Enantioselective organocatalytic sequential Michael-cyclization of

functionalized nitroalkanes to 2-hydroxycinnamaldehydes: Synthesis

of benzofused dioxa[3.3.1] and oxa[4.3.1] methylene-bridged

compounds

Chen-Jun Peng,^a Jun-Ping Pei,^a Ying-Han Chen,^a Zhi-Yong Wu,^a Ming Liu^{a,b} and

Yan-Kai Liu*^{a,b}

^aKey Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean

University of China, Qingdao 266003, China.

^bLaboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and

Technology, Qingdao 266003, China.

Email: liuyankai@ouc.edu.cn (Y.-K. Liu)

Supporting Information

Contents

A. General information	4
B. Preparation of substrates	6
B1. Preparation of 3 "	6
B2. Preparation of 2-nitro-3-phenylpropan-1-ol 2s	7
B3. Preparation of 2-nitropropane-1,3-diol 2u	8
B4. Preparation of ethyl 2-hydroxy-3-nitropropanoate 6	8
B5. Preparation of (2-nitroethyl)(phenyl)sulfane 14	8
B6. Preparation of 5-bromo-2-(2-nitroethyl)-1H-indole 17	9
B7. Preparation of 1-methyl-3-(2-nitroethyl)-1H-indole 18	10
C. Optimization of the reaction conditions	11
C1. Optimization of the Michael Addition	11
C2. Optimization of the one-pot reaction	14
D. Scope of the reaction 1	15
E. Scope of the reaction 2	
F. Other reactions	
F1. Synthesis of 13	
F2. Synthesis of 16	40
F3. Synthesis of 19	42
F4. Synthesis of 20	44
G. Synthetic transformation	46
H. Scale-up synthesis of 5d	54
I. NMR analysis and computational studies for the reaction	pathway
	55

J. NMR spectra and HPLC analyses	64
K. Single crystal X-Ray diffraction data	161

A. General information

The ¹H and ¹³C NMR spectra were recorded at 500 MHz for ¹H and at 125 MHz for ¹³C. The chemical shifts (δ) for ¹H and ¹³C are given in ppm relative to residual signals of the solvents (CDCl₃ at 7.26 ppm ¹H NMR, 77.16 ppm ¹³C NMR. *d6*-DMSO at 2.50 ppm ¹H NMR, 39.52 ppm ¹³C NMR). Coupling constants are given in Hz. The following abbreviations are used to indicate the multiplicity: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. High-resolution mass spectra (HRMS) were obtained from the Waters Q-Tof Ultima Global. X-ray data was obtained from Zhongke chemical technology service center. Optical rotations are reported as follows: [α]_D²⁰ (c in g per 100 mL, solvent: CHCl₃, MeOH).

Note: NMR signals containing common solvent contaminants were list. H_2O in CDCl₃ at 1.56 ppm ¹H NMR, and in *d6*-DMSO at 3.33 ppm ¹H NMR; Ethyl acetate in CDCl₃ at 2.05 (s), 4.12 (q), 1.26 (t) ppm ¹H NMR; Dichloromethane in CDCl₃ at 5.30 (s) ppm ¹H NMR.

All the reactions were set up under air and using freshly distilled solvents, without any precautions to exclude moisture, unless otherwise noted open air chemistry on the bench-top. Chromatographic purification of products was accomplished using forceflow chromatography (FC) on silica gel (300-400 mesh). For thin layer chromatography (TLC) analysis throughout this work, Merck pre-coated TLC plates (silica gel 60 GF254, 0.25 mm) were used, using UV light as the visualizing agent and an phosphomolybdic acid or basic aqueous potassium permanganate (KMnO₄) as stain developing solutions. Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator.

HPLC analyses on chiral stationary phase were performed on an Hitachi Chromaste. Daicel Chiralpak IA, IB, IC, or chiral-N(s)(2) columns with *n*-hexane/*i*-PrOH as the eluent were used. HPLC traces were compared to racemic samples which prepared by mixture of two enantiomeric final products obtained using (*S*) and (*R*) catalyst. Commercial reagents and solvents were purchased from Sigma Aldrich, Fluka, and Alfa Aesar used as received, without further purification. The 2-hydroxycinnamaldehydes **1** were prepared according to the literature procedures.^[1] All 1-nitromethylcycloalcohols were prepared from cyclic ketones according to the literature procedures.^[2] 2-nitroethanol **2f** and 2-nitropropan-1-ol **2u** were purchased.

- [1] Sun X-L; Chen Y-H; Zhu D-Y; Zhang Y; Liu Y-K. Org. Lett. 2016, 18, 864.
- [2] Mo-Hui Wei, Yi-Rong Zhou, Liang-Hu Gu, Fan Luo, Fang-Lin Zhang. Tetrahedron Letters. 2013, 54, 2546.

B. Preparation of substrates

B1. Preparation of 3"

To a solution of 3,5-bis(trifluoromethyl)aniline (3 mL, 20 mmol, 1.0 equiv.) and saturated sodium bicarbonate solution (40 mL) in CH_2Cl_2 (40 mL) was added thiophosgene $CSCl_2$ (1.7 mL, 22 mmol, 1.1 equiv.) very slowly at 0 °C. The reaction was stirred at 0 °C for about 2 h (monitored by TLC). The reaction mixture was extracted three times with CH_2Cl_2 and the combined organic layers were washed with saturated sodium chloride solution. The organic layer was dried with anhydrous Na_2SO_4 and the solvent was evaporated. The product was purified by column chromatography on a silica gel (petroleum ether) to afford the desired product **S3**" as a yellow oil (2.4 g).

To a solution of **S3''** (2.4 g, 8.9 mmol, 2.5 equiv.) in CH_2Cl_2 (5 mL) was added (1*R*,2*R*)-cyclohexane-1,2-diamine (405 mg, 3.5 mmol, 1.0 equiv.) at 25 °C. The reaction was stirred at 25 °C for about 12 h until the consumption of (1*R*,2*R*)-cyclohexane-1,2-diamine (monitored by TLC). Then the reaction mixture was concentrated and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 5/1) to give product **3''** (1.2 g, 23% yield over two steps).

B2. Preparation of 2-nitro-3-phenylpropan-1-ol 2s

To a solution of benzaldehyde (1.8 mL, 18 mmol, 1.0 equiv.) and nitromethane (1.1 mL, 20 mmol, 1.1 equiv.) in MeOH (5 mL) was added NaOH (1.1 g, 27 mmol, 1.5 equiv.) in MeOH (5 mL) at 0 °C. The reaction was stirred at 0 °C for 2 h until the consumption of benzaldehyde (monitored by TLC). After that, pour the reaction mixture into 6M HCl solution at 0 °C and white precipitation started to form. **28** (1.6 g, 60% yield) could be afforded as a yellow solid by recrystallization with EtOH. To a solution of **28** (298 mg, 2 mmol, 1.0 equiv.) in CH₂Cl₂ (3 mL) was added **29** (608 mg, 2.4 mmol, 1.2 equiv.) and the reaction was refluxed at 40 °C for 48 h. The solvent was evaporated and the product was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate = 80/1) to afford the desired product **30** as a yellow oil (272 mg, 90% yield).

To a solution of **30** (272 mg, 1.8 mmol, 1.0 equiv.) in THF (3 mL) was added NaOAc (44 mg, 0.54 mmol, 0.3 equiv.) and paraformaldehyde (49 mg, 1.6 mmol, 0.9 equiv.) at room temperature. The reaction was stirred at room temperature until completion of the reaction. The reaction mixture was extracted three times with ethyl acetate and the combined organic layers were washed with saturated sodium chloride solution. The organic layer was dried with anhydrous Na_2SO_4 and then the solvent was evaporated. The product was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate = 5/1) to afford the desired product **2s** as a white solid (222 mg, 68% yield).

B3. Preparation of 2-nitropropane-1,3-diol 2u

$$O_2N$$
 OH + $(CH_2O)_n$ $NaOAc$ HO OH OH NO_2
2f $2u$

To a solution of 2–nitroethanol (0.43 mL, 6 mmol, 1.0 equiv.) in THF (10 mL) was added NaOAc (148 mg, 1.8 mmol, 0.3 equiv.) and paraformaldehyde (180 mg, 6 mmol, 1.0 equiv.) at room temperature. The reaction was stirred at room temperature until completion of the reaction. The reaction mixture was extracted three times with ethyl acetate and the combined organic layers were washed with saturated sodium chloride solution. The organic layer was dried with anhydrous Na₂SO₄ and then the solvent was evaporated. The product was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate = 1.5/1) to afford the desired product **2u** as a yellow oil (300 mg, 41% yield).

B4. Preparation of ethyl 2-hydroxy-3-nitropropanoate 6

To a solution of ethyl 2-oxoacetate (1 mL, 5 mmol, 1.0 equiv.) in nitromethane (10 mL) was added Et₃N (0.35 mL, 2.5 mmol, 0.5 equiv.) at 0 °C. The reaction was stirred at 25 °C until completion of the reaction. Then the solvent nitromethane was evaporated. The residue was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate = 4/1) to afford the desired product **6** as a white solid (643 mg, 79% yield).

B5. Preparation of (2-nitroethyl)(phenyl)sulfane 14

To a solution of 2–nitroethanol (0.36 mL, 5 mmol, 1.0 equiv.) and acetic anhydride (0.52 mL, 5.5 mmol, 1.1 equiv.) in CH_2Cl_2 (8 mL) was added pyridine (0.45 mL, 5.5

mmol, 1.1 equiv.). The reaction was stirred under nitrogen atmosphere at room temperature. After 7 h, the reaction mixture was poured into 1M HCl and the aqueous phase was extracted with dichloromethane. The combined organic layers were washed with 1M HCl for three times. The organic layer was washed with saturated sodium chloride solution and was dried with anhydrous Na_2SO_4 and then the solvent was evaporated. The product was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate = 5/1) to afford the desired product **31** as a colorless oil (542 mg, 81% yield).

To a solution of **31** (542 mg, 4 mmol, 1.0 equiv.) and thiophenol (0.42 mL, 4 mmol, 1.0 equiv.) in acetonitrile (6 mL) was added Et₃N (0.57 mL, 4 mmol, 1.0 equiv.) at 0 °C. The reaction was stirred at 0 °C for 30min. The reaction mixture was poured into 1M HCl at 0 °C and the aqueous phase was extracted with ethyl acetate . The combined organic layers were washed with 1M HCl for three times. The organic layer was washed with saturated sodium chloride solution and was dried with anhydrous Na₂SO₄ and then the solvent was evaporated. The product was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate = 100/1-30/1) to afford the desired product **14** as a colorless oil (608 mg, 82% yield).

B6. Preparation of 5-bromo-2-(2-nitroethyl)-1H-indole 17

The synthetic method of **32** is the same as that of **34**.

To a solution of **32** (200 mg, 0.75 mmol, 1.0 equiv.) in CH_2Cl_2 (3 mL) was added **29** (190 mg, 0.75 mmol, 1.0 equiv.) and the reaction was refluxed at 40 °C for 6 days. The solvent was evaporated and the product was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate = 6/1-4/1) to afford the desired product **17** as a red oil (141.4 mg, 70% yield).

B7. Preparation of 1-methyl-3-(2-nitroethyl)-1H-indole 18

To a solution of sodium hydride (560 mg, 14 mmol, 2.0 equiv.) in dry THF (10 mL) was added indole-3-carboxaldehyde (1 g, 7 mmol, 1.0 equiv.) at 0 °C in nitrogen atmosphere. The reaction was stirred at room temperature for 1 h and iodomethane (872 μ L, 14 mmol, 2.0 equiv.) was added to the reaction. The reaction was stirred at room temperature until completion of the reaction. The mixture was quenched with sat. NH₄Cl and extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na₂SO₄ and the solvent was evaporated. The product was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate = 2/1) to afford the desired product **33**. To a solution of **33** (1.14g, 7 mmol, 1.0 equiv.) in nitromethane (8 mL) was added ammonium acetate (270 mg, 3.5 mmol, 0.5 equiv.) and the reaction was refluxed at 100 °C for 1 h. The reaction mixture was recrystallized with ethanol and the desired product **34** was obtained as a yellow solid (1.3g, 93% yield for 2 steps).

To a solution of **34** (300 mg, 1.5 mmol, 1.0 equiv.) in mixed solvent (THF/ MeOH = 9/1, 3 mL) was added sodium borohydride (84 mg, 2.2 mmol, 1.5 equiv.) at 0 °C and the reaction was stirred at room temperature overnight. The mixture was quenched with sat. NH₄Cl and extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na₂SO₄ and the solvent was evaporated. The product was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate = 15/1) to afford the desired product **18** as a yellow oil (134.4 mg, 44% yield).

C. Optimization of the reaction conditions

C1. Optimization of the Michael Addition

Entry	Cat.	additive	Solvent	Tem (°C)	t(d) ^b	Yield (%) ^c	ee (%) ^d	dre
1	3	/	CHCl ₃	25	1	55	71	>20:1
2	3	/	CHCl ₃	0	3	69	87	>20:1
3	3a	/	CHCl ₃	0	3	66	87	>20:1
4	3b	/	CHCl ₃	0-60	3	trace	5	>20:1
5	3c	/	CHCl ₃	0	3	trace	87	>20:1
6	3d	/	CHCl ₃	0	3	/	/	/

Table S1. Optimization of the Michael Addition^a

7	3 e	/	CHCl ₃	0	3	/	/	/
8	3f	/	CHCl ₃	0-40	3	/	/	/
9	3g	/	CHCl ₃	0-40	3	/	/	/
10	3'	/	CHCl ₃	0	3	/	/	/
11	3+3h	/	CHCl ₃	0	3	51	86	>20:1
12	3+3'	/	CHCl ₃	0	3	trace	87	>20:1
13	3′+3e	/	CHCl ₃	0	3	44	18	>20:1
14	3	/	toluene	0	3	54	83	>20:1
15	3	/	CH ₂ Cl ₂	0	3	trace	84	>20:1
16	3	/	DCE	0	3	42	83	>20:1
17	3	/	TCE	0	3	trace	83	>20:1
18	3	/	Benzotrifluoride	0	3	39	76	>20:1
19	3	/	Bromobenzene	0	3	53	79	>20:1
20	3	/	MTBE	0	3	44	82	>20:1
21	3	/	CH ₃ CN	0	3	57	76	>20:1
22	3	/	Et ₂ O	0	3	57	80	>20:1
23	3	/	THF	0	3	14	79	>20:1
24	3	/	EA	0	3	44	77	>20:1
25	3	/	Acetone	0	3	29	76	>20:1

26	3	A1	CHCl ₃	0	3	trace	86	>20:1
27	3	A2	CHCl ₃	0	3	53	84	>20:1
28	3	A3	CHCl ₃	0	3	trace	87	>20:1
29	3	A4	CHCl ₃	0	3	/	/	/
30	3	A5	CHCl ₃	0	3	32	86	>20:1
31	3	3″	CHCl ₃	0	3	71	91	>20:1

[a] Unless otherwise specified, all reactions were carried out using 2a (0.05 mmol, 1.0 equiv.), 1a (0.06 mmol, 1.2 equiv.) in solvent (0.2 mL) with cat. (20 mol %) and additive (20 mol %) at 0 °C. After workup, the mixture was purified by flash chromatography on silica gel to afford 4a. Compound 4a was dissolved in redistilled CH₂Cl₂ (0.05 mmol in 0.3 mL) at 25 °C. *p*-TsOH (40 mol %) was added. After full conversion of the second step, the residue was purified by flash chromatography on gel to give product 5a. [b] For the first step. [c] Isolated yield of 5a over two steps. [d] Determined by HPLC analyses of isolated compound 5a on chiral stationary phases. [e] Determined by ¹H NMR.

