Reaction Conditions-Dependent Divergent Synthesis of Spirooxindoles and Bisoxindoles

Guo-Shu Chen,^a Yu-Bo Fang,^a Zhi Ren,^{*b} Xu Tian,^c and Yun-Lin Liu^{*a}

Email: ylliu@gzhu.edu.cn

Table of Contents

1) General Information	S2
2) General procedure and spectral data of products 7	S3
3) Optimization of the reaction conditions for the preparation of product 8a	S7
4) General procedure and spectral data of products 8	S8
5) Optimization of the reaction conditions for the preparation of product 9a	S10
6) General procedure and spectral data of products 9	S10
7) Control experiments	S14
8) ESI-MS studies	S16
9) Theoretical calculations	S18
10) X-Ray crystallographic data for compounds 7a, 8d, and 9a	S30
11) Copies of ¹ H NMR and ¹³ C NMR spectra of compounds 7 , 8 , and 9	S33

1. General Information

Reactions were monitored by thin layer chromatography using UV light to visualize the course of reaction. Purification of reaction products was carried out by flash chromatography on silica gel. Chemical yields refer to pure isolated substances. ¹H and ¹³C NMR spectra were obtained using a Bruker DPX-400 or DPX-500 spectrometer. Chemical shifts are reported in ppm from CDCl₃ with the solvent resonance as the internal standard. The following abbreviations were used to designate chemical shift multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, h = heptet, m = multiplet, br = broad.

Anhydrous solvents such as CH_2CI_2 , $CICH_2CH_2CI$, CH_3CN , THF, toluene and EtOAc were purchased from Energy Chemical. Unless otherwise stated, all purchased reagents were used without further purification. All reactions involving air- or moisturesensitive compounds were carried out under nitrogen atmosphere in dried Schlenk tube. The MBH carbonates 1,^[1] 3formylchromones 4,^[2] β -isocupreidine (β -ICD) and its derivatives^[3] were prepared using the literature procedures.

All computational studies were performed with GAUSSIAN 16 suite.^[4] The gas-phase calculations were conducted on M06-2x functional,^[5] with the basis set 6-31G(d). All optimized structures in gas-phase were confirmed by frequency calculations, and intermediates have no negative frequency and transition states have only one negative frequency. In addition, transition states were verified by intrinsic reaction coordinate analysis (IRC) calcutions. The effect of solvent was considered by the SMD solvent model.^[6] The solution-phase calculations were performed using the single point calculation on the gas-phase geometries with the same functional using a larger basis set 6-311+G(2d,p).^[7] Solution-state Gibbs free energies of all structures were corrected by using the gas-phase Gibbs free energy correction, and all these energies correspond to the reference state of 1 atmosphere at 298 K. The unit of Gibbs free energies is kcal/mol, and the unit of bond length is angstrom (Å). The images are generated by CYLview.

References

- a) Y. M. Chung, Y. J. Im, J. N. Kim, Bull. Korean Chem. Soc. 2002, 23, 1651-1654; b) N.-J. Zhong, F. Wei, Q.-Q. Xuan, L. Liu, D. Wang, Y.-J. Chen, Chem. Commun. 2013, 49, 11071-11073; c) K. Selvakumar, K. A. P. Lingam, R. V. L. Varma, RSC Adv. 2014, 4, 36538-36543; d) F. Wei, H.-Y. Huang, N.-J. Zhong, C.-L. Gu, D. Wang, L. Liu, Org. Lett. 2015, 17, 1688-1691; e) K.-K. Wang, P. Wang, Q. Ouyang, W. Du, Y.-C. Chen, Chem. Commun. 2016, 52, 11104-11107.
- [2] a) N. Sepay, S. P. Dey, J. Heterocyclic Chem. 2014, 51, E1-E24; b) S. J. Degen, K. L. Mueller, G. M Golding, L.-L. Wei, C. A. Zificsak, A. Neeno-Eckwall, R. P. Hsung, Bioorg. Med. Chem. Lett. 1999, 9, 973-978; c) B. C. Raju, R. N. Rao, P. Suman, P. Yogeeswari, D. Sriram, T. B. Shaik, V. Kalivendi, Bioorg. Med. Chem. Lett. 2011, 21, 2855-2859; d) B. Baskar, P.-Y. Dakas, K. Kumar, Org. Lett. 2011, 13, 1988-1991; e) K. Wittstein, A. B. García, M. Schürmann, K. Kumar, Synlett 2012, 2012, 227-232.
- [3] a) Y. Iwabuchi, M. Nakatani, N. Yokoyama, S. Hatakeyama, J. Am. Chem. Soc. 1999, 121, 10219-10220; b) A. Nakano, K. Takahashi, J. Ishihara, S. Hatakeyama, Org. Lett. 2006, 8, 5357-5360; c) J. Peng, X. Huang, L. Jiang, H.-L. Cui, Y.-C. Chen, Org. Lett. 2011, 13, 4584-4587; d) H. Waldmann, V. Khedkar, H. Dückert, M. Schürmann, I. M. Oppel, K. Kumar, Angew. Chem. Int. Ed. 2008, 47, 6869-6872; Angew. Chem. 2008, 120, 6975-6978; e) L. Laraia, K. Ohsawa, G. Konstantinidis, L. Robke, Y.-W. Wu, K. Kumar, H. Waldmann, Angew. Chem. Int. Ed. 2017, 56, 2145-2150; Angew. Chem. 2017, 129, 2177-2182.
- [4] Gaussian 16, Revision A. 03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- [5] a) Y. Zhao, N. E. Schultz, D. Truhlar, J. Chem. Phys. 2005, 123, 161103; b) Y. Zhao, N. E. Schultz, D. G. Truhlar, J. Chem. Theory. Comput. 2006, 2, 364-382; c) Y. Zhao, D. G. Truhlar, J. Chem. Theory. Comput. 2006, 2, 1009-1018; d) Y. Zhao, D. G. Truhlar, Acc. Chem. Res. 2008, 41, 157-167; e) Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215-241; f) Y. Zhao, D. G. Truhlar, Chem. Phys. Lett. 2011, 502, 1-13.
- [6] J. M. Um, D. A. DiRocco, E. L. Noey, T. Rovis, K. Houk, J. Am. Chem. Soc. 2011, 133, 11249-11254.
- [7] a) A. V. Marenich, C. J. Cramer. D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378-6396; b) R. F. Ribeiro, A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2011, 115, 14556-14562.

2. General procedure and spectral data of products 7

General Procedure: To a 10.0 mL Schlenk tube were successively added MBH carbonates **1** (0.15 mmol), 3-formylchromones **4** (0.1 mmol) and anhydrous CH₂Cl₂ or EtOAc (1.0 mL). The reaction mixture was stirred vigorously at room temperature to ensure full dissolution of 3-formylchromones **4**. Then, 1,4-diaza bicyclo[2.2.2]octane (DABCO, 0.02 mmol) was added in one portion. The reaction mixture was stirred at 35 °C under N₂ atmosphere for 4-12 h, and monitored by TLC. After completion, the reaction mixture was directly subjected to flash chromatography on silica gel using petroleum ether/EtOAc (from 10:1-1:1) as the eluent to afford the benzopyrone fused spirocyclopentene oxindoles **7**.

The reaction was run at 35 °C for 4 h by using CH_2Cl_2 as the solvent, affording product **7a** in 95% yield as a white solid (m.p. 150-152 °C). ¹H NMR (500 MHz, CDCl₃) : δ 7.72 (dd, J = 8.0, 2.0 Hz, 1H), 7.53 (td, J = 9.0, 2.0 Hz, 1H), 7.41 (td, J = 8.0, 1.5 Hz, 1H), 7.20-7.15 (m, 3H), 7.06-7.02 (m, 2H), 6.93 (d, J = 7.5 Hz, 1H), 5.77 (dd, J = 7.5, 2.5 Hz, 1H), 3.59 (d, J = 8.0 Hz, 1H), 3.18 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 188.83, 172.04, 159.64, 146.30, 144.26, 136.91, 130.36, 127.07, 126.85, 124.43, 123.65, 122.92, 122.31, 121.53, 118.43, 112.48,

109.23, 80.91, 65.78, 54.88, 26.88. HRMS (ESI): Exact mass calcd for C₂₁H₁₄N₂NaO₃ [M+Na]⁺: 365.0895, Found: 365.0897.

The reaction was run at 35 °C for 4 h by using CH_2Cl_2 as the solvent, affording product **7b** in 86% yield as a white solid (m.p. 180-182 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.39 (m, 1H), 7.35 (t, *J* = 8.0 Hz 1H), 7.19-7.15 (m, 2H), 7.14 (d, *J* = 2.8 Hz, 1H), 6.95 (d, *J* = 8.0 Hz, 1H), 6.91 (d, *J* = 8.0 Hz, 1H), 6.85 (d, *J* = 7.6 Hz, 1H), 5.68 (dd, *J* = 8.0, 2.8 Hz, 1H), 3.65 (d, *J* = 8.0 Hz, 1H), 3.23 (s, 3H), 2.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 190.72, 172.62, 160.82, 146.13, 144.23, 141.52, 135.42, 130.26, 127.50, 125.90, 124.56, 123.55,

122.83, 121.66, 116.50, 112.54, 109.27, 80.56, 65.43, 57.28, 26.93, 21.67; HRMS (ESI): Exact mass calcd for $C_{22}H_{16}N_2NaO_3$ [M+Na]⁺: 379.1053, Found: 379.1053.

The reaction was run at 35 °C for 4 h by using CH₂Cl₂ as the solvent, affording product **7c** in 84% yield as a white solid (m.p. 190-191 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.35 (m, 2H), 7.16-7.10 (m, 3H), 6.90 (d, *J* = 7.6 Hz, 1H), 6.65 (d, *J* = 8.4 Hz, 1H), 6.55 (d, *J* = 8.4 Hz, 1H), 5.64 (dd, *J* = 8.0, 2.8 Hz, 1H), 3.80 (s, 3H), 3.66 (d, *J* = 7.6 Hz, 1H), 3.21 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 187.72, 172.63, 161.45, 160.02, 145.78, 144.40, 136.67, 130.07, 127.44, 124.79, 123.33, 122.79, 113.30, 110.64, 109.11, 105.38, 80.77, 65.15, 57.61,

56.05, 26.94; HRMS (ESI): Exact mass calcd for C₂₂H₁₆N₂NaO₄ [M+Na]⁺: 395.1002, Found: 395.1001.

The reaction was run at 35 °C for 4 h by using CH₂Cl₂ as the solvent, affording product **7d** in 90% yield as a white solid (m.p. 203-205 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 1.6 Hz, 1H), 7.43-7.38 (m, 1H), 7.33 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.19-7.14 (m, 3H), 6.95-6.91 (m, 2H), 5.73 (dd, *J* = 8.0, 2.8 Hz, 1H), 3.56 (d, *J* = 8.0 Hz, 1H), 3.18 (s, 3H), 2.28 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 188.99, 172.09, 157.65, 146.50, 144.20, 138.03, 131.81, 130.31, 127.13, 126.42. 124.22, 123.63, 122.90, 121.11, 118.17, 112.52, 109.20,

80.77, 65.70, 54.86, 26.87, 20.41; HRMS (ESI): Exact mass calcd for C₂₂H₁₆N₂NaO₃ [M+Na]⁺: 379.1053, Found: 379.1049.

The reaction was run at 35 °C for 4 h by using CH₂Cl₂ as the solvent, affording product **7e** in 82% yield as a white solid (m.p. 165-166 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.39 (m, 1H), 7.20-7.11 (m, 5H), 6.99-6.96 (m, 1H), 6.93 (d, *J* = 8.0 Hz, 1H), 5.73 (dd, *J* = 8.0, 2.8 Hz, 1H), 3.76 (s, 3H), 3.56 (d, *J* = 8.0 Hz, 1H), 3.19 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 188.84, 172.08, 154.62, 154.20, 146.49, 144.21, 130.34, 127.12, 125.94, 124.23, 123.67, 122.92, 121.43, 119.71, 112.50, 109.20, 107.41, 80.81, 65.66, 55.67,

54.78, 26.90; HRMS (ESI): Exact mass calcd for $C_{22}H_{16}N_2NaO_4$ [M+Na]⁺: 395.1002, Found: 395.1001.

The reaction was run at 35 °C for 4 h by using EtOAc as the solvent, affording product **7f** in 62% yield as a white solid (m.p. 178-180 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.40 (m, 1H), 7.37 (dd, *J* = 8.0, 3.2 Hz, 1H), 7.28-7.22 (m, 1H), 7.20-7.15 (m, 3H), 7.03 (dd, *J* = 8.8, 4.0 Hz, 1H), 6.94 (d, *J* = 7.6 Hz, 1H), 5.77 (dd, *J* = 8.0, 2.8 Hz, 1H), 3.57 (d, *J* = 7.6 Hz, 1H), 3.19 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 188.27, 171.96, 157.62 (d, *J* = 241.9 Hz), 155.8 (d, *J* = 1.8 Hz), 146.07, 144.20, 130.50, 126.81, 124.52, 124.47 (d, *J* = 24.4 Hz),

123.77, 122.93, 121.81 (d, J = 6.8 Hz), 120.18 (d, J = 7.5 Hz), 112.22 (d, J = 27.9 Hz), 111.85, 109.34, 81.07, 65.80, 54.42 (d, J = 1.3 Hz), 26.92; HRMS (ESI): Exact mass calcd for C₂₁H₁₃FN₂NaO₃ [M+Na]⁺: 383.0802, Found: 383.0801.

The reaction was run at 35 °C for 4 h by using EtOAc as the solvent, affording product **7g** in 55% yield as a white solid (m.p. 207-208 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 2.8 Hz, 1H), 7.46 (dd, *J* = 8.8, 2.8 Hz, 1H), 7.44-7.40 (m, 1H), 7.20-7.17 (m, 2H), 7.15 (d, *J* = 2.8 Hz, 1H), 7.00 (d, *J* = 8.8 Hz, 1H), 6.94 (d, *J* = 7.6 Hz, 1H), 5.77 (dd, *J* = 7.6, 2.8 Hz, 1H), 3.58 (d, *J* = 8.0 Hz, 1H), 3.18 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 187.85, 171.90, 158.03, 145.96, 144.18, 136.76, 130.52, 127.78, 126.72, 126.15, 124.56, 123.79, 122.94,

121.94, 120.14, 112.31, 109.35, 81.11, 65.89, 54.29, 26.91; HRMS (ESI): Exact mass calcd for $C_{21}H_{13}CIN_2NaO_3$ [M+Na]⁺: 399.0507, Found: 399.0512.

