Supporting Information

Dual-stimuli pseudorotaxane switches under kinetic control

Marius Gaedke,^a Henrik Hupatz,^a Hendrik V. Schröder,^{a,b} Simon Suhr,^c Kurt F. Hoffmann,^d Arto Valkonen,^e Biprajit Sarkar,^c Sebastian Riedel,^d Kari Rissanen,^e and Christoph A. Schalley^{*a}

 ^a Institut für Chemie und Biochemie der Freien Universität Berlin, Arnimallee 20, 14195 Berlin, Germany.
^b Present address: Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ08544, USA
^c Lehrstuhl für Anorganische Koordinationschemie, Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
^d Institut für Chemie und Biochemie der Freien Universität Berlin, Fabeckstr. 34/36 14195 Berlin, Germany.

^e University of Jyvaskyla, Department of Chemistry, P.O. Box 35, 40014 Jyväskylä, Finland.

*Corresponding author e-mail: c.schalley@fu-berlin.de

Table of Contents

1.	Experimental details	S1
	1.1. General methods	. S1
	1.2. Synthesis of axles PA<i>n</i>	. S3
	1.3. Synthesis of [2]rotaxanes R1, R2 and PA11@TTFC8	S28
2.	Threading and dethreading: ¹ H NMR experiments	S53
3.	Tandem mass spectrometry	S64
4.	Variable-temperature ¹ H NMR	S71
5.	Isothermal titration calorimetry	S73
6.	Electrochemical measurements	S75
7.	UV/VIS experiments	S77
8.	Crystallographic data	S78
9.	References	S79

1. Experimental details

1.1. General methods

All reagents and solvents were obtained from commercial sources and used without further purification. Dry solvents were purchased from Acros Organics (Geel, Belgium) and either directly used or treated with the M. Braun solvent purification system SPS 800. TTFC8,¹ 2,6dimethoxybenzonitrile oxide stopper St1,² (2,6-dimethylphenyl)methanaminium chloride,³ (3,5di-*tert*-butylphenyl)methanamine **1**,⁴ 5-hexynyl tosylate **4**,⁵ 4-(hex-5-yn-1-yloxyl)benzonitrile **S2**,⁶ were synthesised according to literature procedures, naphthalen-2-ylmethanaminium hydrochloride was bought at Fluorochem (Hadfield, U.K.), 3,5-di-tert-butylbenzaldehyde, 2methylbenzylamine hydrochloride, 3-methylbenzylamine hydrochloride, (3phenylphenyl)methanamine hydrochloride, 2-naphthylmethanamine hydrochloride, 2,3-2,5-dimethylbenzylamine, 2-nitrobenzylamine hydrochloride, dimethylbenzylamine, 2hydrochloride, ethylbenzylamine sodium tetrakis[3.5-bis(trifluoromethyl)phenyl]borate $(NaBArF_{24}),$ 6-hydroxy-1-naphthoic acid 2, benzotriazol-1-ol (HOBT), 3-(ethyliminomethyleneamino)-N,N-dimethylpropan-1-amine hydrochloride (EDC·HCI), N-ethyl-N-(propan-2-yl)propan-2-amine (DIPEA) and polystyrene-immobilized phosphazene base P2 were bought at Sigma Aldrich (Taufkirchen, Germany) or TCI Chemicals (Eschborn, Germany). Thin-layer chromatography was performed on silica gel-coated plates with fluorescent indicator F254 (Merck KGaA, Darmstadt, Germany). For column chromatography, silica gel (0.04-0.063 mm, Merck), or Biotage (Uppsala, Sweden) SNAP and SNAP Ultra Cartridges were used on a Biotage Isolera One.

¹H and ¹³C NMR experiments were performed on JEOL ECX 400, JEOL ECZ 600, Bruker AVANCE 500 or Bruker AVANCE 700 instruments. Residual solvent signals were used as the internal standards. All shifts are reported in ppm and NMR multiplicities are abbreviated as s (singlet), d (doublet), t (triplet), m (multiplet) and br (broad). Coupling constants *J* are reported in Hertz. Compounds containing the tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (BArF₂₄⁻) anion show ¹³C NMR spectra with ¹⁹F, ¹⁰B and ¹¹B couplings. These signals are denoted as one signal.

Melting points were determined on a SMP 30 (Stuart) instrument and are uncorrected.

High-resolution ESI mass spectra were measured on an Agilent 6210 ESI-TOF device. CID experiments were performed on a Synapt G2-S HDMS (Waters Co., Milford, MA, USA) mass spectrometer. HPLC grade solvents were used for sample preparation.

UV/Vis spectra were recorded with a Varian Cary 50 Bio spectrometer equipped with a xenon lamp. Solvents with HPLC grade and Suprasil glass cuvettes with a path-length of 1 cm were used.

CV measurements were carried out with an Autolab PGSTAT302N potentiostat in a 2 mL measuring cell in dichloroethane with 0.1 M n-Bu₄NBArF₂₄ as the conducting salt. The working electrode was made of glassy carbon, the reference Ag electrode was etched with conc. aq. HCI. A Pt wire worked as the counter electrode. The cyclic voltammograms were recorded with 10, 25, 50, 100, 250, 500, 1000 and 2500 mV/s scan rates, to ensure that the observed processes are reversible and diffusion-limited. In order to obtain the correct half-wave potentials, $FeCp_2^{*0}/FeCp_2^{*+}$ was used as the pseudo reference. These values were afterwards referenced to $FeCp_2/FeCp_2^{+}$ as described in the literature.⁷ The raw data were treated with Nova 1.5 by Metrohm and the plots were made with Origin 2020 by OriginLab.

Bulk electrolysis experiments were conducted in a five-neck cell with a four-electrode set-up (see Figure S54 for a photograph) connected to an Autolab PGSTAT302N MBA potentiostat in bipotentiostat mode, using dry and degassed CH₂Cl₂ as the solvent and n-Bu₄NBArF₂₄ as the supporting electrolyte. Electrolysis was performed with a cylindrical GC rod (3 mm diameter) at a potential of 1 V vs. the pseudo-reference. A silver wire was used as the pseudoreference, a coiled Pt wire as the counter electrode. An additional GC disk electrode was employed to perform CV and DPV measurements every 30 minutes to determine the effect of electrolysis on the electrochemical response. The counter electrode was separated from the rest of the cell by glass wool soaked in analyte solution to suppress diffusion towards the working electrodes. Cyclic voltammograms were recorded at a scan rate of 100 mV/s. Differential pulse voltammograms were recorded with a step size of 0.005 V, a modulation amplitude of 0.025 V and modulation and interval times of 0.05 and 0.5 s, respectively. Measurements and treatment of raw data were performed within the Nova 2.1 software by Metrohm, while plots were made using Origin 2020 by OriginLab. The half-wave and peak potentials in CV and DPV experiments drifted between different measurements when recorded during electrolysis, but the diagnostic potential differences between the characteristic oxidation events remained constant. Potentials were afterwards normalized to the values obtained in regular CV measurements.

1.2. Synthesis of axles PAn

Scheme S1 Synthesis of axles PA1-12.

N-(3,5-di-tert-butylbenzyl)-1-(o-tolyl)methanaminium tetrakis(3,5bis(trifluoromethyl)phenyl)borate

PA1

A solution of 190 mg (1.21 mmol, 1.0 equiv.) 2-methylbenzylamine hydrochloride, 263 mg (1.21 mmol, 1.0 equiv.) 3,5-di-tert-butylbenzaldehyde and 150 µL (1.08 mmol, 0.9 equiv.) NEt₃, in dry EtOH (30 mL) were refluxed under argon atmosphere for 4 h. Afterwards, the solution was cooled to 0 °C and 228 mg (6.03 mmol, 5.0 equiv.) NaBH₄ were slowly added. The mixture was stirred under argon atmosphere overnight in the thawing ice bath. The reaction was then quenched by slow addition of sat. NaHCO₃ solution and filtered. The solvent was removed from the filtrate under reduced pressure and the residue was dissolved in CH₂Cl₂ and then washed with sat. NaHCO₃ solution and brine. The organic phase was dried with MgSO₄ and the solvent removed again. The crude product was purified by column chromatography (SiO₂, $CH_2CI_2/MeOH = 100:1 \rightarrow 50:1$, $R_f \sim 0.3$ in $CH_2CI_2/MeOH (100:1)$) to obtain a yellowish oil. The oil was dissolved in EtOAc (5 ml) and acidified with HCl (conc.) until the solution reached pH = 1. The mixture was stirred for 1 h and afterwards the solvent was removed under reduced pressure. The residue was dissolved in MeOH (5 ml) and 195 mg (0.22 mmol, 1.0 equiv.) NaBArF₂₄ was added. The solution was left stirring overnight at room temperature, then the solvent was removed. The residue was taken up in CH₂Cl₂, washed with brine/water and dried over MgSO₄. The product PA1 (222 mg, 0.19 mmol, 16 % overall) was obtained as off-white sticky solid.

¹**H NMR** (500 MHz, CDCl₃): δ = 1.31 (s, 18H, a), 2.14 (s, 3H, h), 4.26-4.32 (m, 4H, C_{H₂}-NH₂), 6.24 (s, 2H, NH₂), 7.09-7.12 (m, 1H, d), 7.14 (d, *J*=1.7 Hz, 2H, c), 7.17-7.27 (m, 2H, g), 7.33-7.37 (m, 1H, e), 7.55 (s_{br}, 4H, BArF₂₄), 7.66 (t, *J*=1.7Hz, 1H, b), 7.75 (s_{br}, 8H, BArF₂₄) ppm. ¹³**C NMR** (176 MHz, CDCl₃): δ = 18.4 31.1, 31.2, 31.4, 31.5, 35.2, 50.7, 54.4, 117.7, 117.8, 121.5, 123.3, 123.7, 125.9, 126.2, 126.3, 127.2, 128.1, 129.2, 130.0, 132.1, 132.4, 135.0, 154.3, 161.3, 161.7, 162.1, 162.5 ppm. **HRMS** (MeOH): *m/z* calcd. for [C₂₃H₃₄N]⁺: 324.2686 [M]⁺, found: 324.2704.

Fig. S1 ¹H (top) and ¹³C (bottom) NMR spectra (500/176 MHz, $CDCI_3$, 298 K) of PA1.

N-(3,5-di-tert-butylbenzyl)-1-(*m*-tolyl)methanaminium tetrakis(3,5bis(trifluoromethyl)phenyl)borate

PA2

A solution of 53 mg (0.34 mmol, 1.0 equiv.) 3-methylbenzylamine hydrochloride, 73 mg (0.34 mmol, 1.0 equiv.) 3,5-di-tert-butylbenzaldehyde and 31 µL (0.30 mmol, 0.9 equiv.) NEt₃, in dry EtOH (20 mL) were refluxed under argon atmosphere for 4 h. Afterwards, the solution was cooled to 0 °C and 64 mg (1.7 mmol, 5.0 equiv.) NaBH₄ was slowly added. The mixture was left stirring under argon atmosphere overnight in the thawing ice bath. The reaction was quenched by slow addition of sat. NaHCO₃ solution and then filtered. The solvent was removed under reduced pressure from the filtrate and the residue was dissolved in CH₂Cl₂ and then washed with sat. NaHCO₃ solution and brine. The organic phase was dried with MgSO₄ and the solvent removed again. The crude product was purified by column chromatography (SiO₂, $CH_2CI_2/MeOH = 100:1 \rightarrow 50:1$, $R_f \sim 0.3$ in $CH_2CI_2/MeOH (100:1)$) to obtain a yellowish oil. The oil was dissolved in EtOAc (5 ml) and acidified with HCl (conc.) until the solution reached pH = 1. The mixture was stirred for 1 h and afterwards the solvent was removed under reduced pressure. The residue was dissolved in MeOH (5 ml) and 150 mg (0.17 mmol, 1.0 equiv.) NaBArF₂₄ was added. The solution was left stirring overnight at room temperature, then the solvent was removed. The residue was taken up in CH₂Cl₂, washed with brine/water and dried over MgSO₄. The product PA2 (200 mg, 0.16 mmol, 47 % overall) was obtained as off-white sticky solid.

