Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Supporting Information

Cucurbitimines – Imine Cages with Concave Walls

Christine Bourguignon, Dorothee Schindler, Gangxiang Zhou, Frank Rominger, and Michael Mastalerz*

Table of Contents

1.	General Remarks 1
2.	Experimental Procedures 3
2.1.	2,3,6,7-Tetramethoxytriptycene-14,15-dione (2)
2.2.	(7 <i>s</i> ,12 <i>s</i>)-2,3-Dihexyl-9,10,18,19-tetramethoxy-7,12- dihydro-7,12- [1,2]benzenonaphto[2,3- <i>b</i>]phenazine (4)4
2.3.	(7 <i>s</i> ,12 <i>s</i>)-8,11,17,20-Tetrakis(chloromethyl)-2,3-dihexyl-9,10,18,19- tetramethoxy-7,12-dihydro-7,12-[1,2]benzenonaphtho[2,3- <i>b</i>]phenazine (5) 5
2.4.	((7 <i>s</i> ,12 <i>s</i>)-2,3-Dihexyl-9,10,18,19-tetramethoxy-7,12-dihydro-7,12- [1,2]benzenonaphtho[2,3- <i>b</i>]phenazine-8,11,17,20-tetrayl)tetramethanol (6). 6
2.5.	(7s,12s)-2,3-Dihexyl-9,10,18,19-tetramethoxy-7,12-dihydro-7,12- [1,2]benzenonaphtho[2,3- <i>b</i>]phenazine-8,11,17,20-tetracarbaldehyde (7)7
2.6.	<i>R</i> , <i>R</i> -Cyclohexane Cages ((<i>R</i> , <i>R</i>)- 9 and (<i>R</i> , <i>R</i>)- 10)
3.	NMR Spectra 11
3.1.	¹ H NMR Spectra11
3.2.	¹³ C NMR Spectra
3.3.	2D NMR Spectra 19
4.	DOSY Experiments
5.	Mass Spectra 33
6.	IR Spectra
7.	UV-Vis/Fluorescence Spectra 40
8.	CD Spectra 43
9.	Determination of the Cavity Volume
10.	GPC Chromatograms 46
11.	Crystallographic Data 46
12.	xyz coodinates of computed geometries51
13.	Electron density maps
14.	References

1. General Remarks

All commercially available reagents and solvents were used without further purification, unless otherwise noted. 2,3,6,7,14,15-Hexamethoxytriptycene 1¹ and 1,2-diamino-4,5dihexylbenzene 3^2 were synthesized according to literature procedures. Thin layer chromatography was performed on fluorescent labeled silica coated aluminium plates (60 F254, Merck), which were examined using UV-light irradiation with λ_{ex} = 254 and 366 nm. For flash column chromatography silicagel with a particle size of 0.040-0.063 mm (Macherey-Nagel & Co. KG, Düren) was used. Recycling gel permeation chromatography (GPC) was performed with a Shimadzu system consisting of a DGU-20A3R degassing unit, LC-20AD pump unit, SIL-20A HT autosampler, CBM-20A communication bus module, CTO-20AC column oven, FCV-20AH₂ valve unit, SPD-M20A diode array detector, FRC-10A fraction collector, PSS SDV (20 x 50 mm) precolumn and three SDV 100 Å (20 x 300 mm) columns connected in series. All shown NMR spectra were recorded on the following instruments: Bruker Avance III 300 (300 MHz), Bruker Avance DRX 300 (300 MHz), Bruker Avance III 400 (400 MHz), Bruker Avance III 600 (600 MHz) or Bruker Avance III 700 (700 MHz). Chemical shifts (δ) are reported in parts per million (ppm) and the coupling constants in Hertz (Hz). The spectras were calibrated relative to the traces of CHCl₃ (δ_{H} = 7.26 ppm, δ_{C} = 77.2 ppm)³, CD₂Cl₂ (δ_H = 5.32 ppm, δ_C = 53.8 ppm)³, DMSO-d₆ (δ_H = 2.50 ppm, δ_C = 39.5 ppm)³ and THF-d₈ (δ_H = 3.58, 1.72 ppm, δ_C = 67.2, 52.3 ppm).³ The melting points (not corrected) were determined using a Büchi Melting Point B-545. Open glass capillaries were used for this. Mass spectrometry experiments (MALDI) were carried out on a Bruker AutoFlex Speed time-of-flight spectrometer. DCTB (trans-2-[3-(4-tertbutylphenyl)-2-methylpropylidene)-malononitrile) was used as matrix in MALDI-MS experiments. Mass spectrometry experiments (DART) were carried out on a Bruker ApexQe hybrid 9.4T FT-ICR spectrometer. Mass spectrometry experiments (EI) were carried out on a JEOL AccuTOF GCx time-of-flight spectrometer. All MS measurements were performed by the mass-spectrometry division of Dr. Jürgen H. Gross of the University of Heidelberg. IR spectra were measured on a Bruker Tensor 27 spectrometer equipped with a ZnSe ATR crystal. The absorption intensity was described by the following abbreviations: w (weak), m (medium), s (strong). Elemental analysis was conducted by the microanalytical laboratory of the University of Heidelberg using a Vario EL Element Analyzer. UV/VIS spectra were measured on a Jasco V-730 spectrometer and fluorescence spectra on a FP-8300 spectrometer. CD spectra were recorded on a Jasco J-1500 CD spectrometer. Crystal structure analysis was performed on a Stoe Stadivari diffractometer using Cu- K_{α} radiation ($\lambda = 1.54186$ Å). Intensity correction for Lorentz and polarization effects were applied. Absorption correction was carried out using Sa-DABD^{4, 5} or X-Area LANA 1.70.0.0⁶ based on the Laue symmetry of the reciprocal space (μ , T_{min} , T_{max}). Resolving of the structures was performed with SHELXT-2014 (Sheldrick 2014)⁷ and they were refined against F2 with a Full-matrix least squares algorithm using SHELXL-2018/1.⁸ Geometry optimizations were performed using PM3 semi empirical method⁹⁻¹² in Spartan 14. The IUPAC names and enumeration of the synthesized compounds were created using ChemDraw© 17.0. In Figure S1 the structure and numbering of the synthesized compounds is shown. The electron density maps were calculated using the DMol3 module of Material Studios© with DND basis set.

Figure S1: Labeling of a) substituted triptycenes, b) cage compound 9.

2. Experimental Procedures

OMe OMe MeO MeO 68% HNO3. DCM/AcOH 1:1 rt, 5 min MeO MeO OMe 91% MeO MeO OMe Ò 2 1

2.1. 2,3,6,7-Tetramethoxytriptycene-14,15-dione (2)

To a solution of **1** (573 mg, 1.32 mmol, 1 eq) in dichloromethane and acetic acid (7.5 mL, 1:1, v:v), nitric acid (485 µL, 68%) was added dropwise. The reaction mixture was stirred for 5 min and then poured on ice-water (50 mL). The organic layer was separated and the aqueous layer was extracted with dichloromethane (3 x 30 mL) and the organic layers combined. The organic layer was washed with sodium bicarbonate solution (30%, 20 mL), dried over anhydrous Na₂SO₄ and the solvent was removed in vacuo. After column chromatography (SiO₂, PE/EA 1:1, R_f = 0.21), 2 was obtained as a dark red solid (486 mg, 1.20 mmol, 91%). M.p.: 260 °C. ¹H NMR (CDCl₃, 300 MHz): δ (ppm) = 6.97 (s, 4H, Ar-H-1,4,5,8), 6.28 (s, 2H, Ar-H-13,16), 4.97 (s, 2H, bridgehead-H-9,10), 3.90 (s, 12H, Ar-OCH₃). ¹³C NMR (CDCl₃, 75 MHz): δ (ppm) = 180.3 (Ar-C-14,15), 152.7 (Ar-C-11,12), 149.1 (Ar-C-2,3,6,7-OCH₃), 131.2 (Ar-C-4a,5a,8a,9a), 120.4 (Ar-C-13,16), 108.1 (Ar-C-1,4,5,8), 56.3 (Ar-OCH₃), 51.3 (bridgehead-C-9,10). IR (ATR, FT): \tilde{v} (cm⁻¹) = 3054 (w), 2954 (w), 2834 (w), 1732 (w), 1672 (w), 1651 (m), 1593 (m), 1579 (m), 1493 (s), 1467 (m), 1440 (m), 1413 (w), 1365 (m), 1338 (w), 1289 (s), 1259 (m), 1225 (s), 1208 (m), 1197 (m), 1184 (m), 1165 (w), 1153 (m), 1089 (s), 1040 (w), 990 (m), 887 (m), 877 (m), 792 (w), 776 (w), 736 (m), 708 (m), 685 (m), 633 (m), 606 (m). MS (HR-EI): m/z calculated for [M]+: 404.1254, found: 404.1248. Elem. Anal.: calculated for C₂₄H₂₀O₆ + DCM: C 61.36%, H 4.53%; found: C 61.45%, H 4.75%.

2.2. (7*s*,12*s*)-2,3-Dihexyl-9,10,18,19-tetramethoxy-7,12dihydro-7,12-[1,2]benzenonaphto[2,3-*b*]phenazine (4)

