Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Rh-Catalyzed Oxidative Homo-coupling Cyclization of 2,3-Allenols to Conjugated Furylenones

Xiaoyan Wu , Junjie Fan, Xin Huang and Shengming Ma*

Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang

University, Hangzhou 310027, Zhejiang, P. R. China.

E-mail: masm@sioc.ac.cn

Supporting Information

Table of Contents

General Information	S2
Synthesis of New Starting Materials	S3-S6
Rh(III)-Catalyzed Oxidative Homo-coupling Cyclization of	S7-S33
2,3-Allenols	
Synthetic Applications	S35-S42
Mechanistic Studies	S43-S49
References	S50
¹ H NMR, ¹³ C NMR and HPLC Spectra of the Compounds Prepared	S51-S207

General Information

¹H NMR, ¹³C NMR, and ¹⁹F NMR spectra were recorded in CDCl₃ using a Bruker AM 300 MHz NMR spectrometer (¹H at 300 MHz, ¹³C at 75 MHz, ¹⁹F at 282 MHz). All ¹H NMR spectra were measured with TMS (0 ppm) in CDCl₃. All ¹⁹F NMR spectra were measured with CFCl₃ (0 ppm) as the internal standard, respectively. All ¹³C NMR spectra were recorded in relative to the signal of CDCl₃ (77.0 ppm). IR spectra were recorded with a Perkin–Elmer 983G instrument. Elemental analyses were conducted with a Carlo-Erba EA1110 elementary analysis instrument. Mass spectrometry was performed with an HP 5989A system. High-resolution mass spectrometry was determined with a Finnigan MAT 8430 or Bruker APEXIII instrument. [Cp*RhCl₂]₂ was purchased from *Strem* and *HWRK CHEM*. The range of boiling point of the petroleum ether used for chromatography was 60-90 °C unless noted otherwise. Other commercially available chemicals were purchased and used without additional purification unless noted otherwise. Optically active propargylic alcohols (R)-3 or (S)-3 were prepared via Novozym-435-catalyzed enzymatic kinetic resolution.¹ Optically active or racemic 2,3-allenols were prepared according to the literature procedures.²

Synthesis of New Starting Materials

1. Synthesis of (S)-1-(4-fluorophenyl)buta-2,3-dien-1-ol (S)-1b.² (wxy-3-040)

Typical Procedure I: To a dried three-necked flask were added CuI (158.6 mg, 0.8 mmol), paraformaldehyde (1.1535 g, 12.8 mmol), dioxane (8.0 mL), *i*-Pr₂NH (1.6 mL, d = 0.716 g/mL, 1.1456 g, 11.3 mmol), (S)-11b (1.2014 g, 8.0 mmol, 99% ee) and dioxane (4.0 mL) sequentially. The reaction tube was then equipped with a condenser and put into an oil bath preheated 110 °C. The reaction was complete after stirring for 11 hours as monitored by TLC. The resulting mixture was cooled to room temperature and filtered through a short column of silica gel (eluent: Et₂O (50 mL \times 3). After evaporation of the solvent, the crude residue was purified via chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 20/1, 1000 mL) to afford (S)-1b (842.1 mg, 64%) as a liquid: >99% ee (HPLC conditions: Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 90/10, 0.5 mL/min, $\lambda = 254$ nm, $t_{\rm R}$ (minor) = 10.7 min, $t_{\rm R}({\rm major}) = 11.4$ min); $[\alpha]_{\rm D}^{20} = +36.9$ (c = 1.43, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.41-7.30 (m, 2 H, ArH), 7.03 (t, J = 8.9 Hz, 2 H, ArH), 5.40 (q, J = 6.5 Hz, 1 H, =CH), 5.29-5.20 (m, 1 H, OCH), 4.99-4.86 (m, 2 H, =CH₂), 2.37 (s, 1 H, OH); ¹³C NMR (75 MHz, CDCl₃) δ 207.1, 162.3 (d, J = 244.7 Hz), 138.5 (d, J = 3.5 Hz), 127.8 (d, J = 8.3 Hz), 115.3 (d, J = 21.4 Hz), 95.1, 78.3, 71.3; ¹⁹F NMR (282 MHz, CDCl₃) δ -115.2; IR (neat) v (cm⁻¹) 3383, 3067, 2994, 2890, 1955, 1604, 1511, 1416, 1224, 1157, 1035, 1014; MS (EI): m/z (%) 164 (M⁺, 1.23), 125 (100); HRMS Calcd for C₁₀H₉FO (M⁺): 164.0637; Found: 164.0635.

Following **Typical Procedure I**, the reaction of CuI (80.1 mg, 0.4 mmol), (*S*)-**11e** (723.6 mg, 3.4 mmol, 96% ee), paraformaldehyde (490.1 mg, 5.4 mmol), and *i*-Pr₂NH (0.68 mL, d = 0.716 g/mL, 486.9 mg, 4.8 mmol) in dioxane (1.7 mL) afforded (*S*)-**1e** (576.4 mg, 75%) as an oil: 95% ee (HPLC conditions: Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 95/5, 0.5 mL/min, λ = 254 nm, $t_{\rm R}$ (minor) = 10.3 min, $t_{\rm R}$ (major) = 11.4 min); $[\alpha]_{\rm D}^{20}$ = +38.5 (*c* = 1.40, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.52 (t, *J* = 1.7 Hz, 1 H, ArH), 7.39 (dt, *J*₁ = 7.8 Hz, *J*₂ = 1.7 Hz, 1 H, ArH), 7.32-7.24 (m, 1 H, ArH), 7.19 (t, *J* = 7.7 Hz, 1 H, ArH), 5.36 (q, *J* = 6.5 Hz, 1 H, OCH), 5.23-5.13 (m, 1 H, =CH), 4.98-4.85 (m, 2 H, =CH₂), 2.76 (d, *J* = 4.2 Hz, 1 H, OH); ¹³C NMR (75 MHz, CDCl₃) δ 207.1, 144.9, 130.7, 130.0, 129.1, 124.6, 122.4, 94.6, 78.4, 71.2; IR (neat) ν (cm⁻¹) 3389, 3062, 2876, 1954, 1594, 1570, 1474, 1427, 1186, 1093, 1071, 1034; MS (EI): m/z (%) 225 [(M(⁸¹Br)⁺, 2.39], 223 [(M(⁷⁹Br)⁺, 2.66], 77 (100); HRMS Calcd for C₁₀H₈⁷⁹BrO (M-H)⁻: 222.9764; Found: 222.9764.

3. Synthesis of (S)-1-(furan-2-yl)buta-2,3-dien-1-ol (S)-1j.²(wxy-3-114)

Following Typical Procedure I, the reaction of CuI (119.2 mg, 0.6 mmol), (S)-11j (611.0

mg, 5.0 mmol, 96% ee), paraformaldehyde (723.8 mg, 8.0 mmol), and *i*-Pr₂NH (1.0 mL, d = 0.716 g/mL, 716.0 mg, 7.1 mmol) in dioxane (7.5 mL) afforded (*S*)-**1j** (432.6 mg, 61%, 96% purity) (eluent: petroleum ether/ethyl acetate = 25/1 (800 mL) to petroleum ether/ethyl acetate = 10/1 (500 mL)] as a liquid: 96% ee (HPLC conditions: Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, λ = 220 nm, $t_R(\text{minor})$ = 7.3 min, $t_R(\text{major})$ = 8.8 min); $[\alpha]_D^{20}$ = + 28.1 (*c* = 1.05, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.39 (dd, J_1 = 1.8 Hz, J_2 = 0.9 Hz, 1 H, ArH), 6.34 (dd, J_1 = 3.0 Hz, J_2 = 1.8 Hz, 1 H, ArH), 6.29 (d, J = 3.3 Hz, 1 H, ArH), 5.52 (q, J = 6.6 Hz, 1 H, OCH), 5.32-5.20 (m, 1 H, =CH), 5.03-4.90 (m, 2 H, =CH₂), 2.49 (s, 1 H, OH); ¹³C NMR (75 MHz, CDCl₃) δ 207.5, 154.9, 142.1, 110.0, 106.4, 91.9, 78.0, 65.5; IR (neat) ν (cm⁻¹) 3390, 3120, 2991, 2900, 1957, 1713, 1601, 1504, 1374, 1290, 1223, 1181, 1146, 1116, 1074, 1010; MS (EI): m/z (%) 136 (M⁺, 8.50), 97 (100); HRMS Calcd for C₈H₈NaO₂ (M⁺+Na): 159.0422; Found: 159.0415.

4. Synthesis of (S)-trideca-1,2-dien-4-ol (S)- $1n^{2}$ (wxy-3-042)

Following **Typical Procedure I**, the reaction of CuI (114.5 mg, 0.6 mmol), (*S*)-**11n** (1.0831 g, 6 mmol, 96% ee), paraformaldehyde (864.9 mg, 9.6 mmol), and *i*-Pr₂NH (1.2 mL, d = 0.716 g/mL, 859.2 mg, 8.5 mmol) in dioxane (9 mL) afforded (*S*)-**1n** (718.4 mg, 62%) (eluent: petroleum ether/ethyl acetate = 40/1, 800 mL) as a liquid; 96% ee (GC conditions: restek Rt-bdex (30*0.25*0.25), carrier N₂; 10.0 psi; injector 300 °C; detector (FID, H₂, 0.4 MPa), 250 °C; $t_{\rm R}$ (major) = 108.5 min, $t_{\rm R}$ (minor) = 109.2 min,) [α]_D²⁰ = +3.7 (*c* = 1.80, CHCl₃); ¹H

NMR (300 MHz, CDCl₃) δ 5.22 (q, J = 6.2 Hz, 1 H, =CH), 4.87-4.75 (m, 2 H, =CH₂), 4.20-4.09 (m, 1 H, CH), 2.58-2.38 (m, 1 H, OH), 1.66-1.49 (m, 2 H, CH₂), 1.49-1.18 (m, 14 H, CH₂ × 7), 0.88 (t, J = 6.8 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 207.0, 94.7, 76.9, 69.7, 37.3, 31.8, 29.52, 29.47, 29.4, 29.2, 25.3, 22.6, 14.0; IR (neat) v (cm⁻¹) 3361, 2954, 2925, 2855, 1956, 1467, 1061, 1011; MS (EI): m/z (%) 157 [(M-(CH₂=C=CH))⁺, 9.82], 69 (100); Anal. Calcd. for C₁₃H₂₄O (%): C, 79.53; H, 12.32; Found: C, 79.09; H, 12.28.

Rh(III)-Catalyzed Oxidative Homo-coupling Cyclization of 2,3-Allenols

1. Synthesis of (*E*)-1-phenyl-3-(2-phenyl-2,5-dihydrofuran-4-yl)but-2-en-1-one (*E*)-2a.

(hx-15-188)

Typical Procedure II: To a dried Schlenk tube were added [Cp*RhCl₂]₂ (31.1 mg, 0.05 mmol) and Cu(OAc)₂•H₂O (499.5 mg, 2.5 mmol) under air atmosphere. The Schlenk tube was then degassed to remove the air inside completely and refilled with O₂ by a balloon of O₂ for three times. After 1a (146.4 mg, 1 mmol)/CH₃CN (1.0 mL) and MeOH (50 µL) were added sequentially, the reaction tube was put into an oil bath pre-heated at 50 °C. The reaction was complete after stirring for 12.5 h as monitored by TLC. After removing the O₂ balloon, the resulting mixture was diluted with ethyl acetate (15 mL) and filtered through a short column of silica gel eluted with ethyl acetate (20 mL \times 2). The combined filtrate was then concentrated in vacuo and the crude residue was purified via chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 15/1, 600 mL) to afford (*E*)-2a (90.6 mg, 62%): liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.97-7.87 (m, 2 H, ArH), 7.58-7.51 (m, 1 H, ArH), 7.50-7.42 (m, 2 H, ArH), 7.40-7.25 (m, 5 H, ArH), 6.56 (s, 1 H, =CH), 6.32 (q, J = 1.8 Hz, 1 H, =CH), 5.99-5.90 (m, 1 H, OCH), 5.15 (ddd, $J_1 = 11.4$ Hz, $J_2 = 5.4$ Hz, $J_3 = 1.8$ Hz, 1 H, one proton of OCH₂), 5.02 (ddd, $J_1 = 11.4$ Hz, $J_2 = 5.4$ Hz, $J_3 = 2.1$ Hz, 1 H, one proton of OCH₂), 2.36 (d, J = 1.2 Hz, 3 H, Me); ¹³C NMR (75 MHz, CDCl₃) δ 191.8, 144.9, 141.4, 141.0, 138.8, 132.8, 132.6, 128.6, 128.5, 128.1, 128.0, 126.3, 122.1, 88.9, 74.8, 16.6; IR (neat) v (cm⁻¹) 3080, 3061, 3029, 2951, 2916, 2849, 1657, 1594, 1585, 1492, 1448, 1403, 1364,

1345, 1295, 1243, 1217, 1178, 1096, 1073, 1048, 1026, 1006; MS (EI): *m/z* (%) 290 (M⁺, 22.8), 185 (100); HRMS Cacld. for C₂₀H₁₈O₂ (M⁺): 290.1307; Found: 290.1304.

2. Synthesis of (*E*)-1-(4-fluorophenyl)-3-(2-(4-fluorophenyl)-2,5-dihydrofuran-4-yl)-

but-2-en-1-one (*E*)-**2b**. (wxy-1-155)

Following **Typical Procedure II**, the reaction of **1b** (166.9 mg, 1.0 mmol), [Cp*RhCl₂]₂ (31.3 mg, 0.05 mmol), and Cu(OAc)₂•H₂O (500.6 mg, 2.5 mmol) in CH₃CN (1.0 mL)/MeOH (50 μ L) afforded (*E*)-**2b** (95.2 mg, 57%) (eluent: petroleum ether/ethyl acetate = 15/1, 600 mL); solid; m.p. 99.8-100.5 °C (petroleum ether/CH₂Cl₂); ¹H NMR (300 MHz, CDCl₃) δ 8.04-7.88 (m, 2 H, ArH), 7.38-7.23 (m, 2 H, ArH), 7.22-7.11 (m, 2 H, ArH), 7.11-7.00 (m, 2 H, ArH), 6.53 (s, 1 H, =CH), 6.32 (d, *J* = 1.8 Hz, 1 H, =CH), 6.00-5.90 (m, 1 H, OCH), 5.15 (ddd, *J*₁ = 11.4 Hz, *J*₂ = 5.4 Hz, *J*₃ = 1.8 Hz, 1 H, one proton of OCH₂), 5.01 (ddd, *J*₁ = 11.4 Hz, *J*₂ = 3.6 Hz, *J*₃ = 2.1 Hz, 1 H, one proton of OCH₂), 2.36 (d, *J* = 0.9 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 190.3, 165.5 (d, *J* = 253.0 Hz), 162.6 (d, *J* = 244.8 Hz), 145.0, 141.6, 136.8 (d, *J* = 2.8 Hz), 135.1 (d, *J* = 2.8 Hz), 132.7, 130.8 (d, *J* = 9.7 Hz), 128.2 (d, *J* = 8.3 Hz), 122.0, 115.7 (d, *J* = 21.4 Hz), 115.5 (d, *J* = 21.4 Hz), 88.4, 74.8, 16.7; ¹⁹F NMR (282 MHz, CDCl₃) δ -105.9 (s, 1 F), -114.4 (s, 1 F); IR (KBr) ν (cm⁻¹) 3108, 3080, 3054, 3033, 2890, 2853, 1655, 1622, 1601, 1505, 1448, 1410, 1370, 1343, 1298, 1293, 1247, 1216, 1190, 1160, 1160, 1154, 1105, 1090, 1063, 1044, 1014, 1007, 1006; MS (EI): *m*/z (%) 326 (M⁺,

6.66), 123 (100); Anal. Calcd. for C₂₀H₁₆F₂O₂ (%): C, 73.61; H, 4.94; Found: C, 73.41; H, 5.03.

3. Preparation of (E)-1-(2-chlorophenyl)-3-(2-(2-chlorophenyl)-2,5-dihydrofuran-4-yl)but-

2-en-1-one (*E*)-2c. (wxy-1-125)

Following **Typical Procedure II**, the reaction of **1c** (180.7 mg, 1.0 mmol), $[Cp*RhCl_2]_2$ (31.0 mg, 0.05 mmol), and Cu(OAc)₂•H₂O (500.2 mg, 2.5 mmol) in CH₃CN (1.0 mL)/MeOH (50 µL) afforded (*E*)-**2c** (95.9 mg, 53%) (eluent: petroleum ether/ethyl acetate = 20/1, 600 mL): solid; m.p. 91.1-93.0 °C (petroleum ether/CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.55-7.45 (m, 2 H, ArH), 7.44-7.18 (m, 6 H, ArH), 6.52 (q, *J* = 1.8 Hz, 1 H, =CH), 6.35-6.27 (m, 2 H, OCH and =CH), 5.12 (ddd, *J*₁ = 11.5 Hz, *J*₂ = 5.5 Hz, *J*₃ = 1.9 Hz, 1 H, one proton of OCH₂), 5.01 (ddd, *J*₁ = 11.4 Hz, *J*₂ = 5.7 Hz, *J*₃ = 2.1 Hz, 1 H, one proton of OCH₂), 2.41 (s, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 192.9, 145.6, 141.5, 140.4, 138.6, 132.4, 131.7, 131.3, 131.1, 130.3, 129.5, 129.4, 128.9, 127.3, 127.0, 124.8, 86.0, 75.0, 16.6; IR (neat) ν (cm⁻¹) 3067, 1665, 1609, 1591, 1579, 1469, 1435, 1368, 1299, 1264, 1239, 1212, 1160, 1127, 1098, 1078, 1050, 1034, 1004; MS (EI): m/z (%) 362 [(M(³⁷Cl³⁷Cl)⁺, 0.53], 360 [(M(³⁷Cl³⁵Cl)⁺, 1.67], 358 [(M(³⁵Cl³⁵Cl)⁺, 2.13], 139 (100); Anal. Calcd. for C₂₀H₁₆Cl₂O₂(%): C, 66.87; H, 4.49; Found: C, 66.74; H, 4.59.

