Supporting Information for

Iridium-Catalyzed Intramolecular Asymmetric AllylicEtherification of Salicylic Acid Derivatives withChiral-Bridged Biphenyl Phosphoramidite Ligands
Bendu Pan, ${ }^{\dagger}$ Jia-Sheng Ouyang, ${ }^{\dagger}$ Yaqi Zhang, ${ }^{\dagger}$ Hao Liang, ${ }^{\dagger}$ Qiang Ni, ${ }^{\dagger}$ Bin Chen, ${ }^{\dagger}$ Xiaoyun $\mathrm{Pu},{ }^{\dagger}$ Long Jiang ${ }^{\dagger}$ Rihui Cao^{\dagger} and Liqin $\mathrm{Qiu}^{*},{ }^{\dagger}$
${ }^{\dagger}$ School of Chemistry, The Key Laboratory of Low-Carbon Chemistry \&Energy Conservation of Guangdong Province, Sun Yat-Sen University,Guangzhou 510275, China
${ }^{*}$ Instrumental Analysis and Research Centre, Sun Yat-sen University,Guangzhou 510275, China
*Email: qiuliqin@mail.sysu.edu.cn
Table of Contents:

1. General considerations S1
2. Table S1 Optimization of Reaction Conditions ${ }^{a_{s i z}{ }^{\text {site }}}$ S2
3. Experimental Procedures S3
3.1 General Procedure for the Synthesis of Salicylic Acid Derivatives 1 S3
3.2 General Procedure for the Allylic Etherification of 1 S15
3.3 Gram-scale Reaction S30
3.4 Procedure for the Synthesis of $\mathbf{3 v}$ S30
3.5 Procedure for the Synthesis of 3a S31
3.6 Procedure for the Synthesis of $\mathbf{4 a}$ S32
4.Copies of NMR Spectra S35
4. Copies of HPLC Chromatograms S86
5. X-ray Crystallogaphic Data S111

1. General considerations

Unless otherwise stated, all syntheses and manipulations of air- and moisture-sensitive materials were carried out in a nitrogen-filled glovebox or under nitrogen atmosphere using standard Schlenk techniques. All glassware was oven-dried immediately prior to use. All solvents were freshly distilled and degassed according to standard methods. Reactions were magnetically stirred and monitored by analytical thin-layer chromatography (TLC). TLC was performed on Merck silica gel 60 F254 TLC glass plates and visualized by exposure to ultraviolet light. Organic solutions were concentrated by rotary evaporation at $20-45^{\circ} \mathrm{C}$.

All chemicals and reagents available from commercial sources were directly used without further purification. Chromatographic purification of products was accomplished using forced-flow chromatography on silica gel (200 - 300 mesh). ${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$, and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Ascend 400 MHz spectrometer at ambient temperature. High-resolution mass spectra (HRMS) were obtained with Shimazu LC-20AT mass spectrometer. Optical rotations were measured on $\mathrm{SGW}_{\circledR}-5$ automatic polarimeter. Enantiomeric excesses (ee values) of the products were determined by chiral HPLC analysis using an Aglient HP 1200 instrument (n-hexane/2-propanol as eluent) with a Chiralpak IF-3 or IA-3 Column. The phosphoramidite ligands L1 - L8 were prepared according to the reported procedures.

2. Table S1 Optimization of Reaction Conditions ${ }^{\text {ascep }}$

entry	solvent	ligand	base	t[${ }^{\circ} \mathrm{C}$]	T[h]	yield[\%] ${ }^{\text {b }}$	ee[\%] ${ }^{\text {c }}$
1	THF	L1	DBU	0	10	91	90
2	THF	L2	DBU	0	10	92	-90
3	THF	L3	DBU	0	20	trace	1
4	THF	L4	DBU	0	8	94	92
5	THF	L5	DBU	0	20	32	-51
6	THF	L6	DBU	0	20	37	-89
7	THF	L7	DBU	0	8	96	93
8	THF	L8	DBU	0	20	63	87
9	THF	L7	$\mathrm{K}_{3} \mathrm{PO}_{4}$	0	16	95	88
10	THF	L7	DABCO	0	16	93	89
11	THF	L7	$\mathrm{Et}_{3} \mathrm{~N}$	0	16	84	88
12	THF	L7	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	0	16	67	84
13	THF	L7	1	0	16	61	84
14	DME	L7	DBU	0	22	76	91
15	dioxane	L7	DBU	0	22	79	87
16	DCE	L7	DBU	0	22	94	79
17	DCM	L7	DBU	0	22	87	73
18	MTBE	L7	DBU	0	22	94	78
19	PhMe	L7	DBU	0	22	91	89
20	THF	L7	DBU	-10	8	96	92
21	THF	L7	DBU	10	2	94	92
22	THF	L1	DBU	rt	0.5	92	90
23	THF	L7	DBU	rt	10 min	94	92
24	THF	L7	DBU	40	10 min	92	91
25	THF	L7	DBU	50	10 min	90	85
26^{d}	THF	L7	DBU	rt	10 min	96	93
$27^{\text {e }}$	THF	L7	DBU	rt	10 min	30	92

${ }^{a}$ Conditions: $[\operatorname{Ir}(\operatorname{cod}) \mathrm{Cl}]_{2}(4 \mathrm{~mol} \%)$, ligand ($8 \mathrm{~mol} \%$), base $(0.2 \mathrm{mmol})$, and $1 \mathrm{a}(0.1 \mathrm{mmol})$ in solvent $(2.0 \mathrm{~mL}) .{ }^{b}$ Isolated yields. ${ }^{c}$ Determined by chiral HPLC analysis. ${ }^{d} 2 \mathrm{~mol} \%$ of Ir catalyst was used. ${ }^{e} 1 \mathrm{~mol} \%$ of Ir catalyst was used.

$\mathbf{L 1}\left(R_{a}, R, R\right)$

$\mathrm{L} 5\left(S, S, R_{a}, S\right)$

L6 (S, S, $\left.R_{a}, R\right)$

$\mathrm{L} 7\left(S, R_{a}, R, R\right)$

$\mathbf{L 8}(R, R)$

3. Experimental Procedures

3.1 General Procedure for the Synthesis of Salicylic Acid Derivatives 1

To a solution of substituted salicylic acids 5 ($2 \mathrm{mmol}, 1.0$ equiv.) in DMF (10 mL), 1-hydroxybenzotrizole (HOBt) ($297 \mathrm{mg}, 2.2 \mathrm{mmol}, 1.1$ equiv.) and N -(3-dimethylaminopropyl)- N^{\prime}-ethylcarbodiimide hydrochloride (EDC•HCl) (422 $\mathrm{mg}, 2.2 \mathrm{mmol}$, equiv.) were added. This mixture was stirred for 30 minutes at room temperature, then compounds $\mathbf{6}$ ($2 \mathrm{mmol}, 1.0$ equiv.) was added. After the reaction was complete (monitored by TLC), the crude reaction mixture was diluted with EtOAc (20 mL) and washed with water ($10 \mathrm{~mL} \times 3$) and brine (15 $m L \times 3)$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Afterwards, the solvents were removed under reduced pressure. The residue was purified by silica gel column chromatography (petroleum/EtOAc $=3: 1$) to afford the desired compounds 1 .
(E)-4-(N-benzyl-2-hydroxybenzamido)but-2-en-1-yl methyl carbonate (1a)

Yellow oil, $0.67 \mathrm{~g}, 95 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.78(\mathrm{~s}, 1 \mathrm{H}), 7.47$ $-7.26(\mathrm{~m}, 7 \mathrm{H}), 7.05(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~m}, 1 \mathrm{H})$, $5.83-5.65(\mathrm{~m}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H}), 4.69(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.09(\mathrm{~d}, J=4.8 \mathrm{~Hz}$, $2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.42,159.09,155.52,136.13$, $132.93,129.39,128.95,127.77,127.55,127.43,118.65,118.28,118.19,117.06$, 67.29, 54.92. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 356.1493$, Found: 356.1485 .
(E)-4-(N-benzyl-2-hydroxy-4-methylbenzamido)but-2-en-1-yl carbonate (1b)

Yellow oil, $0.63 \mathrm{~g}, 85 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.01(\mathrm{~s}, 1 \mathrm{H}), 7.43$ $-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $5.91(\mathrm{~m}, 1 \mathrm{H}), 5.83-5.70(\mathrm{~m}, 1 \mathrm{H}), 4.75(\mathrm{~s}, 2 \mathrm{H}), 4.69(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.07$ $(\mathrm{d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $172.64,159.39,155.53,143.93,136.24,129.52,128.93,127.71,127.43,127.36$, $119.62,118.46,114.04,67.33,54.92,21.54$. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{5}$ $[\mathrm{M}+\mathrm{H}]^{+}: 370.1649$, Found: 370.1643. carbonate (1c)

Yellow oil, $0.61 \mathrm{~g}, 83 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34(\mathrm{~m}, 5 \mathrm{H}), 7.20$ - $7.09(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.96-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.82-5.71(\mathrm{~m}$, $1 \mathrm{H}), 4.75(\mathrm{~s}, 2 \mathrm{H}), 4.69(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.08(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$, 2.19 ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.41,156.24,155.54,136.29$, $133.47,129.63,128.89,127.89,127.72,127.57,127.44,117.82,117.33,67.33$, 54.91, 20.42. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 370.1661$, Found: 370.1642 .
(E)-4-(N-benzyl-2-hydroxy-6-methylbenzamido)but-2-en-1-yl
methyl carbonate (1d)

Yellow oil, $0.63 \mathrm{~g}, 85 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46-7.27(\mathrm{~m}$, $5 \mathrm{H}), 7.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~m}$, $1 \mathrm{H}), 5.77(\mathrm{~m}, 1 \mathrm{H}), 4.75(\mathrm{~s}, 2 \mathrm{H}), 4.69(\mathrm{~m}, 2 \mathrm{H}), 4.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}$, $3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.44,155.57,152.88,135.48$, 129.98, 128.69, 128.36, 127.66, 122.00, 114.21, 67.41, 54.90, 19.14. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 370.1661$, Found: 370.1642. carbonate (1e)

Yellow oil, $0.72 \mathrm{~g}, 93 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32(\mathrm{~m}, 5 \mathrm{H}), 6.92$ (d, $J=3.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~m}, 1 \mathrm{H}), 5.72(\mathrm{~m}, 1 \mathrm{H}), 4.68$ ($\mathrm{s}, 2 \mathrm{H}$), $4.65(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.23,155.54,147.60,144.55,136.49$, $129.92,128.74,127.69,127.56,126.90,120.91,119.65,119.57,112.47,67.47$, 56.19, 54.89, 53.44. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}$: 386.1610, Found: 386.1588.
(E)-4-(N-benzyl-2-hydroxy-4-methoxybenzamido)but-2-en-1-yl methyl carbonate (1f)

