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1 Materials and methods

All chemicals were purchased from commercial sources and used without further purification unless otherwise
stated. Compounds 5in and 5out were synthesized following described procedures.? Pyrrole was distilled under
vacuum and freshly used or stored in a freezer for further use. THF was dried from sodium/benzophenone and
distilled under argon atmosphere. Triethylamine (EtsN) was distilled from CaH, under argon atmosphere and was
immediately used. Dried N, N-dimethylformamide was obtained from a solvent purification system M Braun SPS-800.

Flash column chromatography was performed with silica gel (technical grade, pore size 60 A, 230-400 mesh
particle size). Automatic column chromatography purifications were done with a Combi-flash® RF+. Analytical HPLC
instrument consisted of an Agilent 1100 with autosampler and UV/vis detector using a Waters Spherisorb® (5.0 um
Silica, 4.6 mm x 250 mm) column and isocratic elution (DCM:AcOEt 90:10) (see Sl for additional information).

Routine H-NMR, 3!P-NMR and *C-NMR spectra were recorded on a Bruker Avance 400 (400 MHz for *H-NMR)
or Bruker Avance 500 (500 MHz for H-NMR) ultrashield spectrometer. Deuterated solvents were purchased from
Aldrich. FT-IR measurements were carried out on a Bruker Optics FT-IR Alpha spectrometer equipped with a DTGS
detector, KBr beamsplitter at 4 cm™ resolution using a one bounce ATR accessory with diamond windows.

Solutions for optical spectroscopy studies were prepared in HPLC grade dichloromethane supplied by Scharlab,
S.L.. UV-Vis measurements were carried out on a Shimadzu UV-2401PC spectrophotometer equipped with a
photomultiplier detector, double beam optics and D2 and W light sources. Fluorescence measurements were carried
out on a Fluorolog Horiba Jobin Yvon spectrofluorimeter equipped with photomultiplier detector, double
monochromator and Xenon light source.

Energy minimized structures of the complexes were calculated at the BP86%3/def2-SVP level of theory using
Gaussian 09.*

2 Synthesis and characterization data

2.1  Synthesis of 6-(phenylamino)naphthalene-2-yl phosphonic dichloride (4)
The phosphonic acid dichloride 4 was synthesized following the procedure reported by Dalcanale et al.> The synthetic
route is shown in Scheme 51.1%
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Scheme S1 Synthetic scheme for the synthesis of compound 4.




2.2  Synthesis and separation of fluorescent receptors (1in and lout)

Scheme S2 Synthetic scheme for the synthesis of receptors 1in and lout.



2.2.1  Synthesis of the mono-methylene bridged calix[4]pyrrole receptor (3)

Synthesis of 3: To an Ace pressure tube equipped with a magnetic stir bar and plunger valve, tetrol 2° (1.50 g, 2.9025
mmol), and K,CO; (2.24 g, 16.20 mmol, 8 equiv.) were added. The system was left under vacuum for one hour and
then anhydrous DMSO (80 mL) was added under Ar atmosphere. To the resulting mixture, bromochloromethane
(0.158 pl, 2.43 mmol, 1.2 equiv.) was added in one portion. The flask was sealed and heated overnight at 60 °Cin an
oil bath. The reaction mixture was then cooled down to RT and poured into 10% HCl(aqg) (80 mL). The resulting
suspension was extracted with DCM (3 x 50 mL). The organic portions were collected and washed with water (3 x
50 mL), dried over Na,SO,, filtered and evaporated under reduced pressure to yield a pale yellow powder (1.48 g).
The final product was purified by combi-flash chromatography on a silica gel column (40 g silica column, DCM:AcOEt
90:10) to yield a white powder (800 mg). Finally, the white powder was further recrystallized in acetonitrile (5 ml)
with some drops of DCM (720 mg, 48 % yield).