4. Preparation of (E)-1-(3-chlorophenyl)-3-(2-(3-chlorophenyl)-2,5-dihydrofuran-4-yl)but-

2-en-1-one (*E*)-2d. (wxy-1-134)

Following **Typical Procedure II**, the reaction of **1d** (180.7 mg, 1.0 mmol), $[Cp*RhCl_2]_2$ (31.1 mg, 0.05 mmol), and Cu(OAc)₂•H₂O (500.5 mg, 2.5 mmol) in CH₃CN (1.0 mL)/MeOH (50 µL) afforded (*E*)-**2d** (97.1 mg, 54%) (eluent: petroleum ether/ethyl acetate = 25/1, 600 mL): oil; ¹H NMR (300 MHz, CDCl₃) δ 7.87 (t, *J* = 1.7 Hz, 1 H, ArH), 7.78 (d, *J* = 7.5 Hz, 1 H, ArH), 7.55-7.47 (m, 1 H, ArH), 7.41 (t, *J* = 7.8 Hz, 1 H, ArH), 7.35-7.24 (m, 3 H, ArH), 7.24-7.18 (m, 1 H, ArH), 6.50 (s, 1 H, CH=), 6.33 (q, *J* = 1.8 Hz, 1 H, =CH), 5.95-5.89 (m, 1 H, OCH), 5.16 (ddd, *J_I* = 11.7 Hz, *J₂* = 5.4 Hz, *J₃* = 1.8 Hz, 1 H, one proton of OCH₂), 5.02 (ddd, *J_I* = 11.7 Hz, *J₂* = 5.4 Hz, *J₃* = 1.8 Hz, 1 H, one proton of OCH₂), 2.36 (s, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 190.2, 145.8, 143.1, 141.6, 140.3, 134.8, 134.5, 132.7, 132.6, 129.9, 128.2, 128.1, 126.4, 126.2, 124.3, 121.7, 88.2, 74.9, 16.7; IR (neat) ν (cm⁻¹) 3066, 2851, 1659, 1614, 1593, 1575, 1432, 1367, 1346, 1298, 1242, 1213, 1163, 1101, 1078, 1055; MS (EI): *m*/*z* (%) 362 [(M(³⁷Cl³⁷Cl)⁺, 0.85], 360 [(M(³⁷Cl³⁵Cl)⁺, 4.19], 358 [(M(³⁵Cl³⁵Cl)⁺, 7.15], 139 (100); HRMS Calcd for C₂₀H₁₆O₂³⁵Cl³⁵Cl³⁵Cl (M⁺): 358.0527; Found: 358.0524.

5. Synthesis of (E)-1-(3-bromophenyl)-3-(2-(3-bromophenyl)-2,5-dihydrofuran-4-yl)-

but-2-en-1-one (*E*)-2e. (wxy-1-192)

Following **Typical Procedure II**, the reaction of **1e** (227.3 mg, 1.0 mmol), [Cp*RhCl₂]₂ (31.5 mg, 0.05 mmol), and Cu(OAc)₂•H₂O (499.9 mg, 2.5 mmol) in CH₃CN (1.0 mL)/MeOH (50 μ L) afforded impure (E)-2e (131.4 mg) after chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 20/1, 600 mL). The impure (*E*)-2e was further purified via chromatography on silica gel to afford pure (E)-2e (eluent: petroleum ether (30-60 °C)/Et₂O (6/1 (600 mL)) to afford pure (E)-2e (119.7 mg, 53%): oil; ¹H NMR (300 MHz, CDCl₃) δ 8.02 (s, 1 H, ArH), 7.82 (d, J = 7.8 Hz, 1 H, ArH), 7.71-7.64 (m, 1 H, ArH), 7.48 (s, 1 H, ArH), 7.46-7.38 (m, 1 H, ArH), 7.38-7.30 (m, 1 H, ArH), 7.28-7.19 (m, 2 H, ArH), 6.49 (s, 1 H, =CH), 6.33 (q, *J* = 1.8 Hz, 1 H, =CH), 5.95-5.88 (m, 1 H, OCH), 5.16 (ddd, *J*₁ = 11.7 Hz, $J_2 = 5.4$ Hz, $J_3 = 1.8$ Hz, 1 H, one proton of OCH₂), 5.02 (ddd, $J_1 = 11.4$ Hz, $J_2 = 3.3$ Hz, $J_3 = 1.8$ Hz, 1 H, one proton of OCH₂), 5.02 (ddd, $J_1 = 11.4$ Hz, $J_2 = 3.3$ Hz, $J_3 = 1.8$ Hz, 1 H, one proton of OCH₂), 5.02 (ddd, $J_1 = 11.4$ Hz, $J_2 = 3.3$ Hz, $J_3 = 1.8$ Hz, 1 H, one proton of OCH₂), 5.02 (ddd, $J_1 = 11.4$ Hz, $J_2 = 3.3$ Hz, $J_3 = 1.8$ Hz, 1 H, one proton of OCH₂), 5.02 (ddd, $J_1 = 11.4$ Hz, $J_2 = 3.3$ Hz, $J_3 = 1.8$ Hz, J_3 2.1 Hz, 1 H, one proton of OCH₂), 2.36 (s, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 190.1, 145.8, 143.3, 141.7, 140.5, 135.5, 132.7, 131.15, 131.09, 130.2, 130.1, 129.3, 126.7, 124.8, 122.9, 122.8, 121.7, 88.2, 74.9, 16.7; IR (KBr) v (cm⁻¹) 3063, 2850, 1661, 1593, 1575, 1569, 1472, 1429, 1367, 1296, 1241, 1211, 1102, 1084, 1070, 1054; MS (EI): m/z (%) 450 $[(M(^{81}Br^{81}Br)^+, 9.07], 448 [(M(^{81}Br^{79}Br)^+, 18.29], 446 [(M(^{79}Br^{79}Br)^+, 11.09], 265 (100);$ HRMS Cacld. for $C_{20}H_{16}O_2^{79}Br^{79}Br(M^+)$: 445.9517; Found: 445.9521.

6. Synthesis of (*E*)-1-(3-bromophenyl)-3-(2-(3-bromophenyl)-2,5-dihydrofuran-4-yl)but-2-en-1-one (*E*)-2f and (*E*)-8f. (wxy-5-012)

Following **Typical Procedure II**, the reaction of **1f** (2.2519 g, 10.0 mmol), $[Cp*RhCl_2]_2$ (312.5 mg, 0.5 mmol), and Cu(OAc)_2•H₂O (5.0019 g, 25 mmol) in CH₃CN (10 mL)/MeOH (0.5 mL) afforded (*E*)-**2f** (1.1697 g, 52%) and (*E*)-**8f** (37.0 mg, 2%) [eluent: petroleum ether/ethyl acetate = 25/1 (500 mL) to petroleum ether/ethyl acetate = 10/1 (500 mL) to petroleum ether/ethyl acetate = 5/1 (300 mL)].

(*E*)-**2f**: solid; m.p. 121.5-122.5 °C (petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.78 (d, *J* = 8.4 Hz, 2 H, ArH), 7.61 (d, *J* = 8.7 Hz, 2 H, ArH), 7.50 (d, *J* = 8.4 Hz, 2 H, ArH), 7.21 (d, *J* = 8.4 Hz, 2 H, ArH), 6.50 (s, 1 H, =CH), 6.31 (q, *J* = 1.8 Hz, 1 H, =CH), 6.00-5.85 (m, 1 H, OCH), 5.14 (ddd, *J*₁ = 11.4 Hz, *J*₂ = 5.4 Hz, *J*₃ = 1.8 Hz, 1 H, one proton of OCH₂), 5.01 (ddd, *J*₁ = 11.4 Hz, *J*₂ = 3.6 Hz, *J*₃ = 2.0 Hz, 1 H, one proton of OCH₂), 2.35 (d, *J* = 0.9 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 190.7, 145.5, 141.7, 140.0, 137.6, 132.7, 131.9, 131.8, 129.7, 128.0, 127.9, 122.0, 121.8, 88.4, 74.9, 16.8; IR (KBr) ν (cm⁻¹) 3080, 2849, 1657, 1588, 1485, 1404, 1243, 1215, 1176, 1090, 1070, 1049, 1009; MS (EI): m/z (%) 450 [(M(⁸¹Br⁸¹Br)⁺, 5.25], 448 [(M(⁸¹Br⁷⁹Br)⁺, 10.07], 446 [(M(⁷⁹Br⁷⁹Br)⁺, 5.19], 265 (100); Anal. Calcd. for C₂₀H₁₆Br₂O₂ (%): C, 53.60; H, 3.60; Found: C, 53.56; H, 3.61.

(*E*)-**8f:** solid; m.p. 164.1-164.8 °C (petroleum ether/CH₂Cl₂); ¹H NMR (300 MHz, CDCl₃) δ 7.85 (d, *J* = 8.4 Hz, 2 H, ArH), 7.78 (s, 1 H, ArH), 7.63-7.30 (m, 6 H, ArH and =CH), 7.10

(s, 1 H, =CH), 6.92 (s, 1 H, =CH), 2.52 (s, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 190.4, 154.5, 146.6, 142.4, 138.3, 132.0, 131.8, 130.6, 129.7, 128.9, 127.5, 125.6, 122.1, 118.6, 102.8, 17.6; IR (KBr) ν (cm⁻¹) 2922, 2847, 1654, 1612, 1600, 1582, 1479, 1397, 1315, 1219, 1198, 1168, 1151, 1070, 1043, 1006; MS (EI): m/z (%) 448 [(M(⁸¹Br⁸¹Br)⁺, 4.60], 446 [(M(⁸¹Br⁷⁹Br)⁺, 12.76], 444 [(M(⁷⁹Br⁷⁹Br)⁺, 7.39], 183 (100); Anal. Calcd. for C₂₀H₁₄Br₂O₂ (%): C, 53.84; H, 3.16; Found: C, 53.58; H, 3.10.

7. Synthesis of (*E*)-1-(4-methoxyphenyl)-3-(2-(4-methoxyphenyl)-2,5-dihydrofuran-4-yl)-but-2-en-1-one (*E*)-2g. (wxy-1-151)

Following **Typical Procedure II**, the reaction of **1g** (175.3 mg, 1.0 mmol), [Cp*RhCl₂]₂ (30.7 mg, 0.05 mmol), and Cu(OAc)₂•H₂O (500.3 mg, 2.5 mmol) in CH₃CN (1.0 mL)/MeOH (50 μ L) afforded (*E*)-**2g** (99.9 mg, 57%) (eluent: petroleum ether/ethyl acetate = 10/1, 600 mL): solid; m.p. 97.9-99.3 °C (petroleum ether/CH₂Cl₂); ¹H NMR (300 MHz, CDCl₃) δ 7.92 (d, *J* = 9.0 Hz, 2 H, ArH), 7.25 (d, *J* = 8.7 Hz, 2 H, ArH), 6.95 (d, *J* = 8.7 Hz, 2 H, ArH), 6.90 (d, *J* = 8.7 Hz, 2 H, ArH), 6.54 (s, 1 H, =CH), 6.28 (q, *J* = 1.8 Hz, 1 H, =CH), 5.94-5.87 (m, 1 H, OCH), 5.13 (ddd, *J*₁ = 11.4 Hz, *J*₂ = 5.4 Hz, *J*₃ = 1.8 Hz, 1 H, one proton of OCH₂), 4.99 (ddd, *J*₁ = 11.4 Hz, *J*₂ = 3.8 Hz, *J*₃ = 1.8 Hz, 1 H, one proton of OCH₂), 3.87 (s, 3 H, OCH₃), 3.80 (s, 3 H, OCH₃), 2.34 (d, *J* = 0.9 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 190.6, 163.3, 159.5, 143.8, 141.5, 133.2, 132.3, 131.7, 130.5, 127.9, 122.4, 114.0, 113.7, 88.6, 74.6, 55.4, 55.2, 16.6; IR (KBr) *v* (cm⁻¹) 3082, 3004, 2963, 2895, 2845, 1655, 1605, 1585, 1510,

1470, 1437, 1420, 1403, 1375, 1354, 1313, 1300, 1291, 1261, 1244, 1224, 1188, 1176, 1169, 1123, 1112, 1091, 1048, 1025, 1001; MS (EI): *m*/*z* (%) 350 (M⁺, 8.23), 135 (100); Anal. Calcd. for C₂₂H₂₂O₄ (%): C, 75.41; H, 6.33; Found: C, 75.25; H, 6.40.

8. Synthesis

of

(E)-1-(benzodioxol-5-yl)-3-(2-(benzodioxol-5-yl)-2,5-dihydrofuran-4-yl)but-2-en-1-one

Following **Typical Procedure II**, the reaction of **1h** (191.4 mg, 1.0 mmol), $[Cp*RhCl_2]_2$ (31.2 mg, 0.05 mmol), and Cu(OAc)₂•H₂O (499.5 mg, 2.5 mmol) in CH₃CN (1.0 mL)/MeOH (50 µL) afforded (*E*)-**2h** (82.6 mg, 44%), **11h** (3.1 mg, 2%) and a mixture of other byproducts (8.1 mg) (eluent: petroleum ether/ethyl acetate = 10/1, 600 mL).

(*E*)-**2h**: solid; m.p. 137.7-138.4 °C (petroleum ether/CH₂Cl₂); ¹H NMR (300 MHz, CDCl₃) δ 7.51 (dd, $J_1 = 8.1$ Hz, $J_2 = 1.8$ Hz, 1 H, ArH), 7.42 (d, J = 1.8 Hz, 1 H, ArH), 6.86 (d, J =8.1 Hz, 1 H, ArH), 6.79 (m, 3 H, ArH), 6.47 (s, 1 H, =CH), 6.25 (q, J = 1.8 Hz, 1 H, =CH), 6.05 (s, 2 H, CH₂), 5.95 (s, 2 H, CH₂), 5.88-5.83 (m, 1 H, OCH), 5.11 (ddd, $J_1 = 11.7$ Hz, $J_2 =$ 5.4 Hz, $J_3 = 1.8$ Hz, 1 H, one proton of OCH₂), 4.97 (ddd, $J_1 = 11.4$ Hz, $J_2 = 3.5$ Hz, $J_3 = 2.0$ Hz, 1 H, one proton of OCH₂), 2.32 (d, J = 0.9 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 190.1, 151.6, 148.2, 147.9, 147.5, 143.9, 141.6, 135.0, 133.6, 132.2, 124.5, 122.4, 120.0, 108.2, 108.0, 107.8, 107.0, 101.8, 101.1, 88.8, 74.6, 16.6; IR (KBr) ν (cm⁻¹) 3047, 2900, 2855, 2781, 1651, 1596, 1499, 1485, 1441, 1295, 1273, 1248, 1199, 1179, 1139, 1110, 1098, 1038, 1002; MS (EI): *m/z* (%) 378 (M⁺, 34.14), 229 (100); Anal. Calcd. for C₂₂H₁₈O₆(%): C, 69.84; H, 4.80; Found: C, 69.63; H, 4.87.

11h: ¹H NMR (300 MHz, CDCl₃) δ 9.82 (s, 1 H, CHO), 7.42 (dd, *J*₁ = 7.8 Hz, *J*₂ = 1.5 Hz, 1 H, ArH), 7.34 (d, *J* = 1.5 Hz, 1 H, ArH), 6.94 (d, *J* = 7.8 Hz, 1 H, ArH), 6.08 (s, 2 H, CH₂).

9. Synthesis of (E)-1-(naphthalen-2-yl)-3-(2-(naphthalen-2-yl)-2,5-dihydrofuran-4-yl)-

but-2-en-1-one (*E*)-2i. (wxy-1-189, wxy-2-073)

Following **Typical Procedure II**, the reaction of **1i** (196.7 mg, 1.0 mmol), [Cp*RhCl₂]₂ (31.0 mg, 0.05 mmol), and Cu(OAc)₂•H₂O (499.9 mg, 2.5 mmol) in CH₃CN (1.0 mL)/MeOH (50 μ L) afforded (*E*)-**2i** (105.8 mg, 52%, 97% purity) (eluent: petroleum ether/ethyl acetate = 20/1, 600 mL): solid; m.p. 127.8-128.6 °C (petroleum ether/Et₂O); ¹H NMR (300 MHz, CDCl₃) δ 8.49 (dd, J_I = 8.4 Hz, J_2 = 0.9 Hz, 1 H, ArH), 8.08 (d, J = 8.4 Hz, 1 H, ArH), 7.96 (d, J = 8.1 Hz, 1 H, ArH), 7.91-7.84 (m, 2 H, ArH), 7.83-7.75 (m, 2 H, ArH), 7.61-7.43 (m, 7 H, ArH), 6.73-6.68 (m, 1 H, OCH), 6.59 (q, J = 1.8 Hz, 1 H, =CH), 6.44 (s, 1 H, =CH), 5.15 (ddd, J_I = 11.4 Hz, J_2 = 5.4 Hz, J_3 = 1.8 Hz, 1 H, one proton of OCH₂), 5.05 (ddd, J_I = 11.4 Hz, J_2 = 3.6 Hz, J_3 = 2.1 Hz, 1 H, one proton of OCH₂), 2.41 (d, J = 0.9 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 195.5, 144.8, 141.8, 138.0, 136.5, 133.83, 133.75, 132.6, 132.1, 130.5, 130.1, 128.9, 128.4, 127.6, 126.4, 126.3, 125.8, 125.7, 125.6, 125.5, 124.5, 123.4,

122.9, 85.9, 74.7, 16.7; IR (neat) v (cm⁻¹) 3048, 2849, 1652, 1579, 1508, 1436, 1395, 1367, 1294, 1230, 1178, 1110, 1077, 1055; MS (EI): *m/z* (%) 390 (M⁺, 39.82), 235 (100); Anal. Calcd. for C₂₈H₂₂O₂ (%): C, 86.13; H, 5.68; Found: C, 85.75; H, 5.75.