TMS = trimethylsilyl	DCE = 1,2-dichloroethane
TBS = (1,1-Dimethylethyl)dimethylsilyl	TCE = 1, 1, 2, 2-tetrachloroethane
TES = triethylsilyl	MTBE = tert-Butyl methyl ether
DIPEA = N,N-Diisopropylethylamine	THF = tetrahydrofuran
p-TsOH = p -Toluenesulfonic acid.	EA = ethyl acetate

C2. Optimization of the one-pot reaction

Entry	Cat.	additive	t(d) ^b	Yield (%) ^c	ee (%) ^d	dr ^e
1	3	/	3.5	73	79	>20:1
2	3a	/	3.5	69	81	>20:1
3	3	3″	3.5	66	79	>20:1

Table S2. Optimization of the one-pot reaction^a

[a] Unless otherwise specified, all reactions were carried out using 2a (0.05 mmol, 1.0 equiv.), 1a (0.06 mmol, 1.2 equiv.) in CHCl₃ (0.2 mL) with 3 (20 mol %) and additive (20 mol %) at 0 °C for 3 days. Then *p*-TsOH (40 mol %) was added to the reaction mixture at 25 °C. After workup, the mixture was purified by flash chromatography on silica gel to afford 5a. [b] For the two steps. [c] Isolated yield of 5a over two steps. [d] Determined by HPLC analyses of isolated compound 5a on chiral stationary phases. [e] Determined by ¹H NMR.

TMS = trimethylsilyl

p-TsOH = p-Toluenesulfonic acid.

TBS = (1,1-Dimethylethyl)dimethylsilyl

D. Scope of the reaction 1

 Table S3. Substrates correspond to the products

5s O₂N Ph

General procedure: A glass vial equipped with a magnetic stirring bar was charged with 1-nitromethylcycloalcohols **2** (0.20 mmol, 1.0 equiv.), different substituted 2-hydroxycinnamaldehydes **1** (0.24 mmol, 1.2 equiv.), **3** (0.04 mmol, 0.2 equiv.) and **3**" (0.04 mmol, 0.2 equiv.) in CHCl₃ (0.5 mL) at 0 °C. The resulting reaction mixture was kept under vigorous stirring until the consumption of **2** (monitored by TLC analysis). After completion of the reaction, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 5/1 to 1.5/1) to afford **4** as intermediate. Then, compound **4** (1.0 equiv.) was respectively dissolved in anhydrous CH₂Cl₂ (0.10 mmol in 0.5 mL) at 25 °C and *p*-TsOH (0.4 equiv.) was added to the reaction mixture. After full conversion of the second step, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 100/1 to 4/1) to give product **5** for NMR and HPLC analysis.

5a was obtained as a white solid 40.8 mg in 71% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 60/1). ¹**H** NMR (500 MHz, CDCl₃) δ 7.26 (dd, J = 7.6, 2.5 Hz, 2H), 6.93 (t, J = 7.5 Hz, 1H), 6.82 (d, J = 8.1 Hz, 1H), 5.74 (s, 1H), 4.72 (d, J = 3.6 Hz, 1H), 3.63 (d, J = 2.9 Hz, 1H), 2.17 (dt, J = 13.2, 2.3 Hz, 1H), 2.04 – 1.91 (m, 2H), 1.86 – 1.59 (m, 5H), 1.56– 1.47 (m, 2H), 1.36 – 1.28 (m, 1H), 1.03 (qt, J = 13.2, 4.0 Hz, 1H), 0.82 (td, J = 13.6, 3.6 Hz, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 153.5, 131.7, 129.7, 121.9, 120.5, 115.7, 93.6, 91.4, 75.2, 40.0, 31.5, 30.7, 30.6, 25.4, 21.6, 21.4 ppm. HRMS: [M-H]⁻ calcd. For C₁₆H₁₈NO₄⁻ 288.1241, found 288.1237. [*α*]_D²⁰ 40.28 (c = 2.08 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [*n*-hexane/*i*-PrOH = 90/10, 1 mL/min], $\lambda = 210$ nm, $t_{major} = 8.03$ min, $t_{minor} = 7.35$ min, **ee** = **91%**. The enantiomeric excess after recrystallization was determined by HPLC analysis on Daicel Chiralpak IB column [*n*-hexane/*i*-PrOH = 90/10, 1 mL/min], $\lambda = 210$ nm, $t_{major} = 6.91$ min, $t_{minor} = 6.33$ min, **ee** = **97%**. The diastereomeric ratio was determined by ¹H NMR, dr > 20:1.

5b was obtained as a white solid 40.2 mg in 63% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 60/1). ¹H NMR (500 MHz, CDCl₃) δ 7.27 (dd, J = 26.1, 7.8 Hz, 2H), 6.93 (t, J = 7.5 Hz, 1H), 6.81 (d, J = 8.1 Hz, 1H), 5.72 (s, 1H), 4.72 (d, J = 3.4 Hz, 1H), 3.68 (s, 1H), 2.26 – 2.12 (m, 2H), 2.05 – 1.98 (m, 1H), 1.80 – 1.63 (m, 2H), 1.50 (dd, J = 13.5, 3.0 Hz, 1H), 1.34 (dd, J = 14.3, 3.1 Hz, 1H), 1.17 (dd, J = 13.1, 1.7 Hz, 1H), 1.06 (td, J = 14.0, 3.5 Hz, 1H), 0.98 (dd, J = 13.2, 2.6 Hz, 1H), 0.89 (s, 3H), 0.76 (s, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 153.4, 131.6, 129.5, 121.7, 120.4, 115.5, 92.9, 91.2, 75.0, 36.1, 34.1, 34.0,

32.4, 31.3, 30.4, 29.3, 26.1, 23.8 ppm. **HRMS**: [M-H]⁻ *calcd*. For C₁₈H₂₂NO₄⁻ 316.1554, found 316.1548. $[\alpha]_D^{20}$ 45.66 (c = 1.46 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [*n*-hexane/*i*-PrOH = 90/10, 1 mL/min], $\lambda = 210$ nm, $t_{major} = 6.24$ min, $t_{minor} = 5.71$ min, **ee** = **88%**. The diastereomeric ratio was determined by ¹H NMR, dr > 20:1.

5c was obtained as a colorless oil 46 mg in 71% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 8/1). ¹**H** NMR (500 MHz, CDCl₃) δ 7.28 (d, *J* = 7.5 Hz, 2H), 6.96 (t, *J* = 7.4 Hz, 1H), 6.83 (d, *J* = 8.5 Hz, 1H), 5.74 (s, 1H), 4.80 (d, *J* = 3.5 Hz, 1H), 3.74 (s, 1H), 2.37 – 2.14 (m, 4H), 2.05 (ddd, *J* = 13.3, 3.8, 1.9 Hz, 1H), 1.96 (t, *J* = 11.4 Hz, 1H), 1.76 (dd, *J* = 7.7, 2.4 Hz, 2H), 1.61 – 1.54 (m, 1H), 1.29 – 1.23 (m, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 153.2, 131.6, 129.9, 121.1, 120.8, 115.6, 91.3, 91.2, 73.3, 36.7, 36.6, 31.2, 30.3, 29.5, 29.3, 29.1, 26.6, 26.5 ppm. HRMS: [M-H]⁻ *calcd*. For C₁₆H₁₆F₂NO₄⁻ 324.1053, found 324.1056. [*α*]_{*D*²⁰} 29.79 (*c* = 1.65 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column [*n*-hexane/*i*-PrOH = 90/10, 1 mL/min], λ = 210 nm, *t_{major}* = 8.57 min, *t_{minor}* = 7.88 min, **ee** = **85%**. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

5d was obtained as a white solid 47.4 mg in 86% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 50/1). ¹H NMR (500 MHz, CDCl₃) δ 7.29 – 7.23 (m, 1H), 7.17 – 7.12 (m, 1H), 6.91 (t, *J* = 7.4 Hz, 1H), 6.84 (d, *J* = 8.2 Hz, 1H), 5.66 (s, 1H), 4.94 (d, *J* = 3.3 Hz, 1H), 3.86 (d, *J* = 2.7 Hz, 1H), 2.24 (dt, *J* = 13.1, 2.4 Hz, 1H), 2.11 (ddd, *J* = 13.2, 9.6, 6.3 Hz, 2H), 1.88 (dd, *J*

= 13.3, 4.7 Hz, 1H), 1.82 – 1.72 (m, 1H), 1.72 – 1.60 (m, 2H), 1.52 (ddd, J = 15.0, 7.3,3.7 Hz, 1H), 1.46 – 1.36 (m, 1H), 1.32 (ddd, J = 13.2, 9.0, 5.0 Hz, 1H) ppm. ¹³C **NMR** (125 MHz, CDCl₃) δ 153.2, 130.5, 129.6, 120.8, 120.7, 116.0, 91.6, 90.1, 84.2, 42.4, 33.6, 32.1, 30.5, 26.7, 23.4 ppm. **HRMS**: [M-H]⁻ *calcd*. For C₁₅H₁₆NO₄⁻ 274.1085, found 274.1090. [α]_D²⁰ 16.59 (c = 0.67 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [n-hexane/i-PrOH = 95/5, 1 mL/min], $\lambda = 210$ nm, $t_{major} = 7.85$ min, $t_{minor} = 7.40$ min, **ee** = **93%**. The enantiomeric excess after recrystallization was determined by HPLC analysis on Daicel Chiralpak IB column [n-hexane/i-PrOH = 95/5, 1 mL/min], $\lambda = 210$ nm, t_{major} = 7.99 min, $t_{minor} = 7.47$ min, **ee** >**99%**. The diastereomeric ratio was determined by ¹H NMR, dr >**20:1**.

5e was obtained as a white solid 32 mg in 61% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 60/1-40/1). ¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.20 (m, 1H), 7.14 (dd, *J* = 7.6, 1.4 Hz, 1H), 6.91 (td, *J* = 7.5, 0.9 Hz, 1H), 6.83 (d, *J* = 8.2 Hz, 1H), 5.66 (s, 1H), 4.72 (d, *J* = 3.0 Hz, 1H), 3.74 (d, *J* = 2.7 Hz, 1H), 2.61 – 2.48 (m, 1H), 2.34 – 2.13 (m, 3H), 2.09 (ddd, *J* = 13.2, 4.0, 1.9 Hz, 1H), 1.76 (ddq, *J* = 10.7, 8.3, 5.3 Hz, 2H), 1.55 – 1.40 (m, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 153.1, 130.8, 129.7, 120.9, 120.1, 116.1, 92.1, 89.9, 60.5, 34.1, 32.3, 31.3, 30.4, 13.8 ppm. HRMS: [M-H]⁻ *calcd*. For C₁₄H₁₄NO₄⁻ 260.0928, found 260.0933. [*α*]_D²⁰ 11.86 (*c* = 1.18 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [*n*-hexane/*i*-PrOH = 98/2, 1 mL/min], λ = 210 nm, *t_{major}* = 14.04 min, *t_{minor}* = 13.17 min, **ee** = **95%**. The diastereomeric ratio was determined by ¹H NMR, *dr* >**20:1**.

5e' was obtained as a white solid 10 mg in 19% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 60/1). ¹**H** NMR (400 MHz, CDCl₃) δ 7.28 – 7.18 (m, 2H), 6.96 (t, *J* = 7.4 Hz, 1H), 6.86 (d, *J* = 8.1 Hz, 1H), 5.75 (s, 1H), 4.91 (d, *J* = 2.6 Hz, 1H), 3.62 (s, 1H), 2.60 (dt, *J* = 13.6, 2.5 Hz, 1H), 2.32 (dd, *J* = 22.5, 9.7 Hz, 1H), 2.18 – 2.00 (m, 2H), 1.86 – 1.78 (m, 1H), 1.73 (ddd, *J* = 14.5, 10.1, 5.1 Hz, 1H), 1.54 – 1.40 (m, 1H), 1.08 (ddt, *J* = 12.9, 8.7, 4.2 Hz, 1H) pm. ¹³C NMR (101 MHz, CDCl₃) δ 153.9, 129.9, 128.4, 121.6, 121.2, 116.8, 92.7, 89.2, 73.7, 35.9, 33.9, 32.6, 22.8, 12.8 ppm. HRMS: [M-H]⁻ *calcd*. For C₁₄H₁₄NO₄⁻ 260.0928, found 260.0924. [*α*]_D²⁰ 71.17 (*c* = 2.39 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [*n*-hexane/*i*-PrOH = 90/10, 1 mL/min], λ = 210 nm, *t_{major}* = 7.47 min, *t_{minor}* = 5.99 min, **ee** = **98%**. The diastereomeric ratio was determined by ¹H NMR, *dr* >**20:1**.

5f was obtained as a white solid 10 mg in 23% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1-10/1). ¹**H** NMR (400 MHz, CDCl₃) δ 7.24 (d, *J* = 1.7 Hz, 1H), 6.96 (dd, *J* = 11.9, 4.7 Hz, 2H), 6.90 (t, *J* = 7.4 Hz, 1H), 5.58 (s, 1H), 4.80 (ddd, *J* = 11.2, 5.1, 3.9 Hz, 1H), 4.16 (dd, *J* = 12.0, 5.2 Hz, 1H), 3.94 (d, *J* = 2.2 Hz, 1H), 3.88 (t, *J* = 11.6 Hz, 1H), 2.26 (dt, *J* = 13.4, 2.3 Hz, 1H), 2.11 (ddd, *J* = 13.4, 3.9, 1.9 Hz, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 154.8, 152.1, 130.1, 129.6, 121.6, 115.7, 91.1, 81.0, 57.9, 33.0, 28.8 ppm. **HRMS**: [M-H]⁻ *calcd*. For C₁₁H₁₀NO₄⁻ 220.0615, found 220.0618. [*a*]_D²⁰ -40.39 (*c* = 0.29 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [*n*-hexane/*i*-PrOH = 90/10, 1 mL/min], λ = 210 nm, *t_{major}* = 8.64 min, *t_{minor}* = 7.66 min, **ee** = **98%**. The diastereomeric ratio was determined by NMR, *dr* >**20:1**.

5f' was obtained as a white solid 26.2 mg in 59% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 60/1). ¹**H** NMR (400 MHz, CDCl₃) δ 7.32 – 7.26 (m, 1H), 7.19 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.02 – 6.95 (m, 2H), 5.64 (s, 1H), 4.51 (d, *J* = 14.1 Hz, 1H), 4.30 (d, *J* = 0.9 Hz, 1H), 4.00 – 3.88 (m, 2H), 2.36 (dt, *J* = 13.7, 2.4 Hz, 1H), 1.84 (ddd, *J* = 13.7, 2.0, 1.2 Hz, 1H) ppm. ¹³**C** NMR (101 MHz, CDCl₃) δ 155.0, 129.8, 128.7, 121.5, 116.3, 92.4, 82.7, 58.8, 31.3, 24.6 ppm. HRMS: [M-H]⁻ *calcd*. For C₁₁H₁₀NO₄⁻ 220.0615, found 220.0613. [*α*]_D²⁰ - 25.53 (*c* = 0.75 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak ID column [*n*-hexane/*i*-PrOH = 90/10, 1 mL/min], λ = 210 nm, *t_{major}* = 12.21 min, *t_{minor}* = 10.70 min, **ee** = **95%**. The diastereomeric ratio was determined by NMR, *dr* >20:1.

