Supporting Information for

Iridium-Catalyzed Intramolecular Asymmetric Allylic Etherification of Salicylic Acid Derivatives with Chiral-Bridged Biphenyl Phosphoramidite Ligands

Bendu Pan,[†] Jia-Sheng Ouyang,[†] Yaqi Zhang,[†] Hao Liang,[†] Qiang Ni,[†] Bin Chen,[†] Xiaoyun Pu,[†] Long Jiang,[‡] Rihui Cao[†] and Liqin Qiu^{*,†}

[†]School of Chemistry, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-Sen University, Guangzhou 510275, China

[‡]Instrumental Analysis and Research Centre, Sun Yat-sen University,

Guangzhou 510275, China

*Email: qiuliqin@mail.sysu.edu.cn

Table of Contents:

1. General considerations	S1
2. Table S1 Optimization of Reaction Conditions	S2
3. Experimental Procedures	S3
3.1 General Procedure for the Synthesis of Salicylic Acid Derivatives 1	
3.2 General Procedure for the Allylic Etherification of 1	S15
3.3 Gram-scale Reaction	S30
3.4 Procedure for the Synthesis of 3v	S30
3.5 Procedure for the Synthesis of 3a	S31
3.6 Procedure for the Synthesis of 4a	
4.Copies of NMR Spectra	S35
5. Copies of HPLC Chromatograms	
6. X-ray Crystallogaphic Data	S111

1. General considerations

Unless otherwise stated, all syntheses and manipulations of air- and moisture-sensitive materials were carried out in a nitrogen-filled glovebox or under nitrogen atmosphere using standard Schlenk techniques. All glassware was oven-dried immediately prior to use. All solvents were freshly distilled and degassed according to standard methods. Reactions were magnetically stirred and monitored by analytical thin-layer chromatography (TLC). TLC was performed on Merck silica gel 60 F254 TLC glass plates and visualized by exposure to ultraviolet light. Organic solutions were concentrated by rotary evaporation at 20 - 45 °C.

All chemicals and reagents available from commercial sources were directly used without further purification. Chromatographic purification of products was accomplished using forced-flow chromatography on silica gel (200 – 300 mesh). ¹H, ¹⁹F, and ¹³C NMR spectra were recorded on a Bruker Ascend 400 MHz spectrometer at ambient temperature. High-resolution mass spectra (HRMS) were obtained with Shimazu LC-20AT mass spectrometer. Optical rotations were measured on SGW®-5 automatic polarimeter. Enantiomeric excesses (ee values) of the products were determined by chiral HPLC analysis using an Aglient HP 1200 instrument (n-hexane/2-propanol as eluent) with a Chiralpak IF-3 or IA-3 Column. The phosphoramidite ligands L1 – L8 were prepared according to the reported procedures.

2. Table S1 Optimization of Reaction Conditions $a_{\text{SEP}}^{(1)}$

entry	solvent	ligand	base	t[°C]	T[h]	yield[%] ^b	$ee[\%]^c$
1	THF	L1	DBU	0	10	91	90
2	THF	L2	DBU	0	10	92	-90
3	THF	L3	DBU	0	20	trace	\
4	THF	L4	DBU	0	8	94	92
5	THF	L5	DBU	0	20	32	-51
6	THF	L6	DBU	0	20	37	-89
7	THF	L7	DBU	0	8	96	93
8	THF	L8	DBU	0	20	63	87
9	THF	L7	K_3PO_4	0	16	95	88
10	THF	L7	DABCO	0	16	93	89
11	THF	L7	Et ₃ N	0	16	84	88
12	THF	L7	Cs_2CO_3	0	16	67	84
13	THF	L7	\	0	16	61	84
14	DME	L7	DBU	0	22	76	91
15	dioxane	L7	DBU	0	22	79	87
16	DCE	L7	DBU	0	22	94	79
17	DCM	L7	DBU	0	22	87	73
18	MTBE	L7	DBU	0	22	94	78
19	PhMe	L7	DBU	0	22	91	89
20	THF	L7	DBU	-10	8	96	92
21	THF	L7	DBU	10	2	94	92
22	THF	L1	DBU	rt	0.5	92	90
23	THF	L7	DBU	rt	10 min	94	92
24	THF	L7	DBU	40	10 min	92	91
25	THF	L7	DBU	50	10 min	90	85
26^d	THF	L7	DBU	rt	10 min	96	93
27^{e}	THF	L7	DBU	rt	10 min	30	92

^{*a*} Conditions: [Ir(cod)Cl]₂ (4 mol %), ligand (8 mol %), base (0.2 mmol), and **1a** (0.1 mmol) in solvent (2.0 mL). ^{*b*} Isolated yields. ^{*c*} Determined by chiral HPLC analysis. ^{*d*} 2 mol % of Ir catalyst was used. ^{*e*} 1 mol % of Ir catalyst was used.

3. Experimental Procedures

3.1 General Procedure for the Synthesis of Salicylic Acid Derivatives 1

To a solution of substituted salicylic acids **5** (2 mmol, 1.0 equiv.) in DMF (10 mL), 1-hydroxybenzotrizole (HOBt) (297 mg, 2.2 mmol, 1.1 equiv.) and *N*-(3-dimethylaminopropyl)-*N'*-ethylcarbodiimide hydrochloride (EDC·HCl) (422 mg, 2.2 mmol, equiv.) were added. This mixture was stirred for 30 minutes at room temperature, then compounds **6** (2 mmol, 1.0 equiv.) was added. After the reaction was complete (monitored by TLC), the crude reaction mixture was diluted with EtOAc (20 mL) and washed with water (10 mL x 3) and brine (15 mL x 3). The combined organic layers were dried over Na₂SO₄. Afterwards, the solvents were removed under reduced pressure. The residue was purified by silica gel column chromatography (petroleum/EtOAc = 3 : 1) to afford the desired compounds **1**.

(E)-4-(N-benzyl-2-hydroxybenzamido)but-2-en-1-yl methyl carbonate (1a)

Yellow oil, 0.67 g, 95% yield; ¹H NMR (400 MHz, CDCl₃) δ 9.78 (s, 1H), 7.47 – 7.26 (m, 7H), 7.05 (d, J = 8.2 Hz, 1H), 6.80 (t, J = 7.4 Hz, 1H), 5.91 (m, 1H), 5.83 – 5.65 (m, 1H), 4.76 (s, 2H), 4.69 (d, J = 5.2 Hz, 2H), 4.09 (d, J = 4.8 Hz, 2H), 3.83 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.42, 159.09, 155.52, 136.13, 132.93, 129.39, 128.95, 127.77, 127.55, 127.43, 118.65, 118.28, 118.19, 117.06, 67.29, 54.92. HRMS (ESI) calcd for C₂₀H₂₁NO₅ [M+H]⁺: 356.1493, Found: 356.1485.

(*E*)-4-(*N*-benzyl-2-hydroxy-4-methylbenzamido)but-2-en-1-yl methyl carbonate (1b)

Yellow oil, 0.63 g, 85% yield; ¹H NMR (400 MHz, CDCl₃) δ 10.01 (s, 1H), 7.43 – 7.27 (m, 5H), 7.21 (d, *J* = 8.0 Hz, 1H), 6.85 (s, 1H), 6.60 (d, *J* = 7.9 Hz, 1H), 5.91 (m, 1H), 5.83 – 5.70 (m, 1H), 4.75 (s, 2H), 4.69 (d, *J* = 5.5 Hz, 2H), 4.07 (d, *J* = 5.1 Hz, 2H), 3.83 (s, 3H), 2.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.64, 159.39, 155.53, 143.93, 136.24, 129.52, 128.93, 127.71, 127.43, 127.36, 119.62, 118.46, 114.04, 67.33, 54.92, 21.54. HRMS (ESI) calcd for C₂₁H₂₃NO₅ [M+H]⁺: 370.1649, Found: 370.1643.

(E)-4-(N-benzyl-2-hydroxy-5-methylbenzamido)but-2-en-1-yl methyl

carbonate (1c)

Yellow oil, 0.61 g, 83% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.34 (m, 5H), 7.20 – 7.09 (m, 2H), 6.94 (d, J = 8.4 Hz, 1H), 5.96 – 5.85 (m, 1H), 5.82 – 5.71 (m, 1H), 4.75 (s, 2H), 4.69 (d, J = 5.5 Hz, 2H), 4.08 (d, J = 5.0 Hz, 2H), 3.83 (s, 3H), 2.19 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.41, 156.24, 155.54, 136.29, 133.47, 129.63, 128.89, 127.89, 127.72, 127.57, 127.44, 117.82, 117.33, 67.33, 54.91, 20.42. HRMS (ESI) calcd for C₂₁H₂₃NO₅ [M+H]⁺: 370.1661, Found: 370.1642.

(*E*)-4-(*N*-benzyl-2-hydroxy-6-methylbenzamido)but-2-en-1-yl methyl carbonate (1d)

Yellow oil, 0.63 g, 85% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.27 (m, 5H), 7.21 (d, *J* = 8.0 Hz, 1H), 6.85 (s, 1H), 6.60 (d, *J* = 7.8 Hz, 1H), 5.90 (m, 1H), 5.77 (m, 1H), 4.75 (s, 2H), 4.69 (m, 2H), 4.08 (d, *J* = 8.0 Hz, 2H), 3.83 (s, 3H), 2.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.44, 155.57, 152.88, 135.48, 129.98, 128.69, 128.36, 127.66, 122.00, 114.21, 67.41, 54.90, 19.14. HRMS (ESI) calcd for C₂₁H₂₃NO₅ [M+H]⁺: 370.1661, Found: 370.1642.

(*E*)-4-(*N*-benzyl-2-hydroxy-3-methoxybenzamido)but-2-en-1-yl methyl carbonate (1e)

Yellow oil, 0.72 g, 93% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.32 (m, 5H), 6.92 (d, *J* = 3.7 Hz, 2H), 6.86 (d, *J* = 7.1 Hz, 1H), 5.82 (m, 1H), 5.72 (m, 1H), 4.68 (s, 2H), 4.65 (d, J = 4.0 Hz, 2H), 3.99 (d, J = 4.0 Hz, 2H), 3.92 (s, 3H), 3.82 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.23, 155.54, 147.60, 144.55, 136.49, 129.92, 128.74, 127.69, 127.56, 126.90, 120.91, 119.65, 119.57, 112.47, 67.47, 56.19, 54.89, 53.44. HRMS (ESI) calcd for C₂₁H₂₃NO₆ [M+H]⁺: 386.1610, Found: 386.1588.

(*E*)-4-(*N*-benzyl-2-hydroxy-4-methoxybenzamido)but-2-en-1-yl methyl carbonate (1f)

Yellow oil, 0.56g, 73% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.35 (m, 6H), 6.55 (d, *J* = 2.3 Hz, 1H), 6.33 (dd, *J* = 8.7, 2.1 Hz, 1H), 5.92 (m, 1H), 5.85 – 5.71 (m, 1H), 4.74 (s, 2H), 4.69 (d, *J* = 8.0 Hz, 2H), 4.08 (d, *J* = 4.0 Hz, 2H), 3.83 (s, 3H), 3.82 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.85, 163.52, 162.36, 155.52, 136.29, 129.58, 128.94, 127.70, 127.42, 108.94, 105.95, 102.06, 67.33, 55.37, 54.90, 50.79, 48.76. HRMS (ESI) calcd for C₂₁H₂₃NO₆ [M+H]⁺: 386.1610, Found: 386.1589.

(*E*)-4-(*N*-benzyl-2-hydroxy-5-methoxybenzamido)but-2-en-1-yl methyl carbonate (1g)

Yellow oil, 0.67 g, 87% yield; ¹H NMR (400 MHz, CDCl₃) δ 9.41 – 8.94 (m, 1H), 7.37 (m, 5H), 6.93 (m, 3H), 6.11 – 5.71 (m, 2H), 4.76 (s, 2H), 4.70 (d, *J* = 4.0 Hz, 2H), 4.10 (m, 2H), 3.83 (s, 3H), 3.51 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.20, 155.54, 152.50, 151.77, 136.29, 129.45, 128.98, 127.74, 127.51, 127.24, 119.87, 118.94, 117.40, 111.21, 67.29, 55.52, 54.90, 48.50. HRMS (ESI) calcd for C₂₁H₂₃NO₆ [M+H]⁺: 386.1610, Found: 386.1589.

