Enantioselective organocatalytic sequential Michael-cyclization offunctionalized nitroalkanes to 2-hydroxycinnamaldehydes: Synthesisof benzofused dioxa[3.3.1] and oxa[4.3.1] methylene-bridgedcompoundsChen-Jun Peng, ${ }^{\text {a }}$ Jun-Ping Pei, ${ }^{a}$ Ying-Han Chen, ${ }^{a}$ Zhi-Yong Wu, ${ }^{a}$ Ming Liu ${ }^{\text {a,b }}$ andYan-Kai Liu*a,b
${ }^{a}$ Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, OceanUniversity of China, Qingdao 266003, China.
${ }^{b}$ Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and
Technology, Qingdao 266003, China.
Email: liuyankai@,ouc.edu.cn (Y.-K. Liu)
Supporting Information

Contents

A. General information 4
B. Preparation of substrates 6
B1. Preparation of $\mathbf{3}^{\prime \prime}$6
B2. Preparation of 2-nitro-3-phenylpropan-1-ol 2s 7
B3. Preparation of 2-nitropropane-1,3-diol 2u 8
B4. Preparation of ethyl 2-hydroxy-3-nitropropanoate 6 8
B5. Preparation of (2-nitroethyl)(phenyl)sulfane 14 8
B6. Preparation of 5-bromo-2-(2-nitroethyl)-1H-indole 17 9
B7. Preparation of 1-methyl-3-(2-nitroethyl)-1H-indole 18 10
C. Optimization of the reaction conditions 11
C1. Optimization of the Michael Addition 11
C2. Optimization of the one-pot reaction 14
D. Scope of the reaction 1 15
E. Scope of the reaction 2 33
F. Other reactions 37
F1. Synthesis of 13 37
F2. Synthesis of 16 40
F3. Synthesis of 19 42
F4. Synthesis of 20 44
G. Synthetic transformation 46
H. Scale-up synthesis of 5d 54
I. NMR analysis and computational studies for the reaction pathway55
J. NMR spectra and HPLC analyses 64
K. Single crystal X-Ray diffraction data 161

A. General information

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 500 MHz for ${ }^{1} \mathrm{H}$ and at 125 MHz for ${ }^{13} \mathrm{C}$. The chemical shifts (δ) for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ are given in ppm relative to residual signals of the solvents $\left(\mathrm{CDCl}_{3}\right.$ at $7.26 \mathrm{ppm}{ }^{1} \mathrm{H}$ NMR, $77.16 \mathrm{ppm}{ }^{13} \mathrm{C}$ NMR. $d 6$-DMSO at $2.50 \mathrm{ppm}{ }^{1} \mathrm{H}$ NMR, $39.52 \mathrm{ppm}{ }^{13} \mathrm{C}$ NMR). Coupling constants are given in Hz . The following abbreviations are used to indicate the multiplicity: s, singlet; d , doublet; t , triplet; q, quartet; m, multiplet. High-resolution mass spectra (HRMS) were obtained from the Waters Q-Tof Ultima Global. X-ray data was obtained from Zhongke chemical technology service center. Optical rotations are reported as follows: $[\alpha]_{\mathrm{D}}{ }^{20}$ (c in g per 100 mL , solvent: $\left.\mathrm{CHCl}_{3}, \mathrm{MeOH}\right)$.

Note: NMR signals containing common solvent contaminants were list. $\mathrm{H}_{2} \mathrm{O}$ in CDCl_{3} at $1.56 \mathrm{ppm}{ }^{1} \mathrm{H}$ NMR, and in $d 6$-DMSO at $3.33 \mathrm{ppm}{ }^{1} \mathrm{H}$ NMR; Ethyl acetate in CDCl_{3} at $2.05(\mathrm{~s}), 4.12(\mathrm{q}), 1.26(\mathrm{t}) \mathrm{ppm}{ }^{1} \mathrm{H}$ NMR; Dichloromethane in CDCl_{3} at 5.30 (s) $\mathrm{ppm}{ }^{1} \mathrm{H}$ NMR.

All the reactions were set up under air and using freshly distilled solvents, without any precautions to exclude moisture, unless otherwise noted open air chemistry on the bench-top. Chromatographic purification of products was accomplished using forceflow chromatography (FC) on silica gel (300-400 mesh). For thin layer chromatography (TLC) analysis throughout this work, Merck pre-coated TLC plates (silica gel 60 GF254, 0.25 mm) were used, using UV light as the visualizing agent and an phosphomolybdic acid or basic aqueous potassium permanganate $\left(\mathrm{KMnO}_{4}\right)$ as stain developing solutions. Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator.

HPLC analyses on chiral stationary phase were performed on an Hitachi Chromaste. Daicel Chiralpak IA, IB, IC, or chiral-N(s)(2) columns with n-hexane $/ i-\mathrm{PrOH}$ as the eluent were used. HPLC traces were compared to racemic samples which prepared by mixture of two enantiomeric final products obtained using (S) and (R) catalyst.

Commercial reagents and solvents were purchased from Sigma Aldrich, Fluka, and Alfa Aesar used as received, without further purification. The 2hydroxycinnamaldehydes $\mathbf{1}$ were prepared according to the literature procedures. ${ }^{[1]}$ All 1-nitromethylcycloalcohols were prepared from cyclic ketones according to the literature procedures. ${ }^{[2]}$ 2-nitroethanol $\mathbf{2 f}$ and 2-nitropropan-1-ol $\mathbf{2 u}$ were purchased.
[1] Sun X-L; Chen Y-H; Zhu D-Y; Zhang Y; Liu Y-K. Org. Lett. 2016, 18, 864.
[2] Mo-Hui Wei, Yi-Rong Zhou, Liang-Hu Gu, Fan Luo, Fang-Lin Zhang. Tetrahedron Letters. 2013, 54, 2546.

B. Preparation of substrates

B1. Preparation of 3"

To a solution of 3,5-bis(trifluoromethyl)aniline ($3 \mathrm{~mL}, 20 \mathrm{mmol}, 1.0$ equiv.) and saturated sodium bicarbonate solution (40 mL) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was added thiophosgene $\mathrm{CSCl}_{2}\left(1.7 \mathrm{~mL}, 22 \mathrm{mmol}, 1.1\right.$ equiv.) very slowly at $0^{\circ} \mathrm{C}$. The reaction was stirred at $0^{\circ} \mathrm{C}$ for about 2 h (monitored by TLC). The reaction mixture was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic layers were washed with saturated sodium chloride solution. The organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated. The product was purified by column chromatography on a silica gel (petroleum ether) to afford the desired product $\mathbf{S 3}{ }^{\prime \prime}$ as a yellow oil (2.4 g).

To a solution of $\mathbf{S 3}{ }^{\prime \prime}$ ($2.4 \mathrm{~g}, 8.9 \mathrm{mmol}, 2.5$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added $(1 R, 2 R)$-cyclohexane-1,2-diamine ($405 \mathrm{mg}, 3.5 \mathrm{mmol}, 1.0$ equiv.) at $25{ }^{\circ} \mathrm{C}$. The reaction was stirred at $25{ }^{\circ} \mathrm{C}$ for about 12 h until the consumption of $(1 R, 2 R)$ -cyclohexane-1,2-diamine (monitored by TLC). Then the reaction mixture was concentrated and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=5 / 1)$ to give product $\mathbf{3}^{\prime \prime}(1.2 \mathrm{~g}, 23 \%$ yield over two steps).

B2. Preparation of 2-nitro-3-phenylpropan-1-ol 2s

To a solution of benzaldehyde ($1.8 \mathrm{~mL}, 18 \mathrm{mmol}, 1.0$ equiv.) and nitromethane (1.1 $\mathrm{mL}, 20 \mathrm{mmol}$, 1.1 equiv.) in $\mathrm{MeOH}(5 \mathrm{~mL})$ was added $\mathrm{NaOH}(1.1 \mathrm{~g}, 27 \mathrm{mmol}, 1.5$ equiv.) in $\mathrm{MeOH}(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h until the consumption of benzaldehyde (monitored by TLC). After that, pour the reaction mixture into 6 M HCl solution at $0{ }^{\circ} \mathrm{C}$ and white precipitation started to form. $28(1.6 \mathrm{~g}$, 60% yield) could be afforded as a yellow solid by recrystallization with EtOH. To a solution of $\mathbf{2 8}$ ($298 \mathrm{mg}, 2 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added 29 (608 mg , $2.4 \mathrm{mmol}, 1.2$ equiv.) and the reaction was refluxed at $40^{\circ} \mathrm{C}$ for 48 h . The solvent was evaporated and the product was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate $=80 / 1$) to afford the desired product $\mathbf{3 0}$ as a yellow oil ($272 \mathrm{mg}, 90 \%$ yield).

To a solution of $\mathbf{3 0}$ ($272 \mathrm{mg}, 1.8 \mathrm{mmol}, 1.0$ equiv.) in THF (3 mL) was added NaOAc ($44 \mathrm{mg}, 0.54 \mathrm{mmol}, 0.3$ equiv.) and paraformaldehyde ($49 \mathrm{mg}, 1.6 \mathrm{mmol}, 0.9$ equiv.) at room temperature. The reaction was stirred at room temperature until completion of the reaction. The reaction mixture was extracted three times with ethyl acetate and the combined organic layers were washed with saturated sodium chloride solution. The organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then the solvent was evaporated. The product was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate $=5 / 1$) to afford the desired product 2 s as a white solid $(222 \mathrm{mg}, 68 \%$ yield).

B3. Preparation of 2-nitropropane-1,3-diol 2u

To a solution of $2-$ nitroethanol ($0.43 \mathrm{~mL}, 6 \mathrm{mmol}, 1.0$ equiv.) in THF (10 mL) was added NaOAc ($148 \mathrm{mg}, 1.8 \mathrm{mmol}, 0.3$ equiv.) and paraformaldehyde ($180 \mathrm{mg}, 6$ mmol, 1.0 equiv.) at room temperature. The reaction was stirred at room temperature until completion of the reaction. The reaction mixture was extracted three times with ethyl acetate and the combined organic layers were washed with saturated sodium chloride solution. The organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then the solvent was evaporated. The product was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate $=1.5 / 1$) to afford the desired product $\mathbf{2 u}$ as a yellow oil ($300 \mathrm{mg}, 41 \%$ yield).

B4. Preparation of ethyl 2-hydroxy-3-nitropropanoate 6

To a solution of ethyl 2-oxoacetate ($1 \mathrm{~mL}, 5 \mathrm{mmol}, 1.0$ equiv.) in nitromethane (10 $\mathrm{mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}\left(0.35 \mathrm{~mL}, 2.5 \mathrm{mmol}, 0.5\right.$ equiv.) at $0^{\circ} \mathrm{C}$. The reaction was stirred at $25{ }^{\circ} \mathrm{C}$ until completion of the reaction. Then the solvent nitromethane was evaporated. The residue was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate $=4 / 1$) to afford the desired product $\mathbf{6}$ as a white solid ($643 \mathrm{mg}, 79 \%$ yield).

B5. Preparation of (2-nitroethyl)(phenyl)sulfane 14

To a solution of $2-$ nitroethanol ($0.36 \mathrm{~mL}, 5 \mathrm{mmol}, 1.0$ equiv.) and acetic anhydride ($0.52 \mathrm{~mL}, 5.5 \mathrm{mmol}, 1.1$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ was added pyridine ($0.45 \mathrm{~mL}, 5.5$
mmol, 1.1 equiv.). The reaction was stirred under nitrogen atmosphere at room temperature. After 7 h , the reaction mixture was poured into 1 M HCl and the aqueous phase was extracted with dichloromethane. The combined organic layers were washed with 1 M HCl for three times. The organic layer was washed with saturated sodium chloride solution and was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then the solvent was evaporated. The product was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate $=5 / 1$) to afford the desired product 31 as a colorless oil ($542 \mathrm{mg}, 81 \%$ yield).

To a solution of $31(542 \mathrm{mg}, 4 \mathrm{mmol}, 1.0$ equiv.) and thiophenol ($0.42 \mathrm{~mL}, 4 \mathrm{mmol}$, 1.0 equiv.) in acetonitrile (6 mL) was added $\mathrm{Et}_{3} \mathrm{~N}(0.57 \mathrm{~mL}, 4 \mathrm{mmol}, 1.0$ equiv.) at 0 ${ }^{\circ} \mathrm{C}$. The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . The reaction mixture was poured into 1 M HCl at $0{ }^{\circ} \mathrm{C}$ and the aqueous phase was extracted with ethyl acetate . The combined organic layers were washed with 1 M HCl for three times. The organic layer was washed with saturated sodium chloride solution and was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then the solvent was evaporated. The product was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate $=100 / 1-30 / 1$) to afford the desired product 14 as a colorless oil ($608 \mathrm{mg}, 82 \%$ yield).

B6. Preparation of 5-bromo-2-(2-nitroethyl)-1H-indole 17

The synthetic method of $\mathbf{3 2}$ is the same as that of $\mathbf{3 4}$.
To a solution of $\mathbf{3 2}\left(200 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.0\right.$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added 29 ($190 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.0$ equiv.) and the reaction was refluxed at $40^{\circ} \mathrm{C}$ for 6 days. The solvent was evaporated and the product was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate $=6 / 1-4 / 1$) to afford the desired product 17 as a red oil ($141.4 \mathrm{mg}, 70 \%$ yield).

B7. Preparation of 1-methyl-3-(2-nitroethyl)-1H-indole 18

To a solution of sodium hydride ($560 \mathrm{mg}, 14 \mathrm{mmol}, 2.0$ equiv.) in dry THF (10 mL) was added indole-3-carboxaldehyde ($1 \mathrm{~g}, 7 \mathrm{mmol}, 1.0$ equiv.) at $0{ }^{\circ} \mathrm{C}$ in nitrogen atmosphere. The reaction was stirred at room temperature for 1 h and iodomethane ($872 \mu \mathrm{~L}, 14 \mathrm{mmol}, 2.0$ equiv.) was added to the reaction. The reaction was stirred at room temperature until completion of the reaction. The mixture was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with ethyl acetate. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated. The product was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate $=2 / 1$) to afford the desired product 33 . To a solution of $\mathbf{3 3}(1.14 \mathrm{~g}, 7 \mathrm{mmol}, 1.0$ equiv.) in nitromethane (8 mL) was added ammonium acetate ($270 \mathrm{mg}, 3.5 \mathrm{mmol}, 0.5$ equiv.) and the reaction was refluxed at $100{ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was recrystallized with ethanol and the desired product $\mathbf{3 4}$ was obtained as a yellow solid (1.3g, 93% yield for 2 steps).

To a solution of $\mathbf{3 4}(300 \mathrm{mg}, 1.5 \mathrm{mmol}, 1.0$ equiv.) in mixed solvent ($\mathrm{THF} / \mathrm{MeOH}=$ $9 / 1,3 \mathrm{~mL}$) was added sodium borohydride ($84 \mathrm{mg}, 2.2 \mathrm{mmol}, 1.5$ equiv.) at $0^{\circ} \mathrm{C}$ and the reaction was stirred at room temperature overnight. The mixture was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with ethyl acetate. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated. The product was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate $=$ $15 / 1$) to afford the desired product 18 as a yellow oil ($134.4 \mathrm{mg}, 44 \%$ yield).