5g was obtained as a white solid 36 mg in 59% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 10/1-8/1). ¹H NMR (500 MHz, CDCl₃) δ 6.90 – 6.83 (m, 2H), 6.74 (dd, J = 5.7, 3.4 Hz, 1H), 5.78 (d, J = 0.9 Hz, 1H), 4.92 (d, J = 3.3 Hz, 1H), 3.88 (s, 4H), 2.23 (dt, J = 13.1, 2.5 Hz, 1H), 2.14 – 2.02 (m, 2H), 1.91 – 1.82 (m, 1H), 1.75 (dd, J = 13.5, 7.5 Hz, 1H), 1.72 – 1.65 (m, 1H), 1.65 – 1.58 (m, 1H), 1.56 – 1.48 (m, 1H), 1.43 – 1.30 (m, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 147.5, 142.8, 122.3, 121.7, 120.6, 111.6, 91.9, 90.2, 84.4, 56.1, 42.7, 33.7, 32.1, 30.5, 26.9, 23.6 ppm. HRMS: [M+Na]⁺ calcd. For C₁₆H₁₉NNaO₅⁺ 328.1155, found 328.1151. [α]_D²⁰ -22.27 (c = 1.43 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [*n*-hexane/*i*-PrOH = 95/5, 1 mL/min], $\lambda = 210$ nm, $t_{major} = 17.01$ min, $t_{minor} = 15.65$ min, **ee** = **94%**. The diastereomeric ratio was determined by NMR, dr > 20:1.

5h was obtained as a white solid 38 mg in 65% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1-20/1). ¹**H** NMR (500 MHz, CDCl₃) δ 7.07 (ddd, J = 10.6, 8.2, 1.4 Hz, 1H), 6.94 (d, J = 7.7 Hz, 1H), 6.85 (td, J = 8.0, 4.9 Hz, 1H), 5.76 (s, 1H), 4.94 (d, J = 3.4 Hz, 1H), 3.92 (d, J = 2.6 Hz, 1H), 2.27 (dt, J = 13.3, 2.5 Hz, 1H), 2.17 – 2.06 (m, 2H), 1.94 – 1.85 (m, 1H), 1.81 – 1.60 (m, 3H), 1.58 – 1.49 (m, 1H), 1.45 – 1.36 (m, 1H), 1.32 (ddd, J = 20.0, 10.1, 5.5 Hz, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 151.7, 149.8, 125.7, 125.6, 123.4, 120.5, 120.4, 116.3, 116.2, 91.8, 90.0, 84.5, 42.6, 33.8, 31.8, 31.8, 30.4, 26.9, 23.6 ppm. HRMS: [M-H]⁻ calcd. For C₁₅H₁₅FNO₄⁻ 292.0991, found 292.0992. [α]_D²⁰ 21.87 (c = 1.45 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak Chiral-NS (2) column [*n*-hexane/*i*-PrOH = 95/5, 1 mL/min], $\lambda = 210$ nm, $t_{major} = 12.14$ min, $t_{minor} = 11.49$ min, **ee** = 94%. The diastereomeric ratio was determined by NMR, dr > 20:1.

5i was obtained as a white solid 18 mg in 29% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 50/1-20/1). ¹H NMR (500 MHz, CDCl₃) δ 7.04 (d, J = 8.5 Hz, 1H), 6.49 (dd, J = 8.5, 2.5 Hz, 1H), 6.40 (d, J = 2.5 Hz, 1H), 5.63 (d, J = 0.8 Hz, 1H), 4.90 (d, J = 3.2 Hz, 1H), 3.81 (d, J = 3.0 Hz, 1H), 3.78 (s, 3H), 2.21 (dt, J = 13.1, 2.5 Hz, 1H), 2.16 – 2.04 (m, 2H), 1.87 (ddd, J = 12.2, 5.2, 3.4 Hz, 1H), 1.81 – 1.71 (m, 1H), 1.70 – 1.59 (m, 2H), 1.56 – 1.48 (m, 1H), 1.45 – 1.31 (m, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 161.1, 154.2, 131.2, 113.1, 107.3, 101.3, 91.8, 90.3, 84.4, 55.4, 42.5, 33.9, 31.6, 30.9, 26.8, 23.5 ppm. HRMS: [M-H]⁻ calcd. For C₁₆H₁₈NO₅⁻ 304.1190, found 304.1182. [α]_D²⁰ -27.15 (c = 1.33 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel

Chiralpak IB column [*n*-hexane/*i*-PrOH = 90/10, 1 mL/min], $\lambda = 210$ nm, $t_{major} = 8.37$ min, $t_{minor} = 7.06$ min, **ee = 92%**. The diastereomeric ratio was determined by NMR, dr > 20:1.

5j was obtained as a yellow oil 32 mg in 52% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1-20/1). ¹**H NMR** (500 MHz, CDCl₃) δ 7.10 (d, J = 8.2 Hz, 1H), 6.90 (dd, J = 8.2, 1.0 Hz, 1H), 6.87 (s, 1H), 5.65 (s, 1H), 4.93 (d, J = 3.1 Hz, 1H), 3.83 (d, J = 2.3 Hz, 1H), 2.23 (d, J = 13.2 Hz, 1H), 2.18 – 2.10 (m, 1H), 2.05 (ddd, J = 13.3, 3.6, 1.4 Hz, 1H), 1.88 (dd, J = 9.9, 8.2 Hz, 1H), 1.77 – 1.60 (m, 3H), 1.56 – 1.46 (m, 1H), 1.46 – 1.37 (m, 1H), 1.35 – 1.28 (m, 1H) ppm. ¹³**C NMR** (125 MHz, CDCl₃) δ 153.8, 135.0, 131.5, 121.0, 119.5, 116.2, 91.6, 89.9, 84.2, 42.3, 33.7, 31.5, 30.3, 26.6, 23.3 ppm. **HRMS**: [M-H]⁻ *calcd*. For C₁₅H₁₅ClNO₄⁻ 308.0695, found 308.0699. [α]_D²⁰ -14.27 (c = 1.19 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [*n*-hexane/*i*-PrOH = 95/5, 1 mL/min], $\lambda = 210$ nm, $t_{major} = 9.99$ min, $t_{minor} = 7.88$ min, **ee = 91%**. The diastereomeric ratio was determined by NMR, dr > 20:1.

5k was obtained as a white solid 40.8 mg in 71% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1). ¹**H** NMR (500 MHz, CDCl₃) δ 7.05 (dd, J = 8.3, 1.8 Hz, 1H), 6.92 (d, J = 1.5 Hz, 1H), 6.73 (d, J = 8.3 Hz, 1H), 5.63 (d, J = 0.8 Hz, 1H), 4.92 (d, J = 3.3 Hz, 1H), 3.82 (d, J = 3.0 Hz, 1H), 2.27 (s, 3H), 2.22 (dt, J = 13.1, 2.5 Hz, 1H), 2.12 – 2.04 (m, 2H), 1.90 – 1.83 (m, 1H), 1.80 – 1.74 (m, 1H), 1.72 – 1.60 (m, 2H), 1.56 – 1.49 (m, 1H), 1.44 – 1.32 (m, 2H) ppm. ¹³**C** NMR (125 MHz, CDCl₃) δ 151.0, 130.7, 130.3, 130.0, 120.5, 115.7,

91.6, 90.2, 84.1, 42.5, 33.7, 32.1, 30.7, 26.7, 23.4, 20.5 ppm. **HRMS**: [M-H]⁻ *calcd*. For C₁₆H₁₈NO₄⁻ 288.1241, found 288.1248. $[\alpha]_D{}^{20}$ 29.37 (*c* = 0.96 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [*n*-hexane/*i*-PrOH = 80/20, 1 mL/min], λ = 210 nm, t_{major} = 7.25 min, t_{minor} = 6.13 min, **ee** = **85%**. The diastereomeric ratio was determined by NMR, *dr* >20:1.

51 was obtained as a white solid 38 mg in 65% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1-20/1). ¹H NMR (500 MHz, CDCl₃) δ 6.99 – 6.88 (m, 2H), 6.77 (dd, J = 8.9, 4.7 Hz, 1H), 5.63 (d, J = 1.0 Hz, 1H), 4.91 (d, J = 3.4 Hz, 1H), 3.82 (d, J = 3.1 Hz, 1H), 2.26 – 2.10 (m, 2H), 2.05 (ddd, J = 13.2, 4.2, 2.0 Hz, 1H), 1.90 – 1.83 (m, 1H), 1.79 – 1.59 (m, 3H), 1.55 – 1.49 (m, 1H), 1.47 – 1.33 (m, 1H), 1.27 (ddd, J = 15.7, 8.0, 3.0 Hz, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 157.7, 155.8, 149.5, 122.0, 117.1, 117.0, 116.9, 116.9, 116.7, 116.5, 91.7, 90.0, 84.4, 42.6, 33.8, 32.0, 30.4, 26.7, 23.5 ppm. HRMS: [M-H]⁻ *calcd.* For C₁₅H₁₅FNO₄⁻ 292.0991, found 292.0993. [*α*]_D²⁰ 8.50 (*c* = 1.57 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [*n*-hexane/*i*-PrOH = 90/10, 1 mL/min], $\lambda = 210$ nm, $t_{major} = 7.73$ min, $t_{minor} = 7.05$ min, **ee = 92%**. The diastereomeric ratio was determined by NMR *dr* >20:1.

5m was obtained as a white solid 30 mg in 48% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1-15/1). ¹H NMR (500 MHz, CDCl₃) δ 7.24 – 7.16 (m, 2H), 6.78 (d, *J* = 8.6 Hz, 1H), 5.65 (d, *J* = 1.0 Hz, 1H), 4.92 (d, *J* = 3.4 Hz, 1H), 3.82 (d, *J* = 3.0 Hz, 1H), 2.23 (dt, *J* = 13.3, 2.5 Hz, 1H), 2.20 – 2.13 (m, 1H), 2.05 (ddd, *J* = 13.3, 4.2, 2.0 Hz, 1H), 1.91 – 1.85 (m, 1H), 1.77 –

1.60 (m, 3H), 1.53 (ddd, J = 15.3, 7.3, 3.6 Hz, 1H), 1.45 – 1.38 (m, 1H), 1.31 (ddd, J = 12.1, 8.6, 3.3 Hz, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 152.0, 130.4, 129.8, 125.7, 122.6, 117.4, 91.8, 89.9, 84.4, 42.5, 33.8, 31.9, 30.4, 26.7, 23.5 ppm. HRMS: [M-H]⁻ *calcd*. For C₁₅H₁₅CINO₄⁻ 308.0695, found 308.0690. [α]_D²⁰ 55.19 (c = 1.11 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [*n*-hexane/*i*-PrOH = 95/5, 1 mL/min], $\lambda = 210$ nm, $t_{major} = 9.53$ min, $t_{minor} = 8.59$ min, **ee** = **93%**. The diastereomeric ratio was determined by NMR dr > 20:1.

5n was obtained as a white solid 42 mg in 59% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1). ¹**H** NMR (500 MHz, CDCl₃) δ 7.40 – 7.29 (m, 2H), 6.73 (d, *J* = 8.6 Hz, 1H), 5.65 (s, 1H), 4.92 (d, *J* = 3.3 Hz, 1H), 3.82 (d, *J* = 3.0 Hz, 1H), 2.31 – 2.09 (m, 2H), 2.04 (ddd, *J* = 13.3, 4.1, 2.0 Hz, 1H), 1.93 – 1.83 (m, 1H), 1.80 – 1.59 (m, 3H), 1.56 – 1.49 (m, 1H), 1.48 – 1.36 (m, 1H), 1.36 – 1.23 (m, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 152.6, 133.3, 132.7, 123.1, 117.9, 112.9, 91.7, 89.9, 84.4, 42.5, 33.8, 31.8, 30.3, 26.7, 23.5 ppm. HRMS: [M-H]⁻ *calcd*. For C₁₅H₁₅BrNO₄⁻ 352.0190, found 352.0194. [*α*]_D²⁰ 64.83 (*c* = 1.89 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [*n*-hexane/*i*-PrOH = 90/10, 1 mL/min], λ = 210 nm, *t_{major}* = 8.77 min, *t_{minor}* = 7.87 min, **ee** = **93%**. The diastereomeric ratio was determined by NMR *dr* >20:1.

50 was obtained as a white solid 20 mg in 31% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 5/1). ¹H NMR (500

MHz, CDCl₃) δ 8.21 (d, J = 2.6 Hz, 1H), 8.17 (dd, J = 9.0, 2.7 Hz, 1H), 6.95 (d, J = 9.0 Hz, 1H), 5.76 (s, 1H), 5.01 (d, J = 3.3 Hz, 1H), 3.93 (d, J = 2.8 Hz, 1H), 2.32 (dt, J = 13.5, 2.3 Hz, 1H), 2.29 – 2.19 (m, 1H), 2.08 (ddd, J = 13.5, 4.0, 1.9 Hz, 1H), 1.98 – 1.89 (m, 1H), 1.71 – 1.61 (m, 3H), 1.56 – 1.50 (m, 1H), 1.46 – 1.34 (m, 1H), 1.28 – 1.22 (m, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 158.7, 127.5, 125.8, 121.8, 116.8, 110.1, 92.3, 89.6, 84.6, 42.3, 33.7, 31.7, 30.1, 26.6, 23.4 ppm. HRMS: [M-H]⁻ calcd. For C₁₅H₁₅N₂O₆⁻ 319.0936, found 319.0934. [α]_D²⁰ 105.07 (c = 0.81 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [*n*-hexane/*i*-PrOH = 90/10, 1 mL/min], $\lambda = 210$ nm, $t_{major} = 21.01$ min, $t_{minor} = 18.43$ min, ee = 87%. The diastereomeric ratio was determined by NMR dr > 20:1.

