Supporting Information

Construction of Novel Bridged Aromatic Ring-Fused Oxazocine

Frameworks via N-Heterocyclic Carbene-Catalyzed Azabenzoin

Reaction and Radical-Initiated Cascade Cyclization

Shuang-Shuo Niu and Ying Cheng*

College of Chemistry, Beijing Normal University, Beijing 100875, China

E-mail: ycheng2@bnu.edu.cn

Table of Contents			
1. General inform	ation		
2. Synthesis of	2-aryl-2-benzamido-1-(2	2-vinylaryl)-1-ethanones 4 fr	om NHC-catalyzed
reaction of o-vir	yl aromatic aldehydes	1 with N-(aryl(tosyl)methyl)benzamides 2 and
characterization o	f 4		S2-S10
3. Radical-mediat	ed cyclization reaction of	f 2-aryl-2-benzamido-1-(o-viny	laryl)-1-ethanones 4
and characterization	on of products		S11-S20
4. Reduction of 3,	5-diphenyl-1,5-methanob	oenzo[f][1,3]oxazocin-6-one 5a	
5.	Acidic	hydrolysis	of
5-(4-methoxypher	ıyl)-3-phenyl-1,5-methan	obenzo[f][1,3]oxazocin-6-one	
5j			
6. X-Ray crystallo	graphy of products 5a , 7	a , 12a , 15j and 16a	
7. 1 H and 13 C NM	R spectra of all products.		

1. General Information

Commercially available chemical reagents were used without further purification. Anhydrous solvents were prepared by solvent purification system. Melting points were uncorrected. ¹H NMR (400 and 600 MHz) and ¹³C NMR (100 and 150 MHz) were recorded in the indicated solvents using JEOL instrument. J values are reported in Hz. IR spectra were recorded using an AVATAR 360 FT-IR spectrometer. High resolution mass spectral analysis (HRMS) was performed on a LCT Premier XE (ESI) or a micrOTOF-Q II (ESI). Column chromatography was performed using 200-300 mesh silica gel eluted with the solvents as indicated.

The *o*-vinyl aromatic aldehydes $\mathbf{1}^1$ and *N*-(aryl(tosyl)methyl)benzamides $\mathbf{2}^2$ were prepared based on the literature methods.

1. (a) L. Jarrige, A. Carboni, G. Dagousset, G. Levitre, E. Magnier, G. Masson, Photoredox-Catalyzed Three-Component Tandem Process: An Assembly of Complex Trifluoromethylated Phthalans and Isoindolines, *Org. Lett.* 2016, **18**, 2906–2909. (b) J. Lee, H. Y. Kim, K. Oh, Tandem Reaction Approaches to Isoquinolones from 2 Vinylbenzaldehydes and Anilines via Imine Formation– 6π –Electrocyclization–Aerobic Oxidation Sequence, *Org. Lett.* 2020, **22**, 474–478.

(a) C. B. Schwamb, K. P. Fitzpatrick, A. C. Brueckner, H. C. Richardson, P. H.-Y. Cheong, K. A. Scheidt, Enantioselective Synthesis of α Amidoboronates Catalyzed by Planar-Chiral NHC-Cu(I) Complexes, J. Am. Chem. Soc. 2018, 140, 10644–10648. (b) B. J. Cowen, L. B. Saunders, S. J. Miller, Pyridylalanine (Pal)-Peptide Catalyzed Enantioselective Allenoate Additions to N-Acyl Imines, J. Am. Chem. Soc. 2009, 131, 6105–6107. (c) M. S. Al Mehedi, J. J. Tepe, Diastereoselective One-Pot Synthesis of Oxazolines Using Sulfur Ylides and Acyl Imines, J. Org. Chem. 2019, 84, 7219–7226.

2. Synthesis of 2-aryl-2-benzamido-1-(2-vinylaryl)-1-ethanones 4 (also namely N-(1-aryl-1-(2-vinylaroyl)methyl)benzamides) from NHC-catalyzed reaction of *o*-vinyl aromatic aldehydes 1 with N-(aryl(tosyl)methyl)benzamides 2 and characterization of 4

Under nitrogen atmosphere and at room temperature, N-(aryl(tosyl)methyl)benzamides 2 (0.5 mmol), thiazolium salt 3a (40.5 mg, 0.15 mmol, 30 mol%), Na₂CO₃ (132.5 mg, 1.25 mmol, 2.5 equiv.) and the solution of o-vinyl aromatic aldehydes 1 (0.5 mmol) in dry acetonitrile (5 mL) were added successively to a dry Schlenk tube. In the sealed tube, the reaction mixture was stirred for 12 h (24 h for the reactions of 4-methyl-2-vinylbenzaldehyde 4-methoxy-2-vinylbenzaldehyde 1b and with 1c N-(phenyl(tosyl)methyl)benzamide 2a) at room temperature. The solids in the reaction mixture were filtrated and washed with dichloromethane (10 mL \times 3). The combined filtrate was concentrated under reduced pressure. The residue was chromatographed on a silica gel column eluting with a mixture of petroleum ether and ethyl acetate (PE:EA from 20:1 to 3:1) to give 2-aryl-2-benzamido-1-(2-vinylaryl)-1-ethanones 31-82% vields. The 4a-4o in 2-phenyl-2-benzamido-1-(2-vinyl-3-pyridinyl)-1-ethanone 4p was obtained in 69% vield by chromatography eluting with a mixture of solvents from PE : EA = 20 : 1 to PE : $EA : Et_3N = 30 : 10 : 0.1$.

2-Benzamido-2-phenyl-1-(2-vinylphenyl)-1-ethanone also (namely *N*-(1-phenyl-1-(2-vinylbenzoyl)methyl)benzamide) 4a: white solid, 136.8 mg, 80 %, mp 98-99 °C (recrystallization from dichloromethane/*n*-hexane); IR v (cm⁻¹) 3352, 1697, 1645, 1626; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.87 (d, J = 7.2 Hz, 2H), 7.71 (d, J = 6 Hz, 1H), 7.68 (d, J = 7.8 Hz, 1H), 7.49-7.53 (m, 2H), 7.41-7.46 (m, 3H), 7.33 (d, J = 7.2 Hz, 2H), 7.25-7.31 (m, 3H), 7.22 (t, J = 7.8 Hz, 1H), 6.92 (dd, J = 17.4, 10.2 Hz, 1H), 6.56 (d, J = 7.2 Hz, 1H), 5.57 (dd, J = 17.4 Hz, 1H), 5.31 (d, J = 11.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 199.5, 166.5, 138.6, 136.2, 135.1, 134.9, 134.0, 132.2, 131.9, 129.2, 128.7, 128.6, 128.5, 128.2, 127.6, 127.5, 127.3, 117.3, 61.5; HRMS (TOF-ESI): [M + H]⁺ calcd for C₂₃H₂₀NO₂: 342.1488, found: 342.1495.

2-Benzamido-2-phenyl-1-(4-methoxy-2-vinylphenyl)-1-ethanone 4b: white solid, 56.7 mg, 31 %, mp 74-75 °C (without recrystallization); IR v (cm⁻¹) 3402, 3325, 1682, 1651; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.85 (d, J = 7.8 Hz, 2H), 7.82 (d, J = 7.8 Hz, 1H), 7.78 (d, J = 7.2 Hz, 1H), 7.50 (t, J = 7.2 Hz, 1H), 7.43 (t, J = 7.2 Hz, 2H), 7.38 (d, J = 7.8 Hz, 2H), 7.27 (t, J = 7.8 Hz, 2H), 7.23 (t, J = 8.4 Hz, 1H), 7.15 (dd, J = 17.4, 11.4 Hz, 1H), 6.97 (d, J = 3.6 Hz, 1H), 6.80 (dd, J = 7.8, 1.8 Hz, 1H), 6.62 (d, J = 6.6 Hz, 1H), 5.57 (d, J = 17.4 Hz, 1H), 5.34 (d, J = 12 Hz, 1H), 3.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 197.1, 166.2, 162.8, 142.4, 137.3, 136.2, 134.0, 131.9, 130.8, 129.2, 128.6, 128.3, 128.1, 127.3, 126.8, 117.0, 113.6, 112.6, 60.3, 55.5; HRMS (TOF-ESI): [M + H]⁺ calcd for C₂₄H₂₂NO₃: 372.1594, found: 372.1600.

2-Benzamido-2-phenyl-1-(4-methyl-2-vinylphenyl)-1-ethanone 4c: white solid, 94.5 mg, 53 %, mp 84-85 °C (without recrystallization); IR v (cm⁻¹) 3356, 1699, 1682, 1633; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.65 (d, J = 7.8 Hz, 1H), 7.50 (t, J = 6.6 Hz, 1H), 7.43 (t, J = 7.8 Hz, 2H), 7.34 (d, J = 7.8 Hz, 2H), 7.30 (s, 1H), 7.26 (t, J = 8.4 Hz, 2H), 7.21 (t, J = 8.4 Hz, 1H), 7.10 (d, J = 8.4 Hz, 1H), 7.0 (dd, J = 17.4, 10.2 Hz, 1H), 6.69 (d, J = 7.2 Hz, 1H), 5.57 (d, J = 16.8 Hz, 1H), 5.30 (d, J = 11.4 Hz, 1H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 198.7, 166.5, 143.1, 139.1, 136.7, 135.6, 134.0, 131.9, 131.8, 129.23, 129.16, 128.7, 128.5, 128.4, 128.3, 128.2, 127.3, 116.9, 61.0, 21.7; HRMS (TOF-ESI): [M + H]⁺ calcd for C₂₄H₂₂NO₂: 356.1645, found: 356.1648.