Yellow oil, $0.56 \mathrm{~g}, 73 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35(\mathrm{~m}, 6 \mathrm{H}), 6.55$ $(\mathrm{d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{dd}, J=8.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~m}, 1 \mathrm{H}), 5.85-5.71(\mathrm{~m}$, $1 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H}), 4.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.08(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$, $3.82(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.85,163.52,162.36,155.52$, $136.29,129.58,128.94,127.70,127.42,108.94,105.95,102.06,67.33,55.37$, 54.90, 50.79, 48.76. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}$: 386.1610, Found: 386.1589. carbonate (1g)

Yellow oil, $0.67 \mathrm{~g}, 87 \%$ yield; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.41-8.94$ (m, $1 \mathrm{H}), 7.37(\mathrm{~m}, 5 \mathrm{H}), 6.93(\mathrm{~m}, 3 \mathrm{H}), 6.11-5.71(\mathrm{~m}, 2 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H}), 4.70(\mathrm{~d}, J=$ $4.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 172.20,155.54,152.50,151.77,136.29,129.45,128.98,127.74,127.51$, 127.24, 119.87, 118.94, 117.40, 111.21, 67.29, 55.52, 54.90, 48.50. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 386.1610$, Found: 386.1589.
(E)-4-(N-benzyl-2-hydroxy-6-methoxybenzamido)but-2-en-1-yl carbonate (1h)

Brown oil, $0.67 \mathrm{~g}, 87 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.26$ $(\mathrm{m}, 6 \mathrm{H}), 6.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~m}, 1 \mathrm{H}), 5.74-$ $5.45(\mathrm{~m}, 1 \mathrm{H}), 4.86-4.21(\mathrm{~m}, 4 \mathrm{H}), 3.79(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 168.86,156.43,156.35,156.33,156.01,155.96,155.91,155.88,155.62$, $155.57,136.55,136.38,136.33,131.14,131.11,130.47,129.63,128.57,127.89$, $127.84,127.59,127.25,127.22,125.83,111.70,111.60,110.12,102.30,67.85$, $67.34,55.55,54.85,52.15,49.62,47.15,44.78$. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 386.1610$, Found: 386.1589 . carbonate (1i)

Brown oil, $0.64 \mathrm{~g}, 86 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.46(\mathrm{~s}, 1 \mathrm{H}), 7.47$ - $7.28(\mathrm{~m}, 6 \mathrm{H}), 6.73(\mathrm{~m}, 1 \mathrm{H}), 6.51(\mathrm{~m}, 1 \mathrm{H}), 5.91(\mathrm{~m}, 1 \mathrm{H}), 5.83-5.73(\mathrm{~m}, 1 \mathrm{H})$, $4.74(\mathrm{~s}, 2 \mathrm{H}), 4.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.99,162.95(\mathrm{~d}, \mathrm{~J}=221.0 \mathrm{~Hz}$), 161.71, 155.52 , $135.94,129.16(\mathrm{dd}, J=15.8,12.0 \mathrm{~Hz}), 127.77(\mathrm{~d}, J=16.6 \mathrm{~Hz}), 127.37,113.19$, 106.30, 106.08, 105.37, 105.14, 67.23, 54.92, 50.68, 48.70. ${ }^{19}$ F NMR (376 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-105.28 . \operatorname{HRMS}(\mathrm{ESI})$ calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{FNO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 374.1409$, Found: 374.1390.
(\boldsymbol{E})-4-(N-benzyl-5-fluoro-2-hydroxybenzamido)but-2-en-1-yl methyl carbonate (1j)

Brown oil, $0.64 \mathrm{~g}, 86 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.28(\mathrm{~m}, 5 \mathrm{H})$, $7.03(\mathrm{~m}, 3 \mathrm{H}), 5.90(\mathrm{~m}, 1 \mathrm{H}), 5.86(\mathrm{~m}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 2 \mathrm{H}), 4.69(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H})$, $4.06(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.11$, $155.52,154.95(\mathrm{~d}, J=237.0 \mathrm{~Hz}), 154.57,135.80,129.05(\mathrm{~d}, J=8.9 \mathrm{~Hz}), 127.91$, $127.61(\mathrm{~d}, J=23.4 \mathrm{~Hz}), 119.80,119.57,119.23(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 117.92,113.54$, 113.30, 67.19, 54.93, 50.41, 48.58. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-124.04$. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{FNO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 374.1409$, Found: 374.1392. carbonate (1 k)

Brown oil, $0.57 \mathrm{~g}, 73 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.13(\mathrm{~s}, 1 \mathrm{H}), 7.46$ $-7.25(\mathrm{~m}, 6 \mathrm{H}), 7.03(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~m}, 1 \mathrm{H})$, $5.83-5.70(\mathrm{~m}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 2 \mathrm{H}), 4.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{~d}, J=4.8 \mathrm{~Hz}$, $2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.70,159.81,155.52,138.37$, 135.87, 129.08, 129.01, 128.37, 127.87, 127.71, 127.41, 119.12, 118.35, 115.87, 115.83, 67.22, 54.93, 50.67, 48.62. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{ClNO}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: 390.1114, Found: 390.1094.
(E)-4-(N-benzyl-5-chloro-2-hydroxybenzamido)but-2-en-1-yl carbonate (11)

Brown oil, $0.5 \mathrm{~g}, 64 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.60(\mathrm{~s}, 1 \mathrm{H}), 7.46-$ $7.23(\mathrm{~m}, 7 \mathrm{H}), 6.97(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~m}, 1 \mathrm{H}), 5.79(\mathrm{~m}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 2 \mathrm{H})$, $4.69(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.91-3.66(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 171.01,157.15,155.52,135.79,132.60,129.02,129.00$, $127.92,127.85,127.58,127.04,123.58,119.53,118.68,67.18,54.94,50.52$, 49.00. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{ClNO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 390.1114$, Found: 390.1093.

carbonate (1m)

Pale yellow oil, $0.81 \mathrm{~g}, 93 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.49(\mathrm{~s}, 1 \mathrm{H})$, $7.32(\mathrm{~m}, 7 \mathrm{H}), 6.83(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.88-5.79(\mathrm{~m}, 1 \mathrm{H}), 5.78-5.68(\mathrm{~m}, 1 \mathrm{H})$, $4.69(\mathrm{~s}, 2 \mathrm{H}), 4.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.60,156.21,155.53,135.87,134.86,129.94,129.10,128.92$, 127.84, 127.70, 120.91, 119.61, 110.73, 67.23, 60.45, 54.92, 48.59. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{BrNO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 434.0609$, Found: 434.0589.
(E)-4-(N-benzyl-2-hydroxy-4-nitrobenzamido)but-2-en-1-yl carbonate (1n)

Brown oil, $0.74 \mathrm{~g}, 92 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.25(\mathrm{~m}, 6 \mathrm{H}), 5.84(\mathrm{~m}, 1 \mathrm{H}), 5.77(\mathrm{~m}, 1 \mathrm{H})$, $4.70(\mathrm{~s}, 2 \mathrm{H}), 4.67(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.02(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 170.11,157.71,155.54,149.86,135.44,129.04$, $128.63,128.10,128.04,127.93,113.87,112.84,67.15,54.98$. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}: 401.1355$, Found: 401.1335.
(E)-4-(N-benzyl-2-hydroxy-4-(trifluoromethyl)benzamido)but-2-en-1-yl methyl carbonate (10)

Pale yellow oil, $0.8 \mathrm{~g}, 95 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.85(\mathrm{~s}, 1 \mathrm{H})$, $7.48-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.28(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.06(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~m}$, $1 \mathrm{H}), 5.77(\mathrm{~m}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 2 \mathrm{H}), 4.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.97,158.26,155.53,135.68,134.35$, $134.02,129.04,128.88,127.95,127.93,127.81,124.65,121.94,121.18,115.33$ $(\mathrm{dd}, J=25.2,3.7 \mathrm{~Hz}), 67.20,58.45,54.96,53.43 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.51. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 424.1378$, Found: 424.1357.
(E)-4-(N-benzyl-3-hydroxy-2-naphthamido)but-2-en-1-yl methyl carbonate (1p)

Pale yellow oil, $0.75 \mathrm{~g}, 92 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86(\mathrm{~s}, 1 \mathrm{H})$, $7.65(\mathrm{~d}, ~ J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.29(\mathrm{~m}, 9 \mathrm{H}), 5.93(\mathrm{~m}, 1 \mathrm{H}), 5.85-5.76(\mathrm{~m}, 1 \mathrm{H})$, $4.80(\mathrm{~s}, 2 \mathrm{H}), 4.70(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.82,155.56,153.80,136.14,135.86,129.43,128.96,128.44$, $127.99,127.82,127.57,126.96,126.32,123.99,120.72,112.17,67.30,54.93$. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 406.1665$, Found: 406.1642.
(E)-4-(N-benzyl-3-hydroxyisonicotinamido)but-2-en-1-yl methyl carbonate (1q)

Yellow oil, $0.67 \mathrm{~g}, 87 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.57(\mathrm{~s}, 1 \mathrm{H}), 8.13$ (s, 1H), $7.45-7.23$ (m, 6H), $5.76(\mathrm{~m}, 2 \mathrm{H}), 4.66(\mathrm{~s}, 2 \mathrm{H}), 4.64(\mathrm{~m}, 2 \mathrm{H}), 4.04(\mathrm{~m}$, $2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3) $\delta 168.25,155.49,150.99,139.67$, $138.55,135.84,130.62,128.80$, 127.78, 121.94, 67.18, 60.43, 54.89, 53.49. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 357.1455$, Found: 357.1438.
(E)-4-(N-benzyl-2-hydroxy-4-(thiophen-3-yl)benzamido)but-2-en-1-yl methyl carbonate (1r)

Yellow oil, $0.75 \mathrm{~g}, 86 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.17(\mathrm{~s}, 1 \mathrm{H}), 7.53$ $(\mathrm{s}, 1 \mathrm{H}), 7.45-7.29(\mathrm{~m}, 9 \mathrm{H}), 7.04(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~m}, 1 \mathrm{H}), 5.79(\mathrm{~m}$, $1 \mathrm{H}), 4.78(\mathrm{~s}, 2 \mathrm{H}), 4.71(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.34,159.85,155.53,140.96,140.25,136.15$, $129.38,128.99,128.02,127.78,127.58,126.52,126.09,121.79,116.74,115.58$, 115.34, 67.31, 54.93. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 438.1386$, Found: 438.1361.
(E)-4-(N-benzyl-4-(furan-2-yl)-2-hydroxybenzamido)but-2-en-1-yl methyl carbonate (1s)

Brown oil, $0.78 \mathrm{~g}, 93 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51$ (s, 1H), 7.37 $(\mathrm{m}, 7 \mathrm{H}), 7.11(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 5.93(\mathrm{~m}, 1 \mathrm{H}), 5.79$ $(\mathrm{m}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 2 \mathrm{H}), 4.70(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.31,159.83,155.53,152.71,143.00$, $136.11,135.05,129.35,128.98,128.03,127.78,127.61,127.40,115.31,114.07$, 112.80, 111.90, 107.15, 67.29, 54.93. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}$: 422.1614, Found: 422.1591.

