⁰ White solid, mp 258.1 – 259.4 °C, 99:1 dr; ¹H NMR (400 MHz, CDCl₃) δ 8.17 (dd, J = 8.0, 1.4 Hz, 1H), 7.59 (td, J = 7.8, 1.6, 1H), 7.42 – 7.30 (m, 2H), 3.11 (d, J = 7.0 Hz, 1H), 3.01 (brs, 1H), 2.55 (s, 1H), 2.31 (s, 1H), 2.11 (d, J = 7.0 Hz, 1H), 1.64 – 1.51 (m, 5H), 1.36 – 1.12 (m, 2H), 1.01 (d, J = 10.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 177.7, 169.5, 157.0, 133.5, 125.8, 125.1, 124.4, 121.5, 118.4, 80.9, 55.9, 47.5, 37.8, 37.6, 33.2, 29.1, 28.6, 20.2; HRMS (ESI-TOF): calcd. for C₁₈H₁₉O₃ [M + H]⁺ 283.1329; found 283.1334.

7.8 Synthesis of 12 from 4a (Scheme 4)

To a 10.0 mL pressure tube with a stir bar, **4a** (52.8 mg, 0.2 mmol), KOH (67.3 mg, 1.2 mmol), H₂O (1.0 mL) and DMSO (2.0 mL) were added. The mixture was stirred at 120 °C for 12 h. After completed of the reaction, it was concentrated to remove solvent and purified by flash column chromatography on silica gel (DCM/MeOH = 40:1 – 20:1) to afford the product **12** (28.8 mg, 48% yield). White solid, mp 204.3 – 205.3 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.59 (s, 1H), 11.96 (s, 1H), 7.77 (d, *J* = 7.6 Hz, 1H), 7.51 (t, *J* = 7.6 Hz, 1H), 6.93 (t, *J* = 7.8 Hz, 2H), 6.19 (s, 1H), 5.69 (s, 1H), 2.74 (d, *J* = 9.2 Hz, 1H), 2.67 (d, *J* = 15.4 Hz, 1H), 2.40 – 2.31 (m, 1H), 2.22 (s, 1H), 1.96 (s, 1H), 1.65 (d, *J* = 9.6 Hz, 1H), 1.50 (s, 2H), 1.23 (t, *J* = 9.4 Hz, 3H), 1.13 (d, *J* = 10.0 Hz, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 206.4, 169.2, 160.9, 141.9, 136.2, 130.6, 123.7, 120.3, 119.3, 117.9, 109.7, 45.5, 43.4, 40.8, 40.7, 34.0, 30.2, 28.5; HRMS (ESI-TOF): calcd. for C₁₈H₂₁O₄ [M + H]⁺301.1434; found 301.1432.

8. Transformation of 4x into 13

Ethylene gas was gently bubbled through a solution of **4x** (52.5 mg, 0.2 mmol) in extra dry DCM (40 mL) over 10 min followed by addition of the Grubbs II catalyst (17.0 mg, 0.02 mmol). The mixture was stirred at room temperature for 24 h. After completion, the reaction mixture was directly purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 90:1 – 60:1) afford the product **13** (21.8 mg, 44% yield).¹¹ White solid, mp 71.2 – 72.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.24 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.64 (td, *J* = 7.8, 1.6 Hz, 1H), 7.49 (d, *J* = 8.4 Hz, 1H), 7.39 (td, *J* = 7.6, 0.8 Hz, 1H), 6.45 (ddd, *J* = 16.8, 10.4, 6.0 Hz, 1H), 5.89 (ddd, *J* = 17.2, 10.2, 8.2 Hz, 1H), 5.77 (d, *J* = 2.2 Hz, 1H), 5.38 (d, *J* = 1.6 Hz, 1H), 5.18 – 5.05 (m, 4H), 3.41 (t, *J* = 8.4 Hz, 1H), 3.03 (t, *J* = 9.0 Hz, 1H), 2.60 – 2.50 (m, 1H), 2.35 (dq, *J* = 8.4, 4.0 Hz, 1H), 2.02 (dt, *J* = 8.2, 5.6 Hz, 1H), 1.65 (q, *J* = 12.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 177.1, 161.5, 156.5, 146.8, 141.6, 140.6, 133.4, 127.5, 126.0, 125.1, 125.0, 118.2, 115.4, 113.4, 110.6, 51.6, 49.7, 49.6, 49.2, 41.2; HRMS (ESI-TOF): calcd. for C₂₀H₁₉O₂ [M + H]⁺291.1380; found 291.1385.