2-Benzamido-2-phenyl-1-(4-fluoro-2-vinylphenyl)-1-ethanone 4d: white solid, 138.6 mg, 77 %, mp 109-110 °C (recrystallization from dichloromethane/*n*-hexane); IR v (cm⁻¹) 3410, 3318, 1694, 1651; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.85 (d, J = 7.8 Hz, 2H), 7.75 (dd, J = 8.4, 6 Hz, 1H), 7.63 (d, J = 6.6 Hz, 1H), 7.51 (t, J = 7.2 Hz, 1H), 7.44 (t, J = 8.4 Hz, 2H), 7.33 (d, J = 7.8 Hz, 2H), 7.29 (t, J = 8.4 Hz, 2H), 7.24 (t, J = 7.8 Hz, 1H), 7.18 (dd, J = 10.2, 2.4 Hz, 1H), 6.94-6.99 (m, 2H), 6.53 (d, J = 6.6 Hz, 1H), 5.60 (d, J = 17.4 Hz, 1H), 5.37 (d, J = 11.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 198.1, 166.6, 164.7 (d, J = 253 Hz), 142.1 (d, J = 8.7 Hz), 136.1, 134.4, 133.8, 131.9, 131.5 (d, J = 9.6 Hz), 131.1, 129.3, 128.7, 128.6, 128.2, 127.3, 118.3, 124.6 (d, J = 22 Hz), 114.5 (d, J = 22.1 Hz), 61.4; HRMS (TOF-ESI): [M + H]⁺ calcd for C₂₃H₁₉FNO₂: 360.1394, found: 360.1392.

2-Benzamido-2-phenyl-1-(4-trifluoromethyl-2-vinylphenyl)-1-ethanone 4e: white solid, 135.8 mg, 66 %, 124-125 mp °C (recrystallization from acetone/*n*-hexane); IR v (cm⁻¹) 3366, 3267, 1709, 1645; ¹H NMR (600 MHz, CD₃COCD₃) δ (ppm) 8.40 (d, J = 6 Hz, 1H), 8.08 (d, J = 7.8 Hz, 1H), 7.96 (d, J = 7.2, 2.0 Hz, 2H), 7.89 (s, 1H), 7.70 (d, J = 6 Hz, 1H), 7.53 (t, J = 6.6 Hz, 1H), 7.44-7.46 (m, 4H), 7.32 (t, J = 7.8 Hz, 2H), 7.28 (t, J = 7.2 Hz, 1H), 6.85 (dd, J = 18, 11.4 Hz, 1H), 6.47 (d, J = 6 Hz, 1H), 5.80 (d, J = 16.8 Hz, 1H), 5.32 (d, J = 10.2 Hz, 1H); ¹³C NMR (100 MHz, CD₃COCD₃) δ (ppm) 199.2, 166.7, 140.3, 138.0, 134.7, 134.1, 133.4, 132.2 (q, J = 32.6 Hz), 131.6, 129.13, 129.07, 129.0, 128.6, 128.4, 127.6, 123.9 (q, J = 271.2 Hz), 124.0 (d, J = 2.9 Hz), 123.1, 118.0, 63.1; HRMS (TOF-ESI): [M + H]⁺ calcd for C₂₄H₁₉F₃NO₂: 410.1362, found: 410.1366.

2-Benzamido-2-phenyl-1-(5-methoxy-2-vinylphenyl)-1-ethanone 4f: white solid, 121.4 mg, 65 %, mp 124-125 °C (recrystallization from dichloromethane/*n*-hexane); IR *v* (cm⁻¹) 3364, 1701, 1649, 1634; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.87 (d, *J* = 8.4 Hz, 2H), 7.71 (d, *J* = 7.2 Hz, 1H), 7.51 (t, J = 7.2 Hz, 1H), 7.51

1H), 7.42-7.46 (m, 3H), 7.33 (d, J = 8.4 Hz, 2H), 7.27 (t, J = 7.8 Hz, 2H), 7.23 (t, J = 7.2 Hz, 1H), 7.10 (d, J = 2.4 Hz, 1H), 6.95 (dd, J = 9, 3.6 Hz, 1H), 6.82 (dd, J = 17.4, 12 Hz, 1H), 6.50 (d, J = 7.2 Hz, 1H), 5.47 (d, J = 17.4 Hz, 1H), 5.20 (dd, J = 11.4 Hz, 1H), 3.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 199.5, 166.5, 158.8, 136.1, 136.0, 134.3, 133.9, 131.9, 130.8, 129.2, 128.71, 128.68, 128.6, 128.2, 127.3, 118.1, 115.6, 113.4, 61.8, 55.6; HRMS (TOF-ESI): [M + H]⁺ calcd for C₂₄H₂₂NO₃: 372.1594, found: 372.1588.

2-Benzamido-2-phenyl-1-(5-methyl-2-vinylphenyl)-1-ethanone 4g: white solid, 119.4 mg, 62 %, mp 136-137 °C (recrystallization from dichloromethane/*n*-hexane); IR v (cm⁻¹) 3385, 1689, 1641; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.87 (d, J = 7.2 Hz, 2H), 7.71 (d, J = 6.6 Hz, 1H), 7.51 (t, J = 6.6 Hz, 1H), 7.49 (s, 1H), 7.45 (t, J = 8.4 Hz, 2H), 7.39 (d, J = 7.2 Hz, 1H), 7.32 (d, J = 7.8 Hz, 2H), 7.20-7.27 (m, 4H), 6.85 (dd, J = 16.8, 10.2 Hz, 1H), 6.57 (d, J = 7.2 Hz, 1H), 5.53 (d, J = 18.6 Hz, 1H), 5.24 (d, J = 10.2 Hz, 1H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 199.6, 166.5, 137.5, 136.2, 135.7, 135.0, 134.8, 134.0, 133.0, 131.9, 129.14, 129.06, 128.7, 128.5, 128.1, 127.4, 127.3, 116.4, 61.4, 21.2; HRMS (TOF-ESI): [M + H]⁺ calcd for C₂₄H₂₂NO₂: 356.1645, found: 356.1641.

2-Benzamido-2-phenyl-1-(5-fluoro-2-vinylphenyl)-1-ethanone 4h: white solid, 127.7 mg, 71 %, mp 129-130 °C (recrystallization from dichloromethane/*n*-hexane); IR v (cm⁻¹) 3340, 1696, 1636; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.86 (d, J = 7.8 Hz, 2H), 7.57 (d, J = 7.2 Hz, 1H), 7.52 (t, J = 7.2 Hz, 1H), 7.47 (dd, J = 7.8, 4.8 Hz, 1H), 7.45 (t, J = 7.2 Hz, 2H), 7.24-7.33 (m, 6H), 7.12 (td, J = 8.4, 2.4 Hz, 1H), 6.84 (dd, J = 16.2, 11.4 Hz, 1H), 6.46 (d, J = 7.2 Hz, 1H), 5.53 (d, J = 17.4 Hz, 1H), 5.29 (d, J = 10.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 198.6, 166.6, 161.5 (d, J = 248.2 Hz), 136.6 (d, J = 5.9 Hz), 135.5, 134.4 (d, J = 3.9 Hz), 133.9, 133.8, 132.0, 129.4, 129.3, 128.8, 128.7, 128.2, 127.3, 119.2 (d, J = 21.1 Hz), 117.4, 115.3 (d, J = 23 Hz), 61.9; HRMS (TOF-ESI): [M + H]⁺ calcd for C₂₃H₁₉FNO₂: 360.1394, found:

360.1392.

2-Benzamido-2-phenyl-1-(5-trifluoromethyl-2-vinylphenyl)-1-ethanone 4e: white solid, 131.0 mg, 66 %, mp 150-151 °C (recrystallization from acetone/*n*-hexane); IR ν (cm⁻¹) 3322, 1705, 1647; ¹H NMR (400 MHz, CDCl₃) δ (ppm) ¹H NMR (600 MHz, CD₃COCD₃) δ (ppm) 8.42 (d, J = 4.8 Hz, 1H), 8.21 (s, 3H), 7.95 (d, J = 8.4 Hz, 2H), 782 (d, J = 8.4 Hz, 1H), 7.76 (d, J = 7.8 Hz, 1H), 7.52 (t, J = 8.4 Hz, 1H), 7.43-7.48 (m, 4H), 7.33 (t, J = 7.8 Hz, 2H), 7.28 (t, J = 7.8 Hz, 1H), 6.87 (dd, J = 17.4, 12 Hz, 1H), 6.50 (d, J = 7.2 Hz, 1H), 5.78 (d, J = 16.8 Hz, 1H), 5.34 (d, J = 12 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 198.6, 166.7, 141.5, 135.7, 135.2, 133.7, 132.0, 129.5 (q, J = 32.6 Hz), 129.4, 128.9, 128.7, 128.4, 128.3, 128.2, 127.9, 127.3, 125.3 (d, J = 2.9 Hz), 123.6 (q, J = 271.2 Hz), 119.6, 62.2; HRMS (TOF-ESI): [M + H]⁺ calcd for C₂₄H₁₉F₃NO₂: 410.1362, found: 410.1357.

2-Benzamido-2-(*p*-methoxyphenyl)-1-(2-vinylphenyl)-1-ethanone **4j**: white solid, 124.4 mg, 67 %, mp 121-122 °C (recrystallization from dichloromethane/*n*-hexane); IR *v* (cm⁻¹) 3406, 3333, 1697, 1647; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.86 (d, *J* = 7.8 Hz, 2H), 7.65-7.68 (m, 2H), 7.50-7.52 (m, 2H), 7.41-7.45 (m, 3H), 7.29 (t, *J* = 8.4 Hz, 1H), 7.24-7.24 (m, 2H), 6.95 (dd, *J* = 17.4, 11.4 Hz, 1H), 6.79 (d, *J* = 9.6 Hz, 2H), 6.50 (d, *J* = 7.2 Hz, 1H), 5.59 (d, *J* = 17.4 Hz, 1H), 5.31 (d, *J* = 12 Hz, 1H), 3.72 (s, 3H); ¹³C NMR (100 MHz, CD₃COCD₃) δ (ppm) 199.6, 166.3, 159.8, 137.5, 136.7, 135.1, 134.4, 131.5, 130.2, 128.5, 128.4, 127.6, 127.5, 126.6, 115.8, 114.3, 61.7, 54.7; HRMS (TOF-ESI): [M + H]⁺ calcd for C₂₄H₂₂NO₃: 372.1594, found: 372.1598.

2-Benzamido-2-(*p*-methylphenyl)-1-(2-vinylphenyl)-1-ethanone 4k: white solid, 144.9 mg, 82 %, mp 75-76 °C (without recrystallization); IR v (cm⁻¹) 3349, 1686, 1640, 1622; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.86 (d, J = 6.6 Hz, 2H), 7.69 (d, J = 8.4 Hz, 1H), 7.66 (d, J = 6 Hz, 1H), 7.50-7.52 (m, 2H), 7.41-7.45 (m, 3H), 7.29 (t, J = 8.4 Hz, 1H), 7.22 (d, J = 8.4 Hz, 2H), 7.07 (d, J = 7.8 Hz, 2H), 6.95 (dd, J = 17.4, 11.4 Hz, 1H), 6.53 (d, J = 5.4 Hz, 1H), 5.59 (d, J = 16.8 Hz, 1H), 5.31 (d, J = 12 Hz, 1H), 2.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 199.5, 166.5, 138.5, 138.3, 138.3, 135.3, 135.1, 134.0, 33.2, 132.1, 131.8, 129.9, 128.7, 128.6, 128.2, 127.55, 127.47, 127.4, 117.1, 61.3, 21.2; HRMS (TOF-ESI): [M + H]⁺ calcd for C₂₄H₂₂NO₂: 356.1645, found: 356.1648.