5p was obtained as a white solid 40.6 mg in 58% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 50/1-20/1). ¹**H** NMR (400 MHz, CDCl₃) δ 7.59 – 7.53 (m, 2H), 7.51 (dd, *J* = 8.4, 2.3 Hz, 1H), 7.47 – 7.38 (m, 3H), 7.35 – 7.28 (m, 1H), 6.92 (d, *J* = 8.4 Hz, 1H), 5.70 (d, *J* = 1.1 Hz, 1H), 4.98 (d, *J* = 3.3 Hz, 1H), 3.92 (d, *J* = 3.1 Hz, 1H), 2.27 (dt, *J* = 13.2, 2.5 Hz, 1H), 2.21 – 2.08 (m, 2H), 1.98 – 1.86 (m, 1H), 1.79 (dt, *J* = 8.0, 6.8 Hz, 1H), 1.76 – 1.61 (m, 2H), 1.54 (ddd, *J* = 11.7, 7.6, 3.5 Hz, 1H), 1.48 – 1.35 (m, 2H) ppm. ¹³**C** NMR (101 MHz, CDCl₃) δ 152.8, 140.3, 133.9, 129.2, 128.8, 128.4, 126.9, 126.8, 121.2, 116.3, 91.8, 90.2, 84.3, 42.5, 33.8, 32.2, 30.6, 26.7, 23.4 ppm. HRMS: [M-H]⁻ *calcd*. For C₂₁H₂₀NO₄⁻ 350.1398, found 350.1395. [*α*]_D²⁰ 112.91 (*c* = 1.50 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column [*n*-hexane/*i*-PrOH = 98/2, 1 mL/min], λ = 204 nm, *t_{major}* = 13.12 min, *t_{minor}* = 10.33 min, **ee** = **87%**. The diastereomeric ratio was determined by NMR *dr* >20:1.

5q was obtained as a white solid 38 mg in 59% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 40/1). ¹H NMR (500 MHz, CDCl₃) δ 7.20 (t, J = 8.1 Hz, 1H), 7.03 (d, J = 7.9 Hz, 1H), 6.80 (d, J = 8.3 Hz, 1H), 5.67 (s, 1H), 5.10 (d, J = 3.1 Hz, 1H), 4.25 (d, J = 2.0 Hz, 1H), 2.28 (d, J = 13.3 Hz, 1H), 1.97 (dd, J = 13.3, 1.6 Hz, 1H), 1.93 – 1.66 (m, 5H), 1.60 (dd, J = 15.5, 6.9 Hz, 1H), 1.53 – 1.44 (m, 1H), 1.34 – 1.26 (m, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 154.4, 134.9, 129.9, 122.1, 119.6, 115.1, 92.0, 90.0, 83.9, 41.8, 33.7, 30.7, 30.1, 26.9, 23.0 ppm. HRMS: [M-H]⁻ *calcd*. For C₁₅H₁₅ClNO₄⁻ 308.0695, found 308.0690. [*α*]_D²⁰ 106.36 (*c* = 1.44 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [*n*-hexane/*i*-PrOH = 90/10, 1 mL/min], $\lambda = 210$ nm, $t_{major} = 7.23$ min, $t_{minor} = 6.24$ min, **ee** = **92%**. The diastereomeric ratio was determined by NMR *dr* >**20:1**.

5r was obtained as a white solid 55 mg in 78% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 60/1). ¹**H** NMR (400 MHz, CDCl₃) δ 7.21 (dd, J = 8.0, 1.2 Hz, 1H), 7.13 (t, J = 8.1 Hz, 1H), 6.84 (dd, J = 8.2, 0.8 Hz, 1H), 5.65 (d, J = 1.4 Hz, 1H), 5.09 (d, J = 3.4 Hz, 1H), 4.24 (d, J = 3.1 Hz, 1H), 2.27 (dd, J = 9.2, 6.7 Hz, 1H), 1.97 (ddd, J = 13.3, 3.9, 2.2 Hz, 1H), 1.94 – 1.64 (m, 5H), 1.64 – 1.53 (m, 1H), 1.52 – 1.42 (m, 1H), 1.33 – 1.21 (m, 1H) ppm. ¹³**C** NMR (101 MHz, CDCl₃) δ 154.5, 130.3, 125.4, 121.2, 115.8, 92.1, 90.1, 83.8, 41.8, 33.6, 32.3, 30.8, 26.9, 23.0 ppm. HRMS: [M-H]⁻ *calcd*. For C₁₅H₁₅BrNO₄⁻ 352.0190, found 352.0188. [α]_D²⁰ 118.10 (c = 1.90 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [*n*-hexane/*i*-PrOH = 95/5, 1 mL/min], $\lambda = 210$ nm, *tmajor*= 8.86 min, *tminor*= 7.29 min, **ee = 93%**. The

enantiomeric excess after recrystallization was determined by HPLC analysis on Daicel Chiralpak IC column [*n*-hexane/*i*-PrOH = 95/5, 1 mL/min], λ = 210 nm, t_{major} = 7.81 min, t_{minor} = 6.31 min, **ee** >99%. The diastereomeric ratio was determined by NMR *dr* >20:1.

5s was obtained as a white solid 16.3 mg in 26% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1). ¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.32 (m, 1H), 7.30 – 7.22 (m, 4H), 7.07 – 6.99 (m, 2H), 6.88 (dd, *J* = 7.4, 1.9 Hz, 2H), 5.62 (d, *J* = 1.6 Hz, 1H), 4.25 (dd, *J* = 13.7, 1.3 Hz, 1H), 3.94 (s, 1H), 3.66 (d, *J* = 13.7 Hz, 1H), 3.29 (d, *J* = 14.3 Hz, 1H), 2.76 (d, *J* = 14.3 Hz, 1H), 2.11 (dt, *J* = 13.9, 2.4 Hz, 1H), 1.95 – 1.87 (m, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 154.8, 132.4, 130.7, 130.0, 129.3, 128.8, 128.0, 121.0, 120.9, 116.3, 91.8, 91.6, 61.9, 42.7, 37.1, 26.5 ppm. HRMS: [M+H]⁺ calcd. For C₁₈H₁₈NO₄⁺ 312.1230, found 312.1233. [*a*]_D²⁰ -44.55 (*c* = 1.24 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [*n*-hexane/*i*-PrOH = 85/15, 1 mL/min], λ = 210 nm, *t_{major}* = 8.62 min, *t_{minor}* = 6.88 min, **ee** = **85%**. The diastereomeric ratio was determined by NMR *dr* >20:1.

5s' was obtained as a white solid 11.4 mg in 18% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 60/1). ¹H NMR (400 MHz, CDCl₃) δ 7.32 (pd, J = 4.5, 1.8 Hz, 3H), 7.25 – 7.18 (m, 1H), 7.17 – 7.11 (m, 2H), 6.99 (dd, J = 7.6, 1.5 Hz, 1H), 6.89 (ddd, J = 11.1, 8.4, 4.5 Hz, 2H), 5.65 (s, 1H), 3.91 – 3.80 (m, 2H), 3.73 (s, 1H), 3.61 (d, J = 13.8 Hz, 1H), 3.41 (d, J = 13.8 Hz, 1H), 2.61 (dt, J = 13.7, 2.6 Hz, 1H), 2.04 (ddd, J = 13.8, 3.4, 1.7 Hz, 1H) ppm. ¹³C NMR

(101 MHz, CDCl₃) δ 154.7, 133.4, 129.9, 129.8, 129.6, 128.9, 128.0, 121.5, 120.9, 115.6, 91.4, 89.7, 58.5, 40.2, 37.6, 27.0 ppm. **HRMS**: [M+H]⁺ *calcd*. For C₁₈H₁₈NO₄⁺ 312.1230, found 312.1228. [α]_D²⁰ 2.90 (c = 0.82 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [*n*-hexane/*i*-PrOH = 85/15, 1 mL/min], $\lambda = 210$ nm, $t_{major} = 8.30$ min, $t_{minor} = 7.61$ min, **ee = 82%**. The diastereomeric ratio was determined by NMR dr > 20:1.

5t was obtained as a white solid 16 mg in 34% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 100/1). ¹**H** NMR (500 MHz, CDCl₃) δ 7.30 – 7.26 (m, 1H), 7.13 (dd, *J* = 7.8, 1.4 Hz, 1H), 6.99 – 6.92 (m, 2H), 5.60 (d, *J* = 1.7 Hz, 1H), 4.49 (dd, *J* = 13.7, 1.4 Hz, 1H), 3.80 (s, 1H), 3.51 (d, *J* = 13.7 Hz, 1H), 2.15 (dt, *J* = 13.8, 2.4 Hz, 1H), 1.93 – 1.84 (m, 1H), 1.35 (s, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 154.8, 130.5, 129.7, 121.0, 120.8, 116.1, 91.8, 88.2, 63.4, 36.1, 26.3, 22.6 ppm. HRMS: [M+H]⁺ *calcd*. For C₁₂H₁₄NO₄⁺ 236.0917, found 236.0922. [*α*]_D²⁰ 49.12 (*c* = 0.13 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column [*n*-hexane/*i*-PrOH = 80/20, 1 mL/min], λ = 210 nm, *t_{major}* = 6.82 min, *t_{minor}* = 6.24 min, **ee** = **98%**. The diastereomeric ratio was determined by NMR *dr* >20:1.

5t' was obtained as a white solid 21 mg in 45% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1). ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.19 (m, 1H), 6.91 (dtd, *J* = 14.9, 7.9, 1.2 Hz, 3H), 5.56 (s, 1H), 4.06 (d, *J* = 12.1 Hz, 1H), 3.79 (dd, *J* = 12.1, 0.9 Hz, 1H), 3.59 (s, 1H), 2.39 (dt, *J* = 13.7, 2.6 Hz, 1H), 1.96 (ddd, *J* = 13.7, 3.5, 1.8 Hz, 1H), 1.89 (s, 3H) ppm. ¹³C NMR

(101 MHz, CDCl₃) δ 154.6, 129.8, 129.5, 121.4, 120.8, 115.6, 91.3, 85.8, 62.4, 37.7, 26.5, 23.4 ppm. **HRMS**: [M+H]⁺ *calcd*. For C₁₂H₁₄NO₄⁺ 236.0917, found 236.0920. [α]_D²⁰ -75.44 (c = 0.63 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column [*n*-hexane/*i*-PrOH = 80/20, 1 mL/min], $\lambda = 210$ nm, $t_{major} = 7.48$ min, $t_{minor} = 6.17$ min, **ee = 93%**. The diastereomeric ratio was determined by NMR *dr* >20:1.

5u was obtained as a white solid 10 mg in 20% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 15/1). ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.23 (m, 2H), 7.02 – 6.91 (m, 2H), 5.64 (d, J = 1.7 Hz, 1H), 4.56 (dd, J = 13.7, 1.4 Hz, 1H), 3.99 (s, 1H), 3.74 (dd, J = 11.9, 5.6 Hz, 1H), 3.62 (dd, J = 17.6, 8.8 Hz, 2H), 2.18 (dt, J = 13.9, 2.4 Hz, 1H), 1.99 – 1.84 (m, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 179.9, 154.7, 130.0, 129.9, 121.2, 116.2, 92.2, 91.9, 65.1, 60.8, 32.2, 25.9 ppm. HRMS: [M+H]⁺ calcd. For C₁₂H₁₄NO₅⁺ 252.0866, found 252.0864. [α]_D²⁰ -2.72 (c = 0.34 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column [*n*-hexane/*i*-PrOH = 80/20, 1 mL/min], $\lambda = 210$ nm, $t_{major} = 10.37$ min, $t_{minor} = 9.23$ min, **ee** = **88%**. The diastereomeric ratio was determined by NMR dr > 20:1.

5u' was obtained as a white solid 10 mg in 20% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 4/1). ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.22 (m, 1H), 6.91 (ddd, J = 21.5, 11.4, 5.7 Hz, 3H), 5.58 (s, 1H), 4.34 – 4.16 (m, 2H), 4.05 (d, J = 12.5 Hz, 1H), 3.90 (d, J = 12.5 Hz, 1H), 3.81 (s, 1H), 2.55 – 2.37 (m, 1H), 2.32 (dt, J = 13.8, 2.5 Hz, 1H), 2.03 – 1.91 (m, 1H) ppm.

¹³C NMR (101 MHz, CDCl₃) δ 154.7, 130.0, 129.1, 121.5, 120.0, 115.7, 91.2, 89.6, 63.9, 58.3, 33.8, 26.6 ppm. HRMS: [M+H]⁺ calcd. For C₁₂H₁₄NO₅⁺ 252.0866, found 252.0860. [α]_D²⁰ -53.74 (c = 0.19 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column [*n*-hexane/*i*-PrOH = 80/20, 1 mL/min], $\lambda = 210$ nm, $t_{major} = 9.50$ min, $t_{minor} = 8.13$ min, ee = 90%. The diastereomeric ratio was determined by NMR dr > 20:1.

E. Scope of the reaction 2

General procedure: A glass vial equipped with a magnetic stirring bar was charged with **6** (0.24 mmol, 1.2 equiv.), different substituted 2-hydroxycinnamaldehydes **1** (0.20 mmol, 1.0 equiv.), **3** (0.04 mmol, 0.2 equiv.) and **3''** (0.04 mmol, 0.2 equiv.) in CHCl₃ (0.5 mL) at 0 °C. The resulting reaction mixture was kept under vigorous stirring until the consumption of **1** (monitored by TLC analysis). After completion of the reaction, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 3/1 to 2/1) to afford the intermediate. Then, the intermediate (1.0 equiv.) was respectively dissolved in anhydrous CH₂Cl₂ (0.10 mmol in 0.5 mL) at 25 °C and *p*-TsOH (0.4 equiv.) was added to the reaction mixture. After full conversion of the second step, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 20/1 to 8/1) to give product **7**.

At last, compound 7 (1.0 equiv.) was respectively dissolved in CH_2Cl_2 (0.10 mmol in 0.5 mL) at 25 °C and DBU (1.2 equiv.) was added to the reaction mixture. After full conversion of the third step, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 20/1 to 5/1) to give product **8** for NMR and HPLC analysis.

8a was obtained as a white solid 30 mg in 61% yield for three steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 15/1). ¹H NMR (400 MHz, CDCl₃) δ 7.19 – 7.03 (m, 2H), 6.99 – 6.84 (m, 2H), 6.41 (dd, J = 7.1, 1.4 Hz, 1H), 6.16 (d, J = 1.9 Hz, 1H), 4.23 (q, J = 7.1 Hz, 2H), 3.59 – 3.47 (m, 1H), 2.15 – 1.99 (m, 2H), 1.29 (t, J = 7.1 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 162.3, 151.8, 141.8, 128.1, 127.3, 125.5, 121.2, 116.6, 115.0, 92.4, 61.4, 26.5, 24.8, 14.2 ppm. HRMS: [M+H]⁺ calcd. For C₁₄H₁₅O₄⁺ 247.0965, found 247.0967. [α]_D²⁰ 88.68 (c = 0.57 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column [*n*-hexane/*i*-PrOH = 90/10, 1 mL/min], $\lambda = 210$ nm, $t_{major} = 9.59$ min, $t_{minor} = 8.72$ min, **ee** = 95%. The diastereomeric ratio was determined by NMR dr > 20:1.

8b was obtained as a white solid 16.8 mg in 32% yield for three steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 15/1). ¹**H** NMR (400 MHz, CDCl₃) δ 6.97 – 6.90 (m, 1H), 6.83 (ddd, J = 12.2, 10.4, 5.5 Hz, 2H), 6.41 (dd, J = 7.1, 1.5 Hz, 1H), 6.25 (dd, J = 3.9, 2.0 Hz, 1H), 4.24 (q, J = 7.1 Hz, 2H), 3.58 (dd, J = 4.3, 2.6 Hz, 1H), 2.13 (ddd, J = 13.2, 3.3, 2.0 Hz, 1H), 2.06 (ddd, J = 13.2, 4.1, 2.3 Hz, 1H), 1.30 (t, J = 7.1 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 162.1, 142.0, 128.2, 122.2, 121.1, 121.0, 115.2, 115.0, 114.4, 92.2, 61.5, 26.1, 24.6, 14.2 ppm. **HRMS**: [M+H]⁺ *calcd*. For C₁₄H₁₄FO₄⁺ 265.0871, found 265.0869. [**α**]₀²⁰ 45.86 (c = 1.34 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [*n*-hexane/*i*-PrOH = 90/10, 1 mL/min], $\lambda = 210$ nm, $t_{major} = 9.71$ min, $t_{minor} = 8.94$ min, **ee** = **93%**. The diastereomeric ratio was determined by NMR dr > 20:1.