9. References

- D. A. Vasselin, A. D. Westwell, C. S. Matthews, T. D. Bradshaw and M. F. G. Stevens, Structural studies on bioactive compounds. 40.¹ Synthesis and biological properties of fluoro-, methoxyl-, and amino-substituted 3-phenyl-4*H*-1-benzopyran-4-ones and a comparison of their antitumor activities with the activities of related 2-phenylbenzothiazoles, *J. Med. Chem.*, 2006, 49, 3973–3981.
- A. E. Martin, T. M. Ford and J. E. Bulkowski, Synthesis of selectively protected tri- and hexaamine macrocycles, *J. Org. Chem.*, 1982, 47, 412–415.
- 3. S. Liu, Z. Jin, Y. C. Teo and Y. Xia, Efficient synthesis of rigid ladder polymers *via* palladium catalyzed annulation, *J. Am. Chem. Soc.*, 2014, **136**, 17434–17437.
- M. N. Paddon-Row and R. Hartcher, Orbital interactions. 7. The Birch reduction as a tool for exploring orbital interactions through bonds. Through-four-, -five-, and -six-bond interactions, *J. Am. Chem. Soc.*, 1980, **102**, 671–678.
- Y. Xi, C. Wang, Q. Zhang, J. Qu and Y. Chen, Palladium-catalyzed regio-, diastereo-, and enantioselective 1,2-arylfluorination of internal enamides, *Angew. Chem. Int. Ed.*, 2021, 60, 2699–2703.
- J. Wang, Z. Dong, C. Yang and G. Dong, Modular and regioselective synthesis of all-carbon tetrasubstituted olefins enabled by an alkenyl Catellani reaction, *Nat. Chem.*, 2019, 11, 1106–1112.
- U. S. Kanchana, E. J. Diana, T. V. Mathew and G. Anilkumar, Palladium-catalyzed crosscoupling reactions of coumarin derivatives: an overview, *Appl. Organomet. Chem.*, 2020, 34, e5983.
- 8. Y. Duan, J.-H. Lin, J.-C. Xiao and Y.-C. Gu, Difluoromethylcarbene for iron-catalyzed cyclopropanation, *Chem. Commun.*, 2017, **53**, 3870–3873.
- V. K. Aggarwal, J. de Vicente and R. V. Bonnert, Catalytic cyclopropanation of alkenes using diazo compounds generated in situ. A novel route to 2-arylcyclopropylamines, *Org. Lett.*, 2001, 3, 2785–2788.

- D. R. Williams, R. De, M. W. Fultz, D. Fischer, Á. M. Ramos and D. R. Reyes, Studies of the enantiocontrolled synthesis of the C(10)–C(25) subunit of amphidinolide C, *Org. Lett.*, 2020, 22, 4118–4122.
- I. L. Lysenko, H. G. Lee and J. K. Cha, Use of cyclopropanols as conformational constraints in RCM, *Org. Lett.*, 2006, 8, 2671–2673.

Identification code	4a
Empirical formula	C ₁₈ H ₁₆ O ₂
Formula weight	264.31
Temperature/K	100.00(10)
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å	7.2944(5)
b/Å	11.3560(9)
c/Å	15.9573(12)
α/°	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	1321.83(17)
Z	4
$\rho_{calc}g/cm^3$	1.328
µ/mm ⁻¹	0.085
F(000)	560.0
Crystal size/mm ³	0.12 imes 0.1 imes 0.08
Radiation	Mo Ka ($\lambda = 0.71073$)
2θ range for data collection/°	4.402 to 49.996
Index ranges	$-6 \le h \le 8, -13 \le k \le 10, -16 \le l \le 18$
Reflections collected	4093
Independent reflections	2252 [$R_{int} = 0.0261, R_{sigma} = 0.0395$]
Data/restraints/parameters	2252/0/189
Goodness-of-fit on F ²	1.048
Final R indexes [I>= 2σ (I)]	$R_1=0.0434,wR_2=0.0958$
Final R indexes [all data]	$R_1 = 0.0479, wR_2 = 0.0991$
Largest diff. peak/hole / e Å ⁻³	0.17/-0.19
Flack parameter	0.8(10)

