Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Friedel-Crafts acylation of antiaromatic norcorrole: electronic and steric modulation of the paratropic current Sha Li, Oskar Smaga, Yahan Sun, Xiaofang Li, * Miłosz Pawlicki, Marzena Sukniewicz, and Piotr J. Chmielewski*

Electronic Supporting Information

Friedel-Crafts acylation of antiaromatic norcorrole: electronic and steric modulation of the paratropic current

Sha Li,^a Oskar Smaga,^b Yahan Sun,^a Xiaofang Li,^{*,a} Miłosz Pawlicki,^{b,c} Marzena Sukniewicz,^b and Piotr J. Chmielewski^{*,b}

^{a.}Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education, Hunan Province College Key Laboratory of QSAR/QSPR, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China

^b.Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie Street, 50 383 Wrocław, Poland

^c Department of Chemistry, Jagiellonian University, Gronostajowa 2, 30 387 Kraków, Poland.

E-mail: lixiaofang@iccas.ac.cn, pjc@wchuwr.pl

Table of contents

Figs. S1-S6 NMR spectra of 3a.	S4-S8
Figs. S7-S12 NMR spectra of 4a.	S9-S13
Figs. S13-14 NMR spectra of 3b.	S14
Figs. S15-S16 NMR spectra of 4b.	S15
Figs. S17-S18 NMR spectra of 3c.	S16
Figs. S19-S20 NMR spectra of 4c.	S17
Figs. S21-S22 NMR spectra of 3d.	S18
Figs. S23-S24 NMR spectra of 4d.	S19
Figs. S25-S30 NMR spectra of 3e.	S20-S24
Figs. S31-S36 NMR spectra of 4e.	S25-S29
Figs. S37-S38 NMR spectra of 3f.	S30
Figs. S39-S40 NMR spectra of 4f.	S31
Figs. S41-S42 NMR spectra of 3g.	S32
Figs. S43-S44 NMR spectra of 4g.	S33
Figs. S45-S50 NMR spectra of 3h.	S34-S38
Figs. S51-S56 NMR spectra of 4h.	S39-S43
Figs. S57-S58 NMR spectra of 3i.	S51
Figs. S59-S64 NMR spectra of 3k.	S45-S49
Figs. S65 ¹ H NMR spectrum of 4k.	S50
Figs. S66-S71 NMR spectra of 1-tBu.	S51-S55
Figs. S72-S78 NMR spectra of 5a.	S56-S62
Figs. S79-S85 NMR spectra of 5b.	S63-S68
Figs. S86-S91 NMR spectra of 5c.	S69-S74
Figs. S92-S97 NMR spectra of 5d.	S75-S80
Fig. S98 HRMS spectrum of 3a.	S81
Fig. S99 HRMS spectrum of 4a.	S82
Fig. S100 HRMS spectrum of 3b.	S83
Fig. S101 HRMS spectrum of 4b.	S84
Fig. S102 HRMS spectrum of 3c.	S85
Fig. S103 HRMS spectrum of 4c.	S86
Fig. S104 HRMS spectrum of 3d.	S87
Fig. S105 HRMS spectrum of 4d.	S88
Fig. S106 HRMS spectrum of 3e.	S89
Fig. S107 HRMS spectrum of 4e.	S90
Fig. S108 HRMS spectrum of 3f.	S91
Fig. S109 HRMS spectrum of 4t.	\$92
Fig. S110 HRMS spectrum of 3g.	593
Fig. S111 HRMS spectrum of 4g.	S94
Fig. S112 HRMS spectrum of 3h.	595
Fig. S113 HRIVIS spectrum of 4n.	596
Fig. S114 HRIVIS spectrum of 3I.	597
Fig. S115 HRIVIS spectrum of 3k.	598
Fig. S116 HRIVIS spectrum of 4K.	599
Fig. S117 HRIVIS spectrum of 1-tBu.	5100
Fig. S118 HRIVIS spectrum of Sa.	5101
Fig. S120 HPMS spectrum of Ec.	5102
Fig. S120 HAWS spectrum of Ed	5103
Fig. S122 History Spectrum of 2a.	5104 \$105
Fig. \$122. UV-VIS spectrum of Aa	5105
Fig. S123. UV-vis spectrum of 3h	S105
Fig. \$125. 11/-vis spectrum of <i>A</i> h	S106
Fig. 3123. 0 v - vis spectrum of 40 .	2100