2-Benzamido-2-(*p*-fluorophenyl)-1-(2-vinylphenyl)-1-ethanone **41:** white solid, 126.7 mg, 71 %, mp 129-130 °C (recrystallization from dichloromethane/*n*-hexane); IR *v* (cm⁻¹) 3325, 1688, 1636, 1630; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.86 (d, *J* = 8.4 Hz, 2H), 7.75 (d, *J* = 6 Hz, 1H), 7.64 (d, *J* = 8.4 Hz, 1H), 7.51-7.54 (m, 2H), 7.43-7.47 (m, 3H), 7.29-7.32 (m, 3H), 6.89-6.96 (m, 3H), 6.53 (d, *J* = 5.4 Hz, 1H), 5.58 (d, *J* = 17.4 Hz, 1H), 5.32 (d, *J* = 11.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 199.3, 166.5, 162.4 (d, *J* = 246.3 Hz), 138.5, 134.9, 134.7, 133.8, 132.3, 132.2 (d, *J* = 2.9 Hz), 132.0, 129.9 (d, *J* = 8.7 Hz), 128.7, 128.5, 127.6 (d, *J* = 3.8 Hz), 127.3, 117.6, 116.1 (d, *J* = 22 Hz), 60.7; HRMS (TOF-ESI): [M + H]⁺ calcd for C₂₃H₁₉FNO₂: 360.1394, found: 360.1398.

2-Benzamido-2-(o-fluorophenyl)-1-(2-vinylphenyl)-1-ethanone 4m: white solid, 140.5 mg, 78 %, mp

98-99 °C (recrystallization from dichloromethane/*n*-hexane); IR *v* (cm⁻¹) 3406, 3322, 1701, 1647; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.87 (d, *J* = 7.2 Hz, 2H), 7.78 (d, *J* = 6 Hz, 1H), 7.69 (d, *J* = 8.4 Hz, 1H), 7.50-7.53 (m, 2H), 7.37-7.46 (m, 4H), 7.28 (t, *J* = 7.8 Hz, 1H), 7.17-7.21 (m, 1H), 7.05 (t, *J* = 7.8 Hz, 1H), 7.0 (dd, *J* = 17.4, 10.2 Hz, 1H), 6.95 (t, *J* = 9.6 Hz, 1H), 6.75 (d, *J* = 7.2 Hz, 1H), 5.60 (d, *J* = 18.6 Hz, 1H), 5.35 (d, *J* = 12 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 198.2, 166.6, 160.6 (d, *J* = 247.3 Hz), 138.6, 135.0, 134.3, 133.8, 132.3, 131.9, 130.4 (d, *J* = 7.7 Hz), 130.2, 128.7, 128.4, 127.52, 127.47, 127.4, 124.8, 123.9 (d, *J* = 14.4 Hz), 117.3, 116.1 (d, *J* = 21.1 Hz), 56.2; HRMS (TOF-ESI): [M + H]⁺ calcd for C₂₃H₁₉FNO₂: 360.1394, found: 360.1400.

2-Benzamido-2-(*m*-fluorophenyl)-1-(2-vinylphenyl)-1-ethanone 4n: white solid, 144.3 mg, 80 %, mp 74-75 °C (without recrystallization); IR *v* (cm⁻¹) 3406, 3325, 1697, 1651; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.87 (d, *J* = 7.8 Hz, 2H), 7.77 (d, *J* = 7.2 Hz, 1H), 7.66 (d, *J* = 6.6 Hz, 1H), 7.51-7.52 (m, 2H), 7.44-7.46 (m, 3H), 7.31 (t, *J* = 8.4 Hz, 1H), 7.22 (dd, *J* = 13.8, 7.8 Hz, 1H), 7.10 (d, *J* = 8.4 Hz, 1H), 7.04 (d, *J* = 9.6 Hz, 1H), 6.89-6.94 (m, 2H), 6.55 (d, *J* = 5.4 Hz, 1H), 5.58 (d, *J* = 16.8 Hz, 1H), 5.33 (d, *J* = 11.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 199.0, 166.6, 163.0 (d, *J* = 246.2 Hz), 138.7 (d, *J* = 6.7 Hz), 138.6, 134.9, 134.6, 133.7, 132.4, 132.0, 130.7 (d, *J* = 7.7 Hz), 128.7, 128.6, 127.52, 127.65, 127.62, 127.3, 117.6, 115.5 (d, *J* = 20.1 Hz), 115.1 (d, *J* = 22 Hz), 61.0; HRMS (TOF-ESI): [M + H]⁺ calcd for C₂₃H₁₉FNO₂: 360.1394, found: 360.1397.

2-Benzamido-2-(*p*-trifluoromethylphenyl)-1-(2-vinylphenyl)-1-ethanone 40: white solid, 166.3 mg, 81 %, mp 135-136 °C (recrystallization from chloroform/*n*-hexane); IR *v* (cm⁻¹) 3356, 1701, 1641; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.87 (d, *J* = 8.4 Hz, 1H), 7.84 (d, *J* = 6 Hz, 1H), 7.65 (d, *J* = 7.8 Hz, 1H), 7.50-7.54 (m, 4H), 7.43-7.47 (m, 5H), 7.32 (t, *J* = 6.6 Hz, 1H), 6.92 (dd, *J* = 16.8, 10.2 Hz, 1H), 6.61 (d, *J* S9 = 6 Hz, 1H), 5.58 (d, J = 16.8 Hz, 1H), 5.33 (d, J = 11.4 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 198.8, 166.6, 140.4, 138.7, 134.8, 133.6, 132.6, 132.1, 130.5 (q, J = 31.7 Hz), 128.7, 128.6, 128.5, 127.8, 127.7, 127.3, 126.0 (d, J = 3.8 Hz), 123.9 (q, J = 271 Hz), 117.8, 61.1; HRMS (TOF-ESI): [M + H]⁺ calcd for C₂₄H₁₉F₃NO₂: 410.1362, found: 410.1366.

2-Benzamido-2-phenyl-1-(2-vinyl-3-pyridinyl)-1-ethanone 4p: white solid, 117.6 mg, 69 %, mp 52-53 ^oC (without recrystallization); IR v (cm⁻¹) 3310, 1705, 1643; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.62 (dd, J = 4.8, 1.6 Hz, 1H), 7.93 (dd, J = 8.4 Hz, 1H), 7.85 (dd, J = 6.8, 2 Hz, 2H), 7.56 (d, J = 6.4 Hz, 1H), 7.52 (tt, J = 7.6, 1.2 Hz, 1H), 7.45 (td, J = 7.2, 1.6 Hz, 2H), 7.26-7.33 (m, 5H), 7.19 (dd, J = 7.6, 4.4 Hz, 1H), 6.99 (dd, J = 17.2, 10.8 Hz, 1H), 6.47 (d, J = 6.4 Hz, 1H), 6.38 (dd, J = 16.8, 1.6 Hz, 1H), 5.52 (dd, J = 10.8, 1.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 199.1, 166.9, 153.8, 151.7, 136.3, 135.1, 133.6, 133.1, 131.9, 130.8, 129.3, 128.8, 128.6, 128.4, 127.4, 122.1, 121.9, 62.1; HRMS (TOF-ESI): [M + H]⁺ calcd for C₂₂H₁₉N₂O₂: 343.1441, found: 343.1443.

2-Benzamido-2-(*p*-methoxyphenyl)-1-(2-vinyl-3-pyridinyl)-1-ethanone 4q: white solid, 113.5 mg, 56 %, mp 57-58°C (without recrystallization); IR *v* (cm⁻¹) 3323, 1703, 1651; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.54 (d, *J* = 2.8 Hz, 1H), 7.92 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.80 (d, *J* = 8.0 Hz, 2H), 7.70-7.78 (m, 1H), 7.32-7.42 (m, 3H), 7.16 (d, *J* = 8.8 Hz, 2H), 7.08-7.12 (m, 1H), 6.99 (dd, *J* = 16.4, 10.8 Hz, 1H), 6.72 (dd, *J* = 8.4, 2.4 Hz, 2H), 6.39 (d, *J* = 6.4 Hz, 1H), 6.35 (d, *J* = 16.8 Hz, 1H), 5.46 (d, *J* = 10.4 Hz, 1H), 3.63 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 199.1, 166.8, 159.9, 153.8, 151.7, 136.3, 133.6, 133.2, 131.9, 130.9, 129.6, 128.6, 127.3, 126.8, 122.1, 121.9, 114.8, 61.5, 55.3; HRMS (TOF-ESI): [M + H]⁺ calcd for C₂₃H₂₁N₂O₃: 373.1546, found: 373.1543.

2-Benzamido-2-(*p*-fluorophenyl)-1-(2-vinyl-3-pyridinyl)-1-ethanone 4r: white solid, 100.9 mg, 61 %, mp 61-62 °C (without recrystallization); IR *v* (cm⁻¹) 3315, 1705, 1651; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.58 (d, *J* = 4.4 Hz, 1H), 7.92 (d, *J* = 8.0 Hz, 1H), 7.79-7.83 (m, 3H), 7.46 (t, *J* = 6.8 Hz, 1H), 7.38 (t, *J* = 7.2 Hz, 2H), 7.27 (dd, *J* = 8.4, 5.6 Hz, 2H), 7.14 (dd, *J* = 7.6, 4.8 Hz, 1H), 6.88-7.00 (m, 3H), 6.46 (d, *J* = 6.8 Hz, 1H), 6.37 (dd, *J* = 16.8, 1.6 Hz, 1H), 5.49 (dd, *J* = 10.8, 1.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 198.9, 166.8, 162.8 (d, *J* = 247.3 Hz), 153.9, 151.9, 136.2, 133.5, 133.0, 132.1, 131.1 (d, *J* = 2.9 Hz), 130.5, 130.1 (d, *J* = 8.6 Hz), 128.7, 127.3, 122.5, 121.9, 116.4 (d, *J* = 22.1 Hz), 61.2; HRMS (TOF-ESI): [M + H]⁺ calcd for C₂₂H₁₈FN₂O₂: 361.1346, found: 361.1349.

