Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Supporting Information

Synthesis of 3-Spirooxindole 3H-Indoles through Rh(III)-Catalyzed [4 + 1] Redox-Neutral

Spirocyclization of N-Aryl Amidines with Diazo Oxindoles

Qianting Zhou, Xia Song, Xinying Zhang*, and Xuesen Fan*

NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of

Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and

Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University,

Xinxiang, Henan 453007, China

E-mail: xinyingzhang@htu.cn; xuesen.fan@htu.cn

Table of Contents

Ι	General experimental information	S 3
II	Experimental procedures and spectroscopic data	S4-S24
III	Mechanism studies	S25-S28
IV	Copies of NMR spectra of 3a-3jj	S29-S68
V	Copies of NMR spectra of 4 , 5 , 6 , 7 , 8	S69-S73
VI	X-ray crystal structure and data of 3a	S74-S75
VII	X-ray crystal structure and data of 3k	S76-S77
VIII	X-ray crystal structure and data of 6	S78-S79
IX	References	S80

I. General experimental information

Commercial reagents were used without further purification. Amidines (1),^[1] diazooxindoles (2),^[2] and [RhCp*Cl₂]₂^[3] were prepared based on literature procedures. Melting points were recorded with a micro melting point apparatus and uncorrected. The ¹H NMR spectra were recorded at 400 MHz or 600 MHz. The ¹³C NMR spectra were recorded at 100 MHz or 150 MHz. The ¹⁹F NMR spectra were recorded at 376 MHz or 565 MHz. Chemical shifts were expressed in parts per million (δ), and were reported as s (singlet), d (doublet), t (triplet), dd (doublet of doublet), m (multiplet), br s (broad singlet), etc. The coupling constants *J* were given in Hz. High resolution mass spectra (HRMS) were obtained *via* ESI mode by using a MicrOTOF mass spectrometer. All reactions were monitored by thin layer chromatography (TLC) using silica gel plates (silica gel 60 F254 0.25 mm), and components were visualized by observation under UV light (254 and 365 nm).

II. Experimental procedures and spectroscopic data

1. Typical procedures for the synthesis of 3a and spectroscopic data of 3a-3jj

To a reaction tube equipped with a stir bar were charged with *N*-phenylpivalimidamide (**1a**, 35.2 mg, 0.2 mmol), DCE (2.0 mL), [RhCp*Cl₂]₂ (2.5 mg, 0.004 mmol), 1-AdCO₂H (72.1 mg, 0.4 mmol), CsOAc (1.9 mg, 0.01 mmol) and 3-diazo-1-methylindolin-2-one (**2a**, 52.0 mg, 0.3 mmol). The tube was sealed, and the mixture was stirred at 60 \degree (oil bath) under air for 4 h. Upon completion, it was cooled to room temperature, quenched with saturated aqueous solution of NaHCO₃, and then extracted with dichloromethane (10 mL × 3). The combined organic layers were washed with water, dried over anhydrous Na₂SO₄, filtered and evaporated under reduced pressure. The residue was purified by silica gel chromatography using petroleum ether/ethyl acetate (10:1) as eluent to afford **3a** (44 mg, 72%). **3b-3jj** were obtained in a similar manner.

2-(tert-Butyl)-1'-methylspiro[indole-3,3'-indolin]-2'-one (3a)

Eluent: petroleum ether/ethyl acetate (10:1). White solid (44 mg, 72%), mp 134-135 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.66 (d, *J* = 8.0 Hz, 1H), 7.39-7.32 (m, 2H), 7.08 (t, *J* = 7.6 Hz, 1H), 7.01-6.97 (m, 2H), 6.80 (d, *J* = 7.6 Hz, 1H), 6.77-6.75 (m, 1H), 3.35 (s, 3H), 1.17 (s, 9H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 187.0, 172.3, 156.2, 144.7, 139.8, 129.2, 128.9, 127.0, 126.2, 124.1, 123.2, 121.3, 120.6, 108.9, 70.1, 38.5, 29.4, 27.1. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₀H₂₀N₂NaO 327.1468; Found 327.1456.

2-(*tert*-Butyl)-1',5-dimethylspiro[indole-3,3'-indolin]-2'-one (3b)

Eluent: petroleum ether/ethyl acetate (10:1). White solid (45 mg, 71%), mp 139-140 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.53 (d, *J* = 8.0 Hz, 1H), 7.37 (td, *J*₁ = 8.0 Hz, *J*₂ = 1.2 Hz, 1H), 7.13 (d, *J* = 7.6 Hz, 1H), 7.02-6.98 (m, 2H), 6.78-6.76 (m, 1H), 6.60 (s, 1H), 3.35 (s, 3H), 2.24 (s, 3H), 1.16 (s, 9H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 185.9, 172.6, 153.9, 144.7, 139.9, 136.1, 129.5, 129.1, 127.3, 124.2, 123.1, 121.9, 120.2, 108.9, 69.9, 38.4, 29.4, 27.1, 21.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₂₃N₂O 319.1805; Found 319.1798.

2-(*tert*-Butyl)-5-isopropyl-1'-methylspiro[indole-3,3'-indolin]-2'-one (3c)

Eluent: petroleum ether/ethyl acetate (10:1). White solid (51 mg, 74%), mp 161-162 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.57 (d, J = 8.0 Hz, 1H), 7.37 (td, $J_1 = 7.6$ Hz, $J_2 = 1.2$ Hz, 1H), 7.21 (dd, $J_1 = 8.0$ Hz, $J_2 = 1.6$ Hz, 1H), 7.01-6.98 (m, 2H), 6.78-6.76 (m, 1H), 6.62 (d, J = 1.2 Hz, 1H), 3.36 (s, 3H), 2.82-2.75 (m, 1H), 1.15-1.12 (m, 15H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 186.1, 172.6, 154.3, 147.3, 144.7, 139.8, 129.1, 127.3, 126.8, 124.2, 123.1, 120.3, 119.6, 108.9, 70.0, 38.4, 34.1, 29.4, 27.1, 24.2, 24.1. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₂₇N₂O 347.2118; Found 347.2105.

2-(tert-Butyl)-5-methoxy-1'-methylspiro[indole-3,3'-indolin]-2'-one (3d)

Eluent: petroleum ether/ethyl acetate (10:1). White solid (38 mg, 57%), mp 184-185 °C. ¹H NMR (CDCl₃, 600 MHz): δ 7.56 (d, J = 8.4 Hz, 1H), 7.37 (td, $J_1 = 7.8$ Hz, $J_2 = 1.2$ Hz, 1H), 7.00 (t, J = 7.8 Hz, 2H), 6.86 (dd, $J_1 = 8.4$ Hz, $J_2 = 2.4$ Hz, 1H), 6.78 (d, J = 7.2 Hz, 1H), 6.34 (d, J = 2.4 Hz, 1H), 3.69 (s, 3H), 3.34 (s, 3H), 1.15 (s, 9H). ¹³C{¹H} NMR (CDCl₃, 150 MHz): δ 184.8, 172.4, 158.5, 149.7, 144.6, 141.3, 129.2, 127.2, 124.2,

123.2, 121.0, 113.7, 108.9, 107.9, 70.2, 55.7, 38.3, 29.4, 27.1. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₂₃N₂O₂ 335.1754; Found 335.1741.