- 10. Synthesis of (E)-1-(furan-2-yl)-3-(2-(furan-2-yl)-2,5-dihydrofuran-4-yl)-but-2-en-1-one
 - (*E*)-**2j**. (wxy-2-020)

Following **Typical Procedure II**, the reaction of **1j** (136.2 mg, 1.0 mmol), [Cp*RhCl₂]₂ (31.0 mg, 0.05 mmol), and Cu(OAc)₂•H₂O (500.0 mg, 2.5 mmol) in CH₃CN (1.0 mL)/MeOH (50 µL) afforded (*E*)-**2j** (57.6 mg, 43%) (eluent: petroleum ether/ethyl acetate = 20/1, 600 mL): oil; ¹H NMR (300 MHz, CDCl₃) δ 7.59 (d, *J* = 1.2 Hz, 1 H, furyl), 7.41 (d, *J* = 0.9 Hz, 1 H, furyl), 7.20 (d, *J* = 3.6 Hz, 1 H, furyl), 6.58-6.52 (m, 2 H, furyl and =CH), 6.39-6.29 (m, 3 H, furyl and =CH), 5.99-5.93 (m, 1 H, OCH), 5.08 (ddd, *J*₁ = 11.4 Hz, *J*₂ = 5.4 Hz, *J*₃ = 2.1 Hz, 1 H, one proton of OCH₂), 4.94 (ddd, *J*₁ = 11.4 Hz, *J*₂ = 3.3 Hz, *J*₃ = 2.1 Hz, 1 H, one proton of OCH₂), 2.49 (d, *J* = 0.9 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 179.3, 154.3, 152.9, 146.04, 146.01, 143.4, 142.9, 129.5, 120.5, 116.7, 112.4, 110.3, 107.8, 81.6, 74.2, 16.5; IR (neat) *v* (cm⁻¹) 3121, 2853, 1652, 1591, 1501, 1467, 1387, 1305, 1256, 1154, 1092, 1052, 1013; MS (EI): m/z (%) 270 (M⁺, 4.34), 95 (100); HRMS Cacld. for C₁₆H₁₄O₄ (M⁺): 270.0892; Found: 270.0893.

(*E*)-1-(thiophen-2-yl)-3-(2-(thiophen-2-yl)-2,5-dihydrofuran-4-yl)-but-2-en-1-one (*E*)-**2k**. (wxy-1-191)

Following **Typical Procedure II**, the reaction of **1k** (153.9 mg, 1.0 mmol), [Cp*RhCl₂]₂ (31.5 mg, 0.05 mmol), and Cu(OAc)₂•H₂O (499.0 mg, 2.5 mmol) in CH₃CN (1.0 mL)/MeOH (50 µL) afforded (*E*)-**2k** (75.0 mg, 49%) (eluent: petroleum ether/ethyl acetate = 15/1, 600 mL): solid; m.p. 77.9-78.6 °C (petroleum ether/CH₂Cl₂); ¹H NMR (300 MHz, CDCl₃) δ 7.70 (dd, $J_I = 3.9$ Hz, $J_2 = 0.9$ Hz, 1 H, thienyl), 7.64 (dd, $J_I = 4.8$ Hz, $J_2 = 0.9$ Hz, 1 H, thienyl), 7.31 (dd, $J_I = 5.1$ Hz, $J_2 = 1.2$ Hz, 1 H, thienyl), 7.14 (dd, $J_I = 5.1$ Hz, $J_2 = 3.9$ Hz, 1 H, thienyl), 7.08-6.97 (m, 2 H, thienyl), 6.51 (s, 1 H, =CH), 6.38 (q, J = 1.8 Hz, 1 H, =CH), 6.25-6.18 (m, 1 H, OCH), 5.11 (ddd, $J_I = 11.4$ Hz, $J_2 = 5.1$ Hz, $J_3 = 1.8$ Hz, 1 H, one proton of OCH₂), 4.96 (ddd, $J_I = 11.4$ Hz, $J_2 = 3.3$ Hz, $J_3 = 1.8$ Hz, 1 H, one proton of OCH₂), 2.45 (d, J = 1.2 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 183.5, 146.5, 145.4, 144.6, 142.2, 133.7, 132.0, 131.3, 128.2, 126.9, 125.9, 124.9, 121.5, 84.0, 74.1, 16.6; IR (KBr) ν (cm⁻¹) 3084, 3071, 2953, 2899, 2855, 1637, 1612, 1581, 1518, 1473, 1436, 1415, 1354, 1297, 1272, 1251, 1238, 1221, 1163, 1090, 1066, 1042; MS (EI): m/z (%) 302 (M⁺, 12.23), 273 (100); Anal. Calcd. for C₁₆H₁₄O₂S₂(%): C, 63.55; H, 4.67; Found: C, 63.48; H, 4.72.

12. Synthesis of (*E*,*E*,*E*)-**2l**. (wxy-3-024)

Following Typical Procedure II, the reaction of (E)-11 (172.8 mg, 1.0 mmol), [Cp*RhCl₂]₂ (31.0 mg, 0.05 mmol), and Cu(OAc)₂•H₂O (499.2 mg, 2.5 mmol) in CH₃CN (1.0 mL)/MeOH (50 µL) afforded impure (E,E,E)-2l (85.5 mg) after chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 20/1, 700 mL). The impure (*E*,*E*,*E*)-**2** was further purified via chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 15/1, 500 mL) to afford pure (E, E, E)-2l (70.4 mg, 41%): liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.63-7.51 (m, 3 H, ArH and =CH), 7.43-7.34 (m, 5 H, ArH), 7.34-7.20 (m, 3 H, ArH), 6.85 (d, J = 16.2 Hz, 1 H, =CH), 6.64 (d, J = 15.9 Hz, 1 H, =CH), 6.25 (q, J = 1.8 Hz, 1 H, =CH), 6.18 (dd, *J*₁ = 15.9 Hz, *J*₂ = 7.2 Hz, 1 H, =CH), 6.11 (s, 1 H, =CH), 5.59-5.49 (m, 1 H, OCH), 5.01 (ddd, $J_1 = 11.4$ Hz, $J_2 = 5.1$ Hz, $J_3 = 1.8$ Hz, 1 H, one proton of OCH₂), 4.90 (ddd, $J_1 =$ 11.4 Hz, $J_2 = 3.6$ Hz, $J_3 = 2.1$ Hz, 1 H, one proton of OCH₂), 2.41 (d, J = 0.9 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 190.2, 144.9, 142.7, 141.9, 136.3, 134.6, 131.9, 131.5, 130.3, 128.8, 128.5, 128.3, 128.0, 127.9, 127.8, 126.6, 124.3, 87.8, 74.2, 16.4; IR (neat) v (cm⁻¹) 3081, 3059, 3026, 2848, 1668, 1653, 1641, 1622, 1616, 1575, 1495, 1447, 1367, 1327, 1302, 1189, 1116, 1048; MS (EI): m/z (%) 342 (M⁺, 24.75), 312 (100); HRMS Cacld. for C₂₄H₂₂O₂ (M⁺): 342.1620; Found: 342.1621.

13. Synthesis of (E)-2-(2-hexyl-2,5-dihydrofuran-4-yl)dec-2-en-4-one (E)-2m. (hx-16-008, hx-15-181)

Following **Typical Procedure II**, the reaction of **1m** (154.5 mg, 1.0 mmol), [Cp*RhCl₂]₂ (31.0 mg, 0.05 mmol), and Cu(OAc)₂•H₂O (499.2 mg, 2.5 mmol) in CH₃CN (1 mL)/MeOH (50 μ L) afforded (*E*)-**2m** (98.0 mg, 64%) [eluent: petroleum ether/ethyl acetate = 50/1 (500 mL) to 20/1 (400 mL)]: solid; m.p. 38.2-42.4 °C (determined without recrystallization): liquid; ¹H NMR (300 MHz, CDCl₃) δ 6.27-6.20 (m, 1 H, =CH), 5.80 (s, 1 H, =CH), 5.01-4.89 (m, 1 H, OCH), 4.82 (ddd, J_I = 11.4 Hz, J_2 = 5.1 Hz, J_3 = 1.8 Hz, 1 H, one proton of OCH₂), 4.74 (ddd, J_I = 11.4 Hz, J_2 = 3.6 Hz, J_3 = 2.1 Hz, 1 H, one proton of OCH₂), 2.47 (t, J = 7.5 Hz, 2 H, CH₂), 2.32 (d, J = 0.9 Hz, 3 H, Me), 1.68-1.48 (m, 4 H, CH₂ × 2), 1.47-1.18 (m, 14 H, CH₂ × 7), 0.88 (t, J = 6.8 Hz, 6 H, Me × 2); ¹³C NMR (75 MHz, CDCl₃) δ 201.8, 143.9, 141.2, 133.6, 123.5, 87.3, 73.9, 44.7, 35.7, 31.7, 31.6, 29.3, 28.8, 25.2, 24.1, 22.5, 22.4, 16.0, 14.00, 13.96; IR (neat) ν (cm⁻¹) 2955, 2928, 2856, 1685, 1616, 1589, 1466, 1406, 1367, 1201, 1132, 1101, 1054; MS (EI): m/z (%) 307 (M⁺ + 1, 6.5), 306 (M⁺, 23.2), 221 (100); HRMS Cacld. for C₂₀H₃₄O₂ (M⁺): 306.2559; Found: 306.2563.

14. Synthesis of (*E*)-2-(2-nonyl-2,5-dihydrofuran-4-yl)tridec-2-en-4-one (*E*)-2n. (wxy-3-041)

Following **Typical Procedure II**, the reaction of **1n** (1.1990 g, 5.82 mmol, 97% purity), [Cp*RhCl₂]₂ (185.4 mg, 0.3 mmol), and Cu(OAc)₂•H₂O (2.9945 g, 15 mmol) in CH₃CN (6

mL)/MeOH (0.3 mL) afforded (*E*)-**2n** (714.3 mg, 62%) (eluent: petroleum ether/ethyl acetate = 35/1, 1000 mL): solid; m.p. 38.2-42.4 °C (determined without recrystallization); ¹H NMR (300 MHz, CDCl₃) δ 6.24 (q, *J* = 1.8 Hz, 1 H, =CH), 5.80 (s, 1 H, =CH), 5.00-4.88 (m, 1 H, OCH), 4.82 (ddd, *J*₁ = 11.4 Hz, *J*₂ = 5.1 Hz, *J*₃ = 1.8 Hz, 1 H, one proton of OCH₂), 4.74 (ddd, *J*₁ = 11.4 Hz, *J*₂ = 3.6 Hz, *J*₃ = 1.8 Hz, 1 H, one proton of OCH₂), 2.46 (t, *J* = 7.5 Hz, 2 H, CH₂), 2.32 (d, *J* = 0.9 Hz, 3 H, CH₃), 1.68-1.50 (m, 4 H, CH₂ × 2), 1.48-1.15 (m, 26 H, CH₂ × 13), 0.88 (t, *J* = 6.8 Hz, 6 H, CH₃ × 2); ¹³C NMR (75 MHz, CDCl₃) δ 201.8, 143.9, 141.3, 133.6, 123.6, 87.3, 74.0, 44.8, 35.7, 31.8, 29.6, 29.53, 29.50, 29.4, 29.3, 29.22, 29.19, 25.3, 24.2, 22.6, 16.1, 14.0; IR (neat) ν (cm⁻¹) 2953, 2925, 2854, 1687, 1683, 1616, 1589, 1464, 1405, 1367, 1131, 1103, 1046; MS (EI): *m*/*z* (%) 390 (M⁺, 9.17), 263 (100); Anal. Calcd. for C₂₆H₄₆O₂ (%): C, 79.94; H, 11.87; Found: C, 79.72; H, 11.81.

15. Synthesis of (*E*)-2-(2-undecyl-2,5-dihydrofuran-4-yl)pentadec-2-en-4-one (*E*)-**20**. (fjj-1-118)

Following **Typical Procedure II**, the reaction of **1o** (223.9 mg, 1 mmol), $[Cp*RhCl_2]_2$ (30.8 mg, 0.05 mmol), and Cu(OAc)_2•H₂O (499.0 mg, 2.5 mmol) in CH₃CN (1.0 mL)/MeOH (50 µL) afforded (*E*)-**2o** (141.2 mg, 63%) [eluent: petroleum ether/ethyl acetate = 80/1 (300 mL) to 50/1 (300 mL)]: solid; m.p. 44.7-47.2 °C (determined without recrystallization); ¹H NMR (300 MHz, CDCl₃) δ 6.24 (s, 1 H, =CH), 5.80 (s, 1 H, =CH), 5.00-4.89 (m, 1 H, OCH), 4.88-4.68 (m, 2 H, OCH₂), 2.47 (t, *J* = 7.5 Hz, 2 H, CH₂), 2.32 (s, 3 H, CH₃), 1.68-1.50 (m, 4

H, CH₂ × 2), 1.48-1.15 (m, 34 H, CH₂ × 17), 0.88 (t, J = 6.6 Hz, 6 H, CH₃ × 2); ¹³C NMR (75 MHz, CDCl₃) δ 201.8, 143.9, 141.3, 133.6, 123.6, 87.3, 74.0, 44.8, 35.8, 31.9, 29.7, 29.62, 29.58, 29.55, 29.5, 29.4, 29.3, 29.2, 25.3, 24.2, 22.6, 16.1, 14.1; IR (neat) v (cm⁻¹) 2954, 2918, 2849, 1683, 1591, 1470, 1133, 1096; MS (EI): m/z (%) 446 (M⁺, 6.92), 263 (100); Anal. Calcd. for C₃₀H₅₄O₂ (%): C, 80.65; H, 12.18; Found: C, 80.22; H, 12.07.

16. Preparation of (*E*)-2-(2-isobutyl-2,5-dihydrofuran-4-yl)-6-methylhept-2-en-4-one (*E*)-2p. (wxy-1-135)

Following **Typical Procedure II**, the reaction of **1p** (128.2 mg, 1.0 mmol), [Cp*RhCl₂]₂ (31.2 mg, 0.05 mmol), and Cu(OAc)₂•H₂O (500.7 mg, 2.5 mmol) in CH₃CN (1.0 mL)/MeOH (50 μ L) afforded (*E*)-**2p** (64.8 mg, 51%) (eluent: petroleum ether/ethyl acetate = 30/1, 600 mL): liquid; ¹H NMR (300 MHz, CDCl₃) δ 6.25 (d, *J* = 1.8 Hz, 1 H, =CH), 5.79 (s, 1 H, CH=), 5.03-4.95 (m, 1 H, OCH), 4.81 (ddd, *J*₁ = 11.4 Hz, *J*₂ = 5.4 Hz, *J*₃ = 1.8 Hz, 1 H, one proton of OCH₂), 4.73 (ddd, *J*₁ = 11.4 Hz, *J*₂ = 3.5 Hz, *J*₃ = 2.0 Hz, 1 H, one proton of OCH₂), 4.73 (ddd, *J*₁ = 11.4 Hz, *J*₂ = 6.9 Hz, 3 H, CH₃), 2.21-2.07 (m, 1 H, CH), 1.88-1.72 (m, 1 H, COCH₂), 2.32 (d, *J* = 6.9 Hz, 3 H, CH₃), 2.21-2.07 (m, 1 H, CH), 1.88-1.72 (m, 1 H, CH), 1.58-1.47 (m, 1 H, one proton of CH₂), 1.45-1.34 (m, 1 H, one proton of CH₂), 0.94 (t, *J* = 6.6 Hz, 12 H, CH₃ × 4); ¹³C NMR (75 MHz, CDCl₃) δ 201.4, 143.8, 141.0, 134.1, 123.8, 85.7, 73.6, 53.7, 44.7, 25.1, 25.0, 23.2, 22.5, 22.4, 16.0; IR (neat) ν (cm⁻¹) 2956, 2929, 2870, 1683, 1616, 1587, 1467, 1404, 1386, 1367, 1287, 1171, 1148, 1123, 1099, 1052 ; MS (EI): *m/z* (%) 250 (M⁺, 7.99), 109 (100); HRMS Calcd for C₁₆H₂₆O₂

17. Synthesis of (*E*)-1-phenyl-4-(2-benzyl-2,5-dihydrofuran-4-yl)-pent-3-en-2-one (*E*)-2q.

(wxy-1-145)

Following **Typical Procedure II**, the reaction of **1q** (160.3 mg, 1.0 mmol), [Cp*RhCl₂]₂ (31.0 mg, 0.05 mmol), and Cu(OAc)₂•H₂O (500.3 mg, 2.5 mmol) in CH₃CN (1.0 mL)/MeOH (50 µL) afforded (*E*)-**2q** (85.9 mg, 54%) (eluent: petroleum ether/ethyl acetate = 20/1, 800 mL): oil; ¹H NMR (300 MHz, CDCl₃) δ 7.35-7.15 (m, 10 H, ArH), 6.18 (q, *J* = 1.8 Hz, 1 H, =CH), 5.80 (s, 1 H, =CH), 5.18-5.08 (m, 1 H, OCH), 4.72-4.60 (m, 2 H, OCH₂), 3.72 (s, 2 H, CH₂CO), 2.94 (dd, *J*₁ = 13.8 Hz, *J*₂ = 6.6 Hz, 1 H, one proton of CH₂), 2.82 (dd, *J*₁ = 13.5 Hz, *J*₂ = 6.6 Hz, 1 H, one proton of CH₂), 2.27 (d, *J* = 1.2 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 198.3, 145.2, 141.7, 137.5, 134.5, 133.1, 129.4, 129.2, 128.6, 128.3, 126.9, 126.4, 122.9, 88.0, 74.0, 51.6, 42.3, 16.1; IR (neat) ν (cm⁻¹) 3087, 3062, 3028, 2917, 2848, 1687, 1683, 1616, 1588, 1495, 1454, 1404, 1366, 1326, 1207, 1189, 1104, 1031, 1003; MS (EI): *m*/*z* (%) 318 (M⁺, 7.72), 319 (M⁺ + 1, 7.56), 227 (100), 91 (100); HRMS Cacld. for C₂₂H₂₂O₂ (M⁺): 318.1620; Found: 318.1623.