(*E*)-4-(*N*-benzyl-2-hydroxy-6-methoxybenzamido)but-2-en-1-yl methyl carbonate (1h)

Brown oil, 0.67 g, 87% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.10 (s, 1H), 7.26 (m, 6H), 6.57 (d, J = 8.0 Hz, 1H), 6.43 (d, J = 7.4 Hz, 1H), 5.80 (m, 1H), 5.74 – 5.45 (m, 1H), 4.86 – 4.21 (m, 4H), 3.79 (m, 8H). ¹³C NMR (101 MHz, CDCl₃) δ 168.86, 156.43, 156.35, 156.33, 156.01, 155.96, 155.91, 155.88, 155.62, 155.57, 136.55, 136.38, 136.33, 131.14, 131.11, 130.47, 129.63, 128.57, 127.89, 127.84, 127.59, 127.25, 127.22, 125.83, 111.70, 111.60, 110.12, 102.30, 67.85, 67.34, 55.55, 54.85, 52.15, 49.62, 47.15, 44.78. HRMS (ESI) calcd for C₂₁H₂₃NO₆ [M+H]⁺: 386.1610, Found: 386.1589.

(*E*)-4-(*N*-benzyl-4-fluoro-2-hydroxybenzamido)but-2-en-1-yl methyl carbonate (1i)

Brown oil, 0.64 g, 86% yield; ¹H NMR (400 MHz, CDCl₃) δ 10.46 (s, 1H), 7.47 – 7.28 (m, 6H), 6.73 (m, 1H), 6.51 (m, 1H), 5.91 (m, 1H), 5.83 – 5.73 (m, 1H), 4.74 (s, 2H), 4.69 (d, *J* = 8.0 Hz, 2H), 4.07 (d, *J* = 4.9 Hz, 2H), 3.83 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.99, 162.95 (d, J = 221.0 Hz), 161.71, 155.52, 135.94, 129.16 (dd, *J* = 15.8, 12.0 Hz), 127.77 (d, *J* = 16.6 Hz), 127.37, 113.19, 106.30, 106.08, 105.37, 105.14, 67.23, 54.92, 50.68, 48.70. ¹⁹F NMR (376 MHz, CDCl₃) δ -105.28. HRMS (ESI) calcd for C₂₀H₂₀FNO₅ [M+H]⁺: 374.1409, Found: 374.1390.

(*E*)-4-(*N*-benzyl-5-fluoro-2-hydroxybenzamido)but-2-en-1-yl methyl carbonate (1j)

Brown oil, 0.64 g, 86% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.28 (m, 5H), 7.03 (m, 3H), 5.90 (m, 1H), 5.86 (m, 1H), 4.73 (s, 2H), 4.69 (d, *J* = 4.0 Hz, 2H), 4.06 (d, *J* = 4.9 Hz, 2H), 3.83 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.11, 155.52, 154.95 (d, *J* = 237.0 Hz), 154.57, 135.80, 129.05 (d, *J* = 8.9 Hz), 127.91, 127.61 (d, *J* = 23.4 Hz), 119.80, 119.57, 119.23 (d, *J* = 7.6 Hz), 117.92, 113.54, 113.30, 67.19, 54.93, 50.41, 48.58. ¹⁹F NMR (376 MHz, CDCl₃) δ -124.04. HRMS (ESI) calcd for C₂₀H₂₀FNO₅ [M+H]⁺: 374.1409, Found: 374.1392. (*E*)-4-(*N*-benzyl-4-chloro-2-hydroxybenzamido)but-2-en-1-yl methyl carbonate (1k)

Brown oil, 0.57 g, 73% yield; ¹H NMR (400 MHz, CDCl₃) δ 10.13 (s, 1H), 7.46 – 7.25 (m, 6H), 7.03 (d, *J* = 1.4 Hz, 1H), 6.78 (d, *J* = 8.1 Hz, 1H), 5.88 (m, 1H), 5.83 – 5.70 (m, 1H), 4.72 (s, 2H), 4.68 (d, *J* = 8.0 Hz, 2H), 4.06 (d, *J* = 4.8 Hz, 2H), 3.83 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.70, 159.81, 155.52, 138.37, 135.87, 129.08, 129.01, 128.37, 127.87, 127.71, 127.41, 119.12, 118.35, 115.87, 115.83, 67.22, 54.93, 50.67, 48.62. HRMS (ESI) calcd for C₂₀H₂₀ClNO₅ [M+H]⁺: 390.1114, Found: 390.1094.

(*E*)-4-(*N*-benzyl-5-chloro-2-hydroxybenzamido)but-2-en-1-yl methyl carbonate (11)

Brown oil, 0.5 g, 64% yield; ¹H NMR (400 MHz, CDCl₃) δ 9.60 (s, 1H), 7.46 – 7.23 (m, 7H), 6.97 (d, J = 8.5 Hz, 1H), 5.89 (m, 1H), 5.79 (m, 1H), 4.73 (s, 2H), 4.69 (d, J = 4.0 Hz, 2H), 4.06 (d, J = 5.2 Hz, 2H), 3.91 – 3.66 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.01, 157.15, 155.52, 135.79, 132.60, 129.02, 129.00, 127.92, 127.85, 127.58, 127.04, 123.58, 119.53, 118.68, 67.18, 54.94, 50.52, 49.00. HRMS (ESI) calcd for C₂₀H₂₀ClNO₅ [M+H]⁺: 390.1114, Found: 390.1093.

(*E*)-4-(*N*-benzyl-5-bromo-2-hydroxybenzamido)but-2-en-1-yl methyl

carbonate (1m)

Pale yellow oil, 0.81 g, 93% yield; ¹H NMR (400 MHz, CDCl₃) δ 9.49 (s, 1H), 7.32 (m, 7H), 6.83 (d, *J* = 8.7 Hz, 1H), 5.88 – 5.79 (m, 1H), 5.78 – 5.68 (m, 1H), 4.69 (s, 2H), 4.65 (d, *J* = 8.0 Hz, 2H), 4.01 (m, 2H), 3.81 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.60, 156.21, 155.53, 135.87, 134.86, 129.94, 129.10, 128.92, 127.84, 127.70, 120.91, 119.61, 110.73, 67.23, 60.45, 54.92, 48.59. HRMS (ESI) calcd for C₂₀H₂₀BrNO₅ [M+H]⁺: 434.0609, Found: 434.0589.

(*E*)-4-(*N*-benzyl-2-hydroxy-4-nitrobenzamido)but-2-en-1-yl methyl carbonate (1n)

Brown oil, 0.74 g, 92% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 1.8 Hz, 1H), 7.66 (d, *J* = 8.0 Hz, 1H), 7.47 – 7.25 (m, 6H), 5.84 (m, 1H), 5.77 (m, 1H), 4.70 (s, 2H), 4.67 (d, *J* = 4.0 Hz, 2H), 4.02 (d, *J* = 3.7 Hz, 2H), 3.83 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.11, 157.71, 155.54, 149.86, 135.44, 129.04, 128.63, 128.10, 128.04, 127.93, 113.87, 112.84, 67.15, 54.98. HRMS (ESI) calcd for C₂₀H₂₀N₂O₇ [M+H]⁺: 401.1355, Found: 401.1335.

(*E*)-4-(*N*-benzyl-2-hydroxy-4-(trifluoromethyl)benzamido)but-2-en-1-yl methyl carbonate (10)

Pale yellow oil, 0.8 g, 95% yield; ¹H NMR (400 MHz, CDCl₃) δ 9.85 (s, 1H), 7.48 – 7.36 (m, 4H), 7.28 (d, *J* = 9.3 Hz, 3H), 7.06 (d, *J* = 7.3 Hz, 1H), 5.88 (m, 1H), 5.77 (m, 1H), 4.73 (s, 2H), 4.68 (d, *J* = 8.0 Hz, 2H), 4.06 (m, 2H), 3.83 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.97, 158.26, 155.53, 135.68, 134.35, 134.02, 129.04, 128.88, 127.95, 127.93, 127.81, 124.65, 121.94, 121.18, 115.33 (dd, *J* = 25.2, 3.7 Hz), 67.20, 58.45, 54.96, 53.43. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.51. HRMS (ESI) calcd for C₂₁H₂₀F₃NO₅ [M+H]⁺: 424.1378, Found: 424.1357.

(*E*)-4-(*N*-benzyl-3-hydroxy-2-naphthamido)but-2-en-1-yl methyl carbonate (1p)

Pale yellow oil, 0.75 g, 92% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.86 (s, 1H), 7.65 (d, *J* = 8.2 Hz, 1H), 7.50 – 7.29 (m, 9H), 5.93 (m, 1H), 5.85 – 5.76 (m, 1H), 4.80 (s, 2H), 4.70 (d, *J* = 5.3 Hz, 2H), 4.13 (m, 2H), 3.84 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.82, 155.56, 153.80, 136.14, 135.86, 129.43, 128.96, 128.44, 127.99, 127.82, 127.57, 126.96, 126.32, 123.99, 120.72, 112.17, 67.30, 54.93. HRMS (ESI) calcd for C₂₄H₂₃NO₅ [M+H]⁺: 406.1665, Found: 406.1642. (*E*)-4-(*N*-benzyl-3-hydroxyisonicotinamido)but-2-en-1-yl methyl carbonate (1q)

Yellow oil, 0.67 g, 87% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.57 (s, 1H), 8.13 (s, 1H), 7.45 – 7.23 (m, 6H), 5.76 (m, 2H), 4.66 (s, 2H), 4.64 (m, 2H), 4.04 (m, 2H), 3.83 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.25, 155.49, 150.99, 139.67, 138.55, 135.84, 130.62, 128.80, 127.78, 121.94, 67.18, 60.43, 54.89, 53.49. HRMS (ESI) calcd for C₁₉H₂₀N₂O₅ [M+H]⁺: 357.1455, Found: 357.1438.

(*E*)-4-(*N*-benzyl-2-hydroxy-4-(thiophen-3-yl)benzamido)but-2-en-1-yl methyl carbonate (1r)

Yellow oil, 0.75 g, 86% yield; ¹H NMR (400 MHz, CDCl₃) δ 10.17 (s, 1H), 7.53 (s, 1H), 7.45 – 7.29 (m, 9H), 7.04 (d, *J* = 7.9 Hz, 1H), 5.93 (m, 1H), 5.79 (m, 1H), 4.78 (s, 2H), 4.71 (d, *J* = 5.1 Hz, 2H), 4.11 (d, *J* = 4.4 Hz, 2H), 3.84 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.34, 159.85, 155.53, 140.96, 140.25, 136.15, 129.38, 128.99, 128.02, 127.78, 127.58, 126.52, 126.09, 121.79, 116.74, 115.58, 115.34, 67.31, 54.93. HRMS (ESI) calcd for C₂₄H₂₃NO₅S [M+H]⁺: 438.1386, Found: 438.1361.

(*E*)-4-(*N*-benzyl-4-(furan-2-yl)-2-hydroxybenzamido)but-2-en-1-yl methyl carbonate (1s)

Brown oil, 0.78 g, 93% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.51 (s, 1H), 7.37 (m, 7H), 7.11 (d, J = 8.1 Hz, 1H), 6.73 (s, 1H), 6.50 (s, 1H), 5.93 (m, 1H), 5.79 (m, 1H), 4.77 (s, 2H), 4.70 (d, J = 5.2 Hz, 2H), 4.10 (d, J = 4.7 Hz, 2H), 3.84 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.31, 159.83, 155.53, 152.71, 143.00, 136.11, 135.05, 129.35, 128.98, 128.03, 127.78, 127.61, 127.40, 115.31, 114.07, 112.80, 111.90, 107.15, 67.29, 54.93. HRMS (ESI) calcd for C₂₄H₂₃NO₆ [M+H]⁺: 422.1614, Found: 422.1591.