2-(tert-Butyl)-5-fluoro-1'-methylspiro[indole-3,3'-indolin]-2'-one (3e)

Eluent: petroleum ether/ethyl acetate (10:1). White solid (45 mg, 70%), mp 148-149 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.59 (dd, $J_1 = 8.4$ Hz, $J_2 = 4.4$ Hz, 1H), 7.41-7.37 (m, 1H), 7.05-6.99 (m, 3H), 6.77 (d, J = 7.2 Hz, 1H), 6.52 (dd, $J_1 = 8.0$ Hz, $J_2 = 2.8$ Hz, 1H), 3.35 (s, 3H), 1.15 (s, 9H). ¹³C{¹H} NMR (CDCl₃, 150 MHz): δ 186.9 (d, ⁵ $J_{C-F} = 3.3$ Hz), 171.7, 161.4 (d, ¹ $J_{C-F} = 243.9$ Hz), 152.3 (d, ⁴ $J_{C-F} = 2.3$ Hz), 144.6, 141.4 (d, ³ $J_{C-F} = 8.7$ Hz), 129.5, 126.4, 124.2, 123.4, 121.4 (d, ³ $J_{C-F} = 8.7$ Hz), 115.6 (d, ² $J_{C-F} = 23.0$ Hz), 109.3 (d, ² $J_{C-F} = 25.2$ Hz), 109.1, 70.3 (d, ⁴ $J_{C-F} = 2.1$ Hz), 38.5, 29.3, 27.1. ¹⁹F NMR (CDCl₃, 376 MHz): δ -115.7 (td, $J_1 = 8.3$ Hz, $J_2 = 4.1$ Hz). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₀H₁₉FN₂NaO 345.1374; Found 345.1359.

2-(tert-Butyl)-5-chloro-1'-methylspiro[indole-3,3'-indolin]-2'-one (3f)

Eluent: petroleum ether/ethyl acetate (10:1). White solid (52 mg, 77%), mp 159-160 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.57 (d, *J* = 8.0 Hz, 1H), 7.39 (td, *J*₁ = 8.0 Hz, *J*₂ = 1.2 Hz, 1H), 7.31 (dd, *J*₁ = 8.4 Hz, *J*₂ = 2.0 Hz, 1H), 7.04-6.99 (m, 2H), 6.77-6.76 (m, 2H), 3.35 (s, 3H), 1.15 (s, 9H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 187.6, 171.5, 154.8, 144.6, 141.3, 131.7, 129.5, 129.1, 126.2, 124.2, 123.4, 121.9, 121.5, 109.1, 70.2, 38.5, 29.3, 27.2. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₀H₁₉ClN₂NaO 361.1078; Found 361.1067.

5-Bromo-2-(*tert*-butyl)-1'-methylspiro[indole-3,3'-indolin]-2'-one (3g)

Eluent: petroleum ether/ethyl acetate (10:1). White solid (58 mg, 76%), mp 182-183 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.52 (d, *J* = 8.4 Hz, 1H), 7.46 (dd, *J*₁ = 8.4 Hz, *J*₂ = 2.0 Hz, 1H), 7.39 (td, *J*₁ = 8.0 Hz, *J*₂ = 1.2 Hz, 1H), 7.04-6.99 (m, 2H), 6.91 (d, *J* = 1.6 Hz, 1H), 6.76 (d, *J* = 7.2 Hz, 1H), 3.35 (s, 3H), 1.15 (s, 9H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 187.7, 171.5, 155.2, 144.6, 141.7, 132.0, 129.6, 126.1, 124.7, 124.2, 123.4, 122.0, 119.5, 109.2, 70.2, 38.5, 29.3, 27.2. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₀BrN₂O 383.0754; Found 383.0739.

2-(tert-Butyl)-5-iodo-1'-methylspiro[indole-3,3'-indolin]-2'-one (3h)

Eluent: petroleum ether/ethyl acetate (10:1). White solid (58 mg, 67%), mp 207-208 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.67 (dd, $J_1 = 8.0$ Hz, $J_2 = 1.2$ Hz, 1H), 7.42-7.37 (m, 2H), 7.09 (s, 1H), 7.04-6.99 (m, 2H), 6.76 (d, J = 7.2 Hz, 1H), 3.35 (s, 3H), 1.15 (s, 9H). ¹³C{¹H} NMR (CDCl₃, 150 MHz): δ 187.6, 171.5, 155.9, 144.6, 141.9, 138.0, 130.4, 129.5, 126.1, 124.2, 123.4, 122.5, 109.1, 90.5, 70.0, 38.5, 29.3, 27.2. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₀IN₂O 431.0615; Found 431.0614.

2-(tert-Butyl)-1'-methyl-5-phenylspiro[indole-3,3'-indolin]-2'-one (3i)

Eluent: petroleum ether/ethyl acetate (10:1). White solid (26 mg, 34%), mp 189-190 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.72 (d, *J* = 8.4 Hz, 1H), 7.57 (dd, *J*₁ = 8.4 Hz, *J*₂ = 1.6 Hz, 1H), 7.44 (d, *J* = 7.2 Hz, 2H), 7.40-7.33 (m, 3H), 7.28 (d, *J* = 7.6 Hz, 1H), 7.02-6.97 (m, 3H), 6.81 (d, *J* = 7.2 Hz, 1H), 3.37 (s, 3H), 1.19 (s, 9H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 187.3, 172.2, 155.6, 144.7, 140.9, 140.5, 139.6, 129.3, 128.7, 128.1, 127.2, 127.0, 124.2, 123.3, 120.8, 120.3, 109.0, 70.2, 38.6, 29.4, 27.1. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₆H₂₅N₂O 381.1961; Found 381.1958.

2-(*tert*-Butyl)-1',6-dimethylspiro[indole-3,3'-indolin]-2'-one (3j)

Eluent: petroleum ether/ethyl acetate (10:1). White solid (48 mg, 75%), mp 179-180 °C. ¹H NMR (CDCl₃, 600 MHz): δ 7.48 (s, 1H), 7.35 (td, $J_1 = 7.8$ Hz, $J_2 = 1.2$ Hz, 1H), 6.99-6.97 (m, 2H), 6.90 (dd, $J_1 = 7.8$ Hz, $J_2 = 0.6$ Hz, 1H), 6.76 (dd, $J_1 = 7.8$ Hz, $J_2 = 0.6$ Hz, 1H), 6.68 (d, J = 7.8 Hz, 1H), 3.33 (s, 3H), 2.38 (s, 3H), 1.16 (s, 9H). ¹³C{¹H} NMR (CDCl₃, 150 MHz): δ 187.2, 172.5, 156.4, 144.7, 139.0, 136.9, 129.1, 127.2, 126.8, 124.1, 123.1, 121.4, 120.9, 108.9, 69.8, 38.5, 29.4, 27.0, 21.6. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₂₃N₂O 319.1805; Found 319.1801.

2-(*tert*-Butyl)-4-fluoro-1'-methylspiro[indole-3,3'-indolin]-2'-one (3k)

Eluent: petroleum ether/ethyl acetate (10:1). White solid (47 mg, 73%), mp 105-106 °C. ¹H NMR (CDCl₃, 600 MHz): δ 7.46 (d, *J* = 7.8 Hz, 1H), 7.38 (td, *J*₁ = 7.8 Hz, *J*₂ = 1.2 Hz, 1H), 7.34-7.31 (m, 1H), 7.01-6.98 (m, 2H), 6.79-6.76 (m, 2H), 3.37 (s, 3H), 1.16 (s, 9H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 187.9, 170.9, 158.7 (d,

 ${}^{3}J_{C-F} = 4.3 \text{ Hz}$), 156.9 (d, ${}^{1}J_{C-F} = 250.7 \text{ Hz}$), 144.8, 130.7 (d, ${}^{3}J_{C-F} = 7.9 \text{ Hz}$), 129.5, 125.3 (d, ${}^{2}J_{C-F} = 14.4 \text{ Hz}$), 124.6, 123.7, 123.1, 116.6 (d, ${}^{4}J_{C-F} = 3.6 \text{ Hz}$), 113.5 (d, ${}^{2}J_{C-F} = 19.5 \text{ Hz}$), 109.0, 68.7 (d, ${}^{3}J_{C-F} = 3.6 \text{ Hz}$), 38.7, 29.4, 27.1. ${}^{19}\text{F}$ NMR (CDCl₃, 376 MHz): δ -120.1 (dd, $J_{1} = 8.3 \text{ Hz}$, $J_{2} = 5.6 \text{ Hz}$). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₀H₁₉FN₂NaO 345.1374; Found 345.1368.