10. X-ray crystal data for 4a, 4x, 4y, 4z, 4aa, 4ab, 7, 9, 10, 11, 12, 4a' and 4a''

Identification code	4x
Empirical formula	$C_{18}H_{14}O_2$
Formula weight	262.29
Temperature/K	150.00(10)
Crystal system	monoclinic
Space group	P21
a/Å	5.3438(6)
b/Å	14.9294(15)
c/Å	8.1896(9)
α/°	90
β/°	98.718(11)
γ/°	90
Volume/Å ³	645.82(13)
Z	2
$\rho_{calc}g/cm^3$	1.349
µ/mm ⁻¹	0.087
F(000)	276.0
Crystal size/mm ³	$0.14 \times 0.13 \times 0.12$
Radiation	Mo Ka ($\lambda = 0.71073$)
2θ range for data collection/°	5.032 to 58.898
Index ranges	$-6 \le h \le 7, -20 \le k \le 15, -6 \le l \le 10$
Reflections collected	3087
Independent reflections	2260 [$R_{int} = 0.0200, R_{sigma} = 0.0380$]
Data/restraints/parameters	2260/1/190
Goodness-of-fit on F ²	1.044
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0377, wR_2 = 0.0815$
Final R indexes [all data]	$R_1 = 0.0416$, $wR_2 = 0.0846$
Largest diff. peak/hole / e Å ⁻³	0.14/-0.24
Flack parameter	0.6(15)

4y (CCDC: 2058529)

Identification code	4y
Empirical formula	C ₂₃ H ₂₂ O ₂
Formula weight	330.40
Temperature/K	149.99(10)
Crystal system	triclinic
Space group	P-1
a/Å	12.0554(6)
b/Å	13.0086(9)
c/Å	13.4818(8)
$\alpha/^{\circ}$	116.323(7)
β/°	91.642(4)
$\gamma/^{\circ}$	114.330(6)
Volume/Å ³	1667.9(2)
Z	4
$\rho_{calc}g/cm^3$	1.316
μ/mm ⁻¹	0.645
F(000)	704.0
Crystal size/mm ³	$0.13\times0.12\times0.1$
Radiation	Cu Ka ($\lambda = 1.54184$)
2θ range for data collection/°	7.574 to 147.742
Index ranges	$-15 \le h \le 11, -16 \le k \le 14, -15 \le l \le 16$
Reflections collected	11435
Independent reflections	6532 [$R_{int} = 0.0379, R_{sigma} = 0.0485$]
Data/restraints/parameters	6532/0/451
Goodness-of-fit on F ²	1.078
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0860, wR_2 = 0.2346$
Final R indexes [all data]	$R_1 = 0.0990, wR_2 = 0.2522$
Largest diff. peak/hole / e Å ⁻³	0.41/-0.39

4z (CCDC: 2058530)

Identification code	4z
Empirical formula	$C_{26}H_{22}O_2$
Formula weight	366.43
Temperature/K	150.00(10)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	11.0214(6)
b/Å	15.4607(9)
c/Å	11.2885(7)
α'°	90
$\beta^{\prime \circ}$	98.746(5)
$\gamma^{\prime\circ}$	90
Volume/Å ³	1901.18(19)
Z	4
$\rho_{calc}g/cm^3$	1.280
µ/mm ⁻¹	0.079
F(000)	776.0
Crystal size/mm ³	$0.14 \times 0.13 \times 0.12$
Radiation	Mo Ka ($\lambda = 0.71073$)
2θ range for data collection/°	4.502 to 49.988
Index ranges	$-13 \le h \le 12, -18 \le k \le 17, -11 \le l \le 13$
Reflections collected	8636
Independent reflections	3347 [$R_{int} = 0.0265$, $R_{sigma} = 0.0347$]
Data/restraints/parameters	3347/0/263
Goodness-of-fit on F ²	1.055
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0439, wR_2 = 0.0966$
Final R indexes [all data]	$R_1 = 0.0563, wR_2 = 0.1038$
Largest diff. peak/hole / e Å ⁻³	0.20/-0.23