C. Optimization of the reaction conditions

C1. Optimization of the Michael Addition

Table S1. Optimization of the Michael Addition ${ }^{\text {a }}$

Entry	Cat. additive	Solvent	Tem $\left({ }^{\circ} \mathrm{C}\right)$	Yield $\mathrm{t}(\mathrm{d})^{\mathrm{b}}$	ee $(\%)^{\mathrm{c}}$	dre $(\%)^{\mathrm{d}}$		
1	$\mathbf{3}$	1	CHCl_{3}	25	1	55	71	$>20: 1$
2	$\mathbf{3}$	$/$	CHCl_{3}	0	3	69	87	$>20: 1$
3	$\mathbf{3 a}$	$/$	CHCl_{3}	0	3	66	87	$>20: 1$
4	$\mathbf{3 b}$	$/$	CHCl_{3}	$0-60$	3	trace	5	$>20: 1$
5	$\mathbf{3 c}$	$/$	CHCl_{3}	0	3	trace	87	$>20: 1$
6	$\mathbf{3 d}$	$/$	CHCl_{3}	0	3	$/$	$/$	$/$

7	3 e	1	CHCl_{3}	0	3	1	/	1
8	3 f	1	CHCl_{3}	0-40	3	1	1	1
9	3 g	1	CHCl_{3}	0-40	3	1	1	1
10	$3 '$	1	CHCl_{3}	0	3	1	1	1
11	3+3h	/	CHCl_{3}	0	3	51	86	>20:1
12	$3+3^{\prime}$	1	CHCl_{3}	0	3	trace	87	>20:1
13	3'+3e	1	CHCl_{3}	0	3	44	18	>20:1
14	3	1	toluene	0	3	54	83	>20:1
15	3	1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0	3	trace	84	>20:1
16	3	1	DCE	0	3	42	83	>20:1
17	3	1	TCE	0	3	trace	83	>20:1
18	3	1	Benzotrifluoride	0	3	39	76	>20:1
19	3	1	Bromobenzene	0	3	53	79	$>20: 1$
20	3	1	MTBE	0	3	44	82	>20:1
21	3	1	$\mathrm{CH}_{3} \mathrm{CN}$	0	3	57	76	>20:1
22	3	1	$\mathrm{Et}_{2} \mathrm{O}$	0	3	57	80	>20:1
23	3	1	THF	0	3	14	79	$>20: 1$
24	3	1	EA	0	3	44	77	>20:1
25	3	1	Acetone	0	3	29	76	>20:1

26	$\mathbf{3}$	$\mathbf{A 1}$	CHCl_{3}	0	3	trace	86	$>20: 1$
27	$\mathbf{3}$	$\mathbf{A 2}$	CHCl_{3}	0	3	53	84	$>20: 1$
28	$\mathbf{3}$	$\mathbf{A 3}$	CHCl_{3}	0	3	trace	87	$>20: 1$
29	$\mathbf{3}$	$\mathbf{A 4}$	CHCl_{3}	0	3	$/$	1	1
30	$\mathbf{3}$	$\mathbf{A 5}$	CHCl_{3}	0	3	32	86	$>20: 1$
31	$\mathbf{3}$	$\mathbf{3 "}^{\prime \prime}$	CHCl_{3}	0	3	71	91	$>20: 1$

[a] Unless otherwise specified, all reactions were carried out using $\mathbf{2 a}(0.05 \mathrm{mmol}, 1.0$ equiv.), $\mathbf{1 a}(0.06 \mathrm{mmol}, 1.2$ equiv.) in solvent $(0.2 \mathrm{~mL})$ with cat. $(20 \mathrm{~mol} \%)$ and additive $(20 \mathrm{~mol} \%)$ at $0{ }^{\circ} \mathrm{C}$. After workup, the mixture was purified by flash chromatography on silica gel to afford $\mathbf{4 a}$. Compound $\mathbf{4 a}$ was dissolved in redistilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.05 mmol in 0.3 mL) at $25^{\circ} \mathrm{C}$. p- $\mathrm{TsOH}(40 \mathrm{~mol} \%)$ was added. After full conversion of the second step, the residue was purified by flash chromatography on gel to give product 5a. [b] For the first step. [c] Isolated yield of 5a over two steps. [d] Determined by HPLC analyses of isolated compound 5a on chiral stationary phases. [e] Determined by ${ }^{1} \mathrm{H}$ NMR.

TMS $=$ trimethylsilyl	DCE $=$ 1,2-dichloroethane
TBS $=$ (1,1-Dimethylethyl)dimethylsilyl	TCE $=$ 1, 1,2,2-tetrachloroethane
TES $=$ triethylsilyl	MTBE $=$ tert-Butyl methyl ether
DIPEA $=$ N,N-Diisopropylethylamine	THF = tetrahydrofuran
$p-\mathrm{TsOH}=p$-Toluenesulfonic acid.	$\mathrm{EA}=$ ethyl acetate

C2. Optimization of the one-pot reaction

Table S2. Optimization of the one-pot reaction ${ }^{\text {a }}$

Entry	Cat.	additive	$\mathrm{t}(\mathrm{d})^{\mathrm{b}}$	Yield $(\%)^{\mathrm{c}}$	ee (\%) ${ }^{\mathrm{d}}$	dr^{e}
1	$\mathbf{3}$	1	3.5	73	79	$>20: 1$
2	$\mathbf{3 a}$	1	3.5	69	81	$>20: 1$
3	$\mathbf{3}$	$\mathbf{3 "}^{\prime \prime}$	3.5	66	79	$>20: 1$

[a] Unless otherwise specified, all reactions were carried out using $\mathbf{2 a}(0.05 \mathrm{mmol}, 1.0$ equiv.), 1a ($0.06 \mathrm{mmol}, 1.2$ equiv.) in $\mathrm{CHCl}_{3}(0.2 \mathrm{~mL})$ with $3(20 \mathrm{~mol} \%)$ and additive ($20 \mathrm{~mol} \%$) at $0^{\circ} \mathrm{C}$ for 3 days. Then p - $\mathrm{TsOH}(40 \mathrm{~mol} \%)$ was added to the reaction mixture at $25^{\circ} \mathrm{C}$. After workup, the mixture was purified by flash chromatography on silica gel to afford 5a. [b] For the two steps. [c] Isolated yield of 5a over two steps. [d] Determined by HPLC analyses of isolated compound 5a on chiral stationary phases. [e] Determined by ${ }^{1} \mathrm{H}$ NMR.

TMS = trimethylsilyl

$$
p-\mathrm{TsOH}=p \text {-Toluenesulfonic acid. }
$$

TBS $=$ (1,1-Dimethylethyl)dimethylsilyl

D. Scope of the reaction 1

Table S3. Substrates correspond to the products

1	2	5
 1a		 5a
 1a		
 1 g		

1j

1 m

1 a

2d ${ }^{\mathrm{NO}_{2}}$

2d

2d

2d

2d

5j

5k

5

5m

5n

50

5p

1a

1a

$2 t$

2u

General procedure: A glass vial equipped with a magnetic stirring bar was charged with 1-nitromethylcycloalcohols 2 ($0.20 \mathrm{mmol}, 1.0$ equiv.), different substituted 2hydroxycinnamaldehydes $\mathbf{1}$ ($0.24 \mathrm{mmol}, 1.2$ equiv.), $\mathbf{3}$ ($0.04 \mathrm{mmol}, 0.2$ equiv.) and $\mathbf{3}^{\prime \prime}$ ($0.04 \mathrm{mmol}, 0.2$ equiv.) in $\mathrm{CHCl}_{3}(0.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting reaction mixture was kept under vigorous stirring until the consumption of $\mathbf{2}$ (monitored by TLC analysis). After completion of the reaction, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=5 / 1$ to $1.5 / 1$) to afford 4 as intermediate. Then, compound 4 (1.0 equiv.) was respectively dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.10 mmol in 0.5 mL) at $25^{\circ} \mathrm{C}$ and p - TsOH (0.4 equiv.) was added to the reaction mixture. After full conversion of the second step, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=100 / 1$ to $4 / 1$) to give product $\mathbf{5}$ for NMR and HPLC analysis.

$5 \mathbf{a}$ was obtained as a white solid 40.8 mg in 71% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=60 / 1$). ${ }^{1} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26(\mathrm{dd}, J=7.6,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H}), 4.72$ (d, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.17$ (dt, $J=13.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.59(\mathrm{~m}, 5 \mathrm{H}), 1.56-1.47(\mathrm{~m}, 2 \mathrm{H})$, $1.36-1.28(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{qt}, J=13.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.82(\mathrm{td}, J=13.6,3.6 \mathrm{~Hz}, 1 \mathrm{H})$ ppm. ${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.5,131.7,129.7,121.9,120.5,115.7,93.6$, 91.4, 75.2, 40.0, 31.5, 30.7, 30.6, 25.4, 21.6, 21.4 ppm. HRMS: [M-H] calcd. For $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{4}{ }^{-}$288.1241, found 288.1237. [$\left.\alpha\right]_{\mathbf{D}}{ }^{20} 40.28$ ($c=2.08$ in CHCl_{3}). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column $[n$-hexane $/ i-\mathrm{PrOH}=90 / 10,1 \mathrm{~mL} / \mathrm{min}], \lambda=210 \mathrm{~nm}, t_{\text {major }}=8.03 \mathrm{~min}, t_{\text {minor }}=$ 7.35 min , $\mathbf{e e}=\mathbf{9 1 \%}$. The enantiomeric excess after recrystallization was determined by HPLC analysis on Daicel Chiralpak IB column [n-hexane $/ i-\mathrm{PrOH}=90 / 10,1$ $\mathrm{mL} / \mathrm{min}], \lambda=210 \mathrm{~nm}, t_{\text {major }}=6.91 \mathrm{~min}, t_{\text {minor }}=6.33 \mathrm{~min}, \mathbf{e e}=\mathbf{9 7 \%}$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR, $\boldsymbol{d r}>\mathbf{2 0}: \mathbf{1}$.

5b
$\mathbf{5 b}$ was obtained as a white solid 40.2 mg in 63% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=60 / 1$). ${ }^{1} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27(\mathrm{dd}, J=26.1,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 1 \mathrm{H}), 2.26-2.12(\mathrm{~m}, 2 \mathrm{H})$, $2.05-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{dd}, J=13.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{dd}, J$ $=14.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.17(\mathrm{dd}, J=13.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{td}, J=14.0,3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $0.98(\mathrm{dd}, J=13.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}), 0.76(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 153.4,131.6,129.5,121.7,120.4,115.5,92.9,91.2,75.0,36.1,34.1,34.0$,
32.4, 31.3, 30.4, 29.3, 26.1, 23.8 ppm. HRMS: $[\mathrm{M}-\mathrm{H}]^{-}$calcd. For $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{4}{ }^{-}$ 316.1554, found 316.1548. $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{20} 45.66\left(c=1.46\right.$ in CHCl_{3}). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [n-hexane $/ i-\mathrm{PrOH}$ $=90 / 10,1 \mathrm{~mL} / \mathrm{min}], \lambda=210 \mathrm{~nm}, t_{\text {major }}=6.24 \mathrm{~min}, t_{\text {minor }}=5.71 \mathrm{~min}, \mathbf{e e}=\mathbf{8 8 \%}$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR, $\boldsymbol{d r}>\mathbf{2 0}: 1$.

5c was obtained as a colorless oil 46 mg in 71% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=8 / 1$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 1 \mathrm{H}), 2.37-2.14(\mathrm{~m}, 4 \mathrm{H}), 2.05$ (ddd, $J=13.3,3.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{t}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{dd}, J=7.7,2.4 \mathrm{~Hz}$, $2 \mathrm{H}), 1.61-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.23(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 153.2, 131.6, 129.9, 121.1, 120.8, 115.6, 91.3, 91.2, 73.3, 36.7, 36.6, 31.2, 30.3, 29.5, 29.3, 29.1, 26.6, 26.5 ppm. HRMS: [M-H] calcd. For $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{NO}_{4}{ }^{-}$324.1053, found 324.1056. $[\alpha]_{\mathbf{D}}{ }^{20} 29.79\left(c=1.65\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column $[n$-hexane $/ i-\mathrm{PrOH}=90 / 10,1$ $\mathrm{mL} / \mathrm{min}], \lambda=210 \mathrm{~nm}, t_{\text {major }}=8.57 \mathrm{~min}, t_{\text {minor }}=7.88 \mathrm{~min}$, $\mathbf{e e}=\mathbf{8 5 \%}$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR, $\boldsymbol{d r}>\mathbf{2 0}: \mathbf{1}$.

5d was obtained as a white solid 47.4 mg in 86% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=50 / 1$). ${ }^{1} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 1 \mathrm{H}), 6.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.84(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.24(\mathrm{dt}, J=13.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{ddd}, J=13.2,9.6,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.88(\mathrm{dd}, J$
$=13.3,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{ddd}, J=15.0,7.3$, $3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.46-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{ddd}, J=13.2,9.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.2,130.5,129.6,120.8,120.7,116.0,91.6,90.1,84.2$, 42.4, 33.6, 32.1, 30.5, 26.7, 23.4 ppm. HRMS: $[\mathrm{M}-\mathrm{H}]^{-}$calcd. For $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}_{4}{ }^{-}$ 274.1085, found 274.1090. [$\alpha]_{\mathbf{D}}{ }^{20} 16.59\left(c=0.67\right.$ in CHCl_{3}). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [n-hexane $/ i-\mathrm{PrOH}$ $=95 / 5,1 \mathrm{~mL} / \mathrm{min}], \lambda=210 \mathrm{~nm}, t_{\text {major }}=7.85 \mathrm{~min}, t_{\text {minor }}=7.40 \mathrm{~min}, \mathbf{e e}=\mathbf{9 3 \%}$. The enantiomeric excess after recrystallization was determined by HPLC analysis on Daicel Chiralpak IB column [n-hexane $/ i$ - $\mathrm{PrOH}=95 / 5,1 \mathrm{~mL} / \mathrm{min}$], $\lambda=210 \mathrm{~nm}, t_{\text {major }}$ $=7.99 \mathrm{~min}, t_{\text {minor }}=7.47 \mathrm{~min}$, ee $>\mathbf{9 9 \%}$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR, $\boldsymbol{d r} \boldsymbol{>} \mathbf{~ 2 0 : 1 .}$

5e was obtained as a white solid 32 mg in 61% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=60 / 1-40 / 1$). ${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.26-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{dd}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{td}, J=$ $7.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74$ $(\mathrm{d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.61-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.13(\mathrm{~m}, 3 \mathrm{H}), 2.09(\mathrm{ddd}, J=13.2,4.0$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.76$ (ddq, $J=10.7,8.3,5.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.55-1.40(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 153.1,130.8,129.7,120.9,120.1,116.1,92.1,89.9,60.5$, 34.1, 32.3, 31.3, 30.4, 13.8 ppm. HRMS: [M-H]' calcd. For $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}_{4}{ }^{-}$260.0928, found 260.0933. $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{20} 11.86\left(c=1.18\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [n-hexane $/ i-\mathrm{PrOH}=$ $98 / 2,1 \mathrm{~mL} / \mathrm{min}], \lambda=210 \mathrm{~nm}, t_{\text {major }}=14.04 \mathrm{~min}, t_{\text {minor }}=13.17 \mathrm{~min}, \mathbf{e e}=\mathbf{9 5 \%}$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR, $\boldsymbol{d r}>\mathbf{2 0}: \mathbf{1}$.