2-(tert-Butyl)-6-chloro-1'-methylspiro[indole-3,3'-indolin]-2'-one (31)

Eluent: petroleum ether/ethyl acetate (10:1). White solid (53 mg, 78%), mp 177-178 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.64 (d, J = 1.6 Hz, 1H), 7.38 (td, $J_1 = 8.0$ Hz, $J_2 = 1.2$ Hz, 1H), 7.06 (dd, $J_1 = 8.0$ Hz, $J_2 = 1.6$ Hz, 1H), 7.02-6.98 (m, 2H), 6.75-6.71 (m, 2H), 3.33 (s, 3H), 1.15 (s. 9H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 189.1, 171.6, 157.4, 144.7, 138.2, 134.6, 129.5, 126.3, 126.1, 124.1, 123.4, 122.1, 121.2, 109.1, 69.8, 38.7, 29.3, 27.1. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₀H₁₉ClN₂NaO 361.1078; Found 361.1070.

6-Bromo-2-(tert-butyl)-1'-methylspiro[indole-3,3'-indolin]-2'-one (3m)

Eluent: petroleum ether/ethyl acetate (10:1). White solid (53 mg, 69%), mp 168-169 °C. ¹H NMR (CDCl₃, 600 MHz): δ 7.81 (d, J = 1.2 Hz, 1H), 7.38 (td, $J_1 = 7.8$ Hz, $J_2 = 1.2$ Hz, 1H), 7.22 (dd, $J_1 = 7.8$ Hz, $J_2 = 1.8$ Hz, 1H), 7.02-6.99 (m, 2H), 6.75 (d, J = 6.6 Hz, 1H), 6.67 (d, J = 7.8 Hz, 1H), 3.34 (s, 3H), 1.15 (s, 9H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 189.0, 171.5, 157.6, 144.7, 138.7, 129.5, 129.0, 126.2, 124.15, 124.12, 123.4, 122.5, 122.4, 109.1, 69.9, 38.6, 29.3, 27.1. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₀H₁₉BrN₂NaO 405.0573; Found 405.0563.

2-(*tert*-Butyl)-1',7-dimethylspiro[indole-3,3'-indolin]-2'-one (3n)

Eluent: petroleum ether/ethyl acetate (30:1). White solid (35 mg, 55%), mp 135-136 °C. ¹H NMR (CDCl₃, 600 MHz): δ 7.35 (td, $J_1 = 7.8$ Hz, $J_2 = 1.2$ Hz, 1H), 7.13 (d, J = 7.8 Hz, 1H), 6.99-6.95 (m, 3H), 6.76 (dd, $J_1 = 7.8$ Hz, $J_2 = 1.2$ Hz, 1H), 6.60 (d, J = 7.2 Hz, 1H), 3.34 (s, 3H), 2.63 (s, 3H), 1.16 (s, 9H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 185.0, 172.7, 155.0, 144.7, 139.7, 130.6, 130.3, 129.0, 127.4, 125.9, 124.1, 123.1, 118.6, 108.8, 70.3, 38.5, 29.5, 27.0, 17.1. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₂₃N₂O 319.1805; Found 319.1801.

2-(tert-Butyl)-7-fluoro-1'-methylspiro[indole-3,3'-indolin]-2'-one (30)

Eluent: petroleum ether/ethyl acetate (10:1). White solid (27 mg, 42%), mp 129-130 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.39 (td, $J_1 = 8.0$ Hz, $J_2 = 1.2$ Hz, 1H), 7.08-6.99 (m, 4H), 6.78-6.76 (m, 1H), 6.60-6.58 (m, 1H), 3.35 (s, 3H), 1.18 (s, 9H). ¹³C{¹H} NMR (CDCl₃, 150 MHz): δ 187.6, 171.6, 153.6 (d, ¹ $J_{C-F} = 253.8$ Hz), 144.7, 143.1 (d, ² $J_{C-F} = 11.0$ Hz), 142.9 (d, ³ $J_{C-F} = 3.3$ Hz), 129.5, 127.6 (d, ³ $J_{C-F} = 6.5$ Hz), 126.4, 124.1, 123.4, 117.1 (d, ⁴ $J_{C-F} = 3.3$ Hz), 116.3 (d, ² $J_{C-F} = 18.6$ Hz), 109.1, 70.5, 38.7, 29.3, 27.1. ¹⁹F NMR (CDCl₃, 376 MHz): δ -125.19 – -125.23 (m). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₀H₁₉FN₂NaO 345.1374; Found 345.1366.

2-(*tert*-Butyl)-7-chloro-1'-methylspiro[indole-3,3'-indolin]-2'-one (3p)

Eluent: petroleum ether/ethyl acetate (10:1). White solid (35 mg, 52%), mp 160-161 °C. ¹H NMR (CDCl₃, 600 MHz): δ 7.38 (td, $J_1 = 8.4$ Hz, $J_2 = 1.2$ Hz, 1H), 7.31 (d, J = 7.8 Hz, 1H), 7.02-6.99 (m, 3H), 6.77-6.76 (m, 1H), 6.68 (dd, $J_1 = 7.2$ Hz, $J_2 = 0.6$ Hz, 1H), 3.34 (s, 3H), 1.18 (s, 9H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 188.1, 171.6, 153.2, 144.6, 141.6, 129.54, 129.50, 127.2, 126.3, 125.6, 124.2, 123.4, 119.7, 109.1, 71.1, 38.8, 29.4, 27.2. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₀H₁₉ClN₂NaO 361.1078; Found 361.1062.

1'-Methyl-2-phenylspiro[indole-3,3'-indolin]-2'-one (3q)

Eluent: petroleum ether/ethyl acetate (30:1). White solid (37 mg, 57%), mp 176-177 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.78 (d, *J* = 8.0 Hz, 1H), 7.60-7.58 (m, 2H), 7.43-7.33 (m, 3H), 7.28-7.24 (m, 2H), 7.17-7.13 (m, 1H), 7.08 (d, *J* = 8.0 Hz, 1H), 6.98-6.93 (m, 2H), 6.74 (d, *J* = 7.2 Hz, 1H), 3.40 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 174.2, 172.4, 156.4, 144.4, 140.1, 132.2, 131.2, 129.4, 129.3, 128.8, 128.0, 127.8, 126.7, 123.9, 123.8, 121.7, 121.4, 109.2, 69.0, 27.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₁₇N₂O 325.1335; Found 325.1337.

5-Ethyl-1'-methyl-2-phenylspiro[indole-3,3'-indolin]-2'-one (3r)

Eluent: petroleum ether/ethyl acetate (30:1). White solid (26 mg, 37%), mp 172-173 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.61 (d, *J* = 7.6 Hz, 1H), 7.51-7.48 (m, 2H), 7.32 (td, *J*₁ = 8.0 Hz, *J*₂ = 1.2 Hz, 1H), 7.26 (t, *J* = 7.6 Hz, 1H), 7.20-7.16 (m, 3H), 7.02 (d, *J* = 8.0 Hz, 1H), 6.90 (t, *J* = 7.6 Hz, 1H), 6.70-6.68 (m, 2H), 3.35 (s, 3H), 2.51 (q, *J* = 7.6 Hz, 2H), 1.09 (t, *J* = 7.6 Hz, 3H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 173.3, 172.6, 154.3, 144.4, 143.3, 140.2, 132.4, 131.0, 129.3, 128.8, 128.2, 127.6, 123.9, 123.8, 121.2, 121.1, 109.1, 68.9, 28.9, ...

S11

27.3, 15.6. HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{24}H_{21}N_2O$ 353.1648; Found 353.1644.

1',6-Dimethyl-2-phenylspiro[indole-3,3'-indolin]-2'-one (3s)

Eluent: petroleum ether/ethyl acetate (30:1). White solid (30 mg, 44%), mp 205-206 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.61-7.57 (m, 3H), 7.41-7.33 (m, 2H), 7.28-7.24 (m, 2H), 7.08 (d, *J* = 8.0 Hz, 1H), 6.97 (t, *J* = 7.6 Hz, 2H), 6.82 (d, *J* = 7.6 Hz, 1H), 6.75 (d, *J* = 7.2 Hz, 1H), 3.41 (s, 3H), 2.43 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 150 MHz): δ 174.3, 172.6, 156.7, 144.3, 139.5, 137.1, 132.3, 131.1, 129.3, 128.8, 128.2, 127.7, 127.4, 123.9, 123.7, 122.2, 121.3, 109.1, 68.7, 27.3, 21.7. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₁₉N₂O 339.1492; Found 339.1494.