4aa (CCDC: 2058531)

Identification code	4aa
Empirical formula	C ₃₂ H ₂₂ O ₂
Formula weight	438.49
Temperature/K	149.99(10)
Crystal system	orthorhombic
Space group	Pca2 ₁
a/Å	13.7006(6)
b/Å	5.4053(2)
c/Å	28.9327(13)
$\alpha/^{\circ}$	90
$\beta^{\prime \circ}$	90
$\gamma/^{\circ}$	90
Volume/Å ³	2142.64(16)
Z	4
$\rho_{calc}g/cm^3$	1.359
µ/mm ⁻¹	0.653
F(000)	920.0
Crystal size/mm ³	$0.12\times0.1\times0.09$
Radiation	Cu Ka ($\lambda = 1.54184$)
2θ range for data collection/°	6.11 to 147.726
Index ranges	$-15 \le h \le 16, -6 \le k \le 6, -35 \le l \le 22$
Reflections collected	5047
Independent reflections	2774 [$R_{int} = 0.0284, R_{sigma} = 0.0343$]
Data/restraints/parameters	2774/1/316
Goodness-of-fit on F ²	1.080
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0364, wR_2 = 0.0899$
Final R indexes [all data]	$R_1 = 0.0382, wR_2 = 0.0919$
Largest diff. peak/hole / e Å ⁻³	0.17/-0.17
Flack parameter	1.6(4)

4ab (CCDC: 2058532)

Identification code	4ab
Empirical formula	C ₃₂ H ₂₄ O ₂
Formula weight	440.51
Temperature/K	149.99(10)
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	11.4782(7)
b/Å	17.1767(9)
c/Å	12.0834(8)
$\alpha/^{\circ}$	90
$\beta^{\prime \circ}$	112.707(7)
$\gamma^{/\circ}$	90
Volume/Å ³	2197.7(3)
Z	4
$\rho_{calc}g/cm^3$	1.331
μ/mm^{-1}	0.637
F(000)	928.0
Crystal size/mm ³	0.12 imes 0.11 imes 0.1
Radiation	Cu Ka ($\lambda = 1.54184$)
2θ range for data collection/°	8.35 to 147.622
Index ranges	$-12 \le h \le 14, -14 \le k \le 21, -15 \le l \le 10$
Reflections collected	8701
Independent reflections	4314 [$R_{int} = 0.0565$, $R_{sigma} = 0.0682$]
Data/restraints/parameters	4314/0/315
Goodness-of-fit on F ²	1.068
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0699, wR_2 = 0.1888$
Final R indexes [all data]	$R_1 = 0.0876, wR_2 = 0.2088$
Largest diff. peak/hole / e Å ⁻³	0.32/-0.35

7 Identification code Empirical formula $C_{24}H_{20}O_2$ Formula weight 340.40 Temperature/K 150.00(10) Crystal system monoclinic P21 Space group a/Å 5.9952(5) b/Å 16.7750(15) c/Å 8.7581(8) α/° 90 β/° 106.597(10) γ/° 90 Volume/Å³ 844.10(14) Ζ 2 $\rho_{calc}g/cm^3$ 1.339 μ/mm^{-1} 0.084 F(000) 360.0 Crystal size/mm³ $0.12 \times 0.11 \times 0.1$ Radiation Mo K α ($\lambda = 0.71073$) 2θ range for data collection/° 4.854 to 49.984 Index ranges $\textbf{-7} \leq h \leq 5,\, \textbf{-19} \leq k \leq 19,\, \textbf{-10} \leq \textbf{l} \leq 9$ Reflections collected 3430 Independent reflections 2523 [$R_{int} = 0.0264$, $R_{sigma} = 0.0639$] Data/restraints/parameters 2523/1/235 Goodness-of-fit on F² 1.038 Final R indexes $[I \ge 2\sigma(I)]$ $R_1 = 0.0487, wR_2 = 0.1001$ Final R indexes [all data] $R_1 = 0.0590, wR_2 = 0.1063$ Largest diff. peak/hole / e Å⁻³ 0.18/-0.24 Flack parameter -0.6(10)