(*E*)-4-(*N*-benzyl-2-hydroxy-4-(6-methoxypyridin-3-yl)benzamido)but-2-en-1-yl methyl carbonate (1t)

Yellow oil, 0.8 g, 87% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.38 (s, 1H), 7.78 (d, *J* = 8.5 Hz, 1H), 7.43 – 7.28 (m, 6H), 7.19 (s, 1H), 6.96 (d, *J* = 7.7 Hz, 1H), 6.82 (d, *J* = 8.5 Hz, 1H), 5.92 (m, 1H), 5.83 – 5.69 (m, 1H), 4.77 (s, 2H), 4.69 (d, *J* = 5.5 Hz, 2H), 4.09 (d, *J* = 5.1 Hz, 2H), 3.99 (s, 3H), 3.82 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.12, 164.02, 159.39, 159.32, 155.53, 144.98, 142.26, 137.40, 136.09, 129.34, 128.98, 128.69, 128.18, 127.79, 127.56, 127.43, 116.91, 115.71, 110.99, 67.97, 67.31, 54.94, 53.75. HRMS (ESI) calcd for C₂₆H₂₆N₂O₆ [M+H]⁺: 463.1882, Found: 463.1853.

 $(E) \hbox{-} 4 \hbox{-} (N \hbox{-} benzyl \hbox{-} 2 \hbox{-} hydroxy \hbox{-} 4 \hbox{-} (naphthalen \hbox{-} 2 \hbox{-} yl) benzamido) but \hbox{-} 2 \hbox{-} en \hbox{-} 1 \hbox{-} yl$

methyl carbonate (1u)

ÓCO₂Me

Yellow oil, 0.87 g, 90% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (m, 3H), 7.64 – 7.31 (m, 12H), 7.22 (s, 1H), 6.96 (d, *J* = 7.7 Hz, 1H), 5.96 (m, 1H), 5.82 (m, 1H), 4.84 (s, 2H), 4.72 (d, *J* = 4.5 Hz, 2H), 4.17 (d, *J* = 3.4 Hz, 2H), 3.84 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.30, 158.96, 155.56, 145.69, 138.98, 136.22, 133.77, 131.17, 129.49, 128.99, 128.33, 128.19, 127.90, 127.80, 127.56, 127.37, 126.71, 126.25, 125.93, 125.78, 125.31, 120.65, 119.63, 116.15, 67.34, 55.41, 54.94. HRMS (ESI) calcd for C₃₀H₂₇NO₅ [M+H]⁺: 482.1917, Found: 482.1953.

(*E*)-4-(2-hydroxy-*N*-(4-methoxybenzyl)benzamido)but-2-en-1-yl methyl carbonate (1v)

Yellow oil, 0.74 g, 96% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.28 (m, 2H), 7.23 (d, *J* = 8.1 Hz, 2H), 7.03 (d, *J* = 8.2 Hz, 1H), 6.92 (d, *J* = 8.4 Hz, 2H), 6.81 (t, *J* = 7.4 Hz, 1H), 5.80 (m, 2H), 4.69 (s, 2H), 4.52 (d, *J* = 4.2 Hz, 2H), 4.12 (d, *J* = 5.3 Hz, 2H), 3.83 (s, 3H), 3.79 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.20, 171.15, 159.28, 158.78, 155.51, 132.74, 129.65, 128.81, 127.91, 127.62, 127.21, 118.73, 118.12, 114.36, 63.01, 60.40, 55.31, 54.87. HRMS (ESI) calcd for C₂₁H₂₃NO₆ [M+H]⁺: 386.1598, Found: 386.1591.

(Z)-4-(2-hydroxy-*N*-(4-methoxybenzyl)benzamido)but-2-en-1-yl methyl carbonate ((Z)-1v)

Yellow oil, 0.73 g, 95% yield; ¹H NMR (400 MHz,) δ 7.36 – 7.27 (m, 2H), 7.23 (d, *J* = 7.9 Hz, 2H), 7.03 (d, *J* = 8.2 Hz, 1H), 6.92 (d, *J* = 8.1 Hz, 2H), 6.81 (t, *J* = 7.5 Hz, 1H), 5.80 (m, 2H), 4.69 (s, 2H), 4.52 (d, *J* = 4.3 Hz, 2H), 4.14 – 4.10 (m, 2H), 3.83 (s, 3H), 3.79 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.20, 159.28, 158.78, 155.51, 132.74, 129.65, 128.81, 127.91, 127.62, 127.21, 118.73, 118.12, 117.57, 114.36, 67.32, 63.01, 60.40, 55.31, 54.87.

3.2 General Procedure for the Allylic Etherification of 1

In a dry Schlenk tube filled with argon, $[Ir(cod)Cl]_2$ (2.7 mg, 0.004 mmol, 2 mol %), phosphoramidite ligand L7 (4.1 mg, 0.008 mmol, 4 mol %), and *n*-propylamine (0.5 mL) were dissolved in THF (1.0 mL). The reaction mixture was heated at 50 °C for 30 min and then the volatile solvents were removed in vacuum to give a yellow solid. In this tube, allylic carbonates 1 (0.2 mmol), DBU (61 mg, 0.4 mmol, 200 mol %) and THF (2.0 mL) were added and stirred at 25 °C until the reaction was complete. Then the solvent was evaporated and the residue was purified by silica gel column chromatography using

petroleum/EtOAc as the eluent to give the desired products. (**2v** is prepared from (**Z**)-**1v** in the same way.)

(R)-4-Benzyl-2-vinyl-3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one (2a)

R_f = 0.50 (petroleum/EtOAc = 2 : 1, v/v); yellow oil, 53.6 mg, 96% yield; 93% ee [Daicel Chiralcel IF-3 (0.46 cm x 25 cm), *n*-hexane/2-propanol = 80/20, $v = 1.0 \text{ mL} \cdot \text{min}^{-1}$, T = 25 °C, $\lambda = 254 \text{ nm}$, t _R (minor) = 12.051 min, t _R (major) = 12.358 min]; [α]_D²⁵ = +4.3° (c = 0.70, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.87 (dd, J = 7.7, 1.7 Hz, 1H), 7.47 – 7.42 (m, 1H), 7.40 – 7.35 (m, 4H), 7.35 – 7.29 (m, 1H), 7.23 (td, J = 7.6, 1.1 Hz, 1H), 7.03 (dd, J = 8.1, 0.8 Hz, 1H), 5.83 (ddd, J = 17.1, 10.6, 6.3 Hz, 1H), 5.35 (m, 1H), 5.26 (m, 1H), 5.16 (d, J = 14.8 Hz, 1H), 4.77 – 4.69 (m, 1H), 4.58 (d, J = 14.8 Hz, 1H), 3.40 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 168.84, 152.78, 137.01, 134.19, 132.74, 130.76, 128.79, 128.24, 127.75, 124.11, 122.57, 118.24, 84.10, 51.01, 49.60. HRMS (ESI) calcd for C₁₈H₁₇NO₂ [M+H]⁺: 280.1341, Found: 280.1328.

(*R*)-4-Benzyl-8-methyl-2-vinyl-3,4-dihydrobenzo[*f*][1,4]oxazepin-5(2*H*)-one (2b)

 $R_f = 0.50$ (petroleum/EtOAc = 2 : 1, v/v); yellow oil, 55.1 mg, 94% yield; 92% ee [Daicel Chiralcel IF-3 (0.46 cm x 25 cm), *n*-hexane/2-propanol = 80/20, v = 1.0 mL•min⁻¹, T = 25 °C, $\lambda = 254$ nm, t_R (minor) = 13.913 min, t_R (major) =

15.770 min]; $[\alpha]_D^{25} = +62.6^\circ$ (c = 0.70, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 7.9 Hz, 1H), 7.43 – 7.31 (m, 5H), 7.09 – 7.00 (m, 1H), 6.88 – 6.78 (m, 1H), 5.82 (ddd, J = 17.0, 10.6, 6.3 Hz, 1H), 5.33 (m, 1H), 5.25 (m, 1H), 5.14 (d, J = 14.8 Hz, 1H), 4.71 (m, 1H), 4.57 (d, J = 14.8 Hz, 1H), 3.39 (m, 2H), 2.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.91, 152.78, 143.58, 137.11, 134.34, 130.72, 128.76, 128.24, 127.69, 125.05, 124.88, 122.84, 118.09, 83.93, 51.01, 49.75, 25.37, 21.34. HRMS (ESI) calcd for C₁₉H₁₉NO₂ [M+H]⁺: 294.1498, Found: 294.1484.

(*R*)-4-Benzyl-7-methyl-2-vinyl-3,4-dihydrobenzo[*f*][1,4]oxazepin-5(2*H*)-one (2c)

R_f = 0.50 (petroleum/EtOAc = 2 : 1, v/v); yellow oil, 58.1 mg, 99% yield; 96% ee [Daicel Chiralcel IA-3 (0.46 cm x 25 cm), *n*-hexane/2-propanol = 93/7, v = 1.0 mL•min⁻¹, T = 25 °C, λ = 254 nm, t _R (minor) = 19.212 min, t _R (major) = 18.091 min]; [α]_D²⁵ = +63.7° (c = 0.70, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.65 (s, 1H), 7.49 – 7.31 (m, 5H), 7.24 (d, *J* = 8.0 Hz, 1H), 6.93 (d, *J* = 8.2 Hz, 1H), 5.83 (ddd, *J* = 17.0, 10.2, 6.7 Hz, 1H), 5.34 (d, *J* = 17.2 Hz, 1H), 5.25 (d, *J* = 10.6 Hz, 1H), 5.13 (d, *J* = 14.8 Hz, 1H), 4.76 – 4.66 (m, 1H), 4.59 (d, *J* = 14.8 Hz, 1H), 3.37 (m, 2H), 2.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.09, 150.50, 137.11, 134.33, 133.81, 133.38, 130.81, 128.77, 128.21, 128.05, 127.70, 122.37, 118.13, 83.90, 50.96, 49.63, 20.62. HRMS (ESI) calcd for C₁₉H₁₉NO₂ [M+H]⁺: 294.1498, Found: 294.1483.

(*R*)-4-Benzyl-6-methyl-2-vinyl-3,4-dihydrobenzo[*f*][1,4]oxazepin-5(2*H*)-one (2d)

R_f = 0.50 (petroleum/EtOAc = 2 : 1, v/v); yellow oil, 55.1 mg, 94% yield; 99% ee [Daicel Chiralcel IA-3 (0.46 cm x 25 cm), *n*-hexane/2-propanol = 90/10, v =1.0 mL•min⁻¹, T = 25 °C, $\lambda = 254$ nm, t_R (minor) = 13.197 min, t_R (major) = 11.893 min]; [α]_D²⁵ = +47.7° (c = 0.70, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.35 (m, 6H), 7.09 (dd, J = 7.3, 2.9 Hz, 1H), 6.87 (dd, J = 7.7, 2.9 Hz, 1H), 5.93 – 5.73 (m, 1H), 5.30 (m, 2H), 5.13 (m, 1H), 4.72 – 4.58 (m, 2H), 3.39 – 3.24 (m, 2H), 2.55 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.13, 152.11, 139.56, 137.44, 134.26, 130.92, 128.77, 128.00, 127.66, 127.36, 120.40, 118.37, 83.38, 50.07, 48.95, 20.29. HRMS (ESI) calcd for C₁₉H₁₉NO₂ [M+H]⁺: 294.1498, Found: 294.1483.

(*R*)-4-Benzyl-9-methoxy-2-vinyl-3,4-dihydrobenzo[*f*][1,4]oxazepin-5(2*H*)one (2e)

R_f = 0.40 (petroleum/EtOAc = 2 : 1, v/v); yellow oil, 59.4 mg, 96% yield; 99% ee [Daicel Chiralcel IA-3 (0.46 cm x 25 cm), *n*-hexane/2-propanol = 90/10, $v = 1.0 \text{ mL} \cdot \text{min}^{-1}$, T = 25 °C, $\lambda = 211 \text{ nm}$, t _R (minor) = 24.718 min, t _R (major) = 23.458 min]; [α]_D²⁵ = +50.0° (c = 0.80, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.36 (t, *J* = 10.3 Hz, 6H), 7.18 (t, *J* = 7.5 Hz, 1H), 7.07 (d, *J* = 8.1 Hz, 1H), 5.85 (ddd, *J* = 17.1, 10.6, 6.6 Hz, 1H), 5.35 (d, *J* = 16.9 Hz, 1H), 5.21 (m, 2H), 4.86 – 4.72 (m, 1H), 4.56 (d, *J* = 14.7 Hz, 1H), 3.88 (s, 3H), 3.37 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 168.81, 152.39, 141.96, 137.09, 134.57, 130.23, 128.77,

128.19, 127.71, 124.47, 121.71, 118.00, 114.96, 84.72, 56.22, 50.92, 49.71. HRMS (ESI) calcd for C₁₉H₁₉NO₃ [M+H]⁺: 310.1447, Found: 310.1432.