$\mathbf{5 e}^{\prime}$ was obtained as a white solid 10 mg in 19% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=60 / 1$). ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $5.75(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 1 \mathrm{H}), 2.60(\mathrm{dt}, J=13.6,2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.32(\mathrm{dd}, J=22.5,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{ddd}, J$ $=14.5,10.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.54-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{ddt}, J=12.9,8.7,4.2 \mathrm{~Hz}, 1 \mathrm{H})$ ppm. ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.9,129.9,128.4,121.6,121.2,116.8,92.7$, 89.2, 73.7, 35.9, 33.9, 32.6, 22.8, 12.8 ppm. HRMS: $[\mathrm{M}-\mathrm{H}]^{-}$calcd. For $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}_{4}{ }^{-}$ 260.0928, found 260.0924. [$\alpha]_{\mathbf{D}}{ }^{20} 71.17\left(c=2.39\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [n-hexane $/ i-\mathrm{PrOH}$ $=90 / 10,1 \mathrm{~mL} / \mathrm{min}], \lambda=210 \mathrm{~nm}, t_{\text {major }}=7.47 \mathrm{~min}, t_{\text {minor }}=5.99 \mathrm{~min}, \mathbf{e e}=\mathbf{9 8 \%}$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR, $\boldsymbol{d r}>\mathbf{2 0}: \mathbf{1}$.

5f was obtained as a white solid 10 mg in 23% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=20 / 1-10 / 1$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}, J=11.9,4.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H}), 4.80(\mathrm{ddd}, J=11.2,5.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J=12.0$, $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{t}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{dt}, J=13.4,2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.11$ (ddd, $J=13.4,3.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 154.8, 152.1, 130.1, 129.6, 121.6, 115.7, 91.1, 81.0, 57.9, 33.0, 28.8 ppm. HRMS: [M-H]- calcd. For $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{NO}_{4}-220.0615$, found 220.0618. $[\alpha]_{\mathbf{D}}{ }^{20}-40.39$ ($c=0.29$ in CHCl_{3}). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [n-hexane $/ i$ - $\mathrm{PrOH}=90 / 10,1 \mathrm{~mL} / \mathrm{min}$], $\lambda=210 \mathrm{~nm}, t_{\text {major }}=8.64$ $\min , t_{\text {minor }}=7.66 \mathrm{~min}, \mathbf{e e}=\mathbf{9 8 \%}$. The diastereomeric ratio was determined by NMR, $d r>20: 1$.

$\mathbf{5 f}^{\prime}$ was obtained as a white solid 26.2 mg in 59% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=60 / 1$). ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.95(\mathrm{~m}$, 2H), $5.64(\mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.88(\mathrm{~m}$, $2 \mathrm{H}), 2.36(\mathrm{dt}, J=13.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{ddd}, J=13.7,2.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 155.0,129.8,128.7,121.5,116.3,92.4,82.7,58.8,31.3$, 24.6 ppm . HRMS: [M-H] calcd. For $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{NO}_{4}{ }^{-} 220.0615$, found 220.0613. $[\boldsymbol{\alpha}]_{\mathbf{D}^{20}}{ }^{\mathbf{2 0}}$ 25.53 ($c=0.75$ in CHCl_{3}). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak ID column [n-hexane $/ i-\mathrm{PrOH}=90 / 10,1 \mathrm{~mL} / \mathrm{min}$], $\lambda=$ $210 \mathrm{~nm}, t_{\text {major }}=12.21 \mathrm{~min}, t_{\text {minor }}=10.70 \mathrm{~min}, \mathbf{e e}=\mathbf{9 5 \%}$. The diastereomeric ratio was determined by NMR, $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.

$\mathbf{5 g}$ was obtained as a white solid 36 mg in 59% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=10 / 1-8 / 1$). ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.90-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.74(\mathrm{dd}, J=5.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~d}, J=$ $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 4 \mathrm{H}), 2.23(\mathrm{dt}, J=13.1,2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.14-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{dd}, J=13.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.65$ $(\mathrm{m}, 1 \mathrm{H}), 1.65-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.30(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.5,142.8,122.3,121.7,120.6,111.6,91.9,90.2,84.4$, 56.1, 42.7, 33.7, 32.1, 30.5, 26.9, 23.6 ppm. HRMS: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. For $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NNaO}_{5}{ }^{+}$328.1155, found 328.1151. $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}-22.27\left(c=1.43\right.$ in CHCl_{3}). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column $[n$-hexane $/ i-\mathrm{PrOH}=95 / 5,1 \mathrm{~mL} / \mathrm{min}], \lambda=210 \mathrm{~nm}, t_{\text {major }}=17.01 \mathrm{~min}, t_{\text {minor }}=$ $15.65 \mathrm{~min}, \mathbf{e e}=\mathbf{9 4 \%}$. The diastereomeric ratio was determined by NMR, $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.

$\mathbf{5 h}$ was obtained as a white solid 38 mg in 65% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=30 / 1-20 / 1$). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.07(\mathrm{ddd}, J=10.6,8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, 6.85 (td, $J=8.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.76$ (s, 1H), 4.94 (d, $J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.92$ (d, $J=2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.27$ (dt, $J=13.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.17$ - $2.06(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.85(\mathrm{~m}, 1 \mathrm{H})$, $1.81-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.58-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{ddd}, J=20.0$, $10.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.7,149.8,125.7,125.6$, $123.4,120.5,120.4,116.3,116.2,91.8,90.0,84.5,42.6,33.8,31.8,31.8,30.4,26.9$, 23.6 ppm. HRMS: [M-H] calcd. For $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{FNO}_{4}{ }^{-}$292.0991, found 292.0992. [$\left.\boldsymbol{\alpha}\right]_{\mathbf{D}}{ }^{\mathbf{2 0}}$ 21.87 ($c=1.45$ in CHCl_{3}). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak Chiral-NS (2) column [n-hexane $/ i$ - $\mathrm{PrOH}=95 / 5$, 1 $\mathrm{mL} / \mathrm{min}], \lambda=210 \mathrm{~nm}, t_{\text {major }}=12.14 \mathrm{~min}, t_{\text {minor }}=11.49 \mathrm{~min}, \mathbf{e e}=\mathbf{9 4 \%}$. The diastereomeric ratio was determined by NMR, $\boldsymbol{d r}>\mathbf{2 0}: \mathbf{1}$.

$\mathbf{5 i}$ was obtained as a white solid 18 mg in 29% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=50 / 1-20 / 1$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.04(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~d}$, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.78$ (s, 3H), 2.21 (dt, $J=13.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.04$ (m, 2H), 1.87 (ddd, $J=$ $12.2,5.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.48(\mathrm{~m}, 1 \mathrm{H})$, $1.45-1.31(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 161.1, 154.2, 131.2, 113.1, 107.3, 101.3, 91.8, 90.3, 84.4, 55.4, 42.5, 33.9, 31.6, 30.9, 26.8, 23.5 ppm. HRMS: [M-H]- calcd. For $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{5}{ }^{-}$304.1190, found 304.1182. $[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 0}}-27.15$ ($c=1.33$ in CHCl_{3}). The enantiomeric excess was determined by HPLC analysis on Daicel

Chiralpak IB column [n-hexane $/ i$ - $\mathrm{PrOH}=90 / 10,1 \mathrm{~mL} / \mathrm{min}], \lambda=210 \mathrm{~nm}, t_{\text {major }}=8.37$ $\min , t_{\text {minor }}=7.06 \mathrm{~min}, \mathbf{e e}=\mathbf{9 2 \%}$. The diastereomeric ratio was determined by NMR, $d r>20: 1$.

5j
$\mathbf{5 j}$ was obtained as a yellow oil 32 mg in 52% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=30 / 1-20 / 1$). ${ }^{1} \mathbf{H} \mathbf{N M R}$ $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.10(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=8.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~s}$, $1 \mathrm{H}), 5.65(\mathrm{~s}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~d}, J=13.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.18-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.05$ (ddd, $J=13.3,3.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{dd}, J=9.9$, $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.77-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.56-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.35-$ $1.28(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.8,135.0,131.5,121.0,119.5$, 116.2, $91.6,89.9,84.2,42.3,33.7,31.5,30.3,26.6,23.3 \mathrm{ppm}$. HRMS: [M-H] calcd. For $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ClNO}_{4}-308.0695$, found 308.0699. $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}-14.27\left(c=1.19\right.$ in CHCl_{3}). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [n-hexane $/ i$ - $\mathrm{PrOH}=95 / 5,1 \mathrm{~mL} / \mathrm{min}$], $\lambda=210 \mathrm{~nm}, t_{\text {major }}=9.99 \mathrm{~min}, t_{\text {minor }}=$ $7.88 \mathrm{~min}, \mathbf{e e}=\mathbf{9 1 \%}$. The diastereomeric ratio was determined by NMR, $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.

5k
5k was obtained as a white solid 40.8 mg in 71% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=30 / 1$). ${ }^{1} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.05(\mathrm{dd}, J=8.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{dt}, J=13.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.83(\mathrm{~m}$, $1 \mathrm{H}), 1.80-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.32(\mathrm{~m}$, 2H) ppm. ${ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl_{3}) δ 151.0, 130.7, 130.3, 130.0, 120.5, 115.7,
91.6, 90.2, 84.1, 42.5, 33.7, 32.1, 30.7, 26.7, 23.4, 20.5 ppm . HRMS: $[\mathrm{M}-\mathrm{H}]^{-}$calcd. For $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{4}{ }^{-}$288.1241, found 288.1248. $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}} 29.37$ ($c=0.96$ in CHCl_{3}). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [n-hexane $/ i$-PrOH $=80 / 20,1 \mathrm{~mL} / \mathrm{min}], \lambda=210 \mathrm{~nm}, t_{\text {major }}=7.25 \mathrm{~min}, t_{\text {minor }}=$ $6.13 \mathrm{~min}, \mathbf{e e}=\mathbf{8 5 \%}$. The diastereomeric ratio was determined by NMR, $\boldsymbol{d r} \mathbf{> 2 0 : 1}$.

51
51 was obtained as a white solid 38 mg in 65% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=30 / 1-20 / 1$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.99-6.88(\mathrm{~m}, 2 \mathrm{H}), 6.77(\mathrm{dd}, J=8.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~d}, J=$ $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.10(\mathrm{~m}, 2 \mathrm{H})$, 2.05 (ddd, $J=13.2,4.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.59(\mathrm{~m}, 3 \mathrm{H}), 1.55-$ $1.49(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{ddd}, J=15.7,8.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.7,155.8,149.5,122.0,117.1,117.0,116.9,116.9$, 116.7, 116.5, $91.7,90.0,84.4,42.6,33.8,32.0,30.4,26.7,23.5 \mathrm{ppm}$. HRMS: [M-H] calcd. For $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{FNO}_{4}-292.0991$, found 292.0993. [$\left.\boldsymbol{\alpha}\right]_{\mathbf{D}^{\mathbf{2 0}}} 8.50\left(c=1.57\right.$ in CHCl_{3}). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column $[n$-hexane $/ i$ - $\mathrm{PrOH}=90 / 10,1 \mathrm{~mL} / \mathrm{min}], \lambda=210 \mathrm{~nm}, t_{\text {major }}=7.73 \mathrm{~min}, t_{\text {minor }}=$ $7.05 \mathrm{~min}, \mathbf{e e}=\mathbf{9 2 \%}$. The diastereomeric ratio was determined by NMR $\boldsymbol{d r}>\mathbf{2 0 : 1}$.

$\mathbf{5 m}$ was obtained as a white solid 30 mg in 48% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=30 / 1-15 / 1$). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{~d}, J=1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.92(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{dt}, J=13.3,2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.20-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{ddd}, J=13.3,4.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.77-$
$1.60(\mathrm{~m}, 3 \mathrm{H}), 1.53$ (ddd, $J=15.3,7.3,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.45-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.31$ (ddd, J $=12.1,8.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.0,130.4,129.8$, 125.7, 122.6, 117.4, 91.8, 89.9, 84.4, 42.5, 33.8, 31.9, 30.4, 26.7, 23.5 ppm. HRMS: [M-H]- calcd. For $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ClNO}_{4}-308.0695$, found 308.0690. [$\left.\alpha\right]_{\mathbf{D}}{ }^{20} 55.19$ ($c=1.11$ in CHCl_{3}). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [n-hexane $/ i$ - $\mathrm{PrOH}=95 / 5,1 \mathrm{~mL} / \mathrm{min}$], $\lambda=210 \mathrm{~nm}, t_{\text {major }}=9.53$ $\min , t_{\text {minor }}=8.59 \mathrm{~min}, \mathbf{e e}=\mathbf{9 3 \%}$. The diastereomeric ratio was determined by NMR $d r>20: 1$.

5n was obtained as a white solid 42 mg in 59% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=20 / 1$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.29(\mathrm{~m}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{~s}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J$ $=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.09(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{ddd}, J=13.3,4.1$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.59(\mathrm{~m}, 3 \mathrm{H}), 1.56-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.48-$ $1.36(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.23(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.6,133.3$, $132.7,123.1,117.9,112.9,91.7,89.9,84.4,42.5,33.8,31.8,30.3,26.7,23.5 \mathrm{ppm}$. HRMS: [M-H] calcd. For $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{BrNO}_{4}{ }^{-}$352.0190, found 352.0194. [$\left.\alpha\right]_{\mathbf{D}}{ }^{\mathbf{2 0}} 64.83$ (c $=1.89$ in CHCl_{3}). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [n-hexane $/ i$-PrOH $=90 / 10,1 \mathrm{~mL} / \mathrm{min}$], $\lambda=210 \mathrm{~nm}, t_{\text {major }}$ $=8.77 \mathrm{~min}, t_{\text {minor }}=7.87 \mathrm{~min}, \mathbf{e e}=\mathbf{9 3 \%}$. The diastereomeric ratio was determined by NMR $d r>20: 1$.

50
$\mathbf{5 0}$ was obtained as a white solid 20 mg in 31% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=5 / 1$). ${ }^{1} \mathbf{H}$ NMR (500
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.21(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{dd}, J=9.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.32$ (dt, $J=13.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{ddd}, J=13.5,4.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.98$ - $1.89(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.61(\mathrm{~m}, 3 \mathrm{H}), 1.56-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.28-$ $1.22(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.7,127.5,125.8,121.8,116.8$, 110.1, 92.3, 89.6, 84.6, 42.3, 33.7, 31.7, 30.1, 26.6, 23.4 ppm. HRMS: [M-H] calcd. For $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{6}{ }^{-} 319.0936$, found 319.0934. $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}} 105.07$ ($c=0.81$ in CHCl_{3}). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [n-hexane $/ i$-PrOH $=90 / 10,1 \mathrm{~mL} / \mathrm{min}], \lambda=210 \mathrm{~nm}, t_{\text {major }}=21.01 \mathrm{~min}, t_{\text {minor }}=$ $18.43 \mathrm{~min}, \mathbf{e e}=\mathbf{8 7 \%}$. The diastereomeric ratio was determined by NMR $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.