The reaction was run at 35 °C for 4 h by using EtOAc as the solvent, affording product **7h** in 65% yield as a white solid (m.p. 185-187 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 2.4 Hz, 1H), 7.59 (dd, *J* = 8.8, 2.8 Hz, 1H), 7.46-7.39 (m, 1H), 7.19-7.17 (m, 2H), 7.15 (d, *J* = 2.4 Hz, 1H), 6.94 (d, *J* = 8.8 Hz, 1H), 6.93 (d, *J* = 8.0 Hz, 1H), 5.76 (dd, *J* = 7.6, 2.8 Hz, 1H), 3.58 (d, *J* = 7.6 Hz, 1H), 3.18 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 187.70, 171.88, 158.48, 145.94, 145.90, 144.16, 139.53, 130.52, 129.22, 126.68, 124.55, 123.79, 122.93,

122.38, 120.45, 114.95, 112.30, 109.35, 81.09, 65.89, 54.24, 26.92; HRMS (ESI): Exact mass calcd for $C_{21}H_{13}BrN_2NaO_3$ [M+Na]⁺: 443.0002, Found: 442.9993.

The reaction was run at 35 °C for 4 h by using EtOAc as the solvent, affording product **7i** in 67% yield as a white solid (m.p. 215-217 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 8.4 Hz, 1H), 7.44-7.40 (m, 1H), 7.24-7.23 (m, 1H), 7.20-7.15 (m, 4H), 6.93 (d, *J* = 7.6 Hz, 1H), 5.78 (dd, *J* = 8.0, 2.8 Hz, 1H), 3.58 (d, *J* = 7.6 Hz, 1H), 3.17 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 187.99, 171.88, 159.77, 144.19, 131.64, 130.50, 128.02, 126.74, 125.92, 124.68, 123.78, 122.94, 121.60, 120.08, 112.32, 109.33, 81.33, 65.87, 54.42, 26.91; HRMS (ESI): Exact mass calcd for C₂₁H₁₃BrN₂NaO₃ [M+Na]*: 443.0002, Found: 443.0010.

The reaction was run at 35 °C for 4 h by using CH₂Cl₂ as the solvent, affording product **7***j* in 71% yield as a white solid (m.p. 165-167 °C). ¹H NMR (400 MHz, DMSO-d₆) δ 7.64 (d, *J* = 2.8 Hz, 1H), 7.52 (d, *J* = 8.8 Hz, 1H), 7.43 (d, *J* = 7.6 Hz, 2H), 7.19 (dt, *J* = 7.6 Hz, 1.0 Hz, 1H), 7.13 (d, *J* = 7.6 Hz, 1H), 6.64 (dd, *J* = 8.8, 2.4 Hz, 1H), 6.58 (d, *J* = 2.4 Hz, 1H), 5.90 (dd, *J* = 8.0, 2.8 Hz, 1H), 3.93 (d, *J* = 8.0 Hz, 1H), 3.84 (s, 3H), 3.09 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ 187.89, 172.72, 166.62, 162.11, 149.40, 144.32, 130.38, 128.52, 128.22, 124.06, 123.78, 122.28, 115.48, 113.72, 110.71, 109.73, 101.69, 82.19, 65.63, 56.41, 54.02, 27.00;

HRMS (ESI): Exact mass calcd for $C_{22}H_{16}N_2NaO_4$ [M+Na]⁺: 395.1002, Found: 395.0994.

The reaction was run at 35 °C for 4 h by using CH₂Cl₂ as the solvent, affording product **7k** in 83% yield as a white solid (m.p. 232-234 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 8.8 Hz, 1H), 7.42-7.36 (m, 6H), 7.20-7.14 (m, 3H), 6.92 (d, *J* = 7.6 Hz, 1H), 6.66 (dd, *J* = 8.8, 2.4 Hz, 1H), 6.54 (d, *J* = 2.4 Hz, 1H), 5.75 (dd, *J* = 7.6, 2.8 Hz, 1H), 5.09 (s, 2H), 3.53 (d, *J* = 8.0 Hz, 1H), 3.18 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 186.77, 171.98, 165.95, 161.70, 146.31, 144.24, 135.68, 130.31, 128.74, 128.37, 127.52, 127.08, 124.55, 123.65, 122.92, 115.30, 112.53, 111.47, 109.20, 102.07, 81.20, 70.43, 65.61, 54.50, 26.90; HRMS (ESI): Exact mass

calcd for $C_{28}H_{20}N_2NaO_4$ [M+Na]⁺: 471.1315, Found: 471.1316.

Found: 393.1212.

The reaction was run at 35 °C for 4 h by using CH₂Cl₂ as the solvent, affording product **7I** in 65% yield as a white solid (m.p. 160-162 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.45 (s, 1H), 7.43-7.38 (m, 1H), 7.20-7.14 (m, 3H), 6.92 (d, *J* = 8.0 Hz, 1H), 6.82 (s, 1H), 5.72 (dd, *J* = 7.6, 2.8 Hz, 1H), 3.53 (d, *J* = 7.6 Hz, 1H), 3.17 (s, 3H), 2.26 (s, 3H), 2.18 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 188.34, 172.06, 157.94, 147.84, 146.64, 144.24, 130.99, 130.28, 127.18, 126.80, 124.25, 123.63, 122.92, 119.14, 118.79, 112.58, 109.18, 80.73, 65.66, 54.76, 26.88, 20.60, 18.80; HRMS (ESI): Exact mass calcd for C₂₃H₁₈N₂NaO₃ [M+Na]⁺: 393.1210,

The reaction was run at 35 °C for 4 h by using CH₂Cl₂ as the solvent, affording product **7m** in 72% yield as a white solid (m.p. 150-152 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.67 (s, 1H), 7.44-7.39 (m, 1H), 7.19-7.15 (m, 3H), 6.94-6.92 (m, 2H), 5.75 (dd, *J* = 8.0, 2.8 Hz, 1H), 3.54 (d, *J* = 7.6 Hz, 1H), 3.17 (s, 3H), 2.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 187.40, 171.88, 157.87, 146.34, 146.13, 144.20, 130.47, 128.46, 126.79, 126.51, 124.55, 123.77, 122.94, 120.39, 120.07, 112.39, 109.31, 81.03, 65.80, 54.25, 26.91, 20.95; HRMS (ESI): Exact mass calcd for C₂₂H₁₅ClN₂NaO₃ [M+Na]⁺: 413.0663, Found: 413.0659.

The reaction was run at 35 °C for 4 h by using CH₂Cl₂ as the solvent, affording product **7n** in 66% yield as a white solid (m.p. 192-194 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.37 (d, *J* = 8.0 Hz, 1H), 7.78 (d, *J* = 8.4 Hz, 1H), 7.69 (d, *J* = 8.8 Hz, 1H), 7.66-7.61 (m, 1H), 7.57-7.53 (m, 1H), 7.45-7.40 (m, 2H), 7.33 (d, *J* = 2.4 Hz, 1H), 7.24-7.16 (m, 2H), 6.93 (d, *J* = 8.0 Hz, 1H), 5.95 (dd, *J* = 8.0, 2.8 Hz, 1H), 3.70 (d, *J* = 8.4 Hz, 1H), 3.16 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 187.92, 171.93, 158.03, 146.15, 144.26, 137.93, 130.38, 130.10, 127.86, 127.01, 126.42, 124.79, 124.73, 123.88, 123.68, 122.98, 121.87, 121.21, 115.86, 112.52, 109.25, 81.59,

65.85, 54.48, 26.88; HRMS (ESI): Exact mass calcd for $C_{25}H_{16}N_2NaO_3$ [M+Na]⁺: 415.1053, Found: 415.1055.

The reaction was run at 35 °C for 4 h by using EtOAc as the solvent, affording product **70** in 64% yield as a white solid (m.p. 170-172 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.71 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.55-7.51 (m, 1H), 7.37 (t, *J* = 8.0 Hz, 1H), 7.23 (d, *J* = 2.8 Hz, 1H), 7.09 (dd, *J* = 8.4, 1.0 Hz, 1H), 7.06-7.02 (m, 2H), 6.85 (d, *J* = 8.0 Hz, 1H), 5.83 (dd, *J* = 8.4, 2.8 Hz, 1H), 4.13 (d, *J* = 8.0 Hz, 1H), 3.18 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 189.42, 171.66, 159.66, 147.32, 146.00, 136.97, 131.61, 130.63, 126.80, 124.27, 122.73, 122.31, 121.61,

118.46, 112.33, 107.76, 80.87, 66.10, 51.06, 27.15; HRMS (ESI): Exact mass calcd for $C_{21}H_{13}CIN_2NaO_3$ [M+Na]⁺: 399.0507, Found: 399.0508.

The reaction was run at 35 °C for 12 h by using EtOAc as the solvent, affording product **7p** in 86% yield as a white solid (m.p. 150-151 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.56-7.51 (m, 1H), 7.20 (d, *J* = 2.8 Hz, 1H), 7.13 (td, *J* = 8.8, 2.8 Hz, 1H), 7.07-7.03 (m, 2H), 6.96 (dd, *J* = 7.2, 2.4 Hz, 1H), 6.87 (dd, *J* = 8.8, 4.0 Hz, 1H), 5.77 (dd, *J* = 8.0, 2.8 Hz, 1H), 3.55 (d, *J* = 8.0 Hz, 1H), 3.17 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 188.68, 171.78, 159.67 (d, *J* = 241.6 Hz), 159.64, 146.75, 140.22, 137.10, 128.44 (d, *J* = 7.8

Hz), 126.88, 123.83, 122.43, 121.43, 118.47, 116.79 (d, *J* = 23.2 Hz), 112.26, 111.30 (d, *J* = 25.2 Hz), 109.96 (d, *J* = 8.1 Hz), 80.74, 65.91, 54.81, 27.06; HRMS (ESI): Exact mass calcd for C₂₁H₁₃FN₂NaO₃ [M+Na]⁺: 383.0802, Found: 383.0810.

The reaction was run at 35 °C for 8 h by using EtOAc as the solvent, affording product **7q** in 64% yield as a white solid (m.p. 185-187 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (dd, *J* = 8.0 Hz, 1.6 Hz, 1H), 7.56-7.51 (m, 1H), 7.39 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.19 (s, 2H), 7.07-7.03 (m, 2H), 6.86 (d, *J* = 8.4 Hz, 1H), 5.76 (dd, *J* = 8.0, 2.8 Hz, 1H), 3.57 (d, *J* = 8.0 Hz, 1H), 3.17 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 188.66, 171.68, 159.62, 146.81, 142.83, 137.09, 130.37, 128.99, 128.64, 126.87, 123.70, 123.63, 122.45, 121.45, 118.46, 112.25,

110.22, 80.72, 65.65, 54.86, 27.03; Exact mass calcd for $C_{21}H_{13}CIN_2NaO_3$ [M+Na]⁺: 399.0507, Found: 399.0502.

The reaction was run at 35 °C for 8 h by using EtOAc as the solvent, affording product **7r** in 63% yield as a white solid (m.p. 195-196 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (dd, *J* = 8.0, 2.0 Hz, 1H), 7.56-7.52 (m, 2H), 7.32 (d, *J* = 2.0 Hz, 1H), 7.20 (d, *J* = 2.8 Hz, 1H), 7.07-7.03 (m, 2H), 6.82 (d, *J* = 8.4 Hz, 1H), 5.77 (dd, *J* = 8.0, 2.8 Hz, 1H), 3.57 (d, *J* = 8.0 Hz, 1H), 3.17 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 188.68, 171.60, 159.63,

146.83, 143.33, 137.12, 133.27, 128.99, 126.90, 126.36, 123.72, 122.47, 121.46, 118.48, 116.16, 112.26, 110.70, 80.72, 65.58, 54.89, 27.03; HRMS (ESI): Exact mass calcd for $C_{21}H_{13}BrN_2NaO_3$ [M+Na]⁺: 443.0002, Found: 442.9995.

The reaction was run at 35 °C for 4 h by using CH_2Cl_2 as the solvent, affording product **7s** in 88% yield as a white solid (m.p. 180-181 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (dd, J = 8.0, 1.6 Hz, 1H), 7.55-7.50 (m, 1H), 7.20 (d, J = 9.2 Hz, 1H), 7.17 (d, J = 2.8 Hz, 1H), 7.05-7.02 (m, 2H), 7.01 (s, 1H), 6.81 (d, J = 8.0 Hz, 1H), 5.76 (dd, J = 8.0, 2.8 Hz, 1H), 3.57 (d, J = 7.6 Hz, 1H), 3.16 (s, 3H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 188.92, 171.95, 159.64, 146.19, 141.84, 136.91, 133.29, 130.70, 126.95, 126.85, 124.62, 123.74,

122.28, 121.49, 118.42, 112.58, 108.97, 80.91, 65.87, 54.82, 26.91, 21.16; HRMS (ESI): Exact mass calcd for $C_{22}H_{16}N_2NaO_3$ [M+Na]⁺: 379.1053, Found: 379.1055.

The reaction was run at 35 °C for 4 h by using CH₂Cl₂ as the solvent, affording product **7t** in 91% yield as a white solid (m.p. 105-107 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.54-7.50 (m, 1H), 7.17 (d, *J* = 2.8 Hz, 1H), 7.05-7.02 (m, 2H), 6.92 (dd, *J* = 8.8, 2.4 Hz, 1H), 6.83 (d, *J* = 8.4 Hz, 1H), 6.79 (d, *J* = 2.4 Hz, 1H), 5.76 (dd, *J* = 7.6, 2.8 Hz, 1H), 3.80 (s, 3H), 3.56 (d, *J* = 8.0 Hz, 1H), 3.15 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 188.82, 171.65, 159.62, 156.70, 146.35, 137.58, 136.93, 128.18, 126.85,

124.40, 122.30, 121.45, 118.42, 114.31, 112.49, 110.58, 109.66, 80.87, 66.12, 55.77, 54.86, 26.97; HRMS (ESI): Exact mass calcd for $C_{22}H_{16}N_2NaO_4$ [M+Na]⁺: 395.1002, Found: 395.1005.