(E)-4-(N-benzyl-2-hydroxy-4-(6-methoxypyridin-3-yl)benzamido)but-2-en-

1-yl methyl carbonate (1t)

Yellow oil, $0.8 \mathrm{~g}, 87 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.38(\mathrm{~s}, 1 \mathrm{H}), 7.78$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.82(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~m}, 1 \mathrm{H}), 5.83-5.69(\mathrm{~m}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 2 \mathrm{H}), 4.69$ $(\mathrm{d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.09(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 172.12,164.02,159.39,159.32,155.53,144.98,142.26$, $137.40,136.09,129.34,128.98,128.69,128.18,127.79,127.56,127.43,116.91$, 115.71, 110.99, 67.97, 67.31, 54.94, 53.75. HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6}$ $[\mathrm{M}+\mathrm{H}]^{+}: 463.1882$, Found: 463.1853.
(E)-4-(N-benzyl-2-hydroxy-4-(naphthalen-2-yl)benzamido)but-2-en-1-yl methyl carbonate (1u)

Yellow oil, $0.87 \mathrm{~g}, 90 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92(\mathrm{~m}, 3 \mathrm{H}), 7.64$ - $7.31(\mathrm{~m}, 12 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~m}, 1 \mathrm{H}), 5.82(\mathrm{~m}$, $1 \mathrm{H}), 4.84(\mathrm{~s}, 2 \mathrm{H}), 4.72(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.17(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.30,158.96,155.56,145.69,138.98,136.22$, 133.77, 131.17, 129.49, 128.99, 128.33, 128.19, 127.90, 127.80, 127.56, 127.37, $126.71,126.25,125.93,125.78,125.31,120.65,119.63,116.15,67.34,55.41$, 54.94. HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 482.1917$, Found: 482.1953.
(E)-4-(2-hydroxy- N-(4-methoxybenzyl)benzamido)but-2-en-1-yl methyl carbonate (1v)

Yellow oil, $0.74 \mathrm{~g}, 96 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.28(\mathrm{~m}$, $2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $6.81(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~m}, 2 \mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H}), 4.52(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.12$ $(\mathrm{d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $172.20,171.15,159.28,158.78,155.51,132.74,129.65,128.81,127.91,127.62$, $127.21,118.73,118.12,114.36,63.01,60.40,55.31,54.87$. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 386.1598$, Found: 386.1591. carbonate ($(Z)-1 \mathbf{v})$

Yellow oil, $0.73 \mathrm{~g}, 95 \%$ yield; ${ }^{1} \mathrm{H}$ NMR (400 MHz ,) $\delta 7.36-7.27$ (m, 2H), 7.23 $(\mathrm{d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~m}, 2 \mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H}), 4.52(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.14-4.10$ $(\mathrm{m}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 172.20, $159.28,158.78,155.51,132.74,129.65,128.81,127.91,127.62,127.21,118.73$, $118.12,117.57,114.36,67.32,63.01,60.40,55.31,54.87$.

3.2 General Procedure for the Allylic Etherification of 1

In a dry Schlenk tube filled with argon, $[\operatorname{Ir}(\operatorname{cod}) \mathrm{Cl}]_{2}(2.7 \mathrm{mg}, 0.004 \mathrm{mmol}$, $2 \mathrm{~mol} \%)$, phosphoramidite ligand $\mathbf{L} 7(4.1 \mathrm{mg}, 0.008 \mathrm{mmol}, 4 \mathrm{~mol} \%)$, and $n-$ propylamine $(0.5 \mathrm{~mL})$ were dissolved in THF $(1.0 \mathrm{~mL})$. The reaction mixture was heated at $50^{\circ} \mathrm{C}$ for 30 min and then the volatile solvents were removed in vacuum to give a yellow solid. In this tube, allylic carbonates 1 (0.2 mmol), DBU ($61 \mathrm{mg}, 0.4 \mathrm{mmol}, 200 \mathrm{~mol} \%$) and THF (2.0 mL) were added and stirred at $25{ }^{\circ} \mathrm{C}$ until the reaction was complete. Then the solvent was evaporated and the residue was purified by silica gel column chromatography using
petroleum/EtOAc as the eluent to give the desired products. ($2 \mathbf{v}$ is prepared from $(\boldsymbol{Z})-\mathbf{1 v}$ in the same way.)

(R)-4-Benzyl-2-vinyl-3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one (2a)

$\mathrm{R}_{\mathrm{f}}=0.50($ petroleum $/ E t O A c=2: 1, \mathrm{v} / \mathrm{v})$; yellow oil, $53.6 \mathrm{mg}, 96 \%$ yield; 93% ee [Daicel Chiralcel IF-3 ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$), n-hexane/2-propanol $=80 / 20, v=$ $1.0 \mathrm{~mL} \cdot \min ^{-1}, \mathrm{~T}=25^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ minor $)=12.051 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (major) $=$ $12.358 \mathrm{~min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=+4.3^{\circ}\left(\mathrm{c}=0.70, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.87 (dd, $J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.42$ (m, 1H), $7.40-7.35$ (m, 4H), $7.35-$ $7.29(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{td}, J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{dd}, J=8.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.83$ (ddd, $J=17.1,10.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~m}, 1 \mathrm{H}), 5.26(\mathrm{~m}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=14.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.77-4.69(\mathrm{~m}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.84,152.78,137.01,134.19,132.74,130.76,128.79$, $128.24,127.75,124.11,122.57,118.24,84.10,51.01,49.60$. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 280.1341$, Found: 280.1328 .

(R)-4-Benzyl-8-methyl-2-vinyl-3,4-dihydrobenzo[$f[$ [1,4]oxazepin-5(2H)-one

 (2b)
$\mathrm{R}_{\mathrm{f}}=0.50($ petroleum $/ E t O A c=2: 1, \mathrm{v} / \mathrm{v})$; yellow oil, $55.1 \mathrm{mg}, 94 \%$ yield; 92% ee [Daicel Chiralcel IF-3 ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$), n-hexane/2-propanol $=80 / 20, v=$ $1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \mathrm{~T}=25^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ minor $)=13.913 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=$
$15.770 \mathrm{~min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=+62.6^{\circ}\left(\mathrm{c}=0.70, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.75 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.09-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.88-6.78$ $(\mathrm{m}, 1 \mathrm{H}), 5.82(\mathrm{ddd}, J=17.0,10.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~m}, 1 \mathrm{H}), 5.25(\mathrm{~m}, 1 \mathrm{H}), 5.14$ $(\mathrm{d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~m}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~m}, 2 \mathrm{H}), 2.38$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.91,152.78,143.58,137.11,134.34$, $130.72,128.76,128.24,127.69,125.05,124.88,122.84,118.09,83.93,51.01$, 49.75, 25.37, 21.34. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 294.1498$, Found: 294.1484.
(R)-4-Benzyl-7-methyl-2-vinyl-3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one (2c)

$\mathrm{R}_{\mathrm{f}}=0.50($ petroleum $/ E t O A c=2: 1, \mathrm{v} / \mathrm{v})$; yellow oil, $58.1 \mathrm{mg}, 99 \%$ yield; 96% ee [Daicel Chiralcel IA-3 ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$), n-hexane/2-propanol $=93 / 7, v=$ $1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \mathrm{~T}=25^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ minor $)=19.212 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=$ $18.091 \mathrm{~min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=+63.7^{\circ}\left(\mathrm{c}=0.70, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.65(\mathrm{~s}, 1 \mathrm{H}), 7.49-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.83$ (ddd, $J=17.0,10.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J$ $=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.76-4.66(\mathrm{~m}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=14.8$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.37 ($\mathrm{m}, 2 \mathrm{H}$), $2.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.09$, $150.50,137.11,134.33,133.81,133.38,130.81,128.77,128.21,128.05,127.70$, $122.37,118.13,83.90,50.96,49.63,20.62$. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}: 294.1498$, Found: 294.1483.
(R)-4-Benzyl-6-methyl-2-vinyl-3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one (2d)

$\mathrm{R}_{\mathrm{f}}=0.50$ (petroleum/EtOAc $\left.=2: 1, \mathrm{v} / \mathrm{v}\right)$; yellow oil, $55.1 \mathrm{mg}, 94 \%$ yield; 99% ee [Daicel Chiralcel IA-3 ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$), n-hexane/2-propanol $=90 / 10, v=$ $1.0 \mathrm{~mL} \cdot \min ^{-1}, \mathrm{~T}=25^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ minor $)=13.197 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (major) $=$ $11.893 \mathrm{~min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=+47.7^{\circ}\left(\mathrm{c}=0.70, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.35(\mathrm{~m}, 6 \mathrm{H}), 7.09(\mathrm{dd}, J=7.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=7.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.93$ - $5.73(\mathrm{~m}, 1 \mathrm{H}), 5.30(\mathrm{~m}, 2 \mathrm{H}), 5.13(\mathrm{~m}, 1 \mathrm{H}), 4.72-4.58(\mathrm{~m}, 2 \mathrm{H}), 3.39-3.24(\mathrm{~m}$, $2 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 168.13, 152.11, 139.56, 137.44, 134.26, 130.92, 128.77, 128.00, 127.66, 127.36, 120.40, 118.37, 83.38, 50.07, 48.95, 20.29. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 294.1498$, Found: 294.1483.
(R)-4-Benzyl-9-methoxy-2-vinyl-3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)one (2e)

$\mathrm{R}_{\mathrm{f}}=0.40$ (petroleum/EtOAc $=2: 1, \mathrm{v} / \mathrm{v}$); yellow oil, $59.4 \mathrm{mg}, 96 \%$ yield; 99% ee [Daicel Chiralcel IA-3 ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$), n-hexane/2-propanol $=90 / 10, v=$ $1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \mathrm{~T}=25^{\circ} \mathrm{C}, \lambda=211 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ minor $)=24.718 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=$ $23.458 \mathrm{~min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=+50.0^{\circ}\left(\mathrm{c}=0.80, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.36(\mathrm{t}, J=10.3 \mathrm{~Hz}, 6 \mathrm{H}), 7.18(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.85$ (ddd, $J=17.1,10.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~m}, 2 \mathrm{H}), 4.86$ $-4.72(\mathrm{~m}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 168.81,152.39,141.96,137.09,134.57,130.23,128.77$,
128.19, 127.71, 124.47, 121.71, 118.00, 114.96, 84.72, 56.22, 50.92, 49.71. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 310.1447$, Found: 310.1432.