8c was obtained as a white solid 11 mg in 20% yield for three steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 10/1-5/1). ¹H NMR (400 MHz, CDCl₃) δ 7.00 (d, J = 8.1 Hz, 1H), 6.96 (d, J = 2.0 Hz, 1H), 6.87 (dd, J = 8.0, 2.0 Hz, 1H), 6.38 (dd, J = 7.1, 1.6 Hz, 1H), 6.15 (q, J = 2.0 Hz, 1H), 4.24 (q, J = 7.1 Hz, 2H), 3.56 – 3.47 (m, 1H), 2.12 (ddd, J = 13.2, 3.3, 2.0 Hz, 1H), 2.02 (ddd, J = 13.1, 4.1, 2.3 Hz, 1H), 1.30 (t, J = 7.1 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 162.1, 152.5, 141.8, 133.2, 127.9, 124.1, 121.4, 117.0, 114.5, 92.2, 61.5, 26.0, 24.7, 14.2 ppm. HRMS: [M+H]⁺ calcd. For C₁₄H₁₄ClO₄⁺ 281.0575, found 281.0579. [α]_D²⁰ 56.36 (c = 0.51 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [*n*-hexane/*i*-PrOH = 80/20, 1 mL/min], $\lambda = 204$ nm, $t_{major} = 7.28$ min, $t_{minor} = 6.83$ min, **ee = 85%**. The diastereomeric ratio was determined by NMR *dr* >20:1.

8d was obtained as a colorless oil 12 mg in 21% yield for three steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 10/1). ¹H NMR (400 MHz, CDCl₃) δ 7.13 – 7.04 (m, 2H), 6.87 (d, J = 8.3 Hz, 1H), 6.38 (dd, J = 7.1, 1.5 Hz, 1H), 6.15 (dd, J = 3.8, 1.9 Hz, 1H), 4.24 (q, J = 7.1 Hz, 2H), 3.54 – 3.46 (m, 1H), 2.11 (ddd, J = 13.2, 3.2, 2.0 Hz, 1H), 2.02 (ddd, J = 13.2, 4.1, 2.2 Hz, 1H), 1.30 (t, J = 7.1 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 162.1, 150.5, 142.1, 139.7, 128.0, 127.0, 125.9, 117.9, 114.2, 92.3, 61.5, 26.3, 24.5, 14.2 ppm. HRMS: [M+H]⁺ calcd. For C₁₄H₁₄ClO₄⁺ 281.0575, found 281.0570. [α]_D²⁰ 164.42 (c = 0.47 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column [*n*-hexane/*i*-PrOH = 80/20, 1 mL/min], $\lambda = 230$ nm, $t_{major} = 7.39$ min, $t_{minor} = 6.54$ min, ee = 91%. The diastereomeric ratio was determined by NMR *dr* >20:1.

8e was obtained as a colorless oil 26.4mg in 48% yield for three steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 10/1). ¹H NMR (400 MHz, CDCl₃) δ 6.86 (d, J = 8.8 Hz, 1H), 6.69 (dd, J = 8.8, 3.0 Hz, 1H), 6.63 (d, J = 3.0 Hz, 1H), 6.40 (dd, J = 7.1, 1.4 Hz, 1H), 6.13 (q, J = 2.0 Hz, 1H), 4.23 (q, J = 7.1 Hz, 2H), 3.75 (s, 3H), 3.47 (ddd, J = 7.2, 4.6, 2.7 Hz, 1H), 2.15 – 1.97 (m, 2H), 1.29 (t, J = 7.1 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 162.4, 153.8, 145.6, 142.0, 126.1, 117.1, 114.6, 113.4, 112.4, 92.4, 61.4, 55.8, 26.8, 24.8, 14.2 ppm. HRMS: [M+H]⁺ calcd. For C₁₅H₁₇O₅⁺ 277.1071, found 277.1067. [α]_D²⁰ 136.94 (c = 1.10 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column [*n*-hexane/*i*-PrOH = 80/20, 1 mL/min], $\lambda = 230$ nm, $t_{major} = 8.84$ min, $t_{minor} = 7.74$ min, ee = 92%. The diastereomeric ratio was determined by NMR

8f was obtained as a colorless oil 28.4 mg in 44% yield for three steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1-15/1). ¹H NMR (400 MHz, CDCl₃) δ 7.14 (dd, J = 7.9, 1.1 Hz, 1H), 6.99 (t, J = 8.1 Hz, 1H), 6.90 (d, J = 8.1 Hz, 1H), 6.47 (dd, J = 7.2, 1.5 Hz, 1H), 6.15 (dd, J = 3.9, 2.0 Hz, 1H), 4.35 – 4.16 (m, 2H), 4.00 (ddd, J = 7.3, 4.6, 2.8 Hz, 1H), 2.12 (ddd, J = 13.2, 3.3, 2.1 Hz, 1H), 2.01 (ddd, J = 13.2, 4.1, 2.3 Hz, 1H), 1.30 (t, J = 7.1 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 162.1, 153.1, 142.6, 128.6, 125.6, 124.9, 122.3, 116.0, 113.1, 92.3, 61.5, 25.9, 24.6, 14.2 ppm. HRMS: [M+H]⁺ calcd. For C₁₄H₁₄BrO₄⁺ 325.0070, found 325.0071. [*a*]_D²⁰ 149.82 (*c* = 1.08 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column [*n*-hexane/*i*-PrOH = 90/10, 1 mL/min], $\lambda = 204$ nm, $t_{major} = 9.35$ min, $t_{minor} = 8.43$ min, **ee** = 90%. The diastereomeric ratio was determined by NMR *dr* >20:1.
F. Other reactions

F1. Synthesis of 13

A glass vial equipped with a magnetic stirring bar was charged with ethyl 2-hydroxy-3-nitropropanoate **6** (0.20 mmol, 1.0 equiv.), cinnamaldehyde **9** (0.24 mmol, 1.2 equiv.), **3** (0.04 mmol, 0.2 equiv.) and **3''** (0.04 mmol, 0.2 equiv.) in CHCl₃ (1 mL) at 0 °C. The resulting reaction mixture was kept under vigorous stirring until the consumption of **6** (monitored by TLC analysis). After completion of the reaction, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 3/1 to 1.5/1) to afford **10** as intermediate.

Compound **10** (1.0 equiv.) was dissolved in CH_2Cl_2 (0.10 mmol in 0.5 mL). Imidazole (3.0 equiv.) and TBSCl (2.0 equiv.) were added to the reaction mixture at 0 °C and the reaction was kept at 25 °C until the consumption of **10**. After full conversion of the second step, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 10/1) to give the intermediate. The intermediate (1.0 equiv.) was dissolved in CH_2Cl_2 (0.10 mmol in 0.5 mL) at 25 °C and DBU (1.2 equiv.) was added to the reaction mixture. After full conversion of the third step, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 10/1) to give the intermediate 1.2 °C and DBU (1.2 equiv.) was added to the reaction mixture. After full conversion of the third step, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 100/1) to give product **11**.

Hydrogenate a solution of **11** (57 mg, 0.16 mmol) in MeOH (2 mL) at atmospheric pressure using 10% Pd/C (6 mg) as the catalyst. And the reaction mixture was stirred at 25 °C. After completion of the reaction, filter the catalyst and the solvent was

removed under vacuum. The product was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate = 100/1-60/1) to afford the desired product **12**. To a solution of **12** (0.065 mmol, 1.0 equiv.) and triethylsilane (0.20 mmol, 3.0 equiv.) in anhydrous CH₂Cl₂ (0.5 mL) was added BF₃·Et₂O (0.1 mmol, 1.5 equiv.) at 0 °C. The reaction was stirred at 0 °C for 1 h. The product was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate = 10/1) to afford the desired product **13** for NMR and HPLC analysis.

13 was obtained as a colorless oil 12 mg in 26% yield for five steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 10/1). ¹**H** NMR (400 MHz, CDCl₃) δ 7.38 – 7.29 (m, 2H), 7.23 (dd, *J* = 10.3, 4.6 Hz, 3H), 4.33 – 4.19 (m, 3H), 4.11 (dd, *J* = 11.7, 2.3 Hz, 1H), 3.63 (td, *J* = 11.8, 2.5 Hz, 1H), 2.86 (tt, *J* = 12.1, 3.8 Hz, 1H), 2.20 (ddt, *J* = 13.1, 3.8, 2.1 Hz, 1H), 1.88 (dtd, *J* = 16.4, 12.1, 4.5 Hz, 1H), 1.82 – 1.69 (m, 2H), 1.28 (t, *J* = 7.1 Hz, 3H) ppm. ¹³**C** NMR (101 MHz, CDCl₃) δ 171.3, 144.7, 128.7, 126.7, 126.7, 76.6, 68.3, 61.2, 41.5, 36.3, 32.6, 14.2 ppm. HRMS: [M+H]⁺ *calcd*. For C₁₄H₁₉O₃⁺ 235.1329, found 235.1326. [*a*]_D²⁰ -83.28 (*c* = 0.42 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [*n*-hexane/*i*-PrOH = 90/10, 1 mL/min], λ = 210 nm, *t_{major}* = 19.83 min, *t_{minor}* = 17.89 min, **ee** = **95%**. The diastereomeric ratio was determined by NMR *dr* >20:1.

F2. Synthesis of 16

A glass vial equipped with a magnetic stirring bar was charged with (2-nitroethyl) (phenyl) sulfane **14** (0.24 mmol, 1.2 equiv.), 2-hydroxycinnamaldehyde **1a** (0.20 mmol, 1.0 equiv.), **3** (0.04 mmol, 0.2 equiv.) and **3''** (0.04 mmol, 0.2 equiv.) in CHCl₃ (0.5 mL) at 0 °C. The resulting reaction mixture was kept under vigorous stirring until the consumption of **1a** (monitored by TLC analysis). After completion of the reaction, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 8/1 to 5/1) to afford **15** as intermediate.

Then, compound **15** (1.0 equiv.) was dissolved in toluene (0.10 mmol in 1.0 mL). AIBN (1.0 equiv.), Bu₃SnH (3.5 equiv.) were added to the reaction mixture and the resulting reaction mixture was kept under vigorous stirring at 110 °C until the consumption of **15** (monitored by TLC analysis).After full conversion of the second step, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) to get the intermediate. At last, the intermediate (1.0 equiv.) was dissolved in CH₂Cl₂ (0.10 mmol in 0.5 mL) at 25 °C. Celite and PCC (3.0 equiv.) were added to the reaction mixture. After full conversion of the third step, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 25/1) to give product **16** for NMR and HPLC analysis.

16 was obtained as a colorless oil 6.8 mg in 20% yield for three steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 25/1). ¹H NMR (400 MHz, CDCl₃) δ 7.29 (td, J = 7.8, 1.6 Hz, 1H), 7.21 (d, J = 6.3 Hz, 1H), 7.14 (td, J = 7.5, 1.1 Hz, 1H), 7.08 (d, J = 8.1 Hz, 1H), 5.85 (ddd, J = 17.1, 10.2, 6.9 Hz, 1H), 5.24 (d, J = 10.2 Hz, 1H), 5.11 (d, J = 17.1 Hz, 1H), 3.74 (q, J = 6.6 Hz, 1H), 2.89 (dd, J = 15.8, 5.8 Hz, 1H), 2.78 (dd, J = 15.8, 7.2 Hz, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 167.7, 151.4, 136.8, 128.8, 127.7, 124.6, 124.6, 117.8, 117.1, 38.8, 34.9 ppm. HRMS: [M+H]⁺ *calcd*. For C₁₁H₁₁O₂⁺ 175.0754, found 175.0757. [α]_D²⁰ -57.42 (c = 0.56 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak AD-H column [*n*-hexane/*i*-PrOH = 98/2, 1 mL/min], $\lambda = 204$ nm, $t_{major} = 10.18$ min, $t_{minor} = 9.35$ min, **ee** = **97%**. The diastereomeric ratio was determined by NMR dr > 20:1.

F3. Synthesis of 19

A glass vial equipped with a magnetic stirring bar was charged with 5-bromo-2-(2nitroethyl)-1H-indole **17** (0.20 mmol, 1.0 equiv.), 2-hydroxycinnamaldehyde **1a** (0.24 mmol, 1.2 equiv.), **3** (0.04 mmol, 0.2 equiv.) and **3''** (0.04 mmol, 0.2 equiv.) in CHCl₃ (0.5 mL) at 0 °C. The resulting reaction mixture was kept under vigorous stirring until the consumption of **17** (monitored by TLC analysis). After completion of the reaction, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 3/1 to 2/1) to afford **I** as intermediate. Then, compound **I** (1.0 equiv.) was dissolved in anhydrous CH₂Cl₂ (0.10 mmol in 0.5 mL) at 25 °C and *p*-TsOH (1.0 equiv.) was added to the reaction mixture. After full conversion of the second step, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 10/1) to give product **19** for NMR and HPLC analysis.

19 was obtained as a yellow solid 15.4 mg in 19% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 10/1). ¹**H** NMR (400 MHz, CDCl₃) δ 7.91 (s, 1H), 7.84 (d, *J* = 1.4 Hz, 1H), 7.28 (dd, *J* = 8.6, 1.7 Hz, 1H), 7.15 (dd, *J* = 12.0, 5.1 Hz, 2H), 6.85 (t, *J* = 7.4 Hz, 1H), 6.80 (dd, *J* = 7.7, 1.5 Hz, 1H), 6.76 (d, *J* = 8.2 Hz, 1H), 5.74 (d, *J* = 4.8 Hz, 1H), 4.91 – 4.80 (m, 1H), 4.31 (d, *J* = 6.8 Hz, 1H), 3.36 (dd, *J* = 15.7, 12.5 Hz, 1H), 3.19 (dd, *J* = 15.7, 2.6 Hz, 1H), 2.88 (ddd, *J* = 14.2, 6.8, 5.4 Hz, 1H), 2.38 (d, *J* = 14.3 Hz, 1H) ppm. ¹³**C** NMR (101 MHz, CDCl₃) δ 154.7, 154.2, 133.2, 130.5, 130.1, 129.6, 129.5, 125.5, 120.6, 120.4, 118.1, 117.0, 113.9, 112.1, 86.8, 65.1, 37.4, 30.9, 28.2 ppm. HRMS: [M+H]⁺ calcd. For C₁₉H₁₆BrN₂O₃⁺ 399.0339, found 399.0341. [α]_D²⁰ 159.63 (*c* = 0.67 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [*n*-hexane/*i*-PrOH = 90/10, 1 mL/min], λ = 230 nm, *t_{major}* = 7.55 min, *t_{minor}* = 6.43 min, **ee** = **98%**. The diastereomeric ratio was determined by NMR *dr* >20:1.