The reaction was run at 35 °C for 8 h by using EtOAc as the solvent, affording product **7u** in 72% yield as a white solid (m.p. 160-162 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.56-7.51 (m, 1H), 7.19 (d, *J* = 2.8 Hz, 1H), 7.17-7.11 (m, 2H), 7.07-7.03 (m, 2H), 6.94 (d, *J* = 1.6 Hz, 1H), 5.77 (dd, *J* = 7.6, 2.8 Hz, 1H), 3.55 (d, *J* = 8.0 Hz, 1H), 3.17 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 188.72, 172.07, 159.63, 146.68, 145.40, 137.11, 136.33, 126.89, 125.36, 123.94, 123.90, 123.59, 122.44, 121.44, 118.46, 112.30, 110.11,

80.72, 65.32, 54.86, 27.04; HRMS (ESI): Exact mass calcd for C₂₁H₁₃ClN₂NaO₃ [M+Na]⁺: 399.0507, Found: 399.0513.

The reaction was run at 35 °C for 8 h by using EtOAc as the solvent, affording product **7v** in 65% yield as a white solid (m.p. 205-206 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 8.0 Hz, 1H), 7.53 (t, *J* = 8.0 Hz, 1H), 7.31 (d, *J* = 8.0 Hz, 1H), 7.18 (s, 1H), 7.09 (s, 1H), 7.04 (t, *J* = 8.0 Hz, 3H), 5.75 (d, *J* = 7.6 Hz, 1H), 3.54 (d, *J* = 8.0 Hz, 1H), 3.16 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 188.69, 171.94, 159.62, 146.72, 145.47, 137.10, 126.88, 126.52, 125.93, 124.24, 124.16, 123.77, 122.43, 121.44, 118.45, 112.86, 112.29, 80.72, 65.37,

54.82, 27.02; HRMS (ESI): Exact mass calcd for $C_{21}H_{13}BrN_2NaO_3$ [M+Na]⁺: 443.0002, Found: 443.0007.

The reaction was run at 35 °C for 8 h by using EtOAc as the solvent, affording product **7w** in 73% yield as a white solid (m.p. 185-186 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 7.6 Hz, 1H), 7.56-7.52 (m, 1H), 7.36-7.32 (m, 1H), 7.19 (d, *J* = 2.8 Hz, 1H), 7.08-7.03 (m, 4H), 5.77 (dd, *J* = 8.0, 2.8 Hz, 1H), 3.55 (d, *J* = 8.0 Hz, 1H), 3.53 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 188.68, 172.38, 159.63, 146.69, 140.24, 137.11, 132.73, 129.75, 126.90, 124.33, 123.97, 122.46, 121.57, 121.47, 118.46, 116.63, 112.27, 80.74, 65.38, 55.31, 30.35; HRMS

(ESI): Exact mass calcd for $C_{21}H_{13}CIN_2NaO_3$ [M+Na]⁺: 399.0507, Found: 399.0516.

The reaction was run at 35 °C for 12 h by using EtOAc as the solvent, affording product **7x** in 62% yield as a white solid (m.p. 190-191 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.55-7.50 (m, 2H), 7.18 (d, *J* = 2.8 Hz, 1H), 7.11-6.99 (m, 4H), 5.76 (dd, *J* = 7.6, 2.8 Hz, 1H), 3.56 (d, *J* = 4.8 Hz, 1H), 3.54 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 188.65, 172.58, 159.61, 146.71, 141.65, 137.08, 136.04, 130.04, 126.88, 124.67, 123.94, 122.45, 122.13, 121.46, 118.45, 112.26, 103.45, 80.72, 65.33, 55.34, 30.56; HRMS (ESI): Exact mass calcd for C₂₁H₁₃BrN₂NaO₃ [M+Na]⁺: 443.0002, Found: 443.0007.

The reaction was run at 35 °C for 12 h by using EtOAc as the solvent, affording product **7y** in 89% yield as a white solid (m.p. 198-200 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.55-7.49 (m, 1H), 7.16 -7.10 (m, 2H), 7.06-6.99 (m, 4H), 5.76 (dd, *J* = 8.0, 2.8 Hz, 1H), 3.55 (d, *J* = 8.0 Hz, 1H), 3.44 (s, 3H), 2.60 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 188.96, 172.76, 159.63, 146.11, 141.95, 136.88, 134.10, 127.65, 126.83, 124.69, 123.54, 122.28, 121.54, 120.86, 120.84, 118.41, 112.55, 80.93, 65.38, 55.25, 30.24, 18.93;

HRMS (ESI): Exact mass calcd for C₂₂H₁₆N₂NaO₃ [M+Na]⁺: 379.1053, Found: 379.1056.

The reaction was run at 35 °C for 4 h by using CH₂Cl₂ as the solvent, affording product **7z** in 85% yield as a white solid (m.p. 176-178 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (dd, *J* = 8.0, 2.0 Hz, 1H), 7.54-7.50 (m, 1H), 7.37 (td, *J* = 7.6, 1.6 Hz, 1H), 7.21-7.14 (m, 3H), 7.05-7.01 (m, 2H), 6.90 (d, *J* = 8.0 Hz, 1H), 5.81-5.72 (m, 2H), 5.29-5.20 (m, 2H), 4.35-4.22 (m, 2H), 3.61 (d, *J* = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 188.70, 171.87, 159.62, 146.28, 143.37, 136.93, 130.24, 130.24, 127.01, 126.84, 124.46, 123.64, 123.00, 122.29, 121.51, 118.38, 117.67, 112.49, 110.20, 80.92, 65.78, 54.81, 42.77; HRMS (ESI): Exact mass calcd for C₂₃H₁₆N₂NaO₃

[M+Na]⁺: 391.1053, Found: 391.1054.

The reaction was run at 35 °C for 4 h by using CH₂Cl₂ as the solvent, affording product **7a**' in 86% yield as a white solid (m.p. 184-186 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 8.8 Hz, 1H), 7.53-7.49 (m, 1H), 7.33-7.28 (m, 2H), 7.26-7.22 (m, 4H), 7.19-7.15 (m, 2H), 7.12-7.08 (m, 1H), 7.05-7.01 (m, 2H), 6.71 (d, *J* = 8.0 Hz, 1H), 5.76 (dd, *J* = 8.0, 2.8 Hz, 1H), 4.90-4.82 (m, 2H), 3.63 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 188.68, 172.28, 159.62, 146.36, 143.24, 136.97, 134.64, 130.24, 128.75, 127.63, 127.01, 126.99, 126.83,

124.46, 123.01, 122.28, 121.47, 118.38, 110.38, 112.52, 80.93, 65.85, 54.77, 44.38; HRMS (ESI): Exact mass calcd for $C_{27}H_{18}N_2NaO_3$ [M+Na]⁺: 441.1210, Found: 441.1207.

3. Optimization of the reaction conditions for the preparation of product $8a^{a\cdot b}$

Entry ^a	Solvent	Yield ^b (%)
1	CH ₂ Cl ₂	40
2	CICH ₂ CH ₂ CI	28
3	Toluene	21
4	EtOAc	35
5	CH₃CN	28
6	THF	72
7	Dioxane	47

^[a]Reaction conditions: **1a** (0.15 mmol), **4f** (0.10 mmol) and DABCO (20 mol%) in solvent (1.0 mL) were stirred at 35 °C under N₂ atmosphere. [b] Isolated yields after purification by column chromatography.

4. General procedure and spectral data of products 8.

General Procedure: To a 10.0 mL Schlenk tube were successively added MBH carbonates **1** (0.15 mmol), 3-formylchromones **4** (0.1 mmol) and anhydrous THF (1.0 mL). The reaction mixture was stirred vigorously at room temperature to ensure full dissolution of 3-formylchromones **4**. Then, 1,4-diaza bicyclo[2.2.2]octane (DABCO, 0.02 mmol) was added in one portion. The reaction mixture was stirred at 35 °C under N₂ atmosphere for 24-48 h, and monitored by TLC. After completion, the reaction mixture was directly subjected to flash chromatography on silica gel using petroleum ether/EtOAc (from 10:1-1:1) as the eluent to afford the spirocyclopentadiene 2-oxindoles **8** incorporating a 2-hydroxybenzoyl moiety.

The reaction was run at 35 °C for 24 h by using THF as the solvent, affording product **8a** in 72% yield as a yellow solid (m.p. 190-191 °C). ¹H NMR (400 MHz, CDCl₃) δ 10.84 (s, 1H), 7.50 (d, *J* = 2.4 Hz, 1H), 7.42-7.38 (m, 3H), 7.25-7.21 (m, 1H), 7.04-7.00 (m, 2H), 6.95 (dd, *J* = 9.2, 4.8 Hz, 1H), 6.89 (d, *J* = 7.6 Hz, 1H), 3.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 190.26 (d, *J* =2.5 Hz), 168.28, 158.61 (d, *J* =1.5 Hz), 155.99, 153.60, 149.36, 146.46, 145.29, 143.11, 130.55, 125.35, 124.24 (d, *J* =23.4 Hz), 123.25 (d, *J* = 26.0 Hz), 120.29, 120.15 (d, *J* = 26.0 Hz), 118.74 (d, *J* = 6.3 Hz), 115.66 (d, *J* = 23.8 Hz), 112.82, 109.78, 71.11, 27.81; HRMS

(ESI): Exact mass calcd for $C_{21}H_{13}FN_2NaO_3$ [M+Na]⁺: 383.0802, Found: 383.0795.

The reaction was run at 35 °C for 48 h by using THF as the solvent, affording product **8b** in 67% yield as a yellow solid (m.p. 192-193 °C); ¹H NMR (400 MHz, CDCl₃) δ 10.99 (s, 1H), 7.66 (d, J = 2.8 Hz, 1H), 7.51 (d, J = 3.2 Hz, 1H), 7.45-7.38 (m, 3H), 7.05-7.01 (m, 2H), 6.94 (d, J = 8.8 Hz, 1H), 6.90 (dd, J = 7.6, 1.0 Hz, 1H), 3.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 190.17, 168.25, 160.88, 149.24, 146.47, 145.28, 143.44, 136.49, 130.55, 129.66, 125.47, 123.84, 123.39, 123.18, 120.40, 120.27, 119.92, 112.81, 109.77, 71.11, 27.82; HRMS

(ESI): Exact mass calcd for $C_{21}H_{13}CIN_2NaO_3$ [M+Na]⁺: 399.0507, Found: 399.0509.

The reaction was run at 35 °C for 24 h by using THF as the solvent, affording product **8c** in 66% yield as a yellow solid (m.p. 195-196 °C). ¹H NMR (400 MHz, CDCl₃) δ 11.01 (s, 1H), 7.80 (d, *J* = 2.4 Hz, 1H), 7.56 (dd, *J* = 8.8, 2.4 Hz, 1H), 7.52 (d, *J* = 2.8 Hz, 1H), 7.42-7.38 (m, 2H), 7.05-7.01 (m, 2H), 6.92-6.87 (m, 2H), 3.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 190.06, 168.25, 161.31, 149.23, 146.48, 145.27, 143.52, 139.26, 132.64, 130.56, 125.50, 123.40, 123.20, 120.78, 120.58, 120.27, 112.80, 110.70, 109.77, 71.11, 27.83; HRMS (ESI):

Exact mass calcd for $C_{21}H_{13}BrN_2NaO_3$ [M+Na]⁺: 443.0002, Found: 443.0003.

The reaction was run at 35 °C for 24 h by using THF as the solvent, affording product **8d** in 88% yield as a yellow solid (m.p. 215-217 °C). ¹H NMR (400 MHz, CDCl₃) δ 11.74 (s, 1H), 8.71 (d, *J* = 2.8 Hz, 1H), 8.36 (dd, *J* = 9.2, 2.8 Hz, 1H), 7.55-7.54 (m, 2H), 7.42 (t, *J* = 7.6 Hz, 1H), 7.09 (d, *J* = 9.2 Hz, 1H), 7.06-7.02 (m, 2H), 6.94 (d, *J* = 7.6 Hz, 1H), 3.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 189.99, 168.07, 167.07, 148.52, 146.39, 145.23, 144.73, 139.66, 131.13, 130.71, 126.86, 126.33, 123.53, 123.30, 120.05, 119.84, 118.07, 112.60, 109.87, 71.22, 27.87; HRMS (ESI): Exact mass calcd for C₂₁H₁₃N₃NaO₅ [M+Na]*: 410.0747, Found: 410.0745.

The reaction was run at 35 °C for 24 h by using THF as the solvent, affording product **8e** in 75% yield as a yellow solid (m.p. 172-174 °C). ¹H NMR (400 MHz, CDCl₃) δ 11.51 (s, 1H), 7.77-7.73 (m, 1H), 7.49 (d, *J* = 2.4 Hz, 1H), 7.39 (td, *J* = 7.6, 0.8 Hz, 1H), 7.34 (d, *J* = 2.4 Hz, 1H), 7.03-6.99 (m, 2H), 6.87 (d, *J* = 7.6 Hz, 1H), 6.66-6.61 (m, 2H), 3.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 190.20, 167.66 (d, *J* = 64.2 Hz), 168.31, 165.14 (d, *J* = 14.4 Hz), 149.65, 146.47, 145.29, 142.44, 133.15 (d, *J* = 11.8 Hz), 130.51, 124.97, 123.21 (d, *J* = 23.8 Hz), 120.31, 116.46, 112.88, 109.75, 107.45 (d, *J* = 22.8 Hz), 105.43 (d, *J* = 23.7 Hz), 71.12, 27.80; HRMS

(ESI): Exact mass calcd for C₂₁H₁₃FN₂NaO₃ [M+Na]⁺: 383.0802, Found: 383.0804.

