Supplementary Information

Practical allylation with unactivated allylic alcohols under mild conditions

Shuangshuang Lia ${ }^{\text {a }}$ Ju Qiu ${ }^{\text {a }}$, Bowen Li ${ }^{\text {a }}$, Zuolian Sun ${ }^{\text {a }}$, Peizhong Xie ${ }^{\text {a* }}$, and Teck-Peng Loh ${ }^{\text {ab* }}$
${ }^{a}$ School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
${ }^{b}$ Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371.

Contents

1. General Information S1
2. General Procedure S1
2.1 General procedure for preparation of $\mathbf{3}$ S1
2.2 Procedure for gram scale (8.0 mmol) reaction S1
3. Analytical Data for All New Compounds S2
4. References S20
5. NMR Spectra for New Compounds S22

1. General Information

Unless otherwise noted, all commercially available compounds were used as received. All solvents were purified according to standard procedures. The ${ }^{1} \mathrm{H}$ NMR and spectra was recorded at 400 MHz , ${ }^{13} \mathrm{C}$ NMR was recorded at $101 \mathrm{MHz},{ }^{19} \mathrm{~F}$ NMR and spectra were recorded at $376 \mathrm{MHz} .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Chemical shifts were calibrated to tetramethylsilane as an external reference. Data are reported in the following order: chemical shift (δ) in ppm; multiplicities are indicated s (singlet), d (doublet), t (triplet), dd (doublet of doublets), m (multiplet); coupling constants (J) are in Hertz (Hz). IR spectra were recorded on a Thermo Scientific Nicolet iS-5 FT-IR spectrometer and are reported in terms of frequency of absorption $\left(\mathrm{cm}^{-1}\right)$. HRMS were obtained on an IonSpec FT-ICR mass spectrometer with ESI resource. Melting points were measured on a RY-I apparatus and are reported uncorrected. The starting materials $\mathbf{1}^{1,2}$ and $\mathbf{1}^{13,4,5}$ were readily prepared according to the related literatures, and the Cinnamyl alcohol was purchased from Energy Chemical (Shanghai). The starting materials 2 and the catalyst $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ were purchased from Energy Chemical (Shanghai). The catalyst $\mathrm{Ca}(\mathrm{OTf})_{2}$ was purchased from Tokyo Chemical Industry (TCI) (Shanghai).

2. General Procedure

2.1 General procedure for preparation of 3

1,3-dicarbonyl compounds $2(0.60 \mathrm{mmol})$, allyl alcohols $\mathbf{1}^{1}$ or $\mathbf{1}^{\prime}(0.30 \mathrm{mmol})$ was dissolved in EtOH $(2.0 \mathrm{~mL})$ at a dried Schlenk tube $(10 \mathrm{~mL}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.009-0.03 \mathrm{mmol}), \mathrm{Ca}(\mathrm{OTf})_{2}(0.03 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{mmol})$ was then added subsequently under nitrogen atmosphere. The reaction was stirred at rt $60{ }^{\circ} \mathrm{C}$ (metal bath) for 48 h . After complete conversion, the solvent was removed under reduced pressure. The residue was purified by silica gel chromatography or PTLC (for the details, see each compound) to afford the corresponding products $\mathbf{3}$. (For compounds $\mathbf{3 a}, \mathbf{3 d}, \mathbf{3 e}, \mathbf{3 f}, \mathbf{3 i}, \mathbf{3 m}, \mathbf{3 o}, \mathbf{3 r}, \mathbf{3 s}$, $\mathbf{3 u}$ were generated from 1; for compounds $\mathbf{3 b}$, $\mathbf{3 c}$, $\mathbf{3 g}$, $\mathbf{3 h}, \mathbf{3 j}-\mathbf{3 I}, \mathbf{3 n}, \mathbf{3 p}, \mathbf{3 q}, \mathbf{3 t}, \mathbf{3 v}-\mathbf{3 z}, \mathbf{3 a a}, \mathbf{3 a x}, \mathbf{3 a z}$ were generated from $\mathbf{1}^{\prime}$).

2.2 Procedure for gram scale ($8.0 \mathbf{~ m m o l}$) reaction

(E)-3-phenylprop-2-en-1-ol $\mathbf{1}(8.0 \mathrm{mmol})$, ethyl 2-oxocyclopentane-1-carboxylate $\mathbf{2 a}(16.0 \mathrm{mmol})$ were dissolved in EtOH (20.0 mL) in Schlenk tube (100 mL), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.24 \mathrm{mmol}), \mathrm{Ca}(\mathrm{OTf})_{2}(0.8 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(80 \mathrm{mmol})$ were then added subsequently under nitrogen. The reaction was stirred at rt for 48 h . After complete conversion, the solvent was removed under reduced pressure. The residue was purified via column chromatography (Petroleum ether (bp: 60-90 ${ }^{\circ} \mathrm{C}$)/ethyl acetate $=50: 1$) to afford the corresponding products 3 a in 90% yield $(1.96 \mathrm{~g})$.

2.3 The effect of water loading on this reaction.

Entry	$\mathrm{H}_{2} \mathrm{O}(\mathrm{X})$ equiv.	Yield 3a (\%)
1	0	40
2	1.0	50
3	3.0	66
4	10.0	90
5	15.0	90

a Allyl alcohols $1(0.3 \mathrm{mmol})$ and $\mathbf{2 a}(0.6 \mathrm{mmol})$ was dissolved in solvent (2.0 mL) in Schlenk tube (10 $\mathrm{mL}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{Ca}(\mathrm{OTf})_{2}$, and water was then added subsequently. The reaction was stirred at (25-30 ${ }^{\circ} \mathrm{C}$) (metal bath) for 48 h .

3. Analytical Data for All New Compounds

Ethyl 1-cinnamyl-2-oxocyclopentane-1-carboxylate (3a)

3a was known compounds ${ }^{6-15}$. Following the general procedure, the reaction was conducted in 0.3 mmol scale, 3a was isolated by PTLC (Petroleum ether (bp: $60-90^{\circ} \mathrm{C}$)/ethyl acetate $=2: 1$) as yellow oil (73 mg, 90\% yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.35-7.26$ (m, 4H), 7.22 (d, $J=6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.45(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{dt}, J=15.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{qd}, J=7.1,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.82(\mathrm{dd}$, $J=13.9,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.39(\mathrm{~m}, 3 \mathrm{H}), 2.30-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{dtt}, J=13.2,8.1,3.8 \mathrm{~Hz}, 2 \mathrm{H})$, $1.97-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 214.9,171.1$, 137.1, 134.2, 128.6, 127.6, 126.3, 124.6, 61.6, 60.4, 38.3, 37.1, 32.3, 19.7, 14.3. IR (KBr): 3026.11, $2976.80,1750.06,1724.85,1448.52,1222.18,1147.59,1028.30,969.54,747.70,694.33 \mathrm{~cm}^{-1}$. HRMS ($\mathrm{ESI} /[\mathrm{M}+\mathrm{H}]^{+}$) Calcd. for: $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{3} 273.1491$, found 273.1497.
Ethyl (E)-2-oxo-1-(3-(4-(trifluoromethyl)phenyl)allyl)cyclopentane-1-carboxylate (3b)

Following the general procedure, the reaction was conducted in 0.3 mmol scale, $\mathbf{3 b}$ was isolated by PTLC (Petroleum ether (bp: 60-90 ${ }^{\circ} \mathrm{C}$)/ethyl acetate $=2: 1$) as yellow oil ($101 \mathrm{mg}, 99 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.51$ (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$), $7.39(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.45(\mathrm{~d}, J=15.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.20(\mathrm{dt}, J=15.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.81(\mathrm{dd}, J=14.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-$ $2.38(\mathrm{~m}, 3 \mathrm{H}), 2.29-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.09-1.86(\mathrm{~m}, 3 \mathrm{H}), 1.23(\mathrm{td}, J=7.1,1.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR $(376$ MHz , Chloroform- d) $\delta-62.37 .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 214.6,171.0,140.5,132.8,129.2$ (d, $J=32.4 \mathrm{~Hz}), 127.7,126.4,125.6(\mathrm{q}, J=4.1 \mathrm{~Hz}), 122.9,61.7,60.2,38.1,37.0,32.5,19.7,14.2$. IR (KBr): 2978.57, 1751.06, 1726.02, 1614.61, 1413.33, 1325.85, 1162.89, 1120.01, 1016.63, 858.64, $755.93,598.63 \mathrm{~cm}^{-1}$. HRMS (ESI/[M+H]+) Calcd. for: $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{O}_{3} 341.1365$, found 341.1361.

Ethyl (E)-1-(3-(4-fluorophenyl)allyl)-2-oxocyclopentane-1-carboxylate (3c)

Following the general procedure, the reaction was conducted in 0.3 mmol scale, $\mathbf{3 c}$ was isolated by PTLC (Petroleum ether (bp: $60-90^{\circ} \mathrm{C}$)/ethyl acetate $=2: 1$) as yellow oil ($85 \mathrm{mg}, 98 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (401 MHz, Chloroform- d) $\delta 7.32-7.26(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.41(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.01(\mathrm{dt}, J=15.3,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{qd}, J=7.1,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.84-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.41(\mathrm{~m}, 3 \mathrm{H})$, $2.32-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{tdt}, J=11.9,7.8,4.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.97-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{19}$ F NMR (376 MHz , Chloroform- d) $\delta-114.61 .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) δ 214.8, 171.0, $163.4,161.0,133.3(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 132.9,127.7(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 124.4(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 115.6,115.3$, $61.6,60.3,38.1,37.0,32.4,19.7,14.2$. IR (KBr): 2977.82, 1749.94, 1724.93, 1601.35, 1508.67, 1447.93, 1405.57, 1366.53, 1226.83, 1157.86, 1114.59, 1028.42, 971.29, 844.44, 766.88, 567.65, $512.25 \mathrm{~cm}^{-1}$. $\mathrm{HRMS}\left(\mathrm{ESI} /[\mathrm{M}+\mathrm{H}]^{+}\right)$Calcd. for: $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{FO}_{3} 291.1396$, found 291.1390.