5-Chloro-2-(4-chlorophenyl)-1'-methylspiro[indole-3,3'-indolin]-2'-one (3t)

Eluent: petroleum ether/ethyl acetate (30:1). White solid (30 mg, 38%), mp 217-218 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.69 (d, *J* = 8.4 Hz, 1H), 7.50 (d, *J* = 8.8 Hz, 2H), 7.44 (td, *J*₁ = 8.0 Hz, *J*₂ = 1.2 Hz, 1H), 7.39 (dd, *J*₁ = 8.4 Hz, *J*₂ = 2.0 Hz, 1H), 7.27-7.25 (m, 2H), 7.10 (d, *J* = 7.6 Hz, 1H), 7.02 (t, *J* = 7.6 Hz, 1H), 6.91 (d, *J* = 1.6 Hz, 1H), 6.75 (d, *J* = 7.2 Hz, 1H), 3.42 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 150 MHz): δ 173.4, 171.4, 154.7, 144.2, 141.4, 137.8, 132.5, 130.3, 130.0, 129.7, 129.2, 129.0, 126.8, 124.1, 124.0, 122.4, 122.3, 109.4, 68.9, 27.4. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₁₄Cl₂N₂NaO 415.0375; Found 415.0362.

2-(*tert*-Butyl)-1',5'-dimethylspiro[indole-3,3'-indolin]-2'-one (3u)

Eluent: petroleum ether/ethyl acetate (10:1). White solid (37 mg, 58%), mp 148-149 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.66 (d, *J* = 7.6 Hz, 1H), 7.36-7.32 (m, 1H), 7.16 (d, *J* = 7.6 Hz, 1H), 7.09 (t, *J* = 7.6 Hz, 1H), 6.88 (d, *J* = 8.0 Hz, 1H), 6.80 (d, *J* = 7.6 Hz, 1H), 6.57 (s, 1H), 3.32 (s, 3H), 2.23 (s, 3H), 1.17 (s, 9H). ¹³C{¹H} NMR (CDCl₃, 150 MHz): δ 187.3, 172.2, 156.1, 142.4, 139.9, 132.9, 129.5, 128.9, 126.9, 126.2, 124.7, 121.4, 120.6, 108.7, 70.2, 38.5, 29.4, 27.1, 21.0. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₂₃N₂O 319.1805; Found 319.1795.

2-(*tert*-Butyl)-5'-fluoro-1'-methylspiro[indole-3,3'-indolin]-2'-one (3v)

Eluent: petroleum ether/ethyl acetate (10:1). White solid (40 mg, 62%), mp 130-131 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.66 (d, J = 7.6 Hz, 1H), 7.35 (t, J = 7.6 Hz, 1H), 7.12-7.05 (m, 2H), 6.92 (dd, $J_1 = 8.8$ Hz, $J_2 = 4.0$ Hz, 1H), 6.79 (d, J = 7.2 Hz, 1H), 6.52 (dd, $J_1 = 7.6$ Hz, $J_2 = 2.4$ Hz, 1H), 3.33 (s, 3H), 1.18 (s, 9H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 186.4, 171.9, 159.3 (d, ¹ $J_{C-F} = 241.2$ Hz), 156.2, 140.7, 139.3, 129.2, 128.6 (d, ³ $J_{C-F} = 8.7$ Hz), 126.3, 121.3, 120.8, 115.6 (d, ² $J_{C-F} = 23.1$ Hz), 112.1 (d, ² $J_{C-F} = 24.6$ Hz), 109.5 (d, ³ $J_{C-F} = 8.0$ Hz), 70.1, 38.5, 29.4, 27.2. ¹⁹F NMR (CDCl₃, 376 MHz): δ -119.1 (td, $J_1 = 8.6$ Hz, $J_2 = 4.5$ Hz). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₀H₁₉FN₂NaO 345.1374; Found 345.1364.

2-(*tert*-Butyl)-5'-chloro-1'-methylspiro[indole-3,3'-indolin]-2'-one (3w)

Eluent: petroleum ether/ethyl acetate (10:1). White solid (43 mg, 63%), mp 167-168 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.66 (d, *J* = 7.6 Hz, 1H), 7.38-7.33 (m, 2H), 7.11 (t, *J* = 7.6 Hz, 1H), 6.92 (d, *J* = 8.4 Hz, 1H), 6.80 (d, *J* = 7.6 Hz, 1H), 6.75 (d, *J* = 2.0 Hz, 1H), 3.33 (s, 3H), 1.18 (s, 9H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 186.3, 171.8, 156.2, 143.2, 139.2, 129.3, 129.2, 128.7, 128.6, 126.3, 124.3, 121.3, 120.9, 109.8, 69.8, 38.5, 29.4, 27.2. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₀H₁₉ClN₂NaO 361.1078; Found 361.1068.

5'-Bromo-2-(*tert*-butyl)-1'-methylspiro[indole-3,3'-indolin]-2'-one (3x)

Eluent: petroleum ether/ethyl acetate (10:1). White solid (39 mg, 51%), mp 194-195 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.66 (d, *J* = 7.6 Hz, 1H), 7.49 (dd, *J*₁ = 8.4 Hz, *J*₂ = 1.6 Hz, 1H), 7.36 (t, *J* = 8.0 Hz, 1H), 7.11 (t, *J* = 7.6 Hz, 1H), 6.88-6.86 (m, 2H), 6.80 (d, *J* = 7.6 Hz, 1H), 3.33 (s, 3H), 1.18 (s, 9H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 186.3, 171.7, 156.2, 143.7, 139.2, 132.1, 129.3, 129.1, 127.1, 126.4, 121.3, 120.9, 115.7, 110.3, 69.7, 38.5, 29.4, 27.2. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₀BrN₂O 383.0754; Found 383.0750.

2-(*tert*-Butyl)-6'-methoxy-1'-methylspiro[indole-3,3'-indolin]-2'-one (3y)

Eluent: petroleum ether/ethyl acetate (10:1). White solid (38 mg, 57%), mp 183-184 °C. ¹H NMR (CDCl₃, 400

MHz): δ 7.65 (d, J = 8.0 Hz, 1H), 7.33 (t, J = 7.6 Hz, 1H), 7.08 (t, J = 7.6 Hz, 1H), 6.80 (d, J = 7.6 Hz, 1H), 6.66 (d, J = 8.4 Hz, 1H), 6.57 (d, J = 2.4 Hz, 1H), 6.49 (dd, $J_1 = 8.4$ Hz, $J_2 = 2.4$ Hz, 1H), 3.85 (s, 3H), 3.31 (s, 3H), 1.17 (s, 9H). ¹³C{¹H} NMR (CDCl₃, 150 MHz): δ 187.4, 172.8, 161.0, 155.9, 146.0, 140.0, 128.9, 126.2, 124.8, 121.3, 120.6, 118.3, 107.0, 97.0, 69.6, 55.6, 38.4, 29.3, 27.1. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₂₃N₂O₂ 335.1754; Found 335.1740.

2-(*tert*-Butyl)-6'-chloro-1'-methylspiro[indole-3,3'-indolin]-2'-one (3z)

Eluent: petroleum ether/ethyl acetate (10:1). White solid (46 mg, 68%), mp 195-196 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.66 (d, *J* = 7.6 Hz, 1H), 7.35 (td, *J*₁ = 8.0 Hz, *J*₂ = 1.2 Hz, 1H), 7.10 (t, *J* = 7.6 Hz, 1H), 7.01-6.97 (m, 2H), 6.79 (d, *J* = 7.2 Hz, 1H), 6.68 (d, *J* = 7.6 Hz, 1H), 3.33 (s, 3H), 1.17 (s, 9H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 186.5, 172.2, 156.2, 145.8, 139.3, 135.0, 129.2, 126.3, 125.4, 125.0, 123.1, 121.2, 120.8, 109.7, 69.5, 38.5, 29.4, 27.2. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₀ClN₂O 339.1259; Found 339.1254.