18. Preparation of (*E*)-1-phenyl-5-(2-phenethyl-2,5-dihydrofuran-4-yl)-hex-4-en-3-one (*E*)-2r. (wxy-1-131)

Following **Typical Procedure II**, the reaction of **1r** (174.5 mg, 1.0 mmol), [Cp*RhCl₂]₂ (31.0 mg, 0.05 mmol), and Cu(OAc)₂•H₂O (500.1 mg, 2.5 mmol) in CH₃CN (1.0 mL)/MeOH (50 µL) afforded (*E*)-**2r** (106.6 mg, 62%) (eluent: petroleum ether/ethyl acetate = 20/1, 600 mL): liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.34-7.24 (m, 4 H, ArH), 7.23-7.14 (m, 6 H, ArH), 6.18 (q, *J* = 1.8 H, 1 H, =CH), 5.76 (s, 1 H, =CH), 5.02-4.92 (m, 1 H, OCH), 4.80 (ddd, *J_I* = 11.3 Hz, *J*₂ = 5.1 Hz, *J*₃ = 1.4 Hz, 1 H, one proton of OCH₂), 4.71 (ddd, *J_I* = 11.4 Hz, *J*₂ = 3.3 Hz, *J*₃ = 1.8 Hz, 1 H, one proton of OCH₂), 2.92 (t, *J* = 7.7 Hz, 2 H, CH₂), 2.85-2.59 (m, 4 H, CH₂ × 2), 2.30 (s, 3 H, CH₃), 1.98-1.82 (m, 2 H, CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 200.3, 144.2, 141.7, 141.4, 141.0, 133.5, 128.38, 128.34, 128.32, 128.26, 126.0, 125.8, 123.5, 86.5, 74.0, 46.1, 37.2, 31.4, 30.0, 16.1; IR (neat) *v* (cm⁻¹) 3080, 3061, 3026, 2925, 2852, 1683, 1616, 1589, 1496, 1454, 1111, 1072, 1031; MS (EI): *m/z* (%) 346 (M⁺, 10.90), 91 (100); HRMS Calcd for C₂₄H₂₆O₂ (M⁺): 346.1933; Found: 346.1937.

19. Synthesis of (E)-2-(2-(5-chloropentyl)-2,5-dihydrofuran-4-yl)-9-chloro-non-2-en-4-one(E)-2s. (wxy-2-018)

Following **Typical Procedure II**, the reaction of **1s** (174.5 mg, 1.0 mmol), $[Cp*RhCl_2]_2$ (30.9 mg, 0.05 mmol), and Cu(OAc)₂•H₂O (500.0 mg, 2.5 mmol) in CH₃CN (1.0 mL)/MeOH

(50 μL) afforded (*E*)-**2s** (107.8 mg, 62%) (eluent: petroleum ether/ethyl acetate = 20/1, 600 mL): liquid; ¹H NMR (300 MHz, CDCl₃) δ 6.24 (q, J = 1.5 Hz, 1 H, =CH), 5.80 (s, 1 H, =CH), 5.03-4.91 (m, 1 H, OCH), 4.86-4.70 (m, 2 H, OCH₂), 3.54 (t, J = 6.5 Hz, 4 H, CH₂ × 2), 2.51 (t, J = 7.2 Hz, 2 H, COCH₂), 2.33 (s, 3 H, CH₃), 1.85-1.72 (m, 4 H, CH₂ × 2), 1.70-1.55 (m, 4 H, CH₂ × 2), 1.55-1.38 (m, 6 H, CH₂ × 3); ¹³C NMR (75 MHz, CDCl₃) δ 201.0, 143.9, 141.2, 133.4, 123.3, 86.9, 73.8, 44.8, 44.7, 44.2, 35.3, 32.3, 32.2, 26.7, 26.2, 24.4, 23.1, 15.9; IR (neat) ν (cm⁻¹) 2928, 2852, 1683, 1588, 1368, 1111, 1046; MS (EI): *m*/*z* (%) 350 [M(³⁷Cl³⁷Cl)⁺, 1.28], 348 [M(³⁷Cl³⁵Cl)⁺, 5.84], 346 [M(³⁵Cl³⁵Cl)⁺, 7.74], 241 (100); HRMS Cacld. for C₁₈H₂₈O₂³⁵Cl³⁵Cl (M⁺): 346.1466; Found: 346.1465.

20. Synthesis of (*E*)-2t. (fjj-1-121)

Following **Typical Procedure II**, the reaction of **1t** (156.4 mg, 1 mmol), $[Cp*RhCl_2]_2$ (30.9 mg, 0.05 mmol), and Cu(OAc)₂•H₂O (499.2 mg, 2.5 mmol) in CH₃CN (1.0 mL)/MeOH (50 µL) afforded (*E*)-**2t** (87.1 mg, 56%) [eluent: petroleum ether/ethyl acetate = 1/1 (500 mL) to petroleum ether/ethyl acetate 1/2 (500 mL) to ethyl acetate (500 mL)]: oil; ¹H NMR (300 MHz, CDCl₃) δ 6.25 (s, 1 H, =CH), 5.81 (s, 1 H, =CH), 5.02-4.90 (m, 1 H, OCH), 4.86-4.68 (m, 2 H, OCH₂), 3.63 (t, *J* = 6.2 Hz, 4 H, OCH₂ × 2), 2.58-2.40 (4 H, CH₂ and OH × 2), 2.32 (s, 3 H, CH₃), 1.72-1.50 (m, 8 H, CH₂ × 4), 1.48-1.30 (m, 6 H, CH₂ × 3); ¹³C NMR (75 MHz, CDCl₃) δ 201.7, 144.1, 141.1, 133.5, 123.4, 87.1, 73.9, 62.4, 62.3, 44.5, 35.5, 32.4, 32.3, 25.6,

25.2, 24.9, 23.6, 16.0; IR (neat) v (cm⁻¹) 3390, 2932, 2858, 1682, 1587, 1119, 1051; MS (EI): m/z (%) 310 (M⁺, 7.20), 69 (100); HRMS Cacld. for C₁₈H₃₀O₄ (M⁺): 310.2144; Found: 310.2143.

21. Synthesis of (*E*)-1-cyclohexyl-3-(2-cyclohexyl-2,5-dihydrofuran-4-yl)but-2-en-1-one (*E*)-**2u**. (wxy-2-145)

Following **Typical Procedure II**, the reaction of **1u** (152.2 mg, 1.0 mmol), [Cp*RhCl₂]₂ (31.1 mg, 0.05 mmol), and Cu(OAc)₂•H₂O (499.9 mg, 2.5 mmol) in CH₃CN (1.0 mL)/MeOH (50 µL) afforded (*E*)-**2u** (91.1 mg, 60%) (eluent: petroleum ether/ethyl acetate = 40/1, 800 mL): liquid; ¹H NMR (300 MHz, CDCl₃) δ 6.24 (s, 1 H, =CH), 5.84 (s, 1 H, =CH), 4.85-4.70 (m, 3 H, OCH + OCH₂), 2.45-2.25 (m, 4 H, CH + CH₃), 1.90-1.60 (m, 10 H, 5 × CH₂), 1.60-1.45 (m, 1 H, CH), 1.41-0.94 (m, 10 H, 5 × CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 204.7, 144.3, 141.8, 131.9, 122.8, 91.8, 74.3, 51.9, 43.5, 28.7, 28.5, 28.4, 26.4, 26.1, 26.0, 25.8, 25.7, 16.1; IR (neat) ν (cm⁻¹) 2926, 2852, 1682, 1615, 1587, 1450, 1368, 1314, 1289, 1233, 1185, 1146, 1098, 1051; MS (EI): m/z (%) 302 (M⁺, 7.47), 83 (100); HRMS Cacld. for C₂₀H₃₀O₂ (M⁺): 302.2246; Found: 302.2247.

22. Synthesis of (*E*)-2,2-dimethyl-5-(2-(tert-butyl)-2,5-dihydrofuran-4-yl)-hex-4-en-3-one (*E*)-**2v**. (wxy-1-159)

Following **Typical Procedure II**, the reaction of **1v** (128.1 mg, 1.0 mmol), [Cp*RhCl₂]₂ (31.0 mg, 0.05 mmol), and Cu(OAc)₂•H₂O (499.9 mg, 2.5 mmol) in CH₃CN (1.0 mL)/MeOH (50 μ L) afforded (*E*)-**2v** (63.4 mg, 50%) [eluent: petroleum ether (30-60 °C)/ethyl acetate = 50/1, 800 mL]: solid; low melting point; ¹H NMR (300 MHz, CDCl₃) δ 6.23 (d, *J* = 1.5 Hz, 1 H, =CH), 6.06 (s, 1 H, =CH), 4.86-4.74 (m, 2 H, OCH₂), 4.64-4.57 (m, 1 H, OCH), 2.29 (d, *J* = 0.9 Hz, 3 H, CH₃), 1.16 (s, 9 H, *t*-Bu), 0.92 (s, 9 H, *t*-Bu); ¹³C NMR (75 MHz, CDCl₃) δ 206.8, 144.2, 142.5, 130.6, 119.9, 95.8, 74.6, 44.0, 36.1, 26.5, 25.6, 16.2; IR (neat) *v* (cm⁻¹) 2958, 2902, 2868, 1679, 1616, 1587, 1478, 1393, 1365, 1312, 1192, 1102, 1066, 1036, 1016; MS (EI): *m/z* (%) 250 (M⁺, 2.87), 57 (100); HRMS Cacld. for C₁₆H₂₆O₂ (M⁺): 250.1933; Found: 250.1932.

23. The cross-coupling reaction between 1x and 1e. (wxy-7-163)

To a dried Schlenk tube were added $[Cp*RhCl_2]_2$ (15.5 mg, 0.025 mmol) and $Cu(OAc)_2 \cdot H_2O$ (250.0 mg, 1.25 mmol) under air atmosphere. The Schlenk tube was then degassed to remove the air inside completely and refilled with O_2 by a balloon of O_2 for three

times. **1x** (70.5 mg, 0.5 mmol)/CH₃CN (0.5 mL), **1e** (112.8 mg, 0.5 mmol)/CH₃CN (0.5 mL) and MeOH (50 μ L) were added sequentially, the reaction tube was put into an oil bath pre-heated at 50 °C. The reaction was complete after stirring for 11.5 h as monitored by TLC. After removing the O₂ balloon, the resulting mixture was filtered through a short column of silica gel eluted with ethyl acetate (15 mL × 3). The combined filtrate was then concentrated in vacuo and the crude residue was purified via chromatography on silica gel [eluent: petroleum ether/ethyl acetate = 50/1 (250 mL) to petroleum ether/ethyl acetate = 20/1 (250 mL)] to afford (*E*)-**2xe** (88.9 mg, 49%) and impure (*E*)-**2e** (20.2 mg). The impure (*E*)-**2e** was further purified via column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 25/1, 500 mL) to afford pure (*E*)-**2e** (18.6 mg, 17%).

(*E*)-**2xe**, solid; m.p. 105.5-107.6 °C (petroleum ether/DCM); ¹H NMR (300 MHz, CDCl₃) δ 7.76 (d, *J* = 6.6 Hz, 2 H, ArH), 7.60 (d, *J* = 6.6 Hz, 2 H, ArH), 6.41 (s, 1 H, =CH), 6.38 (s, 1 H, =CH), 4.88 (d, *J* = 1.2 Hz, 2 H, OCH₂), 2.36 (d, *J* = 0.9 Hz, 3 H, Me), 1.80-1.35 (m, 10 H, CH₂ × 5); ¹³C NMR (75 MHz, CDCl₃) δ 190.8, 146.7, 140.0, 137.8, 137.7, 131.8, 129.7, 127.7, 120.7, 90.7, 72.6, 36.6, 25.2, 23.2, 16.7; IR (neat) *v* (cm⁻¹) 2931, 2854, 1656, 1588, 1212, 1071, 1042, 1009; MS (EI): *m*/*z* (%) 362 [(M(⁸¹Br)⁺, 42.42], 360 [(M(⁷⁹Br)⁺, 41.69], 183 (100); HRMS Calcd for C₁₉H₂₁⁷⁹BrO₂ (M⁺): 360.0725; Found: 360.0723.

24. Synthesis of (*S*,*E*)-1-phenyl-3-(2-phenyl-2,5-dihydrofuran-4-yl)but-2-en-1-one (*S*,*E*)-**2a**. (wxy-3-112)

Cu(OAc)₂•H₂O (2.5 equiv) CH₃CN/MeOH = 20/1 50 °C, O₂ (balloon), 12.5 h

[Cp*RhCl₂]₂ (5 mol %)

(S,E)-2a, 56%, 98% ee

Following **Typical Procedure II**, the reaction of (S)-1a^{2,3} (146.2 mg, 1.0 mmol), [Cp*RhCl₂]₂ (31.0 mg, 0.05 mmol), and Cu(OAc)₂•H₂O (499.8 mg, 2.5 mmol) in CH₃CN (1.0 mL)/MeOH (50 µL) afforded (S,E)-2a (81.1 mg, 56%) (eluent: petroleum ether/ethyl acetate = 25/1, 800 mL): solid; m.p. 82.4-82.7 °C (petroleum ether/ethyl acetate); 98% ee (HPLC conditions: Chiralcel IC column, *n*-hexane/*i*-PrOH = 90/10, 1 mL/min, λ = 214 nm, $t_{\rm R}$ (major) = 21.9 min, $t_{\rm R}({\rm minor})$ = 24.2 min); $[\alpha]_{\rm D}^{20}$ = -345.8 (c = 1.16, CHCl₃); ¹H NMR (300 MHz, CDCl₃) § 7.96-7.88 (m, 2 H, ArH), 7.57 (m, 1 H, ArH), 7.48 (m, 2 H, ArH), 7.42-7.27 (m, 5 H, ArH), 6.57 (s, 1 H, =CH), 6.34 (q, J₁ = 3.6 Hz, J₂ = 1.5 Hz, 1 H, =CH), 6.00-5.96 (m, 1 H, OCH), 5.17 (ddd, $J_1 = 11.4$ Hz, $J_2 = 5.4$ Hz, $J_3 = 2.1$ Hz, 1 H, one proton of OCH₂), 5.03 (ddd, $J_1 = 11.4$ Hz, $J_2 = 5.4$ Hz, $J_3 = 2.1$ Hz, 1 H, one proton of OCH₂), 2.37 (d, J = 1.2 Hz, 3 H, Me); ¹³C NMR (100 MHz, CDCl₃) δ 192.0 145.0, 141.5, 141.1, 138.9, 132.9, 132.8, 128.7, 128.6, 128.2, 128.1, 126.4, 122.3, 89.1, 74.9, 16.7; IR (KBr) v (cm⁻¹) 3089, 3065, 3035, 2854, 1651, 1612, 1595, 1581, 1492, 1479, 1455, 1446, 1366, 1350, 1274, 1243, 1218, 1196, 1182, 1160, 1088, 1075, 1049, 1009; MS (EI): m/z (%) 290 (M⁺, 8.48), 185 (100); Anal. Calcd. for C₂₀H₁₈O₂ (%): C, 82.73; H, 6.25; Found: C, 82.01; H, 6.31. HRMS Cacld. for C₂₀H₁₈O₂ (M⁺): 290.1307; Found: 290.1307.

25. Synthesis of (*S*,*E*)-1-(4-fluorophenyl)-3-(2-(4-fluorophenyl)-2,5-dihydrofuran-4-yl)but-2-en-1-one (*S*,*E*)-**2b**. (wxy-3-044)

[Cp*RhCl₂]₂ (31.0 mg, 0.05 mmol), and Cu(OAc)₂•H₂O (498.9 mg, 2.5 mmol) in CH₃CN (1.0 mL)/MeOH (50 µL) afforded (S,E)-2b (99.8 mg, 61%) (eluent: petroleum ether/ethyl acetate = 15/1, 500 mL): solid; m.p. 90.5-91.1 °C (petroleum ether/CH₂Cl₂); >99% ee (HPLC conditions: Chiralcel OZ-H column, *n*-hexane/*i*-PrOH = 90/10, 1 mL/min, λ = 214 nm, $t_{\rm R}({\rm major}) = 9.8 \text{ min}, t_{\rm R}({\rm minor}) = 13.6 \text{ min}); \left[\alpha\right]_{\rm D}^{20} = -323.7 \ (c = 1.01, {\rm CHCl}_3); {}^{1}{\rm H} {\rm NMR} \ (300)$ MHz, CDCl₃) δ 8.01-7.90 (m, 2 H, ArH), 7.36-7.25 (m, 2 H, ArH), 7.20-7.09 (m, 2 H, ArH), 7.09-7.00 (m, 2 H, ArH), 6.53 (s, 1 H, =CH), 6.31 (q, J = 1.8 Hz, 1 H, =CH), 5.98-5.87 (m, 1 H, OCH), 5.14 (ddd, $J_1 = 11.7$ Hz, $J_2 = 5.7$ Hz, $J_3 = 2.1$ Hz, 1 H, one proton of OCH₂), 5.01 (ddd, $J_1 = 11.7$ Hz, $J_2 = 3.6$ Hz, $J_3 = 2.1$ Hz, 1 H, one proton of OCH₂), 2.36 (d, J = 0.9 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 190.2, 165.5 (d, J = 253.1 Hz), 162.5 (d, J = 245.4Hz), 145.0, 141.6, 136.8 (d, J = 3.5 Hz), 135.2 (d, J = 2.7 Hz), 132.6, 130.8 (d, J = 9.7 Hz), 128.2 (d, J = 8.3 Hz), 122.0, 115.6 (d, J = 21.4 Hz), 115.5 (d, J = 21.4 Hz), 88.3, 74.7, 16.6; ¹⁹F NMR (282 MHz, CDCl₃) δ -105.9 (s, 1 F), -114.4 (s, 1 F); IR (neat) v (cm⁻¹) 3073, 2851, 1622, 1652, 1600, 1506, 1411, 1368, 1305, 1295, 1221, 1155, 1088, 1049, 1013; MS (EI): m/z (%) 326 (M⁺, 5.52), 123 (100); Anal. Calcd. for $C_{20}H_{16}F_2O_2$ (%): C, 73.61; H, 4.94; Found: C, 73.64; H, 5.11.