Fig. \$126 LIV-vis spectrum of 3c	\$107
Fig. S127. UV-vis spectrum of 4c.	S107
Fig. S128. UV-vis spectrum of 3d.	S108
Fig. S129. UV-vis spectrum of 4d.	S108
Fig. S130. UV-vis spectrum of 3e.	S109
Fig. S131. UV-vis spectrum of 4e.	S109
Fig. S132. UV-vis spectrum of 3f.	S110
Fig. S133. UV-vis spectrum of 4f.	S110
Fig. S134. UV-vis spectrum of 3g.	S111
Fig. S135. UV-vis spectrum of 4g.	S111
Fig. S136. UV-vis spectrum of 3h.	S112
Fig. S137. UV-vis spectrum of 4h.	S112
Fig. S138. UV-vis spectrum of 3i.	S113
Fig. S139. UV-vis spectrum of 3k.	S113
Fig. S140. UV-vis spectrum of 4k.	S114
Fig. S141. UV-vis spectrum of 1-tBu.	S114
Fig. S142. UV-vis spectrum of 5a.	S115
Fig. S143. UV-vis spectrum of 5b.	S115
Fig. S144. UV-vis spectrum of 5c.	S116
Fig. S145. UV-vis spectrum of 5d.	S116
Fig. S146. TD DFT-calculated electronic transitions and UV-vis spectrum of 3a.	S117
Fig. S147. TD DFT-calculated electronic transitions and UV-vis spectrum of 4a.	S117
Fig. S148. Correlation of experimental and GIAO-calculated ¹ H NMR chemical shifts of 3a .	S118
Fig. S149. Correlation of experimental and GIAO-calculated ¹ H NMR chemical shifts of 4a .	S118
Fig. S150. Differential pulse voltammograms of acylated norcorroles	S119
Fig. S151. Dependence of the calculated chemical shift of 17-H on O-C1'-C2-C3 torsion angle	and 17-
H–phenyl centroid distance for 3a	S120
Computational methods	S121
Table S1. Computational details for structures discussed in the paper	S121
Table S2. TD DFT-calculated electronic transitions for 3a	S122
Table S3. TD DFT-calculated electronic transitions for 4a	S123
Table S4. NICS(z) indices ($z = -1$, 0, 1) for DFT-optimized structures of 3a and 4a	S124
Table S5. Natural Population Analysis Results for 1b	S125
Table S6. Natural Population Analysis Results for 3a	S127
Table S7. Natural Population Analysis Results for 4a	S129
Figure S152. Comparison of the NPA charges distribution for 1b, 3a, and 4a.	S131
Figure S153 . Comparison of the relative energies of intermediates $[H3a]^+$ and $[H4a]^+$.	S131
Defense	C1 7 7

References

S132

Figure S1. ¹H NMR spectrum of **3a** (500 MHz, 300 K, CDCl₃).

Figure S2. ¹³C NMR spectrum of 3a (150 MHz, 300 K, CDCl₃).

Figure S3. ¹H, ¹H COSY spectrum of **3a** (500 MHz, 300 K, CDCl₃).

Figure S4. ¹H, ¹H NOESY spectrum of **3a** (500 MHz, 300 K, CDCl₃).

Friedel-Crafts acylation of antiaromatic norcorrole: electronic and steric modulation of the paratropic current Sha Li, Oskar Smaga, Yahan Sun, Xiaofang Li,* Miłosz Pawlicki, Marzena Sukniewicz, and Piotr J. Chmielewski*

Figure S5. ¹H, ¹³C HSQC spectrum of **3a** (500/125 MHz, 300 K, CDCl₃).

Figure S6. ¹H, ¹³C HMBC spectrum of **3a** (500/125 MHz, 300 K, CDCl₃).

Figure S7. ¹H NMR spectrum of 4a (500 MHz, 300 K, CDCl₃).

Figure S8. ¹³C NMR spectrum of 4a (150 MHz, 300 K, CDCl₃).

Figure S9. ¹H, ¹H COSY spectrum of **4a** (500 MHz, 300 K, CDCl₃).

Figure S10. ¹H, ¹H NOESY spectrum of 4a (500 MHz, 300 K, CDCl₃).

Figure S11. ¹H, ¹³C HSQC spectrum of **4a** (500/125 MHz, 300 K, CDCl₃).

Figure S12. ¹H, ¹³C HMBC spectrum of 4a (500/125 MHz, 300 K, CDCl₃).

Figure S13. ¹H NMR spectrum of **3b** (500 MHz, 298 K, CDCl₃).