The reaction was run at 35 °C for 48 h by using THF as the solvent, affording product **8f** in 70% yield as a yellow solid (m.p. 188-189 °C). ¹H NMR (400 MHz, CDCl₃) δ 11.23 (s, 1H), 7.58 (d, *J* = 8.4 Hz, 1H), 7.49 (d, *J* = 2.4 Hz, 1H), 7.40 (td, *J* = 7.6, 1.2 Hz, 1H), 7.36 (d, *J* = 2.8 Hz, 1H), 7.17 (d, *J* = 1.6 Hz, 1H), 7.06 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.04-6.99 (m, 2H), 6.87 (dd, *J* = 8.0, 1.2 Hz 1H), 3.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 190.68, 168.26, 162.87, 149.55, 146.43, 145.31, 142.79, 131.59, 131.45, 130.55, 125.24, 123.37, 123.10, 122.66, 121.97, 120.30, 118.28, 112.85, 109.79, 71.12, 27.82; HRMS (ESI): Exact mass calcd for

C₂₁H₁₃BrN₂NaO₃ [M+Na]⁺: 443.0002, Found: 442.9991.

The reaction was run at 35 °C for 48 h by using THF as the solvent, affording product **8g** in 72% yield as a yellow solid (m.p. 180-182 °C). ¹H NMR (400 MHz, CDCl₃) δ 11.56 (s, 1H), 7.66 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.59 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.49 (d, *J* = 2.4 Hz, 1H), 7.42-7.37 (m, 2H), 7.04-6.99 (m, 2H), 6.91-6.86 (m, 2H), 3.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.01, 168.17, 157.98, 149.37, 146.38, 145.29, 143.33, 136.61, 130.56, 129.23, 125.36, 123.35, 123.30, 123.06, 120.39, 120.22, 119.17, 112.82, 109.81, 71.14,

27.84; HRMS (ESI): Exact mass calcd for C₂₁H₁₃ClN₂NaO₃ [M+Na]⁺: 399.0507, Found: 399.0503.

The reaction was run at 35 °C for 48 h by using THF as the solvent, affording product **8h** in 75% yield as a yellow solid (m.p. 187-188 °C). ¹H NMR (400 MHz, CDCl₃) δ 11.67 (s, 1H), 7.76 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.70 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.49 (d, *J* = 2.4 Hz, 1H), 7.42-7.37 (m, 2H), 7.03-6.99 (m, 2H), 6.87-6.82 (m, 2H), 3.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 190.95, 168.17, 158.83, 149.31, 146.38, 145.30, 143.27, 139.81, 130.57, 130.00, 125.36, 123.36, 123.07, 120.30, 120.22, 119.78, 112.83, 112.47, 109.82, 71.17,

27.84. HRMS (ESI): Exact mass calcd for $C_{21}H_{13}BrN_2NaO_3$ [M+Na]⁺: 443.0002, Found: 443.0002.

The reaction was run at 35 °C for 24 h by using THF as the solvent, affording product **8i** in 70% yield as a yellow solid (m.p. 175-176 °C). ¹H NMR (400 MHz, CDCl₃) δ 11.08 (s, 1H), 7.72 (d, *J* = 8.0 Hz, 1H), 7.53-7.49 (m, 2H), 7.39 (d, *J* = 2.4 Hz, 1H), 7.10 (td, *J* = 8.8, 2.4 Hz, 1H), 7.00-6.91 (m, 3H), 6.65 (dd, *J* = 7.2, 2.4 Hz, 1H), 3.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.03, 168.12, 162.51, 159.14 (d, *J* = 241.7 Hz), 149.52, 146.87, 142.95, 141.39 (d, *J* = 2.2 Hz), 136.88, 130.69, 124.45, 122.08 (d, *J* = 8.6 Hz), 119.33,

119.17, 118.81, 116.86 (d, *J* = 23.3 Hz), 112.74, 111.35 (d, *J* = 241.7 Hz), 110.27 (d, *J* = 8.1 Hz), 70.96, 27.98; HRMS (ESI): Exact mass calcd for C₂₁H₁₃FN₂NaO₃ [M+Na]⁺: 383.0802, Found: 383.0804.

The reaction was run at 35 °C for 48 h by using THF as the solvent, affording product **8j** in 65% yield as a yellow solid (m.p. 192-194 °C). ¹H NMR (400 MHz, CDCl₃) δ 11.07 (s, 1H), 7.73 (d, *J* = 8.0 Hz, 1H), 7.55-7.48 (m, 3H), 7.40 (d, *J* = 2.4 Hz, 1H), 7.02-6.87 (m, 4H), 3.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 190.88, 167.98, 162.52, 149.56, 146.92, 144.41, 143.09, 136.89, 133.32, 130.69, 126.22, 124.43, 122.66, 119.31, 119.19, 118.82, 115.66, 112.73, 111.07, 70.57, 27.92; HRMS (ESI): Exact mass calcd for

 $C_{21}H_{13}BrN_2NaO_3$ [M+Na]⁺: 443.0002, Found: 442.9996.

The reaction was run at 35 °C for 48 h by using THF as the solvent, affording product **8k** in 67% yield as a yellow solid (m.p. 174-175 °C). ¹H NMR (400 MHz, CDCl₃) δ 11.08 (s, 1H), 7.70 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.52-7.48 (m, 2H), 7.38 (d, *J* = 2.4 Hz, 1H), 7.02 (d, *J* = 2.0 Hz, 1H), 7.00-6.97 (m, 2H), 6.94-6.90 (m, 1H), 6.80 (d, *J* = 7.6 Hz, 1H), 3.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.08, 168.43, 162.52, 149.64, 146.84, 146.48, 142.82, 136.88, 136.36, 130.65, 124.46, 124.00, 123.23, 119.30, 119.13, 118.83, 118.82,

112.77, 110.54, 70.43, 27.91; HRMS (ESI): Exact mass calcd for $C_{21}H_{13}CIN_2NaO_3$ [M+Na]⁺: 399.0507, Found: 399.0506.

The reaction was run at 35 °C for 48h by using THF as the solvent, affording product **8I** in 74% yield as a yellow solid (m.p. 195-196 °C). ¹H NMR (400 MHz, CDCl₃) δ 11.09 (s, 1H), 7.70 (d, *J* = 8.0 Hz, 1H), 7.52-

7.48 (m, 2H), 7.38-7.36 (m, 1H), 7.31 (dd, J = 8.4, 1.2 Hz, 1H), 6.98 (dd, J = 8.4, 1.0 Hz, 1H), 6.94-6.89 (m, 2H), 6.74 (dd, J = 7.6, 1.0 Hz, 1H), 3.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 190.98, 168.73, 162.53, 149.85, 146.86, 141.34, 136.86, 132.89, 130.63, 124.70, 123.91, 123.01, 121.50, 119.33, 119.12, 118.84, 116.86, 112.74, 70.49, 31.28; HRMS (ESI): Exact mass calcd for C₂₁H₁₃ClN₂NaO₃ [M+Na]⁺: 399.0507, Found: 399.0504.

The reaction was run at 35 °C for 48 h by using THF as the solvent, affording product **8m** in 67% yield as a yellow solid (m.p. 170-171 °C). ¹H NMR (400 MHz, CDCl₃) δ 11.09 (s, 1H), 7.70 (d, *J* = 8.0 Hz, 1H), 7.53-7.48 (m, 3H), 7.37 (d, *J* = 2.4 Hz, 1H), 6.99 (d, *J* = 8.4 Hz, 1H), 6.92 (t, *J* = 7.6 Hz, 1H), 6.84 (t, *J* = 7.6 Hz, 1H), 6.78 (d, *J* = 7.2 Hz, 1H), 3.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 190.96, 168.95, 162.53, 149.89, 146.87, 142.71, 136.86, 136.22, 130.63, 124.74, 124.27, 123.22, 122.02, 119.33, 119.12, 118.84, 112.73,

Me

103.62, 70.47, 31.55; HRMS (ESI): Exact mass calcd for $C_{21}H_{13}BrN_2NaO_3$ [M+Na]⁺: 443.0002, Found: 442.9995.

5. Optimization of the reaction conditions for the preparation of product 9a^{a-b}

	BocO N Me 1a	Catalyst (20 mol%) solvent, T °C, 4 h	O CN BocO 9a MeN	
Entry ^a	Catalyst	Solvent	T/°C	Yield ^b (%)
1	DABCO	CH ₂ Cl ₂	35	55
2	DABCO	CICH ₂ CH ₂ CI	35	45
3	DABCO	Toluene	35	33
4	DABCO	EtOAc	35	40
5	DABCO	THF	35	40
6	DABCO	Dioxane	35	35
7	DABCO	CH₃CN	35	37
8	DABCO	CH ₂ Cl ₂	0	66
9	DABCO	CH_2CI_2	-10	48
10	DBU	CH ₂ Cl ₂	0	mess
11	TBD	CH_2CI_2	0	16
12	DMAP	CH ₂ Cl ₂	0	25
13	Et ₃ N	CH ₂ Cl ₂	0	34

^[a]Reaction conditions: **1a** (0.15 mmol) and catalyst (20 mol%) in solvent (1.0 mL) were stirred at the indicated temperature under N₂ atmosphere. ^[b] Isolated yields after purification by column chromatography.

6. General procedure and spectral data of products 9

General Procedure: To a solution of MBH carbonates **1** (0.15 mmol) in anhydrous CH_2CI_2 (1.0 mL) at 0 °C was added DABCO (20 mol%) under N₂ atmosphere. Then, the reaction mixture was kept at this temperature for 4-12 h under stirring, and monitored by TLC. After completion, the reaction mixture was directly subjected to flash chromatography on silica gel using petroleum ether/EtOAc (from 4:1-1:1) as the eluent to afford the bisoxindoles **9**.

The reaction was run at 0 °C for 4 h by using CH₂Cl₂ as the solvent, affording product **9a** in 66% yield as a yellow solid (m.p. 125-126 °C). ¹H NMR (500 MHz, CDCl₃) δ 8.03 (d, *J* = 8.0 Hz, 1H), 7.77 (s, 1H), 7.48 (d, *J* = 7.5 Hz, 1H), 7.35 (td, *J* = 7.5, 1.0 Hz, 1H), 7.31 (td, *J* = 7.5, 1.0 Hz, 1H), 7.06-6.99 (m, 2H), 6.89 (d, *J* = 7.5 Hz, 1H), 6.75 (d, *J* = 7.5 Hz, 1H), 4.82 (d, *J* = 13.5 Hz, 1H), 3.48 (d, *J* = 13.5 Hz, 1H), 3.27 (s, 3H), 3.17 (s, 3H), 1.50 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 173.50, 165.52, 150.76, 148.82, 144.03, 143.09, 138.87, 132.73, 129.93, 126.82, 124.83, 124.37, 123.18, 122.90, 119.51, 116.62, 113.28, 112.11, 109.01, 108.33,

98.00, 85.86, 50.78, 33.82, 27.47, 26.79, 25.97; HRMS (ESI): Exact mass calcd for C₂₉H₂₆N₄NaO₅ [M+Na]⁺: 533.1795, Found: 533.1800.

The reaction was run at 0 °C for 12 h by using CH₂Cl₂ as the solvent, affording product **9b** in 53% yield as a yellow solid (m.p. 112-113 °C). ¹H NMR (500 MHz, CDCl₃) δ 7.81 (s, 1H), 7.79 (dd, *J* = 8.5, 2.5 Hz, 1H), 7.29 (dd, *J* = 8.0, 2.5 Hz, 1H), 7.09 (td, *J* = 8.5, 2.5 Hz, 1H), 7.03 (td, *J* = 9.0, 2.5 Hz, 1H), 6.84 (dd, *J* = 8.5, 4.0 Hz, 1H), 6.71 (dd, *J* = 8.5, 4.0 Hz, 1H), 4.86 (d, *J* = 14.0 Hz, 1H), 3.41 (d, *J* = 14.0 Hz, 1H), 3.26 (s, 3H), 3.18 (s, 3H), 1.51 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 173.05, 165.28, 160.02 (d, *J* = 35 Hz), 158.10 (d, *J* = 33 Hz), 151.04, 148.72, 140.24, 139.04, 138.61 (d, *J* = 2.9 Hz), 128.37 (d, *J* = 8.4 Hz), 120.20 (d, *J* = 8.9 Hz), 119.30

(d, J = 23.8 Hz), 116.50 (d, J = 23.4 Hz), 116.09, 113.15 (d, J = 9.5 Hz), 113.04, 112.91, 112.16 (d, J = 26.6 Hz), 109.71 (d, J = 7.9 Hz), 109.05 (d, J = 7.9 Hz), 97.25, 86.11, 51.07, 33.78, 27.46, 26.97, 26.13; HRMS (ESI): Exact mass calcd for C₂₉H₂₄F₂N₄NaO₅ [M+Na]⁺: 569.1607, Found: 569.1614.

The reaction was run at 0 °C for 12 h by using CH₂Cl₂ as the solvent, affording product **9c** in 61% yield as a brown solid (m.p. 142-143 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.00 (s, 1H), 7.79 (d, *J* = 1.0 Hz, 1H), 7.48 (s, 1H), 7.34 (d, *J* = 8.4 Hz, 1H), 7.29 (d, *J* = 9.2 Hz, 1H), 6.82 (d, *J* = 8.8 Hz, 1H), 6.71 (d, *J* = 8.4 Hz, 1H), 4.81 (d, *J* = 13.6 Hz, 1H), 3.40 (d, *J* = 13.6 Hz, 1H), 3.25 (s, 3H), 3.17 (s, 3H), 1.51 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 172.85, 165.12, 151.06, 148.68, 142.50, 141.53, 138.28, 132.64, 130.01, 129.46, 128.65, 128.56, 128.46, 125.25, 124.44, 120.47, 116.16, 113.00, 110.02, 109.45, 96.99, 86.16, 51.03, 33.91, 27.45, 26.95,

26.10; HRMS (ESI): Exact mass calcd for C₂₉H₂₄Cl₂N₄NaO₅ [M+Na]⁺: 601.1016, Found: 601.1023.