6'-Bromo-2-(*tert*-butyl)-1'-methylspiro[indole-3,3'-indolin]-2'-one (3aa)

Eluent: petroleum ether/ethyl acetate (10:1). White solid (50 mg, 65%), mp 191-192 °C. ¹H NMR (CDCl₃, 600 MHz): δ 7.65 (d, *J* = 7.8 Hz, 1H), 7.35 (td, *J*₁ = 7.8 Hz, *J*₂ = 0.6 Hz, 1H), 7.15-7.13 (m, 2H), 7.09 (t, *J* = 7.8 Hz, 1H), 6.78 (d, *J* = 7.2 Hz, 1H), 6.62 (d, *J* = 7.8 Hz, 1H), 3.32 (s, 3H), 1.17 (s, 9H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 186.4, 172.0, 156.1, 146.0, 139.2, 129.2, 126.3, 126.1, 125.9, 125.3, 122.8, 121.3, 120.8, 112.5, 69.5, 38.5, 29.4, 27.2. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₀BrN₂O 383.0754; Found 383.0740.

2-(*tert*-Butyl)-1',7'-dimethylspiro[indole-3,3'-indolin]-2'-one (3bb)

Eluent: petroleum ether/ethyl acetate (10:1). White solid (40 mg, 63%), mp 186-187 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.65 (d, *J* = 7.6 Hz, 1H), 7.33 (td, *J*₁ = 8.0 Hz, *J*₂ = 1.2 Hz, 1H), 7.10-7.07 (m, 2H), 6.86 (d, *J* = 7.6 Hz, 1H), 6.81 (d, *J* = 8.0 Hz, 1H), 6.54 (d, *J* = 7.2 Hz, 1H), 3.61 (s, 3H), 2.67 (s, 3H), 1.18 (s, 9H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 187.3, 173.0, 156.1, 142.5, 140.3, 132.9, 128.8, 127.3, 126.1, 123.0, 122.0, 121.3, 120.6, 120.5, 69.9, 38.5, 30.4, 29.4, 19.1. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₂₃N₂O 319.1805; Found 319.1796.

2-(tert-Butyl)-7'-chloro-1'-methylspiro[indole-3,3'-indolin]-2'-one (3cc)

Eluent: petroleum ether/ethyl acetate (10:1). White solid (42 mg, 62%), mp 158-159 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.66 (d, *J* = 8.0 Hz, 1H), 7.35 (td, *J*₁ = 7.6 Hz, *J*₂ = 1.2 Hz, 1H), 7.29 (dd, *J*₁ = 8.4 Hz, *J*₂ = 1.2 Hz, 1H), 7.11 (td, *J*₁ = 7.6 Hz, *J*₂ = 0.8 Hz, 1H), 6.89 (t, *J* = 8.4 Hz, 1H), 6.83 (d, *J* = 7.2 Hz, 1H), 6.61 (dd, *J*₁ = 7.2 Hz, *J*₂ = 1.2 Hz, 1H), 3.71 (s, 3H), 1.18 (s, 9H). ¹³C{¹H} NMR (CDCl₃, 150 MHz): δ 186.6, 172.4, 156.0, 140.6, 139.6, 131.5, 129.5, 129.2, 126.4, 123.9, 122.6, 121.3, 120.8, 116.1, 69.7, 38.6, 30.5, 29.5. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₀ClN₂O 339.1259; Found 339.1246.

2-(tert-Butyl)-5'-chloro-1',7'-dimethylspiro[indole-3,3'-indolin]-2'-one (3dd)

Eluent: petroleum ether/ethyl acetate (10:1). White solid (40 mg, 57%), mp 223-224 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.65 (d, *J* = 8.0 Hz, 1H), 7.35 (t, *J* = 7.6 Hz, 1H), 7.12-7.08 (m, 2H), 6.81 (d, *J* = 7.6 Hz, 1H), 6.53 (d, *J* = 2.0 Hz, 1H), 3.59 (s, 3H), 2.64 (s, 3H), 1.18 (s, 9H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 186.5, 172.6, 156.1, 141.1, 139.7, 132.4, 129.14, 129.09, 128.0, 126.3, 122.0, 121.3, 120.8, 69.7, 38.5, 30.4, 29.5, 18.9. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₂₂ClN₂O 353.1415; Found 353.1405.

2-(*tert*-Butyl)-1'-isopropylspiro[indole-3,3'-indolin]-2'-one (3ee)

Eluent: petroleum ether/ethyl acetate (10:1). White solid (38 mg, 57%), mp 169-170 °C. ¹H NMR (CDCl₃, 600 MHz): δ 7.65 (d, J = 7.8 Hz, 1H), 7.35-7.31 (m, 2H), 7.15 (d, J = 7.8 Hz, 1H), 7.08 (td, $J_1 = 7.8$ Hz, $J_2 = 1.2$ Hz, 1H), 6.95 (td, $J_1 = 7.8$ Hz, $J_2 = 0.6$ Hz, 1H), 6.77-6.74 (m, 2H), 4.74-4.69 (m, 1H), 1.58 (d, J = 6.6 Hz, 3H), 1.54 (d, J = 7.2 Hz, 3H), 1.20 (s, 9H). ¹³C{¹H} NMR (CDCl₃, 150 MHz): δ 187.3, 171.6, 156.1, 143.4, 140.3, 128.83, 128.80, 127.4, 126.1, 124.4, 122.5, 121.0, 120.6, 110.5, 70.3, 44.5, 38.4, 29.4, 19.5, 18.8. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₂₅N₂O 333.1961; Found 333.1959.

1'-Benzyl-2-(tert-butyl)spiro[indole-3,3'-indolin]-2'-one (3ff)

Eluent: petroleum ether/ethyl acetate (10:1). White solid (41 mg, 54%), mp 181-182 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.67 (d, *J* = 7.6 Hz, 1H), 7.41 (d, *J* = 7.6 Hz, 2H), 7.38-7.31 (m, 4H), 7.27-7.23 (m, 1H), 7.11-7.08 (m, 1H), 6.96-6.93 (m, 2H), 6.76 (t, *J* = 8.4 Hz, 2H), 5.18 (d, *J* = 15.2 Hz, 1H), 4.84 (d, *J* = 15.2 Hz, 1H), 1.18 (s, 9H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 187.1, 172.3, 156.1, 143.8, 140.1, 135.6, 129.0, 128.97, 128.91, 128.0, 127.9, 127.1, 126.2, 124.2, 123.1, 121.2, 120.7, 110.0, 70.1, 44.7, 38.5, 29.5. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₆H₂₅N₂O 381.1961; Found 381.1951.

1'-Acetyl-2-(*tert*-butyl)spiro[indole-3,3'-indolin]-2'-one (3gg)

Eluent: petroleum ether/ethyl acetate (30:1). White solid (16 mg, 24%), mp 146-147 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.37 (d, *J* = 8.0 Hz, 1H), 7.69 (d, *J* = 8.0 Hz, 1H), 7.43-7.37 (m, 2H), 7.13 (t, *J* = 7.6 Hz, 2H), 6.84 (d, *J* = 7.6 Hz, 1H), 6.77 (dd, *J*₁ = 7.6 Hz, *J*₂ = 0.8 Hz, 1H), 2.68 (s, 3H), 1.20 (s, 9H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 186.6, 173.1, 170.8, 155.8, 141.0, 140.5, 129.5, 126.6, 126.3, 125.7, 123.8, 121.4, 120.9, 117.5, 70.5, 38.6, 29.6, 26.7. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₁H₂₀N₂NaO₂ 355.1417; Found 355.1409.