F4. Synthesis of 20

A glass vial equipped with a magnetic stirring bar was charged with 5-bromo-2-(2nitroethyl)-1H-indole **18** (0.20 mmol, 1.0 equiv.), 2-hydroxycinnamaldehyde **1a** (0.24 mmol, 1.2 equiv.), **3** (0.04 mmol, 0.2 equiv.) and **3''** (0.04 mmol, 0.2 equiv.) in CHCl₃ (0.5 mL) at 0 °C. The resulting reaction mixture was kept under vigorous stirring until the consumption of **18** (monitored by TLC analysis). After completion of the reaction, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 5/1 to 3/1) to afford **II** as intermediate. Then, compound **II** (1.0 equiv.) was dissolved in anhydrous CH₂Cl₂ (0.10 mmol in 0.5 mL) at 25 °C and *p*-TsOH (1.0 equiv.) was added to the reaction mixture. After full conversion of the second step, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 40/1) to give product **20** for NMR and HPLC analysis.

20 was obtained as a yellow solid 17.8 mg in 27% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 40/1). ¹**H** NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 8.0 Hz, 1H), 7.29 – 7.21 (m, 3H), 7.14 – 7.04 (m, 2H), 6.90 (dd, J = 10.8, 4.2 Hz, 1H), 6.76 (d, J = 8.2 Hz, 1H), 5.79 (d, J = 3.3 Hz, 1H), 5.14 (ddd, J = 10.6, 5.2, 2.3 Hz, 1H), 3.86 (d, J = 8.6 Hz, 4H), 3.62 (dd, J = 15.2, 10.6 Hz, 1H), 3.52 (dd, J = 15.2, 5.2 Hz, 1H), 2.98 (d, J = 15.2 Hz, 1H), 2.69 (ddd, J = 15.2, 6.7, 4.8 Hz, 1H) ppm. ¹³**C** NMR (101 MHz, CDCl₃) δ 151.8, 137.1, 132.7, 129.4, 128.7, 126.4, 123.4, 122.8, 121.7, 119.5, 118.3, 117.7, 109.3, 107.5, 92.0, 67.5, 35.1, 30.2, 25.5, 25.3 ppm. HRMS: [M+H]⁺ calcd. For C₂₀H₁₉N₂O₃⁺ 335.1390, found 335.1393. [**a**]_D²⁰ 151.39 (c = 0.83 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [n-hexane/i-PrOH = 90/10, 1 mL/min], λ = 230 nm, t_{major} = 10.39 min, t_{minor} = 9.61 min, **ee** = **98%**. The diastereomeric ratio was determined by NMR dr >20:1.

G. Synthetic transformation

(2*R*,2'*S*,6'*S*)-4'*H*,6'*H*-spiro[pyrrolidine-2,5'-[2,6]methanobenzo[*d*][1,3]dioxocin]-5-one (22)

To a solution of 5f (44 mg, 0.2 mmol) and ethyl acrylate (43 µL, 0.4 mmol) in anhydrous MeCN (1.0 mL) was added tetramethylguanidine (25 µL, 0.2 mmol) at room temperature. The reaction was stirred at 40 °C for 24 h before the solvent was removed under vacuum. The product was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate = 15/1) to afford the desired product 21 as a colorless oil (52 mg, 81% yield). To a suspension of 21 (52 mg, 0.162 mmol) and NiCl·6H₂O (46 mg, 0.19 mmol) in methanol (1.5 mL) was added NaBH₄ (92 mg, 2.43 mmol) at 0 °C and the mixture was stirred at 0 °C for 1 h, after which the mixture was quenched with sat. NH₄Cl at 0 °C and extracted with CH₂Cl₂. The combined organic layers were dried over anhydrous Na₂SO₄ and the solvent was evaporated. The product was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate = 2/1 to CH₂Cl₂/MeOH = 20/1) to afford the desired product 22 as a white solid (39.5 mg, 99% yield). ¹**H NMR** (600 MHz, CDCl₃) δ 7.24 (t, J = 7.7 Hz), 7.05 (d, J = 7.2 Hz), 6.92 (t, J = 7.8 Hz), 5.53 (s), 5.20 (s), 3.42 (d, J = 11.8 Hz), 3.31 (d, J)= 11.7 Hz), 2.86 (s), 2.56 - 2.42 (m), 2.28 (d, J = 13.4 Hz), 2.11 - 2.01 (m), 1.92 (d, J= 13.1 Hz) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 176.4, 155.0, 129.5, 129.2, 122.3, 121.2, 116.0, 91.7, 64.8, 59.0, 40.0, 30.2, 29.8, 26.3 ppm. HRMS: [M+H]⁺ calcd. For $C_{14}H_{16}NO_3^+$ 246.1125, found 246.1121. $[\alpha]_D^{20}$ -36.86 (c = 1.67 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak AD-H column [*n*-hexane/*i*-PrOH = 80/20, 1 mL/min], $\lambda = 210$ nm, $t_{major} = 9.93$ min, $t_{minor} =$ 9.11 min, ee = 89%. The diastereometric ratio was determined by ¹H NMR, dr > 20:1.

(2'*R*,6'*S*)-spiro[cyclopentane-1,4'-[2,6]methanobenzo[*d*][1,3]dioxocin]-5'(6'H)-on (23)

To a suspension of 5d (34.6 mg, 0.12 mmol) and KOH (8.4 mg, 0.14 mmol) in methanol (0.5 mL) was added KMnO₄ (15.8 mg, 0.1 mmol) in H₂O (0.5 mL) at 0 °C. The reaction was stirred at 0 °C for 10 minutes, after which the mixture was quenched with sat. NH₄Cl at 0 °C and extracted with CH₂Cl₂. The combined organic layers were dried over anhydrous Na₂SO₄ and the solvent was evaporated. The residue was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate = 30/1) to afford the desired product 23 as a white solid (20.8 mg, 71% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.26 – 7.20 (m, 1H), 7.19 – 7.12 (m, 1H), 6.92 (t, J = 7.0 Hz, 2H), 5.83 (d, J = 1.5 Hz, 1H), 3.74 (s, 1H), 2.46 (dt, J = 13.6, 2.5 Hz, 1H), 2.33 (ddd, J = 13.6, 3.3, 1.9 Hz, 1H), 2.23 – 2.08 (m, 1H), 1.91 – 1.65 (m, 4H), 1.63 – 1.47 (m, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 209.1, 152.3, 129.6, 128.9, 121.6, 118.3, 116.9, 91.6, 89.3, 43.5, 41.9, 41.0, 26.5, 25.5, 25.3 ppm. HRMS: [M-H]⁻ calcd. For $C_{15}H_{17}O_3^+$ 245.1172, found 245.1178. $[\alpha]_D^{20}$ -242.99 (c = 0.74 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak Chiral-MJ (2) column [*n*-hexane/*i*-PrOH = 90/10, 1 mL/min], $\lambda = 210$ nm, $t_{major} = 9.66$ min, $t_{minor} = 7.66 \text{ min}, ee = 88\%$. The diastereomeric ratio was determined by ¹H NMR, *dr* >20:1.

(2'*R*,5'*S*,6'*S*)-5'-nitro-7'-phenyl-5',6'-dihydrospiro[cyclopentane-1,4'-[2,6]methanobenzo[*d*][1,3]dioxocine] (24)

In a glass vial equipped with a magnetic stirring bar, the 5r (35.4 mg, 0.1 mmol), phenylboronic acid (18.3 mg, 0.15 mmol) and Pd(PPh₃)₄ (5.8 mg, 0.005 mmol) in DME (0.5 mL) were added. Aqueous Na₂CO₃ (0.52 mmol, 2 M, 0.26 mL) was added under nitrogen atmosphere. The resulting mixture was stirred at room temperature for 15 min and then at 90 °C for another 12 h. After being cooled to room temperature, the solvent was removed under vacuum and the residue was extracted with CH₂Cl₂. The combined organic layers were dried over anhydrous Na₂SO₄ and the solvent was evaporated. The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 100/1) to afford the desired product 24 as a white solid (16.7 mg, 48% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.40 (m, 3H), 7.33 -7.23 (m, 3H), 6.90 (t, J = 7.3 Hz, 2H), 5.80 (s, 1H), 4.58 (s, 1H), 3.93 (s, 1H), 3.57 (s, 1H), 2.82 (dt, J = 13.6, 2.7 Hz, 1H), 1.94 - 1.84 (m, 2H), 1.82 - 1.66 (m, 3H), 1.59-1.44 (m, 3H), 1.17 - 1.04 (m, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 153.7, 142.4, 139.1, 129.1, 128.7, 128.7, 127.9, 122.6, 120.2, 116.0, 92.3, 90.8, 80.6, 40.6, 39.6, 28.7, 25.0, 22.7, 22.7 ppm. **HRMS**: [M-H]⁻ calcd. For C₂₁H₂₀NO₄⁻ 350.1398, found 350.1401. $[\alpha]_D^{20}$ 106.14 (c = 0.83 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [n-hexane/i-PrOH =98/2, 1 mL/min], $\lambda = 204$ nm, $t_{maior} = 5.94$ min, $t_{minor} = 5.34$ min, ee = 92%. The diastereometric ratio was determined by ¹H NMR, dr = 12.5:1.

The absolute configuration of the nitro stereocenter in compound 24 was confirmed by the following method. First, following the general procedure, product 5v was obtained by the reaction of 1v and 2d. It was found that compounds 5v and 24 showed different TLC behaviour, which indicated that these two compounds are diastereoisomers. Then, the relative configuration of 5v was confirmed by NOESY, which was matched with the configuration of 5k.

The NOSEY spectrum of 5v (500 MHz, CDCl₃)

The NOSEY spectrum of 24 (500 MHz, CDCl₃)

(2'S,6'S)-5',6'-dihydrospiro[cyclohexane-1,4'-[2,6]methanobenzo[*d*][1,3]dioxocine] (25)

To a solution of **5a** (40 mg, 0.14 mmol) and Tributyltin Hydride (48 µL, 0.18 mmol) in toluene (1 mL) was added AIBN (4.5 mg, 0.028 mmol) at room temperature. The reaction was stirred at 80 °C for 7 hours before the solvent was removed under vacuum. The product was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate = 100/1-60/1) to afford the desired product 25 as a brown oil (20 mg, 59% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.18 (m, 1H), 7.15 (dd, J = 7.9, 1.4 Hz, 1H), 6.97 – 6.85 (m, 2H), 5.92 (d, J = 1.6 Hz, 1H), 3.69 (s, 1H), 2.41 (dt, J = 13.7, 2.5 Hz, 1H), 2.31 (ddd, J = 13.7, 3.3, 2.0 Hz, 1H), 1.76 (dd, J = 14.3, 3.7 Hz, 1H), 1.70 - 1.60 (m, 4H), 1.58 - 1.51 (m, 1H), 1.46 - 1.32 (m, 2H), 1.31 - 1.04 (m, 3H), 0.92 - 0.79 (m, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 208.9, 152.3, 129.6, 129.0, 121.5, 118.2, 117.1, 91.4, 81.0, 43.2, 36.9, 35.7, 25.8, 24.8, 20.9, 20.6 ppm. **HRMS**: $[M+H]^+$ calcd. For C₁₆H₂₁O₂⁺ 245.1536, found 245.1530. $[\alpha]_D^{20}$ -144.38 (c = 1.48 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column [*n*-hexane/*i*-PrOH = 98/2, 1 mL/min], λ = 204 nm, $t_{major} = 6.67 \text{ min}$, $t_{minor} = 5.77 \text{ min}$, ee = 85%. The diastereometric ratio was determined by ¹H NMR, *dr* >20:1.

ethyl (1a*R*,3*R*,9*S*,9a*R*)-9,9a-dihydro-1a*H*-3,9-methanobenzo[*d*]oxireno[2,3*g*][1,3]dioxocine-1a-carboxylate (26)

KF (35 mg, 0.6 mmol) was added to a solution of *m*-chloroperoxybenzoic acid (62 mg, 0.30 mmol) in anhydrous CH₂Cl₂ (1.5 ml) and the suspension was maintained at room temperatme with stirring. After 30 min 8a (30 mg, 0.12 mmol) was added and the mixtme was stirred for 5 days. The insoluble complexes were then filtered off, and the solvent was removed under vacuum. The product was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate = 10/1) to afford the desired product 26 as a white solid (14 mg, 44% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.25 (td, J = 8.1, 1.5 Hz, 1H), 7.16 (dd, J = 7.4, 1.3 Hz, 1H), 6.99 – 6.92 (m, 2H), 5.64 (s, 1H), 4.25 - 4.15 (m, 2H), 3.73 (d, J = 1.5 Hz, 1H), 3.52 (d, J = 1.8 Hz, 1H), 2.58 - 2.48 (m, 1H), 1.81 - 1.72 (m, 1H), 1.26 (t, J = 7.1 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 165.6, 152.3, 129.5, 128.3, 121.4, 121.3, 117.0, 91.4, 77.3, 62.7, 61.5, 28.2, 23.4, 14.0 ppm. HRMS: [M+Na]⁺ calcd. For C₁₄H₁₄NaO₅⁺ 285.0733, found 285.0729. $[\alpha]_D^{20}$ 62.41 (c = 1.08 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak OD-H column [n-hexane/i-PrOH = 80/20, 1 mL/min], λ = 210 nm, t_{major} = 10.12 min, t_{minor} = 9.27 min, ee = 89%. The diastereometric ratio was determined by ¹H NMR, dr > 20:1.

2-((9S,10R)-10-nitro-6-oxaspiro[4.5]decan-9-yl)phenol (27)

To a solution of 4d (29.3 mg, 0.1 mmol) and triethylsilane (47.8 µL, 0.3 mmol) in anhydrous CH₂Cl₂ (1.0 mL) was added BF₃·Et₂O (18.5 µL, 0.15 mmol) at 0 °C. The reaction was stirred at 0 °C for 1 h before the solvent was removed under vacuum. The product was purified by column chromatography on a silica gel (petroleum ether/ethyl acetate = 5/1) to afford the desired product 27 as a white solid (17.5 mg, 63% yield). ¹**H NMR** (500 MHz, DMSO) δ 9.79 (s, 1H), 7.08 (t, J = 7.7 Hz, 1H), 6.94 (d, J = 7.6 Hz, 1H), 6.86 - 6.81 (m, 1H), 6.75 (t, J = 7.5 Hz, 1H), 4.97 (d, J = 3.9 Hz,1H), 3.94 (dd, J = 11.8, 4.6 Hz, 1H), 3.79 (td, J = 12.2, 2.2 Hz, 1H), 3.72 (dt, J = 13.5, 3.9 Hz, 1H, 3.35 (s, 1H), 2.69 (qd, J = 13.0, 5.2 Hz, 1H), 2.32 - 2.22 (m, 1H), 1.81 - 2.21.71 (m, 1H), 1.70 - 1.57 (m, 4H), 1.54 - 1.46 (m, 1H), 1.41 (d, J = 12.9 Hz, 1H) ppm.¹³C NMR (125 MHz, DMSO) δ 154.8, 128.1, 126.6, 125.0, 119.1, 114.7, 89.8, 83.0, 61.0, 37.2, 33.8, 32.1, 23.8, 22.6, 22.3 ppm. **HRMS**: [M+H]⁺ calcd. For C₁₅H₂₀NO₄⁺ 278.1387, found 278.1392. $[\alpha]_{D}^{20}$ 117.72 (c = 0.58 in MeOH). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [nhexane/*i*-PrOH = 90/10, 1 mL/min], $\lambda = 210$ nm, $t_{maior} = 7.82$ min, $t_{minor} = 6.93$ min, ee = 97%. The diastereometric ratio was determined by ¹H NMR, dr > 20:1.