¹**H NMR** (500 MHz, CDCl₃): δ = 1.30 (s, 18H, a), 2.32 (s, 3H, g), 4.09-4.19 (m, 4H, CH₂-NH₂), 7.00-7.05 (m, 2H, f,h), 7.09-7.12 (m, 2H, d,e), 7.19 (s, 2H, NH₂), 7.28-7.30 (m, 2H, c), 7.52 (s_{br}, 4H, BArF₂₄), 7.57-7.58 (m, 1H, b), 7.70 (s_{br}, 8H, BArF₂₄) ppm. ¹³**C NMR** (176 MHz, CDCl₃): δ = 31.3, 35.8, 52.6, 53.3, 117.7, 123.4, 123.7, 125.6, 125.8, 126.2, 127.7, 128.0, 128.3, 129.1, 129.9, 130.2, 132.2, 135.0, 140.7, 153.7 161.8 ppm. **HRMS** (MeOH): *m/z* calcd. for [C₂₃H₃₄N]⁺: 324.2686 [M]⁺, found: 324.2708.

N-(3,5-di-tert-butylbenzyl)-1-(2,6-dimethylphenyl)methanaminium tetrakis(3,5bis(trifluoromethyl)phenyl)borate

PA3	PA3
-----	-----

A solution of 433 mg (2.53 mmol, 1.0 equiv.) (2,6-dimethylphenyl)methanaminium chloride³, 552 mg (2.53 mmol, 1.0 equiv.) 3,5-di-tert-butylbenzaldehyde and 310 µL (2.24 mmol, 0.9 equiv.) NEt₃, in dry EtOH (30 mL) were refluxed under argon atmosphere for 4 h. Afterwards, the solution was cooled to 0 °C and 479 mg (12.65 mmol, 5.0 equiv.) NaBH₄ was slowly added. The mixture was left stirring under argon atmosphere overnight in the thawing ice bath. The reaction was quenched by slow addition of sat. NaHCO₃ solution and then filtered. The solvent was removed under reduced pressure from the filtrate and the residue was dissolved in CH₂Cl₂ and then washed with sat. NaHCO₃ solution and brine. The organic phase was dried with MgSO₄ and the solvent removed again. The crude product was purified by column chromatography (SiO₂, CH₂Cl₂/MeOH = 100:1 -> 50:1, R_f ~ 0.3 in CH₂Cl₂/MeOH (100:1)) to obtain a yellowish oil. The oil was dissolved in EtOAc (15 ml) and acidified with HCI (conc.) until the solution reached pH = 1. The mixture was stirred for 1 h and afterwards the solvent was removed under reduced pressure. The residue was dissolved in MeOH (5 ml) and 1.15 g (1.24 mmol, 1.0 equiv.) NaBArF₂₄ was added. The solution was left stirring overnight at room temperature, then the solvent was removed. The residue was taken up in CH₂Cl₂, washed with brine/water and dried over MgSO₄. The product PA3 (1.18 g, 0.98 mmol, 39 % overall) was obtained as colorless oil.

¹**H NMR** (500 MHz, CDCl₃): δ = 1.31 (s, 18H, a), 2.11 (s, 6H, d), 4.24-4.34 (m, 4H, C<u>H</u>₂-NH₂), 6.55 (s, 2H, N<u>H</u>₂), 7.05-7.08 (m, 2H, e), 7.15 (d, *J* = 1.7 Hz, 2H, c), 7.21-7.25 (m, 1H, f), 7.52 (s_{br}, 4H, BArF₂₄), 7.63 (t, *J* = 1.7 Hz, 1H, b), 7.70 (s_{br}, 8H, BArF₂₄) ppm. ¹³**C NMR** (176 MHz, CDCl₃): δ = 31.3, 35.2, 45.2, 54.3, 117.7, 122.4, 123.5, 123.6, 123.9, 125.4, 125.5, 125.9, 126.0, 129.0, 130.1, 132.2, 131.2, 134.9, 137.2, 153.1 161.8 ppm. **HRMS** (MeOH): *m/z* calcd. for [C₂₄H₃₆N]⁺: 338.2842 [M]⁺, found: 338.2871.

Fig. S3 1 H (top) and 13 C (bottom) NMR spectra (500/176 MHz, CDCl₃, 298 K) of PA3.

N-(3,5-di-tert-butylbenzyl)-1-(2,5-dimethylphenyl)methanaminium tetrakis(3,5bis(trifluoromethyl)phenyl)borate

PA4

A solution of 250 mg (1.5 mmol, 1.0 equiv.) (2,5-dimethylphenyl)methanaminium chloride, 319 mg (1.5 mmol, 1.0 equiv.) 3,5-di-tert-butylbenzaldehyde and 180 µL (1.3 mmol, 0.9 equiv.) NEt₃, in dry EtOH (60 mL) were refluxed under argon atmosphere for 4 h. Afterwards, the solution was cooled to 0 °C and 275 mg (7.3 mmol, 5.0 equiv.) NaBH₄ was slowly added. The mixture was left stirring under argon atmosphere overnight in the thawing ice bath. The reaction was quenched by slow addition of sat. NaHCO₃ solution and then filtered. The solvent was removed under reduced pressure from the filtrate and the residue was dissolved in CH₂Cl₂ and then washed with sat. NaHCO₃ solution and brine. The organic phase was dried with MgSO₄ and the solvent removed again. The crude product was purified by column chromatography $(SiO_2, CH_2Cl_2/MeOH = 100:1 \rightarrow 50:1, R_f \sim 0.7 \text{ in } CH_2Cl_2/MeOH (50:1))$ to obtain a yellowish oil. The oil was dissolved in Et₂O (15 ml) and acidified with HCl (conc.) until the solution reached pH = 1. The mixture was stirred for 3 h and afterwards the solvent was removed under reduced pressure. A fraction of the residue was dissolved in MeOH (10 ml) and 247 mg (0.27 mmol, 1.0 equiv.) NaBArF₂₄ was added. The solution was left stirring overnight at room temperature, then the solvent was removed. The residue was taken up in CH₂Cl₂, washed with brine/water and dried over MgSO₄. The product PA4 (315 mg, 0.26 mmol, 88 % overall) was obtained as colorless oil.

¹**H NMR** (700 MHz, CDCl₃): δ = 1.33 (s, 18H, a), 2.12 (s, 3H, f), 2.27 (s, 3H, g), 4.16 - 4.24 (m, 4H, d,e), 6.95 - 6.98 (m, 1H, j), 7.13 - 7.16 (m, 2H, c,h), 7.19 - 7.22 (m, 1H, i), 7.54 (s_{br}, 4H, BArF₂₄), 7.62 (t, *J* = 1.7 Hz, 1H, b), 7.73 (s_{br}, 8H, BArF₂₄) ppm. ¹³**C NMR** (176 MHz, CDCl₃): δ = 18.1, 20.7, 31.3, 35.2, 49.9, 53.6, 117.7, 122.4, 123.4, 123.9, 125.5, 125.7, 126.6, 127.0, 127.6, 128.8, 129.0, 129.1, 129.3, 130.6, 132.2, 132.5, 133.4, 138.0, 153.9 161.9 ppm. **HRMS** (MeOH): *m/z* calcd. for [C₂₄H₃₆N]⁺: 338.2842 [M]⁺, found: 338.2858.

N-(3,5-di-tert-butylbenzyl)-1-(2,3-dimethylphenyl)methanaminium tetrakis(3,5bis(trifluoromethyl)phenyl)borate

A solution of 250 mg (1.5 mmol, 1.0 equiv.) (2,3-dimethylphenyl)methanaminium chloride, 319 mg (1.5 mmol, 1.0 equiv.) 3,5-di-tert-butylbenzaldehyde and 180 µL (1.3 mmol, 0.9 equiv.) NEt₃, in dry EtOH (60 mL) were refluxed under argon atmosphere for 4 h. Afterwards, the solution was cooled to 0 °C and 275 mg (7.3 mmol, 5.0 equiv.) NaBH₄ was slowly added. The mixture was left stirring under argon atmosphere overnight in the thawing ice bath. The reaction was quenched by slow addition of sat. NaHCO₃ solution and then filtered. The solvent was removed under reduced pressure from the filtrate and the residue was dissolved in CH₂Cl₂ and then washed with sat. NaHCO₃ solution and brine. The organic phase was dried with MgSO₄ and the solvent removed again. The crude product was purified by column chromatography $(SiO_2, CH_2CI_2 \rightarrow CH_2CI_2/MeOH = 50:1, R_f \sim 0.7 \text{ in } CH_2CI_2/MeOH (50:1))$ to obtain a yellowish oil. The oil was dissolved in EtOAc (10 ml) and acidified with HCl (conc.) until the solution reached pH = 1. The mixture was stirred for 3 h and afterwards the solvent was removed under reduced pressure. A fraction of the residue was dissolved in MeOH (5 ml) and 247 mg (0.27 mmol, 1.0 equiv.) NaBArF₂₄ was added. The solution was left stirring overnight at room temperature, then the solvent was removed. The residue was taken up in CH₂Cl₂, washed with brine/water and dried over MgSO₄. The product PA5 (324 mg, 0.27 mmol, 58 % overall) was obtained as colorless oil.

¹**H NMR** (700 MHz, CDCl₃): $\delta = 1.30$ (s, 18H, a), 2.01 (s, 3H, f), 2.20 (s, 3H, g), 4.11-4.17 (m, 4H, d,e), 6.98 (d, J = 7.6 Hz, 1H, h), 7.08 (t, J = 7.6 Hz, 1H, i), 7.14 (d, J=1.8 Hz, 2H, c), 7.22 (d, J = 7.6 Hz, 1H, j), 7.51 (s_{br}, 4H, BArF₂₄), 7.58 (t, J = 1.5 Hz, 1H, b), 7.70 (s_{br}, 8H, BArF₂₄) ppm. ¹³**C NMR** (176 MHz, CDCl₃): $\delta = 14.9$, 20.5, 31.3, 35.2, 50.0, 53.2, 117.6, 117.6, 117.7, 122.4, 123.5, 123.9, 125.4, 125.5, 127.0, 127.1, 127.9, 128.1, 128.8, 129.0, 129.1, 129.3, 133.0, 134.9, 135.2, 139.4, 153.7 161.9 ppm. **HRMS** (MeOH): *m/z* calcd. for [C₂₄H₃₆N]⁺: 338.2842 [M]⁺, found: 338.2847.