5p
$\mathbf{5 p}$ was obtained as a white solid 40.6 mg in 58% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=50 / 1-20 / 1$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{dd}, J=8.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.38$ $(\mathrm{m}, 3 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.98$ (d, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.92 (d, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.27 (dt, $J=13.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-$ $2.08(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{dt}, J=8.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.61(\mathrm{~m}, 2 \mathrm{H})$, 1.54 (ddd, $J=11.7,7.6,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.48-1.35(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 152.8,140.3,133.9,129.2,128.8,128.4,126.9,126.8,121.2,116.3,91.8$, 90.2, 84.3, 42.5, 33.8, 32.2, 30.6, 26.7, 23.4 ppm. HRMS: [M-H] calcd. For $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NO}_{4}^{-}$350.1398, found 350.1395. [$\left.\boldsymbol{\alpha}\right]_{\mathbf{D}}{ }^{20} 112.91$ ($c=1.50$ in CHCl_{3}). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column $[n$-hexane $/ i$-PrOH $=98 / 2,1 \mathrm{~mL} / \mathrm{min}], \lambda=204 \mathrm{~nm}, t_{\text {major }}=13.12 \mathrm{~min}, t_{\text {minor }}=$ $10.33 \mathrm{~min}, \mathbf{e e}=\mathbf{8 7 \%}$. The diastereomeric ratio was determined by NMR $\boldsymbol{d r} \boldsymbol{>} \mathbf{2 0 : 1}$.

$\mathbf{5 q}$ was obtained as a white solid 38 mg in 59% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=40 / 1$). ${ }^{1} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.20(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.67$ (s, 1H), 5.10 (d, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.28$ (d, $J=13.3$ $\mathrm{Hz}, 1 \mathrm{H}), 1.97$ (dd, $J=13.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.66(\mathrm{~m}, 5 \mathrm{H}), 1.60(\mathrm{dd}, J=15.5,6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 1.53-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.26(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.4,134.9,129.9,122.1,119.6,115.1,92.0,90.0,83.9,41.8,33.7,30.7,30.1$, 26.9, 23.0 ppm . HRMS: $[\mathrm{M}-\mathrm{H}]^{-}$calcd. For $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ClNO}_{4}{ }^{-}$308.0695, found 308.0690 . $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}} 106.36\left(c=1.44\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [n-hexane $/ i-\mathrm{PrOH}=90 / 10,1 \mathrm{~mL} / \mathrm{min}$], $\lambda=$ $210 \mathrm{~nm}, t_{\text {major }}=7.23 \mathrm{~min}, t_{\text {minor }}=6.24 \mathrm{~min}, \mathbf{e e}=\mathbf{9 2 \%}$. The diastereomeric ratio was determined by NMR $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.

$\mathbf{5 r}$ was obtained as a white solid 55 mg in 78% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=60 / 1$). ${ }^{1} \mathbf{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=$ $8.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=3.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.27$ (dd, $J=9.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 1.97 (ddd, $J=13.3,3.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), $1.94-1.64$ $(\mathrm{m}, 5 \mathrm{H}), 1.64-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.21(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 154.5,130.3,125.4,121.2,115.8,92.1,90.1,83.8,41.8$, 33.6, 32.3, 30.8, 26.9, 23.0 ppm. HRMS: [M-H] calcd. For $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{BrNO}_{4}{ }^{-}$352.0190, found 352.0188. $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}} 118.10\left(c=1.90\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [n-hexane $/ i-\mathrm{PrOH}=$ $95 / 5,1 \mathrm{~mL} / \mathrm{min}], \lambda=210 \mathrm{~nm}$, tmajor $=8.86 \mathrm{~min}$, tminor $=7.29 \mathrm{~min}$, $\mathbf{e e}=\mathbf{9 3 \%}$. The
enantiomeric excess after recrystallization was determined by HPLC analysis on Daicel Chiralpak IC column [n-hexane $/ i-\mathrm{PrOH}=95 / 5,1 \mathrm{~mL} / \mathrm{min}], \lambda=210 \mathrm{~nm}, t_{\text {major }}$ $=7.81 \mathrm{~min}, t_{\text {minor }}=6.31 \mathrm{~min}$, ee $>\mathbf{9 9 \%}$. The diastereomeric ratio was determined by NMR $d r>20: 1$.

5s was obtained as a white solid 16.3 mg in 26% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=30 / 1$). ${ }^{1} \mathbf{H} \mathbf{N M R}(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.07-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.88$ (dd, $J=7.4,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.62(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{dd}, J=13.7,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.94(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{~d}, J=14.3 \mathrm{~Hz}$, 1H), 2.11 (dt, $J=13.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), $1.95-1.87(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 154.8,132.4,130.7,130.0,129.3,128.8,128.0,121.0,120.9,116.3,91.8$, 91.6, 61.9, 42.7, 37.1, 26.5 ppm . HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{4}{ }^{+}$312.1230, found 312.1233. $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}-44.55\left(c=1.24\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [n-hexane $/ i-\mathrm{PrOH}=$ $85 / 15,1 \mathrm{~mL} / \mathrm{min}], \lambda=210 \mathrm{~nm}, t_{\text {major }}=8.62 \mathrm{~min}, t_{\text {minor }}=6.88 \mathrm{~min}, \mathbf{e e}=\mathbf{8 5 \%}$. The diastereomeric ratio was determined by NMR $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.

$\mathbf{5 s} \mathbf{s}^{\prime}$ was obtained as a white solid 11.4 mg in 18% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=60 / 1) .{ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{pd}, J=4.5,1.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.11(\mathrm{~m}$, $2 \mathrm{H}), 6.99(\mathrm{dd}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{ddd}, J=11.1,8.4,4.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.65(\mathrm{~s}, 1 \mathrm{H})$, $3.91-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.61(\mathrm{dt}, J=13.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{ddd}, J=13.8,3.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C} \mathbf{N M R}$
(101 MHz, CDCl_{3}) $\delta 154.7,133.4,129.9,129.8,129.6,128.9,128.0,121.5,120.9$, 115.6, 91.4, 89.7, 58.5, 40.2, 37.6, 27.0 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{4}{ }^{+}$ 312.1230, found 312.1228. $[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 0}} 2.90\left(c=0.82\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [n-hexane $/ i-\mathrm{PrOH}$ $=85 / 15,1 \mathrm{~mL} / \mathrm{min}], \lambda=210 \mathrm{~nm}, t_{\text {major }}=8.30 \mathrm{~min}, t_{\text {minor }}=7.61 \mathrm{~min}, \mathbf{e e}=\mathbf{8 2 \%}$. The diastereomeric ratio was determined by NMR $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.

5t was obtained as a white solid 16 mg in 34% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=100 / 1$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.92(\mathrm{~m}$, 2H), 5.60 (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.49$ (dd, $J=13.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.80 (s, 1H), 3.51 (d, J $=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{dt}, J=13.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 154.8, 130.5, 129.7, 121.0, 120.8, 116.1, $91.8,88.2$, 63.4, 36.1, 26.3, 22.6 ppm . HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}_{4}{ }^{+}$236.0917, found 236.0922. $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}} 49.12\left(c=0.13\right.$ in CHCl_{3}). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column [n-hexane $/ i-\mathrm{PrOH}=80 / 20,1$ $\mathrm{mL} / \mathrm{min}], \lambda=210 \mathrm{~nm}, t_{\text {major }}=6.82 \mathrm{~min}, t_{\text {minor }}=6.24 \mathrm{~min}, \mathbf{e e}=\mathbf{9 8 \%}$. The diastereomeric ratio was determined by NMR $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.

$\mathbf{5 t}^{\mathbf{\prime}}$ was obtained as a white solid 21 mg in 45% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=30 / 1) .{ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.91(\mathrm{dtd}, J=14.9,7.9,1.2 \mathrm{~Hz}, 3 \mathrm{H}), 5.56(\mathrm{~s}, 1 \mathrm{H})$, $4.06(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=12.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 1 \mathrm{H}), 2.39(\mathrm{dt}, J=$ $13.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{ddd}, J=13.7,3.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C} \mathbf{N M R}$
(101 MHz, CDCl_{3}) δ 154.6, 129.8, 129.5, 121.4, 120.8, 115.6, 91.3, 85.8, 62.4, 37.7, 26.5, 23.4 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}_{4}{ }^{+}$236.0917, found 236.0920. $[\alpha]_{\mathbf{D}}{ }^{20}-75.44\left(c=0.63\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column [n-hexane $/ i$ - $\mathrm{PrOH}=80 / 20,1 \mathrm{~mL} / \mathrm{min}$], $\lambda=$ $210 \mathrm{~nm}, t_{\text {major }}=7.48 \mathrm{~min}, t_{\text {minor }}=6.17 \mathrm{~min}, \mathbf{e e}=\mathbf{9 3 \%}$. The diastereomeric ratio was determined by NMR $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.

$\mathbf{5 u}$ was obtained as a white solid 10 mg in 20% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=15 / 1$). ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.02-6.91(\mathrm{~m}, 2 \mathrm{H}), 5.64(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.56 (dd, $J=13.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.99$ (s, 1H), 3.74 (dd, $J=11.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.62$ (dd, $J=17.6,8.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{dt}, J=13.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.84(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 179.9,154.7,130.0,129.9,121.2,116.2,92.2,91.9,65.1$, 60.8, 32.2, 25.9 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}_{5}{ }^{+}$252.0866, found 252.0864. $[\boldsymbol{\alpha}]_{\mathbf{D}^{\mathbf{2 0}}}-2.72\left(c=0.34\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column [n-hexane $/ i-\mathrm{PrOH}=80 / 20,1$ $\mathrm{mL} / \mathrm{min}], \lambda=210 \mathrm{~nm}, t_{\text {major }}=10.37 \mathrm{~min}, t_{\text {minor }}=9.23 \mathrm{~min}$, $\mathbf{e e}=\mathbf{8 8 \%}$. The diastereomeric ratio was determined by NMR $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.

$\mathbf{5 u} \mathbf{u}^{\prime}$ was obtained as a white solid 10 mg in 20% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=4 / 1$). ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.91$ (ddd, $J=21.5,11.4,5.7 \mathrm{~Hz}, 3 \mathrm{H}$), 5.58 (s, $1 \mathrm{H}), 4.34-4.16(\mathrm{~m}, 2 \mathrm{H}), 4.05(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}$, $1 \mathrm{H}), 2.55-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{dt}, J=13.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-1.91(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 154.7,130.0,129.1,121.5,120.0,115.7,91.2,89.6$, 63.9, 58.3, 33.8, 26.6 ppm . HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}_{5}{ }^{+}$252.0866, found 252.0860. $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}-53.74\left(c=0.19\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column [n-hexane $/ i-\mathrm{PrOH}=80 / 20,1$ $\mathrm{mL} / \mathrm{min}], \lambda=210 \mathrm{~nm}, t_{\text {major }}=9.50 \mathrm{~min}, t_{\text {minor }}=8.13 \mathrm{~min}$, $\mathbf{e e}=\mathbf{9 0 \%}$. The diastereomeric ratio was determined by NMR $\boldsymbol{d r}>\mathbf{2 0}: \mathbf{1}$.

E. Scope of the reaction 2

General procedure: A glass vial equipped with a magnetic stirring bar was charged with 6 ($0.24 \mathrm{mmol}, 1.2$ equiv.), different substituted 2-hydroxycinnamaldehydes $\mathbf{1}$ (0.20 mmol , 1.0 equiv.), $\mathbf{3}$ ($0.04 \mathrm{mmol}, 0.2$ equiv.) and $\mathbf{3}^{\prime \prime}$ ($0.04 \mathrm{mmol}, 0.2$ equiv.) in $\mathrm{CHCl}_{3}(0.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The resulting reaction mixture was kept under vigorous stirring until the consumption of $\mathbf{1}$ (monitored by TLC analysis). After completion of the reaction, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=3 / 1$ to $2 / 1$) to afford the intermediate. Then, the intermediate (1.0 equiv.) was respectively dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.10 \mathrm{mmol}$ in 0.5 mL) at $25^{\circ} \mathrm{C}$ and $p-\mathrm{TsOH}$ (0.4 equiv.) was added to the reaction mixture. After full conversion of the second step, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=20 / 1$ to $8 / 1$) to give product 7 .

At last, compound 7 (1.0 equiv.) was respectively dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.10 \mathrm{mmol}$ in 0.5 mL) at $25^{\circ} \mathrm{C}$ and DBU (1.2 equiv.) was added to the reaction mixture. After full conversion of the third step, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=20 / 1$ to $5 / 1$) to give product $\mathbf{8}$ for NMR and HPLC analysis.

8a
8a was obtained as a white solid 30 mg in 61% yield for three steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=15 / 1$). ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.19-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.99-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.41(\mathrm{dd}, J=7.1,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.16(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.59-3.47(\mathrm{~m}, 1 \mathrm{H}), 2.15-$ $1.99(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.3$, $151.8,141.8,128.1,127.3,125.5,121.2,116.6,115.0,92.4,61.4,26.5,24.8,14.2$ ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{O}_{4}{ }^{+}$247.0965, found 247.0967. [$\left.\boldsymbol{\alpha}\right]_{\mathbf{D}}{ }^{\mathbf{2 0}} 88.68$ ($c=0.57$ in CHCl_{3}). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column [n-hexane $/ i$-PrOH $=90 / 10,1 \mathrm{~mL} / \mathrm{min}$], $\lambda=210 \mathrm{~nm}, t_{\text {major }}$ $=9.59 \mathrm{~min}, t_{\text {minor }}=8.72 \mathrm{~min}, \mathbf{e e}=\mathbf{9 5 \%}$. The diastereomeric ratio was determined by NMR $\boldsymbol{d r} \boldsymbol{>} \mathbf{~ 2 0 : 1 .}$

8b
$\mathbf{8 b}$ was obtained as a white solid 16.8 mg in 32% yield for three steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=15 / 1$). ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.97-6.90(\mathrm{~m}, 1 \mathrm{H}), 6.83(\mathrm{ddd}, J=12.2,10.4,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.41(\mathrm{dd}$, $J=7.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{dd}, J=3.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{dd}$, $J=4.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{ddd}, J=13.2,3.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{ddd}, J=13.2,4.1$, $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.1$, 142.0, 128.2, 122.2, 121.1, 121.0, 115.2, 115.0, 114.4, 92.2, 61.5, 26.1, 24.6, 14.2 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{FO}_{4}{ }^{+}$265.0871, found 265.0869. $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}} 45.86$ ($c=1.34$ in CHCl_{3}). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [n-hexane $/ i-\mathrm{PrOH}=90 / 10,1 \mathrm{~mL} / \mathrm{min}$], $\lambda=210 \mathrm{~nm}, t_{\text {major }}$ $=9.71 \mathrm{~min}, t_{\text {minor }}=8.94 \mathrm{~min}, \mathbf{e e}=\mathbf{9 3 \%}$. The diastereomeric ratio was determined by NMR $\boldsymbol{d r}>\mathbf{2 0 : 1}$.