3. Radical-mediated cyclization reaction of 2-aryl-2-benzamido-1-(*o*-vinylaryl)-1-ethanones 4 and characterization of products

(1) TBPB/NIS-mediated cyclization reaction of 2-aryl-2-benzamido-1-(o-vinylaryl)-1-ethanones 4

Under nitrogen atmosphere and at room temperature, 2-aryl-2-benzamido-1-(o-vinylaryl)-1-ethanones 4 (0.5 mmol), NaOAc (49.2 mg, 0.6 mmol, 1.2 equiv.), NIS (56.2 mg, 0.25 mmol, 50 mol%), TBPB (388.5 mg, 2 mmol, 4 equiv.) and dry 1,4-dioxane (5 mL) were added successively to a dry Schlenk tube. The reaction mixture was stirred in refluxing 1.4-dioxane for 9-10 h under the protection of nitrogen. The reaction was quenched by cooling the test tube to ambient temperature. The solids in the reaction mixture were filtrated and washed with dichloromethane (10 mL \times 3). The combined filtrate was concentrated under reduced pressure. The residue was chromatographed on a silica gel column eluting with a mixture of petroleum ether and ethyl acetate (PE : EA from 50 : 1 to 20 : 1) to give 3,5-diaryl-1,5-methanobenzo[f][1,3]oxazocin-6-ones 5a-50 in 51%-92% vields. The

6,8-diphenyl-6,10-methanopyrido[3,2-f][1,3]oxazocin-5-one **5p** was obtained in 49% yield by chromatography eluting with a mixture of solvents from PE : EA = 50 : 1 to $PE : EA : Et_3N = 30 : 3 : 0.1$.

3,5-Diphenyl-1,5-methanobenzo[*f*][**1,3**]**oxazocin-6-one 5a:** white solid, 156.6 mg, 92 %, mp 193-194 °C (recrystallization from dichloromethane/*n*-hexane); IR *v* (cm⁻¹) 1697, 1626; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.15 (d, *J* = 7.6 Hz, 1H), 8.04 (dd, *J* = 6.8, 2 Hz, 2H), 7.69 (dd, *J* = 7.2, 1.6 Hz, 2H), 7.65 (td, *J* = 7.2, 1.6 Hz, 1H), 7.59 (d, *J* = 6.4 Hz, 1H), 7.51 (td, *J* = 7.2, 1.6 Hz, 1H), 7.40-7.47 (m, 3H), 7.33-7.36 (m, 3H), 5.63 (dd, *J* = 4.0, 2.0 Hz, 1H), 3.05 (dd, *J* = 13.6, 1.6 Hz, 1H), 2.45 (dd, *J* = 13.6, 3.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 192.7, 155.2, 142.2, 139.9, 134.5, 133.6, 131.1, 130.4, 130.3, 129.3, 129.1, 128.2, 128.1, 127.6, 127.5, 127.3, 71.7, 63.0, 34.8; HRMS (TOF-ESI): [M + H]⁺ calcd for C₂₃H₁₈NO₂: 340.1332, found: 340.1334.

9-Methoxy-3,5-diphenyl-1,5-methanobenzo[*f*][1,3]oxazocin-6-one 5b: white solid, 94.1 mg, 51 %, mp 203-204 °C (recrystallization from chloroform/*n*-hexane); IR ν (cm⁻¹) 1686, 1630; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.10 (d, J = 9 Hz, 1H), 8.05 (d, J = 7.8 Hz, 2H), 7.68 (d, J = 7.2 Hz, 2H), 7.40-7.45 (m, 3H), 7.32-7.36 (m, 3H), 7.04 (d, J = 2.4 Hz, 1H), 6.99 (dd, J = 8.4, 2.4 Hz, 1H), 5.55 (dd, J = 3.6, 2.4 Hz, 1H), 3.92 (s, 3H), 3.03 (d, J = 13.8 Hz, 1H), 2.41 (dd, J = 13.8, 3.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 191.9, 164.4, 154.9, 142.4, 142.2, 133.6, 131.6, 131.0, 128.2, 128.1, 127.5, 127.35, 127.28, 123.5, 115.9, 113.9, 71.9, 62.7, 55.8, 35.0; HRMS (TOF-ESI): [M + H]⁺ calcd for C₂₄H₂₀NO₃: 370.1437, found: 370.1436.

9-Methyl-3,5-diphenyl-1,5-methanobenzo[*f*][**1,3**]**oxazocin-6-one 5c:** white solid, 125.3 mg, 71 %, mp 212-213 °C (recrystallization from dichloromethane/*n*-hexane); IR v (cm⁻¹) 1686, 1626; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.05 (d, J = 9 Hz, 2H), 8.04 (d, J = 9 Hz, 1H), 7.69 (d, J = 8.4 Hz, 2H), 7.40-7.45 (m, 3H), 7.38 (s, 1H), 7.32-7.36 (m, 3H), 7.31 (d, J = 8.4 Hz, 1H), 5.58 (s, 1H), 3.03 (d, J = 13.8 Hz, 1H), 2.46 (s, 3H), 2.43 (dd, J = 12.6, 4.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 192.6, 155.1, 145.5, 142.3, 140.0, 133.6, 131.2, 131.1, 129.8, 129.2, 128.2, 128.1, 127.9, 127.6, 127.4, 127.3, 71.8, 63.0, 35.0, 21.9; HRMS (TOF-ESI): [M + H]⁺ calcd for C₂₄H₂₀NO₂: 354.1488, found: 354.1484.

9-Fluoro-3,5-diphenyl-1,5-methanobenzo[*f*][**1,3**]**oxazocin-6-one 5d:** white solid, 147.1 mg, 82 %, mp 217-218 °C (recrystallization from dichloromethane/*n*-hexane); IR v (cm⁻¹) 1690, 1632; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.19 (s, 1H), 8.08 (d, J = 6.6 Hz, 2H), 7.72 (d, J = 6.6 Hz, 2H), 7.38-7.48 (m, 6H), 7.29 (d, J = 6.6 Hz, 1H), 7.19 (t, J = 7.2 Hz, 1H), 5.58 (s, 1H), 3.04 (d, J = 13.8 Hz, 1H), 2.44 (d, J = 12.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 191.4, 166.2 (d, J = 255.6 Hz), 155.0, 142.6 (d, J = 8.7 Hz), 141.8, 133.3, 132.2 (d, J = 8.7 Hz), 131.3, 128.3, 128.2, 127.3, 126.9, 117.7 (d, J = 21.5 Hz), 116.0 (d, J = 23.0 Hz), 71.2, 62.8, 34.6; HRMS (TOF-ESI): [M + H]⁺ calcd for C₂₃H₁₇FNO₂: 358.1237, found: 358.1239.

3,5-Diphenyl-9-trifluoromethyl-1,5-methanobenzo[f][1,3]oxazocin-6-one 5e: white solid, 186.1 mg,

91 %, mp 179-180 °C (recrystallization from dichloromethane/*n*-hexane); IR *v* (cm⁻¹) 1694, 1628; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.27 (d, *J* = 8.4 Hz, 1H), 8.05 (dd, *J* = 6.8, 1.6 Hz, 2H), 7.88 (s, 1H), 7.76 (dd, *J* = 8.0, 1.2 Hz, 1H), 8.05 (dd, *J* = 7.6, 1.2 Hz, 2H), 7.41-7.47 (m, 3H), 7.34-7.39 (m, 3H), 5.55 (dd, *J* = 3.6, 2.0 Hz, 1H), 3.06 (dd, *J* = 14.0, 2.0 Hz, 1H), 2.50 (dd, *J* = 14.4, 3.6 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 191.4, 155.3, 141.4, 140.4, 135.7 (q, *J* = 33 Hz), 133.1 (d, *J* = 4.4 Hz), 131.4, 129.9, 128.3, 128.2, 127.7 127.6, 127.2, 127.0 (d, *J* = 4.4 Hz), 126.4 (d, *J* = 3.0 Hz), 123.4 (q, *J* = 271.4 Hz), 71.0, 62.9, 34.3; HRMS (TOF-ESI): [M + H]⁺ calcd for C₂₄H₁₇F₃NO₂: 408.1205, found: 408.1201.

8-Methoxy-3,5-diphenyl-1,5-methanobenzo[*f*][1,3]oxazocin-6-one 5f: white solid, 107.7 mg, 58 %, mp 165-166 °C (recrystallization from dichloromethane/*n*-hexane); IR *v* (cm⁻¹) 1660, 1630; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.05 (d, *J* = 8.4 Hz, 2H), 7.69 (d, *J* = 8.4 Hz, 2H), 7.60 (d, *J* = 1.9 Hz, 1H), 7.51 (d, *J* = 8.4 Hz, 1H), 7.45 (t, *J* = 7.8 Hz, 2H), 7.41 (t, *J* = 6.6 Hz, 1H), 7.3-7.36 (m, 3H), 7.18 (dd, *J* = 7.8, 3.0 Hz, 1H), 5.59 (s, 1H), 3.83 (s, 3H), 3.02 (dd, *J* = 13.8, 2.4 Hz, 1H), 2.42 (dd, *J* = 13.8, 4.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 192.8, 161.0, 155.4, 142.4, 133.7, 132.7, 131.8, 131.2, 130.8, 128.25, 128.17, 127.6, 127.5, 127.4, 121.9, 111.5, 71.3, 62.9, 55.7, 35.2; HRMS (TOF-ESI): [M + H]⁺ calcd for C₂₄H₂₀NO₃: 370.1437, found: 370.1433.