Ethyl (E)-1-(3-(4-chlorophenyl)allyl)-2-oxocyclopentane-1-carboxylate (3d)

3d was known compounds ${ }^{12}$. Following the general procedure, the reaction was conducted in 0.3 mmol scale, 3d was isolated by PTLC (Petroleum ether (bp: 60-90 ${ }^{\circ} \mathrm{C}$)/ethyl acetate $=2: 1$) as yellow oil (75 $\mathrm{mg}, 82 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (401 MHz , Chloroform- d) $\delta 7.25(\mathrm{~s}, 4 \mathrm{H}), 6.40(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.08$ (dt, $J=15.7,7.5,1 \mathrm{H}), 4.18(\mathrm{qd}, J=7.1,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.81(\mathrm{ddd}, J=14.0,7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.41(\mathrm{~m}$, $3 \mathrm{H}), 2.31-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.87(\mathrm{~m}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 214.8,171.0,135.6,133.1,132.9,128.8,127.5,125.4,61.7,60.3,38.2,37.0,32.5$, 19.7, 14.2. IR (KBr): 2975.29, 1490.73, 1447.98, 1222.62, 1160.73, 1092.46, 1028.47, 971.23, 815.00, $750.35,549.74 \mathrm{~cm}^{-1}$. HRMS (ESI/[M+Na] ${ }^{+}$) Calcd. for: $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{ClO}_{3} 307.1101$, found 307.1095.
Ethyl (E)-1-(3-(4-bromophenyl)allyl)-2-oxocyclopentane-1-carboxylate (3e)

Following the general procedure, the reaction was conducted in 0.3 mmol scale, $\mathbf{3 e}$ was isolated by PTLC (Petroleum ether (bp: 60-90 ${ }^{\circ} \mathrm{C}$)/ethyl acetate $=2: 1$) as yellow oil ($102 \mathrm{mg}, 97 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (401 MHz, Chloroform- d) $\delta 7.40(\mathrm{dt}, J=8.4,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.38(\mathrm{~d}, J=15.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.10(\mathrm{dt}, J=15.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{qq}, J=7.0,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.83-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.55-$ $2.40(\mathrm{~m}, 3 \mathrm{H}), 2.31-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{tt}, J=7.1,1.2 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 214.8,171.0,136.0,132.9,131.7,127.8,125.6,121.2,61.7$, $60.2,38.2,37.0,32.5,19.7,14.3$. IR (KBr): 2976.15, 1750.36, 1725.26, 1602.79, 1447.42, 1220.40, $1159.32,1028.89,970.45,860.69,766.76,694.25,526.30 \mathrm{~cm}^{-1}$. HRMS (ESI/[M+H]+) Calcd. for: $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{BrO}_{3} 351.0596$, found 351.0598 .
Ethyl (E)-1-(3-(4-nitrophenyl)allyl)-2-oxocyclopentane-1-carboxylate (3f)

Following the general procedure, the reaction was conducted in 0.3 mmol scale, $\mathbf{3 f}$ was isolated by PTLC (Petroleum ether (bp: $60-90^{\circ} \mathrm{C}$)/ethyl acetate $=2: 1$) as yellow oil ($92 \mathrm{mg}, 97 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.10$ (dq, $J=9.3,2.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.41 (dd, $J=8.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}$), $6.47(\mathrm{~d}, J=$ $15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.35-6.26(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{qd}, J=7.1,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.81(\mathrm{ddt}, J=14.0,7.1,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.55-2.38(\mathrm{~m}, 3 \mathrm{H}), 2.29-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.87(\mathrm{~m}, 3 \mathrm{H}), 1.21(\mathrm{td}, J=7.1,2.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) $\delta 214.4,170.9,146.8,143.5,132.1,130.3,126.8,124.0,61.7,60.1,38.0$, 37.1, 32.8, 19.7, 14.2. IR (KBr): 2975.78, 2360.06, 1750.05, 1724.36, 1596.63, 1516.38, 1448.59, $1342.68,1161.59,1028.15,973.61,858.90,744.75,549.71 \mathrm{~cm}^{-1}$. HRMS (ESI/[M+H $]^{+}$) Calcd. for: $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{5} 318.1341$, found 318.1344 .

Ethyl (E)-2-oxo-1-(3-(p-tolyl)allyl)cyclopentane-1-carboxylate (3g)

Following the general procedure, the reaction was conducted in 0.3 mmol scale, $\mathbf{3 g}$ was isolated by PTLC (Petroleum ether (bp: 60-90 ${ }^{\circ} \mathrm{C}$)/ethyl acetate $=2: 1$) as light yellow solid. ($85 \mathrm{mg}, 99 \%$ yield). Mp: 43-45 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (401 MHz , Chloroform- d) $\delta 7.22(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.41(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{dt}, J=15.4,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{qd}, J=7.1,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{ddd}, J=$ $13.9,7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.39(\mathrm{~m}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.29-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.92$ (dddd, $J=14.6,11.6,6.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) δ $215.0,171.1,137.3,134.3,134.1,129.3,126.2,123.5,61.6,60.4,38.3,37.1,32.3,21.3,19.7,14.3$. IR (KBr): 2973.69, 2923.52, 1750.68, 1725.29, 1512.60, 1447.89, 1222.69, 1160.26, 1028.95,971.35, 801.31, 750.80, 503.46 cm^{-1}. HRMS (ESI/[M+H $]^{+}$) Calcd. for: $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{3} 287.1647$, found 287.1646.

Ethyl (E)-1-(3-(4-(tert-butyl)phenyl)allyl)-2-oxocyclopentane-1-carboxylate (3h)

Following the general procedure, the reaction was conducted in 0.3 mmol scale, $\mathbf{3 h}$ was isolated by PTLC (Petroleum ether (bp: $60-90^{\circ} \mathrm{C}$)/ethyl acetate $=2: 1$) as yellow oil ($78 \mathrm{mg}, 79 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (401 MHz, Chloroform- d) $\delta 7.32$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.27 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 6.43 (d, $J=15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.04(\mathrm{dt}, J=15.1,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{qd}, J=7.1,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{dd}, J=13.9,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.56$ $-2.38(\mathrm{~m}, 3 \mathrm{H}), 2.29-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}), 1.26(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 214.9,171.1,150.6,134.4,134.0,126.0,125.5$, $123.8,61.6,60.4,38.3,37.1,34.6,32.2,31.4,19.7,14.3$. IR (KBr): 2963.17, 1750.49, 1724.74, $1463.32,1364.20,1274.31,1222.89,1146.26,1110.04,1027.10,971.08,913.71,819.11,764.25$, $749.53 \mathrm{~cm}^{-1}$. HRMS (ESI/[M+H] ${ }^{+}$) Calcd. for: $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{O}_{3} 329.2117$, found 329.2122 .

Ethyl (E)-1-(3-(4-methoxyphenyl)allyl)-2-oxocyclopentane-1-carboxylate (3i)

3i was known compounds ${ }^{12}$. Following the general procedure, the reaction was conducted in 0.3 mmol scale, $3 \mathbf{i}$ was isolated by PTLC (Petroleum ether (bp: 60-90 ${ }^{\circ} \mathrm{C}$)/ethyl acetate $=2: 1$) as yellow oil (86 $\mathrm{mg}, 95 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.29-7.23$ (m, 2H), $6.85-6.81$ (m, 2H), 6.39 $(\mathrm{d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.98-5.89(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{qd}, J=7.1,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{ddd}, J=$ $13.9,7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.39(\mathrm{~m}, 3 \mathrm{H}), 2.33-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.09-1.98(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.85(\mathrm{~m}$, $1 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 214.9,171.1,159.2,133.6,129.9$, $127.4,122.3,114.0,61.6,60.4,55.4,38.2,37.1,32.2,19.7,14.2$ IR (KBr): 2966.07, 2837.05, 1749.68, $1724.43,1607.35,1511.06,1464.93,1249.17,1174.65,1033.09,970.61,838.69,756.99 \mathrm{~cm}^{-1}$. HRMS $\left(\mathrm{ESI} /[\mathrm{M}+\mathrm{H}]^{+}\right)$Calcd. for: $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{4} 303.1596$, found 303.1597.

Ethyl (E)-1-(3-(3-fluorophenyl)allyl)-2-oxocyclopentane-1-carboxylate (3j)

Following the general procedure, the reaction was conducted in 0.3 mmol scale. $\mathbf{3 j}$ was isolated by PTLC (Petroleum ether (bp: $60-90^{\circ} \mathrm{C}$)/ethyl acetate $=2: 1$) as yellow oil ($84 \mathrm{mg}, 96 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (401 MHz, Chloroform- d) $\delta 7.25(\mathrm{td}, J=8.1,6.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.08(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{dt}, J=10.3$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.88(\mathrm{~m}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{dt}, J=15.2,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{qd}, J$ $=7.1,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.82(\mathrm{ddd}, J=14.0,7.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.41(\mathrm{~m}, 3 \mathrm{H}), 2.32-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.10$ $-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.93$ (ddd, $J=14.1,6.5,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , Chloroform- d) $\delta-113.45 .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 214.7,171.0,163.1$ ($\mathrm{d}, J_{\text {C-F }}=245.1$ $\mathrm{Hz}), 139.4(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 133.0(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 130.1(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 126.2,122.2(\mathrm{~d}, J=2.9 \mathrm{~Hz})$, 114.3 (d, $J=21.4 \mathrm{~Hz}$), 112.7 (d, $J=21.7 \mathrm{~Hz}$), 61.7, $60.2,38.2,37.0,32.4,19.7,14.2$. IR (KBr): $2977.86,1750.17,1724.95,1609.67,1582.87,1487.07,1446.83,1267.35,1231.06,1144.33,1113.93$, 1028.27, 970.82, 870.13, 780.27, 764.72, 750.62, $685.41 \mathrm{~cm}^{-1}$. HRMS (ESI/[M+H] ${ }^{+}$) Calcd. for: $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{FO}_{3} 291.1396$, found 291.1400.

Ethyl (E)-2-oxo-1-(3-(m-tolyl)allyl)cyclopentane-1-carboxylate (3k)

Following the general procedure, the reaction was conducted in 0.3 mmol scale with $\mathbf{3 k}$ was isolated by PTLC (Petroleum ether (bp: 60-90 ${ }^{\circ} \mathrm{C}$)/ethyl acetate $=2: 1$) as yellow oil ($80 \mathrm{mg}, 93 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform- d) $\delta 7.17$ (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.15-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.41(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.11-6.02(\mathrm{dt}, J=15.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{qd}, J=7.1,1.4 \mathrm{~Hz}, 2 \mathrm{H})$, 2.80 (ddd, $J=13.9,7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.38(\mathrm{~m}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.30-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.08-$ $1.96(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) δ $215.0,171.1,138.2,137.0,134.3,128.5,128.3,127.0,124.4,123.5,61.6,60.4,38.3,37.1,32.3,21.5$, 19.7, 14.3. IR (KBr): 3026.84, 2975.37, 1749.48, 1724.55, 1587.83, 1486.93, 1401.77, 1222.48, 1160.77, 1072.251028.33, $971.22,814.40,750.68,549.62 \mathrm{~cm}^{-1}$. HRMS (ESI/[M+H] ${ }^{+}$) Calcd. for: $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{3} 287.1647$, found 287.1645 .
Ethyl (E)-1-(3-(2-fluorophenyl)allyl)-2-oxocyclopentane-1-carboxylate (31)

Following the general procedure, the reaction was conducted in 0.3 mmol scale with $\mathbf{3 l}$ was isolated by PTLC (Petroleum ether (bp: 60-90 ${ }^{\circ} \mathrm{C}$)/ethyl acetate $=2: 1$) as yellow oil ($84 \mathrm{mg}, 97 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.40(\mathrm{td}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.18(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-6.97(\mathrm{~m}, 2 \mathrm{H})$, $6.60(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.22-6.14(\mathrm{dt}, J=15.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{qd}, J=7.1,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.85$ (dd, $J=14.0,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.40(\mathrm{~m}, 3 \mathrm{H}), 2.32-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.88$ $(\mathrm{m}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , Chloroform- d) $\delta-118.42 .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 214.7,171.0,160.0\left(\mathrm{~d}, J_{\text {C-F }}=248.8 \mathrm{~Hz}\right), 128.8(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 127.4(\mathrm{dd}, J=13.4$, $4.4 \mathrm{~Hz}), 126.5(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 124.8(\mathrm{~d}, J=12.3 \mathrm{~Hz}), 124.1(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 115.7(\mathrm{~d}, J=22.1 \mathrm{~Hz})$, $61.6,60.3,38.2,37.5,32.4,19.7,14.2$. IR (KBr): 2978.12, 1750.36, 1724.95, 1486.97, 1456.36, 1265.51, 1229.20, 1188.98, 1149.25, 1118.39 1031.37, $972.55,859.64,829.62,755.91 \mathrm{~cm}^{-1}$. HRMS (ESI/[M+H] ${ }^{+}$) Calcd. for: $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{FO}_{3} 291.1396$, found 291.1390.
Ethyl (E)-1-(3-(2-methoxyphenyl)allyl)-2-oxocyclopentane-1-carboxylate (3m)