(*S*,*E*)-1-(3-bromophenyl)-3-(2-(3-bromophenyl)-2,5-dihydrofuran-4-yl)but-2-en-1-one (*S*,*E*)-**2e**. (wxy-3-109)

of

Following Typical Procedure II, the reaction of (S)-1e (112.1 mg, 0.5 mmol, 95% ee),

[Cp*RhCl₂]₂ (15.7 mg, 0.025 mmol), and Cu(OAc)₂•H₂O (250.0 mg, 1.25 mmol) in CH₃CN (0.5 mL)/MeOH (25 µL) afforded (S,E)-2e (54.0 mg, 48%) (eluent: petroleum ether/ethyl acetate = 25/1, 800 mL): oil; 93% ee (HPLC conditions: Chiralcel IC column, *n*-hexane/*i*-PrOH = 90/10, 1 mL/min, $\lambda = 214$ nm, $t_R(\text{minor}) = 17.7$ min, $t_R(\text{major}) = 18.7$ min); $[\alpha]_D^{20} = -258.2$ (c = 0.91, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.03 (t, J = 1.7 Hz, 1 H, ArH), 7.83 (d, *J* = 7.8 Hz, 1 H, ArH), 7.72-7.64 (m, 1 H, ArH), 7.52-7.38 (m, 2 H, ArH), 7.36 (t, J = 7.8 Hz, 1 H, ArH), 7.30-7.19 (m, 2 H, ArH), 6.49 (s, 1 H, =CH), 6.33 (q, J = 1.5 Hz, 1 H, =CH), 5.97-5.88 (m, 1 H, OCH), 5.16 (ddd, $J_1 = 11.4$ Hz, $J_2 = 5.4$ Hz, $J_3 = 1.8$ Hz, 1 H, one proton of OCH₂), 5.03 (ddd, $J_1 = 11.1$ Hz, $J_2 = 3.3$ Hz, $J_3 = 1.8$ Hz, 1 H, one proton of OCH₂), 2.36 (s, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 190.2, 145.8, 143.3, 141.7, 140.6, 135.6, 132.7, 131.2, 131.1, 130.22, 130.18, 129.3, 126.7, 124.9, 122.9, 122.8, 121.8, 88.2, 75.0, 16.8; IR (KBr) v (cm⁻¹) 3062, 2955, 2850, 1660, 1592, 1571, 1472, 1428, 1367, 1296, 1240, 1211, 1101, 1084, 1070, 1054; MS (EI): m/z (%) 450 [(M(⁸¹Br⁸¹Br)⁺, 4.30], 448 $[(M(^{81}Br^{79}Br)^+, 9.42], 446 [(M(^{79}Br^{79}Br)^+, 7.12], 265 (100); HRMS Cacld. for$ $C_{20}H_{16}O_2^{79}Br^{79}Br(M^+)$: 445.9512; Found: 445.9517.

27. Synthesis of (*S*,*E*)-1-(furan-2-yl)-3-(2-(furan-2-yl)-2,5-dihydrofuran-4-yl)-but-2-en-1-one (*S*,*E*)-**2j**. (wxy-3-116)

Following **Typical Procedure II**, the reaction of (*S*)-**1j** (136.5 mg, 1.0 mmol, 96% purity, 96% ee), [Cp*RhCl₂]₂ (31.0 mg, 0.05 mmol), and Cu(OAc)₂•H₂O (500.0 mg, 2.5 mmol) in

CH₃CN (1.0 mL)/MeOH (50 µL) afforded (*S*,*E*)-**2j** (55.2 mg, 42%) (eluent: petroleum ether/ethyl acetate = 20/1, 1600 mL): solid; m.p. 87.5-88.1 °C (determined without recrystallization); 95% ee (HPLC conditions: Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 85/15, 1 mL/min, λ = 220 nm, t_R (major) = 23.4 min, t_R (minor) = 19.0 min); $[\alpha]_D^{20}$ = -295.6 (*c* = 1.01, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.60 (d, *J* = 0.9 Hz, 1 H, furyl), 7.46-7.36 (m, 1 H, furyl), 7.20 (dd, J_1 = 3.6 Hz, J_2 = 0.6 Hz, 1 H, furyl), 6.58-6.50 (m, 2 H, furyl and =CH), 6.39-6.27 (m, 3 H, furyl and =CH), 5.99-5.93 (m, 1 H, OCH), 5.08 (ddd, J_I = 11.7 Hz, J_2 = 5.4 Hz, J_3 = 2.1 Hz, 1 H, one proton of OCH₂), 4.94 (ddd, J_I = 11.4 Hz, J_2 = 3.3 Hz, J_3 = 2.1 Hz, 1 H, one proton of OCH₂), 4.94 (ddd, J_I = 11.4 Hz, I_2 = 3.3 Hz, I_3 = 2.1 Hz, 1 H, one proton of OCH₂), 2.49 (d, J = 0.9 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 179.3, 154.3, 152.9, 146.04, 146.01, 143.4, 142.9, 129.5, 120.5, 116.7, 112.4, 110.3, 107.8, 81.6, 74.2, 16.5; IR (neat) ν (cm⁻¹) 3123, 2963, 2853, 1651, 1591, 1465, 1387, 1305, 1257, 1153, 1092, 1052, 1013; MS (EI): m/z (%) 270 (M⁺, 4.56), 95 (100); HRMS Cacld. for C₁₆H₁₄O₄ (M⁺): 270.0887; Found: 270.0886.

28. Synthesis of (*R*,*E*)-2-(2-hexyl-2,5-dihydrofuran-4-yl)dec-2-en-4-one (*R*,*E*)-**2m**. (wxy-3-113)

Following **Typical Procedure II**, the reaction of (*S*)-**1m**^{2,4} (154.9 mg, 1.0 mmol, , 98% ee), $[Cp*RhCl_2]_2$ (31.0 mg, 0.05 mmol), and $Cu(OAc)_2 \cdot H_2O$ (499.9 mg, 2.5 mmol) in CH₃CN (1 mL)/MeOH (50 µL) afforded (*R*,*E*)-**2m** (93.3 mg, 61%) (eluent: petroleum ether/ethyl acetate = 50/1, 700 mL): liquid; 98% ee (HPLC conditions: Chiralcel IC

column, *n*-hexane/i-PrOH = 99/1, 1.0 mL/min, λ = 220 nm, $t_R(major)$ = 9.4 min, $t_R(minor)$ = 11.2 min; $[\alpha]_D^{20}$ = -106.0 (*c* = 1.37, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 6.24 (q, *J* = 1.8 Hz, 1 H, =CH), 5.80 (s, 1 H, =CH), 5.01-4.90 (m, 1 H, OCH), 4.82 (ddd, J_I = 11.4 Hz, J_2 = 5.4 Hz, J_2 = 1.8 Hz, 1 H, one proton of OCH₂), 4.74 (ddd, J_I = 11.1 Hz, J_2 = 3.6 Hz, J_3 = 1.8 Hz, 1 H, one proton of OCH₂), 2.47 (t, *J* = 7.5 Hz, 2 H, CH₂), 2.32 (s, 3 H, Me), 1.68-1.50 (m, 4 H, CH₂ × 2), 1.45-1.19 (m, 14 H, CH₂ × 7), 0.88 (t, *J* = 6.6 Hz, 6 H, Me × 2); ¹³C NMR (75 MHz, CDCl₃) δ 201.8, 143.9, 141.3, 133.6, 123.5, 87.3, 73.9, 44.8, 35.7, 31.7, 31.6, 29.3, 28.8, 25.2, 24.1, 22.5, 22.4, 16.0, 14.01, 13.97; IR (neat) *v* (cm⁻¹) 2955, 2928, 2856, 1683, 1616, 1589, 1466, 1454, 1405, 1367, 1263, 1132, 1100, 1053; MS (EI): m/z (%) 306 (M⁺, 9.28), 221 (100); HRMS Cacld. for C₂₀H₃₄NaO₂ (M⁺+ Na): 329.2457; Found: 329.2453.

29. Synthesis of (*S*,*E*)-2-(2-nonyl-2,5-dihydrofuran-4-yl)tridec-2-en-4-one (*S*,*E*)-**2n**. (wxy-3-043)

Following **Typical Procedure II**, the reaction of (*S*)-**1n** (196.3 mg, 1.0 mmol, 96% ee), [Cp*RhCl₂]₂ (30.9 mg, 0.05 mmol), and Cu(OAc)₂•H₂O (499.3 mg, 2.5 mmol) in CH₃CN (1 mL)/MeOH (50 μ L) afforded (*S*,*E*)-**2n** (130.5 mg, 67%) (eluent: petroleum ether /ethyl acetate = 50/1, 800 mL): solid; m.p. 38.5-42.7 °C (determined without recrystallization); 98% ee (HPLC conditions: Chiralcel IC column, *n*-hexane/*i*-PrOH = 99/1, 0.7 mL/min, λ = 254 nm, $t_R(\text{minor})$ = 13.0 min, $t_R(\text{major})$ = 15.1 min); [α]_D²⁰ =

+89.3 (*c* = 1.00, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 6.23 (q, *J* = 1.8 Hz, 1 H, =CH), 5.80 (s, 1 H, =CH), 5.00-4.89 (m, 1 H, OCH), 4.81 (ddd, *J*₁ = 11.4 Hz, *J*₂ = 5.1 Hz, *J*₂ = 2.1 Hz, 1 H, one proton of OCH₂), 4.74 (ddd, *J*₁ = 11.4 Hz, *J*₂ = 3.6 Hz, *J*₂ = 1.8 Hz, 1 H, one proton of OCH₂), 2.46 (t, *J* = 7.4 Hz, 2 H, CH₂), 2.32 (s, 3 H, CH₃), 1.67-1.50 (m, 4 H, CH₂ × 2), 1.48-1.18 (m, 26 H, CH₂ × 13), 0.88 (t, *J* = 6.6 Hz, 6 H, CH₃ × 2); ¹³C NMR (75 MHz, CDCl₃) δ 201.8, 143.9, 141.3, 133.6, 123.5, 87.3, 74.0, 44.8, 35.7, 31.8, 29.6, 29.53, 29.50, 29.4, 29.3, 29.22, 29.19, 25.3, 24.2, 22.6, 16.1, 14.1; IR (neat) ν (cm⁻¹) 2956, 2925, 2854, 1687, 1684, 1616, 1589, 1466, 1405, 1367, 1131, 1103, 1047; MS (EI): *m*/*z* (%) 390 (M⁺, 8.57), 263 (100); Anal. Calcd. for C₂₆H₄₆O₂ (%): C, 79.94; H, 11.87; Found: C, 79.99; H, 11.52.

30. Synthesis

of

(*S*,

E)-1-(4-bromophenyl)-3-(2-(4-bromophenyl)-2,5-dihydrofuran-4-yl)but-2-en-1-one (S, *E*)-2f and (*E*)-8f. (wxy-5-019)

Following **Typical Procedure II**, the reaction of (*S*)-**1f**^{2,5} (2.2596 g, 10.0 mmol, >99% ee), [Cp*RhCl₂]₂ (310.5 mg, 0.5 mmol), and Cu(OAc)₂•H₂O (5.0081 g, 25 mmol) in CH₃CN (10 mL)/MeOH (0.5 mL) afforded (*S*, *E*)-**2f** (1.1240 g, 52%) and (*E*)-**8f** (31.6 mg, 1%) [eluent: petroleum ether/ethyl acetate = 50/1 (500 mL) to petroleum ether/ethyl acetate = 20/1 (800 mL)].

(*S*, *E*)-**2f**: solid; m.p. 123.3-123.6 °C (petroleum ether/CH₂Cl₂); >99% ee (HPLC conditions: Chiralcel IC column, *n*-hexane/*i*-PrOH = 90/10, 0.8 mL/min, λ = 254 nm, $t_{\rm R}$ (major) = 18.9 min, $t_{\rm R}$ (minor) = 15.7 min); $[\alpha]_{\rm D}^{20}$ = -344.3 (*c* = 0.535, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.78 (d, *J* = 8.4 Hz, 2 H, ArH), 7.61 (d, *J* = 8.7 Hz, 2 H, ArH), 7.50 (d, *J* = 8.4 Hz, 2 H, ArH), 7.21 (d, *J* = 8.4 Hz, 2 H, ArH), 6.50 (s, 1 H, =CH), 6.31 (q, *J* = 1.8 Hz, 1 H, =CH), 5.98-5.82 (m, 1 H, OCH), 5.14 (ddd, J_I = 11.4 Hz, J_2 = 5.4 Hz, J_3 = 1.8 Hz, 1 H, one proton of OCH₂), 5.01 (ddd, J_I = 11.4 Hz, J_2 = 3.6 Hz, J_3 = 2.0 Hz, 1 H, one proton of OCH₂), 2.35 (d, *J* = 0.9 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 190.7, 145.4, 141.7, 140.0, 137.6, 132.7, 131.9, 131.8, 129.7, 128.0, 127.9, 122.0, 121.8, 88.4, 74.9, 16.7; IR (KBr) ν (cm⁻¹) 3089, 2855, 1654, 1614, 1591, 1246, 1216, 1111, 1093, 1070, 1050, 1006; MS (EI): m/z (%) 450 [(M(⁸¹Br⁸¹Br)⁺, 3.46], 448 [(M(⁸¹Br⁷⁹Br)⁺, 2.46], 446 [(M(⁷⁹Br⁷⁹Br)⁺, 0.77], 183 (100); Anal. Calcd. for C₂₀H₁₆Br₂O₂ (%): C, 53.60; H, 3.60; Found: C, 53.36; H, 3.52.

(*E*)-**8f:** solid; ¹H NMR (300 MHz, CDCl₃) δ 7.84 (d, *J* = 8.7 Hz, 2 H, ArH), 7.77 (s, 1 H, ArH), 7.63-7.28 (m, 6 H, ArH and =CH), 7.10 (s, 1 H, =CH), 6.92 (s, 1 H, =CH), 2.52 (s, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 190.3, 154.4, 146.6, 142.4, 138.2, 132.0, 131.8, 130.6, 129.7, 128.9, 127.5, 125.5, 122.0, 118.6, 102.7, 17.6.

S34

Synthetic Applications

1. Preparation of (*S*,*E*)-3f. (wxy-5-038)

Typical Procedure III: To a Schlenk tube were added (S,E)-2f (89.5 mg, 0.2 mmol), evacuated and backfilled with nitrogen three times. Then, CpTiMe₂ (0.4 mmol, 4 mL, 0.1 M in toluene, which was prepared according to literature⁷) was added via a syringe. The reaction tube was put into a pre-heated 65 °C oil bath. The reaction was complete after 15 h as monitored by TLC (eluent: petroleum ether/ethyl acetate = 10/1). Ethyl acetate (5 mL) was added to dilute the reaction mixture, which was filtered through a celite pad and eluted with ethyl acetate (20 mL \times 3). The combined filtrate was then concentrated in vacuo and the crude residue was purified via chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 50/1, 300 mL) to afford (S,E)-3f (60.7 mg, 68%): solid; 62.6-64.3 $^{\circ}$ C (determined without recrystallization); >99% (HPLC conditions: Chiralcel IA ee column, *n*-hexane/*i*-PrOH = 90/10, 0.7 mL/min, $\lambda = 254$ nm, $t_R(major) = 9.6$ min, $t_R(minor) = 10.7$ min); $\left[\alpha\right]_{D}^{20} = -196.5$ (c = 0.46, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.56-7.36 (m, 4 H, ArH), 7.30-7.12 (m, 4 H, ArH), 5.97 (s, 1 H, =CH), 5.92-5.76 (m, 2 H, =CH and OCH), 5.63 (s, 1 H, one proton of =CH₂), 5.21 (s, 1 H, one proton of =CH₂), 5.16-5.04 (m, 1 H, one proton of OCH₂), 5.02-4.90 (m, 1 H, one proton of OCH₂), 1.89 (d, J = 0.9 Hz, 3 H, Me); ¹³C NMR (75 MHz, CDCl₃) δ 143.5, 141.9, 141.1, 139.5, 131.9, 131.6, 131.5, 128.4, 128.2, 128.0, 126.0, 121.8, 121.6, 117.0, 88.1, 75.3, 16.0; IR (neat) v (cm⁻¹) 3088, 2950, 2920, 2850, 1484, 1403, 1390, 1108, 1100, 1087, 1070, 1052, 1008; MS (EI): *m*/*z* (%) 448 [(M(⁸¹Br⁸¹Br)⁺,

45.87], 446 $[(M(^{81}Br^{79}Br)^+, 94.71], 444 [(M(^{79}Br^{79}Br)^+, 58.76], 183 (100); HRMS Cacld. for C₂₁H₁₈O⁷⁹Br⁷⁹Br (M⁺): 443.9724; Found: 443.9724.$

2. Preparation of (±)-3f. (wxy-5-037)

Following **Typical Procedure III**, The reaction of **2f** (89.7 mg, 0.2 mmol) and CpTiMe₂⁷ (0.4 mmol, 4 mL, 0.1 M in toluene) afforded **3f** (60.0 mg, 67%) (eluent: petroleum ether/ethyl acetate = 50/1, 300 mL): solid; 63.7-65.9 °C (determined without recrystallization); ¹H NMR (300 MHz, CDCl₃) δ 7.52-7.43 (m, 4 H, ArH), 7.28-7.17 (m, 4 H, ArH), 5.97 (s, 1 H, =CH), 5.92-5.80 (m, 2 H, =CH and OCH), 5.64 (s, 1 H, one proton of =CH₂), 5.22 (s, 1 H, one proton of =CH₂), 5.15-5.04 (m, 1 H, one proton of OCH₂), 5.02-4.92 (m, 1 H, one proton of OCH₂), 1.90 (s, 3 H, Me); ¹³C NMR (75 MHz, CDCl₃) δ 143.6, 141.9, 141.1, 139.5, 131.9, 131.6, 131.5, 128.4, 128.3, 128.1, 126.0, 121.8, 121.7, 117.0, 88.1, 75.3, 16.1; IR (neat) *v* (cm⁻¹) 3087, 2951, 2849, 1484, 1404, 1390, 1108, 1101, 1086, 1070, 1051, 1008; MS (EI): *m*/*z* (%) 448 [(M(⁸¹Br⁸¹Br)⁺, 43.27], 446 [(M(⁸¹Br⁷⁹Br)⁺, 86.73], 444 [(M(⁷⁹Br⁷⁹Br)⁺, 52.13], 183 (100); HRMS Cacld. for C₂₁H₁₈O⁷⁹Br⁷⁹Br (M⁺): 443.9724; Found: 443.9723.