The reaction was run at 0 °C for 12 h by using CH₂Cl₂ as the solvent, affording product **9d** in 63% yield as a yellow solid (m.p. 148-150 °C). ¹H NMR (500 MHz, CDCl₃) δ 8.13 (d, *J* = 2.0 Hz, 1H), 7.79 (s, 1H), 7.60 (d, *J* = 1.5 Hz, 1H), 7.49 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.43 (dd, *J* = 8.5, 2.0 Hz, 1H), 6.78 (d, *J* = 8.5 Hz, 1H), 6.67 (d, *J* = 8.5 Hz, 1H), 4.81 (d, *J* = 13.5 Hz, 1H), 3.40 (d, *J* = 14.0 Hz, 1H), 3.25 (s, 3H), 3.18 (s, 3H), 1.52 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 172.79, 165.02, 151.07, 148.71, 142.98, 142.07, 138.16, 135.55, 132.91, 128.81, 128.07, 127.15, 120.91, 116.16, 115.68, 113.03, 110.48, 109.89, 97.06, 86.17, 51.12, 34.00, 27.48,

26.93, 26.11; HRMS (ESI): Exact mass calcd for C₂₉H₂₄Br₂N₄NaO₅ [M+Na]⁺: 689.0006, Found: 689.0010.

The reaction was run at 0 °C for 12 h by using CH₂Cl₂ as the solvent, affording product **9e** in 52% yield as a yellow solid (m.p. 160-161 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.24 (s, 1H), 7.82 (s, 1H), 7.74 (s, 1H), 7.64 (d, *J* = 8.0 Hz, 1H), 7.59 (d, *J* = 9.2 Hz, 1H), 6.98 (d, *J* = 8.4 Hz, 1H), 6.86 (d, *J* = 8.4 Hz, 1H), 4.92 (d, *J* = 13.6 Hz, 1H), 3.42 (d, *J* = 13.6 Hz, 1H), 3.31 (s, 3H), 3.20 (s, 3H), 1.52 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 173.34, 165.34, 151.16, 148.63, 146.41 (q, *J* = 1.3 Hz), 145.92 (q, *J* = 1.5 Hz), 137.90, 130.26 (q, *J* = 4.0 Hz), 129.46, 127.71 (q, *J* = 4.0 Hz), 127.39, 125.67, 125.34 (q, *J* = 12 Hz), 125.13, 122.19 (q, *J* = 4.0 Hz), 129.46, 127.71 (q, *J* = 4.0 Hz), 127.39, 125.67, 125.34 (q, *J* = 1.2 Hz), 125.13, 122.19 (q, *J* = 4.0 Hz), 129.46, 127.71 (q, *J* = 4.0 Hz), 127.39, 125.67, 125.34 (q, *J* = 1.2 Hz), 125.13, 122.19 (q, *J* = 4.0 Hz), 129.46, 127.71 (q, *J* = 4.0 Hz), 127.39, 125.67, 125.34 (q, *J* = 1.2 Hz), 125.13, 122.19 (q, *J* = 4.0 Hz), 129.46, 127.71 (q, *J* = 4.0 Hz), 127.39, 125.67, 125.34 (q, *J* = 1.2 Hz), 125.13, 122.19 (q, *J* = 4.0 Hz), 129.46, 127.71 (q, *J* = 4.0 Hz), 127.39, 125.67, 125.34 (q, *J* = 1.2 Hz), 125.13, 122.19 (q, *J* = 4.0 Hz), 125.13, 125.13, 122.19 (q, *J* = 4.0 Hz), 125.13, 125.13, 122.19 (q, *J* = 4.0 Hz), 125.13, 125.13, 125.13, 125.13 (q, J = 1.2 Hz), 125.13, 125.13 (q, J = 1.2 Hz), 125.13, 125.13 (q, J = 1.2 Hz), 125.13 (q, J =

3.8 Hz), 121.26 (q, J = 3.8 Hz), 119.27, 116.03, 113.46, 112.88, 108.97, 108.50, 96.73, 86.31, 51.01, 33.99, 27.44, 27.09, 26.11; HRMS (ESI): Exact mass calcd for C₃₁H₂₄F₆N₄NaO₅ [M+Na]⁺: 669.1543, Found: 669.1547.

The reaction was run at 0 °C for 12 h by using CH₂Cl₂ as the solvent, affording product **9f** in 75% yield as a yellow solid (m.p. 145-146 °C). ¹H NMR (500 MHz, CDCl₃) δ 7.84 (s, 1H), 7.77 (s, 1H), 7.29 (s, 1H), 7.15 (d, *J* = 8.0 Hz, 1H), 7.09 (d, *J* = 8.0 Hz, 1H)), 6.77 (d, *J* = 8.0 Hz, 1H), 6.64 (d, *J* = 8.0 Hz, 1H), 4.76 (d, *J* = 14.0 Hz, 1H), 3.47 (d, *J* = 14.0 Hz, 1H), 3.24 (s, 3H), 3.14 (s, 3H), 2.29 (s, 3H), 2.26 (s, 3H), 1.51 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 173.38, 165.58, 150.69, 148.85, 141.86, 140.70, 139.13, 133.11, 132.75, 132.51, 130.16, 127.00, 125.56, 124.95, 119.57, 116.72, 113.34, 111.74, 108.67, 108.03, 98.13, 85.80, 50.95, 33.84, 29.67, 27.48, 26.78, 25.89, 21.06; HRMS (ESI): Exact mass calcd for $C_{31}H_{30}N_4NaO_5$ [M+Na]⁺: 561.2108, Found: 561.2108.

The reaction was run at 0 °C for 12 h by using CH₂Cl₂ as the solvent, affording product **9g** in 60% yield as a brown solid (m.p. 128-129 °C). ¹H NMR (500 MHz, CDCl₃) δ 7.79 (s, 1H), 7.65 (d, *J* = 2.5 Hz, 1H), 7.11 (d, *J* = 2.5 Hz, 1H), 6.90 (dd, *J* = 9.0, 3.0 Hz, 1H), 6.83 (dd, *J* = 8.5, 2.5 Hz, 1H), 6.79 (d, *J* = 3.5 Hz, 1H), 6.66 (d, *J* = 8.5 Hz, 1H), 4.89 (d, *J* = 13.5 Hz, 1H), 3.75 (s, 3H), 3.71 (s, 3H), 3.40 (d, *J* = 14.0 Hz, 1H), 3.24 (s, 3H), 3.13 (s, 3H), 1.51 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 173.21, 165.46, 156.15, 155.93, 150.77, 148.81, 139.23, 137.87, 136.42, 127.81, 120.10, 118.53, 116.50, 115.53, 113.22, 112.34, 111.19,

110.29, 109.58, 108.88, 98.05, 85.85, 55.86, 55.78, 51.30, 33.67, 27.46, 26.86, 25.94; HRMS (ESI): Exact mass calcd for $C_{31}H_{30}N_4NaO_7$ [M+Na]⁺: 593.2007, Found: 593.1997.

The reaction was run at 0 °C for 12 h by using CH₂Cl₂ as the solvent, affording product **9h** in 63% yield as a brown solid (m.p. 142-143 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.4 Hz, 1H), 7.77 (s, 1H), 7.41 (d, *J* = 8.0 Hz, 1H), 7.04-6.99 (m, 2H), 6.90 (d, *J* = 1.6 Hz, 1H), 6.78 (d, *J* = 1.6 Hz, 1H), 4.78 (d, *J* = 14.4 Hz, 1H), 3.41 (d, *J* = 12.0 Hz, 1H), 3.25 (s, 3H), 3.16 (s, 3H), 1.51 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 173.35, 165.44, 150.96, 148.71, 145.08, 144.20, 139.01, 138.01, 135.99, 125.71, 125.36, 125.14, 123.15, 122.96, 117.74, 116.51, 113.12, 112.01, 109.87, 109.27, 97.27, 86.12, 50.41, 33.86, 27.44, 26.92, 26.14;

HRMS (ESI): Exact mass calcd for $C_{29}H_{24}Cl_2N_4NaO_5$ [M+Na]⁺: 601.1016, Found: 601.1031.

The reaction was run at 0 °C for 12 h by using CH₂Cl₂ as the solvent, affording product **9i** in 64% yield as a yellow solid (m.p. 115-116 °C). ¹H NMR (500 MHz, CDCl₃) δ 7.89 (d, *J* = 8.0 Hz, 1H), 7.77 (s, 1H), 7.35 (d, *J* = 8.0 Hz, 1H), 7.19-7.16 (m, 2H), 7.05 (d, *J* = 2.0 Hz, 1H), 6.94 (d, *J* = 1.5 Hz, 1H), 4.77 (d, *J* = 14.0 Hz, 1H), 3.39 (d, *J* = 14.0 Hz, 1H), 3.24 (s, 3H), 3.16 (s, 3H), 1.51 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 173.26, 165.34, 151.00, 148.74, 145.05, 144.33, 138.15, 127.30, 126.09, 126.05, 125.97, 125.76, 125.49, 123.90, 118.23, 116.54, 113.09, 112.65, 112.24, 112.11, 97.26, 86.14, 50.45, 33.92, 27.47, 26.93, 26.14;

HRMS (ESI): Exact mass calcd for $C_{29}H_{24}Br_2N_4NaO_5$ [M+Na]⁺: 689.0006, Found: 689.0018.

The reaction was run at 0 °C for 12 h by using CH₂Cl₂ as the solvent, affording product **9***j* in 50% yield as a yellow solid (m.p. 138-140 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 8.8 Hz, 1H), 7.74 (s, 1H), 7.42 (d, *J* = 7.6 Hz, 1H), 7.29 (d, *J* = 8.8 Hz, 2H), 7.01-6.93 (m, 2H), 4.76 (d, *J* = 16.8 Hz, 1H), 3.63 (s, 3H), 3.55 (s, 3H), 3.45 (d, *J* = 13.6 Hz, 1H), 1.51 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 173.51, 165.83, 151.21, 148.70, 139.80, 138.96, 137.76, 134.93, 132.29, 129.77, 123.99, 123.67, 123.13, 122.93, 122.01, 116.54, 116.49, 116.01, 113.17, 112.72, 97.33, 86.11, 50.31, 34.36, 30.27, 29.43, 27.45; HRMS (ESI): Exact mass calcd for C₂₉H₂₄Cl₂N₄NaO₅ [M+Na]⁺: 601.1016, Found: 601.1027.

The reaction was run at 0 °C for 12 h by using CH₂Cl₂ as the solvent, affording product **9k** in 52% yield as a brown solid (m.p. 145-146 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 8.0 Hz, 1H), 7.71 (s, 1H), 7.30 (d, *J* = 7.2 Hz, 1H), 7.08 (d, *J* = 7.6 Hz, 1H), 7.02 (d, *J* = 8.0 Hz, 1H), 6.91 (t, *J* = 7.6 Hz, 1H), 6.88 (t, *J* = 8.0 Hz, 1H), 4.87 (d, *J* = 14.0 Hz, 1H), 3.53 (s, 3H), 3.45 (s, 3H), 3.44 (d, *J* = 14.0 Hz, 1H), 2.56 (s, 3H), 2.51 (s, 3H), 1.50 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 174.33, 166.36, 150.66, 148.85, 141.85, 140.92, 138.43, 136.58, 133.59, 127.41, 123.06, 122.72, 122.65, 122.31, 120.63, 120.22, 119.91, 116.82, 113.31, 111.66, 98.52, 85.78, 50.23, 33.96, 30.19, 29.36, 27.45, 19.09, 19.06; HRMS (ESI): Exact mass calcd for C₃₁H₃₀N₄NaO₅

[M+Na]⁺: 561.2108, Found: 561.2120.

The reaction was run at 0 °C for 12 h by using CH_2Cl_2 as the solvent, affording product **9I** in 61% yield as a pale yellow solid (m.p. 137-138 °C). ¹H NMR (500 MHz, CDCl₃) δ 7.77 (s, 1H), 7.71 (s, 1H), 7.11 (s, 1H), 6.89 (s,

1H), 6.82 (s, 1H), 4.79 (d, J = 14.0 Hz, 1H), 3.50 (s, 3H), 3.43 (d, J = 12.0 Hz, 1H), 3.42 (s, 3H), 2.50 (s, 3H), 2.47 (s, 3H), 2.23 (s, 3H), 2.20 (s, 3H), 1.50 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 174.18, 166.41, 150.58, 148.87, 139.61, 138.72, 138.44, 137.14, 134.04, 132.50, 132.21, 127.68, 123.27, 122.78, 120.38, 120.20, 119.54, 116.91, 113.38, 111.28, 98.64, 85.71, 50.42, 33.98, 30.11, 29.22, 27.47, 20.75, 18.89; HRMS (ESI): Exact mass calcd for C₃₃H₃₄N₄NaO₅ [M+Na]⁺: 589.2421, Found: 589.2433.

The reaction was run at 0 °C for 12 h by using CH₂Cl₂ as the solvent, affording product **9m** in 64% yield as a brown solid (m.p. 115-116 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 7.6 Hz, 1H), 7.78 (s, 1H), 7.51 (d, *J* = 8.0 Hz, 1H), 7.32 (td, *J* = 8.0, 1.2 Hz, 1H), 7.27 (td, *J* = 7.6, 1.2 Hz, 1H), 7.03 (td, *J* = 7.6, 1.0 Hz, 1H), 7.02 (td, *J* = 7.6, 1.0 Hz, 1H), 6.90 (d, *J* = 8.0 Hz, 1H), 6.74 (d, *J* = 7.6 Hz, 1H), 5.93-5.73 (m, 2H), 5.30-5.13 (m, 4H), 4.43-4.21 (m, 4H), 3.57 (d, *J* = 13.6 Hz, 1H), 1.51 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 172.98, 165.26, 150.76, 148.77, 143.26, 142.24, 138.92, 132.70, 130.99, 130.50, 129.80, 126.93, 124.87, 124.50, 123.10, 122.88, 119.56, 118.25, 117.63, 116.83, 113.30, 111.95, 109.94, 109.12,

97.94, 85.87, 50.87, 43.08, 41.92, 33.80, 27.45; HRMS (ESI): Exact mass calcd for $C_{33}H_{30}N_4NaO_5$ [M+Na]⁺: 585.2108, Found: 585.2112.