H. Scale-up synthesis of 5d

A glass vial equipped with a magnetic stirring bar was charged with 1-(290.3)nitromethylcycloalcohol 2d mg, 2 mmol, 1.0 equiv.), 2hydroxycinnamaldehyde 1a (356 mg, 2.4 mmol, 1.2 equiv.), 3 (130 mg, 0.4 mmol, 0.2 equiv.) and 3" (263mg, 0.4 mmol, 0.2 equiv.) in CHCl₃ (5 mL) at 0 °C. The resulting reaction mixture was kept under vigorous stirring until the consumption of 2d (monitored by TLC analysis). After completion of the reaction, the reaction mixture was concentrated and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 4/1 to 3/1) to afford **4d** as a red solid (586 mg). Then the second step was performed. Compound 4d (586 mg, 2 mmol, 1.0 equiv.) was dissolved in anhydrous CH₂Cl₂ (10 mL) at 25 °C and *p*-TsOH (0.4 equiv.) was added to the reaction mixture. After full conversion of the second step, the reaction mixture was concentrated and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 60/1 to 50/1) to give product **5d** (457 mg, 83% yield over two steps, 93% ee, dr > 20:1).

I. NMR analysis and computational studies for the reaction pathway

NMR analysis

¹**H** NMR (400 MHz, DMSO) δ 9.82 (s, 1H), 9.79 (s, 1H), 7.07 (t, *J* = 7.4 Hz, 1H), 6.92 (d, *J* = 7.7 Hz, 1H), 6.82 (d, *J* = 8.1 Hz, 1H), 6.74 (d, *J* = 7.4 Hz, 1H), 6.55 (d, *J*

= 6.7 Hz, 1H), 5.09 (d, J = 7.8 Hz, 1H), 4.97 (d, J = 4.0 Hz, 1H), 3.93 (dd, J = 10.1, 3.7 Hz, 1H), 2.25 (s, 1H), 1.61 – 1.33 (m, 11H) ppm. **MS**: [M-H]⁻ *calcd*. For C₁₆H₂₀NO₅⁻ 306.13, found 306.11.

Computational details

In order to investigate the intermediates which formed through catalyzed Michael addition, the energies of different proposed structures were calculated with DFT computations. The DFT calculations were performed with Gaussian 09. Geometry optimizations were carried out at the B3LYP-D3 level of theory with the 6-31G(d) basis set. Vibrational frequencies were computed at the same level to verify that the optimized structures are local minimums and to evaluate zero-point vibrational energies (ZPVE) and thermal corrections at 298 K. Solvent effects in chloroform were evaluated at the more accurate B3LYP-D3/6-311+G(d,p) level with the SMD model.

Figure S1. Lowest energy geometry of (*2S*,4*R*,5*R*)-4-(2-hydroxyphenyl)-5-nitro-1oxaspiro[5.5] undecan-2-ol (**4a-S**)

G (chloroform) = -1053.197097 Hartree

С	3.717989	-0.289194	-1.301038
С	2.224055	-0.625093	-1.185718
С	1.653035	-0.143962	0.167837
С	2.445075	-0.790314	1.317717
С	3.948328	-0.492533	1.211926
С	4.513906	-0.920385	-0.149628
Н	2.087842	-1.709676	-1.253150
Н	1.666982	-0.201663	-2.027212
Н	3.847601	0.800797	-1.280979
Н	4.097616	-0.639205	-2.268562

Н	2.270471	-1.872237	1.298694
Н	2.047734	-0.415600	2.267788
Н	4.479026	-1.002562	2.025027
Н	4.104154	0.583853	1.350874
Н	4.461088	-2.015763	-0.237659
Н	5.574290	-0.648703	-0.224364
С	0.120809	-0.398641	0.338916
Н	-0.136683	-0.218538	1.380877
С	-0.367265	1.950734	-0.382958
С	-0.752591	0.471603	-0.584950
Н	-0.514103	0.191359	-1.615662
С	-2.236756	0.213959	-0.387146
С	-3.005795	-0.283923	-1.443983
С	-2.888668	0.446705	0.838838
С	-4.372660	-0.532030	-1.314051
С	-4.256930	0.201801	0.981412
С	-4.998968	-0.285292	-0.093559
Н	-4.938122	-0.920380	-2.155588
Н	-4.736415	0.392258	1.940206
Н	-6.061642	-0.473931	0.030392
0	-0.368151	-2.246543	-1.038153
0	-0.204951	-2.586164	1.108115
Ν	-0.186080	-1.861274	0.116257
Н	-2.510210	-0.492025	-2.388275
0	-2.134258	0.916078	1.887942
Н	-2.695680	0.991448	2.674823
Н	-0.638775	2.286474	0.620524
0	1.837703	1.270578	0.352848
С	1.132193	2.137482	-0.537029
Н	1.452613	1.923985	-1.571994

Н	-0.897681	2.575037	-1.109336
0	1.452982	3.447124	-0.177736
Н	2.421306	3.519904	-0.193861

Figure S2. Lowest energy geometry of (2R,4R,5R)-4-(2-hydroxyphenyl)-5-nitro-1-

oxaspiro[5.5]undecan-2-ol (**4a-R**)

G (chloroform) = - 1053.196027 Hartree

С	-3.750115	0.133736	1.191867
С	-2.248523	-0.189833	1.185090
С	-1.661712	-0.109200	-0.242456
С	-2.443527	-1.053495	-1.174710
С	-3.950245	-0.754227	-1.166053
С	-4.525666	-0.803490	0.256008
Н	-2.107519	-1.210455	1.558039
Н	-1.707308	0.475631	1.859186
Н	-3.904820	1.171452	0.867121
Н	-4.133296	0.060296	2.216811
Н	-2.263134	-2.086001	-0.854609
Н	-2.040424	-0.954772	-2.189117
Н	-4.467356	-1.471992	-1.814544
Н	-4.115104	0.242459	-1.592535
Н	-4.457820	-1.831432	0.642178
Н	-5.590697	-0.539675	0.245776
С	-0.133326	-0.421938	-0.312999
Н	0.132368	-0.595144	-1.354567
С	0.418100	1.999107	-0.450694

Н	0.968488	2.828710	0.003044
С	0.750766	0.686804	0.284529
Н	0.471270	0.808519	1.333225
С	2.229992	0.344452	0.243442
С	2.922031	0.099443	-0.957244
С	2.955099	0.253629	1.436229
С	4.284075	-0.212508	-0.951081
С	4.315507	-0.054817	1.455863
Н	2.428294	0.418190	2.372002
С	4.981151	-0.288984	0.253742
Н	4.794352	-0.396730	-1.895166
Н	4.845496	-0.119275	2.401265
Н	6.039303	-0.534985	0.246463
0	0.135450	-2.749997	-0.331695
0	0.354338	-1.733217	1.582888
Ν	0.150570	-1.741136	0.370525
0	2.213931	0.175740	-2.135093
Н	2.794410	-0.076068	-2.869731
С	-1.073341	2.293214	-0.384337
Н	-1.343457	3.091616	-1.089208
Н	0.713750	1.925453	-1.500070
0	-1.857841	1.199459	-0.829311
0	-1.371050	2.686778	0.941461
Н	-2.331008	2.820687	0.991598

Figure S3. Lowest energy geometry of (2*S*,4*R*)-4-((*R*)-(1-hydroxycyclohexyl)(nitro) methyl)chroman-2-ol (**4a'-S**)

G (chloroform) = -1053.19198 Hartree

С	2.242033	-2.320264	1.810192
С	1.462917	-1.177001	1.649400
С	1.604744	-0.330322	0.541272
С	2.619264	-0.641226	-0.380979
С	3.400680	-1.791794	-0.236392
С	3.206092	-2.637142	0.850017
Н	2.096748	-2.957367	2.677517
Н	0.722407	-0.943850	2.409089
Н	4.159884	-1.991354	-0.986152
Н	3.816164	-3.529842	0.955645
0	2.912470	0.140413	-1.474307
С	0.760240	0.926907	0.346174
Н	1.158495	1.674927	1.045193
С	0.937199	1.487335	-1.075868
Н	0.392997	0.881958	-1.801330
Н	0.549390	2.507452	-1.134989
С	2.405181	1.476025	-1.451660
С	-0.728588	0.733762	0.759585
Н	-0.756211	0.261460	1.740080
С	-1.732581	-0.025859	-0.164468
С	-3.117440	-0.074474	0.534488

С	-1.232790	-1.460956	-0.419373
С	-4.132499	-0.888694	-0.278764
Н	-2.999788	-0.520829	1.532309
Н	-3.490870	0.946387	0.680864
С	-2.251520	-2.276984	-1.228977
Н	-0.276452	-1.421554	-0.947793
Н	-1.042908	-1.951256	0.543470
С	-3.621806	-2.311589	-0.540228
Н	-5.092339	-0.911686	0.251499
Н	-4.302222	-0.380886	-1.235755
Н	-1.864855	-3.293627	-1.370552
Н	-2.352707	-1.827735	-2.223785
Н	-3.536022	-2.848918	0.416719
Н	-4.342442	-2.869119	-1.151253
0	-1.859116	0.576197	-1.450182
Н	-2.036595	1.521957	-1.296339
0	-1.162433	2.522465	2.225661
0	-1.695458	2.817122	0.139238
Ν	-1.249984	2.132735	1.070486
Н	2.561766	1.823681	-2.480197
0	3.105478	2.266596	-0.524489
Н	4.051142	2.192370	-0.731524

Figure S4. Lowest energy geometry of (2*R*,4*R*)-4-((*R*)-(1-hydroxycyclohexyl)(nitro) methyl)chroman-2-ol (**4a'-R**)

G (chloroform) = -1053.189983 Hartree

С	2.216876	2.462476	-1.781613
С	1.446786	1.302913	-1.750601
С	1.596036	0.342143	-0.740425
С	2.608526	0.553582	0.212786
С	3.380703	1.720898	0.197634
С	3.176260	2.679236	-0.788016
Н	2.069163	3.190940	-2.573263
Н	0.707229	1.146596	-2.531716
Н	4.138307	1.843200	0.965217
Н	3.777782	3.583909	-0.793327
0	2.893372	-0.352271	1.198805
С	0.729372	-0.914822	-0.676588
Н	1.022534	-1.538039	-1.534602
С	0.993554	-1.719000	0.610132
Н	0.471607	-1.279468	1.460803
Н	0.645965	-2.749632	0.500243
С	2.471556	-1.703496	0.930387
Н	3.077557	-2.065132	0.079384
С	-0.782156	-0.613772	-0.921172
Н	-0.868051	-0.006807	-1.821228
С	-1.669640	0.045759	0.182666

С	-3.103931	0.234366	-0.381681
С	-1.085767	1.415424	0.579776
С	-4.010862	0.968171	0.614814
Н	-3.048523	0.804307	-1.320328
Н	-3.534106	-0.744648	-0.624633
С	-1.999634	2.155081	1.568397
Н	-0.097217	1.269228	1.022303
Н	-0.944848	2.020922	-0.324322
С	-3.417372	2.326698	1.008754
Н	-5.009568	1.091465	0.178510
Н	-4.121835	0.345728	1.510780
Н	-1.556427	3.130490	1.803333
Н	-2.040780	1.584854	2.503647
Н	-3.384061	2.979710	0.123175
Н	-4.060785	2.825199	1.744264
0	-1.717420	-0.718634	1.383547
Н	-1.965198	-1.625348	1.127334
0	2.692757	-2.449456	2.078866
Н	3.634962	-2.377618	2.302739
0	-1.370114	-2.182856	-2.571443
0	-1.813073	-2.719828	-0.512315
Ν	-1.385674	-1.939919	-1.372784

J. NMR spectra and HPLC analyses

The ¹H NMR spectrum of 5a (500 MHz, CDCl₃)

The HPLC of racemic 5a

No.	RT	Area	Area %	BC
1	7.280	11511239	49.825	BV
2	7.953	11592048	50.175	VB
		23103287	100.000	

The HPLC of chiral 5a

Chrom Type: Fixed WL Chromatogram, 210 nm

No.	RT	Area	Area %	BC
1	7.353	1510969	95.747	BB
2	8.027	67122	4.253	BB
		1578091	100.000	

Calculation Method: AREA&

No.	RT	Area	Area %	BC
1	6.333	2977611	98.505	BB
2	6.907	45193	1.495	BB
		3022804	100.000	

The ¹H NMR spectrum of 5b (500 MHz, CDCl₃)

The HPLC of racemic 5b

Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area 🖇	BC
1	5.713	1486148	94.142	BB
2	6.240	92475	5.858	BB
		1578623	100.000	

The ¹H NMR spectrum of 5c (500 MHz, CDCl₃)

The HPLC of racemic 5c

Chrom Type: Fixed WL Chromatogram, 210 nm

BC	Area %	Area	RT	No.
BV	50.506	1820062	7.813	1
VB	49.494	1783622	8.507	2
	100.000	3603684		

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	7.880	415872	7.521	BB
2	8.573	5113573	92.479	BB
		5529445	100.000	

The HPLC of racemic 5d

Chrom Type: Fixed WL Chromatogram, 210 nm

BC

BV

VB

The HPLC of chiral 5d

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	7.400	3431592	96.446	BB
2	7.853	126443	3.554	BB
		3558035	100.000	
The HPLC of chiral 5d after recrystallization

No.	RT	Area	Area %	BC
1	7.473	4225321	99.778	BB
2	7.993	9384	0.222	BB
		4234705	100.000	

The NOSEY spectrum of 5e (400 MHz, CDCl₃)

The HPLC of racemic 5e

Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA&

No.	RT	Area	Area %	BC
1	13.067	3415772	49.944	BV
2	13.860	3423427	49.944 7 50.056	VB
		6839199	100.000	

The HPLC of chiral 5e

Chrom Type: Fixed WL Chromatogram, 210 nm

No.	RT	Area	Area %	BC
1	13.173	8027664	97.670	BV
2	14.040	191509	2.330	TBB
		8219173	100.000	

The ¹³C NMR spectrum of 5e' (101 MHz, CDCl₃)

The HPLC of racemic 5e'

No.	RT	Area	Area 😵	BC
1	5.993	14648	0.920	BB
2	7.473	1577474	99.080	BB
		1592122	100.000	

The ¹³C NMR spectrum of 5f (101 MHz, CDCl₃)

The HPLC of racemic 5f

Chrom Type: Fixed WL Chromatogram, 210 nm

No.	RT	Area	Area %	BC
1	7.653	570189	50.315	BB
2	8.647	563046	49.685	BB
		1133235	100.000	

The HPLC of chiral 5f

No.	RT	Area	Area %	BC
1	7.660	14683	0.858	BB
2	8.640	1697439	99.142	BB
		1712122	100.000	

The HPLC of racemic 5f'