A solution of triptycene 2 (997 mg, 2.47 mmol, 1.00 eq) and diamine 3 (1.02 g, 3.70 mmol, 1.50 eq.) in CHCl₃ (9 mL) and glacial acetic acid (9 mL) was stirred for 7 h at 80 °C. After cooling to room temperature, DCM (80 mL) was added, the organic phase washed with water (30 mL) and NaHCO₃ (30 %, 30 mL) and dried over MgSO₄. Column chromatography (SiO₂, PE/EA 1:1, R_f = 0.34) gave **4** (1.25 g, 1.94 mmol, 79%) as a yellow solid. M.p.: 185 °C. ¹H NMR (CD₂Cl₂, 400 MHz): δ (ppm) = 7.95 (s, 2H, Ar-H-6,13), 7.90 (s, 2H, Ar-H-1,4), 7.10 (s, 4H, Ar-H-8,11,17,20), 5.48 (s, 2H, bridgehead-H-7,12), 3.82 (s, 12H, Ar-OCH₃), 2.88 - 2.84 (m, 4H, Ar-CH₂-(CH₂)₄-CH₃), 1.75 (p, ³J_H-H = 7.4 Hz, 4H, Ar-CH₂-CH₂-(CH₂)₃-CH₃), 1.48 (p, ³J_{H-H} = 6.3 Hz, 4H, Ar-(CH₂)₂-CH₂- $(CH_2)_2$ -CH₃), 1.44 – 1.33 (m, 8H, Ar- $(CH_2)_3$ - $(CH_2)_2$ -CH₃), 0.92 (t, ³J_{H-H} = 7.2 Hz, 6H, Ar-(CH₂)₅-CH₃). ¹³C NMR (CD₂Cl₂, 101 MHz): δ (ppm) = 147.5 (Ar-C-9,10,18,19), 146.9 (Ar-C-6a,12a), 145.4 (Ar-C-2,3), 143.0 (Ar-C-5a,13a), 142.8 (Ar-C-4a,14a), 137.1 (Ar-C-7a,11a,15,16), 127.6 (Ar-C-1,4), 121.9 (Ar-C-6,13), 109.4 (Ar-C-8,11,17,20), 56.7 (Ar-OCH₃), 53.1 (bridgehead-C-7,12), 33.4 (Ar-CH₂-(CH₂)₄-CH₃), 32.2 (Ar-(CH₂)₃-CH₂-CH₂-CH₃), 30.8 (Ar-CH₂-CH₂-(CH₂)₃-CH₃), 29.8 (Ar-(CH₂)₂-CH₂-(CH₂)₂-CH₃), 23.0 (Ar-(CH₂)₄-CH₂-CH₃), 14.3 (Ar-(CH₂)₅-CH₃). IR (ATR, FT): \tilde{v} (cm⁻¹) = 2953 (w), 2926 (w), 2856 (w), 1738 (w), 1650 (w), 1610 (w), 1554 (w), 1490 (m), 1462 (m), 1427 (m), 1366 (s), 1287 (s), 1225 (s), 1199 (m), 1183 (m), 1161 (m), 1120 (s), 1037 (w), 990 (m), 980 (m), 880 (m), 738 (m), 652 (w), 622 (w), 609 (s), 571 (w), 550 (w), 536 (w). UV/Vis (DCM): λ (log ε) = 406 nm (4.26), 295 (3.93), 264 (4.96). Fluorescence (DCM): λ_{em} (λ_{ex}) = 559 nm (406). MS (HR-MALDI): m/z calculated for $[M]^+$: 645.3648, found: 645.3697. Elem. Anal.: calculated for C₄₂H₄₈N₂O₄ + $\frac{1}{2}$ H₂O: C 77.17%, H 7.55%, N 4.29%; found: C 77.19%, H 7.72%, N 4.06%.

2.3. (7s,12s)-8,11,17,20-Tetrakis(chloromethyl)-2,3-dihexyl-9,10,18,19-tetramethoxy-7,12-dihydro-7,12[1,2]benzenonaphtho[2,3-*b*]phenazine (5)

Triptycene 4 (200 mg, 0.31 mmol, 1.00 eq.) was dissolved in chloromethyl methyl ether (1.07 mL, 13.6 mmol, 44.0 eq.) and methanesulfonic acid (0.90 mL, 13.6 mmol, 44.0 eq.) and conc. H₂SO₄ (0.08 mL, 1.55 mmol, 5.00 eq.) were added dropwise. The dark green solution was stirred for 16 h at 60 °C. After cooling to room temperature, solvent was removed by reduced pressure and collected into a cooling trap. The residue was taken up in DCM (50 mL), washed with water (20 mL), sat. NaHCO3 (20 mL) and brine (20 mL) and dried over MgSO₄. After column chromatography (SiO₂, DCM, $R_f = 0.23$) triptycene 5 (157 mg, 0.19 mmol, 60%) was obtained as a yellow solid. M.p.: 224 °C. ¹H NMR (CD₂Cl₂, 400 MHz): δ (ppm) = 8.14 (s, 2H, Ar-*H*-6,13), 7.91 (s, 2H, Ar-H-1,4), 6.28 (s, 2H, bridgehead-H-7,12), 5.14 (d, ³J_{H-H} = 11.0 Hz, 4H, Ar-CH₂-CI), 5.03 (d, ${}^{3}J_{H-H} = 11.0$ Hz, 4H, Ar-CH₂-CI), 3.85 (s, 12H, Ar-OCH₃), 2.88 - 2.84 (m, 4H, Ar-CH₂-(CH₂)₄-CH₃), 1.75 (p, ${}^{3}J_{H-H} = 7.8$ Hz, 4H, Ar-CH₂-CH₂-(CH₂)₃-CH₃), 1.48 (p, ${}^{3}J_{H-H} = 6.7 \text{ Hz}, 4H, \text{Ar-}(CH_{2})_{2}-CH_{2}-(CH_{2})_{2}-CH_{3}), 1.39 - 1.34 \text{ (m, 8H, Ar-}(CH_{2})_{3}-(CH_{2})_{2}-CH_{3})$ CH₃), 0.91 (t, ${}^{3}J_{H-H} = 7.0$ Hz, 6H, Ar-(CH₂)₅-CH₃). ${}^{13}C$ NMR (CD₂Cl₂, 101 MHz): δ (ppm) = 149.6 (Ar-C-9,10,18,19), 146.0 (Ar-C-2,3), 144.3 (Ar-C-6a,12a), 143.0 (Ar-C-5a,13a), 142.8 (Ar-C-4a,14a), 139.5 (Ar-C-7a,11a,15,16), 128.7 (Ar-C-8,11,17,20), 127.6 (Ar-C-1,4), 123.6 (Ar-C-6,13), 61.7 (Ar-OCH₃), 46.6 (bridgehead-C-7,12), 37.3 (Ar-CH₂-Cl), 33.4 (Ar-CH₂-(CH₂)₄-CH₃), 32.2 (Ar-(CH₂)₃-CH₂-CH₂-CH₃), 30.8 (Ar-CH₂-CH₂-(CH₂)₃-CH₃), 29.8 (Ar-(CH₂)₂-CH₂-(CH₂)₂-CH₃), 23.0 (Ar-(CH₂)₄-CH₂-CH₃), 14.3 (Ar-(CH₂)₅-CH₃). IR (ATR, FT): \tilde{v} (cm⁻¹) = 2953 (w), 2925 (w), 2855 (w), 1710 (w), 1650 (w), 1591 (w), 1554 (w), 1512 (w), 1453 (s), 1407 (s), 1358 (w), 1318 (s), 1281 (m), 1210 (w), 1258 (w), 1087 (s), 1050 (m), 1013 (s), 983 (m), 954 (w), 888 (w), 803 (w), 738 (m), 647 (s). UV/Vis (DCM): λ (log ε) = 393 nm (4.25), 383 (sh., 4.14), 309

(3.80), 267 (4.84). MS (HR-DART): m/z calculated for $[M+H]^+$: 839.2730, found: 839.2737. Elem. Anal.: calculated for C₄₆H₅₂Cl₄N₂O₄: C 75.87%, H 6.25%, N 3.34%; found: C 75.72%, H 6.52%, N 3.07%.

2.4. ((7*s*,12*s*)-2,3-Dihexyl-9,10,18,19-tetramethoxy-7,12-dihydro-7,12-[1,2]benzenonaphtho[2,3-*b*]phenazine-8,11,17,20tetrayl)tetramethanol (6)

A reaction tube with magnetic rotating lid was charged with triptycene 5 (1.61 g, 1.92 mmol, 1.00 eq.) and Cs₂CO₃ (20.0 g, 61.40 mmol, 32.0 eq.). A dioxane/water mixture (38 mL, 1:1, v:v) was added and the reaction mixture was stirred vigorously for 3 d at 140 °C. After cooling down to room temperature, aqueous HCI (6 M, 30 mL) was added and the solution was extracted with ethyl acetate (3 x 75 mL). The combined extract was washed with water (20 mL) and dried over MgSO₄. After column chromatography (SiO₂, DCM/MeOH 20:1, $R_f = 0.11$) triptycene **6** was obtained as a yellow solid (1.14 g, 1.49 mmol, 77%). M.p: 279 °C. ¹H NMR (DMSO-d₆, 600 MHz): δ (ppm) = 8.10 (s, 2H, Ar-H-6,13), 7.88 (s, 2H, Ar-H-1,4), 6.54 (s, 2H, bridgehead-H-7,12), 5.23 (t, ³*J*_{H-H} = 5.6 Hz, 4H, Ar-CH₂-O*H*), 4.82 (qd, ³*J*_{H-H} = 11.2 Hz, ³*J*_{H-H} = 5.7 Hz, 8H, Ar-CH₂-OH), 3.68 (s, 12H, Ar-OCH₃), 2.80 (t, ³J_{H-H} = 7.9 Hz, 4H, Ar-CH₂-(CH₂)₄-CH₃), 1.66 (p, ³*J*_{H-H} = 7.9 Hz, 4H, Ar-CH₂-CH₂-(CH₂)₃-CH₃), 1.41 (p, ³*J*_{H-H} = 7.7 Hz, 4H, Ar-(CH₂)₂-CH₂-(CH₂)₂-CH₃), 1.33 – 1.26 (m, 8H, Ar-(CH₂)₃-(CH₂)₂-CH₃), 0.85 (t, ${}^{3}J_{H-H} = 7.0 \text{ Hz}, 6H, \text{ Ar-(CH}_{2})_{5}\text{-CH}_{3}$). ${}^{13}\text{C} \text{ NMR} (\text{DMSO-d}_{6}, 151 \text{ MHz})$: $\delta (\text{ppm}) = 148.2$ (Ar-C-9,10,18,19), 146.7 (Ar-C-2,3), 144.6 (Ar-C-6a,12a), 142.0 (Ar-C-5a,13a), 141.5 (Ar-C-4a,14a), 139.6 (Ar-C-7a,11a,15,16), 130.5 (Ar-C-8,11,17,20), 126.9 (Ar-C-1,4), 121.9 (Ar-C-6,13), 61.3 (Ar-OCH₃), 54.1 (Ar-CH₂-OH), 45.3 (bridgehead-C-7,12), 32.1 (Ar-CH₂-(CH₂)₄-CH₃), 31.1 (Ar-(CH₂)₃-CH₂-CH₂-CH₃), 29.9 (Ar-CH₂-CH₂-(CH₂)₃-CH₃), 28.8 (Ar-(CH₂)₂-CH₂-(CH₂)₂-CH₃), 22.1 (Ar-(CH₂)₄-CH₂-CH₃), 14.0 (Ar-(CH₂)₅-CH₃). IR (ATR, FT): \tilde{v} (cm⁻¹) = 3322 (w), 2955 (m), 2927 (m), 2854 (m), 1683 (w), 1589 (w),

1514 (s), 1441 (s), 1406 (m) 1360 (m), 1312 (m), 1257 (m), 1219 (w), 1191 (w), 1164 (w), 1082 (s), 1027 (s), 999 (s), 936 (w), 880 (w), 803 (w), 758 (w), 727 (w), 702 (w), 686 (w), 632 (w). UV/Vis (DCM): λ (log ε) = 395 nm (4.45), 384 (sh., 4.35), 310 (3.64), 266 (5.08). MS (HR-MALDI): m/z calculated for [M+H]⁺: 765.4115, found: 765.4117. Elem. Anal.: calculated for C₄₆H₅₆N₂O₈+ $\frac{1}{2}$ H₂O: C 71.45%, H 7.42%, N 3.54%; found: C 71.38%, H 7.50%, N 3.67%.