8c
8c was obtained as a white solid 11 mg in 20% yield for three steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=10 / 1-5 / 1$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.00(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=$ $8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{dd}, J=7.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{q}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{q}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.56-3.47(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{ddd}, J=13.2,3.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{ddd}, J=$ 13.1, 4.1, $2.3 \mathrm{~Hz}, 1 \mathrm{H}$), $1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $162.1,152.5,141.8,133.2,127.9,124.1,121.4,117.0,114.5,92.2,61.5,26.0,24.7$, 14.2 ppm . HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{ClO}_{4}{ }^{+} 281.0575$, found 281.0579. [$\left.\boldsymbol{\alpha}\right]_{\mathbf{D}}{ }^{\mathbf{2 0}}$ 56.36 ($c=0.51$ in CHCl_{3}). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [n-hexane $/ i-\mathrm{PrOH}=80 / 20,1 \mathrm{~mL} / \mathrm{min}$], $\lambda=$ $204 \mathrm{~nm}, t_{\text {major }}=7.28 \mathrm{~min}, t_{\text {minor }}=6.83 \mathrm{~min}, \mathbf{e e}=\mathbf{8 5 \%}$. The diastereomeric ratio was determined by NMR $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.

8d
$\mathbf{8 d}$ was obtained as a colorless oil 12 mg in 21% yield for three steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=10 / 1$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.13-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{dd}, J=7.1,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.15(\mathrm{dd}, J=3.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.54-3.46(\mathrm{~m}, 1 \mathrm{H})$, 2.11 (ddd, $J=13.2,3.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{ddd}, J=13.2,4.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.1,150.5,142.1,139.7,128.0$, 127.0, 125.9, 117.9, 114.2, 92.3, 61.5, 26.3, 24.5, 14.2 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{ClO}_{4}{ }^{+}$281.0575, found 281.0570. $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}} 164.42\left(c=0.47\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column [n-hexane $/ i$-PrOH $=80 / 20,1 \mathrm{~mL} / \mathrm{min}$], $\lambda=230 \mathrm{~nm}, t_{\text {major }}=7.39 \mathrm{~min}, t_{\text {minor }}=$ $6.54 \mathrm{~min}, \mathbf{e e}=\mathbf{9 1 \%}$. The diastereomeric ratio was determined by NMR $\boldsymbol{d r}>\mathbf{2 0 : 1}$.

8e
8e was obtained as a colorless oil 26.4 mg in 48% yield for three steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=10 / 1$). ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.86(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{dd}, J=8.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=$ $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{dd}, J=7.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{q}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.75 (s, 3H), 3.47 (ddd, $J=7.2,4.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), $2.15-1.97$ (m, 2H), 1.29 (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.4,153.8,145.6,142.0$, 126.1, 117.1, 114.6, 113.4, 112.4, $92.4,61.4,55.8,26.8,24.8,14.2 \mathrm{ppm}$. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{5}{ }^{+}$277.1071, found 277.1067. $[\alpha]_{\mathbf{D}}{ }^{20} 136.94$ ($c=1.10$ in CHCl_{3}). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column [n-hexane $/ i$-PrOH $=80 / 20,1 \mathrm{~mL} / \mathrm{min}$], $\lambda=230 \mathrm{~nm}, t_{\text {major }}=8.84$ $\min , t_{\text {minor }}=7.74 \mathrm{~min}$, ee $=\mathbf{9 2 \%}$. The diastereomeric ratio was determined by NMR $d r>20: 1$.

8f was obtained as a colorless oil 28.4 mg in 44% yield for three steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=20 / 1-15 / 1$). ${ }^{1} \mathbf{H} \mathbf{N M R}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.14(\mathrm{dd}, J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{dd}, J=7.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{dd}, J=3.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-$ 4.16 (m, 2H), 4.00 (ddd, $J=7.3,4.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.12$ (ddd, $J=13.2,3.3,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.01(\mathrm{ddd}, J=13.2,4.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 162.1,153.1,142.6,128.6,125.6,124.9,122.3,116.0,113.1$, 92.3, 61.5, 25.9, 24.6, 14.2 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{BrO}_{4}{ }^{+}$325.0070, found 325.0071. $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}} 149.82\left(c=1.08\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column [n-hexane $/ i$-PrOH $=$ $90 / 10,1 \mathrm{~mL} / \mathrm{min}], \lambda=204 \mathrm{~nm}, t_{\text {major }}=9.35 \mathrm{~min}, t_{\text {minor }}=8.43 \mathrm{~min}$, ee $=\mathbf{9 0 \%}$. The diastereomeric ratio was determined by NMR $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.

F. Other reactions

F1. Synthesis of 13

A glass vial equipped with a magnetic stirring bar was charged with ethyl 2-hydroxy-3-nitropropanoate 6 ($0.20 \mathrm{mmol}, 1.0$ equiv.), cinnamaldehyde 9 ($0.24 \mathrm{mmol}, 1.2$ equiv.), $\mathbf{3}$ ($0.04 \mathrm{mmol}, 0.2$ equiv.) and $\mathbf{3}^{\prime \prime}$ ($0.04 \mathrm{mmol}, 0.2$ equiv.) in $\mathrm{CHCl}_{3}(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The resulting reaction mixture was kept under vigorous stirring until the consumption of $\mathbf{6}$ (monitored by TLC analysis). After completion of the reaction, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=3 / 1$ to $1.5 / 1$) to afford $\mathbf{1 0}$ as intermediate.

Compound 10 (1.0 equiv.) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.10 mmol in 0.5 mL). Imidazole (3.0 equiv.) and TBSCl (2.0 equiv.) were added to the reaction mixture at $0^{\circ} \mathrm{C}$ and the reaction was kept at $25^{\circ} \mathrm{C}$ until the consumption of $\mathbf{1 0}$. After full conversion of the second step, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=10 / 1$) to give the intermediate. The intermediate (1.0 equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.10 mmol in 0.5 mL) at $25^{\circ} \mathrm{C}$ and DBU (1.2 equiv.) was added to the reaction mixture. After full conversion of the third step, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=$ 100/1) to give product 11.

Hydrogenate a solution of $11(57 \mathrm{mg}, 0.16 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ at atmospheric pressure using $10 \% \mathrm{Pd} / \mathrm{C}(6 \mathrm{mg})$ as the catalyst. And the reaction mixture was stirred at $25^{\circ} \mathrm{C}$. After completion of the reaction, filter the catalyst and the solvent was
removed under vacuum. The product was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate $=100 / 1-60 / 1$) to afford the desired product 12. To a solution of $\mathbf{1 2}$ ($0.065 \mathrm{mmol}, 1.0$ equiv.) and triethylsilane ($0.20 \mathrm{mmol}, 3.0$ equiv.) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.1 \mathrm{mmol}, 1.5$ equiv. $)$ at $0{ }^{\circ} \mathrm{C}$. The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . The product was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate $=10 / 1$) to afford the desired product $\mathbf{1 3}$ for NMR and HPLC analysis.

13 was obtained as a colorless oil 12 mg in 26% yield for five steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=10 / 1$). ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{dd}, J=10.3,4.6 \mathrm{~Hz}, 3 \mathrm{H}), 4.33-4.19(\mathrm{~m}$, $3 \mathrm{H}), 4.11(\mathrm{dd}, J=11.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{td}, J=11.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{tt}, J=12.1$, $3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{ddt}, J=13.1,3.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{dtd}, J=16.4,12.1,4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.82-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.3,144.7,128.7,126.7,126.7,76.6,68.3,61.2,41.5,36.3,32.6,14.2 \mathrm{ppm}$. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{3}{ }^{+}$235.1329, found 235.1326. $[\alpha]_{\mathbf{D}}{ }^{20}-83.28(c=$ 0.42 in CHCl_{3}). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [n-hexane $/ i$ - $\mathrm{PrOH}=90 / 10,1 \mathrm{~mL} / \mathrm{min}$], $\lambda=210 \mathrm{~nm}, t_{\text {major }}=$ $19.83 \mathrm{~min}, t_{\text {minor }}=17.89 \mathrm{~min}, \mathbf{e e}=\mathbf{9 5 \%}$. The diastereomeric ratio was determined by NMR $\boldsymbol{d r} \boldsymbol{>} \mathbf{> 2 0 : 1}$.

F2. Synthesis of 16

A glass vial equipped with a magnetic stirring bar was charged with (2-nitroethyl) (phenyl) sulfane 14 ($0.24 \mathrm{mmol}, 1.2$ equiv.), 2-hydroxycinnamaldehyde 1a (0.20 mmol, 1.0 equiv.), $\mathbf{3}$ ($0.04 \mathrm{mmol}, 0.2$ equiv.) and $\mathbf{3}^{\prime \prime}$ ($0.04 \mathrm{mmol}, 0.2$ equiv.) in CHCl_{3} $(0.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting reaction mixture was kept under vigorous stirring until the consumption of $\mathbf{1 a}$ (monitored by TLC analysis). After completion of the reaction, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=8 / 1$ to $5 / 1$) to afford $\mathbf{1 5}$ as intermediate.

Then, compound 15 (1.0 equiv.) was dissolved in toluene (0.10 mmol in 1.0 mL). AIBN (1.0 equiv.), $\mathrm{Bu}_{3} \mathrm{SnH}$ (3.5 equiv.) were added to the reaction mixture and the resulting reaction mixture was kept under vigorous stirring at $110{ }^{\circ} \mathrm{C}$ until the consumption of $\mathbf{1 5}$ (monitored by TLC analysis).After full conversion of the second step, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=20 / 1$) to get the intermediate. At last, the intermediate (1.0 equiv.) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.10 mmol in 0.5 mL) at $25^{\circ} \mathrm{C}$. Celite and PCC (3.0 equiv.) were added to the reaction mixture. After full conversion of the third step, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=$ 25/1) to give product 16 for NMR and HPLC analysis.

16
16 was obtained as a colorless oil 6.8 mg in 20% yield for three steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=25 / 1) .{ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29(\mathrm{td}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{td}, J=$ $7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{ddd}, J=17.1,10.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.24$ (d, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=$ $15.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{dd}, J=15.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.7,151.4,136.8,128.8,127.7,124.6,124.6,117.8,117.1,38.8,34.9 \mathrm{ppm}$. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{2}{ }^{+}$175.0754, found 175.0757. $[\alpha]_{\mathrm{D}}{ }^{20}-57.42(c=$ 0.56 in CHCl_{3}). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak AD-H column [n-hexane $/ i-\mathrm{PrOH}=98 / 2,1 \mathrm{~mL} / \mathrm{min}$], $\lambda=204 \mathrm{~nm}, t_{\text {major }}=$ $10.18 \mathrm{~min}, t_{\text {minor }}=9.35 \mathrm{~min}, \mathbf{e e}=\mathbf{9 7 \%}$. The diastereomeric ratio was determined by NMR $d r>20: 1$.

F3. Synthesis of 19

A glass vial equipped with a magnetic stirring bar was charged with 5-bromo-2-(2-nitroethyl)-1H-indole $\mathbf{1 7}$ ($0.20 \mathrm{mmol}, 1.0$ equiv.), 2-hydroxycinnamaldehyde 1a (0.24 mmol, 1.2 equiv.), $\mathbf{3}$ ($0.04 \mathrm{mmol}, 0.2$ equiv.) and $\mathbf{3}^{\prime \prime}$ ($0.04 \mathrm{mmol}, 0.2$ equiv.) in CHCl_{3} $(0.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting reaction mixture was kept under vigorous stirring until the consumption of $\mathbf{1 7}$ (monitored by TLC analysis). After completion of the reaction, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=3 / 1$ to $2 / 1$) to afford \mathbf{I} as intermediate. Then, compound \mathbf{I} (1.0 equiv.) was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.10 \mathrm{mmol}$ in 0.5 mL$)$ at $25^{\circ} \mathrm{C}$ and p - $\mathrm{TsOH}(1.0$ equiv.) was added to the reaction mixture. After full conversion of the second step, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=10 / 1$) to give product $\mathbf{1 9}$ for NMR and HPLC analysis.

19 was obtained as a yellow solid 15.4 mg in 19% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=10 / 1) .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J=8.6,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.15 (dd, $J=12.0,5.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{dd}, J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.91-4.80(\mathrm{~m}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{dd}, J=15.7,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{dd}, J=15.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.88$ (ddd, $J=14.2,6.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 154.7, 154.2, 133.2, 130.5, 130.1, 129.6, 129.5, 125.5, 120.6, 120.4, 118.1, 117.0, 113.9, 112.1, 86.8, 65.1, 37.4, 30.9, 28.2 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{BrN}_{2} \mathrm{O}_{3}{ }^{+}$399.0339, found 399.0341. [$\left.\boldsymbol{\alpha}\right]_{\mathbf{D}}{ }^{\mathbf{2 0}} 159.63$ ($c=0.67$ in CHCl_{3}). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [n-hexane $/ i$-PrOH $=90 / 10,1 \mathrm{~mL} / \mathrm{min}], \lambda=230 \mathrm{~nm}, t_{\text {major }}=7.55 \mathrm{~min}, t_{\text {minor }}=$ $6.43 \mathrm{~min}, \mathbf{e e}=\mathbf{9 8 \%}$. The diastereomeric ratio was determined by NMR $\boldsymbol{d r}>\mathbf{2 0}: \mathbf{1}$.

F4. Synthesis of 20

A glass vial equipped with a magnetic stirring bar was charged with 5-bromo-2-(2-nitroethyl)-1H-indole $\mathbf{1 8}$ ($0.20 \mathrm{mmol}, 1.0$ equiv.), 2-hydroxycinnamaldehyde 1a (0.24 mmol, 1.2 equiv.), $\mathbf{3}$ ($0.04 \mathrm{mmol}, 0.2$ equiv.) and $\mathbf{3}^{\prime \prime}$ ($0.04 \mathrm{mmol}, 0.2$ equiv.) in CHCl_{3} $(0.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting reaction mixture was kept under vigorous stirring until the consumption of $\mathbf{1 8}$ (monitored by TLC analysis). After completion of the reaction, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=5 / 1$ to $3 / 1$) to afford II as intermediate. Then, compound II (1.0 equiv.) was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.10 \mathrm{mmol}$ in 0.5 mL$)$ at $25{ }^{\circ} \mathrm{C}$ and $p-\mathrm{TsOH}(1.0$ equiv.) was added to the reaction mixture. After full conversion of the second step, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=40 / 1$) to give product $\mathbf{2 0}$ for NMR and HPLC analysis.