N-(3,5-di-tert-butylbenzyl)-1-(2-ethylphenyl)methanaminium tetrakis(3,5bis(trifluoromethyl)phenyl)borate

PA6

A solution of 250 mg (1.5 mmol, 1.0 equiv.) (2-ethylphenyl)methanaminium chloride⁸, 319 mg (1.5 mmol, 1.0 equiv.) 3,5-di-tert-butylbenzaldehyde and 180 µL (1.08 mmol, 0.9 equiv.) NEt₃, in dry EtOH (60 mL) were refluxed under argon atmosphere for 4 h. Afterwards, the solution was cooled to 0 °C and 273 mg (7.3 mmol, 5.0 equiv.) NaBH₄ was slowly added. The mixture was left stirring under argon atmosphere overnight in the thawing ice bath. The reaction was quenched by slow addition of sat. NaHCO₃ solution and then filtered. The solvent was removed under reduced pressure from the filtrate and the residue was dissolved in CH₂Cl₂ and then washed with sat. NaHCO₃ solution and brine. The organic phase was dried with MgSO₄ and the solvent removed again. The crude product was purified by column chromatography (SiO₂, $CH_2CI_2 \rightarrow CH_2CI_2/MeOH = 100:1$, $R_f \sim 0.3$ in $CH_2CI_2/MeOH$ (100:1)) to obtain a yellowish oil. The oil was dissolved in EtOAc (10 ml) and acidified with HCI (conc.) until the solution reached pH = 1. The mixture was stirred for 1 h and afterwards the solvent was removed under reduced pressure. A fraction of the residue was dissolved in MeOH (10 ml) and 239 mg (0.27 mmol, 1.0 equiv.) NaBArF₂₄ was added. The solution was left stirring overnight at room temperature, then the solvent was removed. The residue was taken up in CH₂Cl₂, washed with brine/water and dried over MgSO₄. The product PA6 (325 mg, 0.27 mmol, 58 % overall) was obtained as colorless oil.

¹**H NMR** (700 MHz, CDCl₃): δ = 1.04 (t, *J* = 7.6 Hz, 3H, g), 1.31 (s, 18H, a), 2.36 (q, *J* = 7.5 Hz, 2H, f), 4.13 - 4.22 (m, 4H, d,e), 7.15 - 7.17 (m, 3H, c,i), 7.17 - 7.20 (m, 1H, h), 7.21 - 7.30 (m, 1H, j), 7.36 - 7.39 (m, 1H, k), 7.45 - 7.50 (m, 1H, h), 7.52 (s_{br}, 4H, BArF₂₄), 7.59 - 7.60 (m, 1H, b), 7.70 (s_{br}, 8H, BArF₂₄) ppm. ¹³**C NMR** (176 MHz, CDCl₃): δ = 15.4, 25.5, 31.3, 35.2, 48.7, 53.4, 117.7, 122.4, 123.6, 123.9, 125.5, 125.5, 126.5, 127.0, 127.7, 127.8, 129.0, 129.1, 130.2, 130.3, 131.7, 134.9, 142.9, 153.8, 161.8 ppm. **HRMS** (MeOH): *m/z* calcd. for [C₂₄H₃₆N]⁺: 338.2842 [M]⁺, found: 338.2854.

Fig. S6 ¹H (top) and ¹³C (bottom) NMR spectra (700/176 MHz, $CDCI_3$, 298 K) of PA6.

N-(3,5-di-tert-butylbenzyl)-1-(2-methoxyphenyl)methanaminium tetrakis(3,5bis(trifluoromethyl)phenyl)borate

A solution of 190 mg (1.1 mmol, 1.0 equiv.) (2-methoxyphenyl)methanaminium chloride⁸, 240 mg (1.1 mmol, 1.0 equiv.) 3,5-di-tert-butylbenzaldehyde and 150 µL (1.08 mmol, 0.9 equiv.) NEt₃, in dry EtOH (30 mL) were refluxed under argon atmosphere for 4 h. Afterwards, the solution was cooled to 0 °C and 207 mg (5.5 mmol, 5.0 equiv.) NaBH₄ was slowly added. The mixture was left stirring under argon atmosphere overnight in the thawing ice bath. The reaction was quenched by slow addition of sat. NaHCO₃ solution and then filtered. The solvent was removed under reduced pressure from the filtrate and the residue was dissolved in CH₂Cl₂ and then washed with sat. NaHCO₃ solution and brine. The organic phase was dried with MgSO₄ and the solvent removed again. The crude product was purified by column chromatography (SiO₂, CH₂Cl₂/MeOH = 100:1 -> 50:1, $R_f \sim 0.3$ in CH₂Cl₂/MeOH (100:1)) to obtain a yellowish oil. The oil was dissolved in EtOAc (10 ml) and acidified with HCl (conc.) until the solution reached pH = 1. The mixture was stirred for 1 h and afterwards the solvent was removed under reduced pressure. The residue was dissolved in MeOH (5 ml) and 478 mg (0.54 mmol, 1.0 equiv.) NaBArF₂₄ was added. The solution was left stirring overnight at room temperature, then the solvent was removed. The residue was taken up in CH₂Cl₂, washed with brine/water and dried over MgSO₄. The product PA7 (603 mg, 0.50 mmol, 45 % overall) was obtained as colorless oil.

¹**H NMR** (500 MHz, CDCl₃): δ = 1.30 (s, 18H, a), 3.84 (s, 3H, d), 4.11-4.22 (m, 4H, C_{H₂}-NH₂), 6.84 (s, 2H, N_{H₂}), 6.95-7.04 (m, 2H, e,f), 7.06 (d, *J*=1.7 Hz, 2H, c), 7.07-7.11 (m, 1H, g), 7.45-7.50 (m, 1H, h), 7.52 (s_{br}, 4H, BArF₂₄), 7.59 (t, *J* = 1.7 Hz, 1H, b), 7.70 (s_{br}, 8H, BArF₂₄) ppm. ¹³**C NMR** (176 MHz, CDCl₃): δ = 31.3, 35.2, 50.5, 53.3, 56.3, 111.8, 115.3, 117.7, 122.4, 122.9, 123.1, 123.9, 125.5, 126.0, 127.0, 127.4, 129.1, 131.2, 133.5, 134.9, 154.0, 157.0, 161.8 ppm.

HRMS (MeOH): *m/z* calcd. for [C₂₃H₃₄NO]⁺: 340.2635 [M]⁺, found: 340.2643.

Fig. S7 ¹H (top) and ¹³C (bottom) NMR spectra (500/176 MHz, $CDCI_3$, 298 K) of PA7.

N-(3,5-di-tert-butylbenzyl)-1-(2-nitrophenyl)methanaminium tetrakis(3,5bis(trifluoromethyl)phenyl)borate

PA8

A solution of 250 mg (1.3 mmol, 1.0 equiv.) (2-nitrophenyl)methanaminium hydrochloride, 290 g (1.3 mmol, 1.0 equiv.) 3,5-di-tert-butylbenzaldehyde and 170 µL (0.9 mmol, 0.9 equiv.) dry NEt₃ in dry EtOH (60 mL) was left refluxing under argon atmosphere for 4 h. Afterwards, the solution was cooled to 0 °C in an ice bath and 252 mg (6.7 mmol, 5.0 equiv.) NaBH₄ was added. The mixture was left stirring under argon atmosphere in the thawing ice bath overnight. Then, the reaction was stopped by slow addition of sat. NaHCO₃ solution until no additional gas development occurred. The solvent was removed under reduced pressure and the residue was taken up in CH₂Cl₂. After washing with water, the organic phase was dried over MgSO₄. The crude product was then purified by column chromatography (SiO₂, CH₂Cl₂ \rightarrow $CH_2CI_2/MeOH = 100:1$, $R_f \sim 0.2$ in $CH_2CI_2/MeOH = 100:1$) to get the desired oil, which was directly dissolved in Et₂O (10 mL) and acidified with conc. HCl, until the solution reached pH = 1. Afterwards, the solution was left stirring at r.t. for 3 h, then the solvent was removed under reduced pressure. A fraction of the yellow oil was dissolved in MeOH (10 mL) and 227 mg (0.26 mmol, 1.0 equiv.) NaBArF₂₄ was added. The solution was left stirring at r.t. overnight, then the solvent was removed under reduced pressure. Afterwards, the residue was taken up in CH₂Cl₂ and washed with water and dried over MgSO₄ to obtain the desired product **PA8** as yellow oil in a combined yield of 80% (327 mg, 0.26 mmol).

¹**H NMR** (500 MHz, CDCl₃) δ = 1.30 (s, 18H, a), 4.29 – 4.39 (m, 4H, d,e), 7.20 (d, *J* = 1.7 Hz, 2H, c), 7.21 – 7.30 (m, 1H, i), 7.34 (s_{br}, 2H, N<u>H</u>₂), 7.51 (s_{br}, 4H, BArF₂₄), 7.52 - 7.55 (m, 1H, h), 7.60 (t, *J* = 1.8 Hz, 1H, b), 7.62 - 7.66 (m, 1H, g), 7.71 (s_{br}, 8H, BArF₂₄), 8.13 – 8.16 (m, 1H, f). ppm. ¹³**C NMR** (126 MHz, CDCl₃) δ [ppm] 31.5, 35.2, 50.9, 54.6, 117.7, 121.4, 123.3, 123.4, 123.6, 125.8, 126.0, 127.0, 127.1, 127.9, 128.9, 129.2, 133.4, 134.1, 134.9, 136.0, 149.1, 154.0, 161.9. **HRMS (MeOH):**m/z calcd. for [C₂₂H₃₁N₂O₂]⁺: 355.2380 [M]⁺, found: 355.2379.

Fig. S8 1 H (top) and 13 C (bottom) NMR spectra (500/126 MHz, CDCl₃, 298 K) of PA8.

1-([1,1'-biphenyl]-3-yl)-N-(3,5-di-tert-butylbenzyl)methanaminiumtetrakis(3,5bis(trifluoromethyl)phenyl)borate

PA9

A solution of 200 mg (0.9 mmol, 1.0 equiv.) (3-Phenylphenyl)methanamine hydrochloride, 218 mg (0.9 mmol, 1.0 equiv.) 3,5-di-tert-butylbenzaldehyde and 115 µL (0.8 mmol, 0.9 equiv.) dry NEt₃ in dry EtOH (50 mL) was refluxed under argon atmosphere for 4 h. Afterwards, the solution was cooled to 0 °C in an ice bath and 172 mg (4.6 mmol, 5.0 equiv.) NaBH₄ was added. The mixture was left stirring under argon atmosphere in the thawing ice bath overnight. Then, the reaction was stopped by slow addition of sat. NaHCO₃ solution until no additional gas development occurred. The solvent was removed under reduced pressure and the residue was taken up in CH₂Cl₂. After washing with water, the organic phase was dried over MgSO₄. The crude product was then purified by column chromatography (SiO₂, CH₂Cl₂ \rightarrow $CH_2Cl_2/MeOH = 50:1$, $R_f \sim 0.2$ in $CH_2Cl_2/MeOH = 100:1$) to obtain a yellowish oil, which was directly dissolved in EtOAc (10 mL) and acidified with conc. HCl, until the solution reached pH = 1. Afterwards, the solution was left stirring at r.t. for 3 h, then the solvent was removed under reduced pressure. The yellow solid was dissolved in MeOH (10 mL) and 361 mg (0.4 mmol, 1.0 equiv.) NaBArF₂₄ was added. The solution was left stirring at r.t. overnight, then the solvent was removed under reduced pressure. Afterwards, the residue was taken up in CH₂Cl₂ and washed with water and dried over MgSO₄ to obtain the desired product PA9 as colorless oil in a combined yield of 43% (484 mg, 0.4 mmol).