Following the general procedure, the reaction was conducted in 0.3 mmol scale with $\mathbf{3 m}$ was isolated by PTLC (Petroleum ether (bp: 60-90 ${ }^{\circ} \mathrm{C}$)/ethyl acetate $=2: 1$) as yellow oil ($89 \mathrm{mg}, 98 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.37$ (dd, $J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.23-7.17(\mathrm{~m}, 1 \mathrm{H}), 6.89(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{dt}, J=15.8,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{qq}, J$ $=7.1,3.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.84(\mathrm{dd}, J=13.9,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.39(\mathrm{~m}, 3), 2.31-2.20(\mathrm{~m}, 1 \mathrm{H})$, $2.10-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{td}, J=7.1,1.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 214.9,171.1,156.5,128.9,128.5,126.7,126.2,125.1,120.7,110.9,61.6,60.5,55.5$, 38.2, 37.6, 32.3, 19.7, 14.2. IR (KBr): 2965.05, 2837.63, 1749.97, 1724.18, 1597.19, 1488.73, 1463.84,

Ethyl (E)-1-(3-(2-hydroxyphenyl)allyl)-2-oxocyclopentane-1-carboxylate (3n)

Following the general procedure, the reaction was conducted in 0.3 mmol scale with $\mathbf{3 n}$ was isolated by PTLC (Petroleum ether (bp: 60-90 ${ }^{\circ} \mathrm{C}$)/ethyl acetate $=2: 1$) as yellow oil ($66 \mathrm{mg}, 76 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.28$ (dd, $J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.09 (td, $J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.88$ $6.78(\mathrm{~m}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{dt}, J=15.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{qd}, J=7.1$, $1.4 \mathrm{~Hz}, 2 \mathrm{H}$), 2.81 (ddd, $J=13.9,7.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.57$ (ddd, $J=13.9,7.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.41(\mathrm{~m}$, $2 \mathrm{H}), 2.28(\mathrm{dt}, J=18.4,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 215.8,171.4,153.2,128.9,128.6,127.4,126.1,124.3,120.6$, $116.0,61.9,60.5,38.4,37.6,32.7,19.7,14.2$. IR (KBr): 3440.63, 2976.14, 1722.06, 1603.04, 1455.40 1340.84, 1230.34, 1159.02, 1026.86, 977.04, 858.27, 753.51, 653.49, 549.68 cm^{-1}. HRMS (ESI/[M+H] $)$ Calcd. for: $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{4} 289.1440$, found 289.1438 .

Ethyl (E)-1-(3-(4-hydroxy-3-methoxyphenyl)allyl)-2-oxocyclopentane-1-carboxylate (30)

Following the general procedure, The reaction was conducted in 0.3 mmol scale with $\mathbf{3 0}$ was isolated by PTLC (Petroleum ether (bp: $60-90^{\circ} \mathrm{C}$)/ethyl acetate $=2: 1$) as yellow oil ($40 \mathrm{mg}, 42 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform- d) $\delta 6.85-6.83(\mathrm{~m}, 3 \mathrm{H}), 6.36(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{dt}, J=15.4$, $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{qd}, J=7.1,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.79(\mathrm{dd}$, $J=14.0,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.40(\mathrm{~m}, 3 \mathrm{H}), 2.26(\mathrm{dt}, J=19.5,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.97-$ $1.88(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{td}, J=7.1,0.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 215.1,171.2,146.7$, $145.4,134.0,129.7,122.1,120.0,114.5,108.2,61.6,60.4,56.0,38.3,37.0,32.3,19.7,14.2$. IR (KBr): 2975.93, 1747.42, 1722.20, 1597.05 1514.74, 1464.20, 1275.17, 1233.46, 1156.65, 1122.24, 1031.60, 969.31, 858.46, 764.25, 749.99 cm^{-1}. HRMS (ESI/[M+H $]^{+}$) Calcd. for: $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{5} 319.1545$, found 319.1550.

Ethyl (E)-1-(3-(naphthalen-2-yl)allyl)-2-oxocyclopentane-1-carboxylate (3p)

Following the general procedure, the reaction was conducted in 0.3 mmol scale with $\mathbf{3 p}$ was isolated by PTLC (Petroleum ether (bp: 60-90 ${ }^{\circ} \mathrm{C}$)/ethyl acetate $=2: 1$) as yellow oil ($95 \mathrm{mg}, 98 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform- d) $\delta 7.75(\mathrm{t}, J=8.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46$ $-7.37(\mathrm{~m}, 2 \mathrm{H}), 6.59(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{dt}, J=15.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.87$ (dd, $J=13.9,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=14.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{ddd}, J=29.8,13.0,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.31$ $-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{tt}, J=15.3,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.94-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 214.9,171.1,134.6,134.3,133.7,133.0,128.3,128.0,127.8,125.9,125.1$,
61.7, 60.4, 38.3, 37.2, 32.4, 19.7, 14.3. IR (KBr): 2976.36, 1749.41, 1723.96, 1596.84, 1507.80, $1446.82,1222.70,1160.30,1027.75,969.32,860.09,813.68,748.14,476.33 \mathrm{~cm}^{-1}$. HRMS (ESI/[M+H] $\left.{ }^{+}\right)$ Calcd. for: $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{O}_{3} 323.1647$, found 323.1647.

Ethyl (E)-1-(3-(anthracen-9-yl)allyl)-2-oxocyclopentane-1-carboxylate (3q)

Following the general procedure, the reaction was conducted in 0.3 mmol scale with $\mathbf{3 q}$ was isolated by PTLC (Petroleum ether (bp: 60-90 ${ }^{\circ} \mathrm{C}$)/ethyl acetate $=2: 1$) as yellow oil ($85 \mathrm{mg}, 76 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (401 MHz, Chloroform- d) $\delta 8.31(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.22-8.20(\mathrm{~m}, 1 \mathrm{H}), 7.96-$ 7.91 (m, 2H), $7.47-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.19(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{dt}, J=15.9,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, J$ $=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.12(\mathrm{ddd}, J=13.9,7.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{ddd}, J=13.9,7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2.58$ $(\mathrm{m}, 1 \mathrm{H}), 2.52-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{dt}, J=18.5,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.01(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.89(\mathrm{~m}, 1 \mathrm{H})$, $1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 214.7,171.0,133.3,132.7,131.5,130.2$, $129.6,128.8,126.4,126.0,125.5,125.2,61.8,60.5,38.2,38.0,32.8,19.8,14.3$. IR (KBr): 2984.41, $1748.59,1723.68,1672.94,1593.95,1455.68,1275.36,1260.67,1026.90,1026.90,764.18,750.04 \mathrm{~cm}^{-1}$. HRMS (ESI/[M+H]+) Calcd. for: $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{O}_{3} 373.1804$, found 373.1798.
Ethyl (E)-1-(3-(furan-2-yl)allyl)-2-oxocyclopentane-1-carboxylate (3r)

Following the general procedure, the reaction was conducted in 0.3 mmol scale with $\mathbf{3 r}$ was isolated by PTLC (Petroleum ether (bp: 60-90 ${ }^{\circ} \mathrm{C}$)/ethyl acetate $=2: 1$) as yellow oil ($40 \mathrm{mg}, 51 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (401 MHz, Chloroform-d) $\delta 7.31$ (d, $J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.35$ (dd, $J=3.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.26 (d, $J=15.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{dt}, J=15.5,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.79(\mathrm{dd}, J=$ $14.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.40(\mathrm{~m}, 3 \mathrm{H}), 2.32-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.87(\mathrm{~m}, 1 \mathrm{H})$, $1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) $\delta 214.8,170.9,152.5,141.8,123.3,122.5$, 111.3, 107.4, 61.6, 60.3, 38.2, 36.9, 32.2, 19.7, 14.2. IR (KBr): 2962.37, 2928.76, 1749.18, 1724.25, 1449.07, 1340.37, 1161.74, 1019.67, 975.33, $921.05,816.08,748.55,653.76,549.75 \mathrm{~cm}^{-1}$. HRMS (ESI/[M+H] ${ }^{+}$) Calcd. for: $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{4}$ 263.1283, found 263.1282 .
Ethyl (E)-2-oxo-1-(3-(thiophen-2-yl)allyl)cyclopentane-1-carboxylate (3s)

Following the general procedure, the reaction was conducted in 0.3 mmol scale with $\mathbf{3 S}$ was isolated by PTLC (Petroleum ether (bp: 60-90 ${ }^{\circ} \mathrm{C}$)/ethyl acetate $=2: 1$) as yellow oil ($78 \mathrm{mg}, 94 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (401 MHz, Chloroform-d) $\delta 7.10(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{t}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{dt}, J=15.3,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{dd}, J=13.9,7.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.45 (ddt, $J=19.5,13.5,7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.31-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{dt}, J=12.4,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.97-1.86$ $(\mathrm{m}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 214.8,171.0,142.1,127.4$,
$127.3,125.3,124.3,124.0,61.6,60.3,38.2,36.9,32.3,19.7$, 14.2. IR (KBr): 2977.08, 1749.15, 1723.98 , 1446.67, 1403.78, 1365.74, 1274.83, 1226.39, 1147.61, 1110.27, 1028.00, 960.03, 913.68, 853.99, 764.24, 749.38, 699.54 cm^{-1}. HRMS (ESI/[M+H]+) Calcd. for: $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{SO}_{3} 279.1055$, found 279.1051.

Ethyl (E)-2-oxo-1-(3-(pyridin-3-yl)allyl)cyclopentane-1-carboxylate (3t)

Following the general procedure, the reaction was conducted in 0.3 mmol scale with $\mathbf{3 t}$ was isolated by PTLC (Petroleum ether (bp: $60-90^{\circ} \mathrm{C}$)/ethyl acetate $=2: 1$) as yellow oil ($43 \mathrm{mg}, 53 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (401 MHz, Chloroform- d) $\delta 8.54(\mathrm{~s}, 1 \mathrm{H}), 8.45(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J$ $=7.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dt}, J=15.8,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, $2.84(\mathrm{ddd}, J=14.0,7.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.42(\mathrm{~m}, 3 \mathrm{H}), 2.28(\mathrm{ddd}, J=18.4,10.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-$ $1.98(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) δ $214.6,170.9,148.6,148.2,132.7,130.5,127.3,123.5,61.7,60.2,38.1,37.1,32.6,19.7,14.2$. IR (KBr): $2966.28,1748.98,1723.32,1447.81,1414.65,1338.31,1225.58,1160.70,1024.34,971.48,920.34$, 815.08, 708.65, 653.33, $549.18 \mathrm{~cm}^{-1}$. HRMS (ESI/[M+H $]^{+}$) Calcd. for: $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{3} 274.1443$, found 274.1447.