(*R*)-4-Benzyl-8-methoxy-2-vinyl-3,4-dihydrobenzo[*f*][1,4]oxazepin-5(2*H*)one (2f)

R_f = 0.40 (petroleum/EtOAc = 2 : 1, v/v); yellow oil, 60.0 mg, 97% yield; 91% ee [Daicel Chiralcel IA-3 (0.46 cm x 25 cm), *n*-hexane/2-propanol = 85/15, v = 1.0 mL•min⁻¹, T = 25 °C, λ = 254 nm, t_R (minor) = 15.317 min, t_R (major) = 16.151 min]; [α]_D²⁵ = +60.5° (c = 0.80, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 8.7 Hz, 1H), 7.42 – 7.31 (m, 5H), 6.76 (dd, *J* = 8.8, 2.2 Hz, 1H), 6.54 (d, *J* = 2.1 Hz, 1H), 5.83 (ddd, *J* = 17.0, 10.5, 6.3 Hz, 1H), 5.33 (d, *J* = 17.2 Hz, 1H), 5.25 (d, *J* = 10.5 Hz, 1H), 5.14 (d, *J* = 14.7 Hz, 1H), 4.72 (m, 1H), 4.55 (d, *J* = 14.8 Hz, 1H), 3.84 (s, 3H), 3.48 – 3.30 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 168.64, 163.33, 154.60, 137.16, 134.30, 132.40, 128.76, 128.27, 127.69, 119.92, 118.15, 110.21, 106.99, 84.00, 55.52, 51.14, 49.92. HRMS (ESI) calcd for C₁₉H₁₉NO₃ [M+H]⁺: 310.1447, Found: 310.1432.

(*R*)-4-Benzyl-7-methoxy-2-vinyl-3,4-dihydrobenzo[*f*][1,4]oxazepin-5(2*H*)one (2g)

 $R_f = 0.50$ (petroleum/EtOAc = 2 : 1, v/v); yellow oil, 59.4 mg, 96% yield; 94% ee [Daicel Chiralcel IA-3 (0.46 cm x 25 cm), *n*-hexane/2-propanol = 90/10, v =

1.0 mL•min⁻¹, T = 25 °C, λ = 254 nm, t _R (minor) = 20.603 min, t _R (major) = 19.327 min]; [α]_D²⁵ = +61.8° (c = 0.80, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.32 (m, 6H), 6.98 (m, 2H), 5.82 (ddd, *J* = 17.1, 10.6, 6.4 Hz, 1H), 5.33 (m, 1H), 5.25 (m, 1.1 Hz, 1H), 5.14 (d, *J* = 14.8 Hz, 1H), 4.68 (m, 1H), 4.59 (d, *J* = 14.8 Hz, 1H), 3.85 (s, 3H), 3.37 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 168.86, 156.15, 146.33, 137.06, 134.28, 129.16, 128.78, 128.20, 127.74, 123.69, 119.49, 118.21, 113.68, 83.92, 55.81, 51.03, 49.63. HRMS (ESI) calcd for C₁₉H₁₉NO₃ [M+H]⁺: 310.1447, Found: 310.1432.

(*R*)-4-Benzyl-6-methoxy-2-vinyl-3,4-dihydrobenzo[*f*][1,4]oxazepin-5(2*H*)one (2h)

R_f = 0.40 (petroleum/EtOAc = 2 : 1, v/v); yellow oil, 53.8 mg, 87% yield; 96% ee [Daicel Chiralcel IA-3 (0.46 cm x 25 cm), *n*-hexane/2-propanol = 75/25, v =1.0 mL•min⁻¹, T = 25 °C, $\lambda = 254$ nm, t _R (minor) = 17.409 min, t _R (major) = 14.163 min]; [α]_D²⁵ = +52.9° (c = 0.80, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.37 (m, 6H), 6.82 (d, *J* = 8.4 Hz, 1H), 6.65 (d, *J* = 8.1 Hz, 1H), 5.85 – 5.72 (m, 1H), 5.25 (m, 3H), 4.56 (d, *J* = 14.9 Hz, 2H), 3.94 (s, 3H), 3.42 (m, 1H), 3.28 (m, 1H). ¹³C NMR (101 MHz,) δ 166.01, 158.76, 152.92, 137.38, 134.21, 131.83, 128.73, 128.31, 127.66, 124.46, 123.97, 119.11, 118.53, 118.36, 115.34, 108.26, 83.56, 56.33, 49.91, 48.90. HRMS (ESI) calcd for C₁₉H₁₉NO₃ [M+H]⁺: 310.1447, Found: 310.1433.

(*R*)-4-Benzyl-8-fluoro-2-vinyl-3,4-dihydrobenzo[*f*][1,4]oxazepin-5(2*H*)-one (2i)

R_f = 0.60 (petroleum/EtOAc = 2 : 1, v/v); yellow oil, 58.8 mg, 99% yield; 91% ee [Daicel Chiralcel IA-3 (0.46 cm x 25 cm), *n*-hexane/2-propanol = 85/15, v =1.0 mL•min⁻¹, T = 25 °C, $\lambda = 254$ nm, t_R (minor) = 9.738 min, t_R (major) = 9.109 min]; [α]_D²⁵ = +63.1° (c = 0.70, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.90 (t, *J* = 7.6 Hz, 1H), 7.46 – 7.31 (m, 5H), 6.93 (t, *J* = 8.2 Hz, 1H), 6.75 (d, *J* = 9.5 Hz, 1H), 5.81 (ddd, *J* = 17.0, 10.4, 6.3 Hz, 1H), 5.30 (m, 2H), 5.15 (d, *J* = 14.8 Hz, 1H), 4.73 (s, 1H), 4.55 (d, *J* = 14.8 Hz, 1H), 3.53 – 3.32 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 167.87, 165.22 (d, *J* = 251.0 Hz), 154.57 (d, *J* = 12.0 Hz), 136.84, 133.81, 132.88 (d, *J* = 10.4 Hz), 128.83, 128.29, 127.84, 123.88 (d, *J* = 3.2 Hz), 118.48, 111.45, 111.23, 109.67, 109.44, 84.29, 51.19, 49.66. ¹⁹F NMR (376 MHz, CDCl₃) δ -106.79. HRMS (ESI) calcd for C₁₈H₁₆FNO₂ [M+H]⁺: 298.1246, Found: 298.1234.

(*R*)-4-Benzyl-7-fluoro-2-vinyl-3,4-dihydrobenzo[*f*][1,4]oxazepin-5(2*H*)-one (2j)

R_f = 0.60 (petroleum/EtOAc = 2 : 1, v/v); yellow oil, 55.3 mg, 93% yield; 91% ee [Daicel Chiralcel IA-3 (0.46 cm x 25 cm), *n*-hexane/2-propanol = 95/5, v = 1.0 mL•min⁻¹, T = 25 °C, $\lambda = 254$ nm, t_R (minor) = 19.535 min, t_R (major) = 18.155 min]; [α]_D²⁵ = +62.3° (c = 0.70, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.54 (dd, J = 8.5, 3.1 Hz, 1H), 7.43 – 7.30 (m, 5H), 7.13 (td, J = 8.3, 3.0 Hz, 1H), 7.00 (dd, J = 8.8, 4.6 Hz, 1H), 5.81 (ddd, J = 17.0, 10.5, 6.3 Hz, 1H), 5.31 (m, 2H), 5.14 (d, J = 14.8 Hz, 1H), 4.70 (m, 1H), 4.56 (d, J = 14.8 Hz, 1H), 3.50 – 3.28 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 167.69, 159.03 (d, J = 242.0 Hz), 148.71 (d, J = 2.5 Hz), 136.77, 133.89, 129.77 (d, J = 7.4 Hz), 128.84, 128.25, 127.86, 124.05 (d, J = 8.0 Hz), 119.59, 119.36, 118.49, 117.02, 116.77, 84.05, 51.10, 49.47. ¹⁹F NMR (376 MHz, CDCl₃) δ -118.43. HRMS (ESI) calcd for C₁₈H₁₆FNO₂ [M+H]⁺: 298.1246, Found: 298.1233.

(*R*)-4-Benzyl-8-chloro-2-vinyl-3,4-dihydrobenzo[*f*][1,4]oxazepin-5(2*H*)-one (2k)

R_f = 0.60 (petroleum/EtOAc = 2 : 1, v/v); yellow oil, 60.1 mg, 96% yield; 90% ee [Daicel Chiralcel IA-3 (0.46 cm x 25 cm), *n*-hexane/2-propanol = 85/15, v =1.0 mL•min⁻¹, T = 25 °C, $\lambda = 254$ nm, t_R (minor) = 11.135 min, t_R (major) = 10.491 min]; [α]_D²⁵ = -74.2° (c = 0.80, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.4 Hz, 1H), 7.45 – 7.31 (m, 5H), 7.20 (d, *J* = 8.3 Hz, 1H), 7.05 (s, 1H), 5.80 (ddd, *J* = 17.0, 10.5, 6.3 Hz, 1H), 5.31 (m, 2H), 5.14 (d, *J* = 14.7 Hz, 1H), 4.73 (m, 1H), 4.55 (d, *J* = 14.8 Hz, 1H), 3.41 (m, 2H).¹³C NMR (101 MHz, CDCl₃) δ 167.83, 153.58, 138.16, 136.74, 133.73, 132.11, 128.85, 128.31, 127.88, 126.26, 124.30, 122.67, 118.58, 84.32, 51.18, 49.58. HRMS (ESI) calcd for C₁₈H₁₆ClNO₂ [M+H]⁺: 314.0951, Found: 314.0936.

(*R*)-4-Benzyl-7-chloro-2-vinyl-3,4-dihydrobenzo[*f*][1,4]oxazepin-5(2*H*)-one (2l)

R_f = 0.60 (petroleum/EtOAc = 2 : 1, v/v); yellow oil, 60.7 mg, 97% yield; 92% ee [Daicel Chiralcel IA-3 (0.46 cm x 25 cm), *n*-hexane/2-propanol = 93/7, v = 1.0 mL•min⁻¹, T = 25 °C, λ = 254 nm, t_R (minor) = 15.568 min, t_R (major) = 14.780 min]; [α]_D²⁵ = -76.9° (c = 0.80, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.84 (s, 1H), 7.36 (s, 6H), 6.97 (d, *J* = 8.4 Hz, 1H), 5.90 – 5.71 (m, 1H), 5.31 (m, 2H), 5.13 (d, *J* = 14.4 Hz, 1H), 4.72 (d, *J* = 4.7 Hz, 1H), 4.57 (d, *J* = 14.5 Hz, 1H), 3.55 – 3.25 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 167.48, 151.37, 136.69, 133.79, 132.62, 130.55, 129.41, 128.86, 128.27, 127.89, 124.01, 118.55, 84.11, 51.15, 49.46. HRMS (ESI) calcd for C₁₈H₁₆ClNO₂ [M+H]⁺: 314.0951, Found: 314.0936.