¹**H NMR** (700 MHz, CDCl₃): $\delta = 1.29$ (s, 18H, a), 4.17 - 4.22 (m, 4H, d,e), 7.17 (d, J = 1.8 Hz, 2H, c), 7.17 – 7.19 (m, 1H, j), 7.37 – 7.39 (m, 2H, g,i), 7.43 (t, J = 7.7 Hz, 1H, l), 7.45 - 7.47 (m, 2H, k), 7.52 (s_{br}, 4H, BArF₂₄), 7.55 (t, J = 1.9 Hz, 1H, f), 7.57 (t, J = 1.8 Hz, 1H, b), 7.68 (ddd, J = 1.0, 1.8, 7.8 Hz, 1H, h), 7.73 (s_{br}, 8H, BArF₂₄) ppm. ¹³**C NMR** (176 MHz, CDCl₃): $\delta = 31.3$, 35.2, 1, 52.3, 53.3, 117.6, 117.7, 117.7, 117.7, 117.7, 122.4, 123.6, 124.0, 125.5, 127.1, 127.7, 128.0, 128.3, 128.6, 128.9, 128.9, 129.0, 129.0, 129.1, 129.1, 129.1, 129.1, 129.2, 129.3, 129.8, 129.9, 130.7, 135.0, 139.3, 143.4, 153.6, 161.8 ppm. **HRMS** (MeOH): *m/z* calcd. for [C₂₈H₃₆N]⁺: 386.2842 [M]⁺, found: 386.2848.

N-(3,5-di-tert-butylbenzyl)-1-(naphthalen-2-yl)methanaminiumtetrakis(3,5bis(trifluoromethyl)phenyl)borate

A solution of 200 mg (1.0 mmol, 1.0 equiv.) naphthalen-2-ylmethanaminium hydrochloride, 226 g (1.0 mmol, 1.0 equiv.) 3,5-di-tert-butylbenzaldehyde and 130 µL (0.9 mmol, 0.9 equiv.) dry NEt₃ in dry EtOH (50 mL) was left refluxing under argon atmosphere for 4 h. Afterwards, the solution was cooled to 0 °C in an ice bath and 200 mg (5.2 mmol, 5.0 equiv.) NaBH₄ was added. The mixture was left stirring under argon atmosphere in the thawing ice bath overnight. Then, the reaction was stopped by slow addition of sat. NaHCO₃ solution until no additional gas development occurred. The solvent was removed under reduced pressure and the residue was taken up in CH₂Cl₂. After washing with water, the organic phase was dried over MgSO₄. The crude product was then purified by column chromatography (SiO₂, CH₂Cl₂ \rightarrow $CH_2CI_2/MeOH = 100:1$, $R_f \sim 0.2$ in $CH_2CI_2/MeOH = 100:1$) to get the desired oil, which was directly dissolved in EtOAc (10 mL) and acidified with conc. HCl, until the solution reached pH = 1. Afterwards, the solution was left stirring at r.t. for 3 h, then the solvent was removed under reduced pressure. The yellow solid was dissolved in MeOH (10 mL) and 599 mg (0.7 mmol, 1.0 equiv.) NaBArF₂₄ was added. The solution was left stirring at r.t. overnight, then the solvent was removed under reduced pressure. Afterwards, the residue was taken up in CH₂Cl₂ and washed with water and dried over MgSO₄ to obtain the desired product PA10 as yellow oil in a combined yield of 61% (751 mg, 0.6 mmol).

¹**H NMR** (500 MHz, CDCl₃) δ = 1.29 (s, 18H, a), 4.19 – 4.25 (m, 2H, d), 4.29 – 4.38 (m, 2H, e), 7.12 (d, *J* = 1.8 Hz, 2H, c), 7.23 (dd, *J* = 8.5, 1.8 Hz, 1H, f), 7.52 (s_{br}, 4H, BArF₂₄), 7.56 - 7.60 (m, 2H, h, i), 7.60 – 7.64 (m, 1H, b), 7.73 (s_{br}, 8H, BArF₂₄), 7.74 – 7.77 (m, 2H, g, j), 7.84 – 7.91 (m, 2H, I, k) ppm.¹³**C NMR** (176 MHz, CDCl₃) δ [ppm] 31.5, 35.2, 49.3, 50.1, 114.5, 116.0, 122.4, 122.8, 123.9, 124.0, 124.3, 125.5, 126.5, 127.1, 127.2, 127.5, 127.7, 127.9, 128.1, 128.7, 129.5, 129.8, 130.2, 132.9, 133.0, 133.1, 133.2, 133.2, 133.3, 133.6, 134.0, 135.0, 140.6, 152.5, 156.7.**HRMS (MeOH):**m/z calcd. for [C₂₆H₃₄N]⁺: 360.2686 [M]⁺, found: 360.2677.

Fig. S10 ¹H (top) and ¹³C (bottom) NMR spectra (500/176 MHz, $CDCI_3$, 298 K) of PA10.

N-(3,5-di-tert-butylbenzyl)-1-(naphthalen-1-yl)methanaminiumtetrakis(3,5bis(trifluoromethyl)phenyl)borate

PA11

A solution of 200 mg (1.0 mmol, 1.0 equiv.) naphthalen-1-ylmethanaminium hydrochloride⁹, 226 mg (1.0 mmol, 1.0 equiv.) 3,5-di-tert-butylbenzaldehyde and 130 µL (0.9 mmol, 0.9 equiv.) dry NEt₃ in dry EtOH (50 mL) was refluxed under argon atmosphere for 4 h. Afterwards, the solution was cooled to 0 °C in an ice bath and 195 mg (5.2 mmol, 5.0 equiv.) NaBH₄ was added. The mixture was left stirring under argon atmosphere in the thawing ice bath overnight. Then, the reaction was stopped by slow addition of sat. NaHCO₃ solution until no additional gas development occurred. The solvent was removed under reduced pressure and the residue was taken up in CH₂Cl₂. After washing with water, the organic phase was dried over MgSO₄. The crude product was then purified by column chromatography (SiO₂, CH₂Cl₂ \rightarrow $CH_2CI_2/MeOH = 100:1$, $R_f \sim 0.2$ in $CH_2CI_2/MeOH = 100:1$) to obtain a yellowish oil, which was directly dissolved in EtOAc (10 mL) and acidified with conc. HCl, until the solution reached pH = 1. Afterwards, the solution was left stirring at r.t. for 3 h, then the solvent was removed under reduced pressure. The yellow solid was dissolved in MeOH (10 mL) and 599 mg (0.7 mmol, 1.0 equiv.) NaBArF₂₄ was added. The solution was left stirring at r.t. overnight, then the solvent was removed under reduced pressure. Afterwards, the residue was taken up in CH₂Cl₂ and washed with water and dried over MgSO₄ to obtain the desired product PA11 as reddish oil in a combined yield of 63% (773 mg, 0.6 mmol).

¹**H NMR** (500 MHz, CDCl₃): δ = 1.30 (s, 18H, a), 4.20 (s, 2H, d), 4.31 (s, 2H, e), 7.12 (d, *J* = 1.7 Hz, 2H, c), 7.21 – 7.25 (m, 1H, f), 7.51 (s_{br}, 4H, BArF₂₄), 7.56 - 7.64 (m, 3H, b, g, k), 7.72 (s_{br}, 8H, BArF₂₄), 7.74 – 7.78 (m, 2H, h, j), 7.86 – 7.91 (m, 2H, I, i). ¹³**C NMR** (176 MHz, CDCl₃): δ = 31.5, 31.6, 35.1, 46.1, 51.0, 114.3, 116.0, 116.1, 116.1, 116.1, 121.7, 121.9, 122.4, 122.5, 122.6, 122.8, 122.9, 123.9, 124.0, 124.1, 124.3, 125.5, 125.8, 126.7, 127.6, 127.7, 127.7, 128.9, 129.4, 129.8, 130.0, 130.8, 130.9, 131.0, 131.1, 133.0, 133.8, 134.1, 135.0, 140.6, 152.7, 156.9 ppm. **HRMS** (MeOH): *m/z* calcd. for [C₂₆H₃₄N]⁺: 360.2686 [M]⁺, found: 360.2688.

Fig. S11 1 H (top) and 13 C (bottom) NMR spectra (500/176 MHz, CDCl₃, 298 K) of PA11.

N-benzyl-1-(naphthalen-1-yl)methanaminiumtetrakis(3,5bis(trifluoromethyl)phenyl)borate

PA12

A solution of 52 mg (0.27 mmol, 1.0 equiv.) naphthalen-1-ylmethanaminium hydrochloride⁹, 27 μ L (0.27 mmol, 1.0 equiv.) benzaldehyde and 32 μ L (0.24 mmol, 0.9 equiv.) dry NEt₃ in dry EtOH (15 mL) was refluxed under argon atmosphere for 4 h. Afterwards, the solution was cooled to 0 °C in an ice bath and 52 mg (1.3 mmol, 5.0 equiv.) NaBH₄ was added. The mixture was left stirring under argon atmosphere in the thawing ice bath overnight. Then, the reaction was stopped by slow addition of sat. NaHCO₃ solution until no additional gas development occurred. The solvent was removed under reduced pressure and the residue was taken up in CH₂Cl₂. After washing with water, the organic phase was dried over MgSO₄. The crude product was then purified by flash column chromatography (spherical SiO₂, $CH_2CI_2 \rightarrow CH_2CI_2/MeOH$ = 6%, $R_f \sim 0.3$ in CH₂Cl₂/MeOH = 1%) to obtain a yellow oil, which was directly dissolved in EtOAc (10 mL) and acidified with conc. HCl, until the solution reached pH = 1. Afterwards, the solution was left stirring at r.t. for 3 h, then the solvent was removed under reduced pressure. A fraction of the brown oil was dissolved in MeOH (5 mL) and 62 mg (70 µmol, 1.0 equiv.) NaBArF₂₄ was added. The solution was left stirring at r.t. overnight, then the solvent was removed under reduced pressure. Afterwards, the residue was taken up in CH₂Cl₂ and washed with water and dried over MgSO₄ to obtain the desired product PA12 as brown oil in a combined yield of 54% (52 mg, 46 µmol).

¹**H NMR** (600 MHz, CDCl₃): δ = 4.20 (s, 2H, d), 4.41 (s, 2H, e), 7.08 – 7.11 (m, 2H, c), 7.23 (dd, *J* = 7.0, 1.2 Hz, 1H, f), 7.33 – 7.39 (m, 4H, g,k,b), 7.42 – 7.46 (m, 1H, a), 7.48 – 7.50 (m, 1H, h), 7.49 – 7.52 (s_{br}, 4H, BArF₂₄), 7.57 (m, 1H, j), 7.72 (s_{br}, 8H, BArF₂₄), 7.93 – 7.97 (m, 1H, i,l). ¹³**C NMR** (151 MHz, CDCl₃): δ = 49.79, 52.99, 117.68, 120.22, 122.01, 123.82, 125.62, 127.46, 128.67, 129.04, 129.34, 130.33, 130.47, 131.19, 132.15, 134.33, 134.95, 161.38, 161.70, 162.04, 162.36 ppm. **HRMS** (MeOH): *m/z* calcd. for [C₁₈H₁₈N]⁺: 248.1434 [M]⁺, found: 248.1431.

1.3. Synthesis of [2]rotaxane R1, R2 and PA11@TTFC8

Scheme S2 Synthesis of R1 and PA11@TTFC8.