1'-Benzoyl-2-(*tert*-butyl)spiro[indole-3,3'-indolin]-2'-one (3hh)

Eluent: petroleum ether/ethyl acetate (30:1). White solid (30 mg, 38%), mp 182-183 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.96 (d, J = 8.4 Hz, 1H), 7.75-7.72 (m, 2H), 7.67 (d, J = 8.0 Hz, 1H), 7.56 (t, J = 7.6 Hz, 1H), 7.46-7.38 (m, 4H), 7.21-7.14 (m, 2H), 7.02 (d, J = 7.6 Hz, 1H), 6.85-6.83 (m, 1H), 1.23 (s, 9H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 186.8, 171.8, 169.0, 155.8, 141.1, 140.3, 133.5, 133.3, 129.52, 129.46, 129.44,

128.4, 126.8, 126.6, 125.5, 124.1, 121.13, 121.05, 116.0, 70.6, 38.5, 29.6. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₆H₂₂N₂NaO₂ 417.1573; Found 417.1567.

2-(*tert*-Butyl)-1'-tosylspiro[indole-3,3'-indolin]-2'-one (3ii)

Eluent: petroleum ether/ethyl acetate (30:1). White solid (40 mg, 45%), mp 241-242 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.12 (d, *J* = 8.4 Hz, 1H), 7.99 (d, *J* = 8.0 Hz, 2H), 7.59 (d, *J* = 7.6 Hz, 1H), 7.42 (t, *J* = 7.6 Hz, 1H), 7.34-7.29 (m, 3H), 7.08 (t, *J* = 7.6 Hz, 1H), 6.99 (t, *J* = 7.6 Hz, 1H), 6.69 (d, *J* = 7.6 Hz, 1H), 6.48 (d, *J* = 7.2 Hz, 1H), 2.44 (s, 3H), 0.98 (s, 9H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 186.2, 170.2, 155.6, 146.1, 140.1, 139.9, 134.5, 129.81, 129.77, 129.4, 128.2, 126.4, 126.2, 125.3, 124.3, 121.3, 120.8, 114.7, 69.9, 38.2, 29.4, 21.8. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₆H₂₄N₂NaO₃S 467.1400; Found 467.1385.

tert-Butyl 2-(tert-butyl)-2'-oxospiro[indole-3,3'-indoline]-1'-carboxylate (3jj)

Eluent: petroleum ether/ethyl acetate (30:1). White solid (25 mg, 32%), mp 115-116 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.98 (d, J = 8.4 Hz, 1H), 7.65 (d, J = 8.0 Hz, 1H), 7.40-7.34 (m, 2H), 7.13-7.06 (m, 2H), 6.87 (d, J = 7.2 Hz, 1H), 6.74 (dd, $J_1 = 7.6$ Hz, $J_2 = 1.2$ Hz, 1H), 1.64 (s, 9H), 1.20 (s, 9H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 186.9, 170.0, 155.8, 149.1, 140.7, 140.6, 129.33, 129.26, 126.4, 126.0, 124.9, 124.0, 121.6, 120.7, 115.8, 85.0, 70.5, 38.5, 29.5, 28.1. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₂₇N₂O₃ 391.2016; Found 391.2010.

2. Structural elaborations of 3a

2.1. Synthesis of 4^[4]

A mixture of **3a** (60.9 mg, 0.2 mmol), sodium borohydride (15.1 mg, 0.4 mmol) and benzoic acid (48.8 mg, 0.4 mmol) was ground with an agate mortar and pestle at room temperature for 15 min. It was then quenched with saturated aqueous solution of NaHCO₃ and extracted with CH_2Cl_2 (10 mL × 3). The combined organic layers were washed with water and dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate (20:1) as the eluent to give **4** (36 mg, 59%).

2-(tert-Butyl)-1'-methylspiro[indole-3,3'-indolin]-2'-ol (4)

Eluent: petroleum ether/ethyl acetate (20:1). Yellow solid (36 mg, 59%), mp 187-188 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.32 (td, $J_1 = 7.6$ Hz, $J_2 = 0.8$ Hz, 1H), 7.22 (d, J = 7.2 Hz, 1H), 7.11-7.06 (m, 2H), 6.87-6.84 (m, 2H), 6.65 (t, J = 7.6 Hz, 1H), 6.44 (d, J = 7.6 Hz, 1H), 4.13 (s, 1H), 4.02 (s, 1H), 3.24 (s, 3H), 0.88 (s, 9H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 176.2, 151.1, 144.2, 133.6, 132.0, 128.8, 128.4, 124.0, 123.1, 122.7, 119.8, 111.1, 107.8, 80.5, 59.3, 34.2, 28.0, 26.4. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₃N₂O 307.1805; Found 307.1800.

2.2. Synthesis of 5^[5]

Under an argon atmosphere, a solution of LiAlH₄ (75.9 mg, 2.0 mmol) in anhydrous THF (2 mL) was added dropwise to a solution of **3a** (60.9 mg, 0.2 mmol) in anhydrous THF (2 mL) at 0 °C. The resulting mixture was then stirred at room temperature for 4 h. Upon completion, it was quenched with saturated aqueous solution of NaHCO₃, filtered and extracted with ethyl acetate (10 mL \times 3). The combined organic layers were washed with water and dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (30:1) as the eluent to give **5** (27 mg, 46%).

2-(2-(*tert*-Butyl)-1*H*-indol-3-yl)-*N*, *N*-dimethylaniline (5)

Eluent: petroleum ether/ethyl acetate (30:1). White solid (27 mg, 46%), mp 67-68 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.95 (s, 1H), 7.30-7.25 (m, 2H), 7.22-7.17 (m, 2H), 7.13 (td, $J_1 = 8.0$ Hz, $J_2 = 1.2$ Hz, 1H), 7.03-6.98 (m, 2H), 6.93 (td, $J_1 = 7.6$ Hz, $J_2 = 1.2$ Hz, 1H), 2.48 (s, 6H), 1.27 (s, 9H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 153.4, 141.8, 134.5, 133.9, 130.4, 129.3, 127.7, 121.3, 120.3, 119.38, 119.36, 117.2, 112.0, 109.8, 42.9, 33.5, 30.1. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₅N₂ 293.2012; Found 293.2011.

3. Structural elaborations of 3jj

3.1. Synthesis of 6^[6]

A solution of Na_2CO_3 (12.7 mg, 0.12 mmol) in H_2O (2 mL) was added to a solution of **3jj** (39 mg, 0.1 mmol) in DME (2 mL), and the resulting mixture was stirred under reflux for 15 min. Upon completion, it was

cooled to room temperature, and extracted with CH_2Cl_2 (10 mL × 3). The combined organic layers were washed with water and dried over anhydrous Na_2SO_4 , filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (30:1) as the eluent to give **6** (20 mg, 76%).

2-(2-(*tert*-Butyl)-1*H*-indol-3-yl)aniline (6)

Eluent: petroleum ether/ethyl acetate (30:1). White solid (20 mg, 76%), mp 134-135 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.11 (s, 1H), 7.36 (d, *J* = 8.0 Hz, 1H), 7.22-7.14 (m, 4H), 7.03 (t, *J* = 7.6 Hz, 1H), 6.82-6.78 (m, 2H), 3.57 (s, 2H), 1.34 (s, 9H). ¹³C{¹H} NMR (CDCl₃, 150 MHz): δ 145.7, 143.9, 134.3, 132.9, 129.5, 128.3, 121.8, 121.6, 119.7, 119.0, 117.9, 114.7, 110.2, 108.8, 33.3, 30.4. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₈H₂₁N₂ 265.1699; Found 265.1685.

4. Structural elaborations of 3g

4.1. Synthesis of 7^[7]

To a reaction tube equipped with a stir bar were added **3g** (38.3 mg, 0.1 mmol), ethynylbenzene (16.5 μ L, 0.15 mmol), PPh₃ (5.2 mg, 0.02 mmol), K₃PO₄ (25.5 mg, 0.12 mmol), Pd(OAc)₂ (1.1 mg, 0.005 mmol) and DMSO (1 mL), and the resulting mixture was stirred at 80 °C for 24 h under an argon atmosphere. Upon completion, it was diluted with ethyl acetate (20 mL) and washed with water. The organic layer was dried over anhydrous Na₂SO₄ and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (10:1) as the eluent to give **7** (23 mg, 57%).