(R)-4-Benzyl-8-methoxy-2-vinyl-3,4-dihydrobenzo[ff[1,4]oxazepin-5(2H)-

 one (2f)
$\mathrm{R}_{\mathrm{f}}=0.40($ petroleum $/ E t O A c=2: 1, \mathrm{v} / \mathrm{v})$; yellow oil, $60.0 \mathrm{mg}, 97 \%$ yield; 91% ee [Daicel Chiralcel IA-3 ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$), n-hexane/2-propanol $=85 / 15, v=$ $1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \mathrm{~T}=25^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ minor $)=15.317 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (major) $=$ $16.151 \mathrm{~min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=+60.5^{\circ}\left(\mathrm{c}=0.80, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.84(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.31(\mathrm{~m}, 5 \mathrm{H}), 6.76(\mathrm{dd}, J=8.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.54$ $(\mathrm{d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{ddd}, J=17.0,10.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=17.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.25(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~m}, 1 \mathrm{H}), 4.55(\mathrm{~d}$, $J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.48-3.30(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(101} \mathrm{MHz}$,CDCl 3) $\delta 168.64,163.33,154.60,137.16,134.30,132.40,128.76,128.27,127.69$, 119.92, 118.15, 110.21, 106.99, 84.00, 55.52, 51.14, 49.92. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 310.1447$, Found: 310.1432.

(R)-4-Benzyl-7-methoxy-2-vinyl-3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-

 one (2g)
$\mathrm{R}_{\mathrm{f}}=0.50$ (petroleum/EtOAc $=2: 1, \mathrm{v} / \mathrm{v}$); yellow oil, $59.4 \mathrm{mg}, 96 \%$ yield; 94% ee [Daicel Chiralcel IA-3 ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$), n-hexane/2-propanol $=90 / 10, v=$
$1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \mathrm{~T}=25^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ minor $)=20.603 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (major) $=$ $19.327 \mathrm{~min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=+61.8^{\circ}\left(\mathrm{c}=0.80, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.43-7.32(\mathrm{~m}, 6 \mathrm{H}), 6.98(\mathrm{~m}, 2 \mathrm{H}), 5.82(\mathrm{ddd}, J=17.1,10.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.33$ $(\mathrm{m}, 1 \mathrm{H}), 5.25(\mathrm{~m}, 1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~m}, 1 \mathrm{H}), 4.59(\mathrm{~d}$, $J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $168.86,156.15,146.33,137.06,134.28,129.16,128.78,128.20,127.74,123.69$, $119.49,118.21,113.68,83.92,55.81,51.03,49.63$. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 310.1447$, Found: 310.1432.
(R)-4-Benzyl-6-methoxy-2-vinyl-3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)one (2h)

$\mathrm{R}_{\mathrm{f}}=0.40$ (petroleum/EtOAc $=2: 1, \mathrm{v} / \mathrm{v}$); yellow oil, $53.8 \mathrm{mg}, 87 \%$ yield; 96% ee [Daicel Chiralcel IA-3 ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$), n-hexane/2-propanol $=75 / 25, v=$ $1.0 \mathrm{~mL} \cdot \min ^{-1}, \mathrm{~T}=25^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ minor $)=17.409 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=$ $14.163 \mathrm{~min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=+52.9^{\circ}\left(\mathrm{c}=0.80, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.37(\mathrm{~m}, 6 \mathrm{H}), 6.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.85-5.72(\mathrm{~m}$, $1 \mathrm{H}), 5.25(\mathrm{~m}, 3 \mathrm{H}), 4.56(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~m}, 1 \mathrm{H}), 3.28$ $(\mathrm{m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, ~\right) \delta 166.01,158.76,152.92,137.38,134.21,131.83$, $128.73,128.31,127.66,124.46,123.97,119.11,118.53,118.36,115.34,108.26$, 83.56, 56.33, 49.91, 48.90. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 310.1447$, Found: 310.1433.

(R)-4-Benzyl-8-fluoro-2-vinyl-3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one

(2i)

$\mathrm{R}_{\mathrm{f}}=0.60$ (petroleum/EtOAc $=2: 1, \mathrm{v} / \mathrm{v}$); yellow oil, $58.8 \mathrm{mg}, 99 \%$ yield; 91% ee [Daicel Chiralcel IA-3 ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$), n-hexane/2-propanol $=85 / 15, v=$ $1.0 \mathrm{~mL} \cdot \min ^{-1}, \mathrm{~T}=25^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ minor $)=9.738 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=$ $9.109 \mathrm{~min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=+63.1^{\circ}\left(\mathrm{c}=0.70, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.90(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.31(\mathrm{~m}, 5 \mathrm{H}), 6.93(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J$ $=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{ddd}, J=17.0,10.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~m}, 2 \mathrm{H}), 5.15(\mathrm{~d}, J=$ $14.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.32(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.87,165.22(\mathrm{~d}, J=251.0 \mathrm{~Hz}), 154.57(\mathrm{~d}, J=12.0$ Hz), 136.84, 133.81, 132.88 (d, $J=10.4 \mathrm{~Hz}$), 128.83, 128.29, 127.84, 123.88 (d, $J=3.2 \mathrm{~Hz}), 118.48,111.45,111.23,109.67,109.44,84.29,51.19,49.66 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-106.79$. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{FNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 298.1246, Found: 298.1234.
(R)-4-Benzyl-7-fluoro-2-vinyl-3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one (2j)

$\mathrm{R}_{\mathrm{f}}=0.60($ petroleum $/ E t O A c=2: 1, \mathrm{v} / \mathrm{v})$; yellow oil, $55.3 \mathrm{mg}, 93 \%$ yield; 91% ee [Daicel Chiralcel IA-3 ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$), n-hexane/2-propanol $=95 / 5, v=$ $1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \mathrm{~T}=25^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ minor $)=19.535 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (major) $=$ $18.155 \mathrm{~min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=+62.3^{\circ}\left(\mathrm{c}=0.70, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.54(\mathrm{dd}, J=8.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.13(\mathrm{td}, J=8.3,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.00(\mathrm{dd}, J=8.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{ddd}, J=17.0,10.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~m}$,
$2 \mathrm{H}), 5.14(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~m}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-$ $3.28(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.69,159.03(\mathrm{~d}, J=242.0 \mathrm{~Hz})$, $148.71(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 136.77,133.89,129.77(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 128.84,128.25$, 127.86, $124.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 119.59,119.36,118.49,117.02,116.77,84.05$, 51.10, 49.47. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-118.43$. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{FNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}:$298.1246, Found: 298.1233 .
(R)-4-Benzyl-8-chloro-2-vinyl-3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one (2k)

$\mathrm{R}_{\mathrm{f}}=0.60($ petroleum $/ E t O A c=2: 1, \mathrm{v} / \mathrm{v})$; yellow oil, $60.1 \mathrm{mg}, 96 \%$ yield; 90% ee [Daicel Chiralcel IA-3 ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$), n-hexane/2-propanol $=85 / 15, v=$ $1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \mathrm{~T}=25^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ minor $)=11.135 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=$ $10.491 \mathrm{~min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=-74.2^{\circ}\left(\mathrm{c}=0.80, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.20(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~s}$, $1 \mathrm{H}), 5.80(\mathrm{ddd}, J=17.0,10.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~m}, 2 \mathrm{H}), 5.14(\mathrm{~d}, J=14.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.73(\mathrm{~m}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 167.83,153.58,138.16,136.74,133.73,132.11,128.85,128.31$, 127.88, 126.26, 124.30, 122.67, 118.58, 84.32, 51.18, 49.58. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{ClNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 314.0951$, Found: 314.0936.
(R)-4-Benzyl-7-chloro-2-vinyl-3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one (21)

$\mathrm{R}_{\mathrm{f}}=0.60($ petroleum/EtOAc $=2: 1, \mathrm{v} / \mathrm{v})$; yellow oil, $60.7 \mathrm{mg}, 97 \%$ yield; 92% ee [Daicel Chiralcel IA-3 $(0.46 \mathrm{~cm} \times 25 \mathrm{~cm}), n$-hexane $/ 2$-propanol $=93 / 7, v=$ $1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \mathrm{~T}=25^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ minor $)=15.568 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (major) $=$ $14.780 \mathrm{~min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=-76.9^{\circ}\left(\mathrm{c}=0.80, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.84(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~s}, 6 \mathrm{H}), 6.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.90-5.71(\mathrm{~m}, 1 \mathrm{H}), 5.31(\mathrm{~m}$, $2 \mathrm{H}), 5.13(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=14.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.55-3.25(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 167.48, 151.37, 136.69, $133.79,132.62,130.55,129.41,128.86,128.27,127.89,124.01,118.55,84.11$, 51.15, 49.46. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{ClNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 314.0951, Found: 314.0936.

(\boldsymbol{R})-4-Benzyl-7-bromo-2-vinyl-3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one

 (2m)
$\mathrm{R}_{\mathrm{f}}=0.60($ petroleum $/ \mathrm{EtOAc}=2: 1, \mathrm{v} / \mathrm{v})$; brown oil, $60.7 \mathrm{mg}, 85 \%$ yield; 91% ee [Daicel Chiralcel IA-3 ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$), n-hexane $/ 2$-propanol $=95 / 5, v=$ $1.0 \mathrm{~mL} \cdot \min ^{-1}, \mathrm{~T}=25^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ minor $)=20.457 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=$ $19.384 \mathrm{~min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=-67.8^{\circ}\left(\mathrm{c}=0.90, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.98(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.32(\mathrm{~m}, 5 \mathrm{H}), 6.91$ (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{ddd}, J=17.0,10.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~m}, 2 \mathrm{H}), 5.12(\mathrm{~d}$, $J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~m}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.47-3.29(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 167.33,151.92,136.68,135.57,133.78,133.53$, 129.71, 128.86, 128.27, 127.89, 124.35, 118.54, 116.75, 84.09, 51.17, 49.46. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{BrNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 358.0446$, Found: 358.0432 .