8-Methyl-3,5-diphenyl-1,5-methanobenzo[*f***][1,3]oxazocin-6-one 5g:** white solid, 141.3 mg, 80 %, mp 164-165 °C (recrystallization from dichloromethane/*n*-hexane); IR *v* (cm⁻¹) 1697, 1630; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.04 (dd, *J* = 8.8, 2.0 Hz, 2H), 7.94 (s, 1H), 7.68 (dd, *J* = 8.4, 1.2 Hz, 2H), 7.39-7.49 (m, 5H), 7.32-7.36 (m, 3H), 5.60 (dd, *J* = 3.2, 1.6 Hz, 1H), 3.02 (dd, *J* = 13.6, 1.6 Hz, 1H), 2.42 (dd, *J* = 13.6, 3.6 Hz, 1H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 193.0, 155.2, 142.4, 140.5, 137.4,

135.3, 133.7, 131.1, 130.2, 129.3, 129.2, 128.3, 128.2, 127.6, 127.5, 127.4, 71.6, 63.1, 35.0, 21.4; HRMS (TOF-ESI): $[M + H]^+$ calcd for C₂₄H₂₀NO₂: 354.1488, found: 354.1487.

8-Fluoro-3,5-diphenyl-1,5-methanobenzo[*f*][1,3]oxazocin-6-one 5h: white solid, 163.6 mg, 92 %, mp 176-177 °C (recrystallization from dichloromethane/*n*-hexane); IR v (cm⁻¹) 1699, 1628; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.09 (d, J = 6.6 Hz, 2H), 7.83 (dd, J = 7.8, 1.8 Hz, 1H), 7.73 (d, J = 8.4 Hz, 2H), 7.61 (dd, J = 9.0, 6.0 Hz, 1H), 7.49 (t, J = 7.8 Hz, 2H), 7.45 (t, J = 7.2 Hz, 1H), 7.37-7.41 (m, 3H), 7.34 (td, J = 8.4, 3.6 Hz, 1H), 5.63 (dd, J = 3.6, 2.4 Hz, 1H), 3.03 (d, J = 14.4 Hz, 1H), 2.45 (dd, J = 13.8, 3.6 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 191.7, 163.6 (d, J = 249.9 Hz), 155.4, 141.8, 135.9, 133.4, 132.7 (d, J = 7.2 Hz), 131.5 (d, J = 7.2 Hz), 131.3, 128.3, 128.2, 127.7, 127.6, 127.3, 121.6 (d, J = 21.6 Hz), 115.3 (d, J = 21.6 Hz), 70.9, 62.7, 34.7; HRMS (TOF-ESI): [M + H]⁺ calcd for C₂₃H₁₇FNO₂: 358.1237, found: 358.1240.

3,5-Diphenyl-8-trifluoromethyl-1,5-methanobenzo[*f*][**1,3**]**oxazocin-6-one 5i:** white solid, 112.1 mg yielded from 0.3 mmol reactant **4i**, 92 %, mp 189-190 °C (recrystallization from chloroform/*n*-hexane); IR v (cm⁻¹) 1697, 1628; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.41 (s, 1H), 8.03 (d, *J* = 6.6 Hz, 2H), 7.90 (d, *J* = 7.8 Hz, 1H), 7.75 (d, *J* = 8.4 Hz, 1H), 7.67 (d, *J* = 7.8 Hz, 2H), 7.46 (t, *J* = 7.8 Hz, 2H), 7.43 (t, *J* = 7.2 Hz, 1H), 7.34-7.38 (m, 3H), 5.69 (s, 1H), 3.05 (d, *J* = 13.8 Hz, 1H), 2.49 (dd, *J* = 13.8, 3.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 191.3, 155.3, 142.8, 141.5, 133.1, 132.7 (q, *J* = 33.0 Hz), 131.4, 131.1, 130.8 (d, *J* = 2.9 Hz), 130.1, 128.3, 128.2, 127.7, 127.6, 127.3, 126.2 (d, *J* = 2.9 Hz), 123.4 (q, *J* = 270.0 Hz), 70.9, 62.8, 34.3; HRMS (TOF-ESI): [M + H]⁺ calcd for C₂₄H₁₇F₃NO₂: 408.1205, found: 408.1200.

5-(4-Methoxyphenyl)-3-phenyl-1,5-methanobenzo[*f***][1,3**]**oxazocin-6-one 5j**: white solid, 126.0 mg, 68 %, mp 180-181 °C (recrystallization from dichloromethane/*n*-hexane); IR *v* (cm⁻¹) 1688, 1620; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.14 (dd, *J* = 8.0, 1.2 Hz, 1H), 8.03 (dd, *J* = 7.2, 1.6 Hz, 2H), 7.57-7.66 (m, 4H), 7.50 (td, *J* = 7.6, 1.2 Hz, 1H), 7.41 (tt, *J* = 7.2, 1.6 Hz, 1H), 7.34 (td, *J* = 7.2, 1.2 Hz, 2H), 6.99 (dd, *J* = 9.2, 2.4 Hz, 2H), 5.63 (dd, *J* = 3.6, 2.4 Hz, 1H), 3.84 (s, 3H), 3.03 (dd, *J* = 14.0, 2.0 Hz, 1H), 2.44 (dd, *J* = 13.6, 4.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 193.0, 159.0, 155.0, 139.9, 134.44, 134.35, 133.6, 131.1, 130.4, 130.3, 129.3, 129.1, 128.4, 128.1, 127.6, 113.7, 71.7, 62.5, 55.4, 34.7; HRMS (TOF-ESI): [M + H]⁺ calcd for C₂₄H₂₀NO₃: 370.1437, found: 370.1436.

5-(4-Methylphenyl)-3-phenyl-1,5-methanobenzo[*f*][**1,3**]**oxazocin-6-one 5k:** white solid, 140.8 mg, 80 %, mp 176-177 °C (recrystallization from dichloromethane/*n*-hexane); IR v (cm⁻¹) 1703, 1632; ¹H NMR (400 MHz, CDCl₃) 8.14 (dd, J = 7.6, 1.2 Hz, 1H), 8.03 (dd, J = 7.2, 1.6 Hz, 2H), 7.64 (td, J = 7.2, 1.6 Hz, 1H), 7.56-7.59 (m, 3H), 7.50 (td, J = 7.2, 1.6 Hz, 1H), 7.41 (tt, J = 7.2, 1.6 Hz, 1H), 7.34 (td, J = 7.6, 1.6 Hz, 2H), 7.26 (d, J = 7.2 Hz, 2H), 5.62 (dd, J = 3.6, 1.6 Hz, 1H), 3.04 (dd, J = 14.0, 2.0 Hz, 1H), 2.43 (dd, J = 13.2, 3.6 Hz, 1H), 2.39 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 192.9, 155.1, 140.0, 139.3, 137.1, 134.4, 133.6, 131.1, 130.4, 130.3, 129.3, 129.1, 129.0, 128.2, 127.6, 127.2, 71.7, 62.8, 34.8, 21.4; HRMS (TOF-ESI): [M + H]⁺ calcd for C₂₄H₂₀NO₂: 354.1488, found: 354.1492.

5-(4-Fluorophenyl)-3-phenyl-1,5-methanobenzo[f][1,3]oxazocin-6-one 51: white solid, 153.5 mg, 86 %, mp 182-183 °C (recrystallization from dichloromethane/*n*-hexane); IR v (cm⁻¹) 1692, 1628; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.14 (d, J = 7.2 Hz, 1H), 8.03 (d, J = 7.2 Hz, 2H), 7.64-7.67 (m, 3H), 7.59 (d, J = 7.2 Hz, 1H), 7.52 (t, J = 9 Hz, 1H), 7.42 (t, J = 7.2 Hz, 1H), 7.35 (t, J = 7.8 Hz, 2H), 7.13 (t, J = 9 Hz, 2H), 5.64 (s, 1H), 3.03 (dd, J = 13.8, 1.8 Hz, 1H), 2.43 (dd, J = 13.8, 3.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 192.6, 162.3 (d, J = 243.4 Hz), 155.3, 139.8, 137.9 (d, J = 2.9 Hz), 134.6, 133.4, 131.2, 130.3, 130.2, 129.3, 129.1, 129.0, 128.2, 127.5, 115.0 (d, J = 21.1 Hz), 71.6, 62.6, 34.7; HRMS (TOF-ESI): [M + H]⁺ calcd for C₂₃H₁₇FNO₂: 358.1237, found: 358.1242.

5-(2-Fluorophenyl)-3-phenyl-1,5-methanobenzo[*f***][1,3]oxazocin-6-one 5m:** white solid, 128.6 mg, 72 %, mp 184-185 °C (recrystallization from dichloromethane/*n*-hexane); IR v (cm⁻¹) 1697, 1626; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.20 (d, J = 7.4 Hz, 1H), 8.07 (d, J = 7.2 Hz, 2H), 8.05 (d, J = 6 Hz, 1H), 7.66 (t, J = 6.6 Hz, 1H), 7.59 (d, J = 6.6 Hz, 1H), 7.52 (t, J = 6.6 Hz, 1H), 7.43 (t, J = 7.2 Hz, 1H), 7.33-7.37 (m, 3H), 7.27 (t, J = 7.2 Hz, 1H), 7.08 (dd, J = 11.4, 9 Hz, 1H), 5.61 (s, 1H), 3.25 (d, J = 13.8 Hz, 1H), 2.29 (dd, J = 13.8, 3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 190.7, 160.4 (d, J = 244.3 Hz), 155.7, 140.0, 134.5, 133.5, 131.3, 130.3, 130.1, 129.9, 129.8, 129.4, 129.3, 129.2, 128.2, 127.6, 124.4 (d, J = 2.9 Hz), 115.5 (d, J = 21.1 Hz), 71.8, 61.5, 33.4 (d, J = 3.9 Hz); HRMS (TOF-ESI): [M + H]⁺ calcd for C₂₃H₁₇FNO₂: 358.1237, found: 358.1240.

5-(3-Fluorophenyl)-3-phenyl-1,5-methanobenzo[*f***][1,3]oxazocin-6-one 5n:** white solid, 144.6 mg, 81 %, mp 177-178 °C (recrystallization from dichloromethane/*n*-hexane); IR ν (cm⁻¹) 1697, 1620; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.14 (dd, *J* = 7.6, 1.2 Hz, 1H), 8.03 (dt, *J* = 6.8, 1.2 Hz, 2H), 7.66 (td, *J* = 7.6, 1.6 Hz, 1H), 7.59 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.49-7.53 (m, 2H), 7.33-7.44 (m, 5H), 7.01-7.07 (m, 1H), 5.64 (dd, *J* = 3.6, 1.6 Hz, 1H), 3.03 (dd, *J* = 13.6, 2.0 Hz, 1H), 2.43 (dd, *J* = 13.6, 3.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 192.3, 163.0 (d, *J* = 243.4 Hz), 155.4, 145.0 (d, *J* = 6.7 Hz), 139.8, 136.7, 133.3, 131.3, 130.4, 130.1, 129.7 (d, *J* = 8.6 Hz), 129.4, 129.1, 128.2, 127.6, 122.8 (d, *J* = 2.0 Hz), 114.9 (d, *J* = 23.0 Hz), 114.4 (d, *J* = 21.1 Hz), 71.6, 62.8, 34.5; HRMS (TOF-ESI): [M + H]⁺ calcd for C₂₃H₁₇FNO₂: 358.1237, found: 358.139.