2.5. (7*s*,12*s*)-2,3-Dihexyl-9,10,18,19-tetramethoxy-7,12-dihydro-7,12-[1,2]benzenonaphtho[2,3-*b*]phenazine-8,11,17,20tetracarbaldehyde (7)

Diatomaceous earth (33 mg) and triptycene 6 (28.6 mg, 37.4 µmol, 1.00 eq.) were suspended in DCM (4 mL) and PCC (136 mg, 0.63 mmol, 16.8 eg.) was added in portions. The suspension was stirred for 6 h at room temperature. After a short filtration over silica gel (eluent: EA), triptycene 7 was obtained as a yellow solid (24.1 mg, 31.9 μmol, 85%). M.p: 123 °C. ¹H NMR (CDCl₃, 600 MHz): δ (ppm) = 10.63 (s, 4H, Ar-CH=O), 8.20 (s, 2H, Ar-H-6,13), 8.10 (s, 2H, bridgehead-H-7,12), 7.92 (s, 2H, Ar-H-1,4), 3.92 (s, 12H, Ar-OCH₃), 2.84 – 2.82 (m, 4H, Ar-CH₂-(CH₂)₄-CH₃), 1.78 – 1.72 (m, 4H, Ar-CH₂-CH₂-(CH₂)₃-CH₃), 1.49 – 1.44 (m, 4H, Ar-(CH₂)₂-CH₂-(CH₂)₂-CH₃), 1.37 – 1.33 (m, 8H, Ar-(CH₂)₃-(CH₂)₂-CH₃), 0.90 (t, ${}^{3}J_{H-H} = 6.8$ Hz, 6H, Ar-(CH₂)₅-CH₃). ¹³C NMR (CDCl₃, 151 MHz): δ (ppm) = 190.8 (Ar-CH=O), 153.7 (Ar-C-9,10,18,19), 145.4 (Ar-C-2,3), 143.4 (Ar-C-6a,12a), 142.4 (Ar-C-5a,13a), 142.4 (Ar-C-4a,14a), 141.0 (Ar-C-7a,11a,15,16), 130.0 (Ar-C-8,11,17,20), 127.1 (Ar-C-1,4), 124.2 (Ar-C-6,13), 62.2 (Ar-OCH₃), 41.7 (bridgehead-C-7,12), 32.9 (Ar-CH₂-(CH₂)₄-CH₃), 31.7 (Ar-(CH₂)₃-CH₂-CH₂-CH₃), 30.1 (Ar-CH₂-CH₂-(CH₂)₃-CH₃), 29.3 (Ar-(CH₂)₂-CH₂-(CH₂)₂-CH₃), 22.5 (Ar-(CH₂)₄-CH₂-CH₃), 14.0 (Ar-(CH₂)₅-CH₃). IR (ATR, FT): \tilde{v} (cm⁻¹) = 3030 (w), 2930 (m), 2954 (m), 2749 (w), 1695 (s), 1572 (m), 1513 (w), 1448 (m), 1441 (m) 1419 (s), 1379 (s), 1295 (m), 1264 (m), 1195 (m), 1159 (w), 1080 (s), 1067 (s), 1022 (s), 977 (w), 945 (m), 894 (w), 872 (w), 794 (w), 777 (w), 743 (s), 691 (w), 615 (w). UV/Vis (DCM): λ (log ε) = 396 nm (4.41), 382 (sh., 4.32), 268 (4.91). MS (HR-MALDI): m/z calculated for [M+H]⁺: 757.3489, found: 757.3502. Elem. Anal.: calculated for C₄₆H₄₈N₂O₈: C 73.00%, H 6.93%, N 3.70%; found: C 72.86%, H 6.64%, N 3.45%.

2.6. R,R-Cyclohexane Cages ((R,R)-9 and (R,R)-10)

Triptycene **7** (91.2 mg, 120 µmol, 3.00 eq.) was dissolved in DCM (1.8 mL) and a solution of TFA in DCM (0.1 M, 72.0 µL, 2 mol%) was added. A solution of (1*R*,2*R*)-(-)-1,2-Diaminocyclohexane (*R*,*R*)-**8** (27.6 mg, 240 µmol, 6.00 eq.) in DCM (1.8 mL) was layered onto this. The reaction mixture was left standing at room temperature without stirring for 7 d. The solvent was evaporated and the residue suspended in methanol (8 mL), filtered and washed with methanol (2 x 3 mL). The crude product was subjected to GPC (SDV column, THF, 5 mL/min, fraction 1: 368 min, fraction 2:

380 min) and two fractions could be collected in which the first fraction is the [4+8]cage ((R,R)-10) and the second fraction is the [3+6]-cage ((R,R)-9). Each fraction was afterwards again suspended in methanol (6 mL), filtered and washed with methanol $(2 \times 4 \text{ mL})$. (R,R)-9 was obtained as a light yellow solid (54.7 mg, 20.0 µmol, 49%) and (R,R)-10 was obtained as a light yellow solid (6.50 mg, 1.78 mol, 5%, not pure). (R,R)-**9**) M.p: <350 °C (decomposition). ¹H NMR (CD₂Cl₂, 700 MHz): δ (ppm) = 9.20 (s, 6H, Ar-CH=N), 8.61 (s, 6H, Ar-CH=N), 7.84 (s, 6H, Ar-H-1,4), 7.74 (s, 6H, bridgehead-H-7,12), 7.71 (s, 6H, Ar-H-6,13), 4.34 – 4.31 (m, 6H, Ar-H-C1), 3.61 (s, 24H, Ar-OCH₃, Ar-H-C6), 3.56 (s, 18H, Ar-OCH₃), 2.84 – 2.82 (m, 12H, Ar-CH₂-(CH₂)₄-CH₃), 2.21 – 2.17 (m, 12H, cyclohexane-H), 2.13 - 2.11 (m, 20H, cyclohexane-H), 2.05 - 2.00 (m, 8H, cyclohexane-H), 1.95 - 1.90 (m, 8H, cyclohexane-H), 1.74 - 2.72 (m, 12H, Ar-CH₂-CH₂-(CH₂)₃-CH₃), 1.47 – 1.45 (m, 12H, Ar-(CH₂)₂-CH₂-(CH₂)₂-CH₃), 1.37 – 1.33 (m, 24H, Ar-(CH₂)₃-(CH₂)₂-CH₃), 0.90 (t, ${}^{3}J_{H-H} = 6.9$ Hz, 18H, Ar-(CH₂)₅-CH₃). Because of the lack of resolution in 2D NMR the cyclohexane-H signals could not be further assigned. ¹³C NMR (CD₂Cl₂, 176 MHz): δ (ppm) = 158.2 (Ar-CH=N1), 156.7 (Ar-CH=N2), 152.9 (Ar-C-9,18), 150.0 (Ar-C-10,19), 146.9 (Ar-C-6a,12a), 145.5 (Ar-C-2,3), 142.8 (Ar-C-5a,13a), 142.6 (Ar-C-4a,14a), 140.9 (Ar-C-11a,16), 138.2 (Ar-C-7a,15), 128.6 (Ar-C-11,20), 127.5 (Ar-C-1,4), 126.3 (Ar-C-8,17), 122.4 (Ar-C-6,13), 78.1 (Ar-C6), 76.6 (Ar-C1), 61.9 (Ar-OCH₃), 61.9 (Ar-OCH₃), 44.5 (bridgehead-C-7,12), 34.7 (cyclohexane-C-5), 33.8 (cyclohexane-C-2), 33.3 (Ar-CH₂-(CH₂)₄-CH₃), 32.1 (Ar-(CH₂)₃-CH₂-CH₂-CH₃), 30.7 (Ar-CH₂-CH₂-(CH₂)₃-CH₃), 29.7 (Ar-(CH₂)₂-CH₂-(CH₂)₂-CH₃), 25.5 (cyclohexane-C), 25.1 (cyclohexane-C), 23.0 (Ar-(CH₂)₄-CH₂-CH₃), 14.3 (Ar-(CH₂)₅-CH₃). Because of the lack of resolution in 2D NMR the cyclohexane-C signals could not be further assigned. IR (ATR, FT): \tilde{v} (cm⁻¹) = 2926 (m), 2855 (m), 1634 (m), 1448 (m), 1373 (s), 1298 (m), 1265 (w), 1199 (w), 1160 (w), 1146 (w), 1109 (w), 1083 (m), 1031 (m), 1015 (m), 994 (m), 956 (m), 936 (w), 899 (w), 877 (w), 747 (w), 681 (w), 669 (w), 650 (w). UV/Vis (DCM): λ (log ε) = 402 nm (5.07), 385 (sh., 4.87), 269 (5.68). Fluorescence (DCM): λ_{em} (λ_{ex}) = 537 nm (402), 492 (402). MS (MALDI): m/z calculated for [M+H]+: 2739.6018, found: 2739.8755. Elem. Anal.: calculated for C₁₇₄H₂₀₄N₁₈O₁₂ + 2DCM: C 72.66%, H 7.21%, N 8.67%; found: C 72.74%, H 7.30%, N 8.34%. $\Delta \varepsilon$ (M⁻¹cm⁻¹) = 354 nm (-22.7), 329 nm (20.4), 281 nm (-98.2), 261 nm (209.0). (R,R)-**10**) ¹H NMR (THF-d₈, 600 MHz): δ (ppm) = 9.25 (s, 8H, Ar-C*H*=N), 8.71 (s, 8H, Ar-CH=N), 8.46 (s, 8H, bridgehead-H-7,12), 7.91 (s, 8H, Ar-H-1,4), 7.86 (s, 8H, Ar-H-6,13), 4.34 (s, 8H, Ar-H-C1), 3.88 (s, 20H, Ar-OCH₃), 2.88 (s, 16H,

Ar-CH₂-(CH₂)₄-CH₃), 2.16 – 1.93 (m, 64H, Ar-*H*-C2,C3,C4,C5), 1.80 (t, ³*J*_H+H = 7.6 Hz, 16H, Ar-CH₂-CH₂-(CH₂)₃-CH₃), 1.54 – 1.51 (m, 16H, Ar-(CH₂)₂-CH₂-(CH₂)₂-CH₃), 1.43 – 1.38 (m, 32H, Ar-(CH₂)₃-(CH₂)₂-CH₃), 0.93 (t, ³*J*_H+H = 7.0 Hz, 24H, Ar-(CH₂)₅-C*H*₃). *The signals for* Ar-*H*-C6 and Ar-OC*H*₃-1 *are located under the THF peak at* 3.58 ppm. ¹³C NMR (THF-d₈, 151 MHz): δ (ppm) = 158.1 (Ar-CH=N), 156.2 (Ar-CH=N), 154.3 (Ar-C-9,18), 150.3 (Ar-C-10,19), 147.0 (Ar-C-6a,12a), 145.5 (Ar-C-2,3), 143.9 (Ar-C-5a,13a), 143.4 (Ar-C-4a,14a), 141.2 (Ar-C-11a,16), 140.6 (Ar-C-7a,15), 131.6 (Ar-C-11,20), 128.3 (Ar-C-1,4), 127.2 (Ar-C-8,17), 123.5 (Ar-C-6,13), 77.3 (Ar-C1), 76.6 (Ar-C6), 62.2 (Ar-OCH₃), 44.2 (bridgehead-C-7,12), 36.3 (cyclohexane-*C*), 34.6 (cyclohexane-*C*), 33.8 (Ar-CH₂-(CH₂)₄-CH₃), 32.9 (Ar-(CH₂)₃-CH₂-CH₂-CH₃), 31.3 (Ar-CH₂-CH₂-(CH₂)₃-CH₃), 30.5 (CH₂)₂-CH₂-(CH₂)₂-CH₃), 26.2 (cyclohexane-*C*), 26.0 (cyclohexane-*C*), 23.7 (Ar-(CH₂)₄-CH₂-CH₃), 14.6 (Ar-(CH₂)₅-CH₃). *Because of the lack of resolution in 2D NMR the* cyclohexane-*C signals could not be further assigned*. MS (MALDI): m/z calculated for [M+H]⁺: 3653.1348, found: 3653.7070. Δε (M⁻¹cm⁻¹) = 352 nm (-17.2), 320 nm (35.0), 277 nm (-163.1), 256 nm (170.7).