Identification code	9
Empirical formula	C ₂₀ H ₁₇ F ₃ O ₂
Formula weight	346.33
Temperature/K	149.99(10)
Crystal system	monoclinic
Space group	P21/c
a/Å	9.7519(7)
b/Å	15.4163(10)
c/Å	10.9175(8)
$\alpha/^{\circ}$	90
$\beta^{\prime \circ}$	105.715(8)
$\gamma^{/\circ}$	90
Volume/Å ³	1580.0(2)
Z	4
$\rho_{calc}g/cm^3$	1.456
μ/mm^{-1}	0.116
F(000)	720.0
Crystal size/mm ³	$0.14 \times 0.12 \times 0.11$
Radiation	Μο Κα (λ = 0.71073)
2θ range for data collection/°	4.338 to 49.994
Index ranges	$-11 \le h \le 8, -18 \le k \le 15, -12 \le l \le 12$
Reflections collected	7021
Independent reflections	2790 [$R_{int} = 0.0252$, $R_{sigma} = 0.0319$]
Data/restraints/parameters	2790/0/226
Goodness-of-fit on F ²	1.050
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0391, \ wR_2 = 0.0845$
Final R indexes [all data]	$R_1=0.0471, \ wR_2=0.0895$
Largest diff. peak/hole / e Å ⁻³	0.21/-0.24

10 (CCDC: 2058537)

Identification code	10
Empirical formula	C ₂₇ H ₂₃ NO ₃
Formula weight	409.46
Temperature/K	149.99(10)
Crystal system	monoclinic
Space group	Ia
a/Å	12.9830(7)
b/Å	10.0352(4)
c/Å	16.4235(8)
$\alpha /^{\circ}$	90
β/°	109.296(5)
$\gamma/^{\circ}$	90
Volume/Å ³	2019.56(18)
Z	4
$\rho_{calc}g/cm^3$	1.347
µ/mm ⁻¹	0.699
F(000)	864.0
Crystal size/mm ³	$0.13 \times 0.12 \times 0.11$
Radiation	Cu Ka ($\lambda = 1.54184$)
2θ range for data collection/°	10.502 to 147.51
Index ranges	$-16 \le h \le 16, -12 \le k \le 8, -20 \le l \le 19$
Reflections collected	3985
Independent reflections	2967 [$R_{int} = 0.0270, R_{sigma} = 0.0304$]
Data/restraints/parameters	2967/2/282
Goodness-of-fit on F ²	1.077
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0392, wR_2 = 0.1034$
Final R indexes [all data]	$R_1 = 0.0400, \ wR_2 = 0.1043$
Largest diff. peak/hole / e Å ⁻³	0.24/-0.38
Flack parameter	1.0(3)

Identification code	11
Empirical formula	$C_{18}H_{18}O_3$
Formula weight	282.32
Temperature/K	149.99(10)
Crystal system	triclinic
Space group	P-1
a/Å	7.9260(13)
b/Å	8.5308(15)
c/Å	11.3433(18)
$\alpha/^{\circ}$	74.736(15)
β/°	89.146(13)
γ/°	64.955(16)
Volume/Å ³	666.2(2)
Z	2
$\rho_{calc}g/cm^3$	1.407
μ/mm^{-1}	0.095
F(000)	300.0
Crystal size/mm ³	0.13 imes 0.1 imes 0.08
Radiation	Mo Ka ($\lambda = 0.71073$)
2θ range for data collection/°	5.496 to 49.998
Index ranges	$-6 \le h \le 9, -10 \le k \le 9, -13 \le l \le 13$
Reflections collected	4305
Independent reflections	2349 [$R_{int} = 0.0402$, $R_{sigma} = 0.0749$]
Data/restraints/parameters	2349/0/192
Goodness-of-fit on F ²	1.055
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0835, wR_2 = 0.2078$
Final R indexes [all data]	$R_1 = 0.1087, wR_2 = 0.2349$
Largest diff. peak/hole / e Å ⁻³	0.46/-0.38