The reaction was run at 0 °C for 12 h by using CH₂Cl₂ as the solvent, affording product **9n** in 47% yield as a brown solid (m.p. 123-124 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 8.0 Hz, 1H), 7.85 (s, 1H), 7.55 (d, *J* = 7.6 Hz, 1H), 7.34-7.18 (m, 12H), 7.01 (t, *J* = 8.0 Hz, 2H), 6.76 (d, *J* = 7.6 Hz, 1H), 6.65 (d, *J* = 8.0 Hz, 1H), 5.11 (d, *J* = 16.4 Hz, 1H), 4.94 (d, *J* = 16.0 Hz, 1H), 4.81-4.67 (m, 3H), 3.75 (d, *J* = 14.4 Hz, 1H), 1.51 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 173.45, 165.66, 150.87, 148.76, 143.25, 142.22, 139.04, 135.04, 135.00, 132.75, 129.84, 128.86, 128.83, 127.84, 127.70, 127.25, 127.09, 127.03, 124.91, 124.61, 123.22, 122.98,

119.65, 112.06, 110.10, 109.29, 97.92, 85.90, 50.94, 44.47. 43.42, 33.84, 27.47; HRMS (ESI): Exact mass calcd for $C_{41}H_{34}N_4NaO_5$ [M+Na]⁺: 685.2421, Found: 685.2424.

7. Control experiments

The preparation of d₂-**4a**: To a solution of 2-hydroxyacetophenone (136 mg, 1 mmol) in deuterated dimethylformamide (0.6 mL) was added phosphorus oxychloride (0.5 mL, 5 mmol) dropwise at -10°C. The reaction mixture was then stirred at rt for 24 h before the reaction was quencehed by addition of H₂O (5 mL). The resulting solid was collected and dried in vacuo to afford deuterated 3-formylchromone d₂-**4a** in 85% yield (150 mg, 0.85 mmol). The deuterated ratio of d₂-**4a** was determined by ¹H NMR analysis using CDCl₃ as the NMR solvent.

¹H NMR (400 MHz, CDCl₃) δ 8.30 (dd, *J* = 8.0, 2.0 Hz, 1H), 7.78-7.73 (m, 1H), 7.55-7.49 (m, 2H);

 ^{13}C NMR (100 MHz, CDCl_3) δ 175.99, 156.15, 156.14, 134.80, 126.63, 126.16, 125.30, 118.60.

The preparation of d-**7a-1**: To a solution of MBH carbonate **1a** (0.15 mmol) and deuterated 3-formylchromone d₂-**4a** (0.10 mmol) in anhydrous CH_2CI_2 (1.0 mL) was added DABCO (0.02 mmol) at rt. The reaction mixture was then stirred vigorously at 35 °C under N₂ atmosphere for 4 h. After completion of the reaction as indicated by TLC, the mixture was directly subjected to flash chromatography on silica gel using petroleum ether/EtOAc (4:1) as the eluent to afford the deuterated product d-**7a-1** in 93% yield. The deuterated ratio of d-**7a-1** was determined by ¹H NMR analysis using CDCl₃ as the NMR solvent.

¹H NMR (400 MHz, CDCl₃) δ 7.72 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.55-7.50 (m, 1H), 7.43-7.39 (m, 1H), 7.21-7.15 (m, 3H), 7.06-7.02 (m, 2H), 6.93 (d, *J* = 7.6 Hz, 1H), 3.59 (s, 1H), 3.18 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 188.86, 172.05, 159.65, 146.27, 144.25, 136.93, 130.37, 127.05, 126.86, 124.48, 123.67, 122.92, 122.31, 121.51, 118.43, 112.48, 109.24, 65.77, 54.76, 26.89; HRMS (ESI): Exact mass calcd for C₂₁H₁₃DN₂NaO₃ [M+Na]⁺: 366.0959, Found: 366.0960.

The preparation of d-**7a-2**: To a solution of MBH carbonate **1a** (0.15 mmol), deuterated 3-formylchromone d_2 -**4a** (0.10 mmol) and D_2O (5 µL, 0.25 mol) in anhydrous CH₂Cl₂ (1.0 mL) was added DABCO (0.02 mmol) at rt. The reaction mixture was then stirred

vigorously at 35 °C under N₂ atmosphere for 4 h. After completion of the reaction as indicated by TLC, the mixture was directly subjected to flash chromatography on silica gel using petroleum ether/EtOAc (4:1) as the eluent to afford the deuterated product d-**7a-2** in 81% yield. The deuterated ratio of d-**7a-2** was determined by ¹H NMR analysis using CDCl₃ as the NMR solvent.

¹H NMR (400 MHz, CDCl₃) δ 7.72 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.55-7.51 (m, 1H), 7.44-7.39 (m,1H), 7.20-7.15 (m, 3H), 7.06-7.02 (m, 2H), 6.93 (d, *J* = 7.6 Hz, 1H), 3.59 (s, 0.3H), 3.18 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 188.83, 172.05, 159.68, 146.25, 144.28, 136.93, 130.38, 127.05, 126.86, 124.52, 123.67, 122.92, 122.30, 121.51, 118.44, 112.48, 109.24, 65.75, 54.80, 26.90; HRMS (ESI): Exact mass calcd for C₂₁H₁₂D₂N₂NaO₃ [M+Na]⁺: 367.1022, Found: 367.1013.

The preparation of d-**7a-3**: To a solution of MBH carbonate **1a** (0.15 mmol), 3-formylchromone **4a** (0.1 mmol) and D₂O (5 µL, 0.25 mol) in anhydrous CH_2Cl_2 (1.0 mL) was added DABCO (0.02 mmol) at rt. The reaction mixture was then stirred vigorously at 35 °C under N₂ atmosphere for 4 h. After completion of the reaction as indicated by TLC, the mixture was directly subjected to flash chromatography on silica gel using petroleum ether/EtOAc (4:1) as the eluent to afford the deuterated product d-**7a-3** in 83% yield. The deuterated ratio of d-**7a-3** was determined by ¹H NMR analysis using CDCl₃ as the NMR solvent.

¹H NMR (400 MHz, CDCl₃) δ 7.73 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.55-7.51 (m, 1H), 7.44-7.40 (m, 1H), 7.20-7.17 (m, 3H), 7.06-7.02 (m, 2H), 6.93 (d, *J* = 8.0 Hz, 1H), 5.79-5.77 (m, 1H), 3.59 (d, *J* = 7.6 Hz, 0.3H), 3.18 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 188.83, 172.04, 159.67, 146.31, 144.28, 136.93, 130.38, 127.05, 126.86, 124.48, 123.67, 122.92, 122.32, 121.52, 118.44, 112.48, 109.24, 80.75, 65.74, 54.90, 26.90; HRMS (ESI): Exact mass calcd for C₂₁H₁₃DN₂NaO₃ [M+Na]⁺: 366.0959, Found: 366.0952.

The preparation of 8n: To a solution of compound 7a (0.10 mmol, 34.2 mg, 88% ee) in anhydrous CH_2Cl_2 (1.0 mL) was added DABCO (0.02 mmol) at rt. The reaction mixture was then stirred vigorously at 35 °C under N₂ atmosphere for 36 h. After the full consumption of 7a as indicated by TLC, the mixture was directly subjected to flash chromatography on silica gel using petroleum ether/EtOAc (4:1) as the eluent to afford the title compound 8n in 85% yield.

¹H NMR (400 MHz, CDCl₃) δ 11.12 (s, 1H), 7.73 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.51-7.46 (m, 2H), 7.41-7.34 (m, 2H), 7.03-6.95 (m, 3H), 6.93-6.88 (m, 2H), 3.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.26, 168.40, 162.39, 149.78, 146.57, 145.29, 142.66, 136.65, 130.74, 130.39, 124.82, 123.23, 123.04, 120.45, 119.39, 119.02, 118.64, 112.94, 109.66, 71.02, 27.73; HRMS (ESI): Exact mass calcd for C₂₁H₁₄N₂NaO₃ [M+Na]⁺: 365.0897, Found: 365.0891.

8. ESI-MS studies:

General Procedure: To a solution of MBH carbonate **1a** (0.10 mmol) in anhydrous CH_2CI_2 (1.0 mL) at room temperature was added DABCO (20 mol%) under N₂ atmosphere. Then, the reaction mixture was stirred at rt for 15 min and the solution was studied by ESI-MS immediately.

General Procedure: To a 10 mL Schlenk tube equipped with a magnetic stirrer bar were added MBH carbonate **1a** (0.15 mmol), 3formylchromone **4a** (0.1 mmol) and anhydrous CH_2CI_2 (1 mL). The reaction mixture was stirred vigorously at room temperature to ensure full dissolution of 3-formylchromone **4a**. Then, DABCO (0.02 mmol) was added. The resulting mixture was stirred at 35 °C under N₂ atmosphere for 15 min and the solution was studied by ESI-MS immediately.

Figure S5: The simulated (a) and experimental (b) ESI-MS spectra of intermediate Int-IV.

Figure S6: The simulated (a) and experimental (b) ESI-MS spectra of intermediate Int-V.

9. Theoretical calculations

To get more information about the origin of regioselectivity of this switchable catalytic approach, DFT calculations were then performed using Gaussian 16 suite. In the DABCO-catalyzed allylic alkylation reaction, the C-C bond formation involved in nucleophilic addition between γ - or α -carbon of *N*-allylic ylide intermediate **Int-II** and α -carbon of MBH carbonate **1a** via transition states TS1 and TS2 respectively, was studied. As shown in Figure **S7**, the calculated energy barrier of TS1 was 2.8 kcal/mol lower than that of TS2 as the γ -position of **Int-II** was sterically less hindered. In addition, the positively charged nitrogen on DABCO could stabilize the build up negative charge on nitrogen of the nitrile group in the transition state **TS1** (3.52 Å between the two nitrogen atoms), but there was no such stabilization effect available in **TS2**. As such, both steric and electronic effect render the γ -regioselective allylic alkylation more favorable, which was consistent with the experiment data.

Figure S7. Optimized structures and energies of TS1 and TS2.

In the DABCO-catalyzed [3+2] annulation reaction between **1a** and **4a**, DFT calculations supported the stepwise mechanism as no concerted transition state was identified. In the stepwise pathway, the reaction underwent through two C-C addition steps to form the five-membered ring, and the second C-C addition step would be crucial for controlling the actual selectivity. Both γ - and α -regioselective annulation were considered. As shown in Figure **S8**, the γ -regioselective annulation transition state **TS4** having the formyl group and the bulky ammonium moiety located at the same side was higher in energy barrier than α -regioselective annulation transition state **TS3** (**TS4**, 13.6 kcal/mol vs **TS3**, 11.2 kcal/mol) due to the unfavorable steric repulsion. Therefore, the regioselectivity trends observed in this case might be mainly dominated by steric effect in the second C-C addition step.

TS3 (α -selective, 11.2 kcal/mol)

TS4 (γ-selective, 13.6 kcal/mol)

Computaional data:

TS1

Zero-point correction=	0.697643 (Hartree/Particle)
Thermal correction to Energy=	0.738939
Thermal correction to Enthalpy=	0.739883
Thermal correction to Gibbs Free Energy	rgy= 0.624676
SCF Done: E(SOV) = -2061.0156405	50 A.U.

С	-5.29887900	0.81154100	-2.34817700
С	-3.76613800	1.02783200	-2.41057400
N	-3.18793000	0.73218300	-1.04493200
С	3.53769600	-0.78848800	-2.91210400
С	4.37833300	0.30685300	-3.09048700
С	3.96909100	1.59430000	-2.73197000
С	2.69421000	1.73776400	-2.20897800
С	1.82279500	0.64619600	-2.03403500
С	2.25893500	-0.62887200	-2.36720900
N	2.06271500	2.90580800	-1.78263700
С	0.78117100	2.63811000	-1.34725600
С	0.62016400	1.15506100	-1.33901300
0	-0.03525400	3.48196500	-1.00068300
С	2.63154800	4.22912500	-1.84645000
С	-1.79189200	1.20154200	-0.96233200
С	-0.73052000	0.64782300	-1.59286400
С	-0.87113000	-0.47334800	-2.48220400
н	-5.62796600	0.23890900	-3.21966200
н	-5.82405200	1.77111600	-2.35943800
н	-3.48502800	2.05447200	-2.65386800
н	-3.26811600	0.35036800	-3.10830400
н	3.87797100	-1.77966400	-3.19269700
н	5.36893600	0.16274900	-3.51007600
н	4.62551500	2.44948000	-2.85832500
н	1.61835000	-1.49333100	-2.22158000
н	2.91649100	4.47535600	-2.87518700
н	3.50834900	4.30232800	-1.19470500
н	1.87035500	4.92782000	-1.49674800
н	-1.68309300	2.10752400	-0.38331100
С	-3.97868100	1.50789600	-0.00469400
н	-3.92173100	2.55733600	-0.30412700
н	-3.44524000	1.39664000	0.94140700
С	-5.41844300	0.95285700	0.02496800
н	-6.13820400	1.77603500	0.03250100
н	-5.57792700	0.35938900	0.92944300
N	-5.67798300	0.09718100	-1.13367600
С	-3.37582100	-0.74412300	-0.72957000

Н	-3.09224300	-0.85464400	0.31979300
н	-2.69349100	-1.31582800	-1.35372500
С	-4.85343900	-1.10399500	-1.01556000
н	-5.24081600	-1.72610500	-0.20434700
н	-4.94291300	-1.67201000	-1.94659700
N	-1.00820800	-1.34980700	-3.22818900
С	3.63830900	3.97915800	2.07436500
С	3.27596700	5.23777400	1.60219700
С	1.93931600	5.56585700	1.35004000
С	0.98347300	4.58955200	1.58574300
С	1.33685800	3.31659900	2.04757200
С	2.65694600	3.00647000	2.30777600
N	-0.39612000	4.68618500	1.43499500
С	-1.01495900	3.51566900	1.77776900
0	-2.20568600	3.28510400	1.67226300
С	-1.06812100	5.77217500	0.77198100
С	0.96102400	0.76815200	0.48869900
С	0.00449100	1.21450800	1.43384100
С	-1.07439500	0.37047000	1.78514600
н	4.68123600	3.75341000	2.26974800
н	4.04371000	5.98667800	1.43076700
н	1.66094500	6.55259300	0.99383200
н	2.92143800	2.02265000	2.68636300
н	-0.70780700	5.85591500	-0.25921700
н	-0.90327500	6.71201500	1.30812200
н	-2.13371200	5.54013300	0.76954600
н	1.01914300	-0.31197700	0.35789400
N	-1.96057200	-0.33077600	2.08387100
н	1.95109800	1.21999000	0.54219100
С	0.08266100	2.49767600	2.22397300
0	-0.11287000	2.08920400	3.59961500
С	-0.33870400	3.03272300	4.51977300
0	-0.43970300	2.42269300	5.69620900
С	-0.70436700	3.20629400	6.89466100
С	-2.05169000	3.91215600	6.77396700
н	-2.30060700	4.38063600	7.73143000
н	-2.02537300	4.68004200	5.99978200
н	-2.83308800	3.18507500	6.53214400
С	0.43999400	4.18361300	7.14750600
н	0.47781100	4.95629200	6.37858200
Н	0.29856500	4.65964700	8.12291500
Н	1.39329800	3.64606200	7.16318000
С	-0.75094200	2.14117700	7.98369800
Н	-0.94602700	2.60732100	8.95380000
Н	-1.54233300	1.41657900	7.77325100
Н	0.20267000	1.60810700	8.03428100
0	-0.42820400	4.21793200	4.30153500

Zero-point correction= Thermal correction to Energy= Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= SCF Done: E(SOV) = -2061.01252792 A.U.