S,S-Cyclohexane Cages ((*S***,S)**-9 and (*S***,S)**-10) were synthesized by the same procedure using (1*S*,2*S*)-(+)-1,2-diaminocyclohexane (*S*,*S*)-8 instead of (1*R*,2*R*)-(-)-1,2-diaminocyclohexane (*R*,*R*)-8. (*S*,*S*)-9 was obtained as a light yellow solid (60.1 mg, 21.9 µmol, 54%) and (*S*,*S*)-10 was obtained as a light yellow solid (5.90 mg, 1.62 mol, 5%, not pure). *S*,*S*)-9) The analytical data of NMR, IR, UV/Vis, Fluorescence and MS are identical to (*R*,*R*)-9. Elem. Anal.: calculated for C₁₇₄H₂₀₄N₁₈O₁₂ + 3H₂O: C 74.81%, H 7.58%, N 9.02%; found: C 74.92%, H 7.65%, N 9.00%. Δε (M⁻¹cm⁻¹) = 354 nm (26.3), 329 nm (-13.1), 281 nm (118.9), 261 nm (-198.8). (S,S)-10: The analytical data of NMR, MS, UV/Vis and Fluorescence are identical to (*R*,*R*)-10. Δε (M⁻¹cm⁻¹) = 352 nm (15.4), 320 nm (-32.5), 277 nm (150.0), 256 nm (-155.8).

3. NMR Spectra

3.1. ¹H NMR Spectra

Figure S2: ¹H NMR Spectrum (CDCl₃, 300 MHz) of 2. Solvent residues: +: H₂O, #: EA, ~: DCM.

Figure S3: ¹H NMR Spectrum (CD₂Cl₂, 400 MHz) of 4. Solvent residues: +: H₂O.

Figure S4: ¹H NMR Spectrum (CD₂Cl₂, 400 MHz) of 5. Solvent residues: +: H₂O.

Figure S5: ¹H NMR Spectrum (DMSO-d₆, 600 MHz) of 6. Solvent residues: +: H₂O.

Figure S6: ¹H NMR Spectrum (CDCl₃, 600 MHz) of 7. Solvent residues: +: H₂O, #: Acetone.

Figure S7: ¹H NMR Spectrum (CD₂Cl₂, 700 MHz) of 9. Solvent residues: +: H₂O, #: THF.

Figure S8: ¹H NMR Spectrum (THF-d₈, 600 MHz) of 10. Solvent residues: +: H₂O.

3.2. ¹³C NMR Spectra

Figure S9: ¹³C NMR Spectrum (CDCI₃, 75 MHz) of 2.

Figure S11: ¹³C NMR Spectrum (CD₂Cl₂, 101 MHz) of 5.

Figure S13: ¹³C NMR Spectrum (CDCl₃, 151 MHz) of 7. Solvent residues: #: EA.

Figure S15: ¹³C NMR Spectrum (THF-d₈, 151 MHz) of **10** (not pure).

3.3. 2D NMR Spectra

Figure S17: ¹H,¹H-ROESY Spectrum (CD₂Cl₂, 600MHz) of 4.

Figure S19: ¹H,¹³C-HMBC Spectrum (CD₂Cl₂, 600MHz, 151 MHz) of 4.

Figure S20: ¹H,¹H-COSY Spectrum (CD₂Cl₂, 400MHz) of 5.

Figure S21: ¹H, ¹H-ROESY Spectrum (CD₂Cl₂, 400MHz) of 5.

Figure S22: ¹H,¹³C-HSQC Spectrum (CD₂Cl₂, 400MHz, 101MHz) of 5.

Figure S23: ¹H,¹³C-HMBC Spectrum (CD₂Cl₂, 400MHz, 101MHz) of 5.

Figure S25: ¹H,¹H-ROESY Spectrum (DMSO-d₆, 600MHz) of 6.

Figure S26: ¹H,¹³C-HSQC Spectrum (DMSO-d₆, 600MHz, 151MHz) of 6.

Figure S27: ¹H,¹³C-HMBC Spectrum (DMSO-d₆, 400MHz, 101MHz) of 6.

Figure S28: ¹H,¹H-COSY Spectrum (CDCI₃, 600MHz) of 7.

Figure S29: ¹H,¹H-ROESY Spectrum (CDCl₃, 400MHz) of 7.

Figure S30: ¹H,¹³C-HSQC Spectrum (CDCI₃, 400MHz, 101MHz) of 7.

Figure S31: ¹H,¹³C-HMBC Spectrum (CDCI₃, 400MHz, 101MHz) of 7.

Figure S32: ¹H,¹H-COSY Spectrum (CD₂Cl₂, 700MHz) of 9.

Figure S33: ¹H,¹H-ROESY Spectrum (CD₂Cl₂, 700MHz) of 9.

Figure S34: ¹H, ¹³C-HSQC Spectrum (CD₂Cl₂, 700MHz, 176MHz) of 9.

Figure S35: ¹H,¹³C-HMBC Spectrum (CD₂Cl₂, 700MHz, 176MHz) of 9.

Figure S36: ¹H,¹H-COSY Spectrum (THF-d₈, 600MHz) of **10**.

Figure S37: ¹H,¹H-ROESY Spectrum (THF-d₈, 600MHz) of **10**.

Figure S39: ¹H,¹³C-HMBC Spectrum (THF-d₈, 600MHz, 151MHz) of **10**.

4. DOSY Experiments

The recordings of the DOSY NMR experiments were carried out at 298 K and calibrated using the known self-diffusion value for the solvent (D_{solv}).¹³ The solvodynamic radii were estimated using Stokes-Einstein equation. The equation was solved for r_s using values from literature.¹⁴

$$D = \frac{k_B T}{6\pi \eta r_s}$$

in which **D** is the measured diffusion coefficient (m²·s⁻¹); **k**_B is the Boltzmann constant (1.3806485·10 m²·kg·s⁻²·K⁻¹), **T** is the temperature (K), **r**_s is the hydrodynamic radius of the analyte (m) and η is the viscosity of the solvent at temperature **T** (kg·m⁻¹·s⁻¹). **Table S1:** Estimation of the solvodynamic radii (**r**_s) in THF-d₈ for the cage compounds **9** and **10** using parameters from literature and diffusion coefficients measured by DOSY NMR.

Compound	Solvent	<i>Т</i> [К]	<i>D_{sol∕•}</i> 10 ⁻⁹ [m²⋅s⁻¹]	<i>η</i> ⋅10 ⁻³ [kg⋅m ⁻¹ ⋅s ⁻¹]	<i>D</i> ⋅10 ⁻¹⁰ [m²⋅s⁻¹]	<i>r</i> s[nm]
9	$THF ext{-}d_8$	298	2.33	0.47	4.29	1.08
10	THF-d ₈	298	2.33	0.47	3.38	1.37

Figure S41: ¹H-DOSY Spectrum (THF-d₈, 400MHz) of 10.

5. Mass Spectra

Figure S42: EI-MS of compound 2.

Figure S43: MALDI-TOF-MS of compound 4.

Figure S44: MALDI-TOF-MS of compound 5.

Figure S45: MALDI-TOF-MS of compound 6.

Figure S47: MALDI-TOF-MS of compound 9.

Figure S48: MALDI-TOF-MS of compound 10.

6. IR Spectra

Figure S49: IR Spectrum (ATR, ZnSe) of 2.

Figure S51: IR Spectrum (ATR, ZnSe) of 5.

Figure S52: IR Spectrum (ATR, ZnSe) of 6.

Figure S53: IR Spectrum (ATR, ZnSe) of 7.

Figure S54: IR Spectrum (ATR, ZnSe) of 9.

7. UV-Vis/Fluorescence Spectra

Figure S55: UV/vis (black solid line) and fluorescence (red dotted line) spectrum of **4** in dichlormethane. The excication energy for the fluorescence is 406 nm.

Figure S56: UV/vis spectrum of 5 in dichlormethane.

Figure S57: UV/vis spectrum of 6 in dichlormethane.

Figure S58: UV/vis spectrum of 7 in dichlormethane.

Figure S59: UV/vis (black solid line) and fluorescence (red dotted line) spectrum of 9 in dichlormethane. The excication energy for the fluorescence is 402 nm.

8. CD Spectra

Figure S60: CD spectra of (R,R)-9 (black line, c = $6.09 \cdot 10^{-6}$ mol/L), (S,S)-9 (red line, c = $5.98 \cdot 10^{-6}$ mol/L), (R,R)-10 (blue line, c = $6.00 \cdot 10^{-6}$ mol/L), (S,S)-10 (orange line, c = $6.00 \cdot 10^{-6}$ mol/L), in DCM at 20 °C.

9. Determination of the Cavity Volume

The molecular model for the [3+6]-Cage **9** is based on single-crystal diffraction data of **9** which were imported in the Chem3D Pro 17.0 software in order to remove the hexyl substituents to simplify later calculations. The molecular model for the [4+8]-Cage **10** was modeled with Chem3D Pro 17.0 software. Further optimization of the models was conducted in the Spartan 14 software using the PM3 semi empirical method.⁹⁻¹²

The determination of the cavity volume was carried out using SwissPdbViewer¹⁵ 4.1.0 at the highest quality level (Surface Preferences: Quality 6). Two dummy atoms were added to the cage models and positioned in front of the larger windows of the cage to prevent the 1.4 Å radius measuring probe from "falling out" of the cavity of the cage.

This lead to a calculated volume of 177 Å³ for **9** and 368 Å³ for **10**. For **CB6** two dummy atoms and for **CB8** two rings of 8 dummy atoms were positioned in front of the windows to prevent the 1.4 Å radius measuring probe from "falling out" of the cavity leading to a volume of 115 Å³ for **CB6** and 351 Å³ for **CB8**.

Figure S61: Representation of the cavity volume (177 Å³) of **9** determined by using SwissPdbViewer 4.0.1 software.

Figure S62: Representation of the cavity volume (368 Å³) of **10** determined by using SwissPdbViewer 4.0.1 software.