20 was obtained as a yellow solid 17.8 mg in 27% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=40 / 1) .{ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.14-7.04(\mathrm{~m}, 2 \mathrm{H})$, $6.90(\mathrm{dd}, J=10.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H})$, 5.14 (ddd, $J=10.6,5.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.62(\mathrm{dd}, J=15.2,10.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.52 (dd, $J=15.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.98$ (d, $J=15.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.69 (ddd, $J=$ 15.2, $6.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.8,137.1,132.7$, $129.4,128.7,126.4,123.4,122.8,121.7,119.5,118.3,117.7,109.3,107.5,92.0,67.5$, 35.1, 30.2, 25.5, 25.3 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}$335.1390, found 335.1393. $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}} 151.39$ ($c=0.83$ in CHCl_{3}). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [n-hexane $/ i-\mathrm{PrOH}=90 / 10,1$ $\mathrm{mL} / \mathrm{min}], \lambda=230 \mathrm{~nm}, t_{\text {major }}=10.39 \mathrm{~min}, t_{\text {minor }}=9.61 \mathrm{~min}$, $\mathbf{e e}=\mathbf{9 8 \%}$. The diastereomeric ratio was determined by NMR $\boldsymbol{d r}>\mathbf{2 0}: \mathbf{1}$.

G. Synthetic transformation

(2R,2'S,6'S)-4'H,6'H-spiro[pyrrolidine-2,5'-[2,6]methanobenzo[d][1,3]dioxocin]-5-one (22)

To a solution of $\mathbf{5 f}(44 \mathrm{mg}, 0.2 \mathrm{mmol})$ and ethyl acrylate ($43 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$) in anhydrous $\mathrm{MeCN}(1.0 \mathrm{~mL})$ was added tetramethylguanidine ($25 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) at room temperature. The reaction was stirred at $40^{\circ} \mathrm{C}$ for 24 h before the solvent was removed under vacuum. The product was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate $=15 / 1$) to afford the desired product 21 as a colorless oil ($52 \mathrm{mg}, 81 \%$ yield). To a suspension of $21(52 \mathrm{mg}, 0.162 \mathrm{mmol})$ and $\mathrm{NiCl} \cdot 6 \mathrm{H}_{2} \mathrm{O}(46 \mathrm{mg}, 0.19 \mathrm{mmol})$ in methanol $(1.5 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(92 \mathrm{mg}, 2.43$ mmol) at $0^{\circ} \mathrm{C}$ and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h , after which the mixture was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ at $0{ }^{\circ} \mathrm{C}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated. The product was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate $=2 / 1$ to $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=20 / 1\right)$ to afford the desired product 22 as a white solid ($39.5 \mathrm{mg}, 99 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24(\mathrm{t}, J=7.7 \mathrm{~Hz}$), 7.05 (d, $J=7.2 \mathrm{~Hz}), 6.92(\mathrm{t}, J=7.8 \mathrm{~Hz}), 5.53(\mathrm{~s}), 5.20(\mathrm{~s}), 3.42(\mathrm{~d}, J=11.8 \mathrm{~Hz}), 3.31(\mathrm{~d}, J$ $=11.7 \mathrm{~Hz}), 2.86(\mathrm{~s}), 2.56-2.42(\mathrm{~m}), 2.28(\mathrm{~d}, J=13.4 \mathrm{~Hz}), 2.11-2.01(\mathrm{~m}), 1.92(\mathrm{~d}, J$ $=13.1 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.4,155.0,129.5,129.2,122.3$, 121.2, 116.0, 91.7, 64.8, 59.0, 40.0, 30.2, 29.8, 26.3 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{3}{ }^{+}$246.1125, found 246.1121. $[\alpha]_{\mathbf{D}}{ }^{20}-36.86\left(c=1.67\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak AD-H column $[n$-hexane $/ i$-PrOH $=80 / 20,1 \mathrm{~mL} / \mathrm{min}], \lambda=210 \mathrm{~nm}, t_{\text {major }}=9.93 \mathrm{~min}, t_{\text {minor }}=$ $9.11 \mathrm{~min}, \mathbf{e e}=\mathbf{8 9 \%}$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR, $\boldsymbol{d r} \boldsymbol{>} \mathbf{2 0} \mathbf{2} \mathbf{1}$.

(2'R,6'S)-spiro[cyclopentane-1,4'-[2,6]methanobenzo[d][1,3]dioxocin]-5'(6'H)-on

 (23)

To a suspension of $\mathbf{5 d}(34.6 \mathrm{mg}, 0.12 \mathrm{mmol})$ and $\mathrm{KOH}(8.4 \mathrm{mg}, 0.14 \mathrm{mmol})$ in methanol (0.5 mL) was added $\mathrm{KMnO}_{4}(15.8 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 minutes, after which the mixture was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ at $0{ }^{\circ} \mathrm{C}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated. The residue was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate $=30 / 1$) to afford the desired product 23 as a white solid ($20.8 \mathrm{mg}, 71 \%$ yield). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.12(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.83(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 1 \mathrm{H}), 2.46(\mathrm{dt}, J=13.6,2.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.33 (ddd, $J=13.6,3.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.65(\mathrm{~m}, 4 \mathrm{H}), 1.63-$ 1.47 (m, 3H) ppm. ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.1,152.3,129.6,128.9,121.6$, 118.3, 116.9, 91.6, 89.3, 43.5, 41.9, 41.0, 26.5, 25.5, 25.3 ppm . HRMS: [M-H] calcd. For $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{3}{ }^{+}$245.1172, found 245.1178. $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{20}-242.99\left(c=0.74\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak ChiralMJ (2) column [n-hexane $/ i-\mathrm{PrOH}=90 / 10,1 \mathrm{~mL} / \mathrm{min}], \lambda=210 \mathrm{~nm}, t_{\text {major }}=9.66 \mathrm{~min}$, $t_{\text {minor }}=7.66 \mathrm{~min}, \mathbf{e e}=\mathbf{8 8 \%}$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR, $\boldsymbol{d} \boldsymbol{r}$ >20 :1.
(2'R,5'S,6'S)-5'-nitro-7'-phenyl-5',6'-dihydrospiro[cyclopentane-1,4'-

[2,6]methanobenzo [d] [1,3]dioxocine] (24)

In a glass vial equipped with a magnetic stirring bar, the $\mathbf{5 r}(35.4 \mathrm{mg}, 0.1 \mathrm{mmol})$, phenylboronic acid ($18.3 \mathrm{mg}, 0.15 \mathrm{mmol}$) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5.8 \mathrm{mg}, 0.005 \mathrm{mmol})$ in DME $(0.5 \mathrm{~mL})$ were added. Aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.52 \mathrm{mmol}, 2 \mathrm{M}, 0.26 \mathrm{~mL})$ was added under nitrogen atmosphere. The resulting mixture was stirred at room temperature for 15 min and then at $90^{\circ} \mathrm{C}$ for another 12 h . After being cooled to room temperature, the solvent was removed under vacuum and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated. The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=100 / 1$) to afford the desired product 24 as a white solid ($16.7 \mathrm{mg}, 48 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.33$ - $7.23(\mathrm{~m}, 3 \mathrm{H}), 6.90(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 1 \mathrm{H}), 3.57$ (s, 1H), $2.82(\mathrm{dt}, J=13.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.59$ $-1.44(\mathrm{~m}, 3 \mathrm{H}), 1.17-1.04(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.7$, 142.4, 139.1, 129.1, 128.7, 128.7, 127.9, 122.6, 120.2, 116.0, 92.3, 90.8, 80.6, 40.6, 39.6, 28.7, 25.0, 22.7, 22.7 ppm. HRMS: [M-H] calcd. For $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NO}_{4}{ }^{-}$350.1398, found 350.1401. $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}} 106.14\left(c=0.83\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [n-hexane $/ i$ - $\mathrm{PrOH}=$ $98 / 2,1 \mathrm{~mL} / \mathrm{min}], \lambda=204 \mathrm{~nm}, t_{\text {major }}=5.94 \mathrm{~min}, t_{\text {minor }}=5.34 \mathrm{~min}, \mathbf{e e}=\mathbf{9 2 \%}$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR, $\boldsymbol{d} \boldsymbol{r}=\mathbf{1 2 . 5}: 1$.

The absolute configuration of the nitro stereocenter in compound $\mathbf{2 4}$ was confirmed by the following method. First, following the general procedure, product $\mathbf{5 v}$ was obtained by the reaction of $\mathbf{1 v}$ and $\mathbf{2 d}$. It was found that compounds $\mathbf{5 v}$ and $\mathbf{2 4}$ showed different TLC behaviour, which indicated that these two compounds are diastereoisomers. Then, the relative configuration of $\mathbf{5 v}$ was confirmed by NOESY, which was matched with the configuration of $\mathbf{5 k}$.

The NOSEY spectrum of $5 \mathrm{v}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The NOSEY spectrum of $24\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right)$

(2'S,6'S)-5',6'-dihydrospiro[cyclohexane-1,4'-[2,6]methanobenzo[d][1,3]dioxocine] (25)

To a solution of $\mathbf{5 a}(40 \mathrm{mg}, 0.14 \mathrm{mmol})$ and Tributyltin Hydride $(48 \mu \mathrm{~L}, 0.18 \mathrm{mmol})$ in toluene (1 mL) was added AIBN $(4.5 \mathrm{mg}, 0.028 \mathrm{mmol})$ at room temperature. The reaction was stirred at $80^{\circ} \mathrm{C}$ for 7 hours before the solvent was removed under vacuum. The product was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate $=100 / 1-60 / 1$) to afford the desired product $\mathbf{2 5}$ as a brown oil (20 mg, 59\% yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24-7.18(\mathrm{~m}, 1 \mathrm{H})$, 7.15 (dd, $J=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.85(\mathrm{~m}, 2 \mathrm{H}), 5.92(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.69$ (s, $1 \mathrm{H}), 2.41$ (dt, $J=13.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{ddd}, J=13.7,3.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{dd}, J$ $=14.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.70-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.58-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.32(\mathrm{~m}, 2 \mathrm{H})$, $1.31-1.04(\mathrm{~m}, 3 \mathrm{H}), 0.92-0.79(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.9$, $152.3,129.6,129.0,121.5,118.2,117.1,91.4,81.0,43.2,36.9,35.7,25.8,24.8,20.9$, 20.6 ppm . HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{2}{ }^{+}$245.1536, found 245.1530. $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{\mathbf{2 0}}-$ 144.38 ($c=1.48$ in CHCl_{3}). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column [n-hexane $/ i$ - $\mathrm{PrOH}=98 / 2,1 \mathrm{~mL} / \mathrm{min}$], $\lambda=$ $204 \mathrm{~nm}, t_{\text {major }}=6.67 \mathrm{~min}, t_{\text {minor }}=5.77 \mathrm{~min}, \mathbf{e e}=\mathbf{8 5 \%}$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR, $\boldsymbol{d r}>\mathbf{2 0}: \mathbf{1}$.
ethyl (1aR,3R,9S,9aR)-9,9a-dihydro-1aH-3,9-methanobenzo[d]oxireno[2,3$g][1,3]$ dioxocine-1a-carboxylate (26)

KF ($35 \mathrm{mg}, 0.6 \mathrm{mmol}$) was added to a solution of m-chloroperoxybenzoic acid (62 mg , $0.30 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{ml})$ and the suspension was maintained at room temperatme with stirring. After $30 \mathrm{~min} \mathbf{8 a}(30 \mathrm{mg}, 0.12 \mathrm{mmol})$ was added and the mixtme was stirred for 5 days. The insoluble complexes were then filtered off, and the solvent was removed under vacuum. The product was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate $=10 / 1$) to afford the desired product 26 as a white solid ($14 \mathrm{mg}, 44 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25(\mathrm{td}, J=8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.92(\mathrm{~m}, 2 \mathrm{H})$, $5.64(\mathrm{~s}, 1 \mathrm{H}), 4.25-4.15(\mathrm{~m}, 2 \mathrm{H}), 3.73$ (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.58-2.48(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.6,152.3,129.5,128.3,121.4,121.3,117.0,91.4,77.3,62.7$, 61.5, 28.2, 23.4, 14.0 ppm. HRMS: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. For $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NaO}_{5}{ }^{+}$285.0733, found 285.0729. $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{20} 62.41\left(c=1.08\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak OD-H column [n-hexane $/ i$ - PrOH $=80 / 20,1 \mathrm{~mL} / \mathrm{min}], \lambda=210 \mathrm{~nm}, t_{\text {major }}=10.12 \mathrm{~min}, t_{\text {minor }}=9.27 \mathrm{~min}, \mathbf{e e}=\mathbf{8 9 \%}$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR, $\boldsymbol{d r}>\mathbf{2 0}: 1$.

2-((9S,10R)-10-nitro-6-oxaspiro[4.5]decan-9-yl)phenol (27)

To a solution of $\mathbf{4 d}(29.3 \mathrm{mg}, 0.1 \mathrm{mmol})$ and triethylsilane $(47.8 \mu \mathrm{~L}, 0.3 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was added $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(18.5 \mu \mathrm{~L}, 0.15 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 1 h before the solvent was removed under vacuum. The product was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate $=5 / 1$) to afford the desired product 27 as a white solid (17.5 mg , 63% yield). ${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 9.79(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.94$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.81(\mathrm{~m}, 1 \mathrm{H}), 6.75(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=3.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.94(\mathrm{dd}, J=11.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{td}, J=12.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dt}, J=13.5$, $3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 1 \mathrm{H}), 2.69(\mathrm{qd}, J=13.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.22(\mathrm{~m}, 1 \mathrm{H}), 1.81-$ $1.71(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.57(\mathrm{~m}, 4 \mathrm{H}), 1.54-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$. ${ }^{13}$ C NMR ($\left.125 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 154.8,128.1,126.6,125.0,119.1,114.7,89.8,83.0$, 61.0, 37.2, 33.8, 32.1, 23.8, 22.6, 22.3 ppm . HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{4}{ }^{+}$ 278.1387, found 278.1392. $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}} 117.72(c=0.58$ in MeOH$)$. The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [n hexane $/ i-\mathrm{PrOH}=90 / 10,1 \mathrm{~mL} / \mathrm{min}], \lambda=210 \mathrm{~nm}, t_{\text {major }}=7.82 \mathrm{~min}, t_{\text {minor }}=6.93 \mathrm{~min}$, ee $=\mathbf{9 7 \%}$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR, $\boldsymbol{d r}>\mathbf{2 0}: \mathbf{1}$.

H. Scale-up synthesis of 5d

A glass vial equipped with a magnetic stirring bar was charged with 1nitromethylcycloalcohol 2d (290.3 mg, $2 \mathrm{mmol}, 1.0$ equiv.), 2hydroxycinnamaldehyde $\mathbf{1 a}(356 \mathrm{mg}, 2.4 \mathrm{mmol}, 1.2$ equiv.), $\mathbf{3}(130 \mathrm{mg}, 0.4 \mathrm{mmol}, 0.2$ equiv.) and $3^{\prime \prime}\left(263 \mathrm{mg}, 0.4 \mathrm{mmol}, 0.2\right.$ equiv.) in $\mathrm{CHCl}_{3}(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting reaction mixture was kept under vigorous stirring until the consumption of $\mathbf{2 d}$ (monitored by TLC analysis). After completion of the reaction, the reaction mixture was concentrated and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=4 / 1$ to $3 / 1$) to afford $\mathbf{4 d}$ as a red solid (586 mg). Then the second step was performed. Compound 4 d ($586 \mathrm{mg}, 2 \mathrm{mmol}, 1.0$ equiv.) was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ and p - TsOH (0.4 equiv.) was added to the reaction mixture. After full conversion of the second step, the reaction mixture was concentrated and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=60 / 1$ to $50 / 1)$ to give product $\mathbf{5 d}(457 \mathrm{mg}, 83 \%$ yield over two steps, 93% ee, $d r>20: 1$).