(*R*)-4-Benzyl-7-bromo-2-vinyl-3,4-dihydrobenzo[*f*][1,4]oxazepin-5(2*H*)-one (2m)

R_f = 0.60 (petroleum/EtOAc = 2 : 1, v/v); brown oil, 60.7 mg, 85% yield; 91% ee [Daicel Chiralcel IA-3 (0.46 cm x 25 cm), *n*-hexane/2-propanol = 95/5, $v = 1.0 \text{ mL} \cdot \text{min}^{-1}$, T = 25 °C, $\lambda = 254 \text{ nm}$, t R (minor) = 20.457 min, t R (major) = 19.384 min]; [α]_D²⁵ = -67.8° (c = 0.90, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 2.6 Hz, 1H), 7.53 (dd, J = 8.5, 2.5 Hz, 1H), 7.41 – 7.32 (m, 5H), 6.91 (d, J = 8.6 Hz, 1H), 5.79 (ddd, J = 17.0, 10.6, 6.3 Hz, 1H), 5.30 (m, 2H), 5.12 (d, J = 14.7 Hz, 1H), 4.72 (m, 1H), 4.57 (d, J = 14.8 Hz, 1H), 3.47 – 3.29 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 167.33, 151.92, 136.68, 135.57, 133.78, 133.53, 129.71, 128.86, 128.27, 127.89, 124.35, 118.54, 116.75, 84.09, 51.17, 49.46. HRMS (ESI) calcd for C₁₈H₁₆BrNO₂ [M+H]⁺: 358.0446, Found: 358.0432.

(*R*)-4-Benzyl-8-nitro-2-vinyl-3,4-dihydrobenzo[*f*][1,4]oxazepin-5(2*H*)-one (2n)

R_f = 0.40 (petroleum/EtOAc = 2 : 1, v/v); yellow oil, 58.3 mg, 90% yield; 84% ee [Daicel Chiralcel IF-3 (0.46 cm x 25 cm), *n*-hexane/2-propanol = 85/15, v =1.0 mL•min⁻¹, T = 25 °C, $\lambda = 254$ nm, t_R (minor) = 22.654 min, t_R (major) = 19.424 min]; [α]_D²⁵ = +21.3° (c = 0.50, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 8.05 (s, 2H), 7.88 (s, 1H), 7.50 – 7.30 (m, 6H), 5.81 (ddd, J = 16.9, 10.5, 6.2 Hz, 1H), 5.40 – 5.31 (m, 2H), 5.17 (d, J = 14.7 Hz, 1H), 4.80 (m, 1H), 4.57 (d, J =14.7 Hz, 1H), 3.48 – 3.40 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.68, 153.38, 150.48, 136.27, 133.54, 133.14, 132.27, 128.97, 128.37, 128.11, 119.12, 118.47, 117.99, 84.67, 51.32, 49.28. HRMS (ESI) calcd for C₁₈H₁₆N₂O₄ [M+H]⁺: 325.1192, Found: 325.1180.

(*R*)-4-Benzyl-8-(trifluoromethyl)-2-vinyl-3,4-dihydrobenzo[*f*][1,4]oxazepin-5(2*H*)-one (20)

R_f = 0.40 (petroleum/EtOAc = 2 : 1, v/v); pale yellow oil, 57.6 mg, 83% yield; 80% ee [Daicel Chiralcel IA-3 (0.46 cm x 25 cm), *n*-hexane/2-propanol = 90/10, $v = 1.0 \text{ mL} \cdot \text{min}^{-1}$, T = 25 °C, $\lambda = 254 \text{ nm}$, t_R (minor) = 12.495 min, t_R (major) = 11.473 min]; [α]_D²⁵ = -49.1° (c = 0.60, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, *J* = 7.7 Hz, 1H), 7.47 (d, *J* = 8.1 Hz, 1H), 7.43 – 7.28 (m, 6H), 5.91 – 5.74 (m, 1H), 5.33 (m, 2H), 5.17 (d, *J* = 14.8 Hz, 1H), 4.84 – 4.71 (m, 1H), 4.57 (d, *J* = 14.6 Hz, 1H), 3.51 – 3.32 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 167.43, 153.05, 136.54, 133.54, 131.88, 131.02, 128.90, 128.32, 127.98, 120.50 (d, *J* = 3.6 Hz), 119.77 (d, *J* = 3.7 Hz), 118.77, 84.46, 51.22, 49.42. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.08. HRMS (ESI) calcd for C₁₉H₁₆F₃NO₂ [M+H]⁺: 348.1216, Found: 348.1200.

(*R*)-4-Benzyl-2-vinyl-3,4-dihydronaphtho[2,3-*f*][1,4]oxazepin-5(2*H*)-one (2p)

R_f = 0.60 (petroleum/EtOAc = 2 : 1, v/v); pale yellow oil, 61.2 mg, 93% yield; 91% ee [Daicel Chiralcel IF-3 (0.46 cm x 25 cm), *n*-hexane/2-propanol = 85/15, v = 1.0 mL•min⁻¹, T = 25 °C, $\lambda = 254$ nm, t_R (minor) = 32.663 min, t_R (major) = 34.811 min]; [α]_D²⁵ = -19.6° (c = 0.50, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 8.39 (s, 1H), 7.94 (d, *J* = 8.1 Hz, 1H), 7.79 (d, *J* = 8.1 Hz, 1H), 7.55 (t, *J* = 7.5 Hz, 1H), 7.52 – 7.44 (m, 2H), 7.38 (dd, *J* = 16.3, 7.7 Hz, 5H), 5.91 (ddd, *J* = 17.2, 10.5, 6.6 Hz, 1H), 5.40 (d, *J* = 17.3 Hz, 1H), 5.31 (d, *J* = 10.6 Hz, 1H), 5.20 (d, *J* = 14.8 Hz, 1H), 4.74 (m, 1H), 4.65 (d, *J* = 14.8 Hz, 1H), 3.50 – 3.33 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 168.88, 149.30, 137.11, 135.66, 134.15, 131.45, 130.41, 129.49, 128.82, 128.23, 127.82, 126.92, 125.63, 119.46, 118.50, 83.42, 50.99, 49.42. HRMS (ESI) calcd for C₂₂H₁₉NO₂ [M+H]⁺: 330.1502, Found: 330.1482.

(R)-4-Benzyl-2-vinyl-3,4-dihydropyrido[4,3-f][1,4]oxazepin-5(2H)-one (2q)

R_f = 0.30 (petroleum/EtOAc = 2 : 1, v/v); brown oil, 53.2 mg, 95% yield; 81% ee [Daicel Chiralcel IA-3 (0.46 cm x 25 cm), *n*-hexane/2-propanol = 90/10, v = 1.0 mL•min⁻¹, T = 25 °C, $\lambda = 254$ nm, t_R (minor) = 19.840 min, t_R (major) = 18.608 min]; [α]_D²⁵ = -15.0° (c = 0.50, CH₂Cl₂). ¹H NMR (400 MHz,) δ 8.47 (s, 2H), 7.83 (d, J = 2.7 Hz, 1H), 7.50 – 7.33 (m, 5H), 5.79 (m, 1H), 5.41 – 5.26 (m, 2H), 5.17 (d, J = 14.2 Hz, 1H), 4.80 (s, 1H), 4.54 (d, J = 14.5 Hz, 1H), 3.45 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.50, 148.49, 144.77, 144.44, 136.17, 133.29, 132.64, 128.95, 128.40, 128.09, 123.85, 118.75, 84.14, 51.47, 49.67. HRMS (ESI) calcd for C₁₇H₁₆N₂O₂ [M+H]⁺: 281.1292, Found: 281.1280.

(*R*)-4-Benzyl-8-(thiophen-3-yl)-2-vinyl-3,4-dihydrobenzo[*f*][1,4]oxazepin-5(2*H*)-one (2r)

R_f = 0.60 (petroleum/EtOAc = 2 : 1, v/v); pale yellow oil, 68.6 mg, 95% yield; 92% ee [Daicel Chiralcel IA-3 (0.46 cm x 25 cm), *n*-hexane/2-propanol = 85/15, $v = 1.0 \text{ mL} \cdot \text{min}^{-1}$, T = 25 °C, $\lambda = 254 \text{ nm}$, t_R (minor) = 22.499 min, t_R (major) = 26.072 min]; [α]_D²⁵ = -5.7° (c = 0.60, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 8.0 Hz, 1H), 7.56 (s, 1H), 7.51 – 7.27 (m, 9H), 5.86 (ddd, J = 17.0, 10.1, 6.7 Hz, 1H), 5.37 (d, J = 17.2 Hz, 1H), 5.28 (d, J = 10.5 Hz, 1H), 5.18 (d, J = 14.7 Hz, 1H), 4.76 (s, 1H), 3.46 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 168.57, 153.35, 140.84, 140.31, 137.02, 134.23, 131.54, 128.81, 128.30, 127.77, 126.62, 126.25, 126.14, 121.89, 121.69, 120.03, 118.32, 84.08, 51.14, 49.76. HRMS (ESI) calcd for C₂₂H₁₉NO₂S [M+H]⁺: 362.1223, Found: 362.1205.

(*R*)-4-Benzyl-8-(furan-2-yl)-2-vinyl-3,4-dihydrobenzo[*f*][1,4]oxazepin-5(2*H*)-one (2s)

R_f = 0.60 (petroleum/EtOAc = 2 : 1, v/v); pale yellow oil, 67.0 mg, 97% yield; 92% ee [Daicel Chiralcel IA-3 (0.46 cm x 25 cm), *n*-hexane/2-propanol = 85/15, v = 1.0 mL•min⁻¹, T = 25 °C, $\lambda = 254$ nm, t_R (minor) = 14.863 min, t_R (major) = 15.557 min]; [α]_D²⁵ = -8.4° (c = 0.60, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 8.1 Hz, 1H), 7.52 (d, *J* = 6.5 Hz, 2H), 7.45 – 7.28 (m, 6H), 6.77 (s, 1H), 6.52 (s, 1H), 5.86 (ddd, *J* = 17.1, 10.5, 6.4 Hz, 1H), 5.36 (d, *J* = 17.2 Hz, 1H), 5.28 (d, *J* = 10.6 Hz, 1H), 5.16 (d, *J* = 14.8 Hz, 1H), 4.75 (s, 1H), 4.58 (d, *J* = 14.8 Hz, 1H), 3.55 – 3.33 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 168.50, 153.35, 152.60, 142.96, 137.01, 135.10, 134.20, 131.47, 128.80, 128.30, 127.77, 126.41, 119.23, 118.31, 117.35, 111.94, 106.99, 84.06, 51.11, 49.72. HRMS (ESI) calcd for C₂₂H₁₉NO₃ [M+H]⁺: 346.1451, Found: 346.1433.

(*R*)-4-Benzyl-8-(6-methoxypyridin-3-yl)-2-vinyl-3,4dihydrobenzo[*f*][1,4]oxazepin-5(2*H*)-one (2t)

R_f = 0.60 (petroleum/EtOAc = 2 : 1, v/v); pale yellow oil, 74.1 mg, 96% yield; 92% ee [Daicel Chiralcel IA-3 (0.46 cm x 25 cm), *n*-hexane/2-propanol = 85/15, $v = 1.0 \text{ mL} \cdot \text{min}^{-1}$, T = 25 °C, $\lambda = 254 \text{ nm}$, t_R (minor) = 21.300 min, t_R (major) = 27.712 min]; [α]_D²⁵ = -6.3° (c = 0.60, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 8.43 (d, *J* = 2.4 Hz, 1H), 7.95 (d, *J* = 8.0 Hz, 1H), 7.82 (dd, *J* = 8.6, 2.5 Hz, 1H), 7.42 – 7.31 (m, 6H), 7.20 (d, *J* = 1.5 Hz, 1H), 6.85 (d, *J* = 8.6 Hz, 1H), 5.85 (ddd, *J* = 17.0, 10.6, 6.3 Hz, 1H), 5.36 (d, *J* = 17.2 Hz, 1H), 5.27 (d, *J* = 10.6 Hz, 1H), 5.18 (d, *J* = 14.8 Hz, 1H), 4.77 (m, 1H), 4.58 (d, *J* = 14.8 Hz, 1H), 4.01 (s, 3H), 3.45 (m, 2H). ¹³C NMR (101 MHz, CDCl3) δ 168.48, 164.07, 153.39, 145.09, 142.51, 137.39, 136.95, 134.10, 131.72, 128.83, 128.53, 128.28, 127.80, 126.51, 122.01, 120.28, 118.40, 111.05, 84.13, 53.74, 51.14, 49.71. HRMS (ESI) calcd for C₂₄H₂₂N₂O₃ [M+H]⁺: 387.1719, Found: 387.1698.