Ethyl 2-oxo-1-((E)-4-phenylbut-3-en-2-yl)cyclopentane-1-carboxylate (3u)

3 u was known compounds ${ }^{16}$. Following the general procedure, the reaction was conducted in 0.3 mmol scale with 3u was isolated by PTLC (Petroleum ether (bp: 60-90 ${ }^{\circ} \mathrm{C}$)/ethyl acetate $=2: 1$) as yellow oil ($67 \mathrm{mg}, 78 \%$ yield (mixture of syn and anti-isomer, major/minor $=70 / 30$ determined by ${ }^{1} \mathrm{H}$ NMR of the crude reaction mixture)). For the major isomer, ${ }^{1} \mathrm{H}$ NMR (401 MHz , Chloroform- d) $\delta 7.34-7.26$ (m, 4H), $7.24-7.18(\mathrm{~m}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{dd}, J=15.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{qq}, J=$ $10.7,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.32-3.24(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.01(\mathrm{~m}, 1 \mathrm{H})$, $2.00-1.87(\mathrm{~m}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 214.3,169.9,137.2,132.1,130.0,128.6,127.5,126.3,65.4,61.7,40.9,39.1,28.4$, 20.0, 15.9, 14.3. IR (KBr): 2974.13, 1749.87, 1719.27, 1447.45, 1259.74, 1223.83, 1123.81, 1028.78, 972.53, 750.27, 694.73 cm^{-1}. HRMS (ESI/[M+H] $)$ Calcd. for: $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{3} 287.1647$, found 287.1638. For the minor isomer, ${ }^{1} \mathrm{H}$ NMR (401 MHz , Chloroform- d) $\delta 7.34-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.43$ (d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{dd}, J=15.8,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.08(\mathrm{~m}, 2 \mathrm{H}), 3.32-3.24(\mathrm{~m}, 1 \mathrm{H}), 2.54-$ $2.39(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{ddd}, J=18.9,10.4,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-1.90(\mathrm{~m}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.08$ $(\mathrm{d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 214.6,170.1,137.2,131.4,130.6,128.6$, $127.5,126.3,64.9,61.7,41.3,39.3,28.9,19.8,15.9,14.3$. IR (KBr): 2968.79, 1750.09, 1720.26, 1447.40, 1269.69, 1225.46, 1119.70, 1020.71, 968.55, 759.29, 693.89 cm^{-1}. HRMS (ESI/[M+H]) Calcd. for: $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{3} 287.1647$, found 287.1641.
Ethyl (E)-2-oxo-1-(3-phenylbut-2-en-1-yl)cyclopentane-1-carboxylate (3v)

Following the general procedure, the reaction was conducted in 0.3 mmol scale with $\mathbf{3 v}$ was isolated by PTLC (Petroleum ether (bp: 60-90 ${ }^{\circ} \mathrm{C}$)/ethyl acetate $=2: 1$) as yellow oil ($69 \mathrm{mg}, 80 \%$ yield) ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.36-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 1 \mathrm{H}), 5.64$ (td, $J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{dd}, J=14.7,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.61-2.41(\mathrm{~m}, 3 \mathrm{H})$, $2.32-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.04-1.90(\mathrm{~m}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 215.1,171.2,143.6,138.5,128.3,127.1,125.9,122.6,61.6,60.6,38.3,32.7,32.4$, 19.8, 16.3, 14.2. IR (KBr): 2985.54, 1749.18, 1724.05, 1446.37, 1275.33, 1260.66, 1223.86, 1147.86, 1027.12, 750.10, 699.24 cm^{-1}. HRMS (ESI/[M+H+ Calcd. for: $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{3} 287.1647$, found 287.1639.

Ethyl (E)-1-(3-cyclohexylallyl)-2-oxocyclopentane-1-carboxylate (3w)

Following the general procedure, the reaction was conducted at $60^{\circ} \mathrm{C}$ in 0.3 mmol scale with $\mathbf{3 W}$ was isolated by PTLC (Petroleum ether (bp: $60-90^{\circ} \mathrm{C}$)/ethyl acetate $=4: 1$) as yellow oil ($62 \mathrm{mg}, 74 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (401 MHz , Chloroform- d) $\delta 5.45(\mathrm{dd}, J=15.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{dt}, J=15.3,7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.15(\mathrm{qd}, J=7.0,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{dd}, J=13.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{dd}, J=13.8$, $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{dt}, J=18.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.85(\mathrm{~m}, 4 \mathrm{H}), 1.73-1.59(\mathrm{~m}, 5 \mathrm{H}), 1.25(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}), 1.23-0.95(\mathrm{~m}, 5 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , Chloroform- d) $\delta-114.23,-115.28 .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 215.0,171.1,141.5,121.5,61.4,60.4,40.8,38.3,36.8,33.1,33.1,32.0,26.2$, 26.1, 19.6, 14.2. IR (KBr): 2924.01, 2851.01, 1752.11, 1725.83, 1448.23, 1224.20, 1159.53, 1029.52, 972.69, 861.70 cm^{-1}. HRMS (ESI/[M+H] ${ }^{+}$) Calcd. for: $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{O}_{3} 279.1960$, found 279.1964.

Ethyl 1-(oct-2-en-1-yl)-2-oxocyclopentane-1-carboxylate (3x)

3 x was known compounds ${ }^{12}$. Following the general procedure, the reaction was conducted at $60{ }^{\circ} \mathrm{C}$ in 0.3 mmol scale with $\mathbf{3 x}$ was isolated by PTLC (Petroleum ether (bp: $60-90^{\circ} \mathrm{C}$)/ethyl acetate $=4: 1$) as yellow oil ($47 \mathrm{mg}, 59 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 5.50$ (dt, $J=15.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $5.27(\mathrm{dt}, J=15.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{qd}, J=7.1,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.63-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.36(\mathrm{~m}, 2 \mathrm{H})$, $2.34-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.93(\mathrm{~m}, 4 \mathrm{H}), 1.93-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.28(\mathrm{~m}$, 4H), $1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.23-1.18(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 215.0,171.1,135.6,124.1,61.4,60.4,38.3,36.8,32.6,32.0,31.4,29.1,22.6,19.6$, 14.3, 14.1. IR (KBr): 2958.66, 2926.92, 2856.32, 1752.90, 1726.14, 1465.14, 1223.66, 1160.36, 1029.78, 974.76, 920.90, 844.79, 749,91, 653.60 cm^{-1}. HRMS (ESI/[M+H] ${ }^{+}$) Calcd. for: $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{O}_{3}$ 267.1960, found 267.1960.

Ethyl (Z)-2-oxo-1-(5-(trimethylsilyl)pent-2-en-4-yn-1-yl)cyclopentane-1-carboxylate (3y)
Ethyl (E)-2-oxo-1-(5-(trimethylsilyl)pent-2-en-4-yn-1-yl)cyclopentane-1-carboxylate (3y')

$3 y^{\prime}$
Following the general procedure, the reaction was conducted in 0.3 mmol scale with $\mathbf{3 y}$ and $\mathbf{3 y}$ ' were isolated by PTLC (Petroleum ether (bp: 60-90 ${ }^{\circ} \mathrm{C}$)/ethyl acetate $=4: 1$) as yellow oil ($77 \mathrm{mg}, 88 \%$ yield $\left(\mathbf{3 y} / \mathbf{3 y}{ }^{\prime}=81 / 19\right)$). For the $\mathbf{3 y},{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 5.90$ (ddd, $J=10.8,8.3,7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.59(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{qd}, J=7.1,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.82(\mathrm{ddd}, J=14.1,7.0,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, 2.62 (ddd, $J=14.1,8.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.33-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.91(\mathrm{~m}, 3 \mathrm{H})$, $1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.15(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 214.4,171.0,139.3,113.0$, 101.6, 99.8, 61.6, 60.1, 38.0, 33.5, 32.3, 19.7, 14.1. IR (KBr): 2961.78, 2899.97, 2148.77, 1752,46, $1726.75,1449.12,1405.86,1283.84,1249.98,1195.87,1161.35,1028.30,989.58,844.40,759.98 \mathrm{~cm}^{-1}$. HRMS (ESI/[M+H] ${ }^{+}$) Calcd. for: $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{SiO}_{3}$ 293.1573, found 293.1568. For the 3y', ${ }^{1} \mathrm{H}$ NMR (401 MHz , Chloroform-d) $\delta 6.06(\mathrm{dt}, J=15.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 2.73$ (ddd, $J=14.2,7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.39-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.21(\mathrm{~m}$, $1 \mathrm{H}), 2.10-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.18(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 214.3,170.7,139.7,114.0,103.2,94.2,61.7,59.9,38.0,36.9,32.3,19.6,14.2$. IR (KBr): 2961.56, 2132.56, 1752.45, 1726.57, 1448.22, 1250.16, 1221.54, 1160.84, 1116.66, 1083.89, 1028.50, 960.64, 844.40, $760.39 \mathrm{~cm}^{-1}$. HRMS (ESI/[M+H]+) Calcd. for: $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{SiO}_{3} 293.1573$, found 293.1576.

Ethyl (E)-2-oxo-1-(3-(4-((trimethylsilyl)ethynyl)phenyl)allyl)cyclopentane-1-carboxylate (3z)

Following the general procedure, the reaction was conducted in 0.3 mmol scale with $\mathbf{3 Z}$ was isolated by PTLC (Petroleum ether (bp: 60-90 ${ }^{\circ} \mathrm{C}$)/ethyl acetate $=9: 1$) as yellow oil ($105 \mathrm{mg}, 95 \%$ yield) ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.36$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.22(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.38(\mathrm{~d}, J=15.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.09(\mathrm{dt}, J=15.1,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{qd}, J=7.1,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.79$ (ddd, $J=14.0,7.3,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.52-2.37(\mathrm{~m}, 3 \mathrm{H}), 2.23(\mathrm{dt}, J=18.6,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.22(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 214.7,171.0,137.2,133.5,132.2$, $126.1,125.9,122.0,105.2,94.8,61.7,60.3,38.2,37.1,32.4,19.7,14.2,0.1$. IR (KBr): 2961.87, 2900.06, 2154.54, 1751.51, 1726.21, 1505.44, 1447.45, 1406.91, 1249.89, 1222.64, 1159.24, 1115.63, 1028.48, 971.69, 864.81, 843.56, 760.55, 640.08 cm^{-1}. HRMS (ESI/[M+H] ${ }^{+}$) Calcd. for: $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{SiO}_{3}$ 369.1886, found 369.1892.

Ethyl 2-oxo-1-((E)-3-(4-(prop-1-en-2-yl)cyclohex-1-en-1-yl)allyl)cyclopentane-1-carboxylate (3aa)

Following the general procedure, the reaction was conducted at $60^{\circ} \mathrm{C}$ in 0.3 mmol scale with 3aa was isolated by PTLC (Petroleum ether (bp: 60-90 ${ }^{\circ} \mathrm{C}$)/ethyl acetate $=4: 1$) as yellow oil ($88 \mathrm{mg}, 93 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 6.09(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$), $5.71-5.67(\mathrm{~m}, 1 \mathrm{H}), 5.38(\mathrm{dt}, J=15.3$, $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.73-4.70(\mathrm{~m}, 2 \mathrm{H}), 4.17(\mathrm{qd}, J=7.1,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.69$ (ddd, $J=13.8,7.4,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.47-2.37(\mathrm{~m}, 3 \mathrm{H}), 2.28-2.17(\mathrm{~m}, 3 \mathrm{H}), 2.16-2.08(\mathrm{~m}, 2 \mathrm{H}), 2.08-1.95(\mathrm{~m}, 3 \mathrm{H}), 1.88$ (dddd, $J=$ $15.4,10.0,4.8,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{ddt}, J=17.0,11.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$ ${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) δ 215.0, 171.1, 149.7, 137.3, 135.0, 128.2, 120.5, 108.8, 61.5, $60.4,41.2,38.3,37.0,32.2,31.2,27.4,25.1,20.9,19.7,14.2$. IR (KBr): 2966.14, 2935.11, 1750.14, 1724.72 , 1644.31, 1487.02, 1454.41, 1367.12, 1275.02, 1260.80, 1229.10, 1148.90, 1116.75, 1029.51, 971.60, 889.68, $751.60 \mathrm{~cm}^{-1}$. HRMS (ESI/[M+H] ${ }^{+}$) Calcd. for: $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{O}_{3} 317.2117$, found 317.2108 .