3-Phenyl-5-(4-trifluoromethylphenyl)-1,5-methanobenzo[*f***][1,3]oxazocin-6-one 50**: white solid, 183.2 mg, 90 %, mp 172-173 °C (recrystallization from dichloromethane/*n*-hexane); IR *v* (cm⁻¹) 1696, 1626; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.15 (d, *J* = 7.8 Hz, 1H), 8.04 (d, *J* = 7.8 Hz, 2H), 7.81 (d, *J* = 7.8 Hz, 2H), 7.70 (d, *J* = 7.8 Hz, 2H), 7.67 (t, *J* = 7.2 Hz, 1H), 7.61 (d, *J* = 6.6 Hz, 1H), 7.53 (t, *J* = 7.8 Hz, 1H), 7.43 (t, *J* = 7.2 Hz, 1H), 7.36 (t, *J* = 7.8 Hz, 2H), 5.66 (dd, *J* = 3, 2.4 Hz, 1H), 3.06 (dd, *J* = 13.8, 2.4 Hz, 1H), 2.43 (dd, *J* = 13.8, 3.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 192.2, 155.5, 146.1, 139.7, 134.7, 131.3, 130.4, 130.0, 129.6 (q, *J* = 32.5 Hz), 129.3, 129.1, 128.2, 127.8, 127.5, 125.1 (d, *J* = 3.3 Hz), 124.4 (q, *J* = 270.3 Hz), 71.5, 63.0, 34.5; HRMS (TOF-ESI): [M + H]⁺ calcd for C₂₄H₁₇F₃NO₂: 408.1205, found: 408.1207.

6,8-Diphenyl-6,10-dihydro-6,10-methanopyrido[**3,2-***f*][**1,3**]**oxazocin-5-one 5p:** white solid, 83.2 mg, 49 %, mp 178-179 °C (recrystallization from chloroform/*n*-hexane); IR *v* (cm⁻¹) 1697, 1626; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.84 (dd, *J* = 5.2, 2.0 Hz, 1H), 8.42 (dd, *J* = 7.6, 1.2 Hz, 1H), 8.08 (dd, *J* = 7.6, 1.2 Hz, 2H), 7.69 (dd, *J* = 6.8, 1.6 Hz, 2H), 7.33-7.50 (m, 7H), 5.80 (dd, *J* = 4.0, 2.0 Hz, 1H), 3.08 (dd, *J* = 13.6, 1.6 Hz, 1H), 2.51 (dd, *J* = 14.4, 3.6 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 192.1, 158.2, 155.6, 154.4, 141.4, 137.1, 133.1, 131.4, 128.3, 128.2, 127.73, 127.67, 127.3, 126.2, 125.4, 73.2, 62.7, 33.6; HRMS (TOF-ESI): [M + H]⁺ calcd for C₂₂H₁₇N₂O₂: 341.1284, found: 341.1287.

6-(**4**-**Methoxyphenyl**)-**8**-**phenyl**-**6**,10-**dihydro**-**6**,10-**methanopyrido**[**3**,2-*f*][**1**,3]**oxazocin**-**5**-one **5q**: white solid, 79.6 mg, 43 %, mp 170-171 °C (recrystallization from dichloromethane /*n*-hexane); IR v (cm⁻¹) 1703, 1632; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.82 (dd, J = 5.2, 2.0 Hz, 1H), 8.39 (dd, J = 8.0, 1.6 Hz, 1H), 8.07 (d, J = 7.2 Hz, 2H), 7.62 (d, J = 8.8 Hz, 2H), 7.45 (dd, J = 8.0, 5.2 Hz, 1H), 7.41 (d, J = 7.2 Hz 1H), 7.34 (t, J = 7.6 Hz 2H), 7.00 (d, J = 8.8, 2H), 5.79 (dd J = 4.0, 2.0 Hz, 1H), 3.83 (s, 3H), 3.05 (dd, J = 14.0, 2.0 Hz, 1H), 2.48 (dd, J = 14.0, 4.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 192.3, 159.1, 158.1, 155.4, 154.3, 137.2, 133.5, 133.1, 131.3, 128.4, 128.2, 127.6, 126.3, 125.4, 113.7, 73.2, 62.2, 55.4, 33.6; HRMS (TOF-ESI): [M + H]⁺ calcd for C₂₃H₁₉N₂O₃: 371.1390, found: 371.1386.

6-(**4**-Fluorophenyl)-8-phenyl-6,10-dihydro-6,10-methanopyrido[3,2-*f*][1,3]oxazocin-5-one 5r: white solid, 82.4 mg, 46 %, mp 165-166 °C (recrystallization from dichloromethane/*n*-hexane); IR *v* (cm⁻¹) 1703, 1632; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.84 (dd, *J* = 4.4, 1.6 Hz, 1H), 8.39 (dd, *J* = 8.0, 1.6 Hz, 1H), 8.06 (dd, *J* = 6.8, 1.2 Hz, 2H), 7.66 (dd, *J* = 8.8, 5.2 Hz, 2H), 7.46 (dd, *J* = 7.6, 4.8 Hz, 1H), 7.41 (d, *J* = 7.2 Hz 1H), 7.35 (t, *J* = 7.6 Hz 2H), 7.14 (t, *J* = 8.8 Hz 2H), 5.80 (dd *J* = 3.6, 2.4 Hz, 1H), 3.04 (dd, *J* = 14.0, 2.0 Hz, 1H), 2.48 (dd, *J* = 14.0, 3.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 192.0, 162.4 (d, *J* = 244.4 Hz), 158.1, 155.7, 154.5, 137.14, 137.09 (d, *J* = 3.8 Hz), 132.9, 131.5, 129.0 (d, *J* = 7.6 Hz), 128.2, 127.6, 126.1, 125.4, 115.1 (d, *J* = 21.1 Hz), 73.1, 62.3, 33.5; HRMS (TOF-ESI): [M + H]⁺ calcd for C₂₂H₁₆FN₂O₂: 359.1190, found: 359.1194.

(2) TEMPO-mediated cyclization reaction of 2-aryl-2-benzamido-1-(o-vinylaryl)-1-ethanones 4

Under nitrogen atmosphere and at room temperature, 2-benzamido-2-phenyl-1-(o-vinylphenyl)-1-ethanone **4a** (170.5 mg, 0.5 mmol) and TEMPO (312.5 mg, 2 mmol, 4 equiv.) were dissolved in dry 1,4-dioxane (5 mL). The reaction mixture was stirred in refluxing 1,4-dioxane for 10 h under the protection of nitrogen. The reaction was then quenched by removal of the solvents. The residue was chromatographed on a silica gel column eluting with a mixture of petroleum ether and ethyl acetate (PE : EA from 50 : 1 to 20 : 1) to give 3,5-diphenyl-1,5-methanobenzo[f][1,3]oxazocin-6-one **5a** (60%), 2-benzamido-2-phenylnaphthalen-1-one **6a** (12%) and inden-1-one derivative **7a** (19%).

2-Benzamido-2-phenylnaphthalen-1-one 6a: white solid, 20.5 mg, 12 %, mp 149-150 °C (recrystallization from chloroform/*n*-hexane); IR *v* (cm⁻¹) 3354, 1684, 1645; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.91 (d, *J* = 7.2 Hz, 1H), 7.85 (d, *J* = 6.6 Hz, 2H), 7.61 (d, *J* = 7.2 Hz, 2H), 7.56 (t, *J* = 6.0 Hz, 1H), 7.52 (t, *J* = 7.2 Hz, 1H), 7.44 (t, *J* = 7.8 Hz, 2H), 7.38 (s, 1H), 7.27-7.33 (m, 5H), 6.92 (d, *J* = 9 Hz, 1H), 6.77 (d, *J* = 10.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 196.5, 166.6, 137.3, 136.5, 134.9, 134.2, 133.8, 132.0, 129.3, 129.1, 128.9, 128.7, 128.5, 128.1, 127.7, 127.3, 126.9, 126.4, 66.0; HRMS (TOF-ESI): [M + H]⁺ calcd for C₂₃H₁₈NO₂: 340.1332, found: 340.1337.

(2*R*, 3*R*)- and (2*S*, 3*S*)-2-Benzamido-2-phenyl-3-(((2,2,6,6-tetramethyl-1-piperidinyl)oxy)methyl)-2,3-dihydroinden-1-on e 7a: white solid, 47.2 mg, 19 %, mp 167-168 °C (recrystallization from chloroform/*n*-hexane); IR *v* (cm⁻¹) 3453, 1724, 1655; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.93 (d, *J* = 7.2 Hz, 1H), 7.88 (d, *J* = 6.6 Hz, 2H), 7.66-7.70 (m, 2H), 7.53 (t, *J* = 7.2 Hz, 1H), 7.44-7.49 (m, 3H), 7.26-7.30 (m, 3H), 7.18 (d, *J* = 7.2 Hz, 1H), 7.08 (s, 1H), 5.55 (t, *J* = 7.8 Hz, 1H), 1.25-1.54 (m, 6H), 1.09 (s, 3H), 1.03 (s, 3H), 1.01 (s, 3H), 0.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 201.7, 167.2, 152.4, 137.1, 135.9, 135.7, 133.9, 132.0, 128.9, 128.8, 128.2, 127.2, 126.0, 125.7, 124.8, 76.4, 70.9, 59.8, 59.7, 49.0, 39.8, 39.7, 33.1, 32.6, 20.23, 20.22, 17.1; HRMS (TOF-ESI): [M + H]⁺ calcd for C₃₂H₃₇N₂O₃: 497.2798, found: 397.2802.