(R)-4-Benzyl-8-(naphthalen-2-yl)-2-vinyl-3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one (2u)

R_f = 0.60 (petroleum/EtOAc = 2 : 1, v/v); pale yellow oil, 76.2 mg, 94% yield; 94% ee [Daicel Chiralcel IF-3 (0.46 cm x 25 cm), *n*-hexane/2-propanol = 90/10, $v = 1.0 \text{ mL} \cdot \text{min}^{-1}$, T = 25 °C, $\lambda = 254 \text{ nm}$, t_R (minor) = 42.743 min, t_R (major) = 38.050 min]; [α]_D²⁵ = +22.1° (c = 0.70, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 7.8 Hz, 1H), 7.93 (t, J = 9.5 Hz, 3H), 7.60 – 7.35 (m, 10H), 7.22 (s, 1H), 5.94 - 5.80 (m, 1H), 5.37 (d, J = 17.2 Hz, 1H), 5.25 (m, 2H), 4.80 (s, 1H), 4.64 (d, J = 14.8 Hz, 1H), 3.54 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 168.74, 152.77, 145.69, 138.71, 137.05, 134.20, 133.81, 131.20, 130.83, 128.84, 128.38, 128.29, 127.81, 126.83, 126.70, 126.34, 125.97, 125.86, 125.68, 125.32, 124.01, 118.27, 84.11, 51.17, 49.82. HRMS (ESI) calcd for C₂₄H₂₂N₂O₃ [M+H]⁺: 406.1807, Found: 406.1794.

(*R*)-4-(4-Methoxybenzyl)-2-vinyl-3,4-dihydrobenzo[*f*][1,4]oxazepin-5(2*H*)one (2v)

Trans-substrate: $R_f = 0.60$ (petroleum/EtOAc= 2 : 1, v/v); pale yellow oil, 57.5 mg, 93% yield; 90% ee [Daicel Chiralcel IA-3 (0.46 cm x 25 cm), *n*-hexane/2-propanol = 95/5, v = 1.0 mL•min⁻¹, t = 25 °C, $\lambda = 254$ nm, t_R (minor) = 35.879 min, t_R (major) = 33.676 min]; $[\alpha]_D^{25} = +4.5^\circ$ (c = 0.50, CH₂Cl₂). **Cis-substrate:** $R_f = 0.60$ (petroleum/EtOAc= 2 : 1, v/v); pale yellow oil, 58.7 mg, 95% yield; -73% ee [Daicel Chiralcel IA-3 (0.46 cm x 25 cm), *n*-hexane/2-propanol = 95/5, v = 1.0 mL•min⁻¹, t = 25 °C, $\lambda = 254$ nm, t_R (minor) = 34.931 min, t_R (major) = 36.551 min]; $[\alpha]_D^{25} = -4.1^\circ$ (c = 0.50, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 7.6 Hz, 1H), 7.44 (t, J = 7.6 Hz, 1H), 7.31 (d, J = 8.4 Hz, 2H), 7.22 (t, J = 7.4 Hz, 1H), 7.03 (d, J = 8.1 Hz, 1H), 6.91 (d, J = 8.0 Hz, 2H), 5.82 (ddd, J = 17.0, 10.2, 6.6 Hz, 1H), 5.35 (d, J = 17.3 Hz, 1H), 5.26 (d, J = 10.6 Hz, 1H), 5.12 (d, J = 14.6 Hz, 1H), 4.70 (s, 1H), 4.49 (d, J = 14.6 Hz, 1H), 3.83 (s, 3H), 3.47 - 3.30 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 168.72, 159.25, 152.76, 134.28, 132.66, 130.76, 129.67, 129.12, 128.36, 124.06, 122.54, 118.15, 114.17,

55.31, 50.45, 49.40. HRMS (ESI) calcd for C₁₉H₁₉NO₃ [M+H]⁺: 310.1393, Found: 310.1433.

3.3 Gram-scale Reaction

Representative Procedure: in a dry Schlenk tube (50.0 mL) filled with argon, $[Ir(cod)Cl]_2$ (37.8 mg, 0.056 mmol, 2 mol %), ligand L7 (57.6 mg, 0.113 mmol, 4 mol %), and *n*-propylamine (5.0 mL) were dissolved in THF (10.0 mL). The reaction mixture was heated at 50 °C for 30 min and then the volatile solvents were removed in vacuum to give a yellow solid. In glove box, substrate (1 g, 2.82 mmol), DBU (0.857g, 5.64 mmol, 200 mol %) and solvent (20.0 mL) were added into the above tube and stirred at 25 °C until the reaction was complete. Then the solvent was evaporated and the residue was purified by silica gel column chromatography using petroleum/EtOAc as the eluent to give the desired product (92% yield, 91% ee).

3.4 Procedure for the Synthesis of 3v

S30

In a dry Schlenk tube filled with argon, 2v (30.9 mg, 0.1 mmol) was dissolved in excessive TFA (10 mL). The reaction mixture was heated at 60 °C for 1 h. Then the crude reaction mixture was diluted with DCM (10 mL) and washed with saturated sodium bicarbonate solution (10 mL x 3) and brine (10 mL x 3). The combined organic layers were dried over Na₂SO₄. Afterwards, the solvents were removed under reduced pressure. The residue was purified by silica gel column chromatography (petroleum/EtOAc = 1 : 1) to afford the desired products **3v** (89% yield, 89% ee).

(R)-2-Vinyl-3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one (3v)

R_f = 0.10 (petroleum/EtOAc = 2 : 1, v/v); black oil, 16.8 mg, 89% yield; 89% ee [Daicel Chiralcel IF-3 (0.46 cm x 25 cm), *n*-hexane/2-propanol = 95/5, v = 1.0 mL•min⁻¹, T = 25 °C, $\lambda = 254$ nm, t_R (minor) = 31.262 min, t_R (major) = 32.378 min]; [α]_D²⁵ = +12.6° (c = 0.30, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 7.6 Hz, 1H), 7.48 (t, J = 7.6 Hz, 1H), 7.32 – 7.18 (m, 2H), 7.09 (d, J = 8.1 Hz, 1H), 6.05 – 5.89 (m, 1H), 5.48 (d, J = 17.1 Hz, 1H), 5.35 (d, J = 10.6 Hz, 1H), 4.94 (s, 1H), 3.50 (d, J = 14.5 Hz, 1H), 3.40 – 3.27 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.17, 154.03, 134.26, 133.29, 130.86, 126.11, 123.77, 122.55, 118.39, 84.44, 44.63. HRMS (ESI) calcd for C₁₁H₁₁NO₂ [M+H]⁺: 190.0863, Found: 190.0859.

3.5 Procedure for the Synthesis of 3a

To a solution of 2a (139.6 mg, 0.5 mmol) in THF (10 mL) at 0 °C, LiAlH₄

(114 mg, 3 mmol) was added in three portions. The reaction mixture was stirred for 12 h at 50 °C. It was cooled back down to 0 °C and MeOH was added. Then the mixture was filtered through celite and the obtained solution was concentrated in vacuo. The crude residue was purified using column chromatography (eluent: petroleum ether/EtOAc = 2 : 1) to provide the desired product **3a** (73% yield, 91% ee).

(*R*)-4-Benzyl-2-vinyl-2,3,4,5-tetrahydrobenzo[*f*][1,4]oxazepine (3a)

R_f = 0.30 (petroleum/EtOAc = 2 : 1, v/v); yellow oil, 96.8 mg, 73% yield; 91% ee [Daicel Chiralcel IF-3 (0.46 cm x 25 cm), *n*-hexane/2-propanol = 99.5/0.5, *v* = 1.0 mL•min⁻¹, T = 25 °C, λ = 254 nm, t_R (minor) = 5.744 min, t_R (major) = 5.327 min]; [α]_D²⁵ = -9.5° (c = 0.40, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.24 (m, 6H), 7.14 – 7.00 (m, 3H), 5.94 (ddd, *J* = 16.0, 10.7, 5.2 Hz, 1H), 5.46 (m, 1H), 5.27 (m, 1H), 4.52 (d, *J* = 3.6 Hz, 1H), 4.08 (d, *J* = 14.2 Hz, 1H), 3.70 (m, 3H), 3.09 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 158.76, 138.43, 136.37, 131.97, 130.59, 128.99, 128.66, 128.40, 127.27, 123.58, 121.26, 116.03, 78.92, 62.41, 58.24, 56.97. HRMS (ESI) calcd for C₁₈H₁₉NO [M+H]⁺: 266.1539, Found: 266.1535.

3.6 Procedure for the Synthesis of 4a

A flame dried Schlenk tube was cooled to room temperature and filled with argon. To this flask **2a** (111.7 mg, 0.4 mmol) and 9-BBN (0.5 M in THF, 2.4 mL, 1.2 mmol) were added. The reaction mixture was heated at 50 °C for 2 hours until the starting material was consumed completely (monitored by TLC). Then the reaction mixture was cooled to 0 °C, 3 M aqueous NaOH (0.8 mL) solution was added. After 5 min, 30% H₂O₂ (0.6 mL) was added by syringe. After stirring for an additional 3 hours at room temperature, saturated aqueous Na₂SO₃ solution was added, then the reaction mixture was extracted with EtOAc (10 mL x 3). The combined organic layers were washed with brine, separated, dried over Na₂SO₄ and concentrated by rotary evaporation. Then the residue was purified by silica gel column chromatography (PE/EA = 1/1) to afford the desired product **4a** (90% yield, 91% ee).

(*R*)-4-Benzyl-2-(2-hydroxyethyl)-3,4-dihydrobenzo[*f*][1,4]oxazepin-5(2*H*)-one (4a)

 $R_f = 0.10$ (petroleum/EtOAc = 2 : 1, v/v); white solid, 107.1 mg, 90% yield; 91% ee [Daicel Chiralcel IA-3 (0.46 cm x 25 cm), *n*-hexane/2-propanol = 80/20, $v = 1.0 \text{ mL} \cdot \text{min}^{-1}$, T = 25 °C, $\lambda = 254 \text{ nm}$, t_R (minor) = 13.672 min, t_R (major) = 12.821 min]; $[\alpha]_D^{25} = +3.7^\circ$ (c = 0.50, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, J = 7.6 Hz, 1H), 7.49 – 7.31 (m, 6H), 7.22 (t, J =7.4 Hz, 1H), 6.98 (d, J = 8.0 Hz, 1H), 5.01 (d, J = 14.8 Hz, 1H), 4.72 (d, J =14.8 Hz, 1H), 4.50 (s, 1H), 3.85 (m, 2H), 3.40 – 3.28 (m, 2H), 1.91 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 168.94, 152.36, 137.07, 132.69, 130.84, 128.79, 128.45, 128.21, 127.74, 124.11, 122.55, 81.69, 59.41, 51.03, 50.03, 34.57. HRMS (ESI) calcd for C₁₈H₁₉NO₃ [M+H]⁺: 298.1438, Found: 298.1433.