The HPLC of chiral 5f'

The HPLC of racemic 5g

Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	15.720	4184443	50.136	BV
2	16.840	4161691	49.864	VB
		8346134	100.000	

The HPLC of chiral 5g

Chrom Type: Fixed WL Chromatogram, 210 nm

No.	RT	Area	Area %	BC
1	15.647	2682120	97.106	BV
2	17.007	79935	2.894	TBB
с.		2762055	100.000	

The HPLC of racemic 5h

Chrom Type: Fixed WL Chromatogram, 210 nm

5425019

BV

100.000

The HPLC of chiral 5h

Chrom Type: Fixed WL Chromatogram, 210 nm 12.140 1.0 688, 0.8 5h NO2 Absorbance (AU) 0.6 0.4 11.487 169331, 0.2 0.0 $T^{T}T$ TTТ \mathbf{T} 111 Т Т 11.0 11.5 12.0 12.5 13.0 13.5

Retention Time (min)

No.	RT	Area	Area %	BC
1	11.487	169331	2.887	BV
2	12.140	5695688	2.887 97.113	VB
		5865019	100.000	

The HPLC of racemic 5i

Chrom Type: Fixed WL Chromatogram, 210 nm

	1(1	nii ou	nica o	20
1	7.020	4042210	49.632	BB
2	8.327	4102117	50.368	BE
(2).		8144327	100.000	

Chrom Type: Fixed WL Chromatogram, 210 nm

No.	RT	Area	Area %	BC
1	7.060	82805	3.990	BB
2	8.367	1992719	96.010	BB
		2075524	100.000	

The HPLC of racemic 5j

Chrom Type: Fixed WL Chromatogram, 210 nm

NO.	RT	Area	Area *	BC
1	7.880	9070736	48.770	BB
2	9.993	9528211	11 51.230	BB
		18598947	100.000	β¢

The HPLC of chiral 5j

No.	RT	Area	Area %	BC
1	7.880	106223	4.551	BB
2	9.993	2227942	95.449	BB
		2334165	100.000	

The HPLC of racemic 5k

Chrom Type: Fixed WL Chromatogram, 210 nm

The HPLC of chiral 5k

Chrom Type: Fixed WL Chromatogram, 210 nm

925924

BC

BB

BB

100.000

No.	RT	Area	Area %	BC
1	6.133	270322	7.387	BB
2	7.247	3388918	92.613	BB
		3659240	100.000	

The HPLC of racemic 5l

Chrom Type: Fixed WL Chromatogram, 210 nm

No.	RT	Area	Area %	BC
1	7.027	8154828	50.212	BV
2	7.727	8085825	49.788	VB
2. 		16240653	100.000	

The HPLC of chiral 51

Chrom Type: Fixed WL Chromatogram, 210 nm

No.	RT	Area	Area %	BC
1	7.047	165724	3.830	BB
2	7.733	4161343	96.170	BB
		4327067	100.000	

100 90 fl (ppm)

The HPLC of racemic 5m

Absorbance (AU)

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA

Calculatio	on Method: AREA%			
No.	RT	Area	Area %	BC
1	8.567	7940146	49.594	BB
2	9.487	8070099	50.406	BB
		16010245	100.000	

The HPLC of chiral 5m

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	8.593	34224	3.379	BB
2	9.527	978626	96.621	BB
		1012850	100.000	

The HPLC of racemic 5n

Chrom Type: Fixed WL Chromatogram, 210 nm

Peak Quantitation: AREA Calculation Method: AREA% No. RT Area Area % 1 7.767 10238602 49.079

The HPLC of chiral 5n

8.667

2

Chrom Type: Fixed WL Chromatogram, 210 nm

10622974

20861576

BC

BB

BB

50.921

100.000

No.	RT	Area	Area %	BC
1	7.867	78863	3.579	BB
2	8.773	2124513	96.421	BE
		2203376	100.000	

The HPLC of racemic 50

Chrom Type: Fixed WL Chromatogram, 210 nm

No.	RT	Area	Area %	BC
1	18.300	2696382	50.738	BB
2	21.000	2617910	49.262	BB
		5314292	100.000	

The HPLC of chiral 50

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	18.427	213841	6.747	BB
2	21.013	2955672	93.253	BB
		3169513	100.000	

The HPLC of racemic 5p

Chrom Type: Fixed WL Chromatogram, 204 nm

The HPLC of chiral 5p

13.120

Chrom Type: Fixed WL Chromatogram, 204 nm

10411195

11113265

93.683

100.000

BB

The ¹H NMR spectrum of 5q (500 MHz, CDCl₃)

150 140 100 90 fl (ppm)

-10

The HPLC of racemic 5q

Chrom Type: Fixed WL Chromatogram, 210 nm

No.	RT	Area	Area %	BC
1	6.260	5580796	50.448	BB
2	7.247	5481596	49.552	BB
8 8		11062392	100.000	8

The HPLC of chiral 5q

Chrom Type: Fixed WL Chromatogram, 210 nm

No.	RT	Area	Area %	BC
1	6.240	3038104	95.952	BB
2	7.227	128167	4.048	BB
		3166271	100.000	

The ¹³C NMR spectrum of 5r (125 MHz, CDCl₃)

The HPLC of racemic 5r

No.	RT	Area	Area %	BC
1	7.307	7023477	49.824	BB
2	8.873	7073098	50.176	BB
		14096575	100.000	

The HPLC of chiral 5r

Chrom Type: Fixed WL Chromatogram, 210 nm

No.	RT	Area	Area %	BC
1	7.293	5731015	96.263	BB
2	8.860	222505	3.737	BB
		5953520	100.000	

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%					
No.	RT	Area	Area %		
1	6.313	12863255	99.948		
2	7.813	6682	0.052		

12869937

BC BB BB

100.000

-10 100 90 fl (ppm)

The NOSEY spectrum of 5s (500 MHz, CDCl₃)

The HPLC of racemic 5s

Chrom Type: Fixed WL Chromatogram, 210 nm

9102062

BC

BB

BB

100.000

No.	RT	Area	Area %	BC
1	6.880	5615260	92.669	BB
2	8.620	444236	7.331	BB
		6059496	100.000	

The ¹³C NMR spectrum of 5s' (101 MHz, CDCl₃)

The ¹H NMR spectrum of 5s' (400 MHz, CDCl₃)

The HPLC of racemic 5s'

Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	7.600	1310709	50.065	BB
2	8.287	1307308	49.935	BB
		2618017	100.000	

The HPLC of chiral 5s'

Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	7.613	533286	9.165	BB
2	8.300	5285563	90.835	BB
		5818849	100.000	

The NOSEY spectrum of 5t (500 MHz, CDCl₃)

The HPLC of racemic 5t

The HPLC of chiral 5t

The HPLC of racemic 5t'

Chrom Type: Fixed WL Chromatogram, 210 nm

The HPLC of chiral 5t'

Chrom Type: Fixed WL Chromatogram, 210 nm

No.	RT	Area	Area %	BC
1	6.173	3901427	96.585	BB
2	7.480	137926	3.415	BB
		4039353	100.000	

The HPLC of racemic 5u

Chrom Type: Fixed WL Chromatogram, 204 nm

Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	9.227 10.367	457581 7148776	6.016 93.984	BB BB
		7606357	100.000	

The NOSEY spectrum of 5u' (400 MHz, CDCl₃)

The HPLC of racemic 5u'

Chrom Type: Fixed WL Chromatogram, 210 nm

No.	RT	Area	Area %	BC
1	8.147	648456	50.086	BB
2	9.507	646237	49.914	BB
		1294693	100.000	

The HPLC of chiral 5u'

The ¹³C NMR spectrum of 8a (101 MHz, CDCl₃)

The HPLC of racemic 8a

Chrom Type: Fixed WL Chromatogram, 210 nm

The HPLC of chiral 8a

Chrom Type: Fixed WL Chromatogram, 210 nm

No.	RT	Area	Area %	BC
1	8.720	4474045	97.258	BB
2	9.587	126126	2.742	BB
		4600171	100.000	

The HPLC of racemic 8b

8891402

100.000

The HPLC of chiral 8b

The HPLC of racemic 8c

The HPLC of chiral 8c

Chrom Type: Fixed WL Chromatogram, 204 nm

No.	RT	Area	Area %	BC
1	6.833	355321	7.368	BB
2	7.280	4467046	92.632	BB
		4822367	100.000	

The HPLC of racemic 8d

Chrom Type: Fixed WL Chromatogram, 230 nm

No.	RT	Area	Area 🖁	BC
1	6.560	2892512	49.989	BB
2	7.407	2893768	50.011	BB
		5786280	100.000	

The HPLC of chiral 8d

Chrom Type: Fixed WL Chromatogram, 230 nm

No.	RT	Area	Area %	BC
1	6.540	3646957	95.674	BB
2	7.387	164904	4.326	BB
		3811861	100.000	

The HPLC of racemic 8e

Chrom Type: Fixed WL Chromatogram, 230 nm

Chrom Type: Fixed WL Chromatogram, 230 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	7.707	3201143	49.833	BB
2	8.780	3222568	50.167	BB
		6423711	100.000	

The HPLC of chiral 8e

Chrom Type: Fixed WL Chromatogram, 230 nm

No.	RT	Area	Area %	BC
1	7.740	4477310	96.027	BB
2	8.840	185265	3.973	BB
		4662575	100.000	

The ¹³C NMR spectrum of 8f (101 MHz, CDCl₃)

The ¹H NMR spectrum of 8f (400 MHz, CDCl₃)

The HPLC of racemic 8f

The HPLC of chiral 8f

5441765

100.000

The ¹³C NMR spectrum of 13 (101 MHz, CDCl₃)

The NOSEY spectrum of 13 (400 MHz, CDCl₃)

The HPLC of racemic 13

Chrom Type: Fixed WL Chromatogram, 210 nm

The HPLC of chiral 13

The ¹H NMR spectrum of 16 (400 MHz, CDCl₃)

The HPLC of racemic 16

Chrom Type: Fixed WL Chromatogram, 204 nm

The HPLC of chiral 16

5020497

BC

BV

VB

100.000

Chrom Type: Fixed WL Chromatogram, 204 nm Peak Quantitation: AREA Calculation Method: AREA%

RT	Area	Area 8	BC
9.347	49022	1.708	BB
10.180	2820838	98.292	BB
	2869860	100.000	
	RT 9.347 10.180	RT Area 9.347 49022 10.180 2820838 2869860	RT Area Area % 9.347 49022 1.708 10.180 2820838 98.292 2869860 100.000

The HPLC of racemic 19

Chrom Type: Fixed WL Chromatogram, 230 nm

5027124	100.000

6.440

7.547

The HPLC of chiral 19

12

2511970

2515154

BC

BB

BB

49.968

50.032

No.	RT	Area	Area %	BC
1	6.427	1405712	99.195	BB
2	7.547	11411	0.805	BB
		1417123	100.000	

The NOSEY spectrum of 20 (500 MHz, CDCl₃)

Chrom Type: Fixed WL Chromatogram, 230 nm

Chrom Type: Fixed WL Chromatogram, 230 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	9.700	6199290	50.487	BV
2	10.487	6079600	49.513	VB
		12278890	100.000	

The HPLC of chiral 20

No.	RT	Area	Area %	BC
1	9.613	48559	1.002	BB
2	10.393	4796943	98.998	BB
		4845502	100.000	

The NOSEY spectrum of 22 (400 MHz, CDCl₃)

Chrom Type: Fixed WL Chromatogram, 210 nm

The HPLC of chiral 22

No.	RT	Area	Area %	BC
1 2	9.113 9.927	416820 7120493	5.530 94.470	BB
		7537313	100.000	

The ¹³C NMR spectrum of 23 (101 MHz, CDCl₃)

The ¹H NMR spectrum of 23 (400 MHz, CDCl₃)

Chrom Type: Fixed WL Chromatogram, 210 nm

Chrom Type: Fixed WL Chromatogram, 210 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	7.820	2860190	50.051	BB
2	9.413	2854408	49.949	BB
		5714598	100.000	

The HPLC of chiral 23

No.	RT	Area	Area %	BC
1	7.660	346004	5.823	BB
2	9.660	5595728	94.177	BB
		5941732	100.000	

The ¹³C NMR spectrum of 24 (101 MHz, CDCl₃)

The ¹H NMR spectrum of 24 (400 MHz, CDCl ₃)

111	ALCO.	ALCO 0	20
5.320	4992913	50.020	BV
5.913	4988827	2913 50.020 8827 49.980	VB
	9981740	100.000	
	5.320 5.913	5.320 4992913 5.913 4988827 9981740	5.320 4992913 50.020 5.913 498827 49.980 9981740 100.000

No.	RT	Area	Area %	BC
1	5.340	64983	3.770	BB
2	5.940	1658613	3.770 96.230	BB
		1723596	100.000	

The ¹H NMR spectrum of 25 (400 MHz, CDCl₃)

No.	RT	Area	Area %	BC
1	5.747	2676638	49.790	BV
2	6.640	2699265	50.210	VB
		5375903	100.000	

The HPLC of chiral 25

No.	RT	Area	Area %	BC
1	5.767	563268	7.730	BB
2	6.667	6723840	92.270	BB
		7287108	100.000	

The ¹³C NMR spectrum of 26 (101 MHz, CDCl₃)

The HPLC of chiral 26

No.	RT	Area	Area %	BC
1	9.273	1615751	94.340	BB
2	10.120	96935	5.660	BB
		1712686	100.000	

Peak Quantitation: AREA Calculation Method: AREA% No. RT Area Area %

No.	RT	Area	Area %	BC
1	7.000	2187954	50.127	BB
2	7.893	2176907	49.873	BB
		4364861	100.000	

The HPLC of chiral 27

No.	RT	Area	Area %	BC
1 2	6.927 7.820	105221 7527049	1.379 98.621	BB BB
		7632270	100.000	

K. Single crystal X-Ray diffraction data

CCDC 2072646 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data</u> request/cif.

Absolute configuration of 5k - CCDC 2072646

Bond precision:	C-C = 0.0052 A	Wavelength=1.54184	
Cell:	a=7.2163(4) alpha=90	b=10.5180(4) beta=90	c=19.1890(7) gamma=90
Temperature:	293 K		
	Calculated	Report	ed
Volume	1456.47(11)	1456.47(10)	
Space group	P 21 21 21	P 21 21 21	
Hall group	P 2ac 2ab	P 2ac 2ab	
Moiety formula	C16 H19 N 04	?	
Sum formula	C16 H19 N 04	C16 H19 N 04	
Mr	289.32	289.32	
Dx,g cm-3	1.319	1.319	
Z	4	4	
Mu (mm-1)	0.780	0.780	
F000	616.0	616.0	
F000'	617.98		
h,k,lmax	8,12,22	8,12,22	
Nref	2617[1532]	2616	
Tmin, Tmax	0.823,0.849	0.829,1.000	
Tmin'	0.823		
Correction meth AbsCorr = MULTI	od= # Reported T 1 -SCAN	Limits: Tmin=0.8	29 Tmax=1.000
Data completene	ss= 1.71/1.00	Theta(max) = 67	.248
R(reflections)=	0.0448(2138)	wR2(reflection	s)= 0.1290(2616)
S = 1.036	036 Npar= 192		