3. Preparation of (*S*,*E*)-4f. (wxy-5-032)

Typical Procedure IV: To a Schlenk tube were added Pd(PPh₃)₂Cl₂ (4.2 mg, 0.006 mmol) and CuI (2.4 mg, 0.013 mmol), evacuated and backfilled with nitrogen three times, freshly distilled THF (1.6 mL), *i*-Pr₂NH (85 μ L, d = 0.717 g/mL, 60.9 mg, 0.6 mmol), (S)-2f (90.0 mg, 0.2 mmol), and phenylacetylene (28.5 μ L, d = 0.93 g/mL, 26.5 mg, 0.26 mmol) were added sequentially. Then, the reaction tube was put into a pre-heated 40 °C oil bath. The reaction was complete after 15 h as monitored by TLC (eluent: petroleum ether/acetone = 10/1). The resulting mixture was filtered through a celite pad and eluted with ethyl acetate (20 mL \times 3). The combined filtrate was then concentrated in vacuo and the crude residue was purified via chromatography on silica gel (eluent: petroleum ether/acetone = 20/1, 500 mL) to afford (*S*,*E*)-4f (73.2 mg, 78%): solid; m.p. 152.4-153.6 °C (petroleum ether/DCM); >99% ee (HPLC conditions: Chiralcel IA column, *n*-hexane/*i*-PrOH = 90/10, 1.3 mL/min, λ = 254 nm, $t_R(major) = 12.8 \text{ min}, t_R(minor) = 14.2 \text{ min}); [\alpha]_D^{20} = -426.0 (c = 0.67, CHCl_3); {}^{1}H NMR (300)$ MHz, CDCl₃) δ 7.90 (d, *J* = 8.4 Hz, 2 H, ArH), 7.61 (d, *J* = 8.1 Hz, 2 H, ArH), 7.58-7.52 (m, 2 H, ArH), 7.49 (d, J = 8.4 Hz, 2 H, ArH), 7.42-7.31 (m, 3 H, ArH), 7.20 (d, J = 8.4 Hz, 2 H, ArH), 6.54 (s, 1 H, =CH), 6.28 (q, J = 1.5 Hz, 1 H, =CH), 5.98-5.83 (m, 1 H, =CH), 5.16 (ddd, $J_1 = 11.4$ Hz, $J_2 = 5.4$ Hz, $J_3 = 1.8$ Hz, 1 H, one proton of OCH₂), 5.02 (ddd, $J_1 = 11.4$ Hz, $J_2 = 3.6$ Hz, $J_3 = 1.8$ Hz, 1 H, one proton of OCH₂), 2.35 (s, 3 H, Me); ¹³C NMR (75 MHz, CDCl₃) δ 190.8, 145.0, 141.8, 140.1, 137.9, 132.4, 131.72, 131.69, 128.8, 128.4, 128.2, 128.0, 127.9, 122.6, 122.2, 121.9, 92.7, 88.7, 88.3, 74.9, 16.7; IR (neat) v (cm⁻¹) 2916, 2857, 1652, 1602, 1485, 1442, 1406, 1240, 1216, 1049, 1010; MS (EI): *m/z* (%) 470 [M(⁸¹Br)⁺, 91.53], 468 [M(⁷⁹Br)⁺, 75.55], 263 (100); Anal. Calcd. for C₂₈H₂₁BrO₂(%): C, 71.65; H, 4.51; Found: C, 71.40; H, 4.50.

4. Preparation of (\pm) -4f. (wxy-5-026)

Following **Typical Procedure IV**, The reaction of Pd(PPh₃)₂Cl₂ (2.3 mg, 0.003 mmol), CuI (1.6 mg, 0.008 mmol), THF (0.8 mL), *i*-Pr₂NH (43 µL, d = 0.717 g/mL, 30.8 mg, 0.3 mmol), **2f** (45.0 mg, 0.1 mmol), and phenylacetylene (15 µL, d = 0.93 g/mL, 14.0 mg, 0.14 mmol) afforded **4f** (32.9 mg, 70%) (eluent: petroleum ether/acetone = 20/1, 500 mL): solid; m.p. 141.9-143.8 °C (petroleum ether/DCM); ¹H NMR (300 MHz, CDCl₃) δ 7.90 (d, *J* = 8.4 Hz, 2 H, ArH), 7.62 (d, *J* = 8.7 Hz, 2 H, ArH), 7.59-7.52 (m, 2 H, ArH), 7.50 (d, *J* = 8.4 Hz, 2 H, ArH), 7.42-7.30 (m, 3 H, ArH), 7.21 (d, *J* = 8.4 Hz, 2 H, ArH), 6.55 (s, 1 H, =CH), 6.30 (q, *J* = 1.5 Hz, 1 H, =CH), 5.99-5.82 (m, 1 H, OCH), 5.15 (ddd, *J*₁ = 11.4 Hz, *J*₂ = 5.4 Hz, *J*₃ = 1.8 Hz, 1 H, one proton of OCH₂), 5.03 (ddd, *J*₁ = 11.4 Hz, *J*₂ = 3.6 Hz, *J*₃ = 1.8 Hz, 1 H, one proton of OCH₂), 5.03 (ddd, *J*₁ = 11.4 Hz, CDCl₃) δ 190.9, 145.0, 141.8, 140.1, 138.0, 132.4, 131.8, 131.7, 128.8, 128.4, 128.2, 128.1, 128.0, 122.7, 122.2, 122.0, 92.8, 88.7, 88.4, 75.0, 16.7; IR (neat) ν (cm⁻¹) 2923, 2857, 1652, 1603, 1239, 1216, 1089, 1049, 1010; MS (EI): m/z (%) 470 [M(⁸¹Br)⁺, 17.29], 468 [M(⁷⁹Br)⁺, 13.82], 205 (100); Anal. Calcd. for C₂₈H₂₁BrO₂ (%): C, 71.65; H, 4.51; Found: C, 71.38; H, 4.55.

5. Preparation of (*S*,*E*)**-5f.** (wxy-5-036)

Typical Procedure V: To a Schlenk tube were added (S,E)-2f (98.5 mg, 0.22 mmol), (4-methoxyphenyl)boronic acid (30.5 mg, 0.2 mmol), Pd(PPh₃)₄ (6.9 mg, 0.006 mmol), and K₃PO₄ (126.8 mg, 0.6 mmol). After being evacuated and backfilled with nitrogen three times, dioxane (1.6 mL) was added. Then, the reaction tube was put into a pre-heated 85 °C oil bath. The reaction was complete after 13 h as monitored by TLC (eluent: petroleum ether/ethyl acetate = 9/1). The resulting mixture was filtered through a pad of celite and eluted with ethyl acetate (20 mL) and DCM (20 mL \times 2). The combined filtrate was then concentrated in vacuo. The reaction afforded (S,E)-**5f** in 60% NMR yield together with 5% NMR of (S,E)-**6f**, which was analyzed by ¹H NMR using 7 μ L of CH₂Br₂ as the internal standard. The crude residue was then purified via chromatography on silica gel [eluent: petroleum ether/ ethyl acetate = 9/1 (500 mL) to petroleum ether/ ethyl acetate = 6/1 (350 mL)] to afford (S,E)-5f (57.8 mg, 61%): solid; m.p. 143.2-145.0 °C (petroleum ether/DCM); >99% ee (HPLC conditions: Chiralcel IA column, *n*-hexane/*i*-PrOH = 80/20, 1.3 mL/min, $\lambda = 254$ nm, t_R(major) = 12.9 min, $t_R(\text{minor}) = 16.4 \text{ min}$; $[\alpha]_D^{20} = -288.1 \text{ (c} = 0.695, \text{CHCl}_3)$; ¹H NMR (300 MHz, CDCl₃) δ 7.97 (d, J = 8.7 Hz, 2 H, ArH), 7.66 (d, J = 8.1 Hz, 2 H, ArH), 7.59 (d, J = 8.7 Hz, 2 H, ArH), 7.50 (d, J = 8.4 Hz, 2 H, ArH), 7.23 (t, J = 8.0 Hz, 2 H, ArH), 7.01 (d, J = 8.7 Hz, 2 H, ArH), 6.60 (s, 1 H, =CH), 6.29 (d, J = 1.8 Hz, 1 H, =CH), 6.00-5.80 (m, 1 H, OCH), 5.17 (ddd, $J_1 = 11.4$ Hz, $J_2 = 5.4$ Hz, $J_3 = 2.4$ Hz, 1 H, one proton of OCH₂), 5.04 (ddd, $J_1 = 11.4$

Hz, $J_2 = 3.3$ Hz, $J_3 = 1.8$ Hz, 1 H, one proton of OCH₂), 3.87 (s, 3 H, OMe), 2.37 (s, 3 H, Me); ¹³C NMR (75 MHz, CDCl₃) δ 191.4, 160.0, 145.2, 144.3, 141.9, 140.2, 136.9, 132.3, 132.0, 131.8, 128.9, 128.4, 128.1, 126.7, 122.7, 122.0, 114.4, 88.4, 75.0, 55.4, 16.7; IR (neat) ν (cm⁻¹) 3002, 2951, 2865, 2836, 1642, 1617, 1599, 1579, 1524, 1496, 1301, 1277, 1256, 1221, 1193, 1180, 1052, 1037, 1011, 1001; MS (EI): m/z (%) 476 [M(⁸¹Br)⁺, 16.52], 474 [M(⁷⁹Br)⁺, 14.50], 211 (100); Anal. Calcd. for C₂₇H₂₃BrO₃ (%): C, 68.22; H, 4.88; Found: C, 68.40; H, 4.74.

6. Preparation of (±)-5f. (wxy-5-007, wxy-5-029)

Following **Typical Procedure V:** The reaction of **2f** (49.4 mg, 0.11 mmol), (4-methoxyphenyl)boronic acid (15.2 mg, 0.1 mmol), Pd(PPh₃)₄ (3.6 mg, 0.003 mmol), K₃PO₄ (63.7 mg, 0.3 mmol), dioxane (0.8 mL) afforded (*S*,*E*)-**5f** in 60% NMR yield and (*S*,*E*)-**6f** in 5% NMR yield. The crude residue was then purified via chromatography on silica gel (eluent: petroleum ether/ ethyl acetate = 10/1, 1000 mL) to afford **5f** (29.9 mg, 63%): solid; m.p. 171.7-172.7 °C (petroleum ether/DCM); ¹H NMR (300 MHz, CDCl₃) δ 7.97 (d, *J* = 8.7 Hz, 2 H, ArH), 7.66 (d, *J* = 8.1 Hz, 2 H, ArH), 7.59 (d, *J* = 8.7 Hz, 2 H, ArH), 7.50 (d, *J* = 8.4 Hz, 2 H, ArH), 7.23 (t, *J* = 8.1 Hz, 2 H, ArH), 7.01 (d, *J* = 9.0 Hz, 2 H, ArH), 6.60 (s, 1 H, =CH), 6.28 (q, *J* = 1.5 Hz, 1 H, =CH), 5.95-5.87 (m, 1 H, OCH), 5.17 (ddd, *J_I* = 11.4 Hz,

 $J_2 = 5.4$ Hz, $J_3 = 2.4$ Hz, 1 H, one proton of OCH₂), 5.04 (ddd, $J_1 = 11.4$ Hz, $J_2 = 3.3$ Hz, $J_3 = 1.8$ Hz, 1 H, one proton of OCH₂), 3.87 (s, 3 H, OMe), 2.37 (s, 3 H, Me); ¹³C NMR (75 MHz, CDCl₃) δ 191.4, 160.0, 145.2, 144.3, 141.9, 140.2, 136.9, 132.3, 132.0, 131.8, 128.9, 128.4, 128.1, 126.7, 122.7, 122.0, 114.4, 88.4, 75.0, 55.4, 16.7; IR (neat) v (cm⁻¹) 3002, 2955, 2856, 2836, 1642, 1616, 1599, 1577, 1525, 1496, 1301, 1277, 1256, 1221, 1193, 1181, 1052, 1037, 1011, 1001; MS (EI): m/z (%) 476 [M(⁸¹Br)⁺, 22.56], 474 [M(⁷⁹Br)⁺, 21.12], 263 (100); Anal. Calcd. for C₂₇H₂₃BrO₃ (%): C, 68.22; H, 4.88; Found: C, 68.58; H, 4.88.

7. Preparation of (*S*,*E*)-**6f.** (wxy-5-031)

Following**Typical Procedure V:** The reaction of (S,E)-**2f** (89.9 mg, 0.2 mmol), (4-methoxyphenyl)boronic acid (90.8 mg, 0.6 mmol), Pd(PPh₃)₄ (11.5 mg, 0.01 mmol), K₃PO₄ (253.9 mg, 1.2 mmol), dioxane (2.4 mL) afforded (S,E)-**6f** (65.1 mg, 65%) [eluent: petroleum ether/ acetone = 9/1 (500 mL) to petroleum ether/ acetone = 4/1 (500 mL) to DCM (300 mL)]: solid; 185 °C (decompose); The ee of (S,E)-**6f** could not be determinded by the HPLC conditions with the commercially available chiral columns. [α]_D²⁰ = -387.5 (c = 0.32, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.98 (d, *J* = 8.7 Hz, 2 H, ArH), 7.66 (d, *J* = 8.4 Hz, 2 H, ArH), 7.61-7.42 (m, 6 H, ArH), 7.39 (d, *J* = 8.1 Hz, 2 H, ArH), 6.99 (t, *J* = 8.9 Hz, 4 H, ArH), 6.62 (s, 1 H, =CH), 6.37 (q, *J* = 1.5 Hz, 1 H, =CH), 6.05-5.94 (m, 1 H, OCH), 5.17 (m, 1 H, one proton of OCH₂), 5.06 (m, 1 H, one proton of OCH₂), 3.86 (s, 3 H, OMe), 3.85 (s, 3 H, Me); ¹³C NMR (75 MHz, CDCl₃) δ 191.4, 160.0, 159.3, 145.1, 144.7,

141.7, 140.8, 139.5, 137.1, 133.3, 132.6, 132.3, 128.9, 128.4, 128.1, 127.0, 126.9, 126.7, 122.4, 114.4, 114.2, 88.9, 74.9, 55.4, 55.3, 16.7; IR (neat) *v* (cm⁻¹) 2955, 2834, 1651, 1601, 1525, 1497, 1294, 1274, 1250, 1190, 1038; MS (EI): *m/z* (%) 502 (M⁺, 37.65), 211 (100); HRMS Cacld. for C₃₄H₃₀O₄ (M⁺): 502.2144; Found: 502.2143.

8. Preparation of (\pm) -6f. (wxy-5-024)

Following**Typical Procedure V:** The reaction of **2f** (179.5 mg, 0.4 mmol), (4-methoxyphenyl)boronic acid (182.1 mg, 1.2 mmol), Pd(PPh₃)₄ (23.1 mg, 0.02 mmol), K₃PO₄ (509.0 mg, 2.4 mmol), and dioxane (4.8 mL) afforded **6f** (120.1 mg, 56%, 93% purity) [eluent: petroleum ether/acetone = 9/1 (500 mL) to petroleum ether/acetone = 4/1 (500 mL) to DCM (200 mL)]: solid; 190 °C (decompose); ¹H NMR (300 MHz, CDCl₃) δ 7.98 (d, *J* = 8.1 Hz, 2 H, ArH), 7.66 (d, *J* = 8.1 Hz, 2 H, ArH), 7.61-7.47 (m, 6 H, ArH), 7.39 (d, *J* = 8.1 Hz, 2 H, ArH), 6.69 (t, *J* = 8.9 Hz, 4 H, ArH), 6.62 (s, 1 H, =CH), 6.37 (q, *J* = 1.2 Hz, 1 H, =CH), 6.04-5.95 (m, 1 H, OCH), 5.26-5.15 (m, 1 H, one proton of OCH₂), 5.12-5.00 (m, 1 H, one proton of OCH₂), 3.87 (s, 3 H, OMe), 3.85 (s, 3 H, Me), 2.40 (s, 3 H, Me); ¹³C NMR (75 MHz, CDCl₃) δ 191.5, 160.0, 159.3, 145.1, 144.7, 141.7, 140.8, 139.5, 137.1, 133.3, 132.6, 132.3, 128.9, 128.4, 128.1, 127.0, 126.9, 126.7, 122.4, 114.4, 114.3, 88.9, 74.9, 55.4, 55.3, 16.7; IR (neat) ν (cm⁻¹) 2958, 2929, 2837, 1651, 1600, 1525, 1497, 1465, 1441, 1294, 1274, 1249, 1221, 1190, 1038; MS (EI): *m/z* (%) 502 (M⁺, 35.03), 211 (100); HRMS Cacld. for C₃₄H₃₀O₄ (M⁺): 502.2144; Found: 502.2146.