4. Reduction of 3,5-diphenyl-1,5-methanobenzo[f][1,3]oxazocin-6-one 5a

(1) Reduction of 5a by NaBH₄

In a flask, the 3,5-diphenyl-1,5-methanobenzo[f][1,3]oxazocin-6-one 5a (169.5 mg, 0.5 mmol) and NaBH₄ (47.3 mg, 1.25 mmol) were dissolved in dry THF (5 mL). The reaction mixture was stirred for 12 h at room temperature. The reaction was then quenched by adding water (10 mL). The resulting mixture was extracted with ethyl acetate (10×3 mL). The combined organic layer was washed by a saturated aqueous solution of NaCl (10 mL) and dried with anhydrous MgSO₄. After removal of MgSO₄ and organic solvents, the residue was chromatographed on a silica gel column eluting with a mixture of petroleum ether and ethyl acetate (petroleum ether ethyl acetate 20 1) to give -3,5-diphenyl-5,6-dihydro-1,5-methanobenzo[f][1,3]oxazocin-6-ol 12a in 82% yield.

(*1S*, *5S*, *6S*)- and (*1R*, *5R*, *6R*)-3,5-Diphenyl-5,6-dihydro-1,5-methanobenzo[*f*][1,3]oxazocin-6-ol 12a: white solid, 139.9 mg, 82 %, mp 117-118 °C (without recrystallization); IR v (cm⁻¹) 3526, 1640; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.01 (d, *J* = 6.6 Hz, 2H), 7.79 (d, *J* = 7.8 Hz, 2H), 7.68 (d, *J* = 6.6 Hz, 1H), 7.30-7.45 (m, 9H), 5.46 (s, 1H), 5.17 (d, *J* = 11.4 Hz, 1H), 2.81 (d, *J* = 9.0 Hz, 1H), 2.69 (d, *J* = 12.6 Hz, 1H), 2.37 (d, *J* = 12.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 155.0, 145.1, 139.8, 133.7, 133.6, 131.1, 129.9, 129.1, 128.7, 128.5, 128.2, 127.7, 127.1, 126.5, 78.9, 72.6, 58.0, 34.9; HRMS (TOF-ESI): [M + H]⁺ calcd for C₂₃H₂₀NO₂: 342.1488, found: 342.1484.

(2) Pd-C catalyzed hydrogenation reaction of compound 5a

In a glass vessel, the 3,5-diphenyl-1,5-methanobenzo[f][1,3]oxazocin-6-one **5a** (67.8 mg, 0.2 mmol) was dissolved in THF (2 mL), followed by the addition of Pd-C (10 mol%, 32.8 mg Pd-C containing 10% w/w of Pd and 35% H₂O) and methanol (1 mL). This vessel was subsequently transferred into a steel autoclave reactor. The autoclave was purged with H₂ gas without stirring, and then was pressurized under 50 atm pressure of H₂ gas. The reaction mixture was stirred under H₂ gas (50 atm) for 24 h at 25 °C. The autoclave

was then slowly depressurized by releasing the hydrogen gas carefully. The Pd-C was filtrated and washed with dichloromethane (5 mL×3). The combined filtrate was concentrated under reduced pressure. The residue was chromatographed on a silica gel column eluting with a mixture of petroleum ether and ethyl acetate (PE : EA = 5 : 1) to give *N*-(1-hydroxy-2-phenyl-2-tetrahydronaphthalenyl)benzamide **13a** in 76% yield.

(*IR*, *2S*)-and (*IS*, *2R*)-*N*-(1-Hydroxy-2-phenyl-2-tetrahydronaphthalenyl)benzamide 13a: white solid, 50.9 mg, 76%, mp 217-218 °C (recrystallization from chloroform/*n*-hexane); IR ν (cm⁻¹) 3580, 3279, 1645; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.65 (d, *J* = 6.6 Hz, 2H), 7.57 (d, *J* = 8.4 Hz, 1H), 7.50 (d, *J* = 8.4 Hz, 2H), 7.48 (d, *J* = 7.8 Hz, 1H), 7.39 (t, *J* = 8.4 Hz, 2H), 7.33 (t, *J* = 7.8 Hz, 2H), 7.26-7.30 (m, 3H), 7.14 (d, *J* = 7.8 Hz, 1H), 5.46 (s, 1H), 6.41 (s, 1H), 4.91 (s, 1H), 2.76-2.85 (m, 3H), 2.50-2.53 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 167.7, 141.2, 136.1, 136.0, 134.5, 131.9, 129.5, 128.8, 128.7, 128.6, 128.1, 127.5, 127.1, 126.8, 126.7, 75.9, 62.0, 29.0, 26.1; HRMS (TOF-ESI): [M + H]⁺ calcd for C₂₃H₂₂NO₂: 344.1645, found: 344.1647.

The *N*-(1-hydroxy-2-phenyl-2-tetrahydronaphthalenyl)benzamide **13a** (67.8 mg, 0.2 mmol), dichloromethane (2 mL), DMAP (4.9 mg, 0.04 mmol), Ac₂O (40.8 mg, 0.4 mmol) and Et₃N (60.7 mg, 0.6 mmol) were added successively to a flask. The reaction mixture was stirred for 6 h at room temperature. The reaction was then quenched by adding water (5 mL). The resulting mixture was extracted with DCM (10×3 mL). The combined organic layer was dried with anhydrous MgSO₄. After removal of MgSO₄ and organic solvents, the residue was chromatographed on a silica gel column eluting with a mixture of petroleum ether and ethyl acetate (petroleum ether : ethyl acetate from 5 : 1 to 3 : 1) to give 2-benzamido-2-phenyl-1-tetrahydronaphthalenyl acetate **16a** in 74% yield.

2-benzamido-2-phenyl-1-tetrahydronaphthalenyl acetate **16a:** white solid, 56.9 mg, 74%, mp 188-189 °C (recrystallization from ethyl acetate/*n*-hexane); IR *v* (cm⁻¹) 3289, 1740, 1645; ¹H NM-R (600 MHz, CDCl₃) δ (ppm) 7.55 (d, *J* = 8.4 Hz, 2H), 7.50 (d, *J* = 7.2 Hz, 2H), 7.41 (t, *J* = 8.4 Hz, 2H), 7.22-7.36 (m, 8H), 6.38 (d, *J* = 11.4 Hz, 1H), 6.18 (s, 1H), 3.29 (d, *J* = 12.6 Hz, 1H), 3.05 (dd, *J* = 17.4, 4.8 Hz, 1H),

2.94-2.99 (m, 1H), 2.74-2.79 (m, 1H), 1.65 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 169.7, 166.7, 142.3, 137.7, 134.7, 132.1, 131.6, 129.3, 129.2, 128.6, 128.2, 127.4, 127.0, 126.7, 126.2, 73.7, 59.9, 25.9, 23.9, 20.6; HRMS (TOF-ESI): [M + H]⁺ calcd for C₂₅H₂₄NO₃: 386.1750, found: 386.1747.

5. Acidic hydrolysis of compound 5j

In a test flask, the 5-(4-methoxyphenyl)-3-phenyl-1,5-methanobenzo[f][1,3]oxazocin-6-one **5j** (73.8 mg, 0.2 mmol), TsOH (68.8 mg, 0.4 mmol) and H₂O (7.2 mg, 0.4 mmol) were dissolved in THF (2 mL). The reaction mixture was stirred for 18 h at room temperature or was stirred for 2h in refluxing THF. The reaction was then quenched by the addition of saturated aqueous solution of NaHCO₃ (2 mL). The resulting mixture was extracted with ethyl acetate (10×3 mL). The combined organic layer was dried with anhydrous MgSO₄. After removal of MgSO₄ and organic solvents, the residue was chromatographed on a silica gel column eluting with a mixture of petroleum ether and ethyl acetate (petroleum ether : ethyl acetate from 5 : 1 to 2 : 1) to give 3-amino-3-(p-methoxyphenyl)-4-oxo-1-tetrahydronaphthalenyl benzoate **14j** and *N*-(4-hydroxy-2-(p-methoxyphenyl)-1-oxo-2-tetrahydronaphthalenyl)benzamide **15j**. Products **14j** and **15j** were isolated in 62% and 8% yields from the reaction at room temperature, while as **14j** and **15j** were obtained in 9% and 65% yields from the reaction in refluxing THF.

(*IS*, *3S*)- and (*IR*, *3R*)-3-Amino-3-(*p*-methoxyphenyl)-4-oxo-1-tetrahydronaphthalenyl benzoate 14j: white solid, 47.8 mg, 62%, mp 77-78 °C (without recrystallization); IR v (cm⁻¹) 3370, 1721, 1692; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.22 (d, *J* = 7.8 Hz, 1H), 8.10 (d, *J* = 7.8 Hz, 2H), 7.60 (t, *J* = 7.8 Hz, 1H), 7.56

(t, J = 7.8 Hz, 1H), 7.46-7.48 (m, 3H), 7.35-7.37 (m, 3H), 6.86 (d, J = 9.6 Hz, 2H), 6.15 (dd, J = 10.2, 4.2 Hz, 1H), 3.75 (s, 3 H), 3.30 (dd, J = 12.6, 4.2 Hz, 1H), 2.46 (t, J = 12 Hz, 1H), 2.21 (brs, 2H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 200.2, 166.2, 159.5, 141.6, 134.1, 133.6, 132.2, 131.5, 129.9, 129.8, 128.7, 128.0, 127.5, 126.5, 114.6, 69.0, 63.0, 55.3, 42.5; HRMS (TOF-ESI): [M + H]⁺ calcd for C₂₄H₂₂NO₄: 388.1543, found: 388.1547.

(2*S*, *4S*)- and (2*R*, *4R*)-*N*-(4-Hydroxy-2-(*p*-methoxyphenyl)-1-oxo-2-tetrahydronaphthalenyl)benzamide 15j: white solid, 50.2 mg, 65 %, mp 154-155 °C (recrystallization from chloroform/*n*-hexane); IR v (cm⁻¹) 3381, 1694, 1647; ¹H NM-R (600 MHz, CDCl₃) δ (ppm) 8.15 (d, *J* = 7.8 Hz, 1H), 7.74 (d, *J* = 6.6 Hz, 2H), 7.67 (s, 1H), 7.63 (d, *J* = 7.8 Hz, 1H), 7.54 (t, *J* = 7.2 Hz, 1H), 7.45-7.48 (m, 3H), 7.37-7.40 (m, 3H), 6.78 (d, *J* = 9 Hz, 2H), 4.89 (d, *J* = 7.8 Hz, 1H), 4.06 (dd, *J* = 13.2, 4.2 Hz, 1H), 3.70 (s, 3 H), 2.82 (t, *J* = 12.6 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 195.5, 166.7, 159.7, 146.0, 134.63, 134.60, 131.7, 130.0, 129.0, 128.6, 128.12, 128.06, 127.9, 127.1, 126.8, 114.2, 65.6, 65.0, 55.3, 41.8; HRMS (TOF-ESI): [M + H]⁺ calcd for C₂₄H₂₂NO₄: 388.1543, found: 388.1549.