N-(3,5-di-tert-butylbenzyl)-6-hydroxy-1-naphthamide 3

3

A solution of 58 mg (0.27 mmol, 1.0 equiv.) (3,5-di-*tert*-butylphenyl)methanamine **1**, 50 mg (0.27 mmol, 1.0 equiv.) 6-hydroxy-1-naphthoic acid **2** were dissolved in dry DMF (5 mL). In an ice bath 22 mg (0.16 mmol, 0.6 equiv.) HOBT, 66 mg (0.35 mmol, 1.3 equiv.) EDC·HCl and 72 μ L (0.43 mmol, 1.6 equiv.) DIPEA were added. The mixture was stirred under argon atmosphere in the thawing ice bath overnight. Then, the mixture was diluted with 30 mL EtOAc and washed with water and brine. After drying over MgSO₄, the solvent was removed. Afterwards, the crude product was purified by column chromatography (SiO₂, CH₂Cl₂ -> CH₂Cl₂/MeOH 50:1, R_f ~ 0.4 in CH₂Cl₂/MeOH = 50:1) to get the desired product **3** as yellow sticky solid in 85% yield (85.7 mg, 0.22 μ mol).

¹**H NMR** (500 MHz, acetone- d_6) δ = 1.33 (s, 18H, a), 4.68 (d, J = 6.2 Hz, 2H, d), 7.16 (dd, J = 9.1, 2.5 Hz, 1H, k), 7.23 (d, J = 2.5 Hz, 1H, i), 7.35 (d, J = 1.8 Hz, 2H, c), 7.37 – 7.42 (m, 2H, b, h), 7.46 (dd, J = 7.0, 1.3 Hz, 1H, g), 7.72 – 7.76 (m, 1H, f), 8.02 – 8.09 (s_{br}, 1H, e), 8.28 (d, J = 9.2 Hz, 1H, j), 8.83 (s_{br}, 1H, OH) ppm. ¹³**C NMR** (126 MHz, Acetone- d_6) δ = 31.8, 35.4, 44.3, 110.2, 119.8, 121.6, 122.5, 122.8, 126.1, 126.1, 128.4, 129.1, 136.2, 136.4, 139.8, 151.5, 156.4, 169.9 ppm. **HRMS** (CH₂Cl₂/MeOH): m/z calcd. for [C₂₆H₃₁NO₂]: 412.2247 [M+Na]⁺, found: 412.2263.

Fig. S13 ¹H (top) and ¹³C (bottom) NMR spectra (500/126 MHz, Acetone- d_6 , 298 K) of 3.

A solution of 194 mg (0.77 mmol, 1.2 equiv.) tosylate **4**, 250 mg (0.64 mmol, 1.0 equiv.) amide **3** and 177 mg (1.28 mmol, 2.0 equiv.) K_2CO_3 in acetone (10 mL) was refluxed for 12 h. Then, the mixture was filtered and the solvent was removed, the crude product was dissolved in CH_2Cl_2 and washed with water and brine. After drying over MgSO₄, the solvent was removed. Afterwards, the crude product was purified by column chromatography (SiO₂, CH₂Cl₂ -> $CH_2Cl_2/MeOH$ 100:1, $R_f \sim 0.8$ in $CH_2Cl_2/MeOH$ = 100:1) to get the desired product **5** as yellow sticky solid in 36% yield (108 mg, 0.23 mmol).

¹**H NMR** (500 MHz, CDCl₃) δ = 1.34 (s, 18H, a), 1.73 – 1.82 (m, 2H, n), 1.95 – 2.05 (m, 3H, m, p), 2.31 (td, *J* = 7.0, 2.7 Hz, 2H, o), 4.11 (t, *J* = 6.3 Hz, 2H, I), 4.72 (d, *J* = 5.7 Hz, 2H, d), 6.24 (t, *J* = 5.7 Hz, 1H, e), 7.14 (d, *J* = 2.6 Hz, 1H, i), 7.20 (dd, *J* = 9.2, 2.6 Hz, 1H, k), 7.25 (d, *J* = 1.9 Hz, 2H, c), 7.37 – 7.42 (m, 2H, b, g), 7.47 (dd, *J* = 7.1, 1.3 Hz, 1H, h), 7.75 – 7.79 (m, 1H, f), 8.30 (dt, *J* = 9.2, 0.6 Hz, 1H, j) ppm. ¹³**C NMR** (126 MHz, CDCl₃) δ = 18.3, 25.2, 28.3, 31.6, 35.0, 44.9, 67.5, 68.9, 84.2, 107.1, 120.2, 121.9, 122.3, 122.6, 125.4, 125.7, 127.2, 129.5, 134.6, 135.3, 137.3, 151.6, 157.4, 169.6 ppm. **HRMS** (**CH**₂**Cl**₂/**MeOH**): m/z calcd. for [C₃₂H₃₉NO₂]: 470.3059 [M+H]⁺, found: 470.3028; 492.2879 [M+Na]⁺, found: 492.2848; 508.2618 [M+K]⁺, found: 508.2585.

Fig. S14 1 H (top) and 13 C (bottom) NMR spectra (500/126 MHz, CDCl₃, 298 K) of 5.

N-(3,5-di-tert-butylbenzyl)-1-(6-(hex-5-yn-1-yloxy)naphthalen-1-yl)methanaminium tetrakis(3,5-bis(trifluoromethyl)phenyl)borate 6

Amide **5** (382 mg, 0.813 mmol, 1 equiv.) and LiAlH₄ (124 mg, 3.25 mmol, 4 equiv.) were dissolved in 60 mL dry THF and refluxed for 7 days. Afterwards, the reaction was quenched with saturated aq. Na₂SO₄ solution. The white precipitate was filtered off and the solvent was removed. The residue was dissolved in CH₂Cl₂ (50 mL) and washed with brine (3x70 mL). The organic phase was dried over MgSO₄ and the solvent was removed. The crude product was purified by column chromatography (SiO₂, CH₂Cl₂ -> CH₂Cl₂/MeOH 100:1, R_f ~ 0.2 in CH₂Cl₂/MeOH = 100:1) to get the desired amine as a yellow oil, which was dissolved in diethylether (20 mL) and protonated with HCl conc. under cooling in an ice bath. The solvent was removed, 100 mg (0.2 mmol) of the brown sticky oil were dissolved in MeOH (10 mL) and NaBArF₂₄ (180 mg, 0.2 mmol, 1.0 equiv.) was added. After stirring overnight at room temperature, the solvent was removed, the residue was taken up in CH₂Cl₂ and washed with water (3x50 mL). The organic phase was dried over MgSO₄ and the solvent was removed. The crude salt was purified via column chromatography (SiO₂, CH₂Cl₂ -> CH₂Cl₂/acetone 10:1, R_f ~ 0.4 in CH₂Cl₂/acetone = 50:1) to get the desired axle **6** as brown oil in 42% overall yield (112.4 mg, 0.85 µmol).

¹**H NMR** (700 MHz, CDCl₃) δ = 1.33 (s, 18H, a), 1.74 – 1.79 (m, 2H, n), 1.97 – 2.02 (m, 3H, m,p), 2.31 (td, *J* = 7.0, 2.7 Hz, 2H, o), 4.10 (t, *J* = 6.3 Hz, 2H, I), 4.14 (s, 2H, d), 4.37 (s, 2H, e), 7.06 – 7.10 (m, 2H, j, f), 7.15 (d, *J* = 1.7 Hz, 2H, c), 7.17 – 7.20 (m, 2H, k, i), 7.26 – 7.29 (m, 1H, g), 7.52 (s, 4H, BArF₂₄), 7.61 (d, *J* = 1.8 Hz, 1H, b), 7.71 – 7.74 (m, 8H, BArF₂₄), 7.75 (d, *J* = 8.4 Hz, 1H, h) ppm.¹³**C NMR** (176 MHz, CDCl₃) δ = 18.3, 25.1, 28.2, 31.0, 31.4, 35.2, 49.1, 53.5, 67.8, 68.9, 84.0, 108.5, 117.6, 121.4, 122.0, 122.4, 123.40, 123.9, 125.2, 125.5, 125.5, 126.2, 127.0, 129.1, 130.6, 135.0, 153.6, 157.8, 161.9, 212.8 ppm. **HRMS (MeOH):** m/z calcd. for [C₃₂H₄₂NO]⁺: 456.3261 [M]⁺, found: 456.3283

The axle **6** (20 mg, 15 μ mol, 1.0 equiv.) and stopper **St1** (4 mg, 20 μ mol, 1.3 equiv.) was added and the mixture heated to 35°C for 2 days. Then, the mixture was purified by column chromatography (SiO₂, CH₂Cl₂ + EtOH 3%, R_f ~ 0.3 in CH₂Cl₂) to obtain the desired product **7** (8 mg, 5 μ mol, 30%) as an brown oil.

¹H NMR (400 MHz, CD_2CI_2) δ = 1.28 (s, 18H, a), 1.80 – 1.92 (m, 4H, m,n), 2.82 (t, *J* = 7.0 Hz, 2H, o), 3.66 (s, 6H, q), 4.15 (t, *J* = 5.7 Hz, 2H, I), 4.29 (s, 2H, d,e), 4.59 (s, 2H, d,e), 6.46 (s, 1H, p), 6.65 – 6.69 (d, *J* = 8.5 Hz, 2H, r), 7.13 – 7.19 (m, 1H, j), 7.20 – 7.25 (m, 4H, c,f,i), 7.29 – 7.35 (m, 1H, g), 7.40 – 7.49 (m, 2H, s,k), 7.55 (s_{br}, 4H, BArF₂₄), 7.59 (t, *J* = 1.8 Hz, 1H, b), 7.71 (s_{br}, 8H, BArF₂₄), 7.77 (d, *J* = 8.3 Hz, 1H, h), 7.97 – 8.05 (s_{br}, 2H, NH₂) ppm. ¹³C NMR (176 MHz, CD_2CI_2) δ = 24.2, 26.7, 28.5, 29.3, 30.1, 31.4, 35.3, 47.2, 49.3, 57.0, 67.9, 105.9, 106.0, 109.4, 117.9, 121.3, 122.7, 123.1, 124.2, 124.2, 125.4, 125.5, 125.8, 126.3, 126.4, 127.3, 127.5, 129.3, 130.7, 135.2, 153.6, 156.5, 157.5, 159.3, 162.2, 173.9 ppm. HRMS (MeOH):m/z calcd. for [$C_{41}H_{51}N_2O_4$]⁺: 635.3849 [M]⁺, found: 635.3868.

[2]Rotaxane R1

The axle **6** (38 mg, 29 µmol, 1.0 equiv.) and macrocycle **TTFC8** (24 mg, 32 µmol, 1.1 equiv.) were dissolved in CICH₂CH₂CI (2 mL) and stirred at 40 °C. for 3 days. Afterwards, the mixture was allowed to cool to room temperature, stopper **St1** (7 mg, 37 µmol, 1.3 equiv.) was added and the mixture heated to 35°C for 2 days. Then, the mixture was purified by column chromatography (SiO₂, CH₂Cl₂/hexane 8:2 -> CH₂Cl₂, $R_f \sim 0.5$ in CH₂Cl₂) to obtain the desired product **R1** (15 mg, 7 µmol, 23%) as an orange oil.