Figure S63: Representation of the cavity volume (115 Å³) of CB6 determined by using SwissPdbViewer 4.0.1 software.

Figure S64: Representation of the cavity volume (351 Å³) of **CB8** determined by using SwissPdbViewer 4.0.1 software.

10. GPC Chromatograms

Figure S65: Chromatogram of the crude mixture of 9 and 10 (SDV column, THF, 5 mL/min, $R_t = 28.65$ min, 254 nm).

11. Crystallographic Data

Crystals of **4** suitable for X-ray diffraction were obtained by heating a solution of **4** in methanol, letting it cool to room temperature and subsequent evaporation of the solvent.

Figure S66: ORTEP representation of the structure of **4** with thermal ellipsoid drawn at 50% probability. Carbon atoms are depicted in grey, oxygen in red, nitrogen in blue and hydrogen in white.

Empirical formular	$C_{42}H_{48}N_2O_4+H_2O$	
Formula weight	671.27	
Temperature	2110(2) K	
Wavelength	1.54178 Å	
Crystal system Orthorhombic		
Space group	Pbcn	
Z	7	
Unit cell dimensions	a = 35.1098(13) Å	α = 90°
	b = 10.3315(3) Å	$\beta = 90^{\circ}$
	c = 20.2989(8) Å	γ = 90°
Volume	7363.2(5) Å ³	
Density (calculated)	1.211 g/cm ³	
Absorption coefficient µ	0.623 mm ⁻¹	
Crystal shape	Plank	
Crystal size	0.262 x 0.202 x 0.028	3 mm ³
Crystal colour	Orange	
Theta range for data collection	4.461 to 62.378°	
Index ranges	-39≤h≤22, -10≤k≤11,	-22≤l≤19
Reflections collected	24471	

Independent reflections	5624 (R(int) = 0.0202)
Observed reflections	4505 (I > 2σ(I))
Absorption correction	Semi-empirical from equivalents
Max/min transmission	1.51 and 0.60
Refinement method	Full-matrix least-squares on F ²
Data/restraints/parameters	5624 / 537 / 566
Goodness-of-fit on F ²	1.05
Final R indices (I>2o(I))	R1 = 0.060, wR2 = 0.162
Largest diff. peak and hole	0.38 and -0.33 eÅ ⁻³

Crystals of **5** suitable for X-ray diffraction were obtained by heating a solution of **5** in methanol, letting it cool to room temperature and diffusing hexane into this solution.

Figure S67: ORTEP representation of the structure of **5** with thermal ellipsoid drawn at 50% probability. Carbon atoms are depicted in grey, oxygen in red, nitrogen in blue, chlorine in green and hydrogen in white.

Empirical formular	$C_{46}H_{52}CI_4N_2O_4+H_2O_6$
Formula weight	838.69
Temperature	200(2) K
Wavelength	1.54178 Å
Crystal system	Triclinic
Space group	Ρī
Z	2

Unit cell dimensions	a = 10.0510(6) Å	α = 98°			
	b = 12.6954(7) Å	β = 103°			
	c = 17.8371(10) Å	γ = 99°			
Volume	2155.8(2) Å ³				
Density (calculated)	1.29 g/cm ³				
Absorption coefficient µ	2.85 mm ⁻¹				
Crystal shape	Plate				
Crystal size	0.150 x 0.060 x 0.016 mm ³				
Crystal colour	Colourless				
Theta range for data collection	3.6 to 60.0°				
Index ranges	-11≤h≤9, -10≤k≤14, -20≤l≤20				
Reflections collected	17852				
Independent reflections	6371 (R(int) = 0.0673	3)			
Observed reflections	3723 (I > 2σ(I))				
Absorption correction	Semi-empirical from e	equivalents			
Max/min transmission	1.69 and 0.51				
Refinement method	Full-matrix least-squa	ares on F ²			
Data/restraints/parameters	6371 / 0 / 511				
Goodness-of-fit on F ²	1.01				
Final R indices (I>2σ(I))	R1 = 0.073, wR2 = 0.	171			
Largest diff. peak and hole	0.65 and -0.36 eÅ ⁻³				

Crystals of **9** suitable for X-ray diffraction were obtained by diffusion of Pentane into a solution of **9** dissolved in DCM.

Figure S68: ORTEP representation of the structure of **9** with thermal ellipsoid drawn at 50% probability. Carbon atoms are depicted in grey, oxygen in red, nitrogen in blue, and hydrogen in white.

Empirical formular	C174H204N18O12			
Formula weight	2739.54			
Temperature	200(2) K			
Wavelength	1.54178 Å			
Crystal system	Orthorhombic			
Space group	P21212			
Z	2			
Unit cell dimensions	a = 29.2978(13) Å	α = 90°		
	b = 13.2859(10) Å	$\beta = 90^{\circ}$		
	c = 26.8063(12) Å	γ = 90°		
Volume	10434.3(10) Å ³			
Density (calculated)	0.87 g/cm ³			
Absorption coefficient µ	0.43 mm ⁻¹			
Crystal shape	Brick			
Crystal size	0.160 x 0.110 x 0.110	mm ³		
Crystal colour	Pale Yellow			
Theta range for data collection	2.2 to 50.4°			
Index ranges	-28≤h≤29, -12≤k≤13, -26≤l≤21			
Reflections collected	18963			

Independent reflections	9675 (R(int) = 0.0582)
Observed reflections	5545 (I > 2σ(I))
Absorption correction	Semi-empirical from equivalents
Max/min transmission	1.83 and 0.56
Refinement method	Full-matrix least-squares on F ²
Data/restraints/parameters	9675 / 1432 / 919
Goodness-of-fit on F ²	0.92
Final R indices (I>2σ(I))	R1 = 0.062, wR2 = 0.155
Largest diff. peak and hole	0.19 and -0.14 eÅ ⁻³

12. Xyz coodinates of computed geometries

[3+6] Cyclohexane cage 9

atom	X	У	Z	atom	X	У	Z
N1	-0.22162	3.16774	-5.16518	N35	4.3117	-2.20463	2.79337
N2	-2.87087	2.41237	-4.20581	N36	-3.08905	-2.87991	3.7517
C3	-3.70781	2.92663	-3.37053	C37	-4.82471	0.08914	-2.74822
C4	-4.66545	1.0512	2.03286	C38	-4.41437	1.12965	-1.72936
C5	0.71879	2.3623	-4.80288	C39	-4.67037	0.72964	-0.40277
C6	-1.63726	2.15264	5.21828	C40	-5.29822	-0.64687	-0.3004
N7	-2.6343	1.40497	4.88594	C41	-4.14588	-1.21652	-2.37431
C8	4.75497	3.34891	-0.75413	C42	-4.42434	-1.62454	-1.0573
N9	5.13494	2.47932	0.11965	C43	-6.56387	-0.55396	-1.12587
N10	4.62504	2.36735	3.0027	C44	-6.30085	-0.14891	-2.48842
C11	3.80358	1.43185	3.33954	C45	-7.29962	-0.00954	-3.39448
C12	2.4349	-0.68228	4.88664	C46	-8.6514	-0.27567	-2.97203
C13	1.79371	0.64201	4.51117	C47	-8.9116	-0.67929	-1.61954
C14	0.44593	0.74085	4.90686	C48	-7.82005	-0.81697	-0.68885
C15	-0.06719	-0.52607	5.55755	C49	-4.43485	1.58054	0.68054
C16	1.59201	-1.77527	4.26424	C50	-3.95096	2.87536	0.39968
C17	0.22665	-1.66989	4.59997	C51	-3.67157	3.26377	-0.92476
C18	0.83741	-0.75246	6.7511	C52	-3.91123	2.39508	-2.01032
C20	2.2303	-0.82747	6.37917	C53	-3.38447	-2.00793	-3.23789
C21	3.20585	-1.01758	7.30167	C54	-3.02649	-3.29672	-2.78965
C22	2.82503	-1.14717	8.6852	C55	-3.3169	-3.70991	-1.47446
C23	1.44088	-1.07387	9.05491	C56	-3.99243	-2.85834	-0.56981
C24	0.43735	-0.86957	8.0415	C57	-4.24691	-3.33774	0.79824
C25	-0.26476	1.924	4.73152	C58	-3.00554	-1.44145	-4.54084
C26	0.40722	3.00877	4.12775	N59	-1.94424	-1.82055	-5.1674
C27	1.74973	2.90363	3.71399	N60	-5.06031	-2.71762	1.59055
C28	2.4562	1.69267	3.86961	C61	4.85885	0.90724	-2.69502
C29	2.06262	-2.82612	3.4819	C62	3.7964	1.98508	-2.66549
C30	1.11477	-3.75467	3.00061	C63	2.85038	1.84383	-3.69852
C31	-0.25094	-3.64489	3.3226	C64	3.16555	0.70135	-4.64999
C32	-0.72117	-2.57468	4.11374	C65	4.14502	-0.43368	-2.73569
C33	-2.13741	-2.34902	4.4411	C66	3.25933	-0.56357	-3.82337
C34	3.48803	-3.09971	3.22167	C67	4.57782	0.95493	-5.13524