I. NMR analysis and computational studies for the reaction

pathway

NMR analysis

${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO) $\delta 9.82(\mathrm{~s}, 1 \mathrm{H}), 9.79(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$,
$6.92(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J$
$=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=10.1$, $3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 1 \mathrm{H}), 1.61-1.33(\mathrm{~m}, 11 \mathrm{H}) \mathrm{ppm}$. MS: $[\mathrm{M}-\mathrm{H}]^{-}$calcd. For $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{5}{ }^{-}$306.13, found 306.11.

Computational details

In order to investigate the intermediates which formed through catalyzed Michael addition, the energies of different proposed structures were calculated with DFT computations. The DFT calculations were performed with Gaussian 09. Geometry optimizations were carried out at the B3LYP-D3 level of theory with the $6-31 \mathrm{G}(\mathrm{d})$ basis set. Vibrational frequencies were computed at the same level to verify that the optimized structures are local minimums and to evaluate zero-point vibrational energies (ZPVE) and thermal corrections at 298 K . Solvent effects in chloroform were evaluated at the more accurate B3LYP-D3/6-311+G(d,p) level with the SMD model.

Figure S1. Lowest energy geometry of ($2 S, 4 R, 5 R$)-4-(2-hydroxyphenyl)-5-nitro-1oxaspiro[5.5] undecan-2-ol (4a-S) $G($ chloroform $)=-1053.197097$ Hartree

C	3.717989	-0.289194	-1.301038
C	2.224055	-0.625093	-1.185718
C	1.653035	-0.143962	0.167837
C	2.445075	-0.790314	1.317717
C	3.948328	-0.492533	1.211926
C	4.513906	-0.920385	-0.149628
H	2.087842	-1.709676	-1.253150
H	1.666982	-0.201663	-2.027212
H	3.847601	0.800797	-1.280979
H	4.097616	-0.639205	-2.268562

H	2.270471	-1.872237	1.298694
H	2.047734	-0.415600	2.267788
H	4.479026	-1.002562	2.025027
H	4.104154	0.583853	1.350874
H	4.461088	-2.015763	-0.237659
H	5.574290	-0.648703	-0.224364
C	0.120809	-0.398641	0.338916
H	-0.136683	-0.218538	1.380877
C	-0.367265	1.950734	-0.382958
C	-0.752591	0.471603	-0.584950
H	-0.514103	0.191359	-1.615662
C	-2.236756	0.213959	-0.387146
C	-3.005795	-0.283923	-1.443983
C	-2.888668	0.446705	0.838838
C	-4.372660	-0.532030	-1.314051
C	-4.256930	0.201801	0.981412
C	-4.998968	-0.285292	-0.093559
H	-4.938122	-0.920380	-2.155588
H	-4.736415	0.392258	1.940206
H	-6.061642	-0.473931	0.030392
O	-0.368151	-2.246543	-1.038153
O	-0.204951	-2.586164	1.108115
N	-0.186080	-1.861274	0.116257
H	-2.510210	-0.492025	-2.388275
O	-2.134258	0.916078	1.887942
H	-2.695680	0.991448	2.674823
H	-0.638775	2.286474	0.620524
O	1.837703	1.270578	0.352848
C	1.132193	2.137482	-0.537029
H	1.452613	1.923985	-1.571994

H	-0.897681	2.575037	-1.109336
O	1.452982	3.447124	-0.177736
H	2.421306	3.519904	-0.193861

Figure S2. Lowest energy geometry of ($2 R, 4 R, 5 R$)-4-(2-hydroxyphenyl)-5-nitro-1-oxaspiro[5.5]undecan-2-ol (4a-R) $G($ chloroform $)=-1053.196027$ Hartree

C
C

C

C

C

C
H
H
H
H
H
H

H

H
H
H
C
H

C
-3.750115 $0.133736 \quad 1.191867$
$-2.248523 \quad-0.189833 \quad 1.185090$
$-1.661712 \quad-0.109200 \quad-0.242456$
$-2.443527 \quad-1.053495 \quad-1.174710$
$-3.950245 \quad-0.754227 \quad-1.166053$
-4.525666 $-0.803490 \quad 0.256008$
-2.107519 $-1.210455 \quad 1.558039$
-1.707308 $0.475631 \quad 1.859186$
-3.904820 $1.171452 \quad 0.867121$
-4.133296 $0.060296 \quad 2.216811$
$-2.263134 \quad-2.086001 \quad-0.854609$
$-2.040424 \quad-0.954772 \quad-2.189117$
$-4.467356 \quad-1.471992 \quad-1.814544$
-4.115104 $0.242459-1.592535$
-4.457820 $\begin{array}{lll}-1.831432 & 0.642178\end{array}$
$-5.590697 \quad-0.539675 \quad 0.245776$
$-0.133326 \quad-0.421938 \quad-0.312999$
$\begin{array}{lrr}0.132368 & -0.595144 & -1.354567 \\ 0.418100 & 1.999107 & -0.450694\end{array}$

H	0.968488	2.828710	0.003044
C	0.750766	0.686804	0.284529
H	0.471270	0.808519	1.333225
C	2.229992	0.344452	0.243442
C	2.922031	0.099443	-0.957244
C	2.955099	0.253629	1.436229
C	4.284075	-0.212508	-0.951081
C	4.315507	-0.054817	1.455863
H	2.428294	0.418190	2.372002
C	4.981151	-0.288984	0.253742
H	4.794352	-0.396730	-1.895166
H	4.845496	-0.119275	2.401265
H	6.039303	-0.534985	0.246463
O	0.135450	-2.749997	-0.331695
O	0.354338	-1.733217	1.582888
N	0.150570	-1.741136	0.370525
O	2.213931	0.175740	-2.135093
H	2.794410	-0.076068	-2.869731
C	-1.073341	2.293214	-0.384337
H	-1.343457	3.091616	-1.089208
H	0.713750	1.925453	-1.500070
O	-1.857841	1.199459	-0.829311
O	-1.371050	2.686778	0.941461
H	-2.331008	2.820687	0.991598

Figure S3. Lowest energy geometry of ($2 S, 4 R$)-4-((R)-(1-hydroxycyclohexyl)(nitro)
methyl)chroman-2-ol (4a'-S)
$G($ chloroform $)=-1053.19198$ Hartree

C

C

C

C

C

C

H
H
H

H

O

C
H
C
H
H
C
C

H

C
C
$2.242033-2.320264 \quad 1.810192$
$1.462917 \quad-1.177001 \quad 1.649400$
$1.604744 \quad-0.330322 \quad 0.541272$
$2.619264-0.641226 \quad-0.380979$
$3.400680 \quad-1.791794 \quad-0.236392$
$3.206092 \quad-2.637142 \quad 0.850017$
$2.096748 \quad-2.957367 \quad 2.677517$
$0.722407 \quad-0.943850 \quad 2.409089$
$4.159884-1.991354 \quad-0.986152$
$3.816164 \quad-3.529842 \quad 0.955645$
$2.912470 \quad 0.140413-1.474307$
$0.760240 \quad 0.926907 \quad 0.346174$
$1.1584951 .674927 \quad 1.045193$
$0.937199 \quad 1.487335 \quad-1.075868$
$0.392997 \quad 0.881958 \quad-1.801330$
$0.549390 \quad 2.507452 \quad-1.134989$
$2.405181 \quad 1.476025 \quad-1.451660$
-0.728588 $0.733762 \quad 0.759585$
$-0.756211 \quad 0.261460 \quad 1.740080$
$-1.732581 \quad-0.025859-0.164468$
$\begin{array}{lll}-3.117440 & -0.074474 & 0.534488\end{array}$

C	-1.232790	-1.460956	-0.419373
C	-4.132499	-0.888694	-0.278764
H	-2.999788	-0.520829	1.532309
H	-3.490870	0.946387	0.680864
C	-2.251520	-2.276984	-1.228977
H	-0.276452	-1.421554	-0.947793
H	-1.042908	-1.951256	0.543470
C	-3.621806	-2.311589	-0.540228
H	-5.092339	-0.911686	0.251499
H	-4.302222	-0.380886	-1.235755
H	-1.864855	-3.293627	-1.370552
H	-2.352707	-1.827735	-2.223785
H	-3.536022	-2.848918	0.416719
H	-4.342442	-2.869119	-1.151253
O	-1.859116	0.576197	-1.450182
H	-2.036595	1.521957	-1.296339
O	-1.162433	2.522465	2.225661
O	-1.695458	2.817122	0.139238
N	-1.249984	2.132735	1.070486
H	2.561766	1.823681	-2.480197
	3.105478	2.266596	-0.524489
H	4.051142	2.192370	-0.731524

Figure S4. Lowest energy geometry of $(2 R, 4 R)-4-((R)-(1-h y d r o x y c y c l o h e x y l)(n i t r o) ~$ methyl)chroman-2-ol (4a'-R)

G (chloroform) $=-1053.189983$ Hartree			
C	2.216876	2.462476	-1.781613
C	1.446786	1.302913	-1.750601
C	1.596036	0.342143	-0.740425
C	2.608526	0.553582	0.212786
C	3.380703	1.720898	0.197634
C	3.176260	2.679236	-0.788016
H	2.069163	3.190940	-2.573263
H	0.707229	1.146596	-2.531716
H	4.138307	1.843200	0.965217
H	3.777782	3.583909	-0.793327
O	2.893372	-0.352271	1.198805
C	0.729372	-0.914822	-0.676588
H	1.022534	-1.538039	-1.534602
C	0.993554	-1.719000	0.610132
H	0.471607	-1.279468	1.460803
H	0.645965	-2.749632	0.500243
C	2.471556	-1.703496	0.930387
H	3.077557	-2.065132	0.079384
H	-0.782156	-0.613772	-0.921172
C	-0.668051	-0.006807	-1.821228
H	0.045759	0.182666	
H			

C	-3.103931	0.234366	-0.381681
C	-1.085767	1.415424	0.579776
C	-4.010862	0.968171	0.614814
H	-3.048523	0.804307	-1.320328
H	-3.534106	-0.744648	-0.624633
C	-1.999634	2.155081	1.568397
H	-0.097217	1.269228	1.022303
H	-0.944848	2.020922	-0.324322
C	-3.417372	2.326698	1.008754
H	-5.009568	1.091465	0.178510
H	-4.121835	0.345728	1.510780
H	-1.556427	3.130490	1.803333
H	-2.040780	1.584854	2.503647
H	-3.384061	2.979710	0.123175
H	-4.060785	2.825199	1.744264
O	-1.717420	-0.718634	1.383547
H	-1.965198	-1.625348	1.127334
O	2.692757	-2.449456	2.078866
H	-1.370114	-2.182856	-2.571443
N	-1.813073	-2.719828	-0.512315

J. NMR spectra and HPLC analyses

The ${ }^{1} \mathrm{H}$ NMR spectrum of $5 \mathrm{a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $5 \mathrm{a}\left(\mathbf{1 2 5} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 5a
Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \&	BC
1	7.280	11511239	49.825	BV
2	7.953	11592048	50.175	VB
		23103287	100.000	

The HPLC of chiral 5a

The HPLC of chiral 5a after recrystallization

The ${ }^{\mathbf{1}} \mathbf{H}$ NMR spectrum of $\mathbf{5 b} \mathbf{(5 0 0 ~} \mathbf{M H z}, \mathbf{C D C l}_{3}$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of $5 \mathrm{~b}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 5b
Chrom Type: Fixed WL Chromatogram, 210 nm

The HPLC of chiral 5b

Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm
Peak Quantitation: AREA
Calculation Method: AREA\&

No.	RT	Area	Area \&	BC
1	5.713	1486148	94.142	BB
2	6.240	92475	5.858	BB
		1578623	100.000	

The ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $\mathbf{5 c}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 c}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 5c

The HPLC of chiral 5 c

Chrom Type: Fixed WL Chromatogram, 210 nm

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 d}\left(500 \mathbf{M H z}, \mathbf{C D C l}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $5 \mathrm{~d}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 5d

Chrom Type: Fixed WL Chromatogram, 210 nm
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%	BC
1	7.433	562460	49.934	BV
2	7.873	563936	50.066	VB
	1126396	100.000		

The HPLC of chiral 5d

Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm
Peak Quantitation: AREA
Calculation Method: AREA\&

No.	RT	Area	Area \&	BC
1	7.400	3431592	96.446	BB
2	7.853	126443	3.554	BB
		3558035	100.000	

The HPLC of chiral 5d after recrystallization

The ${ }^{1} \mathrm{H}$ NMR spectrum of $5 \mathrm{e}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $5 \mathrm{e}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The NOSEY spectrum of $5 \mathrm{e}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 5 e

> Chrom Type: Fixed WL Chromatogram, 210 nm
> Chrom Type: Fixed WL Chromatogram, 210 nm
> Peak Quantitation: AREA
> Calculation Method: AREA\%

The HPLC of chiral 5e
Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area $\%$	BC
1	13.173	8027664	97.670	BV
2	14.040	191509	2.330	TBB
		8219173	100.000	

The ${ }^{1} \mathrm{H}$ NMR spectrum of $5 \mathrm{e}^{\mathbf{\prime}}\left(\mathbf{4 0 0} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $5 \mathrm{e}^{\boldsymbol{\prime}}\left(\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic $5 e^{\prime}$

The HPLC of chiral $5 \mathrm{e}^{\text {' }}$
Chrom Type: Fixed WL Chromatogram, 210 nm

The ${ }^{1} \mathrm{H}$ NMR spectrum of $5 \mathrm{f}\left(\mathbf{4 0 0} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 f}\left(\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The NOSEY spectrum of $5 f\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic $5 f$

Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%	BC
1	7.653	570189	50.315	BB
2	8.647	563046	49.685	BB
		1133235	100.000	

The HPLC of chiral $5 f$

Chrom Type: Fixed WL Chromatogram, 210 nm

The ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $\mathbf{5 f}{ }^{\mathbf{\prime}}\left(\mathbf{4 0 0} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $5 f^{\prime}\left(\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic $\mathbf{5 f}$ '
Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm
Peak Quantitation: AREA
Calculation Method: AREA\&

No.	RT	Area	Area 8	BC
1	10.660	4277006	49.976	BB
2	12.207	4281111	50.024	BB
		8558117	100.000	

The HPLC of chiral $\mathbf{5 f}$ '

The ${ }^{1} \mathrm{H}$ NMR spectrum of $5 \mathrm{~g}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $5 \mathrm{~g}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic $\mathbf{5 g}$