¹**H NMR** (700 MHz, CD₂Cl₂) δ = 1.28 (s, 18H, a), 1.90 – 1.95 (m, 2H, m), 1.97 – 2.03 (m, 2H, n), 2.40 (s, 6H, S-CH₃), 2.93 – 2.96 (m, 2H, o), 3.17 – 3.25 (m, 4H, S-CH₂-CH₂), 3.42 – 3.49 (m, 5H, O-CH₂-CH₂), 3.55 – 3.59 (m, 3H, O-CH₂-CH₂), 3.60 – 3.68 (m, 5H, O-CH₂-CH₂), 3.75 – 3.77 (m, 2H, l), 3.78 (s, 6H, q), 3.82 – 3.89 (m, 6H, O-CH₂-CH₂), 3.92 – 4.01 (m, 6H, O-CH₂-CH₂), 5.00 – 5.04 (m, 2H, d), 5.06 – 5.11 (m, 2H, e), 6.14 (t, *J* = 0.7 Hz, 1H, p), 6.38 (d, *J* = 2.6 Hz, 1H, j), 6.53 (s, 2H, 1), 6.67 (d, *J* = 8.4 Hz, 2H, r), 7.11 – 7.14 (m, 3H, g,k,i), 7.36 – 7.39 (m, 4H, 2,f,s), 7.50 (t, *J* = 1.7 Hz, 1H, b), 7.52 – 7.54 (m, 4H, 3, c), 7.55 – 7.57 (s_{br}, 4H, BArF₂₄), 7.70 – 7.74 (s_{br}, 8H, BArF₂₄), 7.98 – 8.01 (d, *J* = 9.2 Hz, 1H, h) ppm. ¹³**C** NMR (176 MHz, CD₂Cl₂) δ = 19.5, 25.0, 27.2, 29.3, 30.3, 31.7, 35.6, 39.1, 51.0, 56.5, 67.8, 68.8, 70.6, 71.2, 71.3, 72.8, 104.2, 104.7, 107.4, 108.0, 108.2, 109.2, 113.9, 118.0, 120.5, 122.8, 122.8, 123.4, 124.4, 124.5, 125.4, 125.8, 125.9, 126.6, 126.7, 127.0, 127.2, 127.5, 128.1, 128.9, 129.4, 129.5, 129.8, 130.1, 131.6, 135.4, 135.5, 147.5, 153.4, 157.4, 157.6, 159.2, 162.3, 173.1 ppm. HRMS (MeOH):m/z calcd. for [C₇₁H₈₇N₂O₁₀S₈]⁺: 1383.4121 [M]⁺, found: 1383.4156

Fig. S17 ¹H (top) and ¹³C (bottom) NMR spectra (700/176 MHz, CD_2Cl_2 , 298 K) of R1.

Fig. S18 COSY (top), HMBC (center) and HMQC (bottom) NMR spectra (700/176 MHz, CD_2CI_2 , 298 K) of R1.

Fig. S19 [2]rotaxane R1 (top) and axle 6 (bottom) NMR spectra (500 MHz, CD₂Cl₂, 298 K).

Pseudorotaxane PA11@TTFC8

PA11@TTFC8

Axle **PA11** (50 mg, 41 μ mol, 1.0 equiv.) and macrocycle **TTFC8** (31 mg, 41 μ mol, 1.0 equiv.) were dissolved in CICH₂CH₂CI (2 mL) and stirred at 50 °C for 5 days. The mixture was purified by column chromatography (SiO₂, CH₂Cl₂, R_f ~ 0.5 in CH₂Cl₂) to obtain the desired product **PA11@TTFC8** (65.2 mg, 33 μ mol, 85%) as an orange sticky solid.

¹H NMR (700 MHz, CD₂Cl₂) δ = 1.27 (s, 18H, b), 2.40 (s, 6H, S-Me), 3.16 – 3.24 (m, 4H, S-CH₂-CH₂), 3.43 – 3.45 (m, 4H, O-CH₂), 3.55 – 3.58 (m, 4H, O-CH₂), 3.61 – 3.68 (m, 4H, O-CH₂), 3.81 – 3.88 (m, 6H, O-CH₂), 3.90 – 3.97 (m, 4H, O-CH₂), 5.02 – 5.06 (m, 2H, d), 5.13 – 5.17 (m, 2H, e), 6.52 (s, 2H, 1), 7.08 (dd, *J* = 8.2, 7.0 Hz, 1H, j), 7.18 – 7.21 (m, 1H, k), 7.27 – 7.29 (m, 1H, f), 7.30 – 7.33 (m, 1H, l), 7.36 – 7.40 (m, 1H, 2), 7.49 (t, *J* = 1.8 Hz, 1H, a), 7.47 – 7.56 (m, 6H, 3, c, g, i), 7.55 – 7.57 (m, 4H, BArF₂₄), 7.71 – 7.74 (m, 8H, BArF₂₄), 7.91 (s_{br}, 2H, NH₂), 8.10 (d, *J* = 8.5, 0.9 Hz, 1H, h) ppm. ¹³C-NMR (176 MHz, CD₂Cl₂) δ = 19.6, 31.7, 35.5, 37.3, 44.5, 50.9, 54.2, 68.8, 70.6, 71.2, 71.3, 72.0, 108.1, 118.0, 122.9, 123.1, 123.4, 124.4, 124.5, 125.2, 125.5, 125.9, 126.7, 126.8, 127.2, 127.5, 127.5, 128.1, 128.8, 129.1, 129.4, 129.5, 130.9, 131.2, 131.5, 134.0, 135.4, 146.2, 152.7, 162.3 ppm. HRMS (CH₂Cl₂): m/z calcd. for [C₅₆H₇₀NO₆S₈]*:1108.2963 [M]*, found: 1108.2948

PA11@TTFC8

Fig. S21 COSY (top), HMBC (center) and HMQC (bottom) NMR spectra (700/176 MHz, CD₂Cl₂, 298 K) of PA11@TTFC8.

Scheme S3 Synthesis of R2.

(4-(Hex-5-yn-1-yloxy)phenyl)methanaminium chloride S3

To a solution of 400 mg (2.0 mmol, 1.0 equiv.) 4-(hex-5-yn-1-yloxy)benzonitrile **S2** in dry THF (100 mL), 380 mg (10 mmol, 5.0 equiv.) LiAlH₄ was added at 0 °C and stirred for 24 h in the thawing ice bath. The excess LiAlH₄ was quenched with saturated Na₂SO₄ solution. The solid parts were filtered off and the solvent was removed under reduced pressure. The oily residue was dissolved in CH₂Cl₂, washed with brine and dried with MgSO₄. After removal of the solvent, the crude product was purified by flash column chromatography (SiO₂, CH₂Cl₂ + 1% NEt₃ \rightarrow CH₂Cl₂ + 1% NEt₃/ 5% EtOH, *Rf* ~ 0.5 in CH₂Cl₂ + 1% NEt₃/ 3% EtOH) to isolate the desired amine, which was dissolved in Et₂O and conc. HCI (aq.) was added until no more solid crushed out. After filtration the white solid was washed with cold acetone. The product is a white sticky solid, which could be isolated in 77% yield (370 mg, 1.5 mmol) over two steps.

¹**H NMR** (700 MHz, DMSO-*d*₆) δ = 1.55 – 1.61 (m, 2H, f), 1.76 – 1.81 (m, 2H, e), 2.22 (td, *J*=7.1, 2.7 Hz, 2H, g), 2.78 (t, *J*=2.6, 1H, h), 3.92 (s, 2H, a), 3.98 (t, *J*=6.4, 2H, d), 6.92 – 6.98 (m, 2H, c), 7.36 – 7.40 (m, 2H, b), 8.16 – 8.34 (s_{br}, 3H, NH) ppm. ¹³**C NMR** (176 MHz, DMSO-*d*₆) δ = 17.4, 24.6, 27.7, 41.7, 67.0, 71.4, 84.3, 114.5, 125.8, 130.5, 158.7 ppm. **HRMS (MeOH):** m/z calcd. for [C₁₃H₁₈NO]: [M-NH₃]⁺, 187.1123 found: 187.1119.

Fig. S22 ¹H (top) and ¹³C (bottom) NMR spectra (700/176 MHz, DMSO-*d*₆, 298 K) of S3.

N-(3,5-di-tert-butylbenzyl)-1-(4-(hex-5-yn-1-yloxy)phenyl)methanaminium tetrakis(3,5bis(trifluoromethyl)phenyl)borate S4

S4

Ammonium compound **S3** (150 mg, 0.63 mmol, 1 equiv.), 3,5-di-*tert*-butylbenzaldehyde (140.0 mg, 0.63 mmol, 1.0 equiv.) and NEt₃ (90 µL, 0.56 mmol, 0.9 equiv.) were dissolved in 30 mL dry EtOH and refluxed for 5.5 h. Then, the mixture was cooled to 0 °C and NaBH₄ (150.0 mg, 3.13 mmol, 5 equiv.) was added. The reaction stirred overnight in the thawing ice bath. Afterwards, the reaction was quenched with saturated aq. NaHCO₃ solution. The solvent was removed. The residue was taken up with CH_2Cl_2 (40 mL) and washed with Brine (3x50 mL). The organic phase was dried over MgSO₄ and the solvent was removed. The crude product was purified via flash column chromatography (SiO₂, $CH_2Cl_2 -> CH_2Cl_2 + 10\%$ EtOH, $R_f \sim 0.5$ in $CH_2Cl_2 + 3\%$ EtOH) to get the desired Amine as yellow oil, which was dissolved in EtOAc (10 mL) and protonated with HCl conc. under cooling in an ice bath. The solvent was removed and 60 mg (0.14 mmol) of the brown sticky oil were dissolved in MeOH (5 mL) and NaBArF₂₄ (120 mg, 0.14 mmol, 1.0 equiv.) was added. After stirring overnight at room temperature, the solvent was removed, the residue was taken up in CH_2Cl_2 and washed with water (3x50 mL). The organic phase was dried over MgSO₄ and the solvent was removed to get the desired axle **S4** as brown oil in 44% yield overall (160 mg, 0.13 mmol).

¹**H NMR** (700 MHz, CD_2CI_2) δ = 1.32 (s, 18H, a), 1.68 – 1.73 (m, 2H, h), 1.89 – 1.94 (m, 2H, g), 2.00 (t, *J* = 2.7 Hz, 1H, j), 2.28 (td, *J* = 7.1, 2.7 Hz, 2H, i), 4.01 (t, *J* = 6.3 Hz, 2H, f), 4.22 (s, 2H, N-CH₂), 4.24 (s, 2H, N-CH₂), 6.97 – 7.01 (m, 2H, e), 7.15 (d, *J* = 1.8 Hz, 2H, c), 7.24 – 7.27 (m, 2H, d), 7.56 (s_{br}, 4H, BArF₂₄), 7.60 (t, *J* = 1.8 Hz, 1H, b), 7.72 (s_{br}, 8H, BArF₂₄) ppm. ¹³**C NMR** (176 MHz, CD_2CI_2) δ = 18.6, 25.6, 28.7, 31.6, 35.5, 53.1, 68.4, 69.0, 84.5, 116.4, 118.0, 121.0, 122.9, 123.9, 124.4, 125.9, 125.9, 127.5, 128.9, 129.4, 131.5, 135.4, 153.9, 161.7, 162.3 ppm. **HRMS (MeOH):** m/z calcd. for [$C_{28}H_{40}NO$]⁺: 406.3104 [M]⁺, found: 406.3109

[2]Rotaxane R2

A solution of 50 mg (39 µmol, 1.0 equiv.) axle **S4** and 32 mg (43 µmol, 1.1 equiv.) macrocycle **TTFC8** in CICH₂CH₂CI (2 mL) was stirred at 38 °C. for 10 min. Afterwards, the mixture was allowed to cool to r.t. and 9 mg (50 µmol, 1.3 equiv.) stopper **St1** was added and the mixture was stirred at 38 °C for 36 h. Then, the mixture was purified by column chromatography (SiO₂, CH₂Cl₂/hexane 8:2-> CH₂Cl₂, R_f ~ 0.6 in CH₂Cl₂) to obtain the desired product **R2** (27 mg, 12 µmol, 31 %) as orange oil.