atom	X	У	Z		atom	X	У	Z
C68	5.52312	1.05368	-4.04784	-	C125	-12.03475	-0.26441	-4.36369
C69	6.84402	1.26623	-4.26798		N126	3.78109	-1.33902	9.62717
C70	7.29994	1.39609	-5.62859		C127	3,40478	-1,46099	10.93215
C71	6 3607	1 30054	-6 70895		C128	2 02712	-1 38788	11 30002
C72	4 9657	1 0728	-6 42919		N120	1 06594	-1 1951	10 35216
C73	1 76//8	2 7162	-3 83074		C120	1.00004	-1 66/57	11 0/032
073	1.70440	2.7102	-3.03074		C121	4.39409	1 79462	12 24952
074	1.72000	3.02/1/	-2.90202		0101	4.00474	-1.70402	13.24020
075	2.08982	3.988	-1.95236		0132	2.62951	-1.71153	13.01548
C76	3.73891	3.05984	-1.78235		C133	1.65941	-1.51925	12.67967
C//	4.35194	-1.4/152	-1.82169		C134	-5.60526	1.4178	7.27608
C78	3.72547	-2.70596	-2.09319		C135	-6.68486	0.98705	6.2966
C79	2.87671	-2.84812	-3.20772		C136	-6.45594	1.5958	4.92208
C80	2.61624	-1.77116	-4.08349		C137	-5.06545	1.21106	4.39632
C81	1.73574	-2.03777	-5.23419		C138	-3.99075	1.73537	5.38002
C82	5.13624	-1.1757	-0.61318		C139	-4.21915	1.07946	6.7511
N83	5.59869	-2.09231	0.16716		C140	-6.40254	-2.84709	5.66418
N84	0.82737	-1.21142	-5.62869		C141	-7.27027	-3.45681	4.57646
O85	1.56508	-4.85972	2.27989		C142	-6.85891	-2.94918	3.20475
C86	1.4107	-4,70847	0.88248		C143	-5.37889	-3.25858	2,93077
087	-0 25702	4 23123	4 04431		C144	-4 50661	-2 60245	4 03097
C88	-0 74486	4 52239	2 74915		C145	-4 93193	-3 12962	5 40897
000	2 32/05	3 07857	3 04507		C1/6	-1 07721	-0.86594	-8 86882
C00	2.32403	3.97007	2 00216		C140	0 5 2 7 1	1 1049	-0.00002
001	2.00943	4.94901	3.90210		C147	-0.5271	-1.1940	-9.10330
091	-1.13379	-4.5684	2.76999		0148	0.38003	-0.83315	-8.01819
C92	-1.2949	-5.73288	3.55248		C149	-0.06675	-1.5745	-6.74944
093	-2.31809	-4.16508	-3.61687		C150	-1.52149	-1.16157	-6.41479
C94	-3.15161	-4.99348	-4.4		C151	-2.43448	-1.54534	-7.58883
O95	-3.63153	3.74704	1.43428		C152	-3.56306	3.25191	-7.86031
C96	-4.62327	4.71859	1.69609		C153	-2.174	3	-8.42296
O97	-3.26267	4.56739	-1.20147		C154	-1.09247	3.42354	-7.44246
C98	-1.88446	4.78427	-0.97386		C155	-1.27383	2.71112	-6.09338
O99	-3.07779	-5.02676	-1.08979		C156	-2.67219	3.05611	-5.52448
C100	-1.73256	-5.31954	-0.7789		C157	-3.74011	2.56686	-6.51504
O101	3.83571	-3.77574	-1.21147		C158	8.6347	2.85519	1.56932
C102	4.84338	-4.70211	-1.56121		C159	8.41389	2.11606	2.87834
O103	0.66436	4,72998	-3.00809		C160	7.03277	2.40274	3.44395
C104	0 92744	5 87582	-3 79107		C161	5 94211	2 03553	2 42652
0105	2 68503	5 13918	-1 16596		C162	6 16249	2 84126	1 1226
C106	1 80057	5 06542	-0.06573		C163	7 55348	2 50769	0 55971
0100	2 36661	-/ 11006	-3 50777		C164	8 5778	-1 76964	2 503/1
C108	1 121/5	-4.11030	-2 80/71		C165	7 00/55	-2 51303	2.50541
N100	1.12145	1 00201	2.03471		C166	6 51047	2.01090	2 9655
N1440	-4.07.34	1.00301	3.00960		C100	5 7 7 7 7 7	-2.19229	3.0000
NTTU O111	0.77382	1.4217	-7.99446		0107	5.73797	-2.54637	2.58996
0111	8.09746	1.63577	-8.24344		C168	6.31/3/	-1.7359	1.40446
C112	9.03195	1.73091	-7.16836		C169	7.80499	-2.07643	1.23143
N113	8.61582	1.60915	-5.87537		H170	-4.29279	3.83632	-3.59692
C114	8.56239	1.76774	-9.5934		H171	-4.65868	-0.05878	2.09237
C115	9.88656	1.98161	-9.82745		H172	0.7855	1.32019	-5.1871
C116	10.81943	2.07658	-8.75413		H173	-1.75338	3.04476	5.8599
C117	10.41779	1.95671	-7.45869		H174	5.14766	4.38182	-0.77102
N118	-10.17787	-0.93346	-1.20825		H175	4.05589	0.35308	3.23854
C119	-11.2002	-0.79924	-2.1012		H176	3.50963	-0.72397	4.58607
C120	-10.94117	-0.39779	-3.44618		H177	-1.14585	-0.47374	5.84107
N121	-9.66672	-0.14208	-3.85997		H178	4.26428	-1.0747	7.02055
C122	-12.54923	-1.06187	-1.69294		H179	-0.61958	-0.81159	8.32726
C123	-13 56043	-0.92396	-2.59438		H180	-2.32755	-1.64895	5,28143
C.124	-13 30178	-0 5220	-3 0372		H181	3 79571	-4 14446	3 40864
0127	10.00170	0.0220	0.0012			0.10011	1.1.1.1.1.1.10	0.10004

atom	X	У	Z	 atom	Х	У	Z
H182	-4.61234	0.39295	-3.80162	 H239	4.74746	-1.94041	14.03826
H183	-5.45905	-1.00855	0.76326	H240	2.36664	-1.81372	14.67399
H184	-7.10458	0.29762	-4.42857	H241	0.60051	-1.46216	12.95808
H185	-8 01608	-1 13269	0 34363	H242	-5 76544	0 92927	8 25646
H186	-3 71157	-4 25273	1 11153	H243	-5 68125	2 50746	7 46518
H187	-3 6/075	-0.61200	-/ 90172	H240	-6 7064	-0 12/66	6 21906
	5.04373	-0.01203	1 9/076	L1244 L1245	7 69122	1 22052	6 67926
	0.07704	0.97100	-1.04270 E 49076	H240	7.00133	1.20050	4.000020
	2.42200	0.0357	-3.40070		-7.24022	1.24479	4.22200
	7.56306	1.34141	-3.44303		-0.00307	2.09031	4.90935
H191	4.25002	0.99846	-7.25653	H248	-5.00321	0.08624	4.35867
H192	1.8/9//	-3.02332	-5.71402	H249	-4.10687	2.84742	5.48032
H193	5.28304	-0.09163	-0.4121	H250	-4.09748	-0.0227	6.67688
H194	1.90714	-3.80617	0.50651	H251	-3.45047	1.421	7.47257
H195	1.90263	-5.60207	0.48904	H252	-6.69565	-3.24619	6.65411
H196	0.3486	-4.69572	0.58337	H253	-6.57301	-1.74658	5.7201
H197	-1.43424	5.35162	2.93111	H254	-7.19736	-4.5624	4.6103
H198	-1.27961	3.67735	2.30006	H256	-8.3351	-3.21857	4.763
H199	0.06205	4.84137	2.07538	H257	-7.04329	-1.8567	3.13265
H200	3.70177	4.54096	4.51311	H258	-7.49716	-3.4117	2.42627
H201	3.28139	5.68148	3.19134	H259	-5.22537	-4.36967	2.95774
H202	2.13731	5.41267	4.55039	H260	-4.66197	-1.4892	4.00003
H203	-1.70507	-5.51171	4.54413	H261	-4.73739	-4.2186	5.48307
H204	-2.0155	-6.30953	2.96664	H266	-4.31963	-2.65362	6.20268
H205	-0.35812	-6.29109	3.66008	H267	-2.62713	-1.17282	-9.71047
H206	-2.42977	-5.58563	-4.96799	H268	-2.10287	0.23717	-8.77566
H207	-3.77934	-5.64738	-3.78428	H269	-0.42682	-2.27277	-9.42156
H208	-3 7848	-4 41484	-5 08189	H270	-0 20541	-0.6532	-10 09369
H209	-4 17624	5 28322	2 51906	H271	1 42936	-1 08748	-8 26531
H210	-4 79634	5 37424	0.83532	H272	0.36438	0 26497	-7 8498
H211	-5 57005	4 26906	2 01391	H273	-0.039	-2 68049	-6 94426
H212	-1 72066	5 7731	-1 41108	H274	-1 55976	-0 04422	-6 2696
H213	-1 25558	4 03964	-1 47585	H275	-2 44697	-2 64536	-7 7272
H214	-1 64668	4 80061	0.09873	H276	-3 48086	-1 2534	-7 36515
H215	-1 70331	-6 36037	-0 11965	H277	-/ 33110	2 80002	-8 57106
H216	-1.73001	-4.60358	0.03265	H278	-3.73644	1 3/172	-7 75521
H210	-1.07/03	-5.23864	-1 65/71	H270	-2.05767	1 0203	-8 67086
H218	5 83024	-4.24654	-1 58270	H280	-2.00707	3 54277	-0.3703
L210	1 77909	-4.240J4 5 42072	-1.30279	11200 LI201	-2.04004	2 1 9 9 7 /	-9.3793
L1219	4.77090	-3.4307Z	-0.74002	11201 L1202	-0.09555	J. 10024	7 20644
	4.0392	-0.10002	-2.52299		-1.11313	4.32300	-7.30044
	-0.00001	0.43300	-3.70259	H200 H204	-1.21341	1.39007	-0.2043
	1.76073	0.40403	-3.39030		-2.75099	4.17115	-5.42059
TZZ3	1.12292	5.62721	-4.03901		-3.07001	1.40300	-0.0307
HZZ4	2.05572	5.95971	0.50932		-4.7545	2.77159	-0.11801
HZZ5	1.96312	4.16646	0.54031	H287	9.63067	2.6058	1.15533
H226	0.75007	5.10707	-0.38428	H288	8.6471	3.94883	1.7499
H227	0.88499	-5.3/8/8	-3.2613	H289	8.53968	1.01995	2.72218
H228	0.34688	-3.66572	-3.20784	H290	9.18946	2.40533	3.61307
H229	1.19733	-4.38352	-1.79843	H291	6.88736	1.82712	4.37978
H230	7.84154	1.694	-10.41618	H292	6.95416	3.47164	3.72849
H231	10.25909	2.08494	-10.85238	H293	6.0233	0.93391	2.19174
H232	11.87414	2.24944	-8.99416	H294	6.11429	3.93704	1.36129
H233	11.13219	2.02925	-6.63021	H295	7.61267	1.43032	0.2952
H234	-12.74391	-1.37017	-0.65899	H296	7.7282	3.0617	-0.384
H235	-14.59693	-1.1206	-2.29965	H297	9.64288	-2.04019	2.37162
H236	-14.14911	-0.42596	-4.6246	H298	8.56673	-0.67262	2.69854
H237	-11.83152	0.04445	-5.39579	H299	8.13119	-3.60591	3.55958
H238	5.45148	-1.72004	11.66273	H300	8.54785	-2.25016	4.6145

atom	X	У	Z	_	atom	X	У	z
H301	6.11238	-2.74921	4.73264		H304	6.22267	-0.63433	1.634
H302	6.39108	-1.11587	4.10854		H305	7.92986	-3.14443	0.96027
H303	5.85999	-3.64153	2.37485		H306	8.23063	-1.49649	0.38841