Receptor 3. Rf: 0.5 (DCM:AcOEt 90:10, SiO,) Melting Point: 255 °C. *H NMR (500 MHz, (CD;),CO, 298 K): § (ppm) =
8.77 (bs, 2H, NH), 8.73 (bs, 1H, NH), 8.53 (bs, 1H, NH), 8.16 (s, 2H, OH), 7.07 (t, J = 7.85 Hz, 2H, H?), 7.04 (t, J = 7.85
Hz, 2H, H®), 6.79 (s, 2H, H*), 6.70 (d, J = 8.02 Hz, 1H, HY), 6.67 (dd, J; =8.02 Hz, J, = 1.92 Hz, 2H, H3), 6.55 (dd, J; =8.02
Hz, J, = 1.92 Hz, 2H, H), 6.42 (d, J = 7.85 Hz, 2H, H7), 6.38 (s, 2H, H®), 6.36 (d, J = 8.25 Hz, 1H, H°), 6.06 - 6.00 (m, 8H,
HPPY), 5.33 (d, J = 8.25 Hz, 1H, H1°), 1.88 (s, 6H, CHs), 1.84 (s, 6H, CHs). 3C NMR (100 MHz, CD,Cl,, 298 K): & (ppm) =
155.9, 154.9, 137.8, 137.7, 137.2, 136.7, 128.9, 128.8, 121.9, 120.4, 117.1, 116.9, 115.0, 113.3, 105.7, 105.1, 44.7,
44.6, 1.4.
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Figure S1 'H-NMR (500 MHz, (CD;),CO, 298 K) of mono-methylene bridged calix[4]pyrrole 3.*Residual solvent
peak.
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Figure S2 3C NMR (100 MHz, CD,Cl,, 298 K) of mono-methylene bridged calix[4]pyrrole 3. *Residual solvent peak.



2.2.2  Synthesis of the mono-phosphonate calix[4]pyrrole cavitands 1in and lout.

In a 25 mL Schlenk flask, compound 4 (180 mg, 0.535 mmol, 2.0 equiv.) was dried overnight under reduced pressure.
Next day, the solid was dissolved on freshly dried THF (15 mL, 18 mM) and triethylamine (0.5 mL, 3.59 mmol, 13.5
equiv.) was added in one portion under Ar atmosphere. The mixture left under vigorous stirring for 15 min. This
solution was added via cannula to a 5mL THF solution of mono-methylene bridged cavitand 3 (200 mg, 0.266 mmol,
1.0 equiv.) under Ar atmosphere.

The reaction was stirred at RT for 2 h. Then, the solvent was evaporated, and the resulting solid was solubilized in
DCM (20 mL). The organic solution was washed with 10 mL of HCl (aq.) 10% and 10 mL of brine solution. Then, the
aqueous phase was washed with DCM (2 x 20 mL). The organic portions were collected, dried over Na,SO,, filtered,
and concentrated under reduced pressure yielding a pale brown solid (250 mg). The reaction produced a mixture of
the two mono-phosphonate diastereoisomers 1in and lout.

Conventional and combi-flash column chromatography purification proved to be not successful in the separation of
the two diastereoisomers. Finally, analytical HPLC method was used for the diastereotopic separation of 1in and
lout (see next section for details).

2.2.3  Analytical HPLC separation of diastereoisomers 1in and lout.

The reaction crude (after work-up) was passed through silica gel column chromatography as a pre-treatment using
DCM as eluent. The collected combined fractions containing the desired products were analyzed by HPLC. After an
optimization process, the elution mixture DCM/AcOEt 90:10 showed the best isomeric separation (Figure S3).

HPLC parameters:

Column: Waters Spherisorb® (5.0 um Silica, 4.6 mm x 250 mm) column.
Mobile phase: DCM/AcOEt 90:10

Flux: 1 mL/min

Injection volume: 50 puL

Sample concentration: 1 mg/ml



300 -

250 -

200 -

, A

0 1 2 3 4 5 6 7

Retention time (min)

Figure S3 HPLC Chromatogram of the combined organic fractions containing receptors 1in and 1lout.



After optimizing the analytical conditions, we performed a loading study using the same column and eluent mixture.
We ran different injections (10 mg mL? in DCM) increasing the injection volume from 5 pL to 100 pL. The results
from the loading study are shown in Figure S4.
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Figure S4 Stacked HPLC chromatograms obtained during the loading study of combined organic fractions
containing receptors 1in and lout.

Repetitive injections of the isomers’ mixture (10 mg mL* in DCM) under the optimized conditions yielded 20 mg
(15%) of each separated isomer. Crystals of 1in and lout spontaneously grew in the NMR tubes from deuterated
acetone or acetonitrile solutions. According to the X-ray diffraction results, the fraction with the shorter retention
time (4.2 min) corresponded to the out isomer, while the fraction eluting later at 5 min corresponded to the in
isomer.