Ethyl 1-cinnamyl-2-oxocyclohexane-1-carboxylate (3ab)

Following the general procedure, the reaction was conducted in 0.3 mmol scale with $\mathbf{3 a b}$ was isolated by PTLC (Petroleum ether (bp: $60-90{ }^{\circ} \mathrm{C}$)/ethyl acetate $=10: 1$) as yellow oil ($64 \mathrm{mg}, 75 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform- d) $\delta 7.28(\mathrm{dt}, J=15.0,7.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=$ $15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{dt}, J=15.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.78-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.45$ $(\mathrm{m}, 4 \mathrm{H}), 2.02(\mathrm{dq}, J=9.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.56-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 207.8$, 171.7, 137.3, 133.3, 128.6, 127.3, 126.3, 125.2, 61.5, 61.4, 41.3, 38.7, 36.2, 27.6, 22.7, 14.3. IR (KBr): 3025.85, 2940.01, 2865.91, 1713.14, 1495.31, $1448.75,1308.84,1223.46,1191.59,1134.53,1095.26,1021.87,968.27,864.35,744.47,693.77 \mathrm{~cm}^{-1}$. HRMS (ESI/[M+H]+) Calcd. for: $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{3} 287.1647$, found 287.1649.

3-acetyl-3-cinnamyldihydrofuran-2(3H)-one (3ac)

Following the general procedure, the reaction was conducted in 0.3 mmol scale with $\mathbf{3 a c}$ was isolated by PTLC (Petroleum ether (bp: $60-90{ }^{\circ} \mathrm{C}$)/ethyl acetate $=10: 1$) as yellow oil ($64 \mathrm{mg}, 87 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.35-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H})$, 5.97 (dt, $J=15.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{td}, J=8.9,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{td}, J=8.9,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-2.79$ $(\mathrm{m}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{dt}, J=13.1,8.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 202.3$, $175.3,136.4,135.2,128.7,128.0,126.4,122.4,66.5,61.4,38.3,28.9,25.9$. IR (KBr): 3026.16, 2999.69, 2918.73, 1765.79, 1712.76, 1494.25, 1448.50, 1374.19, 1359.83, 1260.04, 1218.62, 1165.14, 1109.26, 1069.86, 1027.74, 970.64, 753.99, 735.63, 694.52 cm^{-1}. HRMS (ESI/[M+H ${ }^{+}$) Calcd. for: $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{3} 245.1178$, found 245.1176 .

1-cinnamyl-2-oxocyclopentane-1-carbonitrile (3ad)

Following the general procedure, the reaction was conducted in 0.3 mmol scale with 3ad was isolated by PTLC (Petroleum ether (bp: $60-90^{\circ} \mathrm{C}$)/ethyl acetate $=10: 1$) as yellow solid ($59 \mathrm{mg}, 88 \%$ yield). Mp:

61-63 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.39-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{dd}$, $J=8.3,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{dt}, J=15.4,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{ddd}, J=14.0,6.7$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.31(\mathrm{~m}, 4 \mathrm{H}), 2.18-2.06(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{dtd}, J=13.1,7.5,6.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) $\delta 209.1,136.4,135.8,128.8,128.1,126.6,121.8,119.0,48.7,37.3$, 36.7, 33.5, 19.3. IR (KBr): 3027.69, 2973.59, 2234.25, 1752.74, 1597.86, 1495.64, 1449.93, 1402.85, 1318.24, 1274.86, 1144.18, 1001.86, 968.26, 821.21, 749.92, 696.28 cm^{-1}. HRMS (ESI/[M+H] ${ }^{+}$) Calcd. for: $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO} 226.1232$, found 226.1235 .

2-acetyl-2-cinnamylcyclopentan-1-one (3ae)

Following the general procedure, the reaction was conducted in 0.3 mmol scale with $\mathbf{3 a e}$ was isolated by PTLC (Petroleum ether (bp: 60-90 ${ }^{\circ} \mathrm{C}$)/ethyl acetate $=9: 1$) as yellow oil ($65 \mathrm{mg}, 90 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (401 MHz, Chloroform-d) $\delta 7.32-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.21$ (ddd, $J=6.1,5.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.44$ (d, J $=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{dt}, J=15.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{ddd}, J=14.3,7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.62(\mathrm{~m}$, $1 \mathrm{H}), 2.59$ (ddd, $J=14.3,7.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.93-1.82(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) $\delta 215.7,204.0,136.8,134.1,128.7,127.7,126.3,124.0,68.8,38.7$, 38.4, 30.4, 26.4, 19.5. IR (KBr): 3026.22, 2967.70, 1736.74, 1702.28, 1494.35, 1448.52, 1356.87, $1275.00,1260.09,1199.66,1141.45,1113.78,968.87,913.31,822.71,748.21,695.13 \mathrm{~cm}^{-1}$. HRMS (ESI/[M+H] ${ }^{+}$) Calcd. for: $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{2} 243.1385$, found 243.1379.

2-cinnamyl-2-methylcyclohexane-1,3-dione (3af)

Following the general procedure, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$ was used. The reaction was conducted at $60{ }^{\circ} \mathrm{C}$ in 0.3 mmol scale with 3af was isolated by PTLC (Petroleum ether (bp: $60-90^{\circ} \mathrm{C}$)/ethyl acetate $=9: 1$) as yellow oil $\left(60 \mathrm{mg}, 82 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.31-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.27(\mathrm{~d}, J$ $=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{dt}, J=15.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dd}$, $J=7.5,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.67-2.63(\mathrm{~m}, 4 \mathrm{H}), 2.03-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 210.3$, 136.9, 134.2, 128.6, 127.6, 126.4, 123.8, 65.5, 40.4, 38.4, 20.4, 17.6. IR (KBr): 2964.76, 1725.58, 1695.93, 1449.57, 1318.34, 1274.86, 1224.99, 1025.95, 968.70, 911.56, 749.23, $693.95 \mathrm{~cm}^{-1}$. HRMS (ESI/[M+Na] ${ }^{+}$) Calcd. for: $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{2} 243.1385$, found 243.1387.

5-cinnamyl-2,2,5-trimethyl-1,3-dioxane-4,6-dione (3ag)

Following the general procedure, the reaction was conducted at $60^{\circ} \mathrm{C}$ in 0.3 mmol scale with $\mathbf{3 a g}$ was isolated by PTLC (Petroleum ether (bp: 60-90 ${ }^{\circ} \mathrm{C}$)/ethyl acetate $=10: 1$) as yellow solid ($45 \mathrm{mg}, 55 \%$ yield). Mp: 56-58 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.34-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 1 \mathrm{H})$, $6.52(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{dt}, J=15.6,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{dd}, J=7.7,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H})$, $1.69(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 170.1,136.5,135.9,128.7,128.0$, 126.5, 121.9, 105.3, 50.5, 43.4, 29.7, 29.0, 24.5. IR (KBr): 3027.44, 3000.07, 2940.77, 1744.54,
1598.34, 1451.85, 1380.77, 1277.90, 1203.61, 1144.03, 1050.06, 974.47, 944.07, 843.27. 742.92, 692.95, $625.26 \mathrm{~cm}^{-1}$. HRMS (ESI/[M+H] ${ }^{+}$) Calcd. for: $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{4} 275.1283$, found 275.1278.

Ethyl (E)-2-acetyl-2-methyl-5-phenylpent-4-enoate (3ah)

Following the general procedure, the reaction was conducted in 0.3 mmol scale with $\mathbf{3 a h}$ was isolated by PTLC (Petroleum ether (bp: $60-90{ }^{\circ} \mathrm{C}$)/ethyl acetate $=10: 1$) as yellow oil ($62 \mathrm{mg}, 80 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.33-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=15.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.05(\mathrm{dt}, J=15.7,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{qd}, J=7.1,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.79(\mathrm{ddd}, J=14.1,7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.65(\mathrm{ddd}, J=14.1,7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) $\delta 205.3$, 172.6, 137.1, 134.0, 128.6, 127.5, 126.3, 124.3, 61.5, 59.9, 38.7, 26.5, 19.3, 14.2. IR (KBr): 2982.89, 1711.50, 1597.12, 1448.24, 1275.19, 1260.94, 1095.89, 1020.97, 967.04, 858.58, , 764.20, 749.44, 693.00 cm^{-1}. HRMS (ESI/[M+H]+) Calcd. for: $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{3}$ 261.1491, found 261.1482.

Ethyl (E)-2-acetyl-2-benzyl-5-phenylpent-4-enoate (3ai)

Following the general procedure, the reaction was conducted in 0.3 mmol scale with $\mathbf{3 a \mathbf { a }}$ was isolated by PTLC (Petroleum ether (bp: $60-90^{\circ} \mathrm{C}$)/ethyl acetate $=10: 1$) as light yellow oil ($89 \mathrm{mg}, 88 \%$ yield). MP: 56-58 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.35-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.25-$ $7.20(\mathrm{~m}, 3 \mathrm{H}), 7.11(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.45(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{dt}, J=15.6,7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.29-4.08(\mathrm{~m}, 2 \mathrm{H}), 3.32-3.17(\mathrm{~m}, 2 \mathrm{H}), 2.71(\mathrm{dd}, J=7.4,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 204.7$, 171.7, 137.1, 136.3, 134.3, 130.1, 128.7, 128.5, 127.7, 127.1, 126.3, 123.9, 65.1, 61.6, 38.1, 35.6, 27.8, 14.2. IR (KBr): 3028.72, 2979.86, 2929.35, $1712.96,1599.95,1494.92,1448.24,1355.45,1261.25,1229.30,1189.19,1156.41,1094.78,1019.36$, 966.85, 860.49, 746.12, 701.34 cm^{-1}. HRMS (ESI/[M+H $]^{+}$) Calcd. for: $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{O}_{3}$ 337.1804, found 337.1808 .

Diethyl 2-cinnamyl-2-phenylmalonate (3aj)

Following the general procedure, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%)$ was used. The reaction was conducted at $60{ }^{\circ} \mathrm{C}$ in 0.3 mmol scale with 3aj was isolated by PTLC (Petroleum ether (bp: $60-90^{\circ} \mathrm{C}$)/ethyl acetate $=9: 1$) as yellow oil ($61 \mathrm{mg}, 58 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.46$ (dd, $J=8.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.39-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 1 \mathrm{H}), 6.41$ (d, $J=15.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.18(\mathrm{dt}, J=15.8,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-4.16(\mathrm{~m}, 4 \mathrm{H}), 3.23(\mathrm{dd}, J=7.3,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.23(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 6 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 170.5,137.3,137.0,133.9,128.6,128.3,128.2$, 127.7, 127.4, 126.3, 124.8, 63.2, 61.8, 39.8, 14.2. IR (KBr): 2979.62, 2318.16, 1730.63, 1698.37, $1627.53,1446.88$, 1367.63, 1292.12, 1256.97, 1241.79, 1200.16, 1142.38, 1125.37, 1062.79, 1009.79, 964.61, 941.00, 836.91, 825.47, 749.77, 693.28 cm^{-1}. HRMS (ESI/[M+H] ${ }^{+}$) Calcd. for: $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{O}_{4}$ 353.1753 , found 353.1758 .