0.698578 (Hartree/Particle) 0.739564 0.740508 rgy= 0.625908

С -5.43835800 -0.61279400 3.23664500 С -4.04533300 -0.00970300 2.93550900 Ν -3.91916300 0.21106300 1.44085700 С 3.22184100 0.55576500 1.83172100 С 3.78021600 1.82112400 1.65302700 С 2.97147600 2.94601300 1.49378900 С 1.59938700 2.75947600 1.52945300 1.49145200 С 1.01050300 1.71672200 С 1.83898900 0.37945900 1.85650700 Ν 0.60228400 3.72154100 1.39891300 С -0.65171700 3.14900200 1.46132900 С -0.42736300 1.68960000 1.63115900 0 -1.70656800 3.78456600 1.44569100 С 0.83189500 5.12121300 1.15075000 С -2.72945200 1.05207400 1.08805700 С 0.76710900 1.65506300 -1.45694700 С -1.12885000 -0.58939900 2.00777900 н -5.34328700 -1.42765600 3.95948000 Н 0.13892000 -6.10661500 3.66671400 н -3.88233100 0.96404500 3.40104400 н -3.23330500 -0.67819600 3.22356300 -0.30697900 н 3.87032500 1.94352100 н 4.85948300 1.93459400 1.62750800 н 3.40050900 3.92989400 1.33471100 н 1.42666400 -0.61503400 1.98295800 н 5.53189700 1.51994000 1.89715500 Н 1.24445200 5.27338000 0.14676800 н -0.13040100 5.62877900 1.22268900 н -3.01185500 2.09758700 1.07275100 С -5.16056900 0.95018200 0.99432900 н -5.22457200 1.83706400 1.62981300 н -4.98727900 1.29725000 -0.02427100 С -6.37578300 0.00896500 1.14637300 н -7.22182600 0.55761500 1.56938000 н -6.68938900 -0.38328500 0.17446400 Ν -6.05401000 -1.12402000 2.01349600 С -3.92978000 -1.12981700 0.73991200 н -4.07220100 -0.90841100 -0.31948700

TS2

Н	-2.95781700	-1.60062900	0.87602800
С	-5.08457600	-1.97564200	1.32501500
н	-5.58752500	-2.52156100	0.52205100
н	-4.70272700	-2.71043700	2.03988300
N	-0.93386500	-1.68909000	2.32211300
С	0.62755400	5.99363700	-2.60120100
С	0.03137100	6.98588200	-1.82797600
С	-1.16644800	6.75348700	-1.14398200
С	-1.73716100	5.49732900	-1.26750600
С	-1.14867000	4.49156800	-2.04081000
С	0.03547500	4.72852900	-2.71269600
N	-2.93755600	5.04602700	-0.71858900
С	-3.22198700	3.77968100	-1.11982900
0	-4.22383600	3.14541400	-0.83232900
С	-3.71506800	5.76714500	0.25503200
С	-2.21070500	0.96212200	-1.01983400
С	-1.40636500	2.03089300	-1.36984200
С	0.01037800	1.91249300	-1.41994900
н	1.55748400	6.19849100	-3.12070000
н	0.50187400	7.96152800	-1.75072300
н	-1.63246600	7.52922500	-0.54493400
н	0.50002300	3.94593700	-3.30378300
н	-3.11508700	5.92357000	1.15714800
н	-4.05046700	6.72557200	-0.15346400
н	-4.58335200	5.15366400	0.49687800
н	-3.24140500	0.98609700	-1.36194800
N	1.16869700	1.84343400	-1.50866100
н	-1.75203300	-0.01781500	-0.93096900
С	-2.03179300	3.26738000	-1.98305400
0	-2.49724100	2.83839300	-3.28737100
С	-3.27083800	3.68660800	-3.97792500
0	-3.53047000	3.12153300	-5.15284900
С	-4.36800000	3.82054100	-6.11936500
С	-4.40237400	2.84922700	-7.29330800
н	-3.39172200	2.67625200	-7.67355600
н	-5.01679400	3.26020500	-8.09943800
н	-4.82515900	1.89003600	-6.98133200
С	-3.71295100	5.13584500	-6.52938600
н	-3.69240000	5.84282200	-5.69938500
н	-4.27655800	5.57712700	-7.35743500
Н	-2.68922200	4.95263800	-6.87017900
С	-5.76809700	4.02384700	-5.54784100
н	-5.75401400	4.71923400	-4.70788100
н	-6.17764300	3.06541200	-5.21356400
н	-6.42274300	4.42364900	-6.32848100
0	-3.65538900	4.76081800	-3.58150400

Zero-point correction=0.508128 (Hartree/Particle)Thermal correction to Energy=0.536359Thermal correction to Enthalpy=0.537303Thermal correction to Gibbs Free Energy=0.450931SCF Done: E(SOV) = -1602.32555299 A.U.

-4.70990700	-2.22456500	1.05881500
-5.63236800	-1.52878900	0.28290300
-5.22031900	-0.61463900	-0.69101300
-3.85892600	-0.42726900	-0.85087300
-2.91407100	-1.10974500	-0.06970600
-3.33806300	-2.01322900	0.89332000
-3.20946200	0.39067900	-1.78047900
-1.85111800	0.32232700	-1.63421400
-1.57604700	-0.60191100	-0.44844400
-1.03816900	0.91331300	-2.32671900
-3.86354700	1.37831800	-2.60509000
0.75247400	-0.35489400	-0.37163400
-0.36388300	-1.34893500	-0.41752000
-1.02585300	0.90846100	0.84224900
0.43703300	0.51731800	0.90793900
-5.05704900	-2.92882800	1.80692500
-6.69426200	-1.69611400	0.43416200
-5.93980700	-0.07297900	-1.29586200
-2.62228400	-2.54674200	1.51060900
-4.55583900	0.90128200	-3.30554100
-4.40172300	2.08847200	-1.96943500
-3.08477000	1.90311700	-3.15915100
0.68947100	0.30728700	-1.24121400
0.59867300	-0.11571300	1.78679800
-1.82702500	0.51529600	2.02130100
-2.84840600	1.02458600	2.41242100
2.68905800	-1.36914300	0.92401600
1.92233400	-1.98142400	1.40006600
2.84180300	-0.45422400	1.50205300
3.11782600	0.11954600	-0.96089800
2.94595100	1.03559600	-0.39987600
2.82602700	0.28261300	-2.00164300
2.21682800	-2.10459300	-1.37527600
1.66578600	-1.80831900	-2.26966000
1.67980800	-2.92112000	-0.89308300
4.56464700	-1.85776600	-0.62534500
4.56374600	-0.41048500	-0.82203100
5.13729900	-0.16494700	-1.71999700
	 -4.70990700 -5.63236800 -5.22031900 -3.85892600 -2.91407100 -3.33806300 -3.20946200 -1.85111800 -1.57604700 -1.03816900 -3.86354700 0.75247400 -0.36388300 -1.02585300 0.43703300 -5.05704900 -5.05704900 -6.69426200 -5.93980700 -2.62228400 -4.40172300 -3.08477000 0.59867300 -1.82702500 2.84840600 2.68905800 1.92233400 2.84840600 2.68905800 1.66578600 1.67980800 4.56374600 5.13729900 	-4.70990700-2.22456500-5.63236800-1.52878900-5.22031900-0.61463900-3.85892600-0.42726900-2.91407100-1.10974500-3.33806300-2.01322900-3.209462000.39067900-1.851118000.32232700-1.57604700-0.60191100-1.038169000.91331300-3.863547001.378318000.75247400-0.354894000.75247400-0.354894000.36388300-1.348935000.437033000.51731800-5.05704900-2.92882800-6.69426200-1.69611400-5.93980700-0.07297900-2.62228400-2.54674200-4.401723002.08847200-4.401723002.08847200-3.084770001.903117000.689471000.307287000.59867300-0.11571300-1.827025000.515296001.827025000.515296002.848406001.024586002.848406001.024586002.848406001.024586002.848406001.024586002.848406001.024586002.848406001.024586002.848406001.024586002.848406001.024586002.848406001.024586002.848406001.024586002.848406001.024586002.848406001.024586002.848406001.024586002.848406001.024586002.848406001.035596003.117826000.119546002.846027000.2

TS-3

Н	5.06733300	0.05337600	0.03130800
С	4.00503300	-2.14913300	0.69512400
н	4.73305200	-1.87846200	1.46483600
н	3.83009500	-3.22662500	0.76406900
С	3.69880600	-2.45709200	-1.64106000
н	3.82477200	-3.54294000	-1.62674700
н	4.02348200	-2.09746700	-2.62199900
N	2.16793200	-0.92689400	-0.42228100
С	-0.25961800	-2.49995400	0.39038900
N	-0.05911600	-3.47155200	1.00906900
С	-1.32956100	2.22143700	0.24003700
н	-1.39774900	-0.37127500	2.54985200
0	-2.46458300	2.60928300	0.01380600
С	-0.15150200	3.06729600	-0.09791400
С	-0.32620700	4.25869000	-0.80651100
С	1.12612000	2.72915200	0.35166000
С	0.74727100	5.09741400	-1.06219800
н	-1.33324500	4.49812700	-1.13309800
С	2.21248400	3.57404100	0.11649000
С	2.01701000	4.75348700	-0.58935400
н	0.60368900	6.01969200	-1.61484500
н	3.18736300	3.30293200	0.51120400
н	2.86102500	5.41194600	-0.77096500
0	1.36797300	1.58625700	1.06098700

Zero-point correction=0.507861 (Hartree/Particle)Thermal correction to Energy=0.536180Thermal correction to Enthalpy=0.537124Thermal correction to Gibbs Free Energy=0.450456SCF Done: E(SOV) = -1602.32128226 A.U.

С	-4.54008000	-1.35382600	1.07802000
С	-5.33408700	-0.64776200	0.18048100
С	-4.76636800	0.15308200	-0.81609800
С	-3.38420000	0.21216600	-0.87259200
С	-2.56979600	-0.49111400	0.02328000
С	-3.14354400	-1.27315200	1.00842900
Ν	-2.58826700	0.92083400	-1.78050700
С	-1.25499200	0.71175000	-1.53940100
С	-1.13502600	-0.14112300	-0.26105900
0	-0.34156500	1.14624100	-2.21759100
С	-3.08246100	1.75907600	-2.84580200
С	1.16257400	-0.65558100	-0.50388000

С	-0.11713500	-1.22879000	-0.38560600
С	-0.54881600	0.79790000	0.90740300
С	0.93749500	0.96377500	0.75537800
н	-5.00421500	-1.97286400	1.83824300
н	-6.41514300	-0.71814700	0.24981700
н	-5.38541900	0.70450000	-1.51643500
н	-2.52524500	-1.83015200	1.70656600
н	-2.21469000	2.14792800	-3.38030200
н	-3.71203300	1.18280900	-3.53158100
н	-3.66099400	2.59283700	-2.43439500
н	1.33344800	0.05780700	-1.30720800
С	2.58233700	-2.20640900	0.93881900
н	1.63463300	-2.65084900	1.23706700
н	2.87736500	-1.43669100	1.65016600
С	3.62048500	-0.62906100	-0.61232300
н	3.54225000	0.24168000	0.04134500
н	3.55661300	-0.28440900	-1.64768600
С	2.35626800	-2.53503200	-1.49736300
с Н	2.04362700	-2.01370600	-2.40439100
н	1.58363300	-3.25422400	-1.21941200
N	4.53667300	-2.92643400	-0.40034100
c	4 86649300	-1 49960600	-0.34327400
с Н	5 64016300	-1 27826400	-1 08365900
н	5 27933100	-1 28083200	0.64578800
с.	3 70066700	-3 25703200	0 75459500
с Н	4 31971300	-3 28744900	1 65520500
н	3.27926800	-4.25515500	0.60192800
С	3.75906800	-3.17421800	-1.61221700
с Н	3.65830100	-4.25238100	-1.76516200
н	4 30871600	-2 76433800	-2 46471700
N	2 39452500	-1 49699500	-0.38909000
C.	-0.37006700	-2 52184500	0 10289100
N	-0.53700400	-3 61825800	0.46853000
C.	-0.89346800	3 08801900	0.31422900
C C	-1 82281800	4 12006200	0 16358000
C C	0.39861100	3 21627900	-0 20611000
с С	-1 45463900	5 27656100	-0.50765300
с н	-2 81573700	3 98698500	0.58007900
с.	0 74619900	4 38723300	-0.88715500
C C	-0 16747300	5 41678300	-1 03902300
с н	-2 17902200	6.07730800	-0.62241000
н	1 75280100	4 45214800	-1 28791600
н	0 10906900	6.32262200	-1 56770100
C.	1 74206000	0.62970500	1 92487700
с н	1 16945600	0.02070000	2 70860000
0	2 9330000	0.84281200	2.19000000
с н	-0 77434800	0.25278100	1 83089200
C.	1 38800000	2 12705600	-0.04620400
<u> </u>	1.00033000	2.12103000	0.04020400

0

2.51168200 2.19714300 -0.52508100

O -1.31643500 1.98696600 0.98828100

1a

Zero-point correction=0.330527 (Hartree/Particle)Thermal correction to Energy=0.352545Thermal correction to Enthalpy=0.353489Thermal correction to Gibbs Free Energy=0.279166SCF Done: E(SOV) = -1068.97734754A.U.