Mechanistic Studies

1. Synthesis of 3-heptyl-2,5-dihydrofuran 7w. (wxy-1-146)

Following **Typical Procedure II**, the reaction of $1w^8$ (168.3 mg, 1.0 mmol), [Cp*RhCl₂]₂ (30.9 mg, 0.05 mmol), and Cu(OAc)₂•H₂O (500.3 mg, 2.5 mmol) in CH₃CN (1.0 mL)/MeOH (50 µL) afforded **7w** (23.1 mg, 14%, 98% purity) (eluent: petroleum ether/ethyl acetate = 50/1, 600 mL): liquid; ¹H NMR (300 MHz, CDCl₃) δ 5.48-5.43 (m, 1 H =CH), 4.66-4.58 (m, 2 H, OCH₂), 4.56-4.48 (m, 2 H, OCH₂), 2.08 (t, *J* = 7.1 Hz, 2 H, CH₂), 1.55-1.39 (m, 2 H, CH₂), 1.35-1.20 (m, 8 H, CH₂ × 4), 0.89 (t, *J* = 6.8 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 140.7, 118.6, 77.03, 75.9, 31.7, 29.4, 29.1, 27.6, 27.1, 22.6, 14.0; IR (neat) ν (cm⁻¹) 2956, 2927, 2855, 1662, 1467, 1378, 1163, 1073; MS (EI): *m/z* (%) 168 (M⁺, 5.57), 69 (100); HRMS Cacld. for C₁₁H₂₀O (M⁺): 168.1514; Found: 168.1512.

2. The reaction of 1e with 8e without Cu(OAc)₂•H₂O and O₂. (wxy-3-027)

To a dried Schlenk tube were added $[Cp*RhCl_2]_2$ (5.1 mg, 0.008 mmol), **8e** (111.8 mg, 0.5 mmol), and allenol **1e** (112.8 mg, 0.5 mmol) under N₂ atmosphere subsequently. After being stirred for 12 h at 50 °C, the resulting mixture was filtrated through a short column of silica gel (eluent with ethyl acetate 20 mL × 3). After evaporation of the solvent, the crude product

was analyzed by ¹H NMR spectrum with mesitylene as an internal standard. No signal of the corresponding products was found.

3. Preparation of 9a. (wxy-3-158)

To a Schlenk tube were added (*E*)-**2a** (58.0 mg, 0.2 mmol), MeOH (3.0 mL), NaBH₄ (7.8 mg, 0.206 mmol) sequentially. The reaction was complete after 0.5 h as monitored by TLC (eluent: petroleum ether/ethyl acetate = 5/1). The resulting mixture was added an aqueous of saturated NH₄Cl and extracted with ethyl acetate (5 mL × 3). After evaporation, 15 μ L mesitylene was added. 86% NMR yield of **9a** (dr \approx 1:1) was was determined based on ¹H NMR analysis of the crude product with mesitylene as the internal standard. Then, the residue was purified via chromatography on silica gel [eluent: petroleum ether/ethyl acetate = 10/1 (1000 mL) to petroleum ether/ethyl acetate = 6/1 (420 mL)] afforded the diastereoisomers **9a**.

The less polar compound (24.5 mg, 92% purity, 39% yield): oil; ¹H NMR (300 MHz, CDCl₃) δ 7.42-7.22 (m, 10 H, ArH), 5.88-5.78 (m, 2 H, CH and =CH), 5.57 (d, *J* = 8.4 Hz, 1 H, =CH), 5.47 (d, *J* = 8.4 Hz, 1 H, OCH), 5.02 (ddd, *J*₁ = 11.4 Hz, *J*₂ = 5.4 Hz, *J*₃ = 1.8 Hz, 1 H, one proton of OCH₂), 4.82 (ddd, *J*₁ = 11.4 Hz, *J*₂ = 3.2 Hz, *J*₃ = 2.0 Hz, 1 H, one proton of OCH₂), 2.22 (s, 1 H, OH), 1.98 (d, *J* = 0.9 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 143.2, 141.9, 141.1, 131.5, 129.6, 128.7, 128.5, 127.9, 127.7, 126.4, 126.3, 125.9, 88.8, 75.2, 70.6, 14.8; IR (neat) *v* (cm⁻¹) 3396, 3029, 2853, 1615, 1601, 1492, 1454, 1071, 1051, 1008; MS (EI): *m/z* (%) 292.4 (M⁺, 2.98), 105 (100); HRMS Calcd for C₂₀H₂₀NaO₂ (M+Na)⁺: 315.1361; Found: 315.1357.

The more polar compound (25.7 mg, 95% purity, 42% yield): oil; ¹H NMR (300 MHz, CDCl₃) δ 7.45-7.20 (m, 10 H, ArH), 5.94-5.80 (m, 2 H, OCH and =CH), 5.58 (d, *J* = 8.4 Hz, 1 H, =CH), 5.48 (d, *J* = 8.4 Hz, 1 H, OCH), 4.97 (ddd, *J*₁ = 11.4 Hz, *J*₂ = 5.4 Hz, *J*₃ = 2.1 Hz, 1 H, one proton of OCH₂), 4.89 (ddd, *J*₁ = 11.4 Hz, *J*₂ = 3.5 Hz, *J*₃ = 2.3 Hz, 1 H, one proton of OCH₂), 2.20 (s, 1 H, OH), 1.98 (d, *J* = 0.6 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 143.2, 141.9, 141.0, 131.5, 129.6, 128.7, 128.5, 127.8, 127.7, 126.3, 125.9, 88.7, 75.1, 70.6, 14.8; IR (neat) *v* (cm⁻¹) 3406, 3029, 2852, 1611, 1599, 1492, 1454, 1265, 1195, 1071, 1051, 1010; MS (EI): *m*/*z* (%) 292.4 (M⁺, 2.92), 105 (100); HRMS Calcd for C₂₀H₂₀NaO₂ (M+Na)⁺: 315.1361; Found: 315.1356.

4. The reaction of **9a** under standard conditions. (wxy-3-168)

To a dried Schlenk tube were added [Cp*RhCl₂]₂ (3.2 mg, 0.005 mmol) and Cu(OAc)₂•H₂O (49.9 mg, 0.25 mmol) under air atmosphere. The Schlenk tube was then degassed to remove the air inside completely, and refilled with O₂ by a balloon of O₂ for three times. After **9a** (dr \approx 1:1, 49.3 mg, 0.17 mmol)/CH₃CN (0.4 mL), and MeOH (20 µL) were added sequentially, the reaction tube was put into a pre-heated 50 °C oil bath. The reaction was stirred for 20 h. Then, the reaction was filtered through a short column of silica gel and eluted with ethyl acetate (20 mL \times 3). The combined filtrate was then concentrated in vacuo and the crude residue was taken for NMR analysis with mesitylene (15.5 µL) as an internal standard. No signal of the (*E*)-**2a** was found, and 87% recovery of **9a** was determined.

5. Preparation of $[D^a]$ -1a (wxy-4-029).

$$\begin{array}{c|c} & & \\ \hline & \\ \hline & \\ Ph \\ & \\ 1I \end{array} \\ \begin{array}{c} \text{toluene/D}_2\text{O} = 1:1 \\ \hline & \\ 50 \text{ }^{\circ}\text{C}, \text{ N}_2, 0.5 \text{ h} \\ \hline & \\ \hline & \\ II \end{array} \\ \begin{array}{c} \hline & \\ Ph \\ \hline & \\ ID^a]\text{-1a} \end{array} \\ \begin{array}{c} \hline & \\ \hline & \\ OD \ (\approx 78\% \text{ D}) \\ \hline & \\ Ph \\ \hline & \\ ID^a]\text{-1a} \end{array}$$

To a dried flask was added **1a** (220.3 mg, 1.5 mmol), freshly distilled toluene (0.5 mL), and D₂O (0.5 mL) sequentially under nitrogen atmosphere. Then, the flask was put into an oil bath preheated to 50 °C. After being stired for 30 min, the solvent was evaporated by vacuum carefully. Freshly distilled toluene (0.5 mL) and D₂O (0.5 mL) was added to the flask for the second time, and the solvent was evaporated again. The same operation was repeated for three times. After being dried under vacuum line completely, 220.0 mg [D^a]-**1a** was obtained with about 78% deuterated ratio: oil; ¹H NMR (300 MHz, CDCl₃) δ 7.45-7.25 (m, 5 H, ArH), 5.44 (q, *J* = 6.6 Hz, 1 H, =CH), 5.32-5.22 (m, 1 H, OCH), 4.92 (m, 2 H, =CH₂), the following signals is disscernible for **1a**: δ 2.27 (s, 0.22 H, OH); ¹³C NMR (75 MHz, CDCl₃) δ 207.1, 142.7, 128.4, 127.7, 126.0, 95.0, 78.0. 71.8; IR (neat) *v* (cm⁻¹) 3364, 3063, 3030, 2886, 1955, 1494, 1452, 1024; MS (EI): *m/z* (%) 147 (M⁺, 1.65), 107 (100); HRMS Cacld. for C₁₀H₉DO (M⁺): 147.0794; Found: 147.0792.

6. Deuterium-labeling experiments with [D^a]-1a (wxy-4-029).

Following **Typical Procedure II**, the reaction of $[D^a]$ -**1a** (146.9 mg, 1.0 mmol), [Cp*RhCl₂]₂ (31.0 mg, 0.05 mmol), and Cu(OAc)₂•H₂O (499.9 mg, 2.5 mmol) in CH₃CN (1.0 mL)/CD₃OD (50 µL) afforded (*E*)-**2a** (63.9 mg, 44%) (eluent: petroleum ether/ethyl acetate 20/1, 700 mL): oil; ¹H NMR (300 MHz, CDCl₃) δ 7.96-7.88 (m, 2 H, ArH), 7.60-7.52 (m, 1 H, ArH), 7.52-7.42 (m, 2 H, ArH), 7.42-7.26 (m, 5 H, ArH), 6.57 (s, 1 H, =CH), 6.34 (q, J = 1.8 Hz, 1 H, =CH), 6.00-5.93 (m, 1 H, OCH), 5.17 (ddd, $J_I = 11.4$ Hz, $J_2 = 5.3$ Hz, $J_3 = 1.5$ Hz, 1 H, one proton of OCH₂), 5.03 (ddd, $J_I = 11.4$ Hz, $J_2 = 3.6$ Hz, $J_3 = 2.1$ Hz, 1 H, one proton of OCH₂), 2.37 (s, 3 H, Me); ¹³C NMR (75 MHz, CDCl₃) δ 191.9, 144.9, 141.4, 141.0, 138.8, 132.9, 132.7, 128.6, 128.5, 128.2, 128.1, 126.3, 122.2, 89.0, 74.9, 16.6.

7. Preparation of [D^b]-1m. (wxy-4-020, wxy-4-021)

Preparation of [D]-11m (wxy-4-020): To a dried three-necked flask were added 10m^{6a} (3.3012 g, 23.9 mmol), freshly distilled THF (28 mL), and D₂O (3 mL) under nitrogen atmosphere. Then, NaBD₄ (302.5 mg, 7.2 mmol) was added in small portions under 0 °C. After being stirred for 40 min at 0 °C, the reaction mixture was added 20 mL of saturated NH₄Cl aqueous solution, extracted with Et₂O (20 mL×3). Organic phase was combined and dried with Na₂SO₄. After filtration and concentration, the residue was purified via column chromatography on silica gel afforded [D]-11m (2.2596 g, 76%) [The crude product was purified via column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 20/1, 1000 mL) to afford a part of pure [D]-11m and impure [D]-11m (determined by TLC). The impure part was further purified via column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 20/1, 500 mL) to afford another part of pure [D]-**11m**]: oil; ¹H NMR (300 MHz, CDCl₃) δ 2.49 (s, 1 H, =CH), 1.80-1.60 (m, 2 H, CH₂), 1.55-1.20 (m, 8 H, CH₂ × 4), 0.89 (t, J = 6.6 Hz, 3 H, CH₃), the following signal is disscernible for **11m**: δ 2.13 (s, 0.08 H, OH); ¹³C NMR (75 MHz, CDCl₃) δ 84.6 (t, J = 7.2 Hz), 72.7 (t, J = 19.3 Hz), 61.8

(t, J = 22.4 Hz), 37.4, 31.6, 28.8, 24.9, 22.5, 14.0, the following signals are disscernible for **11m**: δ 85.0, 71.9; IR (neat) v (cm⁻¹) 3368, 2954, 2927, 2858, 2597, 1466, 1393, 1063; MS (EI): m/z (%) 142 (M⁺, 0.03), 140 [(M-D)⁺, 0.14], 57 [(M-C₆H₁₃)⁺, 59.4], 43 (100); HRMS Cacld. for C₉H₁₄D₂O (M⁺): 142.1327; Found: 142.1330.

Preparation of $[D^b]$ -**1m** (wxy-4-021): Following **Typical Procedure I**, The reaction of CuI (388.0 mg, 2.0 mmol), [D]-**11m** (1.4230 g, 10.0 mmol), paraformaldehyde (1.4420 g, 16.0 mmol), and *i*-Pr₂NH (2.0 mL, d = 0.716 g/mL, 1.4320 g, 14.2 mmol) in dioxane (15 mL) afforded $[D^b]$ -**1m** (0.9519 g, 61%, >99% D) (eluent: petroleum ether/ethyl acetate = 25/1, 1000 mL) as an oil: ¹H NMR (300 MHz, CDCl₃) δ 5.24 (t, *J* = 6.6 Hz, 1 H, =CH), 4.85 (d, *J* = 6.6 Hz, 2 H, =CH₂), 1.70 (s, 1 H, OH), 1.64-1.15 (m, 10 H, CH₂ × 5), 0.89 (t, *J* = 6.6 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 207.0, 94.8, 77.3, 69.3 (t, *J* = 22.1 Hz), 37.4, 31.8, 29.1, 25.3, 22.6, 14.0; IR (neat) *v* (cm⁻¹) 3347, 2956, 2928, 2857, 1958, 1463, 1049; MS (EI): *m/z* (%) 116 [(M-CH₂=C=CH)⁺, 19.6], 70 (100); HRMS Cacld. for C₁₀H₁₇DO (M⁺): 155.1420; Found: 155.1418.

8. Deuterium-labeling experiments with [D^b]-1m (wxy-4-024).

Following **Typical Procedure II**, the reaction of $[D^b]$ -**1m** (155.2 mg, 1.0 mmol), [Cp*RhCl₂]₂ (30.9 mg, 0.05 mmol), and Cu(OAc)₂•H₂O (499.9 mg, 2.5 mmol) in CH₃CN (1.0 mL)/MeOH (50 µL) afforded [D]-(*E*)-**2m** (93.3 mg, 61%) (eluent: petroleum ether/ethyl

acetate 25/1, 500 mL): oil; ¹H NMR (300 MHz, CDCl₃) δ 6.23 (s, 1 H, =CH), 5.81 (s, 1 H, =CH), 4.78 (qd, J_1 = 11.4 Hz, J_2 = 1.7 Hz, 2 H, OCH₂), 2.47 (t, J = 7.4 Hz, 2 H, CH₂), 2.29 (s, 2 H, CH₂D), 1.66-1.50 (m, 4 H, CH₂ × 2), 1.45-1.20 (m, 14 H, CH₂ × 7), 0.88 (t, J = 6.9 Hz, 6 H, Me × 2); ¹³C NMR (75 MHz, CDCl₃) δ 201.7, 143.8, 141.3, 133.5, 123.5, 86.8 (t, J = 22.1 Hz), 73.9, 44.7, 35.6, 31.7, 31.5, 29.3, 28.8, 25.2, 24.1, 22.5, 22.4, 15.8 (t, J = 19.7 Hz), 14.0, 13.9; IR (neat) v (cm⁻¹) 2955, 2928, 2856, 1682, 1615, 1586, 1466, 1133, 1076; MS (EI): m/z (%) 308.5 (M⁺, 6.3), 223 (100); HRMS Cacld. for C₂₀H₃₂D₂O₂ (M⁺): 308.2684; Found: 308.2686.

References:

- (1) Xu, D.; Li, Z.; Ma, S. Tetrahedron Lett. 2003, 44, 6343.
- (2) Luo, H.; Ma, S. Eur. J. Org. Chem. 2013, 3041.
- (3) Yoshida, M.; Shoji, Y.; Shishido, K. Org. Lett. 2009, 11, 1441.
- (4) Cheng, X.; Jiang, X.; Yu, Y.; Ma, S. J. Org. Chem. 2008, 73, 8960.
- (5) Yang, B.; Zhu, C.; Qiu, Y.; B äckvall, J.-E. Angew. Chem. Int. Ed. 2016, 55, 5568
- (6) (a) Ma, S.; Liu, J.; Li, S.; Chen, B.; Cheng, J.; Kuang, J.; Liu, Y.; Wan, B.; Wang, Y.; Ye, J.; Yu, Q.; Yuan, W.; Yu, S. *Adv. Synth. Catal.* 2011, *353*, 1005. (b) Hashmi, A. S. K.; Ruppert, T. L.; Knöfel, T.; Bats, J. W. J. Org. Chem. 1997, 62, 7295.
- (7) Payack, J. F.; Hughes, D. L.; Cai, D.; Cottrell, I. F.; Verhoeven, T. R. Org. Synth. 2002, 79, 19.
- (8) Li, J.; Kong, W.; Fu, C.; Ma, S. J. Org. Chem. 2009, 74, 5104.

wxy-3-040-chiral

实验时间: 2018-09-24,10:57:57 谱图文件:D:\浙大智达\N2000\样品\S20180924105757.org 方法文件:D:\浙大智达\N2000\djx.mtd

实验者: wxy 报告时间: 2018-09-24,11:35:03 积分方法:面积归一法

峰号	峰名	保留时间	峰髙	峰面积	含量	
1		10. 693	209.896	2801.800	0. 0393	—
2		11. 395	583800.063	7126410. 500	99.9607	
总计			584009.958	7129212. 300	100. 0000	

wxy-3-040-racemic

实验时间: 2018-09-24,9:55:39 谱图文件:D:\浙大智达\N2000\样品\S20180924095539.org 方法文件:D:\浙大智达\N2000\djx.mtd

实验者: wxy 报告时间: 2018-09-24,11:31:01 积分方法:面积归一法

实验内容简介: od-H,n-hexane/i-PrOH = 90/10,0.5,254

峰号	峰名	保留时间	峰高	峰面积	含量	
1		10. 908	28748.135	326965. 188	49.8117	
2		11. 538	27350. 115	329437.344	50. 1883	
 总计			56098.250	656402. 531	100.0000	

wxy-3-104-Chiral

实验时间: 2018-11-21,23:26:05 谱图文件:D:\浙大智达\N2000\样品\S20181121232605.org 方法文件:D:\浙大智达\N2000\djx.mtd

实验者: ₩xy 报告时间: 2018-12-11,12:46:20 积分方法:面积归一法

. .