[4+8] Cyclohexane cage 10

atom	x	У	z	atom	x	У	z
N1	6.24889	-2.66654	-2.52187	C47	-1.24404	-9.19524	-0.8483
N2	4.48417	-4.98268	-3.13376	C48	-0.62204	-5.81613	-3.58207
C3	3.60658	-5.8175	-2.68871	C49	0.29978	-5.36928	-4.55448
C4	-5.46682	2.80247	-2.31114	C50	1.68037	-5.30841	-4.2824
C5	5.5965	-1.72974	-3.12819	C51	2.18101	-5.75366	-3.04093
C6	-3.57485	5.80461	-0.72623	C52	1.51964	-5.34059	1.37919
N7	-4.54574	5.94744	-1.56353	C53	0.70744	-4.48683	2.16443
C8	5.12886	3.57248	-0.85708	C54	-0.67133	-4.36181	1.90809
N9	5.18796	4.63043	-1.59209	C55	-1.27629	-5.09703	0.8709
N10	2.93753	6.55701	-1.17221	C56	-6.3045	2.74161	2.15479
C11	2.05503	6.21277	-2.05326	C57	2.90339	-5.62167	1.79489
C12	0.97215	6.64236	0.80583	N58	3.72836	-6.22764	1.00291
C13	0.1448	6.25147	-0.40198	N59	-5.67522	3.60375	2.88009
C14	-1.23378	6.19213	-0.13021	C60	6.57799	1.44239	0.55111
C15	-1.57627	6.56333	1.30048	C61	5.82237	1.23323	-0.74809
C16	0.60459	5.67415	1.91556	C62	5.93178	-0.07431	-1.25427
C17	-0.77464	5.63485	2.18892	C63	6.77154	-0.97713	-0.37525
C18	-0.98773	7.93854	1.52006	C64	6.06739	0.39432	1.51867
C19	0.42992	7.98357	1.24425	C65	6.15865	-0.91425	1.01168
C20	1.14639	9.12733	1.37449	C66	8.11499	-0.29349	-0.26059
C21	0.46063	10.31791	1.80906	C67	8.0081	1.05204	0.25553
C22	-0.94608	10.27082	2.09253	C68	9.09996	1.83459	0.43966
C23	-1.66928	9.03415	1.93704	C69	10.3925	1.29654	0.09843
C24	-2.15971	5.84949	-1.11789	C70	10.49769	-0.03678	-0.42366
C25	-1.6624	5.54197	-2.40164	C71	9.31096	-0.83485	-0.60005
C26	-0.28029	5.60646	-2.67105	C72	5.34101	-0.44019	-2.46416
C27	0.64706	6.00171	-1.67942	C73	4.53623	0.52906	-3.10599
C28	1.51102	4.90323	2.64196	C74	4.42663	1.84173	-2.6045
C29	0.99685	4.02937	3.62375	C75	5.10908	2.21877	-1.42977
C30	-0.38487	4.00266	3.9032	C76	5.57801	0.64659	2.80053
C31	-1.29464	4.83303	3.20465	C77	5.10492	-0.46203	3.54011
C32	-2./1382	4.85511	3.60091	C78	5.19613	-1.//54/	3.03639
033	2.93444	5.0688	2.30943	C79	5.74	-2.0178	1.75763
N34	3.85414	5.07943	3.21303	080	5.87308	-3.33932	1.12952
N35	-3.53854	5.68154	3.04651	C81	5.61364	1.97453	3.43417
036	1.634	-6.80665	-0.74812	N82	5.98993	3.02233	2.77517
037	1.26375	-6.2184	-2.09721	N83	6.00427	-4.43177	1.80267
038	-0.12501	-6.19516	-2.33812	084	1.83597	3.08479	4.20256
C39	-0.93224	-6.67705	-1.1473	085	2.34677	3.43276	5.4717
C40	0.92184	-5.95688	0.28086	086	-2.52116	5.04933	-3.37782
C41	-0.46243	-5.86176	0.04406		-2.91626	6.00553	-4.34002
C42	-0.43794	-0.09111	-0.09213		0.1/020	J.J0/U/	-3.90903
	0.9093	-0.10321	-0.00014	000	0.03974	4.01847	-4.20030 1 70500
	1.09020	-9.3421 10 54400	-0.40030 0.40025	C01	-U.0/33 1 06105	3.03071	4.19000 6 11000
	0.60098	-10.54402	-0.40835	000		3.52559 2.6707	0.11293
640	-0.01003	-10.47041	-0.0000	092	1.31007	-3.0/9/	3.11000

atom	X	У	Z	 atom	X	У	Z
C93	1.16272	-4.12034	4.45059	C150	5.30668	-8.04156	0.74878
O94	-0.20467	-4.8967	-5.76533	C151	7.96104	-6.55361	-2.9355
C95	-0.0666	-5.80493	-6.83867	C152	8,7619	-5.34926	-3.39871
096	2 5716	-4 9672	-5 29345	C153	8 1865	-4 06496	-2 82901
C97	2 68320	-3 578/2	-5 52272	C154	6 70448	-3 802/2	-3 21101
000	2.00529	2 501042	-3.32272	0154	5 00020	5 1 2 4 7 0	-3.21101
096	-1.43020	-3.59102	2.76159	0155	5.69926	-5.12479	-2.73003
C99	-1.7344	-2.30251	2.25269	C156	6.50352	-6.40561	-3.33355
0100	4.64198	-0.25568	4.83855	C157	6.981	7.84143	-0.67015
C101	3.23087	-0.20939	4.9334	C158	5.97029	8.82213	-1.23923
O102	3.92382	0.23099	-4.32232	C159	4.54916	8.35292	-0.9795
C103	2.64275	-0.34975	-4.17811	C160	4.31009	6.94903	-1.56265
O104	3.54269	2.73639	-3.19541	C161	5.34199	5.96173	-0.97109
C105	4.03843	3.37015	-4.35745	C162	6.76868	6.45551	-1.25421
0106	4 62991	-2 82115	3 75679	C163	7 97412	6 10485	3 72002
C107	5 45435	-3 32734	4 78663	C164	7 02984	7 14657	3 14569
N109	6 20676	2 461 42	1 47060	C165	5 5 5 5 0 9	6 77629	2 42656
N100	-0.20070	0 5540143	-1.47909	C100	5.56596	0.77020 E 202E9	3.43030
N109	11.70623	-0.55485	-0.75248	0100	5.25325	5.39258	2.85803
C110	12.82118	0.21151	-0.57776	C167	6.20478	4.32455	3.44479
C111	12.71676	1.53635	-0.05751	C168	7.66444	4.72485	3.16636
N112	11.50025	2.05792	0.2726	N169	-3.01951	-5.53371	-3.28707
C113	14.11234	-0.31123	-0.91712	N170	-5.24085	-3.58585	-2.85834
C114	15.21706	0.4643	-0.73749	C171	-4.61919	-2.90315	-1.96037
C115	15.11279	1.78709	-0.21779	C172	-2.02989	-5.97816	-3.98314
C116	13 90498	2 31958	0 11629	C173	-6 57259	-1 52103	-0 18701
N117	-1 37949	-11 59182	-0 56738	C174	-5 65087	-0.81278	-1 1643
C118	-0 77284	-12 70151	-0.33713	C175	-5 8282	0.583	-1 10216
C110	0.62011	12.79131	-0.33713	C176	-J.0202	1 06007	-1.19210
CTT9	0.03911	-12.00401	-0.14075	0170	-0.00900	1.00237	-0.19427
N120	1.40421	-11.73642	-0.18015		-6.30901	-0.89423	1.16903
C121	-1.55279	-13.99373	-0.29107	C178	-6.41394	0.51128	1.14866
C122	-0.93425	-15.18473	-0.06116	C179	-8.13831	0.33724	-0.54501
C123	0.47552	-15.25793	0.13465	C180	-7.97623	-1.09689	-0.5582
C124	1.25091	-14.13928	0.09866	C181	-8.99808	-1.92979	-0.87656
N125	1.15334	11.47464	1.94803	C182	-10.27867	-1.35053	-1.19349
C126	0.49156	12.59328	2.36224	C183	-10.44233	0.07514	-1.17501
C127	-0.90651	12.54622	2.6451	C184	-9.32518	0.92213	-0.84294
N128	-1 60357	11 38198	2 50512	C185	-5 11617	1 39248	-2 07558
C120	1 100/7	13 83035	2.50012	C186	-4 00237	0 77721	-2.83662
C120	0 52692	14.02026	2.01720	C100	2 00900	0.11121	2,00002
0130	0.52063	14.93930	2.93162	0107	-3.90809	-0.61926	-2.60691
0131	-0.86915	14.89237	3.21414	C188	-4.71965	-1.43068	-1.99087
C132	-1.57683	13.73692	3.07915	C189	-6.038	-1.56824	2.3569
C133	-8.02556	7.30273	-0.90531	C190	-5.74729	-0.79416	3.50145
C134	-8.82651	6.19374	-1.56687	C191	-5.75008	0.61393	3.45527
C135	-8.19382	4.83527	-1.31499	C192	-6.12972	1.28733	2.27491
C136	-6.73523	4.80532	-1.80453	C193	-6.15753	-3.02738	2.51873
C137	-5.94219	5.92368	-1.08764	N194	-5.59907	-3.87656	1.72595
C138	-6 58429	7 28556	-1 38712	C195	-2 73266	-5 08383	0.63123
C139	-6 64985	7 7055	3 74716	N196	-3 47031	-5 92143	1 27294
C140	-7 63010	6 88245	2 04004	0107	-5 35266	-1 /6277	1.27204
C140	7 26907	5 20052	2.34034	C100	-0.00200	1 52640	4.00002 5.65150
0141	-7.30097	5.59952	3.12219	0190	-0.30002	-1.55649	0.00102
0142	-5.93515	5.04597	2.6963	0199	-3.16314	1.55354	-3.52106
C143	-4.92368	5.87334	3.52409	C200	-3.56217	1.95622	-4.81204
C144	-5.22179	7.37431	3.35225	O201	-2.84668	-1.2032	-3.4916
C145	6.66592	-8.61195	1.11718	C202	-3.13366	-1.5097	-4.83952
C146	7.77763	-7.62678	0.79763	O203	-5.51301	1.33491	4.62089
C147	7.54193	-6.30527	1.50976	C204	-4.13736	1.48748	4.91376
C148	6.18614	-5.715	1.09681	N205	-11.64118	0.63525	-1.47031
C149	5.05262	-6.70221	1.46327	C206	-12.68896	-0.17901	-1.78497
-	-			-			-