(R)-4-Benzyl-8-nitro-2-vinyl-3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one

 (2n)
$\mathrm{R}_{\mathrm{f}}=0.40($ petroleum $/ E t O A c=2: 1, \mathrm{v} / \mathrm{v})$; yellow oil, $58.3 \mathrm{mg}, 90 \%$ yield; 84% ee [Daicel Chiralcel IF-3 ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$), n-hexane/2-propanol $=85 / 15, v=$ $1.0 \mathrm{~mL} \cdot \min ^{-1}, \mathrm{~T}=25^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ minor $)=22.654 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=$ $19.424 \mathrm{~min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=+21.3^{\circ}\left(\mathrm{c}=0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.05(\mathrm{~s}, 2 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.30(\mathrm{~m}, 6 \mathrm{H}), 5.81(\mathrm{ddd}, J=16.9,10.5,6.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.40-5.31(\mathrm{~m}, 2 \mathrm{H}), 5.17(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~m}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=$ $14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.48-3.40(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 166.68, 153.38, $150.48,136.27,133.54,133.14,132.27,128.97,128.37,128.11,119.12,118.47$, 117.99, 84.67, 51.32, 49.28. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 325.1192, Found: 325.1180 .
(R)-4-Benzyl-8-(trifluoromethyl)-2-vinyl-3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one (20)

$\mathrm{R}_{\mathrm{f}}=0.40$ (petroleum/EtOAc $=2: 1$, v/v); pale yellow oil, $57.6 \mathrm{mg}, 83 \%$ yield; 80% ee [Daicel Chiralcel IA-3 (0.46 cm x 25 cm), n-hexane $/ 2$-propanol $=90 / 10$, $v=1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \mathrm{~T}=25^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ minor $)=12.495 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (major) $=11.473 \mathrm{~min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=-49.1^{\circ}\left(\mathrm{c}=0.60, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.00(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.28(\mathrm{~m}, 6 \mathrm{H}), 5.91-$ $5.74(\mathrm{~m}, 1 \mathrm{H}), 5.33(\mathrm{~m}, 2 \mathrm{H}), 5.17(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.84-4.71(\mathrm{~m}, 1 \mathrm{H}), 4.57$ $(\mathrm{d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.51-3.32(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.43$, $153.05,136.54,133.54,131.88,131.02,128.90,128.32,127.98,120.50(\mathrm{~d}, J=$ $3.6 \mathrm{~Hz}), 119.77(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 118.77,84.46,51.22,49.42 .{ }^{19} \mathrm{~F}$ NMR (376 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$-63.08. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 348.1216$, Found: 348.1200 .

(R)-4-Benzyl-2-vinyl-3,4-dihydronaphtho[2,3-f][1,4]oxazepin-5(2H)-one

 (2p)
$\mathrm{R}_{\mathrm{f}}=0.60($ petroleum $/ \mathrm{EtOAc}=2: 1, \mathrm{v} / \mathrm{v})$; pale yellow oil, $61.2 \mathrm{mg}, 93 \%$ yield; 91% ee [Daicel Chiralcel IF-3 ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$), n-hexane/2-propanol $=85 / 15$, $v=1.0 \mathrm{~mL} \cdot \min ^{-1}, \mathrm{~T}=25^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ minor $)=32.663 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (major) $=34.811 \mathrm{~min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=-19.6^{\circ}\left(\mathrm{c}=0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.39(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.52-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.38$ (dd, $J=16.3,7.7 \mathrm{~Hz}, 5 \mathrm{H}), 5.91$ (ddd, $J=17.2$, $10.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}$, $J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~m}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.33(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 168.88,149.30,137.11,135.66,134.15,131.45$, $130.41,129.49,128.82,128.23,127.82,126.92,125.63,119.46,118.50,83.42$,
50.99, 49.42. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 330.1502$, Found: 330.1482.

(R)-4-Benzyl-2-vinyl-3,4-dihydropyrido[4,3-f][1,4]oxazepin-5(2H)-one (2q)

$\mathrm{R}_{\mathrm{f}}=0.30$ (petroleum/EtOAc $\left.=2: 1, \mathrm{v} / \mathrm{v}\right)$; brown oil, $53.2 \mathrm{mg}, 95 \%$ yield; 81% ee [Daicel Chiralcel IA-3 ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$), n-hexane/2-propanol $=90 / 10, v=$ $1.0 \mathrm{~mL} \cdot \min ^{-1}, \mathrm{~T}=25^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ minor $)=19.840 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=$ $18.608 \mathrm{~min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=-15.0^{\circ}\left(\mathrm{c}=0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz,$\left.\right)^{2} 8.47(\mathrm{~s}$, $2 \mathrm{H}), 7.83(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.33(\mathrm{~m}, 5 \mathrm{H}), 5.79(\mathrm{~m}, 1 \mathrm{H}), 5.41-5.26(\mathrm{~m}$, $2 \mathrm{H}), 5.17(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~s}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 166.50, 148.49, 144.77, 144.44, 136.17, 133.29, 132.64, 128.95, 128.40, 128.09, 123.85, 118.75, 84.14, 51.47, 49.67. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}:$281.1292, Found: 281.1280.
(R)-4-Benzyl-8-(thiophen-3-yl)-2-vinyl-3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one (2r)

$\mathrm{R}_{\mathrm{f}}=0.60$ (petroleum/EtOAc $=2: 1, \mathrm{v} / \mathrm{v}$); pale yellow oil, $68.6 \mathrm{mg}, 95 \%$ yield; 92% ee [Daicel Chiralcel IA-3 ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$), n-hexane $/ 2$-propanol $=85 / 15$, $v=1.0 \mathrm{~mL} \cdot \min ^{-1}, \mathrm{~T}=25^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (minor) $=22.499 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (major) $=26.072 \mathrm{~min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=-5.7^{\circ}\left(\mathrm{c}=0.60, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
7.91 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56$ (s, 1H), $7.51-7.27$ (m, 9H), 5.86 (ddd, $J=17.0$, $10.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}$, $J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 1 \mathrm{H}), 3.46(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $168.57,153.35,140.84,140.31,137.02,134.23,131.54,128.81,128.30,127.77$, $126.62,126.25,126.14,121.89,121.69,120.03,118.32,84.08,51.14,49.76$. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 362.1223$, Found: 362.1205.
(R)-4-Benzyl-8-(furan-2-yl)-2-vinyl-3,4-dihydrobenzo[f][1,4]oxazepin$5(2 H)$-one (2s)

$\mathrm{R}_{\mathrm{f}}=0.60$ (petroleum/EtOAc $\left.=2: 1, \mathrm{v} / \mathrm{v}\right)$; pale yellow oil, $67.0 \mathrm{mg}, 97 \%$ yield; 92% ee [Daicel Chiralcel IA-3 (0.46 cm x 25 cm), n-hexane $/ 2$-propanol $=85 / 15$, $v=1.0 \mathrm{~mL} \cdot \min ^{-1}, \mathrm{~T}=25^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (minor) $=14.863 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (major) $=15.557 \mathrm{~min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=-8.4^{\circ}\left(\mathrm{c}=0.60, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.89(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.28(\mathrm{~m}, 6 \mathrm{H}), 6.77(\mathrm{~s}$, $1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 5.86$ (ddd, $J=17.1,10.5,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=17.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.28(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~s}, 1 \mathrm{H}), 4.58(\mathrm{~d}$, $J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.33(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.50$, $153.35,152.60,142.96,137.01,135.10,134.20,131.47,128.80,128.30,127.77$, $126.41,119.23,118.31,117.35,111.94,106.99,84.06,51.11,49.72$. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 346.1451$, Found: 346.1433 .
(R)-4-Benzyl-8-(6-methoxypyridin-3-yl)-2-vinyl-3,4-
dihydrobenzo $[f][1,4]$ oxazepin- $5(2 H)$-one (2t)

$\mathrm{R}_{\mathrm{f}}=0.60($ petroleum $/ \mathrm{EtOAc}=2: 1, \mathrm{v} / \mathrm{v})$; pale yellow oil, $74.1 \mathrm{mg}, 96 \%$ yield; 92% ee [Daicel Chiralcel IA-3 ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$), n-hexane/2-propanol $=85 / 15$, $v=1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \mathrm{~T}=25^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (minor) $=21.300 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (major) $=27.712 \mathrm{~min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=-6.3^{\circ}\left(\mathrm{c}=0.60, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.43(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{dd}, J=8.6,2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.42-7.31(\mathrm{~m}, 6 \mathrm{H}), 7.20(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.85$ (ddd, $J=17.0,10.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.18(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~m}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H})$, 3.45 (m, 2H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3) δ 168.48, 164.07, 153.39, 145.09, $142.51,137.39,136.95,134.10,131.72,128.83,128.53,128.28,127.80,126.51$, 122.01, 120.28, 118.40, 111.05, 84.13, 53.74, 51.14, 49.71. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 387.1719$, Found: 387.1698.
(R)-4-Benzyl-8-(naphthalen-2-yl)-2-vinyl-3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one (2u)

$\mathrm{R}_{\mathrm{f}}=0.60($ petroleum $/ \mathrm{EtOAc}=2: 1, \mathrm{v} / \mathrm{v}$); pale yellow oil, $76.2 \mathrm{mg}, 94 \%$ yield; 94% ee [Daicel Chiralcel IF-3 ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$), n-hexane/2-propanol $=90 / 10$, $v=1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \mathrm{~T}=25^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ minor $)=42.743 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (major) $=38.050 \mathrm{~min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=+22.1^{\circ}\left(\mathrm{c}=0.70, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.01(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{t}, J=9.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.60-7.35(\mathrm{~m}, 10 \mathrm{H}), 7.22$
$(\mathrm{s}, 1 \mathrm{H}), 5.94-5.80(\mathrm{~m}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~m}, 2 \mathrm{H}), 4.80(\mathrm{~s}$, $1 \mathrm{H}), 4.64(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ $168.74,152.77,145.69,138.71,137.05,134.20,133.81,131.20,130.83,128.84$, $128.38,128.29,127.81,126.83,126.70,126.34,125.97,125.86,125.68,125.32$, 124.01, 118.27, 84.11, 51.17, 49.82. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 406.1807, Found: 406.1794.
(R)-4-(4-Methoxybenzyl)-2-vinyl-3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)one (2v)

Trans-substrate: $\mathrm{R}_{\mathrm{f}}=0.60$ (petroleum/EtOAc $=2: 1, \mathrm{v} / \mathrm{v}$); pale yellow oil, 57.5 $\mathrm{mg}, 93 \%$ yield; 90% ee [Daicel Chiralcel IA-3 ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$), n-hexane/2propanol $=95 / 5, v=1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \mathrm{t}=25^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (minor) $=35.879$ $\min , \mathrm{t}_{\mathrm{R}}$ (major) $\left.=33.676 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{25}=+4.5^{\circ}\left(\mathrm{c}=0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Cis-substrate: $\mathrm{R}_{\mathrm{f}}=0.60($ petroleum $/ \mathrm{EtOAc}=2: 1$, v/v); pale yellow oil, $58.7 \mathrm{mg}, 95 \%$ yield; -73% ee [Daicel Chiralcel IA-3 ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$), n-hexane $/ 2$-propanol $=95 / 5$, $v=1.0 \mathrm{~mL} \cdot \min ^{-1}, \mathrm{t}=25^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ minor $)=34.931 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=$ $36.551 \mathrm{~min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=-4.1^{\circ}\left(\mathrm{c}=0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.85(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.22$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.82$ (ddd, $J=17.0,10.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.12(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$, 3.47 - 3.30 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.72,159.25,152.76$, $134.28,132.66,130.76,129.67,129.12,128.36,124.06,122.54,118.15,114.17$,
55.31, 50.45, 49.40. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 310.1393, Found: 310.1433.