Dimethyl 2-allyl-2-cinnamylmalonate (3ak)

Following the general procedure, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$ was used. The reaction was conducted at $60{ }^{\circ} \mathrm{C}$ in 0.3 mmol scale with 3ak was isolated by PTLC (Petroleum ether (bp: $60-90^{\circ} \mathrm{C}$)/ethyl acetate $=9: 1$) as yellow oil ($56 \mathrm{mg}, 65 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.30(\mathrm{td}, J=8.2,6.4 \mathrm{~Hz}, 4 \mathrm{H}$), $7.25-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{dt}, J=15.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.69$ (ddt, $J=18.8,9.2$, $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 6 \mathrm{H}), 2.80(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 171.3$, 137.1, 134.2, 132.3, 128.6, 127.6, 126.3, 123.9, 119.5, 58.1, 52.6, 37.3, 36.4. IR (KBr): 2952.98, 1731.92, 1508.31, 1490.07, 1435.86, 1300.57, $1251.83,1211.98,1132.56,1067.69,1029.52,968.06,924.67,837.21,745.74,692.57 \mathrm{~cm}^{-1}$. HRMS (ESI/[M+H] ${ }^{+}$) Calcd. for: $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{4}$ 289.1440, found 289.1446 .
Ethyl (E)-2-cyano-2-methyl-5-phenylpent-4-enoate (3al)

Following the general procedure, the reaction was conducted in 0.3 mmol scale with 3al was isolated by PTLC (Petroleum ether (bp: 60-90 ${ }^{\circ} \mathrm{C}$)/ethyl acetate $=3: 1$) as yellow oil ($61 \mathrm{mg}, 84 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.38-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{dd}, J=8.2,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.22(\mathrm{~m}$, $1 \mathrm{H}), 6.55(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{dt}, J=15.3,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{qd}, J=7.1,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.82$ (ddd, $J=13.8,7.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{ddd}, J=13.8,7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) $\delta 169.0$, 136.5, 135.8, 128.7, 128.1, 126.6, 121.8, 119.8, 63.0, 44.1, 41.6, 22.9, 14.2. IR (KBr): 3027.86, 2985.17, 2940.89, 2243.49, 1742.85, 1449.86, 1380.64, $1242.73,1126.92,1016.34,969.30,859.20,745.10,694.24 \mathrm{~cm}^{-1}$. HRMS (ESI/[M+H] ${ }^{+}$) Calcd. for: $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{2} 244.1338$, found 244.1344 .
Ethyl (E)-2-methyl-2-nitro-5-phenylpent-4-enoate (3am)

Following the general procedure, $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%)$ was used. The reaction was conducted at $60^{\circ} \mathrm{C}$ in 0.3 mmol scale with 3am was isolated by PTLC (Petroleum ether (bp: 60-90 ${ }^{\circ} \mathrm{C}$)/ethyl acetate $=4: 1$) as yellow oil ($73 \mathrm{mg}, 92 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.35-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.29-$ $7.18(\mathrm{~m}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{dt}, J=15.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{qd}, J=7.1,1.3 \mathrm{~Hz}, 2 \mathrm{H})$, $3.14(\mathrm{dd}, J=14.3,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=14.3,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 167.1,136.4,136.2,128.6,128.0,126.4,120.7,92.3,62.9,40.3$, 21.3, 13.9. IR (KBr): 2983.99, 2938.11, 1748.98, 1698.35, 1627.30, 1552.63, 1448.05, 1385.50, 1349.46, 1298.93, 1255.26, 1200.43, 1126.74, 1016.92, $970.04,857.89,836.93,745.95,692.93 \mathrm{~cm}^{-1}$. HRMS (ESI/[M+H]+) Calcd. for: $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{4}$ 264.1236, found 264.1239.

Ethyl (E)-2-benzoyl-5-phenylpent-4-enoate (3ao)

Following the general procedure, the reaction was conducted in 0.3 mmol scale with $\mathbf{3 a 0}$ was isolated by PTLC (Petroleum ether (bp: 60-90 ${ }^{\circ} \mathrm{C}$)/ethyl acetate $=10: 1$) as light yellow solid ($79 \mathrm{mg}, 85 \%$ yield). Mp: 44-46 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.01$ (dd, $J=8.5,1.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.60-7.55(\mathrm{~m}, 1 \mathrm{H})$, $7.49-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{dt}, J=$ $15.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{qd}, J=7.1,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.91(\mathrm{hd}, J=7.2,1.3 \mathrm{~Hz}, 2 \mathrm{H})$, $1.15(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 194.6,169.5,137.2,136.2,133.7,132.8$, $128.9,128.8,128.6,127.5,126.3,126.2,61.6,54.4,32.5,14.2$. IR (KBr): 2985.73, 1734.98, 1686.20, 1596.26, 1447.84, 1275.36, 1260.76, 965.94, 764.26, 749.65, 692.01 cm^{-1}. HRMS (ESI/[M+H] ${ }^{+}$) Calcd. for: $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{3} 309.1491$, found 309.1494.

Methyl (E)-2-(4-fluorobenzoyl)-5-phenylpent-4-enoate (3ap)

Following the general procedure, the reaction was conducted in 0.3 mmol scale with 3ap was isolated by PTLC (Petroleum ether (bp: 60-90 ${ }^{\circ} \mathrm{C}$)/ethyl acetate $=10: 1$) as yellow oil ($70 \mathrm{mg}, 75 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.07-8.01$ (m, 2H), $7.31-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.17$ $-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.47(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{dt}, J=15.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.69$ (s, 3H), $2.98-2.84(\mathrm{~m}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , Chloroform- d) $\delta-103.75 .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 192.9,169.8,166.2\left(\mathrm{~d}, J_{\text {C-F }}=256.1 \mathrm{~Hz}\right), 137.0,133.0,132.6(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 131.5(\mathrm{~d}$, $J=9.5 \mathrm{~Hz}$), 128.6, 127.6, 126.3, $125.9,116.1(\mathrm{~d}, J=22.0 \mathrm{~Hz}), 54.1,52.8,32.5 . \mathrm{IR}(\mathrm{KBr}): 3026.49$, $2953.08,1740.93,1685.66,1597.72,1507.20,1494.47,1435.26,1409.87,1274.73,1261.65,1233.60$, 1157.63, 1011.94, 966.61, 846.43, 748.88, 693.75, 583.73 cm^{-1}. HRMS (ESI/[M+H]+) Calcd. for: $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{FO}_{3} 313.1240$, found 313.1244 .

Ethyl (E)-5-phenyl-2-(phenylsulfonyl)pent-4-enoate (3aq)

Following the general procedure, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%)$ was used. The reaction was conducted at $60{ }^{\circ} \mathrm{C}$ in 0.3 mmol scale with 3aq was isolated by PTLC (Petroleum ether (bp: $60-90^{\circ} \mathrm{C}$)/ethyl acetate $=4: 1$) as yellow oil ($54 \mathrm{mg}, 52 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (401 MHz , Chloroform-d) $\delta 7.93-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.72-$ $7.68(\mathrm{~m}, 1 \mathrm{H}), 7.58$ (ddd, $J=8.0,6.8,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.46$ (d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{ddd}, J=15.7,7.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.05(\mathrm{~m}, 3 \mathrm{H}), 2.97$ (dddd, $J=13.9$, $6.5,3.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.86$ (dddd, $J=14.0,11.3,7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.10(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 165.4,137.1,136.6,134.6,134.4,129.5,129.3,128.7,127.9,126.4,122.8$, 70.3, 62.4, 30.4, 14.0. IR (KBr): 2981.50, 2934.09, 1737.24, 1598.93, 1584.04, 1493.88, 1447.51, $1369.21,1325.23,1256.95,1230.67,1197.24,1146.72,1083.29,1028.26,968.39,853.55,819.45$, 743.76, 724.24, $690.20 \mathrm{~cm}^{-1}$. HRMS (ESI/ $[\mathrm{M}+\mathrm{H}]^{+}$) Calcd. for: $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{SO}_{4} 345.1161$, found 345.1167

Following the general procedure, the reaction was conducted at $60^{\circ} \mathrm{C}$ in 0.3 mmol scale with 3ar was isolated by PTLC (Petroleum ether (bp: 60-90 ${ }^{\circ} \mathrm{C}$)/ethyl acetate $=1: 1$) as yellow oil ($84 \mathrm{mg}, 95 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 9.23(\mathrm{~s}, 1 \mathrm{H}), 8.80(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.27$ (dt, $J=8.0,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.20(\mathrm{ddd}, J=7.2,5.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=15.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.17$ (dt, $J=15.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.93$ (tdd, $J=7.2,3.7,1.3$ $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) δ 193.6, 169.3, 154.1, 150.1, 136.9, 136.1, 133.2, 131.5, 128.6, 127.6, 126.3, 125.5, 123.9, 54.4, 52.9, 32.2. IR (KBr): 3026.77, 2952.81, 1742.65, 1691.09, 1584.80, 1494.02, 1435.06, 1419.27, 1236.22, 1162.53, 967.21, 815.85, 747.09, 700.31, $620.75 \mathrm{~cm}^{-1}$. HRMS (ESI/[M+H] ${ }^{+}$) Calcd. for: $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{3}$ 296.1287, found 296.1291.

Ethyl (E)-2-(furan-2-carbonyl)-5-phenylpent-4-enoate (3as)

Following the general procedure, the reaction was conducted in 0.3 mmol scale with 3as was isolated by PTLC (Petroleum ether (bp: 60-90 ${ }^{\circ} \mathrm{C}$)/ethyl acetate $=10: 1$) as light yellow solid ($83 \mathrm{mg}, 93 \%$ yield). Mp: 47-49 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.61$ (dd, $J=1.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.32-7.24(\mathrm{~m}, 5 \mathrm{H})$, $7.21-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.55(\mathrm{dd}, J=3.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{dt}, J=15.7,7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.25(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{qd}, J=7.1,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{tdd}, J=7.2,2.3,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.19(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 183.3,169.1,152.0,147.2,137.1,132.8,128.6$, 127.5, 126.3, 126.0, 118.8, 112.8, 61.7, 54.5, 32.0, 14.2. IR (KBr): 2981.55, 2929.60, 1738.52, 1680.43, $1567.13,1465.09,1392.19,1252.39,1161.87,1085.27,1028.29,966.26,883.01,746.74,694.13 \mathrm{~cm}^{-1}$. HRMS (ESI/[M+H] ${ }^{+}$) Calcd. for: $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{4}$ 299.1283, found 299.1284.