¹**H NMR** (700 MHz, CD₂Cl₂) δ = 1.27 (s, 18H, a), 1.54 – 1.59 (m, 2H, g), 1.66 – 1.72 (m, 2H, h), 2.41 (s, 6H, S-CH₃), 2.74 – 2.83 (m, 2H, i), 3.10 (t, *J* = 6.5 Hz, 2H, f), 3.18 (m, 4H, S-CH₂-), 3.46 – 3.54 (m, 4H, O-CH₂-), 3.59 – 3.65 (m, 6H, O-CH₂-), 3.73 – 3.78 (m, 8H, k, O-CH₂-), 3.79 – 3.83 (m, 2H, O-CH₂-), 3.84 – 3.90 (m, 2H, O-CH₂-), 4.00 - 4.04 (m, 2H, O-CH₂-), 4.19 – 4.24 (m, 2H, O-CH₂-), 4.55 – 4.60 (m, 2H, N-CH₂-), 4.78 – 4.82 (m, 2H, N-CH₂-), 6.09 (s, 1H, j), 6.32 – 6.35 (m, 2H, e), 6.67 (d, *J* = 8.4 Hz, 2H, I), 6.93 (s, 2H, 1), 7.10 – 7.12 (m, 2H, d), 7.35 – 7.40 (m, 2H, 3, m), 7.49 (dd, *J* = 7.5, 1.8 Hz, 3H, b, c), 7.56 (s_{br}, 4H, BArF₂₄), 7.65 (m, 2H, 2), 7.70 (s_{br}, 2H, NH₂), 7.72 (s_{br}, 8H, BArF₂₄) ppm.¹³C NMR (176 MHz, CD₂Cl₂) δ = 19.6, 24.6, 27.0, 29.1, 31.7, 35.5, 37.3, 56.5, 67.5, 69.0, 70.4, 71.1, 71.2, 72.1, 104.2, 104.7, 108.1, 108.3, 114.7, 118.0, 122.8, 122.9, 123.7, 124.4, 124.4, 125.7, 125.9, 126.9, 127.5, 128.1, 129.0, 129.4, 129.6, 131.2, 131.5, 131.6, 135.4, 147.1, 152.7, 157.6, 159.2, 160.3, 162.3, 172.4 ppm. HRMS (MeOH): m/z calcd. for [C₆₇H₈₅N₂O₁₀S₈]⁺: 1333.3964 [M]⁺, found: 1333.3990 m/z.

Fig. S25 COSY (top), HMBC (center) and HMQC (bottom) NMR spectra (700/176 MHz, CD_2CI_2 , 298 K) of R2.

Fig. S26 [2]rotaxane R2 (top) and axle S4 (bottom) NMR spectra (500 MHz, CD₂Cl₂, 298 K).

2. Threading and dethreading: ¹H NMR experiments

Threading and unthreading experiments were performed at 4 mM concentration, deprotonation/oxidation was performed in dry CD_2Cl_2 . Oxidation was performed by adding an excess of $NOSbF_6$ shaking gently, until the solution turned deep blue and subsequent filtration into a J. Young tube under argon atmosphere of residual $NOSbF_6$. Deprotonation was performed by adding an excess of polystyrene-immobilized P2 base, shaking and then filtration into a J. Young tube under argon atmosphere.

Fig. S27 Partial ¹H NMR spectra (400 MHz, CD₂Cl₂, 298 K) of PA1 before (bottom) and after addition of TTFC8 (top) the highlighted downfield shift and splitting of the methylene protons next to the ammonium is characteristic for a threaded complex.

Fig. S28 Partial ¹H NMR spectra (400 MHz, CD₂Cl₂, 298 K) of **PA2** before (bottom) and after addition of **TTFC8** (top) the highlighted downfield shift and splitting of the methylene protons next to the ammonium is characteristic for a threaded complex.

Fig. S29 Partial ¹H NMR spectra (400 MHz, CD₂Cl₂, 298 K) of **PA3** before (bottom) and after addition of **TTFC8** (top), the emerging peaks (red) correspond to the threaded complex.

Fig. S30 Partial ¹H NMR spectra (400 MHz, CD₂Cl₂, 298 K) of PA4 before (bottom) and after addition of TTFC8 (top) the highlighted downfield shift and splitting of the methylene protons next to the ammonium is characteristic for a threaded complex.

Fig. S31 Partial ¹H NMR spectra (400 MHz, CD₂Cl₂, 298 K) of **PA5** before (bottom) and after addition of **TTFC8** (top), the emerging peaks (red) correspond to the threaded complex.

Fig. S32 Partial ¹H NMR spectra (700 MHz, CD₂Cl₂, 298 K) of **PA5@TTFC8** (center) after oxidation with NO⁻⁺SbF₆⁻ (top) and after deprotonation with P2 base (bottom). The highlighted peaks in red correspond to the methylene protons next to the nitrogen.

Fig. S33 Partial ¹H NMR spectra (400 MHz, CD₂Cl₂, 298 K) of **PA6** before (bottom) and after addition of **TTFC8** (top), the emerging peaks (red) correspond to the threaded complex.

Fig. S34 Partial ¹H NMR spectra (700 MHz, CD₂Cl₂, 298 K) of **PA6@TTFC8** (center) after oxidation with NO⁺⁺SbF₆⁻ (top) and after deprotonation with P2 base (bottom). The highlighted peaks in red correspond to the methylene protons next to the nitrogen.

Fig. S35 Partial ¹H NMR (400 MHz, CD₂Cl₂, 298 K) spectra of **PA7** before (bottom) and after addition of **TTFC8** (top), the emerging peaks (red) correspond to the threaded complex.

Fig. S36 Partial ¹H NMR spectra (700 MHz, CD₂Cl₂, 298 K) of **PA7@TTFC8** (center) after oxidation with NO⁻⁺SbF₆⁻ (top) and after deprotonation with P2 base (bottom). The highlighted peaks in red correspond to the methylene protons next to the nitrogen.

Fig. S37 Partial ¹H NMR spectra (400 MHz, CD₂Cl₂, 298 K) of **PA8** before (bottom) and after addition of **TTFC8** (top), the highlighted peaks correspond to the threaded complex.

Fig. S38 Partial ¹H NMR spectra (400 MHz, CD₂Cl₂, 298 K) of **PA9** before (bottom) and after addition of **TTFC8** (top), the highlighted peaks correspond to the threaded complex.

Fig. S39 Partial ¹H NMR spectra (400 MHz, CD₂Cl₂, 298 K) of **PA10** before (bottom) and after addition of **TTFC8** (top), the highlighted peaks correspond to the threaded complex

Fig. S40 Partial ¹H NMR spectra (400 MHz, CD₂Cl₂, 298 K) of **PA11** before (bottom) and after addition of **DB24C8** (top), the highlighted peaks correspond to the threaded complex.

Fig. S41 Partial ¹H NMR spectra (500 MHz, CD₂Cl₂, 298 K) of **PA11** before (bottom) and after addition of **TTFC8** (top), the highlighted peaks correspond to the threaded complex.

Fig. S42 ¹H NMR spectra (600 MHz, CD₂Cl₂, 298 K) of **PA11@TTFC8** (center) after oxidation with NO⁻⁺SbF₆⁻ (top) and after deprotonation with P2 base (bottom). The highlighted peaks in red correspond to the methylene protons next to the nitrogen.

Tab. S1: Dethreading timescales in model pseudo[2]rotaxanes PAn@TTFC8: t1/2, obtainedvia ¹H NMR (2 mM in CD2Cl2 400/600/700 MHz at r.t.).

	PA5@TTFC8	PA6@TTFC8	PA7@TTFC8	PA11@TTFC8
deprotonation (P2 base)	< 10 min	< 10 min	< 10 min	< 10 min
oxidation (NO ⁻⁺ SbF ₆ -)	184 h	> 335 h	22 h	11 h

Fig. S43 ¹H NMR spectra (400 MHz, CD₂Cl₂, 298 K) with selected shifts highlighted of **R2** (center) 10 min after oxidation with NO⁻⁺SbF₆⁻ (top) and 10 min after deprotonation with polystyrene-immobilized P2 base (bottom).

3. Tandem mass spectrometry

A Synapt G2-S HDMS (Waters Co., Milford, MA, USA) instrument with a quadrupole-time-offlight high resolution mass detector was used to perform electrospray ionization tandem mass spectrometry. Collision-induced dissociation (CID) experiments of mass-selected ions, were performed using the following settings: flow rate 10 μ L min⁻¹, capillary voltage 1.5 kV, sample cone voltage 34 V, source offset 54 V, source temperature 100 °C, desolvation temperature 20 °C, nebulizer gas 5 bar, desolvation gas flow 460 L h⁻¹. For CID, N₂ was used as the collision gas. Fragmentation experiments were conducted in the trap cell of the Synapt G2-S HDMS instrument with collision energies of 2 – 72 V. For the column chromatography isolated sample, 4 V steps were used and for the other samples 2 V steps. Data acquisition and processing was carried out using MassLynxTM (version 4.1).

For plotting of the survival yield curves the spectra were centered. For each spectrum at different collision voltages, the intensity of the ion with the selected mass (m/z 1108) was divided by the total ion intensity (only fragments with an intensity above 1% were considered) and then plotted against the collision voltage. Fitting was done by applying a sigmoidal Boltzmann equation using Origin Pro 2020 to obtain the 50%-survival yield voltages of threaded and non-threaded complex.

Figure S44 ESI-Q-TOF-HRMS spectrum of **PA11@TTFC8** (5 µM in CH₂Cl₂) isolated after column chromatography; (inset) comparison of measured and calculated isotopic patterns.

feature a complex of **TTFC8** and **PA11**, as well as **TTFC8**(+Na) and **PA11** individually. Which indicates that a non-threaded complex is formed within 5 min or during the ionization.

diagnostic for a mechanically interlocked structure.¹⁰

PA11 and TTFC8 (500 μM in CH₂CCl₂), diluted before measuring to 50 μM after 5 min (top) after mass-selection; (bottom) after fragmentation at different voltages. The complex fragments already appear at low collision voltages, which can be explained by the formation of a non-threaded complex. A minor amount of the complex is still existing at higher voltages (28 and 40 V), which represents the amount of threaded complex.

PA11 and **TTFC8** (500 μM in CH₂Cl₂), diluted before measuring to 50 μM after 135 min (top) after mass-selection; (bottom) after fragmentation at different voltages. A fraction of the complex fragments appear already at low collision voltages, which can be explained by the formation of a non-threaded complex. A bigger amount of the complex is still existing at higher voltages (28 and 40 V), which represents the amount of threaded complex.