3.3 Gram-scale Reaction

Representative Procedure: in a dry Schlenk tube (50.0 mL) filled with argon, $[\operatorname{Ir}(\operatorname{cod}) \mathrm{Cl}]_{2}(37.8 \mathrm{mg}, 0.056 \mathrm{mmol}, 2 \mathrm{~mol} \%)$, ligand $\mathbf{L} 7(57.6 \mathrm{mg}, 0.113 \mathrm{mmol}$, $4 \mathrm{~mol} \%)$, and n-propylamine (5.0 mL) were dissolved in THF (10.0 mL). The reaction mixture was heated at $50^{\circ} \mathrm{C}$ for 30 min and then the volatile solvents were removed in vacuum to give a yellow solid. In glove box, substrate (1 g , $2.82 \mathrm{mmol}), \mathrm{DBU}(0.857 \mathrm{~g}, 5.64 \mathrm{mmol}, 200 \mathrm{~mol} \%)$ and solvent $(20.0 \mathrm{~mL})$ were added into the above tube and stirred at $25^{\circ} \mathrm{C}$ until the reaction was complete. Then the solvent was evaporated and the residue was purified by silica gel column chromatography using petroleum/EtOAc as the eluent to give the desired product (92% yield, 91% ee).

3.4 Procedure for the Synthesis of 3v

In a dry Schlenk tube filled with argon, $\mathbf{2 v}(30.9 \mathrm{mg}, 0.1 \mathrm{mmol})$ was dissolved in excessive TFA (10 mL). The reaction mixture was heated at $60^{\circ} \mathrm{C}$ for 1 h . Then the crude reaction mixture was diluted with $\mathrm{DCM}(10 \mathrm{~mL})$ and washed with saturated sodium bicarbonate solution (10 mL x 3) and brine (10 $\mathrm{mL} x$ 3). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Afterwards, the solvents were removed under reduced pressure. The residue was purified by silica gel column chromatography (petroleum/EtOAc $=1: 1$) to afford the desired products $\mathbf{3 v}$ (89% yield, 89% ee).

(R)-2-Vinyl-3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one (3v)

$\mathrm{R}_{\mathrm{f}}=0.10$ (petroleum/EtOAc $\left.=2: 1, \mathrm{v} / \mathrm{v}\right)$; black oil, $16.8 \mathrm{mg}, 89 \%$ yield; 89% ee [Daicel Chiralcel IF-3 ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$), n-hexane $/ 2$-propanol $=95 / 5, v=1.0$ $\mathrm{mL} \cdot \mathrm{min}^{-1}, \mathrm{~T}=25^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ minor $)=31.262 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=32.378$ $\min] ;[\alpha]_{\mathrm{D}}{ }^{25}=+12.6^{\circ}\left(\mathrm{c}=0.30, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.05-5.89(\mathrm{~m}, 1 \mathrm{H}), 5.48(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=10.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.40-3.27(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.17,154.03,134.26,133.29,130.86,126.11,123.77,122.55$, 118.39, 84.44, 44.63. HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 190.0863$, Found: 190.0859.

3.5 Procedure for the Synthesis of 3a

To a solution of $\mathbf{2 a}(139.6 \mathrm{mg}, 0.5 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}, \mathrm{LiAlH}_{4}$ ($114 \mathrm{mg}, 3 \mathrm{mmol}$) was added in three portions. The reaction mixture was stirred for 12 h at $50^{\circ} \mathrm{C}$. It was cooled back down to $0^{\circ} \mathrm{C}$ and MeOH was added. Then the mixture was filtered through celite and the obtained solution was concentrated in vacuo. The crude residue was purified using column chromatography (eluent: petroleum ether/EtOAc $=2: 1$) to provide the desired product 3a (73\% yield, $91 \% \mathrm{ee}$).

(\boldsymbol{R})-4-Benzyl-2-vinyl-2,3,4,5-tetrahydrobenzo[f][1,4]oxazepine (3a)

$\mathrm{R}_{\mathrm{f}}=0.30$ (petroleum/EtOAc $\left.=2: 1, \mathrm{v} / \mathrm{v}\right)$; yellow oil, $96.8 \mathrm{mg}, 73 \%$ yield; 91% ee [Daicel Chiralcel IF-3 ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$), n-hexane/2-propanol $=99.5 / 0.5, v$ $=1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \mathrm{~T}=25^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ minor $)=5.744 \min , \mathrm{t}_{\mathrm{R}}($ major $)=$ $5.327 \mathrm{~min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=-9.5^{\circ}\left(\mathrm{c}=0.40, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42$ - $7.24(\mathrm{~m}, 6 \mathrm{H}), 7.14-7.00(\mathrm{~m}, 3 \mathrm{H}), 5.94(\mathrm{ddd}, J=16.0,10.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.46$ $(\mathrm{m}, 1 \mathrm{H}), 5.27(\mathrm{~m}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.70$ $(\mathrm{m}, 3 \mathrm{H}), 3.09(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 158.76, 138.43, 136.37, 131.97, 130.59, 128.99, 128.66, 128.40, 127.27, 123.58, 121.26, 116.03, 78.92, 62.41, 58.24, 56.97. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 266.1539$, Found: 266.1535 .

3.6 Procedure for the Synthesis of 4a

A flame dried Schlenk tube was cooled to room temperature and filled with argon. To this flask 2a ($111.7 \mathrm{mg}, 0.4 \mathrm{mmol}$) and 9-BBN (0.5 M in THF, 2.4 mL , 1.2 mmol) were added. The reaction mixture was heated at $50^{\circ} \mathrm{C}$ for 2 hours until the starting material was consumed completely (monitored by TLC). Then the reaction mixture was cooled to $0^{\circ} \mathrm{C}, 3 \mathrm{M}$ aqueous $\mathrm{NaOH}(0.8 \mathrm{~mL})$ solution was added. After $5 \mathrm{~min}, 30 \% \mathrm{H}_{2} \mathrm{O}_{2}(0.6 \mathrm{~mL})$ was added by syringe. After stirring for an additional 3 hours at room temperature, saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution was added, then the reaction mixture was extracted with EtOAc (10 mL $x 3$). The combined organic layers were washed with brine, separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated by rotary evaporation. Then the residue was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EA}=1 / 1)$ to afford the desired product 4a (90% yield, 91% ee).

(R)-4-Benzyl-2-(2-hydroxyethyl)-3,4-dihydrobenzo[f][1,4]oxazepin-

 5(2H)-one (4a)
$\mathrm{R}_{\mathrm{f}}=0.10($ petroleum $/ E t O A c=2: 1, \mathrm{v} / \mathrm{v})$; white solid, $107.1 \mathrm{mg}, 90 \%$ yield; 91% ee [Daicel Chiralcel IA-3 ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$), n-hexane/2-propanol $=$
$80 / 20, v=1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \mathrm{~T}=25^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (minor) $=13.672 \mathrm{~min}$, t_{R} (major) $\left.=12.821 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{25}=+3.7^{\circ}\left(\mathrm{c}=0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.31(\mathrm{~m}, 6 \mathrm{H}), 7.22(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J$ $=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~m}, 2 \mathrm{H}), 3.40-3.28(\mathrm{~m}, 2 \mathrm{H}), 1.91(\mathrm{~s}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.94,152.36,137.07,132.69$, 130.84, 128.79, 128.45, 128.21, 127.74, 124.11, 122.55, 81.69, 59.41, 51.03, 50.03, 34.57. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 298.1438$, Found: 298.1433.

4.Copies of NMR Spectra

Figure 1. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 1 a

Figure 2. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 1 a

Figure 3. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 b}$

Figure 4. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 1 b

Figure 5. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 1 c

Figure 6. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 1 c

Figure 7. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 1 d

Figure 8. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 1 d

Figure 9. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 1 e

Figure 10. ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 1 e

Figure 11. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) spectrum of 1 f

Figure 12. ${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 1 f

Figure 13. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 g}$

Figure 14. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 g}$

Figure 15. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 h}$

Figure 16. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 h}$

Figure 17. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 i}$

Figure 18. ${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 1 i

Figure 19. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 1 i

Figure 20. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 j}$

Figure 21. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 j}$

Figure 22. ${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 j}$

Figure 23. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 k}$

Figure 24. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 1 k

Figure 25. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 11

Figure 26. ${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 11

Figure 27. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 m}$

Figure 28. ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 1 m

Figure 29. ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{M H z}, \mathrm{CDCl}_{3}$) spectrum of 1 n

Figure 30. ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 1 n

Figure 31. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 10

Figure 32. ${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 10

Figure 33. ${ }^{19} \mathrm{~F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) spectrum of 10

Figure 34. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 p}$

Figure 35. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 p}$

Figure 36. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) spectrum of $\mathbf{1 q}$

Figure 37. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 q}$

Figure 38. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 r}$

Figure 39. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 r}$

Figure 40. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 1 s

Figure 41. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 1 s
(

Figure $42 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 t}$

Figure 43. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 1 t
(

Figure 44. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 1 u

Figure 45. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 1 u

Figure 46. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of (E)-1v

Figure 47. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of (E)-1v

Figure 48. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of (Z)-1v

Figure 49. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of (Z)-1v

4-Benzyl-2-vinyl-3,4-dihydro-2 λ^{3}-benzo $[f][1,4]$ oxazepin-5(2H)-one (2a)

Figure 50. ${ }^{\mathbf{1}} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) spectrum of 2a

Figure 51. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{2 a}$

4-Benzyl-8-methyl-2-vinyl-3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one (2b)
Figure 52. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2 b

Figure 53. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{2 b}$

4-Benzyl-7-methyl-2-vinyl-3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one (2c)
Figure 54. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2 c

Figure 55. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2 c

4-Benzyl-6-methyl-2-vinyl-3,4-dihydrobenzo $[f][1,4]$ oxazepin-5(2H)-one (2d)
Figure 56. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2 d

Figure 57. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{2 d}$

4-Benzyl-9-methoxy-2-vinyl-3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one (2e)

Figure 58. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2 e

Figure 59. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2 e

4-Benzyl-8-methoxy-2-vinyl-3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one
(2f)
Figure $60 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2 f

Figure 61. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2 f

4-Benzyl-7-methoxy-2-vinyl-3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one (2g)

Figure 62. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2 g

Figure 63. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{2 g}$

4-Benzyl-6-methoxy-2-vinyl-3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one
(2h)
Figure 64. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2 h

Figure 65. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2 h

4-Benzyl-8-fluoro-2-vinyl-3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one (2i)
Figure 66. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{2 i}$