~

实验内容简介: OD-H,n-hexane/i-PrOH = 95/5,1.0,254

唯亏	唯名	保留时间	暭咼	章囬枳	谷重	
1		10. 308	10769.917	147315. 500	2. 3293	_
2		11. 363	321465. 625	6177091.000	97.6707	
总计		· · · · · · · · · · · · · · · · · · ·	332235. 542	6324406. 500	100. 0000	

wxy-3-104-racemic

实验时间: 2018-11-21,22:32:08 谱图文件:D:\浙大智达\N2000\样品\S20181121223208.org 方法文件:D:\浙大智达\N2000\djx.mtd

实验者: ₩xy 报告时间: 2018-11-21,23:49:35 积分方法:面积归一法

wxy-3-114-Chiral

实验时间: 2018-11-28,10:51:50 谱图文件:D:\浙大智达\N2000\样品\S20181128105150.org 方法文件:D:\浙大智达\N2000\djx.mtd

实验者: ₩xy 报告时间: 2018-11-28,12:05:51 积分方法:面积归一法

实验内容简介: od-H, n-hexane/i-PrOH = 90/10, 1.0, 220

实验时间: 2018-11-28, 11:41:08 谱图文件:D:\浙大智达\N2000\样品\S20181128114108.org 方法文件:D:\浙大智达\N2000\djx.mtd

实验者: ₩xy 报告时间: 2018-11-28,12:03:45 积分方法:面积归一法

实验内容简介: od-H,n-hexane/i-PrOH = 90/10,1.0,220

് S65

数据文件: C:\CHEM32\1\DATA\SIG10274.D 样品名称: gbj-10-159-chiral

=======================================				
操作者 仪器 批样只期	: wang : 仪器 1	位置	:	样品瓶 1
近年口朔	: 2018/10/16 10:5/:21	进样量	:	手动
米朱 万法 最后修改	: C:\CHEM32\1\METHODS\DEF_GC7890A.M			
取 /1	(调用后修改)			
分析方法	: C:\CHEM32\1\METHODS\DEF GC-OFF.M			
最后修改	: 2018/10/17 15:43:04 : wang (调用后修改)			
样品信息	: rtbdex			

	====== 面积	=====================================		==
			===============================	==
排序 : 乘积因子: 稀释因子: 内标使用乘积因子和稀释因子	信号 : :	1.0000 1.0000		
信号 1: FID1 A, 前部信号				

峰(#	保留时间 [min]	类型	峰宽 [min]	峰面积 [pA*s]	峰高 [pA]	峰面积 8
1	108.518	MF R	0.2375	545.44348	37.88842	98.13579
2	109.162	FM R	0.2529	10.36135	6.82758e-1	1.86421
总量	:			555.80483	38.57117	

仪器 1 2018/10/17 15:43:13 wang

页 1/1

数据文件: C:\CHEM32\1\DATA\SIG10271.D 样品名称: gbj-10-159-rac

========================		
操作者	: wang	
仪器	: 仪器 1	位置: 样品瓶 1
进样日期	: 2018/10/15 12:46:07	
		进样量 : 手动
采集方法	: C:\CHEM32\1\METHODS\DEF GC7890A.1	м
最后修改	: 2018/10/15 12:46:06 : wang	
	(调用后修改)	
分析方法	: C:\CHEM32\1\METHODS\DEF GC-OFF.M	
最后修改	: 2018/10/17 15:43:04 : wang	
	(调用后修改)	
样品信息	: rtbdex	

信号 1: FID1 A, 前部信号

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[pA*s]	[pA]	8
1	108.627	MF R	0.2082	159.14456	12.14610	49.78487
2	109.140	FM R	0.2143	160.51993	11.79749	50.21513
X E						
尼重	:			319.66449	23.94359	

仪器 1 2018/10/17 15:43:47 wang

页 1/1

S72

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) 180508_wxy_1_191

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 180508_wxy_1_191

Bond precision:	C-C = 0.0043 A	Wavelength=0.71073			
Cell:	a=8.1839(7) alpha=90	b=17.0403(12) beta=90	c=21.7793(14) gamma=90		
Temperature:	293 K				
	Calculated	Rep	orted		
Volume	3037.3(4)	303	7.2(4)		
Space group	Pbca	Рb	са		
Hall group	-P 2ac 2ab	- P	2ac 2ab		
Moiety formula	C16 H14 O2 S2	C16	H14 O2 S2		
Sum formula	C16 H14 O2 S2	C16	H14 O2 S2		
Mr	302.39	302	.39		
Dx,g cm-3	1.323	1.3	23		
Z	8	8			
Mu (mm-1)	0.348	0.3	48		
F000	1264.0	126	4.0		
F000'	1266.47	,			
h,k,lmax	9,20,26	· 9,2	0,26		
Nref	2781	277	7		
Tmin,Tmax	0.843,0.870	0.8	65,1.000		
Tmin'	0.843				
Correction method= # Reported T Limits: Tmin=0.865 Tmax=1.000 AbsCorr = MULTI-SCAN					
Data completene:	ss= 0.999	Theta(max)=	25.349		

R(reflections) =	0.0502(1994)	wR2(reflections)=	0.1420(2	2777)
S = 1.035		Npar=	181		

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

A	ert level C		
PLAT:	40_ALERT_3_C Low Bond Precision on C-C Bonds	0.00427	Ang.
PLATS	78_ALERT_2_C Number C-C Bonds with Positive Residua	1 Density. 0	Info
A	ert level G		
PLAT:	99_ALERT_1_G Reported _cell_measurement_temperature	(K) 293	Check
PLAT	00_ALERT_1_G Reporteddiffrn_ambient_temperature	(K) 293	Check
PLAT:	80_ALERT_4_G Incorrectly? Oriented X(sp2)-Methyl Mo	iety C16	Check
PLAT:	98_ALERT_2_G Deviating C-O-C Angle From 120 for	02 109.5	Degree
PLAT	93_ALERT_4_G Model has Chirality at C10 (Ce	ntro SPGR) S	Verify
PLATS	10_ALERT_3_G Missing # of FCF Reflection(s) Below T	heta(Min). 4	Note
0	ALERT level A = Most likely a serious problem - res	olve or explain	
0	ALERT level B = A potentially serious problem, cons	ider carefully	
2	ALERT level C = Check. Ensure it is not caused by a	n omission or oversig	ht
6	ALERT level G = General information/check it is not	something unexpected	L
2	ALERT type 1 CIF construction/syntax error, inconsi	stent or missing data	
2	ALERT type 2 Indicator that the structure model may	be wrong or deficien	t
2	ALERT type 3 Indicator that the structure quality m	ay be low	
2	ALERT type 4 Improvement, methodology, query or sug	gestion	
0	ALERT type 5 Informative message, check		

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 23/04/2018; check.def file version of 23/04/2018

,

S101

4.800 4.751 4.758 4.751

4.962

148.4

208.ð

s SGH SSH

0= Ĵ (E)-2t

915.7 ---

\$ 4 ß

0 PPM

4

ŝ

ω

ω

6

000.0--

9-

中国科学院上海有机化学研究所 Project Name defaults for copy

Report Method: Individual Report ASC Page: 1 (共计1)

Printed: 2018/12/7 18:09:00 PRC

中国科院上海有机化学研究所

Project Name: defaults for copy

Report Method: Individual Report ASC Page: 1 (共计1) Printed: 2018/127 1808:03 PRC

fjj-1-018-Chiral

实验时间: 2018-11-22,23:19:43 谱图文件:D:\浙大智达\N2000\样品\S20181122231944.org 方法文件:D:\浙大智达\N2000\djx.mtd

实验者: fjj 报告时间: 2018-11-22,23:39:13 积分方法:面积归一法

fjj-1-018-racemic

.

实验时间: 2018-11-22,22:34:30 谱图文件:D:\浙大智达\N2000\样品\S20181122223430.org 方法文件:D:\浙大智达\N2000\djx.mtd

实验者: ssh 报告时间: 2018-11-22,22:55:01 积分方法:面积归一法

实验内容简介: od-H,n-hexane/i-PrOH = 95/5,1.0,220

wxy-3-044-oz-h-90-10-1-214

实验时间: 2018-09-29,12:33:40 报告时间: 2018-09-29,18:19:29 谱图文件:D:\zhuguangjiong\wxy\20190929\wxy-3-044-oz-h-90-10-1-214..org

实验内容简介:

总计

wxy-1-155-oz-h-90-10-1-214

实验时间: 2018-09-29,12:09:54 报告时间: 2018-09-29,18:18:35 谱图文件:D:\zhuguangjiong\wxy\20190929\wxy-1-155-oz-h-90-10-1-214..org

实验内容简介:

957369.563

16814696.000

100.0000

	-	
_		
总	计	

中国科学院上海有机化学研究所

Project Name: defaults for copy

ber: Breeze user (Breeze)

SAMPLE INFORMATION					
Sample Name:	ww3-109io-90-10-1-214	Acquired By:	Breeze		
Sample Type:	耕	Date Acquired	2018/12/7 12:33:21 CST		
Vial:	999	Acq. Method	z gi90		
lrjection#	81	Date Processed	2018/12/7 18:10:28 CST		
Irjection Volume:	10.00 J	Channel Name:	W2489 ChA		
Run Time:	30.00 Minutes	Channel Desc.:	W2489 ChA 210mm		
Colurm Type:	\sim	Sample Set Name			

Report Method: Individual Report ASC Page: 1 (共计1)

.

Printect 2018/12/7 18:10:55 PRC

中国科学院上海有机化学研究所 Project Name defaults for copy

Reported by User:

er. Breeze user (Breeze)

Report Method: Individual Report ASC Page: 1 (共计1) Printect 2018/12/7 18:09:29 PRC

实验时间: 2018-11-28,20:45:44 谱图文件:D:\浙大智达\N2000\样品\S20181128204544.org 方法文件:D:\浙大智达\N2000\djx.mtd

实验者: ₩xy 报告时间: 2018-12-03,15:55:04 积分方法:面积归一法

.

实验内容简介: od-H,n-hexane/i-PrOH = 85/15,1.0,220

wxy-3-116-racemic

实验时间: 2018-11-28,21:24:12 谱图文件:D:\浙大智达\N2000\样品\S20181128212412.org 方法文件:D:\浙大智达\N2000\djx.mtd

实验者: wxy 报告时间: 2018-11-28,22:46:15 积分方法:面积归一法

实验内容简介: od-H, n-hexane/i-PrOH = 85/15, 1.0, 220

实验时间: 2018-11-27,16:49:56 谱图文件:D:\浙大智达\N2000\样品\S20181127164956.org 方法文件:D:\浙大智达\N2000\djx.mtd

实验者: ₩xy 报告时间: 2018-11-27,21:42:53 积分方法:面积归一法

总计

实验内容简介: IC,n-hexane/i-PrOH = 99/1,1.0, 220

420508.587

5905775. 504

100.0000

wxy-3-113-racemic

实验时间: 2018-11-27,21:21:45 谱图文件:D:\浙大智达\N2000\样品\S20181127212145.¹org 方法文件:D:\浙大智达\N2000\djx.mtd

实验者: wxy 报告时间: 2018-11-27,21:40:13 积分方法:面积归一法

fjj-1-016-chiral

实验时间: 2018-11-22,20:09:40 谱图文件:D:\浙大智达\N2000\样品\S20181122200940.org 方法文件:D:\浙大智达\N2000\djx.mtd

实验者: wxy 报告时间: 2018-11-22,23:03:32 积分方法:面积归一法

.

fjj-1-016-racemic

实验时间: 2018-11-22,21:29:50 谱图文件:D:\浙大智达\N2000\样品\S20181122212950.org 方法文件:D:\浙大智达\N2000\djx.mtd

实验者: fjj 报告时间: 2018-11-22,22:58:33 积分方法:面积归一法

wxy-3-043-chiral

实验时间: 2018-10-03,11:50:38 谱图文件:D:\浙大智达\N2000\样品\S20181003115038.org 方法文件:D:\浙大智达\N2000\djx.mtd

实验者: ₩xy 报告时间: 2018-10-19, 19:56:54 积分方法:面积归一法

实验内容简介: IC,n-hexane/i-PrOH = 99/1,0.7,254

刀机结木衣						
峰号	峰名	保留时间	峰高	峰面积	含量	
1		12.998	1624. 292	73424. 297	1. 1237	
2		15.092	274093. 281	6460805.500	98.8763	
总计			275717.573	6534229. 797	100. 0000	

,

wxy-3-041-racemic

实验时间: 2018-10-03,10:49:34 谱图文件:D:\浙大智达\N2000\样品\S20181003104934.org 方法文件:D:\浙大智达\N2000\djx.mtd

实验者: wxy 报告时间: 2018-10-03, 11:32:28 积分方法:面积归一法

总计

实验内容简介: IC,n-hexane/i-PrOH = 99/1,0.7,254

712058.563

14082513.000

100.0000

wxy-5-019(Chiral)

实验时间: 2019-06-25,15:39:56 谱图文件:D:\浙大智达\N2000\样品\S20190625153956.org 方法文件:D:\浙大智达\N2000\djx.mtd

实验者: wxy 报告时间: 2019-06-25,16:09:57 积分方法:面积归一法

实验内容简介: IC,n-hexane/i-PrOH = 90/10,0.8,254

WXY-5-012(racemic)

实验时间: 2019-06-25,15:00:32 谱图文件:D:\浙大智达\N2000\样品\S20190625150032.org 方法文件:D:\浙大智达\N2000\djx.mtd

实验者: ₩xy 报告时间: 2019-06-25,16:07:08 积分方法:面积归一法

实验内容简介: IC, n-hexane/i-PrOH = 90/10, 0. 8, 254

wxy-5-015-Chiral

实验时间: 2019-06-24,11:22:13 谱图文件:D:\浙大智达\N2000\样品\S20190624112213.org 方法文件:D:\浙大智达\N2000\djx.mtd

实验者: wxy 报告时间: 2019-06-24,12:13:37 积分方法:面积归一法

实验内容简介: AD-H,n-hexane/i-PrOH = 95/5,1.0,220

WXY-5-015-racemic

实验时间: 2019-06-23,10:14:29 谱图文件:D:\浙大智达\N2000\样品\S20190623101429.org 方法文件:D:\浙大智达\N2000\djx.mtd

实验者: wxy 报告时间: 2019-06-23,22:41:58 积分方法:面积归一法

实验内容简介: AD-H,n-hexane/i-PrOH = 95/5,1.0,220

WXY-5-038(Chiral)

实验时间: 2019-07-05,16:45:13 谱图文件:D:\浙大智达\N2000\样品\S20190705164513.org 方法文件:D:\浙大智达\N2000\djx.mtd

实验者: wxy 报告时间: 2019-07-05,17:09:05 积分方法:面积归一法

实验内容简介: IA, n-hexane/i-PrOH = 80/20, 0. 7, 254

wxy-5-037(racemic)

实验时间: 2019-07-05,16:29:36 谱图文件:D:\浙大智达\N2000\样品\S20190705162936.org 方法文件:D:\浙大智达\N2000\djx.mtd

实验者: wxy 报告时间: 2019-07-05,16:47:41 积分方法:面积归一法

实验内容简介: IA,n-hexane/i-PrOH = 90/10,0.7,254

wxy-5-032(Chiral)

实验时间: 2019-07-03,22:07:08 谱图文件:D:\浙大智达\N2000\样品\S20190703220708.org 方法文件:D:\浙大智达\N2000\djx.mtd

实验者: wxy 报告时间: 2019-07-04,9:57:10 积分方法:面积归一法

wxy-5-026(racemic)

实验时间: 2019-07-03,22:34:12 谱图文件:D:\浙大智达\N2000\样品\S20190703223412.org 方法文件:D:\浙大智达\N2000\djx.mtd

实验者: wxy 报告时间: 2019-07-04,9:51:31 积分方法:面积归一法

实验内容简介: IA,n-hexane/i-PrOH = 90/10,1.3,254

实验时间: 2019-07-05,8:42:55 谱图文件:D:\浙大智达\N2000\样品\S20190705084255.org 方法文件:D:\浙大智达\N2000\djx.mtd

实验者: WXY 报告时间: 2019-07-05,9:35:50 积分方法:面积归一法

实验内容简介: IA, n-hexane/i-PrOH = 80/20, 1. 3, 254

总计

wxy-5-036(Racemic)

实验时间: 2019-07-05,9:08:41 谱图文件:D:\浙大智达\N2000\样品\S20190705090841.org 方法文件:D:\浙大智达\N2000\djx.mtd

实验者: wxy 报告时间: 2019-07-05,9:31:39 积分方法:面积归一法

实验内容简介: IA,n-hexane/i-PrOH = 80/20,1.3,254

S188

4