2-(*tert*-Butyl)-1'-methyl-5-(phenylethynyl)spiro[indole-3,3'-indolin]-2'-one (7)

Eluent: petroleum ether/ethyl acetate (10:1). Brown solid (23 mg, 57%), mp 150-151 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.63 (d, *J* = 8.0 Hz, 1H), 7.53 (dd, *J*₁ = 8.0 Hz, *J*₂ = 1.6 Hz, 1H), 7.45-7.42 (m, 2H), 7.38 (td, *J*₁ = 8.0 Hz, *J*₂ = 1.2 Hz, 1H), 7.31-7.28 (m, 3H), 7.03-6.97 (m, 3H), 6.78 (d, *J* = 7.2 Hz, 1H), 3.36 (s, 3H), 1.18 (s, 9H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 188.3, 171.8, 156.1, 144.7, 140.1, 132.8, 131.5, 129.4, 128.33, 128.26, 126.5, 124.6, 124.2, 123.3, 123.1, 121.0, 120.6, 109.1, 89.7, 89.4, 70.0, 38.6, 29.3, 27.1. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₈H₂₅N₂O 405.1961; Found 405.1953.

4.2. Synthesis of 8^[7]

To a reaction tube equipped with a stir bar were added **3g** (38.3 mg, 0.1 mmol), phenol (14.1 mg, 0.15 mmol), *N*,*N*-dimethyl glycine hydrochloride (4.2 mg, 0.03 mmol), Cs_2CO_3 (65.2 mg, 0.2 mmol), CuI (1.9 mg, 0.01 mmol) and dioxane (1 mL), and the resulting mixture was stirred at 90 °C for 24 h under an argon atmosphere. Upon completion, it was diluted with ethyl acetate (20 mL) and washed with water. The organic layer was dried over anhydrous Na₂SO₄ and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (10:1) as the eluent to give **8** (16 mg, 40%).

2-(tert-Butyl)-1'-methyl-5-phenoxyspiro[indole-3,3'-indolin]-2'-one (8)

Eluent: petroleum ether/ethyl acetate (10:1). White solid (16 mg, 40%), mp > 300 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.59 (d, *J* = 8.4 Hz, 1H), 7.35 (td, *J*₁ = 8.0 Hz, *J*₂ = 1.2 Hz, 1H), 7.29-7.25 (m, 2H), 7.06-6.98 (m, 2H), 6.97-6.94 (m, 2H), 6.91-6.89 (m, 2H), 6.79 (d, *J* = 7.2 Hz, 1H), 6.53 (d, *J* = 2.4 Hz, 1H), 3.32 (s, 3H), 1.16 (s, 9H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 186.4, 172.0, 157.5, 155.4, 152.0, 144.6, 141.6, 129.7, 129.3, 126.8, 124.1, 123.3, 123.0, 121.3, 119.3, 118.3, 113.2, 109.0, 70.3, 38.5, 29.4, 27.1. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₆H₂₅N₂O₂ 397.1911; Found 397.1892.

5. Gram-Scale Synthesis of 3a

To a reaction tube equipped with a stir bar were charged with *N*-phenylpivalimidamide (**1a**, 0.881 g, 5 mmol), DCE (50 mL), [RhCp*Cl₂]₂ (61.8 mg, 0.1 mmol), 1-AdCO₂H (1.803 g, 10.0 mmol), CsOAc (48.0 mg, 0.25 mmol), and 3-diazo-1-methylindolin-2-one (**2a**, 1.298 g, 7.5 mmol). The tube was sealed, and the resulting mixture was stirred at 60 °C (oil bath) under air for 4 h. Upon completion, it was cooled to room temperature, quenched with saturated aqueous solution of NaHCO₃, and then extracted with dichloromethane (75 mL \times 3). The combined organic layers were washed with water, dried over anhydrous Na₂SO₄, filtered and evaporated under reduced pressure. The residue was purified by silica gel chromatography using petroleum ether/ethyl acetate (10:1) as eluent to afford **3a** (0.897 g, 59%).

III. Mechanism studies

1. Studies on the reversibility of C-H bond activation

To a reaction tube equipped with a stir bar were charged with **1a** (35.2 mg, 0.2 mmol), CD₃OD (0.2 mL), DCE (1.8 mL), [RhCp*Cl₂]₂ (2.5 mg, 0.004 mmol), 1-AdCO₂H (72.1 mg, 0.4 mmol) and CsOAc (1.9 mg, 0.01 mmol). The resulting mixture was stirred at 60 °C (oil bath) under air for 1 h. It was then cooled to room temperature, quenched with saturated aqueous solution of NaHCO₃, and then extracted with dichloromethane (10 mL × 3). The combined organic layers were washed with water, dried over anhydrous Na₂SO₄, filtered and evaporated under reduced pressure. The residue was purified by silica gel chromatography using petroleum ether/ethyl acetate (1:1) as eluent to give a mixture of **1a** and **1a**- d_n . Upon analyzing the ¹H NMR spectrum of the mixture as shown in Fig. S1, the deuteration ratio was determined to be 77%.

Fig. S1 The ¹H NMR spectrum of products obtained from H/D exchange experiment (I)

To a reaction tube equipped with a stir bar were charged with **1a** (35.2 mg, 0.2 mmol), CD₃OD (0.2 mL), DCE (1.8 mL), [RhCp*Cl₂]₂ (2.5 mg, 0.004 mmol), 1-AdCO₂H (72.1 mg, 0.4 mmol), CsOAc (1.9 mg, 0.01 mmol) and **2a** (52.0 mg, 0.3 mmol). The resulting mixture was stirred at 60 °C (oil bath) under air for 1 h. It was then cooled to room temperature, quenched with saturated aqueous solution of NaHCO₃ and extracted with dichloromethane (10 mL \times 3). The combined organic layers were washed with water, dried over anhydrous Na₂SO₄, filtered and evaporated under reduced pressure. The residue was purified by silica gel chromatography using petroleum ether/ethyl acetate (10:1) as eluent to give a mixture of **3a** and **3a**-*d_n*. Upon analyzing the ¹H NMR spectrum of the mixture as shown in Fig. S2, the deuteration ratio was determined to be 78%.

Fig. S2 The ¹H NMR spectrum of products obtained from H/D exchange experiment (II)

2. Kinetic isotope effect study

To a reaction tube equipped with a stir bar were added **1a** (17.6 mg, 0.1 mmol), **1a**- d_5 (18.1 mg, 0.1 mmol), DCE (1.0 mL), **2a** (26.0 mg, 0.15 mmol), [RhCp*Cl₂]₂ (1.2 mg, 0.002 mmol), 1-AdCO₂H (36.0 mg, 0.2 mmol) and CsOAc (1.0 mg, 0.005 mmol) with stirring. The tube was sealed, and the resulting mixture was stirred at 60 °C (oil bath) under air for 4 h. Upon completion, it was cooled to room temperature, quenched with saturated aqueous solution of NaHCO₃, and then extracted with dichloromethane (10 mL × 3). The combined organic layers were washed with water, dried over anhydrous Na₂SO₄, filtered and evaporated under reduced pressure. The residue was purified by silica gel chromatography using petroleum ether/ethyl acetate (10:1) as eluent to afford a mixture of **3a** and **3a**- d_4 . Upon analyzing the ¹H NMR spectrum of the mixture as shown in Fig. S3, the ratio of **3a** to **3a**- d_4 was determined to be 0.67:0.33. Accordingly, the intermolecular KIE (k_H/k_D) was calculated to be 2.

Fig. S3 The ¹H NMR spectrum of products obtained from the intermolecular KIE experiment

3. Competition experiment between 1b and 1f

To a reaction tube equipped with a stir bar were charged with *N*-(p-tolyl)pivalimidamide (**1b**, 38.1 mg, 0.2 mmol), *N*-(4-fluorophenyl)pivalimidamide (**1f**, 38.8 mg, 0.2 mmol), 3-diazo-1-methylindolin-2-one (**2a**, 52.0 mg, 0.3 mmol), $[Cp*RhCl_2]_2$ (2.5 mg, 0.004 mmol), 1-AdCO₂H (72.1 mg, 0.4 mmol), CsOAc (1.9 mg, 0.01 mmol) and DCE (2.0 mL). The mixture was stirred at 60 °C (oil bath) for 4 h. Upon completion, it was cooled to room temperature, quenched with saturated aqueous solution of NaHCO₃, and then extracted with dichloromethane (10 mL × 3). The combined organic layers were washed with water, dried over anhydrous Na₂SO₄, filtered and evaporated under reduced pressure. The residue was purified by silica gel chromatography using petroleum ether/ethyl acetate (10:1) as eluent to afford **3b** (36 mg, 57%) and **3f** (13 mg, 20%).