4. X-Ray crystallography of 5a, 7a, 12a, 15j and 16a

Crystals of compound **5a** (CCDC 2072676) were obtained via slow evaporation of a solution containing **5a** in dichloromethane and *n*-hexane. Single-crystal diffraction intensity data of the compound **5a** was collected on a XtaLAB Synergy R (DW system, HyPix) four-circle diffractometer equipped with graphite monochromatized CuK α ($\lambda = 1.54184$) at 100.00K. Empirical absorption corrections was applied to the intensities using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. The structure was solved by the program ShelXT (Sheldrick, 2015) and refined with the program ShelXL (Sheldrick, 2015). The crystal data and structure refinement results for compound **5a** are listed in the Table S1.

Identification code	20190725a
Empirical formula	$C_{23}H_{17}NO_2$
Formula weight	339.38
Temperature/K	100.00(10)
Crystal system	orthorhombic
Space group	P 2 ₁ 2 ₁ 2 ₁
a/Å	6.0655(3)
b/Å	16.0001(7)
c/Å	17.3309(6)
α/°	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	1681.94(13)
Z	4
ρ_{calc} (g/cm ³)	1.340
µ/mm ⁻¹	0.680
F(000)	712.0
Crystal size/mm ³	$0.25\times0.15\times0.1$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2 θ range for data collection/°	7.52 to 149.624
Index ranges	$-6 \le h \le 7, -19 \le k \le 20, -21 \le l \le 13$

Table S1. Crystal data and structure refinement for 5a.

Reflections collected	5875
Independent reflections	$3079 [R_{int} = 0.0329, R_{sigma} = 0.0430]$
Data/restraints/parameters	3079/0/235
Goodness-of-fit on F ²	1.099
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0394, wR_2 = 0.0965$
Final R indexes [all data]	$R_1 = 0.0457, wR_2 = 0.1073$
Largest diff. peak/hole / e Å ⁻³	0.19/-0.25

Crystals of compound **7a** (CCDC 2072678) were obtained via slow evaporation of a solution containing **7a** in dichloromethane, ethyl acetate and *n*-hexane. Single-crystal diffraction intensity data of the compound **7a** was collected on a XtaLAB Synergy R (DW system, HyPix) four-circle diffractometer equipped with graphite monochromatized CuK α ($\lambda = 1.54184$) at 100.00K. Empirical absorption corrections was applied to the intensities using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. The structure was solved by the program ShelXT (Sheldrick, 2015) and refined with the program ShelXL (Sheldrick, 2015). The crystal data and structure refinement results for compound **7a** are listed in the Table S2.

Table S2. Crystal data and structure refinement for 7a.		
Identification code	20190725b	
Empirical formula	$C_{32}H_{36}N_2O_3$	
Formula weight	496.63	
Temperature/K	100.00(10)	
Crystal system	triclinic	
Space group	P-1	
a/Å	9.8614(2)	
b/Å	11.4704(2)	
c/Å	12.8238(2)	
α/°	79.9360(10)	
β/°	82.2430(10)	
γ/°	71.336(2)	
Volume/Å ³	1348.26(4)	

Ζ	2
$\rho_{calc} (g/cm^3)$	1.223
µ/mm ⁻¹	0.617
F(000)	532.0
Crystal size/mm ³	$0.25\times0.15\times0.15$
Radiation	$CuK\alpha (\lambda = 1.54184)$
2 θ range for data collection/°	7.026 to 151.638
Index ranges	$-9 \le h \le 12, -14 \le k \le 14, -15 \le l \le 15$
Reflections collected	16392
Independent reflections	5371 [$R_{int} = 16392, R_{sigma} = 0.0278$]
Data/restraints/parameters	5371/0/342
Goodness-of-fit on F ²	1.083
Final R indexes [I>= 2σ (I)]	R ₁ =0.0385, wR ₂ =0.0961
Final R indexes [all data]	$R_1 = 0.0458 \text{ w}R_2 = 0.1048$
Largest diff. peak/hole / e Å ⁻³	0.25/-0.24

Crystals of compound **12a** (CCDC 2072679) were obtained via slow evaporation of a solution containing **12a** in acetone, dichloromethane and *n*-hexane. Single-crystal diffraction intensity data of the compound **12a** was collected on a 'XtaLAB Synergy R, DW system, HyPix' four-circle diffractometer equipped with graphite monochromatized CuK α ($\lambda = 1.54184$) at 99.99 K. Empirical absorption corrections was applied to the intensities using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. The structure was solved by the program ShelXT (Sheldrick, 2015) and refined with the program ShelXL (Sheldrick, 2015). The crystal data and structure refinement results for compound **12a** are listed in the Table S3.

Table S3. Crystal data and structure refinement for 12a.

Identification code	exp_4015
Empirical formula	$C_{23}H_{19}NO_2$
Formula weight	341.39
Temperature/K	99.99(10)

Crystal system	monoclinic
Space group	Pc
a/Å	9.3804(3)
b/Å	6.3889(2)
c/Å	29.2078(9)
α/°	90
β/°	92.434(3)
$\gamma/^{\circ}$	90
Volume/Å ³	1748.86(10)
Ζ	4
$\rho_{calc} (g/cm^3)$	1.297
μ/mm^{-1}	0.654
F(000)	720.0
Crystal size/mm ³	$0.25\times0.1\times0.05$
Radiation	$CuK\alpha \ (\lambda = 1.54184)$
2 θ range for data collection/°	9.436 to 160.232
Index ranges	$-7 \le h \le 11, -7 \le k \le 7, -36 \le l \le 36$
Reflections collected	18385
Independent reflections	4745 [$R_{int} = 0.0785$, $R_{sigma} = 0.0528$]
Data/restraints/parameters	4745/4/477
Goodness-of-fit on F ²	1.068
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0933, wR_2 = 0.2653$
Final R indexes [all data]	$R_1 = 0.0970, wR_2 = 0.2696$
Largest diff. peak/hole / e Å ⁻³	0.58/-0.54

Crystals of compound **15j** (CCDC 2072680) were obtained via slow evaporation of a solution containing **15j** in acetone, dichloromethane and *n*-hexane. Single-crystal diffraction intensity data of the compound **15j** was collected on a 'XtaLAB Synergy R, DW system, HyPix' four-circle diffractometer equipped with graphite monochromatized CuK α ($\lambda = 1.54184$) at 100.00 K. Empirical absorption corrections was applied to the intensities using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. The structure was solved by the program ShelXT (Sheldrick, 2015) and refined with the program ShelXL (Sheldrick, 2015). The crystal data and structure refinement results for compound **15j** are listed in the Table

C	1	
S	4	•

Table S4. Crystal data and structure refinement for 15j.

Identification code	20210317a
Empirical formula	$C_{24}H_{21}NO_4$
Formula weight	387.42
Temperature/K	100.00(10)
Crystal system	triclinic
Space group	P-1
a/Å	11.7696(5)
b/Å	12.8699(5)
c/Å	13.1051(3)
$\alpha/^{\circ}$	81.729(3)
β/°	79.931(3)
γ/°	89.240(3)
Volume/Å ³	1934.03(13)
Ζ	4
$\rho_{calc} (g/cm^3)$	1.331
μ/mm^{-1}	0.736
F(000)	816.0
Crystal size/mm ³	0.2 imes 0.15 imes 0.03
Radiation	$CuK\alpha (\lambda = 1.54184)$
2 θ range for data collection/°	6.922 to 153.378
Index ranges	$-14 \le h \le 14, -16 \le k \le 16, -13 \le l \le 16$
Reflections collected	23184
Independent reflections	7740 [$R_{int} = 0.0515$, $R_{sigma} = 0.0453$]
Data/restraints/parameters	7740/0/541
Goodness-of-fit on F ²	1.071
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0616, wR_2 = 0.1891$
Final R indexes [all data]	$R_1 = 0.0730, wR_2 = 0.2003$
Largest diff. peak/hole / e Å ⁻³	0.64/-0.40

Crystals of compound 16a (CCDC 2072681) were obtained via slow evaporation of a solution containing

16a in chloroform-d, dichloromethane and *n*-hexane. Single-crystal diffraction intensity data of the compound 16a was collected on a 'XtaLAB Synergy R, DW system, HyPix' four-circle diffractometer equipped with graphite monochromatized CuK α ($\lambda = 1.54184$) at 100.00 K. Empirical absorption corrections was applied to the intensities using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. The structure was solved by the program ShelXT (Sheldrick, 2015) and refined with the program ShelXL (Sheldrick, 2015). The crystal data and structure refinement results for compound 16a are listed in the Table S5.

Table 55. Crystal data and structure	e refinement for 16a.
Identification code	20210310c
Empirical formula	C ₂₅ H ₂₃ NO ₃
Formula weight	385.44
Temperature/K	100.00(10)
Crystal system	triclinic
Space group	P-1
a/Å	10.0089(3)
b/Å	12.1614(4)
c/Å	17.3949(2)
$\alpha/^{\circ}$	90.1962(19)
β/°	100.0512(19)
$\gamma/^{\circ}$	107.208(3)
Volume/Å ³	1988.11(10)
Ζ	4
$\rho_{calc} (g/cm^3)$	1.288
μ/mm^{-1}	0.674
F(000)	816.0
Crystal size/mm ³	$0.25 \times 0.25 \times 0.15$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2 θ range for data collection/°	7.624 to 152.898
Index ranges	$-12 \le h \le 12, -15 \le k \le 14, -19 \le l \le 21$
Reflections collected	24382
Independent reflections	$8030 [R_{int} = 0.0451, R_{sigma} = 0.0409]$
Data/restraints/parameters	8030/1/557
Goodness-of-fit on F ²	1.049
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0575, wR_2 = 0.1520$
Final R indexes [all data]	$R_1 = 0.0641, wR_2 = 0.1577$
Largest diff. peak/hole / e Å ⁻³	0.48/-0.38

Table S5. Crystal data and structure refinement for 16a

7. ¹H and ¹³C NMR spectra of products

S37