Figure 67. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2 i

Figure 68. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{2 i}$

4-Benzyl-7-fluoro-2-vinyl-3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one (2j)
Figure 69. ${ }^{\mathbf{1}} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{2 j}$

Figure 70. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{2 j}$

Figure 71. ${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) spectrum of $\mathbf{2 j}$

4-Benzyl-8-chloro-2-vinyl-3,4-dihydrobenzo $[f][1,4]$ oxazepin-5(2H)-one (2k)
Figure 72. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2 k

Figure 73. ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{2 k}$

4-Benzyl-7-chloro-2-vinyl-3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one (21)
Figure 74. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 21

Figure 75. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2 l

4-Benzyl-7-bromo-2-vinyl-3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one (2m)
Figure 76. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2 m

Figure 77. ${ }^{13}$ C NMR ($\mathbf{1 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}$) spectrum of $\mathbf{2 m}$

4-Benzyl-8-nitro-2-vinyl-3,4-dihydrobenzo $[f][1,4]$ oxazepin-5(2H)-one (2n)
Figure 78. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2 n

Figure 79. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{2 n}$

4-Benzyl-8-(trifluoromethyl)-2-vinyl-3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one (20)

Figure 80. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2 o

Figure 81. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2 o

Figure 82. ${ }^{19} \mathrm{~F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) spectrum of 20

4-Benzyl-2-vinyl-3,4-dihydronaphtho[2,3-f][1,4]oxazepin-5(2H)-one (2p)
Figure 83. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{2 p}$

Figure 84. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{2 p}$

4-Benzyl-2-vinyl-3,4-dihydropyrido $[4,3-f][1,4]$ oxazepin-5(2H)-one (2q)
Figure 85. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{2 q}$

Figure 86. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{2 q}$

4-Benzyl-8-(thiophen-3-yl)-2-vinyl-3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one (2r)

Figure 87. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2 r

Figure 88. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{2 r}$

4-Benzyl-8-(furan-2-yl)-2-vinyl-3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)one (2s)

Figure 89. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2 s

Figure 90. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2 s

4-Benzyl-8-(6-methoxypyridin-3-yl)-2-vinyl-3,4-
dihydrobenzo $[f][1,4]$ oxazepin-5(2H)-one (2t)
Figure $91 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2 t

Figure 92. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2 t

4-Benzyl-8-(naphthalen-2-yl)-2-vinyl-3,4-dihydrobenzo $[f][1,4]$ oxazepin-5(2H)-one (2u)

Figure 93. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{2 u}$

Figure 94. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{2 u}$

Figure $95 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2 v

Figure 96. ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 2 v

2-vinyl-3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one (3v)
Figure $97 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3 v

Figure 98. ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 3 v

4-Benzyl-2-vinyl-2,3,4,5-tetrahydrobenzo[f][1,4]oxazepane (3a)

Figure 99. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3a

Figure 100. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3 a}$

4-Benzyl-2-(2-hydroxyethyl)-3,4-dihydro-2 λ^{3}-benzo[f][1,4$]$ oxazepin-5(2H)one (4a)
Figure 101. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{4 a}$

Figure $102 .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 4 a

5．Copies of HPLC Chromatograms

Figure 103．HPLC spectra of 2a

$2 \mathbf{2}$（The top one is racemic，and the bottom one is chiral）

峰	保留时间 ［min］	类型	峰宽 ［min］	峰面积 $[\mathrm{mAU} * \mathrm{~s}]$	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	峰面积 \％
1	12.867		0.2123	958.95203	68.94242	50.2563
	213.602		0.2240	949.17218	65.12415	49.7437

Figure 104．HPLC spectra of 2b

$\mathbf{2 b}$（The top one is racemic，and the bottom one is chiral）

峰 \＃	保留时间 ［min］	类型	峰宽 ［min］	$\begin{gathered} \text { 峰面积 } \\ \text { [mAU*s] } \end{gathered}$	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	峰面积 \％
1	13.972		0.2278	425.86673	28.59163	49.9355
2	15.961		0.2611	426.96609	25.27287	50.0645

Figure 105．HPLC spectra of 2c

2c（The top one is racemic，and the bottom one is chiral）

峰 \#	保留时间 ［min］	类型	峰宽 ［min］	峰面积 $\left[\mathrm{mAU}^{*} \mathrm{~s}\right]$	$\begin{aligned} & \text { 峰高 } \\ & \text { [mAU] } \end{aligned}$	峰面积 \％
1	18.031		0.3655	5786.64502	241.58044	50.0399
2	19.091		0.4042	5777.41064	217.26256	49.9601

峰	保留时间 ［min］	类型	峰宽 [min]	$\begin{gathered} \text { 峰面积 } \\ {\left[\mathrm{mAU}^{*} \mathrm{~B}\right]} \end{gathered}$	$\begin{aligned} & \text { 峰高 } \\ & \text { [mAU] } \end{aligned}$	峰面积 \％
	18.091		0.3987	7853.35840	328.30087	97.7551
	19.212	MM	0.3415	180.34630	8.80073	2.2449

Figure 106. HPLC spectra of 2d

$\mathbf{2 d}$ (The top one is racemic, and the bottom one is chiral)

Figure 107．HPLC spectra of 2 e

$\mathbf{2 e}$（The top one is racemic，and the bottom one is chiral）

峰 \＃	保留时间 ［min］	类型	峰宽 ［min］	峰面积 $[\mathrm{mAU*} s]$	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	峰面积 웅
1	23.683	BV	0.4561	4359.03174	146.94899	49.7178
2	24.783	VB	0.5134	4408.52344	130.09148	50.2822

峰 \＃	保留时间 ［min］	类型	峰宽 ［min］	$\begin{gathered} \text { 峰面积 } \\ \text { [mAU*s] } \end{gathered}$	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	峰面积 울
1	23.458	MM	0.5061	1.23115 e 4	405.41901	99.3209
2	24.718	MM	0.2665	84.18134	5.26373	0.6791

Figure 108．HPLC spectra of $2 f$
（／

峰 \＃	保留时间 ［min］	类型	峰宽 [min]	峰面积 $[\mathrm{mAU} * \mathrm{~s}]$	$\begin{aligned} & \text { 峰高 } \\ & \text { [mAU] } \end{aligned}$	峰面积 \％
1	15.317		0.3119	822.70837	43.95664	4.6708
2	16.151		0.3650	1.67912 e 4	766.69623	95.3292

Figure 109．HPLC spectra of $\mathbf{2 g}$

$\mathbf{2 g}$（The top one is racemic，and the bottom one is chiral）

峰 \#	保留时间 ［min］	类型	峰宽 ［min］	$\begin{gathered} \text { 峰面积 } \\ \text { [mAU*s] } \end{gathered}$	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	峰面积 \％
	19.216		0.3964	$2.13216 \mathrm{e}^{4}$	811.85779	49.4274
	20.533		0.4248	2.18156 e	793.290	50.5726

峰 \＃	保留时间 ［min］	类型	峰宽 ［min］	$\begin{gathered} \text { 峰面积 } \\ \text { [mAU*B] } \end{gathered}$	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	峰面积 울
1	19.327	MM	0.4326	1.36387 e 4	525.45337	96.7786
2	20.603	MM	0.3822	453.98239	19.79851	3.2214

Figure 110．HPLC spectra of 2 h

$\mathbf{2 h}$（The top one is racemic，and the bottom one is chiral）

峰 \＃	保留时间 ［min］	类型	峰宽 ［min］	峰面积 $[\mathrm{mAU} * \mathrm{~s}]$	$\begin{gathered} \text { 峰高 } \\ \text { [MAU] } \end{gathered}$	峰面积 \％
1	14.130		0.2910	1077.04321	55.85306	49.5612
2	17.256	BB	0.3697	1096．11682	45.08308	50.4388

Figure 111．HPLC spectra of 2 i

| 峰 保留时间 类型
 \＃
 ［min］ | 峰宽
 ［min］ | 峰面积
 ［mAU＊B］ | 峰高 | ［mAU］峰面积 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

峰 \＃	保留时间 ［min］	类型	峰宽 ［min］	$\begin{gathered} \text { 峰面积 } \\ \text { [mAU* } 3 \text {] } \end{gathered}$	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	峰面积 \％
1	9.109		0.1974	1.13534 e 4	958.51825	95.3287
2	9.738		0.1791	556.34009	51.77598	4.6713

Figure 112．HPLC spectra of $\mathbf{2 j}$

$\mathbf{2} \mathbf{j}$（The top one is racemic，and the bottom one is chiral）

峰	保留时间 ［min］	类型	峰宽 [min]	峰面积 $[\mathrm{mAU} * \mathrm{~s}]$	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	峰面积 \％
1	17.991		0.3496	2984.93042	130.12889	50.0440
2	19.286	BB	0.4056	2979.68286	111.57561	49.9560

| 峰 保留时间 类型 | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \＃ | 峰宽
 ［min］ | 峰面积
 ［mAU＊s］ | 峰高
 ［mAU］ | 峰面积 |

Figure 113．HPLC spectra of $2 k$

$\mathbf{2 k}$（The top one is racemic，and the bottom one is chiral）

信号 1：DAD1 A，Sig＝254， 4 Ref＝360， 100

峰	保留时间 ［min］	类型	峰宽 [min]	$\begin{gathered} \text { 峰面积 } \\ {[\mathrm{mAU*s}]} \end{gathered}$	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	峰面积 \％
	10.480		0.2133	4558.25049	325.57504	49.8014
	11.121		0.2304	4594.60596	303.84317	50.19

峰	保留时间 ［min］	类型	峰宽 [min]	峰面积 $\left[\mathrm{mAU}^{*} \mathrm{~s}\right]$	$\begin{aligned} & \text { 峰高 } \\ & \text { [mAU] } \end{aligned}$	峰面积 \％
1	10.491		0.2353	1793.05981	127.00144	94.8763
2	211.135	MM	0.2074	96.83298	7.78169	5.1237

Figure 114．HPLC spectra of 21

$\mathbf{2 l}$（The top one is racemic，and the bottom one is chiral）

峰 \＃	保留时间 ［min］	类型	峰宽 ［min］	$\begin{gathered} \text { 峰面积 } \\ \text { [mAU*s] } \end{gathered}$	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	峰面积 \％
1	14.759		0.2919	2069.95288	107.87402	49.6756
2	15.467	VB	0.3288	2096.98657	96.77274	50.3244

峰 \＃	保留时间 ［min］	类型	峰宽 ［min］	$\begin{gathered} \text { 峰面积 } \\ \text { [mAU*s] } \end{gathered}$	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	峰面积 \％
1	14.780		0.3231	1267.62146	65.38344	96.0405
2	15.568	MM	0.2854	52.26015	3.05154	3.9595