Ethyl (E)-2-(cyclopropanecarbonyl)-5-phenylpent-4-enoate (3at)

Following the general procedure, the reaction was conducted at $60^{\circ} \mathrm{C}$ in 0.3 mmol scale with 3at was isolated by PTLC (Petroleum ether (bp: 60-90 ${ }^{\circ} \mathrm{C}$)/ethyl acetate $=10: 1$) as yellow oil ($64 \mathrm{mg}, 78 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.34-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.20(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=$ $15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{dt}, J=15.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{qq}, J=6.7,3.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.78(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.09(\mathrm{tt}, J=7.9,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{t}, J=3.9 \mathrm{~Hz}, 2 \mathrm{H})$, $0.96-0.91(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 204.8,169.4,137.2,132.7,128.6,127.4$, 126.2, 126.1, 61.5, 59.9, 31.7, 20.1, 14.3, 12.1, 11.8. IR (KBr): 2981.96, 2936.17, 1737.48, 1702.57, 1494.06, 1447.74, 1382.45, 1260.42, 1159.21, 1075.13, 1028.43, 965.97, 746.35, $693.97 \mathrm{~cm}^{-1}$. HRMS $\left(\mathrm{ESI} /[\mathrm{M}+\mathrm{H}]^{+}\right)$Calcd. for: $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{3} 273.1491$, found 273.1497.
Methyl 2-cinnamyl-3-oxohexanoate (3au)

Following the general procedure, the reaction was conducted at in 0.3 mmol scale with 3au was isolated by PTLC (Petroleum ether (bp: 60-90 ${ }^{\circ}$) /ethyl acetate $=2: 1$) as yellow oil ($55 \mathrm{mg}, 70 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.33-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=15.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.10(\mathrm{dt}, J=15.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{td}, J=7.3,1.3 \mathrm{~Hz}, 2 \mathrm{H})$, $2.62-2.43(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{~h}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.90(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 204.7,169.8,137.1,132.8,128.6,127.5,126.2,125.9,58.8,52.6,44.3,31.7,17.0$, 13.6. IR (KBr): 2961.93, 1745.28, 1715.07, 1494.01, 1435.14, 1260.89, 1206.49, 1163.53, 967.12, $747.32,693.88 \mathrm{~cm}^{-1}$. HRMS (ESI/[M+H ${ }^{+}$) Calcd. for: $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{3} 261.1491$, found 261.1488 .

Methyl (E)-2-isobutyryl-5-phenylpent-4-enoate (3av)

Following the general procedure, the reaction was conducted in 0.3 mmol scale with $\mathbf{3 a v}$ was isolated by PTLC (Petroleum ether (bp: 60-90 ${ }^{\circ} \mathrm{C}$)/ethyl acetate $=10: 1$) as yellow oil ($63 \mathrm{mg}, 81 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.35-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.20(\mathrm{ddt}, J=8.4,5.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=$ $15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{dt}, J=15.7,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.86-2.76(\mathrm{~m}, 1 \mathrm{H})$, $2.74(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.12(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 208.5,169.8,137.1,132.8,128.6,127.5,126.2,126.0,56.7,52.6,41.1,32.0,18.3$, 18.0. IR (KBr): 2978.80, 2318.52, 1734.81, 1493.98, 1448.29, 1275.34, 1260.74, 1027.00, 966.08, 764.17, 749.41, $692.90 \mathrm{~cm}^{-1}$. HRMS (ESI/[M+H] ${ }^{+}$) Calcd. for: $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{3} 261.1491$, found 261.1499.

2-cinnamyl-1,3-diphenylpropane-1,3-dione (3aw)

Following the general procedure, the reaction was conducted in 0.3 mmol scale with 3aw was isolated by PTLC (Petroleum ether ($\mathrm{bp}: 60-90{ }^{\circ} \mathrm{C}$)/ethyl acetate $=10: 1$) as light yellow solid ($88 \mathrm{mg}, 86 \%$ yield). Mp: 76-78 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.97(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}$), $7.55(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.43(\mathrm{t}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.25(\mathrm{~s}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=15.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.25(\mathrm{dt}, J=15.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{td}, J=7.1,1.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) $\delta 195.7,137.1,136.0,133.8,132.6,129.1,128.8,128.6,127.5,126.9$, 126.3, 57.1, 33.1. IR (KBr): 3059.20, 3026.03, 1695.56, 1671.58, 1595.91, 1579.66, 1492.98, 1447.74, $1329.54,1262.98,1231.12,1197.90,1180.92,1000.52,966.06,939.38,748.26,691.96,598.29 \mathrm{~cm}^{-1}$. HRMS (ESI/[M+H] ${ }^{+}$) Calcd. for: $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{O}_{2} 341.1542$, found 341.1547.
Ethyl 1-((E)-5,9-dimethyldeca-2,8-dien-1-yl)-2-oxocyclopentane-1-carboxylate (3ax)

Following the general procedure, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%)$ was used. The reaction was conducted at $60{ }^{\circ} \mathrm{C}$ in 0.3 mmol scale with $\mathbf{3 a x}$ was isolated by flash column chromatography (petroleum ether/ethyl acetate $=50 / 1 \sim 30 / 1)$. as yellow oil ($78 \mathrm{mg}, 81 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (401 MHz , Chloroform- d) $\delta 5.48(\mathrm{dt}$, $J=14.6,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{dt}, J=15.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $2.61(\mathrm{dd}, J=13.9,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.28(\mathrm{~m}, 3 \mathrm{H}), 2.28-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.88(\mathrm{~m}, 6 \mathrm{H}), 1.82(\mathrm{dt}$, $J=15.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{dq}, J=13.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.36-1.27(\mathrm{~m}, 1 \mathrm{H})$, $1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{td}, J=13.9,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.84(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 214.9$, 171.0, 134.0, 131.1, 125.3, 124.8, 61.4, 60.3, 39.9, 38.2, 36.8, 36.6, 32.6, 32.0, $25.7,25.5,19.5,19.4,17.6,14.1 . \operatorname{IR}(\mathrm{KBr}): 2963.87,2912.50,1752.89,1726.05,1447.91,1405.75$, 1376.90, 1314.77, 1277.85, 1223.56, 1147.57, 1029.35, 973.66, 921.56, $860.09 \mathrm{~cm}^{-1}$. HRMS $\left(\mathrm{ESI} /[\mathrm{M}+\mathrm{H}]^{+}\right)$Calcd. for: $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{O}_{3} 321.2430$, found 321.2437.
Methyl-(8R,9S,13S,14S)-16-cinnamyl-3-methoxy-13-methyl-17-oxo$\mathbf{7 , 8 , 9 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 , 1 6 , 1 7 - d e c a h y d r o - 6 H - c y c l o p e n t a [a] p h e n a n t h r e n e - 1 6 - c a r b o x y l a t e ~ (3 a y) ~}$

Following the general procedure, the reaction was conducted in 0.3 mmol scale with 3ay was isolated by PTLC (Petroleum ether (bp: $60-90{ }^{\circ} \mathrm{C}$)/ethyl acetate $=4: 1$) as yellow oil ($122 \mathrm{mg}, 89 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (401 MHz, Chloroform- d) $\delta 7.30(\mathrm{dt}, J=15.2,7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.21(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.74-6.68(\mathrm{~m}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{dt}, J=15.2,7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.94(\mathrm{dt}, J=15.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{dd}, J=$ $13.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{t}, J=13.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{td}, J=16.1,13.1,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.97(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, 2H), $1.65-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.45(\mathrm{~m}, 3 \mathrm{H}), 1.43-1.32(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 213.8,171.5,157.8,137.8,137.1,134.2,131.9,128.7,127.7,126.4,126.3,124.9$, $114.0,111.8,60.3,55.3,53.0,49.7,46.0,44.2,38.9,37.9,32.3,30.4,29.7,26.7,25.9,14.3$. IR (KBr): $2932.00,2858.83,2253.48,1749.90,1723.65,1609.05,1575.82,1499.24,1452.09,1434.56,1376.28$, $1280.95,1238.40,1177.91,1130.01,1103.61,1039.05,1015.36,983.90,969.16,911.36,876.50$, 810.17, $742.45,693.65 \mathrm{~cm}^{-1}$. HRMS (ESI/[M+H] ${ }^{+}$) Calcd. for: $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{O}_{4} 459.2535$, found 459.2539 .

Ethyl-1-((E)-3-((8R,9S,13S,14S)-17-hydroxy-3-methoxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-2-yl)allyl)-2-oxocyclopentane-1-carboxylate (3az)

Following the general procedure, the reaction was conducted in 0.3 mmol scale with $\mathbf{3 a z}$ was isolated by PTLC (Petroleum ether (bp: 60-90 ${ }^{\circ} \mathrm{C}$)/ethyl acetate $=4: 1$) as yellow oil ($72 \mathrm{mg}, 50 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (401 MHz, Chloroform- d) $\delta 7.28(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 6.01(\mathrm{dt}, J=$ $15.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{qt}, J=7.1,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.87-2.78(\mathrm{~m}$, $3 \mathrm{H}), 2.57-2.39(\mathrm{~m}, 3 \mathrm{H}), 2.36-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{dd}, J=18.9,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-1.99(\mathrm{~m}, 4 \mathrm{H})$, $1.99-1.84(\mathrm{~m}, 4 \mathrm{H}), 1.68(\mathrm{ddd}, J=11.9,9.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.55-1.30(\mathrm{~m}, 6 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $1.18(\mathrm{td}, J=11.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.77(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 215.3,171.2,154.5$, $137.3,132.4,129.3,124.0,123.7,123.5,111.3,81.9,61.6,60.5,55.6,50.1,44.0,43.3,39.0,38.3,37.7$, $36.8,32.2,30.6,29.9,27.3,26.5,23.2,19.7,14.2,11.2$. IR (KBr): 2930.28, 1722.29, 1639.33, 1608.78, 1584.26, 1495.48, 1438.58, 1340.67, 1301.83, 1252.96, 1131.76, 1067.74, 1028.68, 959.10, 912.45, 837.40, 787.66, 744.82, 689.73 cm^{-1}. HRMS (ESI/[M+H] ${ }^{+}$) Calcd. for: $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{O}_{5} 481.2954$, found 481.2951.

Ethyl (E)-1-(3-(4-ethynylphenyl)allyl)-2-oxocyclopentane-1-carboxylate (4)

The $3 \mathbf{z}(147 \mathrm{mg}, 0.4 \mathrm{mmol})$ was dissolved in anhydrous THF (4 mL) in a 10 mL Schlenk flask. Then, $\mathrm{H}_{2} \mathrm{O}(288 \mathrm{mg}, 16.0 \mathrm{mmol})$ and TBAF $(0.8 \mathrm{~mL}, 0.8 \mathrm{mmol}, 1 \mathrm{M}$ in THF) were added into the solution slowly at $0{ }^{\circ} \mathrm{C}$ (low temperature magnetic stirrer, with ethylene glycol bath), and the mixture was stirred for 2 h . The reaction mixture was poured into water $(5 \mathrm{~mL})$ and extracted with EtOAc $(10 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to give the crude product. The product 4 was isolated from the crude mixture by PTLC (Petroleum ether (bp: 60-90 ${ }^{\circ} \mathrm{C}$)/ethyl acetate $=9: 1$) as yellow oil ($78 \mathrm{mg}, 88 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $(401$ MHz , Chloroform-d) $\delta 7.42$ (d, J = $8.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.28(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.43(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.18-6.09(\mathrm{dt}, J=15.3,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{qd}, J=7.1,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.11(\mathrm{~s}, 1 \mathrm{H}), 2.83$ (ddd, $J=14.0$, $7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.41(\mathrm{~m}, 3 \mathrm{H}), 2.31-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.88(\mathrm{~m}, 1 \mathrm{H})$, $1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) $\delta 214.8,171.0,137.5,133.4,132.4,126.2$, $126.1,121.0,83.7,77.8,61.7,60.3,38.2,37.1,32.5,19.7,14.3$. IR (KBr): 3286.72, 2926.90, 1748.85, 1722.94, 1604.22, 1505.32, 1447.17, 1366.87, 1257.99, 1222.43, 1143.53, 1026.07, 971.04, 837.20, $749.11 \mathrm{~cm}^{-1}$. HRMS (ESI/[M+H] ${ }^{+}$) Calcd. for: $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{3} 297.1491$, found 297.1494