4. Copies of NMR Spectra

Figure 1. ¹H NMR (400 MHz, CDCl₃) spectrum of 1a

Figure 2. ¹³C NMR (100 MHz, CDCl₃) spectrum of 1a

Figure 3. ¹H NMR (400 MHz, CDCl₃) spectrum of 1b

Figure 4. ¹³C NMR (100 MHz, CDCl₃) spectrum of 1b

Figure 5. ¹H NMR (400 MHz, CDCl₃) spectrum of 1c

Figure 6. ¹³C NMR (100 MHz, CDCl₃) spectrum of 1c

Figure 7. ¹H NMR (400 MHz, CDCl₃) spectrum of 1d

Figure 8. ¹³C NMR (100 MHz, CDCl₃) spectrum of 1d

Figure 9. ¹H NMR (400 MHz, CDCl₃) spectrum of 1e

Figure 10. ¹³C NMR (100 MHz, CDCl₃) spectrum of 1e

Figure 11. ¹H NMR (400 MHz, CDCl₃) spectrum of 1f

Figure 12. ¹³C NMR (100 MHz, CDCl₃) spectrum of 1f

Figure 13. ¹H NMR (400 MHz, CDCl₃) spectrum of 1g

Figure 14. ¹³C NMR (100 MHz, CDCl₃) spectrum of 1g

Figure 15. ¹H NMR (400 MHz, CDCl₃) spectrum of 1h

Figure 16. ¹³C NMR (100 MHz, CDCl₃) spectrum of 1h

Figure 18. ¹³C NMR (100 MHz, CDCl₃) spectrum of 1i

Figure 19. ¹⁹F NMR (376 MHz, CDCl₃) spectrum of 1i

Figure 20. ¹H NMR (400 MHz, CDCl₃) spectrum of 1j

Figure 22.¹⁹F NMR (376 MHz, CDCl₃) spectrum of 1j

Figure 23. ¹H NMR (400 MHz, CDCl₃) spectrum of 1k

Figure 24. ¹³C NMR (100 MHz, CDCl₃) spectrum of 1k

Figure 25. ¹H NMR (400 MHz, CDCl₃) spectrum of 11

Figure 26. ¹³C NMR (100 MHz, CDCl₃) spectrum of 11

Figure 28. ¹³C NMR (100 MHz, CDCl₃) spectrum of 1m

Figure 29. ¹H NMR (400 MHz, CDCl₃) spectrum of 1n

Figure 30. ¹³C NMR (100 MHz, CDCl₃) spectrum of 1n

Figure 31. ¹H NMR (400 MHz, CDCl₃) spectrum of 10

Figure 32. ¹³C NMR (100 MHz, CDCl₃) spectrum of 10

Figure 33. ¹⁹F NMR (376 MHz, CDCl₃) spectrum of 10

Figure 34. ¹H NMR (400 MHz, CDCl₃) spectrum of 1p

Figure 35. ¹³C NMR (100 MHz, CDCl₃) spectrum of 1p

Figure 36. ¹H NMR (400 MHz, CDCl₃) spectrum of 1q

Figure 37. ¹³C NMR (100 MHz, CDCl₃) spectrum of 1q

Figure 38. ¹H NMR (400 MHz, CDCl₃) spectrum of 1r

Figure 39. ¹³C NMR (100 MHz, CDCl₃) spectrum of 1r

Figure 40. ¹H NMR (400 MHz, CDCl₃) spectrum of 1s

Figure 41. ¹³C NMR (100 MHz, CDCl₃) spectrum of 1s

Figure 42. ¹H NMR (400 MHz, CDCl₃) spectrum of 1t

Figure 43. ¹³C NMR (100 MHz, CDCl₃) spectrum of 1t

Figure 44. ¹H NMR (400 MHz, CDCl₃) spectrum of 1u

Figure 45. ¹³C NMR (100 MHz, CDCl₃) spectrum of 1u

Figure 46. ¹H NMR (400 MHz, CDCl₃) spectrum of (*E*)-1v

Figure 47. ¹³C NMR (100 MHz, CDCl₃) spectrum of (*E*)-1v

Figure 48. ¹H NMR (400 MHz, CDCl₃) spectrum of (Z)-1v

Figure 49. ¹³C NMR (100 MHz, CDCl₃) spectrum of (Z)-1v

4-Benzyl-2-vinyl-3,4-dihydro- $2\lambda^3$ -benzo[f][1,4]oxazepin-5(2H)-one (2a)

Figure 50. ¹H NMR (400 MHz, CDCl₃) spectrum of 2a

Figure 51. ¹³C NMR (100 MHz, CDCl₃) spectrum of 2a

4-Benzyl-8-methyl-2-vinyl-3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one (2b)

Figure 52. ¹H NMR (400 MHz, CDCl₃) spectrum of 2b

Figure 53. ¹³C NMR (100 MHz, CDCl₃) spectrum of 2b

4-Benzyl-7-methyl-2-vinyl-3,4-dihydrobenzo[*f*][1,4]oxazepin-5(2*H*)-one (2c) Figure 54. ¹H NMR (400 MHz, CDCl₃) spectrum of 2c

Figure 55. ¹³C NMR (100 MHz, CDCl₃) spectrum of 2c

4-Benzyl-6-methyl-2-vinyl-3,4-dihydrobenzo[*f*][1,4]oxazepin-5(2*H*)-one (2d) Figure 56. ¹H NMR (400 MHz, CDCl₃) spectrum of 2d

Figure 57. ¹³C NMR (100 MHz, CDCl₃) spectrum of 2d

4-Benzyl-9-methoxy-2-vinyl-3,4-dihydrobenzo[*f*][1,4]oxazepin-5(2*H*)-one (2e)

Figure 58. ¹H NMR (400 MHz, CDCl₃) spectrum of 2e

Figure 59. ¹³C NMR (100 MHz, CDCl₃) spectrum of 2e

4-Benzyl-8-methoxy-2-vinyl-3,4-dihydrobenzo[*f*][1,4]oxazepin-5(2*H*)-one (2f)

Figure 60. ¹H NMR (400 MHz, CDCl₃) spectrum of 2f

Figure 61. ¹³C NMR (100 MHz, CDCl₃) spectrum of 2f

4-Benzyl-7-methoxy-2-vinyl-3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one

(2g)

Figure 62. ¹H NMR (400 MHz, CDCl₃) spectrum of 2g

Figure 63. ¹³C NMR (100 MHz, CDCl₃) spectrum of 2g

4-Benzyl-6-methoxy-2-vinyl-3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one (2h)

Figure 64. ¹H NMR (400 MHz, CDCl₃) spectrum of 2h

Figure 65. ¹³C NMR (100 MHz, CDCl₃) spectrum of 2h

4-Benzyl-8-fluoro-2-vinyl-3,4-dihydrobenzo[*f*][1,4]oxazepin-5(2*H*)-one (2i) Figure 66. ¹H NMR (400 MHz, CDCl₃) spectrum of 2i

Figure 67. ¹³C NMR (100 MHz, CDCl₃) spectrum of 2i

Figure 68. ¹⁹F NMR (376 MHz, CDCl₃) spectrum of 2i

4-Benzyl-7-fluoro-2-vinyl-3,4-dihydrobenzo[*f*][1,4]oxazepin-5(2*H*)-one (2j) Figure 69. ¹H NMR (400 MHz, CDCl₃) spectrum of 2j

Figure 70. ¹³C NMR (100 MHz, CDCl₃) spectrum of 2j

Figure 71. ¹⁹F NMR (376 MHz, CDCl₃) spectrum of 2j

4-Benzyl-8-chloro-2-vinyl-3,4-dihydrobenzo[*f*][1,4]oxazepin-5(2*H*)-one (2k) Figure 72. ¹H NMR (400 MHz, CDCl₃) spectrum of 2k

Figure 73. ¹³C NMR (100 MHz, CDCl₃) spectrum of 2k

4-Benzyl-7-chloro-2-vinyl-3,4-dihydrobenzo[*f*][1,4]oxazepin-5(2*H*)-one (2l) Figure 74. ¹H NMR (400 MHz, CDCl₃) spectrum of 2l

Figure 75. ¹³C NMR (100 MHz, CDCl₃) spectrum of 2l

4-Benzyl-7-bromo-2-vinyl-3,4-dihydrobenzo[*f*][1,4]oxazepin-5(2*H*)-one (2m) Figure 76. ¹H NMR (400 MHz, CDCl₃) spectrum of 2m

Figure 77. ¹³C NMR (100 MHz, CDCl₃) spectrum of 2m

4-Benzyl-8-nitro-2-vinyl-3,4-dihydrobenzo[*f*][1,4]oxazepin-5(2*H*)-one (2n) Figure 78. ¹H NMR (400 MHz, CDCl₃) spectrum of 2n

Figure 79. ¹³C NMR (100 MHz, CDCl₃) spectrum of 2n

$\label{eq:alpha} 4-Benzyl-8-(trifluoromethyl)-2-vinyl-3, \\ 4-dihydrobenzo[f][1,4]oxazepin-2-vinyl-3, \\ 4-dih$

5(2*H*)-one (20)

Figure 80. ¹H NMR (400 MHz, CDCl₃) spectrum of 20

Figure 81. ¹³C NMR (100 MHz, CDCl₃) spectrum of 20

Figure 82. ¹⁹F NMR (376 MHz, CDCl₃) spectrum of 20

4-Benzyl-2-vinyl-3,4-dihydronaphtho[2,3-*f*][1,4]oxazepin-5(2*H*)-one (2p) Figure 83. ¹H NMR (400 MHz, CDCl₃) spectrum of 2p

Figure 84. ¹³C NMR (100 MHz, CDCl₃) spectrum of 2p

4-Benzyl-2-vinyl-3,4-dihydropyrido[4,3-*f*][1,4]oxazepin-5(2*H*)-one (2q) Figure 85. ¹H NMR (400 MHz, CDCl₃) spectrum of 2q

Figure 86. ¹³C NMR (100 MHz, CDCl₃) spectrum of 2q

4-Benzyl-8-(thiophen-3-yl)-2-vinyl-3,4-dihydrobenzo[f][1,4]oxazepin-

5(2H)-one (2r)

Figure 87. ¹H NMR (400 MHz, CDCl₃) spectrum of 2r

Figure 88. ¹³C NMR (100 MHz, CDCl₃) spectrum of 2r

4-Benzyl-8-(furan-2-yl)-2-vinyl-3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-

one (2s)

Figure 90. ¹³C NMR (100 MHz, CDCl₃) spectrum of 2s

4-Benzyl-8-(6-methoxypyridin-3-yl)-2-vinyl-3,4dihydrobenzo[*f*][1,4]oxazepin-5(2*H*)-one (2t) Figure 91. ¹H NMR (400 MHz, CDCl₃) spectrum of 2t

Figure 92. ¹³C NMR (100 MHz, CDCl₃) spectrum of 2t

4-Benzyl-8-(naphthalen-2-yl)-2-vinyl-3,4-dihydrobenzo[f][1,4]oxazepin-

5(2H)-one (2u)

Figure 93. ¹H NMR (400 MHz, CDCl₃) spectrum of 2u

Figure 94. ¹³C NMR (100 MHz, CDCl₃) spectrum of 2u

4-(4-Methoxybenzyl)-2-vinyl-3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one

(2v)

Figure 95. ¹H NMR (400 MHz, CDCl₃) spectrum of 2v

Figure 96. ¹³C NMR (100 MHz, CDCl₃) spectrum of 2v

2-vinyl-3,4-dihydrobenzo[*f*][1,4]oxazepin-5(2*H*)-one (3v) Figure 97. ¹H NMR (400 MHz, CDCl₃) spectrum of 3v

Figure 98. ¹³C NMR (100 MHz, CDCl₃) spectrum of 3v

4-Benzyl-2-vinyl-2,3,4,5-tetrahydrobenzo[*f*][1,4]oxazepane (3a) Figure 99. ¹H NMR (400 MHz, CDCl₃) spectrum of 3a

Figure 100. ¹³C NMR (100 MHz, CDCl₃) spectrum of 3a

 $\label{eq:alpha} 4-Benzyl-2-(2-hydroxyethyl)-3, \\ 4-dihydro-2\lambda^3-benzo[f][1,4]oxazepin-5(2H)-2$

one (4a)

Figure 101. ¹H NMR (400 MHz, CDCl₃) spectrum of 4a

Figure 102. ¹³C NMR (100 MHz, CDCl₃) spectrum of 4a

5. Copies of HPLC Chromatograms

Figure 103. HPLC spectra of 2a

2a (The top one is racemic, and the bottom one is chiral)

#	[min]	天主	[min]	[mAU*s]	[mAU]	8 8
1	12.051	MM	0.1550	905.38708	97.36284	3.3830
2	12.358	MM	0.3035	2.58574e4	1419.93005	96.6170

Figure 104. HPLC spectra of 2b

2b (The top one is racemic, and the bottom one is chiral)

峰 #	保留时间 [min]	类型	峰宽 [min]	峰面积 [mAU*s]	峰高 [mAU]	峰面积
1	13.972 15.961	BB BB	0.2278	425.86673 426.96609	28.59163 25.27287	49.9355 50.0645