Mono-phosphonate calix[4]pyrrole cavitand 1in

1in

Receptor 1in. Rf: 0.3 (DCM:AcOEt 98:2, SiO,). *H NMR (400 MHz, (CD5),CO, 298 K): & (ppm) = 8.85 (bs, 2H, NH?), 8.62
(bs, 1H, NH?), 8.51 (bs, 1H, NH3), 8.49 (d, 1H, H'?), 8.00 (d, 1H, J = 8.74 Hz, H*?), 7.98 (bs, 1H, NH*), 7.93-7.83 (m, 2H,
H1516) 7.58 (d, 1H, J = 2.20 Hz, H4), 7.44 (dd, 1H, J; = 8.82 Hz, J, = 2.20 Hz, H3), 7.39-7.31 (m, 4H, H'78), 7.22 (t, 2H,
J=7.87 Hz, H®), 7.13 (t, 2H, J = 7.87 Hz, H?), 7.06 (d, 2H, J = 8.05 Hz, H’), 7.02 (tt, 1H, J; = 6.51 Hz, J, = 1.84 Hz, HY),
6.85 (s, 2H, H%), 6.82 (s, 2H, H?), 6.83-6.78 (m, 4H, H>8), 6.72 (dd, 2H, J; = 8.10 Hz, J, = 1.30 Hz, H1), 6.62 (d, 2H, J =
7.87 Hz, H3), 6.44 (d, 1H, J = 8.06 Hz, H%), 6.14 (d, 2H, J = 2.60 Hz, B*'"2), 6.11 (d, 4H, J = 2.60 Hz, B*"), 6.08 (d, 2H, J =
2.60 Hz, ™), 5.35 (d, 1H, J = 8.06 Hz, H), 1.91 (s, 6H, CH5), 1.90 (s, 6H, CHs). 3'P NMR (161 MHz, (CD5),CO, 298 K):
6 (ppm) = 15.31.

Note: 2D-NMR experiments (COSY and ROESY) were used for the proton assignment of cavitand 1in (Figure S6 to
s11).
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Figure S5 *H NMR (400 MHz, (CD5),CO, 298 K) of 1in. *Residual solvent peak.
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Figure S6 COSY NMR (400 MHz, (CDs),CO, 298 K) spectrum of compound 1in. * Residual solvent peak.
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Figure S7 Selected region of the COSY NMR spectrum of the cavitand 1in.
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Figure S8 NOESY NMR (400 MHz, (CD3),CO, 298 K) spectrum of cavitand 1in. * Residual solvent peak.
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Figure S 9 Expansion of a selected region of the 2D NOESY NMR (400 MHz, (CD3),CO, 298 K) spectrum of the
cavitand 1in.
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Figure S 10 ROESY NMR (400 MHz, (CD3),CO, 298 K) spectrum of the cavitand 1in. * Residual solvent peak.
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Figure S 11 Expansion of a selected region of the 2D ROESY NMR (400 MHz, (CD3),CO, 298 K) spectrum of the
cavitand 1in.
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Figure $12 3P NMR (161 MHz, (CD5),CO, 298 K) of cavitand 1in.