Ethyl-1-((E)-3-(4-(1-((2R,3R,5S)-5-(hydroxymethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-3-yl)-1H-1,2,3-triazol-5-yl)phenyl)allyl)-2-oxocyclopentane-1-carboxylate (5)

Under argon atmosphere, a flame-dried 10 mL schlenk tube was charged with compound 4 (0.3 mmol , 1.0 equiv.), zidovudine ($0.33 \mathrm{mmol}, 1.1$ equiv.), ${ }^{\mathrm{t}} \mathrm{BuOH}(2.0 \mathrm{~mL})$ and a stir bar was added a freshly prepared solution of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (0.5 equiv.) and sodium ascorbate (0.5 equiv.) in $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$. the resulting solution was stirred at room temperature for 12 h . The reaction mixture was concentrated and subjected to PTLC (ethanol/ dichloromethane $=1: 20$) to give 5 as a white solid ($144 \mathrm{mg}, 85 \%$ yield). Mp: 143-145 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($401 \mathrm{MHz}, ~ D M S O-\mathrm{d} 6$) $\delta 11.36$ (s, 1H), 8.77 (s, 1H), 7.83 (s, 1H), 7.77 (d, J $=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.46(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{dt}, J$ $=15.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.41-5.32(\mathrm{~m}, 2 \mathrm{H}), 4.24(\mathrm{~s}, 1 \mathrm{H}), 4.07(\mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{q}, J=11.8 \mathrm{~Hz}$, 2H), $2.77(\mathrm{dt}, J=11.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dd}, J=13.9,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.44-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.24$ $(\mathrm{m}, 3 \mathrm{H}), 1.98(\mathrm{dt}, J=13.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 214.7,171.0,164.3,151.0,146.9,136.9,133.5,130.0,127.2,125.9$, $125.7,121.6,110.2,85.0,84.4,61.5,61.3,60.3,59.9,38.0,37.7,36.9,32.3,19.7,14.5,12.8$. IR (KBr): 2926.51, 2854.69, 2251.62, 2124.94, 1714.53, 1454.27, 1369.44, 1300.02, 1256.76, 1131.38, 1058.42, 1027.74, 1008.31, $972.46,819.70,757.14,692.35 \mathrm{~cm}^{-1}$. HRMS (ESI/[M+H]+) Calcd. for: $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~N}_{5} \mathrm{O}_{7}$ 564.2458, found 564.2462.

4. References

(1) X. Huo, R. He, J. Fu, J. Zhang, G. Yang and W. Zhang, Stereoselective and Site-Specific Allylic Alkylation of Amino Acids and Small Peptides via a Pd/Cu Dual Catalysis, J. Am. Chem. Soc., 2017, 139, 9819.
(2) M. Sasaki, H. Ikemoto, M. Kawahata, K. Yamaguchi and K. Takeda, [2,3]-Wittig Rearrangement of Enantiomerically Enriched 3-Substituted 1-Propenyloxy-1-phenyl-2-propen-1-yl Carbanions: Effect of Heteroatoms and Conjugating Groups on Planarization of an α-Oxy-Benzylcarbanion through a Double Bond, Chem. Eur. J., 2009, 15, 4663.
(3) S. S. M. Spoehrle, T. H. West, J. E. Taylor, A. M. Z. Slawin and A. D. Smith, Tandem Palladium and Isothiourea Relay Catalysis: Enantioselective Synthesis of α-Amino Acid Derivatives via Allylic Amination and [2,3]-Sigmatropic Rearrangement, J. Am. Chem. Soc., 2017, 139, 11895.
(4) K. Jyothish, Q. Wang and W. Zhang, Highly Active Multidentate Alkyne Metathesis Catalysts: Ligand-Activity Relationship and Their Applications in Efficient Synthesis of Porphyrin-Based Aryleneethynylene Polymers, Adv. Synth. Catal., 2012, 354, 2073.
(5) T. V. Hansen, L. Skattebøl, Discussion Addendum for: -Formylations of Phenols; Discussion Addendum for: ortho-Formylations of Phenols; Preparation of 3-Bromosalicylaldehyde Preparation of 3-Bromosalicylaldehyde, Org. Synth., 2012, 89, 220.
(6) N. T. Patil, Y. Yamamoto, Direct allylic Substitution of Allyl Alcohols by Carbon Pronucleophiles in the Presence of a Palladium/Carboxylic Acid Catalyst under Neat Conditions, Tetrahedron Letters, 2004, 45, 3101.
(7) N. T. Patil, D. Song and Y. Yamamoto, Palladium-Catalyzed Allylation of Pronucleophiles with Alkynes at $50^{\circ} \mathrm{C}$ - Remarkable Effect of 2-(Dicyclohexylphosphanyl)-2'-(dimethylamino)biphenyl as Ligand, Eur. J. Org. Chem., 2006, 18, 4211.
(8) K. Manabe, S. Kobayashi, Palladium-Catalyzed, Carboxylic Acid-Assisted Allylic Substitution of Carbon Nucleophiles with Allyl Alcohols as Allylating Agents in Water, Eur. Org. Lett., 2003,5(18), 3241.
(9) R. Shibuya, L. Lin, Y. Nakahara, K. Mashima and T. Ohshima, Dual Platinum and Pyrrolidine Catalysis in the Direct Alkylation of Allylic Alcohols: Selective Synthesis of Monoallylation Products, Angew. Chem. Int. Ed., 2014, 53, 4377.
(10) M. Kimura, R. Mukai, N. Tanigawa, S. Tanaka and Y. Tamaru, Triethylborane as an Efficient Promoter for Palladium-Catalyzed Allylation of Active Methylene Compounds with Allyl Alcohols, Tetrahedron, 2003, 59, 7767.
(11) T. Punirun, K. Peewasan, C. Kuhakarn, D. S. Soorukram, P. Tuchinda, V. Reutrakul, P. Kongsaeree, S. Prabpai and M. Pohmakotr, Synthesis of gem-Difluoromethylenated Bicyclo[m.n.0]alkan-1-ols and Their Ring-Expansion to gem-Difluoromethylenated Macrocyclic Lactones, Org. Lett., 2012, 14, 1820.
(12) N. T. Patil, Y. Yamamoto, Formation of a Quaternary Carbon Center through the $\mathrm{Pd}(0) / \mathrm{PhCOOH}-$ Catalyzed Allylation of Cyclic β-Keto Esters and 1,3-Diketones with Alkynes, J. Org. Chem., 2004, 69, 6478.
(13) C. Reddy, S. A. Babu, N. A. Aslam and V. Rajkumar, Construction of Functionalized Carbocycles Having Contiguous Tertiary Carbinol and All-Carbon Stereogenic Centers, Eur. J. Org. Chem., 2013, 12, 2362.
(14) E. C. Bornowski, E. M. Hinds, D. R. White, Y. Nakamura and J. P. Wolfe, Pd-Catalyzed Alkene Difunctionalization Reactions of Enolates for the Synthesis of Substituted Bicyclic Cyclopentanes, Org. Process Res. Dev., 2019, 23, 1610.
(15) D. R. White, E. M. Hinds, E. C. Bornowski and J. P. Wolfe, Pd-Catalyzed Alkene Difunctionalization Reactions of Malonate Nucleophiles: Synthesis of Substituted Cyclopentanes via Alkene Aryl-Alkylation and Akenyl-Alkylation. Macrocyclic Lactones, Org. Lett., 2019, 21, 3813.
(16) J. Wu, J. Ye, J. Hu, Z. Wang and Y. Shang, A mild and Highly Efficient ZnCl_{2}-Catalyzed Direct Alkylation of Active Methylene Compounds with Benzylic and Allylic Alcohols, Youji Huaxue, 2009, 29, 462.
(17) Y. Masuyama, Y. Kurusu and K. I. Segawa, Metal Oxide-Supported Molybdenum Carbonyl Catalyst in Liquid Phase: Effect of Supports on Regio- and Stereoselectivity in Allylic Alkylation, J Mol Catal., 1987, 40, 183.

5. NMR Spectra for New Compounds

3a

NNNNNが心

3d
$\begin{array}{llllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \begin{array}{c}110 \\ f 1 \\ (\mathrm{ppm})\end{array} & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

$\infty \infty \infty$

$\left.\begin{array}{ll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f} 1 & (\mathrm{ppm})\end{array}\right)$

$3 i$

3j

31

$3 m$

3n

$\stackrel{\underset{1}{\mathrm{~N}}}{\stackrel{\text { N }}{\underset{\sim}{n}}}$

$3 n$
$\begin{array}{lllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f} 1 & (\mathrm{ppm})\end{array}$

[^0]

| 220 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -1 |
| :--- |

3 r

$3 r$

3s

-214.78

®
$\stackrel{\circ}{\circ}$

3s

3t

	ぶあ		$\begin{aligned} & \text { H } \\ & \text { ó } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Ho } \\ & \stackrel{\circ}{\infty} \\ & 0 \end{aligned}$	$\stackrel{+}{\circ}$					$\begin{aligned} & \text { Ti } \\ & \text { ì } \end{aligned}$			$\stackrel{m}{m}$							
9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0		$\begin{gathered} 4.0 \\ (\mathrm{ppm}) \end{gathered}$	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	－0．5	－1． 1

$3 u^{\prime}$

$\stackrel{1}{\sim}$

$3 u^{\prime}$

$\begin{array}{llllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \begin{array}{c}110 \\ f 1(\mathrm{ppm})\end{array} & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -1\end{array}$

MNNNNNNNNNNNNN

$\begin{array}{llllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \begin{array}{c}110 \\ f 1 \\ (\mathrm{ppm})\end{array} & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

3w
N

$3 w$

$\begin{array}{lllllllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \begin{array}{l}110 \\ f 1 \\ (\mathrm{ppm})\end{array} & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

-215.00

\bigcirc	\cdots		
$\stackrel{-}{\top}$	\%		
T	「	ijo	

3aa

$3 a c$

3ac

3 ae
$\left.\begin{array}{lllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & (\mathrm{ppm})\end{array}\right)$

$\stackrel{\sim}{\sim}$	¢ Novim
$\stackrel{\circ}{\sim}$	
\sim	-5-5

3af

3ag

			N్స్ స్ర్ర		$\begin{aligned} & \text { T } \\ & \stackrel{+}{+} \end{aligned}$	$\begin{aligned} & \text { TO } \\ & \hline 0 . \end{aligned}$						$\stackrel{\stackrel{H}{\mathrm{~N}}}{\substack{\text { i}}}$								
0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	$\begin{aligned} & 4.0 \\ & \mathrm{f} 1(\mathrm{ppm}) \end{aligned}$	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5	-1.

sz1-i149-2
single pulse decoupled gated NOE

\cdots	$\stackrel{\rightharpoonup}{6}$			
$\stackrel{\square}{\sim}$	-		¢	-6
N	\bigcirc	$\checkmark \checkmark-55$	11	$\cdots \mathrm{C}$

3ai

3al

SZL-I-118
single pulse decoupled gated NOE

$3 a l$

$3 a 0$

3as

3aw

4

[^0]: $\left.\begin{array}{llllllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & \\ f 1(\mathrm{ppm})\end{array}\right)$