atom	X	У	Z	 atom	X	У	Z
C207	-12.52615	-1.59717	-1.80279	H264	-0.50863	-5.25406	-7.67274
N208	-11.32017	-2.1603	-1.50562	H265	0.98045	-6.04395	-7.05488
C209	-13.96812	0.38626	-2.10144	H266	-0.62364	-6.73264	-6.66187
C210	-15.00564	-0.43829	-2.41368	H267	3.52473	-3.52295	-6.21824
C211	-14 84312	-1 85414	-2 43151	H268	1 77841	-3 17178	-5 98906
C212	-13 64486	-2 42959	-2 13679	H269	2 91005	-3 00065	-4 6114
C212	-7 5/056	-7 1611/	1 66051	H270	-2 3/008	-1 86315	3 0/180
C214	6 629/2	7.10114	0.72101	L1270	-2.0+990	1 71 251	2 10622
0214	-0.02043	-7.91902	0.72101		-0.62319	-1.71201	2.10023
0215	-0.17073	-7.01035	1.04509		-2.2907	-2.35027	1.31342
0216	-4.8972	-6.10968	0.95031	H2/3	3.07649	0.08014	5.97653
C217	-5.82786	-5.32879	1.90594	H274	2.79541	0.54217	4.26436
C218	-7.29278	-5.66721	1.57363	H275	2.77681	-1.18859	4.7389
C219	-4.41342	-5.798	-3.71158	H276	2.22491	-0.26537	-5.18494
C220	-5.37697	-5.05214	-2.76071	H277	2.72749	-1.41306	-3.90014
C221	-6.83868	-5.37937	-3.10641	H278	2.00791	0.17815	-3.45861
C222	-7.08887	-6.87547	-3.0391	H279	3.23196	4.0735	-4.59209
C223	-6.15321	-7.61152	-3.9818	H280	4.97303	3.91133	-4.17408
C224	-4.70464	-7.30858	-3.6433	H281	4.1768	2.66357	-5.18309
H225	3.86098	-6.6206	-1.96255	H282	4.85712	-4.15989	5.16858
H226	-5.10999	3.23956	-3.26714	H283	6.41653	-3.69279	4.41155
H227	5.24904	-1.83607	-4.17143	H284	5.62375	-2.5881	5.57745
H228	-3 7444	5 67319	0 36475	H285	14 18829	-1 32939	-1 31647
H229	5 1757	3 59897	0 25294	H286	16 21119	0.081	-0.99153
H230	2 31186	6 1003	-3 12233	H287	16.03066	2 37133	-0.0916
H231	2.07533	6 64783	0.53015	H288	13 82048	2.37 133	0.0010
L1201	2.07333	6 40256	1 55516	1200	2 62706	12 02207	0.31042
H202	-2.00033	0.49330	1.00010	1209	-2.03700	-13.93307	-0.44134
TZ33	2.22144	9.1024	1.15509		-1.51450	-10.11200	-0.02242
	-2.74405	8.99356	2.15971	H291	0.92619	-16.23968	0.31634
H235	-3.03525	4.1602	4.3988	H292	2.33561	-14.19121	0.24932
H236	3.1342	5.27165	1.23552	H293	2.2733	13.86227	2.29867
H237	2.75057	-6.83/1/	-0.54231	H294	1.05183	15.89271	3.05527
H238	-2.03249	-6.61683	-1.29851	H295	-1.36527	15.81141	3.54441
H239	2.6794	-9.3967	-0.28398	H296	-2.65086	13.69667	3.29518
H240	-2.33177	-9.13566	-0.9833	H297	-8.48533	8.2857	-1.12221
H241	-7.00895	3.04958	1.35082	H298	-8.0554	7.19329	0.20446
H242	3.18059	-5.33208	2.82503	H299	-8.89932	6.38078	-2.65702
H243	6.45668	2.47974	0.99535	H300	-9.86712	6.1987	-1.18935
H244	6.81811	-2.0212	-0.81923	H301	-8.23858	4.59007	-0.23103
H245	9.01782	2.85323	0.84109	H302	-8.78516	4.04629	-1.82273
H246	9.38799	-1.85271	-1.00582	H303	-6.71195	4.99094	-2.91082
H247	5.896	-3.31819	0.0178	H304	-5.99697	5.7477	0.02518
H248	5.34089	2.02596	4.5039	H305	-6.54144	7.5064	-2.47289
H249	3.04368	2.61062	5.66807	H306	-6.0129	8.09444	-0.89018
H250	2.87701	4.39142	5.47395	H307	-6.84085	8.78545	3.59678
H251	1.55854	3,44985	6.23883	H308	-6.7981	7.51977	4.82987
H252	-3 60894	5 4292	-4 96007	H309	-7 58367	7 15083	1 8594
H253	-3 43165	6 86194	-3 89206	H310	-8 6748	7 11754	3 25322
H254	-2 07095	6 35724	-4 94198	H311	-8 09725	4 81425	2 52329
H255	0.81/133	4 06326	-5 27265	H312	-7 53035	5 11068	1 17905
H256	0.01400	3 5010	-3 57637	H312	-5 80/16	5 30356	4.17303
11200 11200	-0 62200	3 10777	-0.01001	H211	-5.00410	5.50550	1.00073
11207 11050	-U.UZZ99 1 66/45	3.43121 9.7919	-4.00042 6 F6757	1014 1015	-0.01700 5.040E7	7 601 51	4.00090
	-1.00413	2.1343	0.00/0/	П313 Ц240	-0.04007	7.00104	2.2331
H209	-0.09938	3.0224	0.03//3		-4.51589	1.91508	3.90024
	-1.59646	4.48137	0.15832		0.83291	-9.56315	0.5/60/
H261	1.70362	-3.35035	5.00951	H318	6.68895	-8.86908	2.1952
H262	0.11416	-4.15639	4.76521	H319	1.84296	-1.45/12	-0.30323
H263	1.62772	-5.09998	4.61171	H320	8.7569	-8.04779	1.09489

atom	X	У	Z	atom	X	У	Z
H321	8.35738	-5.59632	1.26453	H361	-8.86805	-3.01955	-0.90333
H322	7.58545	-6.45001	2.6082	H362	-9.44627	2.0136	-0.84242
H323	6.19247	-5.57306	-0.02225	H363	-6.7709	-3.34295	3.3829
H324	5.05374	-6.86732	2.57262	H364	-3.10484	-4.37033	-0.13267
H325	5.23901	-7.90568	-0.35299	H365	-5.85033	-2.07758	6.45595
H326	4.51157	-8.77017	1.00767	H366	-6.67489	-0.54873	6.00104
H327	8.37902	-7.4806	-3.37274	H367	-7.2288	-2.10205	5.30666
H328	8.04341	-6.6797	-1.82988	H368	-2.69482	2.5264	-5.15834
H329	8.7695	-5.30433	-4.50629	H369	-3.74709	1.09507	-5.47148
H330	9.82063	-5.45482	-3.09307	H370	-4.44969	2.60583	-4.77782
H331	8.29911	-4.06103	-1.72315	H371	-2.19452	-1.94685	-5.18764
H332	8.77643	-3.19815	-3.18913	H372	-3.95028	-2.2338	-4.93622
H333	6.61357	-3.79822	-4.32488	H373	-3.37316	-0.6074	-5.42401
H334	5.95876	-5.18249	-1.61423	H374	-4.14577	2.18615	5.75544
H335	6.41242	-6.39659	-4.43854	H375	-3.68174	0.53736	5.21497
H336	5.93198	-7.29112	-2.98617	H376	-3.57278	1.91733	4.07757
H337	8.01008	8.18749	-0.88524	H377	-14.08906	1.47582	-2.08664
H338	6.90349	7.80165	0.44181	H378	-15.98955	-0.0236	-2.65828
H339	6.13645	8.94508	-2.32831	H379	-15.70819	-2.47482	-2.68915
H340	6.12101	9.82495	-0.79527	H380	-13.51566	-3.51823	-2.14964
H341	3.83174	9.07419	-1.41871	H381	-8.60755	-7.37512	1.41491
H342	4.34461	8.3561	0.11297	H382	-7.40237	-7.51292	2.70132
H343	4.43171	6.98465	-2.67786	H383	-6.8497	-7.6489	-0.33793
H344	5.1962	5.91748	0.14739	H384	-6.81626	-9.00743	0.79808
H345	6.9651	6.46997	-2.34546	H385	-4.51304	-8.16981	0.34633
H346	7.5063	5.75054	-0.82057	H386	-4.92679	-7.99504	2.05794
H347	9.02319	6.37393	3.49078	H387	-5.11017	-5.77487	-0.10374
H348	7.89845	6.09633	4.82594	H388	-5.60473	-5.62078	2.96398
H349	7.18257	7.24884	2.04556	H389	-7.54825	-5.30267	0.55554
H350	7.25667	8.14253	3.57196	H390	-7.97341	-5.13148	2.26575
H351	4.91013	7.54024	3.00199	H391	-4.56387	-5.43125	-4.75888
H352	5.4038	6.79377	4.53026	H392	-5.17307	-5.39984	-1.70896
H353	5.40016	5.42994	1.73961	H393	-7.09259	-4.99824	-4.11629
H354	6.04316	4.25629	4.55339	H394	-7.51937	-4.85411	-2.4047
H355	7.86781	4.70282	2.07386	H395	-8.14218	-7.09529	-3.29781
H356	8.3537	3.98068	3.61248	H396	-6.95153	-7.24174	-1.99467
H357	-4.04751	-3.34222	-1.11668	H397	-6.36777	-7.32399	-5.03056
H358	-2.1745	-6.51675	-4.93801	H398	-6.33191	-8.70246	-3.92397
H359	-6.44397	-2.6259	-0.20224	H399	-4.0381	-7.85741	-4.33901
H360	-6.95432	2.19311	-0.22576	H400	-4.46918	-7.697	-2.6292

13. Electron density maps

Figure S69: Electron density map top view and cut out of side view of 9.

Figure S70: Electron density map top view and cut out of side view of 10.

Figure S71: Electron density map top view and cut out of side view of CB6.

Figure S72: Electron density map top view and cut out of side view of CB8.

14. References

- 1. B. S. Ghanem, M. Hashem, K. D. M. Harris, K. J. Msayib, M. Xu, P. M. Budd, N. Chaukura, D. Book, S. Tedds, A. Walton and N. B. McKeown, *Macromolecules*, 2010, **43**, 5287-5294.
- 2. F. Zhang, S. Bai, G. P. A. Yap, V. Tarwade and J. M. Fox, *J. Am. Chem. Soc.*, 2005, **127**, 10590-10599.
- 3. G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg, *Organometallics*, 2010, **29**, 2176-2179.
- 4. L. Krause, R. Herbst-Irmer, G. M. Sheldrick and D. Stalke, J. Appl. Crystallogr., 2015, 48, 3-10.
- 5. L. Krause, R. Herbst-Irmer, G. M. Sheldrick and D. Stalke, *SADABS 2016/2. Bruker AXS area detector scaling and absorption correction*, Bruker Analytical X-ray Division, Madison, Wisconsin, **2016**.
- 6. *X-Area LANA 1.70.0.0,* Stoe & Cie GmbH, Darmstadt, **2017**.
- 7. G. Sheldrick, Acta Crystallogr. A, 2015, **71**, 3-8.
- 8. G. Sheldrick, Acta Crystallogr. C, 2015, **71**, 3-8.
- 9. J. J. P. Stewart, J. Comput. Chem., 1989, **10**, 209-220.
- 10. J. J. P. Stewart, J. Comput. Chem., 1989, 10, 221-264.
- 11. J. J. P. Stewart, J. Comput. Chem., 1991, **12**, 320-341.
- 12. J. J. P. Stewart, J. Mol. Model., 2004, 10, 155-164.
- 13. S. Viel, F. Ziarelli, G. Pagès, C. Carrara and S. Caldarelli, *J. Magn. Reson.*, 2008, **190**, 113-123.
- 14. Y. H. Zhao, M. H. Abraham and A. M. Zissimos, J. Org. Chem., 2003, 68, 7368-7373.
- 15. N. Guex and M. C. Peitsch, *ELECTROPHORESIS*, 1997, **18**, 2714-2723.