The HPLC of chiral 5 g

The ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $\mathbf{5 h}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $5 \mathrm{~h}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic $\mathbf{5 h}$
Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%	BC
1	11.540	2684438	49.483	BV
2	12.227	2740581	50.517	VB
	5425019	100.000		

The HPLC of chiral 5h

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 i} \mathbf{(5 0 0 ~ M H z , ~} \mathbf{C D C l}_{\mathbf{3}}$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 i}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 5i

The HPLC of chiral $5 \mathbf{i}$
Chrom Type: Fixed wL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%	BC
1	7.060	82805	3.990	BB
2	8.367	1992719	96.010	BB
	2075524	100.000		

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 j} \mathbf{(5 0 0 ~ M H z , ~} \mathbf{C D C l}_{\mathbf{3}}$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of $5 \mathrm{j}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic $\mathbf{5 j}$

Chrom Type: Fixed WL Chromatogram, 210 nm

The HPLC of chiral $\mathbf{5 j}$
Chrom Type: Fixed WL Chromatogram, 210 nm

No.	RT	Area	Area \%	BC
1	7.880	106223	4.551	BB
2	9.993	2227942	95.449	BB
	2334165	100.000		

The ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $\mathbf{5 k}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $5 \mathrm{k}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 5 k

The HPLC of chiral $\mathbf{5 k}$
Chrom Type: Fixed WL Chromatogram, 210 nm

The ${ }^{1} \mathrm{H}$ NMR spectrum of $51\left(500 \mathrm{MHz}, \mathbf{C D C l}_{\mathbf{3}}\right.$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of $5 \mathrm{I}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 51
Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%	BC
1	7.027	8154828	50.212	BV
2	7.727	8085825	49.788	VB
	16240653	100.000		

The HPLC of chiral 51
Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%	BC
1	7.047	165724	3.830	BB
2	7.733	4161343	96.170	BB
	4327067	100.000		

The ${ }^{1} \mathrm{H}$ NMR spectrum of $5 \mathrm{~m}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 m}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

- অ लiलiocic -13
-12
-11
-10
-10

The HPLC of racemic 5 m

Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%	BC
1	8.567	7940146	49.594	BB
2	9.487	8070099	50.406	BB
	16010245	100.000		

The HPLC of chiral 5m

Chrom Type: Fixed wL Chromatogram, 210 nm
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%	BC
1	8.593	34224	3.379	BB
2	9.527	978626	96.621	BB
	1012850	100.000		

The ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $\mathbf{5 n}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $5 \mathrm{n}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic $5 n$
Chrom Type: Fixed WL Chromatogram, 210 nm

The HPLC of chiral 5n

The ${ }^{1} \mathrm{H}$ NMR spectrum of $50\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $50\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 50

Chrom Type: Fixed WL Chromatogram, 210 nm

The HPLC of chiral 50

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 p}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $5 \mathrm{p}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 5p

The HPLC of chiral 5p
Chrom Type: Fixed WL Chromatogram, 204 nm

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 q}\left(\mathbf{5 0 0} \mathbf{M H z}, \mathbf{C D C l}_{\mathbf{3}}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $5 \mathrm{q}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic $\mathbf{5 q}$

Chrom Type: Fixed WL Chromatogram, 210 nm

The HPLC of chiral $\mathbf{5 q}$

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 r}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 r}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic $\mathbf{5 r}$

The HPLC of chiral $\mathbf{5 r}$
Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%	BC
1	7.293	5731015	96.263	BB
2	8.860	222505	3.737	BB
		5953520	100.000	

The HPLC of chiral 5 r after recrystallization

Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area $\%$	BC
1	6.313	12863255	99.948	BB
2	7.813	6682	0.052	BB
		12869937	100.000	

The ${ }^{1} \mathrm{H}$ NMR spectrum of $5 \mathrm{~s}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $5 \mathrm{~s}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The NOSEY spectrum of $5 \mathrm{~s}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 5s
Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm
Peak Quantitation: AREA
Calculation Method: AREA\&

No.	RT	Area	Area \&	BC
1	6.880	4533585	49.808	BB
2	8.620	4568477	50.192	BB
		9102062	100.000	

The HPLC of chiral 5 s
Chrom Type: Fixed WL Chromatogram, 210 nm

The ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $\mathbf{5 s}$ ' $\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $5 s^{\prime}\left(\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 5 s ,

Abstract

Chrom Type: Fixed WL Chromatogram, 210 nm

The HPLC of chiral 5s'
Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm
Peak Quantitation: AREA
Calculation Method: AREA8

No.	RT	Area	Area \&	BC
1	7.613	533286	9.165	BB
2	8.300	5285563	90.835	BB
	5818849	100.000		

The ${ }^{1} \mathrm{H}$ NMR spectrum of $5 \mathrm{t}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathbf{C}$ NMR spectrum of $5 \mathrm{t}\left(101 \mathrm{MHz}, \mathbf{C D C l}_{3}\right)$

The NOSEY spectrum of $5 \mathrm{t}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 5t
Chrom Type: Fixed WL Chromatogram, 210 nm

The HPLC of chiral 5t

Chrom Type: Fixed WL Chromatogram, 210 nm
Peak Quantitation: AREA
Calculation Method: AREA8

No.	RT	Area	Area 8	BC
1	6.240	22177	1.191	BV
2	6.820	1840186	98.809	VB
		1862363	100.000	

The ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $\mathbf{5 t}$ ' $\left(\mathbf{4 0 0} \mathbf{M H z}, \mathrm{CDCl}_{\mathbf{3}}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $5 t^{\prime}\left(\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic $\mathbf{5 t}$ '

> Chrom Type: Fixed WL Chromatogram, 210 nm
> Chrom Type: Fixed WL Chromatogram, 210 nm
> Peak Quantitation: AREA
> Calculation Method: AREA\%

The HPLC of chiral $\mathbf{5 t}$ '
Chrom Type: Fixed WL Chromatogram, 210 nm

The ${ }^{1} \mathrm{H}$ NMR spectrum of $5 \mathrm{u}\left(\mathbf{4 0 0} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $5 \mathrm{u}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 5u

Chrom Type: Fixed WL Chromatogram, 204 nm

Chrom Type: Fixed WL Chromatogram, 204 nm
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area 8	BC
1	9.267	1094568	50.068	BB
2	10.453	1091590	49.932	BB
		2186158	100.000	

The HPLC of chiral 5u

The ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $5 \mathbf{u}^{\prime}\left(\mathbf{4 0 0} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $5 \mathbf{u}^{\prime}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The NOSEY spectrum of $5 \mathbf{u}^{\prime}\left(\mathbf{4 0 0} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 5 u'

Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \&	BC
1	8.147	648456	50.086	BB
2	9.507	646237	49.914	BB
		1294693	100.000	

The HPLC of chiral 5u'

Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm
Peak Quantitation: AREA
Calculation Method: AREA8

No.	RT	Area	Area \&	BC
1	8.133	1431480	94.890	BB
2	9.500	77082	5.110	BB
		1508562	100.000	

The ${ }^{1} \mathrm{H}$ NMR spectrum of $8 \mathrm{aa}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $8 \mathrm{a}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 8a

Chrom Type: Fixed WL Chromatogram, 210 nm
Peak Quantitation: AREA
Calculation Method: AREA\&

No.	RT	Area	Area \&	BC
1	8.733	7639532	49.825	BV
2	9.587	7693199	50.175	VB
		15332731	100.000	

The HPLC of chiral 8a

The ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $8 \mathrm{~b}\left(\mathbf{4 0 0} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $8 \mathrm{~b}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
(

The HPLC of racemic 8b

Chrom Type: Fixed WL Chromatogram, 210 nm
Peak Quantitation: AREA
Calculation Method: AREA?

No.	RT	Area	Area \&	BC
1	8.940	4461808	50.181	BV
2	9.773	4429594	49.819	VB
		8891402	100.000	

The HPLC of chiral 8b

The ${ }^{1} \mathrm{H}$ NMR spectrum of $8 \mathrm{c}\left(\mathbf{4 0 0} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $8 \mathrm{c}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 8c
Chrom Type: Fixed WL Chromatogram, 204 nm

Chrom Type: Fixed WL Chromatogram, 204 nm
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area o	BC
1	6.840	2711645	49.660	BV
2	7.300	2748730	50.340	VB
		5460375	100.000	

The HPLC of chiral 8c

Chrom Type: Fixed WL Chromatogram, 204 nm
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \&	BC
1	6.833	355321	7.368	BB
2	7.280	4467046	92.632	BB
		4822367	100.000	

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 d}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{\mathbf{3}}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $8 \mathrm{~d}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 8d

The HPLC of chiral 8d
Chrom Type: Fixed WL Chromatogram, 230 nm

The ${ }^{1} \mathrm{H}$ NMR spectrum of $8 \mathrm{e}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $8 \mathrm{e}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 8e

The HPLC of chiral 8e
Chrom Type: Fixed WL Chromatogram, 230 nm

Chrom Type: Fixed WL Chromatogram, 230 nm
Peak Quantitation: AREA
Calculation Method: AREA\&

No.	RT	Area	Area $\%$	BC
1	7.740	4477310	96.027	BB
2	8.840	185265	3.973	BB
		4662575	100.000	

The ${ }^{1} \mathrm{H}$ NMR spectrum of $8 f\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{\mathbf{3}}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8 f}\left(\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 8f

The HPLC of chiral 8 f
Chrom Type: Fixed WL Chromatogram, 204 nm

The ${ }^{1} \mathrm{H}$ NMR spectrum of $13\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $13\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HMBC spectrum of $13\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The NOSEY spectrum of $13\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 13
Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm
Peak Quantitation: AREA
Calculation Method: AREA\&

No.	RT	Area	Area 8	BC
1	17.773	3104602	49.984	BB
2	19.640	3106566	50.016	BB
		6211168	100.000	

The HPLC of chiral 13

Chrom Type: Fixed WL Chromatogram, 210 nm
Peak Quantitation: AREA
Calculation Method: AREA\&

No.	RT	Area	Area \&	BC
1	17.893	6608881	97.345	BB
2	19.833	180237	2.655	BB
		6789118	100.000	

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 6}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 6}\left(\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 16
Chrom Type: Fixed WL Chromatogram, 204 nm

Chrom Type: Fixed WL Chromatogram, 204 nm
Peak Quantitation: AREA
Calculation Method: AREA\&

No.	RT	Area	Area \&	BC
1	9.180	2518900	50.172	BV
2	10.007	2501597	49.828	VB
		5020497	100.000	

The HPLC of chiral 16
Chrom Type: Fixed WL Chromatogram, 204 nm

Chrom Type: Fixed WL Chromatogram, 204 nm
Peak Quantitation: AREA
Calculation Method: AREA\&

No.	RT	Area	Area o	BC
1	9.347	49022	1.708	BB
2	10.180	2820838	98.292	BB
		2869860	100.000	

The ${ }^{1} \mathrm{H}$ NMR spectrum of $19\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $19\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The NOSEY spectrum of $19\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 19
Chrom Type: Fixed WL Chromatogram, 230 nm

Chrom Type: Fixed WL Chromatogram, 230 nm
Peak Quantitation: AREA
Calculation Method: AREA\&

No.	RT	Area	Area \&	BC
1	6.440	2511970	49.968	BB
2	7.547	2515154	50.032	BB
		5027124	100.000	

The HPLC of chiral 19

The ${ }^{1} \mathrm{H}$ NMR spectrum of $20\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $20\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The NOSEY spectrum of $20\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 20
Chrom Type: Fixed WL Chromatogram, 230 nm

Chrom Type: Fixed WL Chromatogram, 230 nm
Peak Quantitation: AREA
Calculation Method: AREA8

No.	RT	Area	Area \&	BC
1	9.700	6199290	50.487	BV
2	10.487	6079600	49.513	VB
		12278890	100.000	

The HPLC of chiral 20

The ${ }^{1} \mathrm{H}$ NMR spectrum of $22\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $22\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{\mathbf{1}} \mathrm{H}-{ }^{\mathbf{1}} \mathrm{H}$ COSY spectrum of $22\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The NOSEY spectrum of $22\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 22
Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area of	BC
1	9.060	3335288	50.045	BV
2	9.940	3329281	49.955	VB
		6664569	100.000	

The HPLC of chiral 22

The ${ }^{1} \mathrm{H}$ NMR spectrum of $23\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $23\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 23

The HPLC of chiral 23

Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm
Peak Quantitation: AREA
Calculation Method: AREA\&

No.	RT	Area	Area \&	BC
1	7.660	346004	5.823	BB
2	9.660	5595728	94.177	BB
		5941732	100.000	

The ${ }^{1} \mathrm{H}$ NMR spectrum of $24\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $24\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 24

The HPLC of chiral 24

The ${ }^{1} \mathrm{H}$ NMR spectrum of $25\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $25\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 25

The HPLC of chiral 25

The ${ }^{1} \mathrm{H}$ NMR spectrum of $26\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

26

The ${ }^{13} \mathrm{C}$ NMR spectrum of $26\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The NOSEY spectrum of $26\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 26
Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm
Peak Quantitation: AREA
Calculation Method: AREA\&

No.	RT	Area	Area \&	BC
1	9.267	1714621	49.892	BV
2	10.100	1722039	50.108	VB
	3436660	100.000		

The HPLC of chiral 26
Chrom Type: Fixed WL Chromatogram, 210 nm
Peak Quantitation: AREA
Calculation Method: AREAB
No.

The ${ }^{1} \mathrm{H}$ NMR spectrum of $27\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $27\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 27

The HPLC of chiral 27
Chrom Type: Fixed WL Chromatogram, 210 nm

K. Single crystal X-Ray diffraction data

CCDC 2072646 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

Absolute configuration of 5k - CCDC 2072646

Bond precision:	$\mathrm{C}-\mathrm{C}=0.0052 \mathrm{~A}$	Wave	$h=1.54184$
Cell:	$\mathrm{a}=7.2163$ (4)	$\mathrm{b}=10.5180(4)$	$\mathrm{C}=19.1890$ (7)
	alpha=90	beta=90	garma $=90$
Temperature:	293 K		
	Calculated	Rep	
Volume	1456.47 (11)	145	
Space group	P 212121	P 2	
Hall group	P 2ac 2ab	P 2	
Moiety formula	C16 H19 N 04	?	
Sum formula	C16 H19 N 04	C16	N 04
Mr	289.32	289	
Dx,g cm-3	1.319	1.3	
2	4	4	
Mu (mm-1)	0.780	0.7	
F000	616.0	616	
F000'	617.98		
h, k, 1max	8,12,22	8,1	
Nref	2617[1532]	261	
Tmin, $\mathrm{Imax}^{\text {max }}$	$0.823,0.849$	0.8	000
Tmin'	0.823		
Correction method= \# Reported I Limits: Imin=0.829 Tmax=1.000 AbsCorr $=$ MULII-SCAN			
Data completeness= $1.71 / 1.00$		Theta $(\max)=$	
$R($ reflections $)=0.0448(2138)$		wR2 (reflect	$=0.1290(2616)$
$S=1.036$	Npar=	192	