IV. Copies of NMR spectra of 3a-3jj

0	-50	-100	-150	-200 PPM

S64

V. Copies of NMR spectra of 4, 5, 6, 7, 8

VI. X-ray crystal structure and data of 3a

Fig. S4 X-ray crystal structure of **3a** with 50% ellipsoid probability

X-ray structure determination. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of the solvent from an methanol solution of **3a**. Crystal data collection and refinement parameters of **3a** are summarized in Table S1. Intensity data were collected at 293 K on a SuperNova Dual diffractometer using mirror-monochromated Cu K α radiation, $\lambda = 1.54184$ Å. The data were corrected for decay, Lorentz, and polarization effects as well as absorption and beam corrections based on the multi-scan technique. Using Olex2, the structure was solved with the SHELXS structure solution program using Direct Methods and refined with the SHELXL refinement package using Least Squares minimisation. Nonhydrogen atoms were refined with anisotropic displacement parameters. The H-atoms were either located or calculated and subsequently treated with a riding model.

Empirical formula	$2(C_{20}H_{20}N_2O)$
Formula weight	608.76
Temp, K	293 (2)
Crystal system	monoclinic
Space group	P2 ₁ /c
<i>a</i> , Å	16.8519(3)
b, Å	8.94750(10)

Table S1 Crystallographic data and structure refinement results of 3a

<i>c</i> , Å	22.5301(4)
α()	90
β ()	98.216(2)
γ(⁹	90
Volume, Å ³	3362.27(9)
Ζ	4
$d_{\rm calc}, {\rm g \ cm}^{-3}$	1.203
λ, Å	1.54184
μ , mm ⁻¹	0.586
No. of data collected	15329
No. of unique data	6400
R _{int}	0.0245
Goodness-of-fit on F^2	1.044
$R_1, \mathrm{w}R_2 (I > 2\sigma(I))$	0.0531, 0.1408
R_1 , w R_2 (all data)	0.0608, 0.1486

VII. X-ray crystal structure and data of 3k

Fig. S5 X-ray crystal structure of **3k** with 50% ellipsoid probability

X-ray structure determination. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of the solvent from a petroleum ether/dichloromethane (1:1) solution of **3k**. Crystal data collection and refinement parameters of **3k** are summarized in Table S1. Intensity data were collected at 293 K on a SuperNova Dual diffractometer using mirror-monochromated Cu K α radiation, $\lambda = 1.54184$ Å. The data were corrected for decay, Lorentz, and polarization effects as well as absorption and beam corrections based on the multi-scan technique. Using Olex2, the structure was solved with the SHELXS structure solution program using Direct Methods and refined with the SHELXL refinement parameters. The H-atoms were either located or calculated and subsequently treated with a riding model.

Empirical formula	$C_{20}H_{19}FN_2O$
Formula weight	322.37
Temp, K	293 (2)
Crystal system	monoclinic
Space group	P2 ₁ /n
<i>a</i> , Å	11.2828(2)
b, Å	12.1461(3)

Table S2 Crystallographic data and structure refinement results of 3k

<i>c</i> , Å	12.2864(2)
α()	90
β ()	95.877(2)
γ(⁹	90
Volume, Å ³	1674.90(6)
Ζ	4
$d_{\rm calc}, {\rm g \ cm^{-3}}$	1.278
λ, Å	1.54184
μ , mm ⁻¹	0.707
No. of data collected	6680
No. of unique data	3184
R _{int}	0.0200
Goodness-of-fit on F^2	1.073
$R_1, \mathrm{w}R_2 (I > 2\sigma(I))$	0.0550, 0.1578
R_1 , w R_2 (all data)	0.0643, 0.1661

VIII. X-ray crystal structure and data of 6

Fig. S6 X-ray crystal structure of 6 with 50% ellipsoid probability

X-ray structure determination. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of the solvent from an dichloromethane solution of **6**. Crystal data collection and refinement parameters of **6** are summarized in Table S2. Intensity data were collected at 293 K on a SuperNova Dual diffractometer using mirror-monochromated Mo K α radiation, $\lambda = 0.71073$ Å. The data were corrected for decay, Lorentz, and polarization effects as well as absorption and beam corrections based on the multi-scan technique. Using Olex2, the structure was solved with the SHELXS structure solution program using Direct Methods and refined with the SHELXL refinement package using Least Squares minimisation. Nonhydrogen atoms were refined with anisotropic displacement parameters. The H-atoms were either located or calculated and subsequently treated with a riding model.

Empirical formula	$C_{18}H_{20}N_2$
Formula weight	264.36
Temp, K	293 (2)
Crystal system	monoclinic
Space group	P2 ₁ /c
<i>a</i> , Å	9.3300(8)

Table S3 Crystallographic data and structure refinement results of 6

b, Å	9.9923(6)
<i>c</i> , Å	16.3551(9)
α()	90
β ()	103.250(7)
γ(⁹)	90
Volume, Å ³	1484.17(18)
Z	4
$d_{\rm calc}, {\rm g \ cm}^{-3}$	1.183
λ, Å	0.71073
μ , mm ⁻¹	0.070
No. of data collected	9252
No. of unique data	3472
R _{int}	0.0228
Goodness-of-fit on F^2	1.083
$R_1, \mathrm{w}R_2 (I > 2\sigma(I))$	0.0657, 0.1756
R_1 , w R_2 (all data)	0.0926, 0.1935

IX. References

- (1) G. Brasche and S. L. Buchwald, C–H Functionalization/C–N Bond Formation: Copper-Catalyzed Synthesis of Benzimidazoles from Amidines, *Angew. Chem. Int. Ed.*, 2008, 47, 1932-1934.
- (2) A. C. S. Reddy, P. M. Reddy and P. Anbarasan, Diastereoselective Palladium Catalyzed Carbenylative Amination of ortho-Vinylanilines with 3-Diazoindolin-2-ones, *Adv. Synth. Catal.*, 2020, **362**, 801-806.
- (3) K.-I. Fujita, Y. Takahashi, M. Owaki, K. Yamamoto and R. Yamaguchi, Synthesis of Five-, Six-, and Seven-Membered Ring Lactams by Cp*Rh Complex-Catalyzed Oxidative N-Heterocyclization of Amino Alcohols, Org Lett., 2004, 6, 2785-2788.
- (4) B. T. Cho and S. K. Kang, Direct and Indirect Reductive Amination of Aldehydes and Ketones with Solid Acid-Activated Sodium Borohydride under Solvent-Free Conditions, *Tetrahedron*, 2005, **61**, 5725-5734.
- (5) Z.-J. Zhang, Y.-H. Wen, J. Song and L.-Z. Gong, Kinetic Resolution of Aziridines Enabled by N-Heterocyclic Carbene/Copper Cooperative Catalysis: Carbene Dose-Controlled Chemo-Switchability, Angew. Chem. Int. Ed., 2021, 60, 3268-3276.
- (6) S. E. Kazzouli, J. Koubachi, S. Berteina-Raboin, A. Mouaddib and G. Guillaumet, A Mild and Selective Method for the *N*-Boc Deprotection by Sodium Carbonate, *Tetrahedron Lett.*, 2006, 47, 8575-8577.
- (7) X. Song, Q. Zhou, J. Zhao, Y. Jiang, X. Zhang, X. Zhang and X. Fan, Synthesis of 1,3-Benzodiazepines through [5 + 2] Annulation of *N*-Aryl Amidines with Propargylic Esters, *Org. Lett.*, 2020, 22, 9506-9512.