Figure 115．HPLC spectra of 2m

$\mathbf{2 m}$（The top one is racemic，and the bottom one is chiral）

峰 \＃	保留时间 ［min］	类型	峰宽 [min]	$\begin{gathered} \text { 峰面积 } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	峰面积 \％
1	19.480		0.4094	2741.20361	100.12223	51.7716
2	20.415		0.4460	2553.60034	86.61641	48.2284

峰	保留时间 ［min］	类型	峰宽 ［min］	峰面积 $\left[\mathrm{mAU}^{*} \mathrm{~s}\right]$	$\begin{aligned} & \text { 峰高 } \\ & \text { [mAU] } \end{aligned}$	峰面积 \％
1	19.384		0.4299	5272.02148	204.41234	95.0870
2	20.457	MM	0.3761	272.39450	12.07028	4.9130

Figure 116．HPLC spectra of 2n

$\mathbf{2 n}$（The top one is racemic，and the bottom one is chiral）

峰 \#	保留时间 ［min］	类型	峰宽 ［min］	峰面积 $[\mathrm{mAU} * \mathrm{~s}]$	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	峰面积 \％
1	19.468		0.3119	1302.02173	64.38039	49.9371
	22.672		0.3729	1305.30127	53.83696	50.0629

峰 \＃	保留时间 ［min］	类型	峰宽 ［min］	$\begin{gathered} \text { 峰面积 } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	峰面积 \％
1	19.424		0.3414	548.77795	26.79387	92.1054
2	22.654	MM	0.3590	47.03728	2.18365	7.8946

Figure 117．HPLC spectra of 20

20 （The top one is racemic，and the bottom one is chiral）

	保留时间 ［min］	类型	峰宽 ［min］	$\begin{gathered} \text { 峰面积 } \\ \text { [mAU*s] } \end{gathered}$	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	峰面积
1	11.516	BV	0.2220	6730.11670	467.24707	50.3815
2	12.503	VB	0.2416	6628.18408	421.16309	49.6185

峰 保留时间 类型	峰宽	峰面积	峰高	峰面积	
\＃	［min］	［min］	［mAU＊s］	［mAU］	\％

Figure 118．HPLC spectra of 2p

$\mathbf{2 p}$（The top one is racemic，and the bottom one is chiral）

峰 \＃	保留时间 ［min］	类型	峰宽 ［min］	$\begin{gathered} \text { 峰面积 } \\ \text { [mAU*3] } \end{gathered}$	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	峰面积 웅
1	28.660		0.4598	1.00025 e 4	333.56821	49.4918
2	31.510	BB	0.5779	$1.02079 \mathrm{e}^{4}$	271.98752	50.5082

峰 \＃	保留时间 ［min］	类型	峰宽 ［min］	峰面积 $[\mathrm{mAU} * \mathrm{~s}]$	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	峰面积 \％
1	32.663		0.5075	956.60858	31.41396	4.5264
2	34.811		0.6713	2.01772 e 4	500.94193	95.4736

Figure 119．HPLC spectra of 2q

$\mathbf{2 q}$（The top one is racemic，and the bottom one is chiral）

峰 \#	保留时间 ［min］	类型	峰宽 ［min］	$\begin{gathered} \text { 峰面积 } \\ \text { [mAU*s] } \end{gathered}$	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	峰面积 $\%$
	18.636		0.4283	306.29074	10.62653	49.6421
	19.698	VB	0.4469	310.70764	10.15777	5

Figure 120．HPLC spectra of 2r

$\mathbf{2 r}$（The top one is racemic，and the bottom one is chiral）

峰 \＃	保留时间 ［min］	类型	峰宽 ［min］	$\begin{gathered} \text { 峰面积 } \\ \text { [mAU*s] } \end{gathered}$	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	峰面积 \％
	22.542		0.4735	3423.20728	111.08373	49.9619
2	26.185	BB	0.5448	3428.42285	96.43333	50.0381

峰 \＃	保留时间 ［min］	类型	峰宽 ［min］	$\begin{gathered} \text { 峰面积 } \\ \text { [mAU*3] } \end{gathered}$	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	峰面积 \％
	22.499		0.4826	336.29303	11.61428	4.2030
2	26.072		0.6147	7664.88232	207.83022	95.7970

Figure 121．HPLC spectra of 2 s

$2 s$（The top one is racemic，and the bottom one is chiral）

峰 \＃	保留时间 ［min］	类型	峰宽 ［min］	峰面积 $[\mathrm{mAU} * \mathrm{~s}]$	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	峰面积 \％
1	14.813	BV	0.2999	1839.17896	93.32905	49.5029
2	15.550	VB	0.3229	1876.12012	87.93398	50.4971

峰 \＃	保留时间 ［min］	类型	峰宽 ［min］	$\begin{gathered} \text { 峰面积 } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	峰面积 \％
1	14.863	MM	0.3010	119.25154	6.60352	4.9006
2	15.557	VB	0.3189	2314.14966	110.23541	95.0994

Figure 122．HPLC spectra of $2 t$

峰	保留时间 ［min］	类型	峰宽 ［min］	$\begin{gathered} \text { 峰面积 } \\ \text { [mAU*s] } \end{gathered}$	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	峰面积 웅
	21.751		0.5465	8680.01563	239.67952	50.1891
	28.470	BB	0.7197	8614.59961	177.65236	49.810

峰 \#	保留时间 ［min］	类型	峰宽 ［min］	$\begin{gathered} \text { 峰面积 } \\ \text { [mAU*s] } \end{gathered}$	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	峰面积 \％
1	21.300		0.5340	327.78497	9.32783	4.2395
2	27.712		0.7992	7403.88672	154.40346	95.7605

Figure 123．HPLC spectra of 2 u
（The top one is racemic，and the bottom one is chiral）

峰 \＃	保留时间 ［min］	类型	峰宽 ［min］	$\begin{gathered} \text { 峰面积 } \\ \text { [mAU*s] } \end{gathered}$	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	峰面积 \％
1	38.101		0.6993	7579.92383	168．34131	50.3421
2	42.533	BB	0.7598	7476.89844	150.45316	49.6579

峰 \＃	保留时间 ［min］	类型	峰宽 [min]	峰面积 $[\mathrm{mAU} * \mathrm{~s}]$	$\begin{aligned} & \text { 峰高 } \\ & \text { [mAU] } \end{aligned}$	峰面积 \％
1	38.050		0.7458	5951.92285	133.00870	96.7300
2	42.743		0.7078	201.20631	4.73791	3.2700

Figure 124．HPLC spectra of 2 v

$\mathbf{2 v}$（The top one is racemic，and the bottom two are chiral）

This one is prepared from cis－substrate（ $Z-1 \mathbf{v}$ ）．

$\begin{gathered} \text { 峰 } \\ \# \end{gathered}$	保留时间 $[\mathrm{min}]$	类型	峰宽 [min]	$\begin{aligned} & \text { 峰面积 } \\ & {[\mathrm{mAU} \text { ºs] }} \end{aligned}$	$\begin{gathered} \text { 峰高 } \\ {[\mathrm{mAU}]} \end{gathered}$	峰面积
1	34.931		0.6271	1085.71582	28.85613	13.5556
2	36.551		0.8102	6923.62500	142.43466	86.4444

Figure 125．HPLC spectra of 3v

峰 \＃	保留时间 ［min］	类型	峰宽 ［min］	$\begin{gathered} \text { 峰面积 } \\ \text { [mAU*s] } \end{gathered}$	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	峰面积 \％
1	30.914		0.5304	2232.65527	64.41662	49.7538
2	32.279		0.5785	2254.75366	58.91465	50.2462

峰 \＃	保留时间 ［min］	类型	峰宽 ［min］	$\begin{gathered} \text { 峰面积 } \\ \text { [mAU*s] } \end{gathered}$	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	峰面积 \％
1	31.262		0.4681	70.68752	2.51670	5.5705
2	32.378	MM	0.6247	1198.28235	31.96801	94.4295

Figure 126．HPLC spectra of 3a

3a（The top one is racemic，and the bottom one is chiral）

DAD1 E， $\mathrm{Sig}=280,16$ Ret $=360,100$（I： H HPLC DATAIPBD \backslash PBD－E－2 4 PBD－E－059（00）．D）

峰 \#	保留时间 ［min］	类型	峰宽 ［min］	$\begin{gathered} \text { 峰面积 } \\ \text { [mAU*s] } \end{gathered}$	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	峰面积 \％
	5.130	MM	0.1059	17.85892	2.81030	50.0711
	5.798	MM	0.1181	17.80818	2.51357	49.9289

峰 \＃	保留时间 ［min］	类型	峰宽 ［min］	峰面积 $[\mathrm{mAU} * \mathrm{~s}]$	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	峰面积 \％
1	5.327		0.1174	1138.82593	161.69975	95.6798
2	5.744	MM	0.1240	51.42119	6.90924	4.3202

Figure 127．HPLC spectra of 4a

$\mathrm{OH} \mathbf{4 a}$（The top one is racemic，and the bottom one is chiral）

| 峰 保留时间 类型 | 峰竞
 ［min］
 ［min］ | 峰面积
 ［mAU＊s］ | 峰高 | ［mAU］峰面积 |
| :---: | :---: | :---: | :---: | :---: | :---: |

| 峰 保留时间 类型 | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \＃峰宽 | 峰面积
 ［min］ | ［min］ | 峰高
 ［mAUs］ | ［mAU］峰面积 |

6. X-ray Crystallogaphic Data

Figure 128. X-Ray Crystallographic Data for Compound(R)-4a

Structure factors have been supplied for datablock(s) (CCDC: 2076650)

Bond precision:
Cell:
$\mathrm{C}-\mathrm{C}=0.0025 \mathrm{~A}$
$\mathrm{a}=7.90381$ (18) alpha=90 $\mathrm{b}=8.25775(16) \quad \mathrm{c}=12.5469$ (3)

150 K Calculated

Reported
Volume
Space group 777.98(3) 777.98(3)

Hall group
P 21
P2yb
P 1211
P 2yb
Moiety formula
C18 H19 N O3
C18 H19 N O3
Sum formula
C18 H19 N O3
Mr 297.34

Dx, g cm-3
1.269

2
0.698 beta $=108.190(3) \quad$ gamma $=90$
Temperature:

Z
Mu (mm-1)
316.0

C18 H19 N O3

$$
297.34
$$

1.269

F000 316.96

F000'
9,10,15
9,10,15
h,k,lmax
3247[1738]
2225
Nref
0.935,0.966
0.954,1.000

Tmin,Tmax 0.864

Correction method= \# Reported T Limits: Tmin=0.954 Tmax=1.000
AbsCorr $=$ MULTI-SCAN
Data completeness=1.28/0.69
R (reflections) $=0.0278$ (2186)
Theta $(\max)=75.960$

S = 1.064

$$
w R 2 \text { (reflections) }=0.0722(2225)
$$

$$
\text { Npar= } 201
$$