0 - -	
Identification code	12
Empirical formula	$C_{18}H_{20}O_4$
Formula weight	300.34
Temperature/K	149.99(10)
Crystal system	orthorhombic
Space group	Pbca
a/Å	8.2978(4)
b/Å	11.1917(5)
c/Å	32.354(2)
$\alpha/^{\circ}$	90
β/°	90
γ/°	90
Volume/Å ³	3004.6(3)
Z	8
$ ho_{calc}g/cm^3$	1.328
μ/mm^{-1}	0.758
F(000)	1280.0
Crystal size/mm ³	0.15 imes 0.11 imes 0.08
Radiation	Cu K α ($\lambda = 1.54184$)
2θ range for data collection/°	5.462 to 133.158
Index ranges	$-9 \le h \le 9, -12 \le k \le 13, -37 \le l \le 38$
Reflections collected	6145
Independent reflections	2641 [$R_{int} = 0.0365$, $R_{sigma} = 0.0420$]
Data/restraints/parameters	2641/0/209
Goodness-of-fit on F ²	1.066
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0511, wR_2 = 0.1183$
Final R indexes [all data]	$R_1 = 0.0629, wR_2 = 0.1253$
Largest diff. peak/hole / e Å ⁻³	0.18/-0.21

⁴a' and 4a" (CCDC: 2077701)

Identification code	4a' and 4a''
Empirical formula	C ₃₉ H ₄₀ O ₄
Formula weight	572.71
Temperature/K	149.99(10)
Crystal system	monoclinic
Space group	P21/n
a/Å	19.8900(14)
b/Å	6.5408(4)
c/Å	23.4265(19)
α'°	90
β/°	102.826(7)
$\gamma^{/\circ}$	90
Volume/Å ³	2971.7(4)
Z	4
$\rho_{calc}g/cm^3$	1.280
μ/mm^{-1}	0.639
F(000)	1224.0
Crystal size/mm ³	$0.14 \times 0.11 \times 0.09$
Radiation	Cu Ka ($\lambda = 1.54184$)
2θ range for data collection/°	5.282 to 133.196
Index ranges	$-23 \le h \le 23, -7 \le k \le 4, -26 \le l \le 27$
Reflections collected	10226
Independent reflections	5241 [$R_{int} = 0.0395$, $R_{sigma} = 0.0488$]
Data/restraints/parameters	5241/0/388
Goodness-of-fit on F ²	1.024
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0750, wR_2 = 0.2001$
Final R indexes [all data]	$R_1 = 0.0975, wR_2 = 0.2243$
Largest diff. peak/hole / e Å ⁻³	0.31/-0.31

11. ¹H and ¹³C NMR spectra of 4a-ab and 5-13

℃H₂

S51

S52

zzw-148-F

Scheme 2, 4g

zzw-134-F

Scheme 2, 4h

Ο H, CI Ή Ö ĊΗ₂

<5.7822
<5.7760
<5.3453
<5.3453
</pre>

Scheme 2, 4i

Scheme 2, 4j

< 3.0783
< 3.0620
< 2.7968
</pre>

-2.2187

S68

S72

103.95 103.97 103.99 104.02

zzw-135-F

Scheme 2, 4n

S77

Scheme 2, 4o

0 H, Ή Br `O ℃H₂

Scheme 2, 4q

zzw-144-h

8.5236 8.5194 8.5194 8.51037 8.1905 8.2096 8.2096 8.2096 8.2096 8.2096 7.4006 7.74006 7.72001 3.0078 3.0013 3.0013 2.5514 2.5514 2.5514 2.5514 1.6865 1.188655 1.188655 1.188655 1.1886555555555

5.8979

 5.4239

 5.4221

 5.4221

 6.4221

S85

zzw-147-h 888 8900

8.0715 8.0408 7.1.9023 7.1.72887 7.1.72887 7.1.72887 7.1.72887 7.7.7486 7.7.7486 7.7.7486 7.7.5687 7.7.5687 7.7.5687 7.7.5687 --5.7873

2493 2355 2355 2355 1024 1024

Scheme 2, 4w

0 H. O ĊΗ₂

Fig. 2, 4x

S99

~3.3061 ~3.2939 ~2.9760 ~2.8888 ~2.8888

0.9884 0.9668 0.7813 0.7534

Scheme 4, 5

Scheme 4, 6

S109

Scheme 4, 7

S111

Scheme 4, 9

S116

S119

S123

Scheme 4, 13

S125