Mono-phosphonate calix[4]pyrrole cavitand lout
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NH4 H14
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Receptor lout. Rf: 0.3 (DCM:AcOEt 98:2, Si0,). 'H NMR (400 MHz, (CD),CO, 298 K): & (ppm) = 8.81 (bs, 2H, NH?),
8.74 (bs, 1H, NH?), 8.45 (bs, 1H, NH3), 8.43 (d, 1H, J = 16.38 Hz, H!!), 7.98 (bs, 1H, NH?), 7.97 (d, 1H, J = 8.90 Hz, H%?),
7.86-7.81 (m, 2H, H16), 7.61 (s, 2H, H8), 7.58 (d, 1H, J = 2.25 Hz, H'), 7.43 (dd, 1H, J; = 8.90 Hz, J, = 2.25 Hz, HY),
7.39-7.30 (mult., 4H, H7-H18), 7.22 (t, 2H, J = 7.94 Hz, HS), 7.11 (t, 2H, J = 7.94 Hz, H?), 7.02 (tt, 1H, J; = 6.60 Hz, J, =
2.05 Hz, H'°), 6.88 (dd, 2H, J; = 8.35 Hz, J, = 2.35 Hz, H°), 6.82 (s, 2H, H%), 6.79 (d, 2H, J = 7.94 Hz, H’), 6.71 (dd, 2H, J;
= 8.35 Hz, J, = 2.60 Hz, HY), 6.65 (d, 2H, J = 7.94 Hz, H3), 6.38 (d, 1H, J = 8.02 Hz, H%), 6.12 (d, 2H, J = 2.60 Hz, B*"2),
6.07 (d, 2H, J = 2.60 Hz, B*"3), 6.05 (d, 4H, J = 2.60 Hz, B, 5.35 (d, 1H, J = 8.02 Hz, H1®), 1.93 (s, 6H, CH,), 1.90 (s,
6H, CH3). 3'P-NMR (161 MHz, (CD5),CO, 298 K): & (ppm) = 14.45.
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Figure S13 'H NMR (400 MHz, (CD3),CO, 298 K) spectrum of cavitand lout.*Residual solvent peak.
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Figure S 14 2D COSY NMR (400 MHz, (CDs),CO, 298 K) spectrum of cavitand 1out. * Residual solvent peak.
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Figure S 15 Expansion of a selected region of the 2D COSY NMR (400 MHz, (CD5),CO, 298 K) spectrum of cavitand
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Figure S 16 NOESY NMR (400 MHz, (CDs),CO, 298 K) spectrum of cavitand 1out. * Residual solvent peak.
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Figure S 17 Expansion of a selected region of the 2D NOESY NMR (400 MHz, (CD3),CO, 298 K) spectrum of cavitand
lout.
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Figure S 18 ROESY NMR (400 MHz, (CD3),CO, 298 K) spectrum of the compound 1out. * Residual solvent peak.
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2.3  Direct binding-based sensing (BBS) : UV-Vis absorption and emission titrations
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Figure S 21 UV-Vis spectra of a 2.5 uM solution of 1in (grey line) and 1out (black line) in DCM.
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Figure S 22 UV-Vis spectra of a 1 uM solution of 7 in DCM registered during the addition of incremental amounts of
L-Pro.
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Figure S 23 Normalized emission spectra (Ae = 335 nm) of 7 (1 uM) in DCM registered during the addition of
incremental amounts of L-Pro.
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Figure S 24 UV-Vis spectra of a 1 uM solution of 1in in DCM registered during the addition of incremental amounts
of L-Pro.



0.3 1

0.25 -
—0 equiv.
0.8 equiv.
0.2 1 ——2.0 equiv.
g —3.0 equiv.
3 0.15 - —4.0 equ!v.
5 —5.0 equiv.
8 6.0 equiv.
< 0.1 1

250 300 350 400 450

Wavelength (nm)
Figure S 25 UV-Vis spectra of a 0.5 uM solution of 1in in DCM registered during the addition of incremental
amounts of L-Pip.
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Figure S 26 Normalized emission spectra (A¢ = 335 nm) of 1in (1 uM) in DCM registered during the addition of
incremental amounts of L-Pip.
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Figure S 27 Left) Normalized emission spectra (Aexc = 335 nm) of 1out (1 uM) in DCM registered during the addition
of incremental amounts of L-Pip. Right) Plot of the emission change at 426 nm (black circles) vs concentration of L-
Pip. The red line corresponds to the fit of the titration data.



2.4  FRET-based Indicator Displacement Assays (IDA)
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Figure S 28 UV-Vis absorption spectra of 1in (blue) and 6 (red) and the fluorescence spectrum of 1in (green). The
spectral overlap is highlighted in grey.
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Figure S 29 UV-Vis spectra of a 0.5 pM solution of 1in in DCM registered during the addition of incremental

amounts of 6.
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Figure S 30 Normalized emission spectra (Ae = 335 nm) of 1in (5 uM) in DCM registered during the addition of
incremental amounts of 6.
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Figure S 31 Normalized emission spectra (A¢, = 335 nm) of 1out (5 uM) in DCM registered during the addition of
incremental amounts of 6.
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2.5 Energy minimized structures of inclusion complexes

a)

Figure S 34 Side and top views of the energy-minimized inclusion complexes L-Pheclin (a) and L-Pip,,c1in (b). The
structures are energy minima at the BP86/def2-SVP level of theory. The receptors are shown in stick
representation. Non-polar hydrogen atoms of the host were removed for clarity. The included amino acids are
depicted as CPK models.

Figure S 35 Side view of the energy-minimized inclusion complex L-Pip.q1in. Hydrogen bond and O-mt interactions
are indicated. The structures are energy minima at the BP86/def2-SVP level of theory. The receptor and the
included amino acid are shown in stick representation. Non-polar hydrogen atoms of the receptor were removed
for clarity.
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