С	0.85855700	5.41389000	2.63860900
С	0.37572500	6.40262300	1.78662300
С	-0.84800300	6.26130300	1.12401400
С	-1.56109400	5.09579400	1.34686900
С	-1.08205900	4.09224100	2.19532800
С	0.12661800	4.23942700	2.84967300
N	-2.80564000	4.73503300	0.81727000
С	-3.24609600	3.54842600	1.34318900
0	-4.31960100	3.02428800	1.15455900
С	-3.65418100	5.61448800	0.04830700
С	-2.01920000	1.12566300	0.42965400
С	-1.51302700	1.71430600	1.51508900
С	-0.33749900	1.17024000	2.15038800
н	1.80940300	5.55190200	3.14155100
Н	0.95638400	7.30664000	1.63150800
н	-1.22431200	7.03892300	0.46761800
н	0.49715500	3.46285200	3.51187500
Н	-3.15826600	5.90444300	-0.88269100
Н	-3.89757900	6.51231400	0.62618300
Н	-4.57050400	5.06823100	-0.17823900
н	-2.92304400	1.49625500	-0.03969200
N	0.60793800	0.75384700	2.67114700
Н	-1.54353800	0.24686100	0.00839300
С	-2.07845500	2.95642200	2.18465100
0	-2.50908200	2.51411900	3.46795300
С	-3.20825900	3.41412300	4.18981500
0	-3.51700000	2.84575900	5.34081500
С	-4.29849500	3.58732400	6.32989900
С	-4.45496400	2.57177700	7.45463400
Н	-3.47508300	2.25759100	7.82419600
Н	-5.01729000	3.01673700	8.28027900
Н	-4.99212000	1.68859600	7.09792600
С	-3.50811900	4.80339100	6.80077300
Н	-3.38339800	5.53024500	5.99679600
Н	-4.04148700	5.28193200	7.62783300
Н	-2.52284500	4.49298600	7.16200700
С	-5.65756000	3.96355500	5.74964200

Н	-5.56207400	4.71351700	4.96399400
н	-6.14872800	3.07580500	5.33975300
н	-6.28736700	4.36677200	6.54864300
0	-3.47780200	4.52648300	3.80624800

4a

Zero-point correction=0.365043 (Hartree/Particle)Thermal correction to Energy=0.384176Thermal correction to Enthalpy=0.385121Thermal correction to Gibbs Free Energy=0.317273SCF Done: E(SOV) = -992.038859845A.U.

С	-4.97652100	-1.81842700	-1.57824200
С	-3.88795000	-0.73731100	-1.78106500
Ν	-3.59370800	-0.08279600	-0.44595700
С	3.46970600	0.51578700	-1.74226200
С	4.01940300	1.79044000	-1.61690600
С	3.21546700	2.87644500	-1.26258800
С	1.86731400	2.64243700	-1.04292400
С	1.28291500	1.35463100	-1.16442600
С	2.10997300	0.28805800	-1.51973200
Ν	0.88561700	3.55314600	-0.68325800
С	-0.35093300	2.92068200	-0.55593700
С	-0.12559800	1.51696800	-0.85780500
0	-1.39140000	3.50948700	-0.24334800
С	1.08181800	4.96091200	-0.46951100
С	-2.48914400	0.89415900	-0.51191600
С	-1.17976500	0.58708700	-0.82131800
С	-0.83700200	-0.78162600	-1.14385000
Н	-4.53769000	-2.81953400	-1.61682300
Н	-5.72511900	-1.75137100	-2.37268800
Н	-4.20265600	0.07711100	-2.43718200
Н	-2.95548900	-1.15090400	-2.16038800
Н	4.10638400	-0.31909100	-2.01837600
Н	5.07908200	1.94454300	-1.79487000
Н	3.63099200	3.87462600	-1.16043600
Н	1.71429600	-0.71592000	-1.62618900
Н	1.44224900	5.45130900	-1.38131700
Н	1.80458600	5.13940100	0.33493400
Н	0.11344600	5.37928800	-0.18961900
Н	-2.75774700	1.90677700	-0.25509100
С	-4.83545600	0.67379200	-0.04412600
Н	-4.90297600	1.53215100	-0.71507000
Н	-4.64825800	1.04179500	0.96744100
С	-6.05888200	-0.26851300	-0.13761600
Н	-6.68215500	-0.00819400	-0.99793800
Н	-6.67549900	-0.17410100	0.76041300

Ν	-5.63580900	-1.65821600	-0.28319100
С	-3.37167200	-1.16145400	0.59874100
н	-3.05525200	-0.63699100	1.50165000
н	-2.54478800	-1.77665900	0.24438400
С	-4.68018900	-1.97196200	0.77699600
н	-5.15103600	-1.74671400	1.73852200
н	-4.46464800	-3.04344100	0.75502500
Ν	-0.61803600	-1.89103500	-1.39704800

Int-II

Zero-point correction=	0.365043 (Hartree/Particle)
Thermal correction to Energy=	0.384176
Thermal correction to Enthalpy=	0.385121
Thermal correction to Gibbs Free Ener	gy= 0.317273
SCF Done: E(SOV) = -992.03885984	5 A.U.

С	-4.97652100	-1.81842700	-1.57824200
С	-3.88795000	-0.73731100	-1.78106500
Ν	-3.59370800	-0.08279600	-0.44595700
С	3.46970600	0.51578700	-1.74226200
С	4.01940300	1.79044000	-1.61690600
С	3.21546700	2.87644500	-1.26258800
С	1.86731400	2.64243700	-1.04292400
С	1.28291500	1.35463100	-1.16442600
С	2.10997300	0.28805800	-1.51973200
Ν	0.88561700	3.55314600	-0.68325800
С	-0.35093300	2.92068200	-0.55593700
С	-0.12559800	1.51696800	-0.85780500
0	-1.39140000	3.50948700	-0.24334800
С	1.08181800	4.96091200	-0.46951100
С	-2.48914400	0.89415900	-0.51191600
С	-1.17976500	0.58708700	-0.82131800
С	-0.83700200	-0.78162600	-1.14385000
Н	-4.53769000	-2.81953400	-1.61682300
Н	-5.72511900	-1.75137100	-2.37268800
Н	-4.20265600	0.07711100	-2.43718200
Н	-2.95548900	-1.15090400	-2.16038800
Н	4.10638400	-0.31909100	-2.01837600
н	5.07908200	1.94454300	-1.79487000
Н	3.63099200	3.87462600	-1.16043600
Н	1.71429600	-0.71592000	-1.62618900
Н	1.44224900	5.45130900	-1.38131700
Н	1.80458600	5.13940100	0.33493400
Н	0.11344600	5.37928800	-0.18961900
н	-2.75774700	1.90677700	-0.25509100
С	-4.83545600	0.67379200	-0.04412600
н	-4.90297600	1.53215100	-0.71507000

Н	-4.64825800	1.04179500	0.96744100
С	-6.05888200	-0.26851300	-0.13761600
н	-6.68215500	-0.00819400	-0.99793800
н	-6.67549900	-0.17410100	0.76041300
Ν	-5.63580900	-1.65821600	-0.28319100
С	-3.37167200	-1.16145400	0.59874100
н	-3.05525200	-0.63699100	1.50165000
н	-2.54478800	-1.77665900	0.24438400
С	-4.68018900	-1.97196200	0.77699600
н	-5.15103600	-1.74671400	1.73852200
н	-4.46464800	-3.04344100	0.75502500
Ν	-0.61803600	-1.89103500	-1.39704800

10. X-Ray crystallographic data for compounds 7a, 8d, and 9a.

Data intensity of racemic compound **7a** was collected using a Bruker 'Bruker APEX-II CCD' diffractometer at 100 (10) K. Data collection and reduction were done by using Olex2 and the structure was solved with the ShelXS structure solution program using direct methods and refined by full-matrix least-squares on F^2 with anisotropic displacement parameters for non-H atoms using SHELX-97. Hydrogen atoms were added at their geometrically idea positions and refined isotropically. CCDC 2055637 (racemic **7a**).

7a

X-ray structure of racemic compound 7a

Crystal data	
Identification code	20191130-1
Empirical formula	$C_{21}H_{14}N_2O_3$
Formula weight	342.34
Temperature/K	100.00(10)
Crystal system	hexagonal
Space group	P61
a/Å	19.9112(5)
b/Å	19.9112(5)
c/Å	9.2146(3)
α/°	90
β/°	90
γ/°	120
Volume/Å ³	3163.73(15)
Z	6
ρ _{calc} g/cm ³	1.3455
µ/mm ⁻¹	2.983
F(000)	1328.2
Crystal size/mm ³	0.11 × 0.1 × 0.08
Radiation	Cu Kα (λ = 1.54184)
2⊖ range for data collection/°	5.12 to 147.26
Index ranges	-23 ≤ h ≤ 9, -16 ≤ k ≤ 24, -11 ≤ l ≤ 11
Reflections collected	8009
Independent reflections	$3821 \; [R_{int} = 0.0420, \; R_{sigma} = 0.0540]$
Data/restraints/parameters	3821/1/263
Goodness-of-fit on F ²	1.033
Final R indexes [I>=2σ (I)]	$R_1 = 0.0417, Wr_2 = 0.0981$
Final R indexes [all data]	$R_1 = 0.0485, Wr_2 = 0.1027$
Largest diff. Peak/hole / e Å ⁻³	0.22/-0.30

Data intensity of racemic compound **8d** was collected using a Bruker 'Bruker APEX-II CCD' diffractometer at 149.99(10) K. Data collection and reduction were done by using Olex2 and the structure was solved with the ShelXS structure solution program using direct methods and refined by full-matrix least-squares on F^2 with anisotropic displacement parameters for non-H atoms using SHELX-97. Hydrogen atoms were added at their geometrically idea positions and refined isotropically. CCDC 2055640 (**8d**).

-	
Identification code	lyl-10-19-01
Empirical formula	$C_{21}H_{13}N_3O_5$
Formula weight	387.34
Temperature/K	149.99(10)
Crystal system	triclinic
Space group	P-1
a/Å	7.6966(5)
b/Å	8.9106(5)
c/Å	13.8343(9)
α/°	74.371(5)
β/°	81.939(5)
γ/°	71.066(5)
Volume/Å ³	862.80(10)
Z	2
ρ _{calc} g/cm ³	1.491
µ/mm ⁻¹	0.109
F(000)	400.0
Crystal size/mm ³	0.13 × 0.12 × 0.1
Radiation	Μο Κα (λ = 0.71073)
2O range for data collection/°	4.978 to 58.806
Index ranges	-9 ≤ h ≤ 10, -8 ≤ k ≤ 11, -12 ≤ l ≤ 18
Reflections collected	6640
Independent reflections	$3985 [R_{int} = 0.0248, R_{sigma} = 0.0482]$
Data/restraints/parameters	3985/0/268
Goodness-of-fit on F ²	1.048
Final R indexes [I>=2σ (I)]	$R_1 = 0.0485, Wr_2 = 0.1142$
Final R indexes [all data]	$R_1 = 0.0631, Wr_2 = 0.1255$
Largest diff. Peak/hole / e Å ⁻³	0.33/-0.25

Crystal data

Data intensity of racemic compound 9a was collected using a Bruker 'Bruker APEX-II CCD' diffractometer at 100.00(10) K. Data collection and reduction were done by using Olex2 and the structure was solved with the ShelXS structure solution program using direct methods and refined by full-matrix least-squares on F² with anisotropic displacement parameters for non-H atoms using SHELX-97. Hydrogen atoms were added at their geometrically idea positions and refined isotropically. CCDC 2055644 (9a).

_

9a

(CCDC 2055644)	
X-ray structure of racemic product	9a

Crystal data	
Identification code	20191113
Empirical formula	$C_{29}H_{26}N_4O_5$
Formula weight	510.54
Temperature/K	100.00(10)
Crystal system	triclinic
Space group	P-1
a/Å	11.538(3)
b/Å	12.0654(11)
c/Å	12.568(2)
α/°	94.880(10)
β/°	104.196(17)
γ/°	91.692(12)
Volume/Å ³	1687.7(5)
Z	2
ρ _{calc} g/cm ³	1.005
µ/mm ⁻¹	0.573
F(000)	536.0
Crystal size/mm ³	0.12 × 0.11 × 0.1
Radiation	CuKα (λ = 1.54184)
2O range for data collection/°	7.288 to 147.738
Index ranges	-14 ≤ h ≤ 13, -14 ≤ k ≤ 10, -15 ≤ l ≤ 15
Reflections collected	11284
Independent reflections	6558 [$R_{int} = 0.0808, R_{sigma} = 0.1102$]
Data/restraints/parameters	6558/0/348
Goodness-of-fit on F ²	1.042
Final R indexes [I>=2σ (I)]	$R_1 = 0.1011, Wr_2 = 0.2790$
Final R indexes [all data]	$R_1 = 0.1462, Wr_2 = 0.3325$
Largest diff. Peak/hole / e Å ⁻³	0.41/-0.43

11. Copies of ¹H NMR and ¹³C NMR Spectra of Compounds 7, 8, and 9

-3.756 2.568 3.548 -3.188

¹H NMR(400 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

110 100 fl (ppm) -10 ò

$\begin{array}{c} 7,7,73\\$

¹H NMR(400 MHz, CDCl₃)

7,7,805 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,095 7,095 7,00 ---0.005

1.595 1.514 1.250

S79

110 100 90 fl (ppm) ò -20 -10 . 160