峰 #	保留时间 [min]	类型	峰宽 [min]	峰面积 [mAU*s]	峰高 [mAU]	峰面积 *
1	13.913	MM	0.2373	268.35806	18.84915	4.2419
2	15.770	MM	0.3082	6058.00049	327.60016	95.7581

Figure 105. HPLC spectra of 2c

2c (The top one is racemic, and the bottom one is chiral)

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	8
1	18.031	BV	0.3655	5786.64502	241.58044	50.0399
2	19.091	VB	0.4042	5777.41064	217.26256	49.9601

峰 #	保留时间 [min]	类型	峰宽 [min]	峰面积 [mAU*s]	峰高 [mAU]	峰面积 *
1	18.091	MM	0.3987	7853.35840	328.30087	97.7551
2	19.212	MM	0.3415	180.34630	8.80073	2.2449

Figure 106. HPLC spectra of 2d

2d (The top one is racemic, and the bottom one is chiral)

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
ŧ	[min]		[min]	[mAU*s]	[mAU]	8
1	12.076	BB	0.2190	3379.71948	236.11810	50.0966
2	13.231	BB	0.2490	3366.67969	207.77133	49.9034

峰 保留时间	类型 峰宽	峰面积	峰高	峰面积
# [min]	[min]	[mAU*s]	[mAU]	%
1 11.893	MM 0.2617	1.48525e4	945.82159	99.3132
2 13.197	MM 0.1785	102.71011	9.58746	0.6868

Figure 107. HPLC spectra of 2e

2e (The top one is racemic, and the bottom one is chiral)

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	8
1	23.683	BV	0.4561	4359.03174	146.94899	49.7178
2	24.783	VB	0.5134	4408.52344	130.09148	50.2822

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
Ŧ	[min] 		[min]	[mAU*s] 	[mAU]	*
1	23.458	MM	0.5061	1.23115e4	405.41901	99.3209
2	24.718	MM	0.2665	84.18134	5.26373	0.6791

Figure 108. HPLC spectra of 2f

2f (The top one is racemic, and the bottom one is chiral)

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	8
1	15.424	BV	0.3164	3727.25977	180.91608	49.6466
2	16.298	VB	0.3370	3780.31714	171.59616	50.3534

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	*
1	15.317 16.151	 MM MM	0.3119	 822.70837 1.67912e4	43.95664 766.69623	4.6708 95.3292

Figure 109. HPLC spectra of 2g

2g (The top one is racemic, and the bottom one is chiral)

Figure 110. HPLC spectra of 2h

2h (The top one is racemic, and the bottom one is chiral)

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	8
1	14.130	BB	0.2910	1077.04321	55.85306	49.5612
2	17.256	BB	0.3697	1096.11682	45.08308	50.4388

峰 ŧ	保留时间 [min]	类型	峰宽 [min]	峰面积 [mAU*s]	峰高 [mAU]	峰面积 %
1	14.163	MM	0.3418	2592.40845	126.41183	98.1037
2	17.409	MM	0.3399	50.10984	2.45744	1.8963

Figure 111. HPLC spectra of 2i

.....

2i (The top one is racemic, and the bottom one is chiral)

峰(保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	울
1	9.113	BV	0.1780	3067.32642	263.17606	49.7234
2	9.725	VB	0.1942	3101.44653	244.09389	50.2766

峰 ŧ	保留时间 [min]	类型	峰宽 [min]	峰面积 [mAU*s]	峰高 [mAU]	峰面积 %
1	9.109	MM	0.1974	1.13534e4	958.51825	95.3287
2	9.738	MM	0.1791	556.34009	51.77598	4.6713

2j (The top one is racemic, and the bottom one is chiral)

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	육
1	17.991	BB	0.3496	2984.93042	130.12889	50.0440
2	19.286	BB	0.4056	2979.68286	111.57561	49.9560

峰 ŧ	保留时间 [min]	类型	峰宽 [min]	峰面积 [mAU*s]	峰高 [mAU]	峰面积 §
1	18.155	MM	0.3887	2157.89600	92.53067	95.7709
2	19.535	MM	0.4026	95.29037	3.94457	4.2291

Figure 113. HPLC spectra of 2k

2k (The top one is racemic, and the bottom one is chiral)

信号 1: DAD1 A, Sig=254,4 Ref=360,100

峰 #	保留时间 [min]	类型	峰宽 [min]	峰面积 [mAU*s]	峰高 [mAU]	峰面积 *
1	10.480	BV	0.2133	4558.25049	325.57504	49.8014
2	11.121	VB	0.2304	4594.60596	303.84317	50.1986

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
ŧ	[min]		[min]	[mAU*s]	[mAU]	8
1	10.491	MM	0.2353	1793.05981	127.00144	94.8763
2	11.135	MM	0.2074	96.83298	7.78169	5.1237

21 (The top one is racemic, and the bottom one is chiral)

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	卡
1	14.759	BV	0.2919	2069.95288	107.87402	49.6756
2	15.467	VB	0.3288	2096.98657	96.77274	50.3244

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
ŧ	[min]		[min]	[mAU*s]	[mAU]	8
1	14.780	MM	0.3231	1267.62146	65.38344	96.0405
2	15.568	MM	0.2854	52.26015	3.05154	3.9595

Figure 115. HPLC spectra of 2m

2m (The top one is racemic, and the bottom one is chiral)

min

Figure 116. HPLC spectra of 2n

2n (The top one is racemic, and the bottom one is chiral)

Figure 117. HPLC spectra of 20

20 (The top one is racemic, and the bottom one is chiral)

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	8
1	11.516	BV	0.2220	6730.11670	467.24707	50.3815
2	12.503	VB	0.2416	6628.18408	421.16309	49.6185

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
ŧ	[min]		[min]	[mAU*s]	[mAU]	8
1	. 11.473	MM	0.2402	7622.15479	528.91931	90.1341
2	12.495	MM	0.2388	834.30988	58.24003	9.8659

Figure 118. HPLC spectra of 2p

2p (The top one is racemic, and the bottom one is chiral)

峰 #	保留时间 [min]	类型	峰宽 [min]	峰面积 [mAU*s]	峰高 [mAU]	峰面积 *
1	28.660	BB	0.4598	1.00025e4	333.56821	49.4918
2	31.510	BB	0.5779	1.02079e4	271.98752	50.5082

峰 #	保留时间 [min]	类型	峰宽 [min]	峰面积 [mAU*s]	峰高 [mAU]	峰面积
1	32.663	MM MM	0.5075	956.60858 2.01772e4	31.41396 500.94193	4.5264 95.4736

Figure 119. HPLC spectra of 2q

2q (The top one is racemic, and the bottom one is chiral)

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
ŧ	[min]		[min]	[mAU*s]	[mAU]	8
1	18.608	MM	0.4771	483.28738	16.88255	90.4313
2	19.840	MM	0.4534	51.13749	1.87995	9.5687

Figure 120. HPLC spectra of 2r

2r (The top one is racemic, and the bottom one is chiral)

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	8
1	22.542	BB	0.4735	3423.20728	111.08373	49.9619
2	26.185	BB	0.5448	3428.42285	96.43333	50.0381

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	8
1	22.499	MM	0.4826	336.29303	11.61428	4.2030
2	26.072	MM	0.6147	7664.88232	207.83022	95.7970

Figure 121. HPLC spectra of 2s

2s (The top one is racemic, and the bottom one is chiral)

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
Ŧ	[min]		[min]	[mAU*s]	[mAU]	8
1	14.813	BV	0.2999	1839.17896	93.32905	49.5029
2	15.550	VB	0.3229	1876.12012	87.93398	50.4971

峰 #	保留时间 [min]	类型	峰宽 [min]	峰面积 [mAU*s]	峰高 [mAU]	峰面积 \$
1	14.863	 MM	0.3010	119.25154	6.60352	4.9006
2	15.557	VB	0.3189	2314.14966	110.23541	95.0994

Figure 122. HPLC spectra of 2t

2t (The top one is racemic, and the bottom one is chiral)

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	8
1	21.751	BB	0.5465	8680.01563	239.67952	50.1891
2	28.470	BB	0.7197	8614.59961	177.65236	49.8109

#	[min]		[min]	[mAU*s]	[mAU]	8	
1	21.300	BB	0.5340	327.78497	9.32783	4.2395	
2	27.712	MM	0.7992	7403.88672	154.40346	95.7605	

Figure 123. HPLC spectra of 2u

2u (The top one is racemic, and the bottom one is

chiral)

峰 #	保留时间 [min]	类型	峰宽 [min]	峰面积 [mAU*s]	峰高 [mAU]	峰面积 *
	20 050	 MM	0 7450	 5051 02285	122 00870	06 7200
2	42.743	MM	0.7078	201.20631	4.73791	3.2700

Figure 124. HPLC spectra of 2v

2v (The top one is racemic, and the bottom two are

chiral)

This one is prepared from cis-substrate (Z-1v).

S107
Figure 125. HPLC spectra of 3v

Figure 126. HPLC spectra of 3a

峰 #	保留时间 [min]	<u> </u> 突型	峰苋 [min]	峰田枳 [mAU*s]	峰尚 [mAU]	峰田积 *
1	5.327	MM	0.1174	1138.82593	161.69975	95.6798
2	5.744	MM	0.1240	51.42119	6.90924	4.3202

Figure 127. HPLC spectra of 4a

OH **4a** (The top one is racemic, and the bottom one is chiral)

[mīn]		[mīn]	[mAU^B]	[mA0]	-6
12.910	BV	0.2960	1813.84961	93.63516	49.9712
13.724	VB	0.3094	1815.94397	89.25263	50.0288
	12.910 13.724	12.910 BV 13.724 VB	12.910 BV 0.2960 13.724 VB 0.3094	12.910 BV 0.2960 1813.84961 13.724 VB 0.3094 1815.94397	[min] [min] [max or s] [max or s] 12.910 BV 0.2960 1813.84961 93.63516 13.724 VB 0.3094 1815.94397 89.25263

1	12.821 M	M 0.3156	1009.19513	53.29708	95.7395
2	13.672 M	M 0.3375	44.90985	2.21809	4.2605

6. X-ray Crystallogaphic Data

Figure 128. X-Ray Crystallographic Data for Compound(R)-4a

G 4 4	e 4 1	,	1, 1, 6	1 4 11 1 4 1		
Structure	factors f	have been	supplied for	c datablock(s)	(CCDC:	2076650)

C-C = 0.0025 A	Wav	elength=1.54184			
a=7.90381(18)	b=8.25775(16)	c=12.5469(3)			
alpha=90	beta=108.190(3)	gamma=90			
150 K					
Calculated	Rep	oorted			
777.98(3)	77	7.98(3)			
P 21	Р	1 21 1			
P 2yb	P2	2yb			
C18 H19 N O3	C	18 H19 N O3			
C18 H19 N O3	C	18 H19 N O3			
297.34		297.34			
1.269		1.269			
2		2			
0.698	().698			
316.0	3	316.0			
316.96					
9,10,15		9,10,15			
3247[1738]		2225			
0.935,0.966	0.	954,1.000			
0.864					
Correction method= # Reported T Limits: Tmin=0.954 Tmax=1.000					
AbsCorr = MULTI-SCAN					
1.28/0.69	Theta(max)= 75.960				
8(2186)	wR2(reflection	s = 0.0722(2225)			
	Npar= 201				
	C-C = 0.0025 A a=7.90381(18) alpha=90 150 K Calculated 777.98(3) P 21 P 2yb C18 H19 N O3 C18 H19 N O3 C18 H19 N O3 297.34 1.269 2 0.698 316.0 316.96 9,10,15 3247[1738] 0.935,0.966 0.864 # Reported T Limits CAN 1.28/0.69 8(2186)	C-C = 0.0025 A Wav a=7.90381(18) b=8.25775(16) alpha=90 beta=108.190(3) 150 K Calculated Rep 777.98(3) 77 P 21 P P 2yb P2 C18 H19 N O3 C 297.34 C 1.269 2 0.698 (316.0 3 316.96 9 9,10,15 9 3247[1738] 0.935,0.966 0 0.864 (Reported T Limits: Tmin=0.954 Tmaxs CAN 1.28/0.69 Theta(max)= 7 8(2186) wR2(reflection Npar= 201			