Figure S50 (a) ESI-Q-TOF-HRMS spectrum (top) and CID experiment with mass-selected ions at *m/z* 1333 obtained from solution of **R2** (5 μM in acetonitrile). Higher voltages are necessary to induce fragmentation of **R2** and as major fragments oxidized **TTFC8** and axle fragments are observed. The free axle (m/z 635) is not observed as a fragment. This is diagnostic for a mechanically interlocked structure. (b) Proposed structures for m/z values occurring in the fragmentation spectra. Similar fragments have been observed for other TTF crown/ammonium rotaxane.¹⁰

4. Variable-temperature ¹H NMR spectroscopy

Fig. S51 VT ¹H NMR spectra (400 MHz, CD₂Cl₂) of [2]rotaxane **R1** before (bottom) and after deprotonation with P2 base (gradual cooling from 293 to 193 K), showing the shift of H_p (isoxazol).

Fig. S52 VT ¹H NMR spectra (400 MHz, CD₂Cl₂) of [2]rotaxane R2 before (bottom) and after deprotonation with P1 base (gradual cooling from 293 to 193 K), showing the shift of H_j (isoxazol), H_{d,e} (phenyl).

5. Isothermal titration calorimetry

ITC experiments were carried out in dry 1,2-dichloroethane at 298 K on a TAM III microcalorimeter (Waters GmbH, TA Instruments, Eschborn, Germany). In a typical experiment, an 800 μ L solution of crown ether was placed in the sample cell at a concentration of 1.1 mM, and 250 μ L of a solution of the ammonium salt (7.0 mM) were put into the syringe. The titrations consisted of 32 consecutive injections of 8 μ L each with a 20 min interval between injections. Heats of dilution were determined by titration of ammonium salt solutions into the sample cell containing blank solvent and were subtracted from each data set. The heat flow generated in the sample cell is measured as a differential signal between sample and reference cell. Hence, an exothermic event results in a positive and an endothermic in a negative heat flow. The data were analysed using the instrument's internal software package and fitted with a 1:1 binding model. Each titration was conducted three times and the measured values for *K* and ΔH were averaged.

	<i>K_a</i> /10⁴ M⁻¹	ΔG / kJ mol ⁻¹	ΔH / kJ mol ⁻¹	<i>T</i> ∆S / kJ mol⁻¹
PA11@TTFC8	1.0 ± 0.3	-22.9 ± 0.6	-28.6 ± 2.0	-5.7 ± 2.6
PA12@TTFC8	39 ± 7	-31.9 ± 0.4	-44.1 ± 1.2	-12.2 ± 1.6
DBA@TTFC8	77 ± 10	-33.6 ± 0.3	-39.8 ± 1.0	-6.2 ± 1.3

Tab. S2: Thermodynamic data obtained from the ITC experiments.

Figure S53. Titration plots (heat flow versus time and heat/volume versus guest/host ratio) obtained from ITC experiments at 298 K in 1,2-dichloroethane: (a) vial: TTFC8, syringe: axle PA11; (b) vial: TTFC8, syringe: axle PA12; (c) vial: TTFC8, syringe: axle DBA (dibenzylammonium BArF₂₄). Points marked with non-filled squares were not considered in the fitting process. PA11@TTFC8 was fitted using a 1:1 binding model. However, for this axle the formation of a threaded complex happens over the course of hours and the formation of a non-threaded complex is observed on a minute timescale. The thermodynamic parameters obtained for this macrocycle/axle combination can therefore be interpreted as a combination of both equilibria (see Figure 3 main text) with the formation of the threaded complex contributing with a less time dependent heat flow. The obtained thermodynamic parameters can therefore be used as an upper limit for the values of *K* and ΔH of the non-threaded complex.

6. Electrochemical measurements

Redox-potentials reported in this study were obtained by DPV. All measurements were at least conducted twice. Measurements were conducted in CH_2CI_2 with 0.1 M electrolyte and 2 mM analyte concentration.

		,	
species	<i>E</i> ¹ _{1/2} / mV	<i>E</i> ' _{1/2} / mV	<i>E</i> ² _{1/2} / mV
TTFC8	594	/	987
PA12@TTFC8	599	987	1294
PA11@TTFC8	695	1	1385
R1	695	1	1380
R2	694	/	1349

Tab. S3 Electrochemical data obtained from DPV measurements (CH_2CI_2 , with n-
Bu₄NBArF₂₄ as the electrolyte, 298 K).

Fig. S54: General set-up for bulk electrolysis experiments.

Fig. S55 Stacked cyclic voltammograms (100 mV/s scan rate) with corresponding differential pulse voltammograms (DPV, 10 mV/s scan rate, 25 mV modulation amplitude, 50 ms modulation time, 5 mV step potential, 0.5 s interval time) (CH₂Cl₂, n-Bu₄NBArF₂₄, 298 K) of TTFC8, PA11@TTFC8, PA12@TTFC8, R1, R2.

7. UV/Vis experiments

Fig. S56 UV/Vis spectra of R1 (25 μM in CH₂Cl₂, 298 K, bulk Fe(ClO₄)₃ as the oxidant) in the TTF⁰ (black), TTF⁺⁺ (orange) and TTF²⁺ (blue) state. The grey lines correspond to spectra taken in between full conversion to the radical cation or the doubly oxidized species, since the bulk Fe(ClO₄)₃ does not dissolve completely in CH₂Cl₂.

Fig. S57 UV/Vis spectra of R2 (25 μM in CH₂Cl₂, 298 K, bulk Fe(ClO₄)₃ as the oxidant) in the TTF⁰ (black), TTF⁺⁺ (orange) and TTF²⁺ (blue) state. The grey lines correspond to spectra taken in between full conversion to the radical cation or the doubly oxidized species, since the bulk Fe(ClO₄)₃ does not dissolve completely in CH₂Cl₂.

8. Crystallographic data

The data for **TTFC8** were collected on an Agilent SuperNova single-source diffractometer equipped with an Eos CCD detector at 123(2) K using mirror-monochromated Mo-K α ($\lambda = 0.71073$ Å) radiation. Data collection (ω scans) and reduction was performed using the program CrysAlisPro. (Version 1.171.38.43, Rigaku Oxford Diffraction 2015) The analytical face-indexing-based absorption correction method was applied. The structure was solved by intrinsic phasing methods (SHELXT¹¹) and refined by full-matrix least squares on F^2 using SHELXL-2017/1.^{11, 12} Anisotropic displacement parameters were assigned to non-H atoms. All hydrogen atoms were constrained to their idealised positions and refined using riding models with $U_{eq}(H)$ of $1.5U_{eq}(C)$ for terminal methyl groups and of $1.2U_{eq}(C)$ for other groups. Moderate geometric and anisotropic restraints were utilized to stabilize the refinement of disordered ethylene group and to make it chemically reasonable. Deposition Number CCDC-2073308 contain(s) the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.

The slow diffusion of diisopropyl ether into a concentrated solution of **TTFC8** in CH_2CI_2/CH_3CN (1:1) mixture yielded single crystals suitable for X-ray diffraction study (see Fig. 2). The solid state structure shows planar TTF moiety, as well as, typical bond lengths and angles of neutral TTF derivatives, like characteristically short C=C distance of 1.343(5) Å between the 1,3-dithiole rings and a distance range of 1.749(4) to 1.816(3) Å for C-S bonds.^{13, 14} Almost orthogonal distortion of naphthalene unit out of TTF plane with 84.65° interplanar angle is resulting in bent boat-shaped conformation of the molecule. In the crystal packing, the molecules are arranged in columnar stacks with naphthalenes and TTFs on top of each other with plane-to-plane distances of 3.247 Å and 3.415 Å, shifted by 3.908 Å and 3.762 Å, respectively. There is a slight disorder in one ethylene group in the crown ether moiety, which is refined by splitting C and H atoms of that ethylene group over two spatial positions with approximately 63/37 ratio (major/minor).

Crystal data of **TTFC8**: $C_{30}H_{36}O_6S_8$, M = 749.07, triclinic, space group *P*-1 (no.2), *a* = 5.0805(3), *b* = 14.9091(10), *c* = 22.3719(14) Å, *a* = 98.267(5), *β* = 91.760(5), *γ* = 96.811(5)°, *V* = 1663.2(2) Å³, *Z* = 2, ρ_{calc} = 1.496 Mgm⁻³, μ = 0.579 mm⁻¹ (T_{max} = 0.974 and T_{min} = 0.943), *F*(000) = 784, θ range = 3.27-26.50°, 10254 reflections collected, 6834 unique (R_{int} = 0.0328, *I*>2 σ (*I*) = 4509), which were used in all calculations (418 parameters, 39 restraints), Goodness-of-fit (*F*²) = 1.066. The final *R* indices [*I*>2 σ (*I*)]: *R*1 = 0.0551 and w*R*2 = 0.1023. *R* indices (all data): *R*1 = 0.0947 and w*R*2 = 0.1248. Largest residual electron densities: 0.531 and -0.398 e.Å⁻³.

9. References

- 1. H. V. Schröder, S. Sobottka, M. Nössler, H. Hupatz, M. Gaedke, B. Sarkar and C. A. Schalley, *Chem. Sci.*, 2017, **8**, 6300-6306.
- 2. T. Matsumura, F. Ishiwari, Y. Koyama and T. Takata, *Org. Lett.*, 2010, **12**, 3828-3831.
- 3. O. P. S. Rossi, F. Selva, *Farmaco. Ed. Sci.*, 1967, **22**, 172-176.
- 4. S. Grunder, D. Muñoz Torres, C. Marquardt, A. Błaszczyk, R. Krupke and M. Mayor, *Eur. J. Org. Chem.*, 2011, **2011**, 478-496.
- 5. J. Bucher, T. Wurm, K. S. Nalivela, M. Rudolph, F. Rominger and A. S. Hashmi, *Angew. Chem. Int. Ed.*, 2014, **53**, 3854-3858.
- 6. D. Y. Wang, Z. K. Yang, C. Wang, A. Zhang and M. Uchiyama, *Angew. Chem. Int. Ed.*, 2018, **57**, 3641-3645.
- 7. J. R. Aranzaes, M.-C. Daniel and D. Astruc, *Can. J. Chem.*, 2006, **84**, 288-299.
- 8. C. Bornschein, S. Werkmeister, K. Junge and M. Beller, *New J. Chem.*, 2013, **37**, 2061.
- 9. A. R. Salimi, M. Azizpoor Fard, H. Eshtiagh-Hosseini, M. A. M and H. R. Khavasi, *Acta Crystallogr Sect E Struct Rep Online*, 2010, **66**, 0509.
- 10. M. Gaedke, F. Witte, J. Anhäuser, H. Hupatz, H. V. Schröder, A. Valkonen, K. Rissanen, A. Lützen, B. Paulus and C. A. Schalley, *Chem. Sci.*, 2019, **10**, 10003-10009.
- 11. G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Adv., 2015, **71**, 3-8.
- 12. G. M. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3-8.
- 13. J. Sun, X. Lu, J. Shao, X. Li, S. Zhang, B. Wang, J. Zhao, Y. Shao, R. Fang, Z. Wang, W. Yu and X. Shao, *Chem. Eur. J.*, 2013, **19**, 12517-12525.
- 14. H. Kobayashi, R. Kato, T. Mori, A. Kobayashi, Y. Sasaki, G. Saito, T. Enoki and H. Inokuchi, *Mol. Cryst. Liq. Cryst.*, 2011, **107**, 33-43.