Figure S14. ¹³C NMR spectrum of **3b** (125 MHz, 298 K, CDCl₃).

Figure S15. ¹H NMR spectrum of 4b (500 MHz, 298 K, CDCl₃).

Figure S16. ¹³C NMR spectrum of 4b (125 MHz, 298 K, CDCl₃).

Figure S17. ¹H NMR spectrum of **3c** (500 Mhz, 298 K, CDCl₃).

Figure S18. ¹³C NMR spectrum of **3c** (125 Mhz, 298 K, CDCl₃).

Figure S19. ¹H NMR spectrum of 4c (500Mhz, 298 K, CDCl₃).

Figure S20. ¹³C NMR spectrum of 4c (125 Mhz, 298 K, CDCl₃).

Figure S21. ¹H NMR spectrum of 3d (500 Mhz, 298 K, CDCl₃).

Figure S22. ¹³C NMR spectrum of 3d (125 Mhz, 298 K, CDCl₃).

Figure S23. ¹H NMR spectrum of **4d** (500 Mhz, 298 K, CDCl₃).

Figure S24. ¹³C NMR spectrum of 4d (125 Mhz, 298 K, CDCl₃).

Figure S25. ¹H NMR spectrum of **3e** (500 Mhz, 298 K, CDCl₃).

Figure S26. ¹³C NMR spectrum of 3e (125 Mhz, 298 K, CDCl₃).

Figure S27. ¹H, ¹H COSY spectrum of **3e** (500 MHz, 298 K, CDCl₃).

Figure S28. ¹H, ¹H NOESY spectrum of **3e** (500 MHz, 298 K, CDCl₃).

Figure S29. ¹H, ¹³C HSQC spectrum of **3e** (500/125 MHz, 298 K, CDCl₃).

Figure S30. ¹H, ¹³C HMBC spectrum of **3e** (500/125 MHz, 298 K, CDCl₃).

Figure S31. ¹H NMR spectrum of 4e (500 MHz, 298 K, CDCl₃).

Figure S32. ¹³C NMR spectrum of **4e** (125 MHz, 298 K, CDCl₃).

Figure S33. ¹H, ¹H COSY spectrum of **4e** (500 MHz, 298 K, CDCl₃).

Figure S34. ¹H, ¹H NOESY spectrum of 4e (500 MHz, 298 K, CDCl₃).

Figure S35. ¹H, ¹³C HSQC spectrum of **4e** (500/125 MHz, 298 K, CDCl₃).

Figure S36. ¹H, ¹³C HMBC spectrum of **4e** (500/125 MHz, 298 K, CDCl₃).

Figure S37. ¹H NMR spectrum of 3f (500 MHz, 298 K, CDCl₃).

Figure S38. ¹³C NMR spectrum of 3f (125 MHz, 298 K, CDCl₃).

Friedel-Crafts acylation of antiaromatic norcorrole: electronic and steric modulation of the paratropic current Sha Li, Oskar Smaga, Yahan Sun, Xiaofang Li, * Miłosz Pawlicki, Marzena Sukniewicz, and Piotr J. Chmielewski*

Figure S39. ¹H NMR spectrum of 4f (500 MHz, 298 K, CDCl₃).

Figure S40. ¹³C NMR spectrum of 4f (125 MHz, 298 K, CDCl₃).

Figure S41. ¹H NMR spectrum of 3g (500 MHz, 298 K, CDCl₃).

Figure S42. ¹³C NMR spectrum of 3g (125 MHz, 298 K, CDCl₃).

Figure S43. ¹H NMR spectrum of 4g (500 MHz, 298 K, CDCl₃).

Figure S44. ¹³C NMR spectrum of 4g (125 MHz, 298 K, CDCl₃).

Friedel-Crafts acylation of antiaromatic norcorrole: electronic and steric modulation of the paratropic current Sha Li, Oskar Smaga, Yahan Sun, Xiaofang Li, * Miłosz Pawlicki, Marzena Sukniewicz, and Piotr J. Chmielewski*

Figure S46. ¹³C NMR spectrum of 3h (150 MHz, 300 K, CDCl₃).

Figure S47. ¹H, ¹H COSY spectrum of **3h** (500 MHz, 300 K, CDCl₃).

Figure S48. ¹H, ¹H NOESY spectrum of **3h** (500 MHz, 300 K, CDCl₃).

Figure S49. ¹H, ¹³C HSQC spectrum of **3h** (500/125 MHz, 300 K, CDCl₃).

Figure S50. ¹H, ¹³C HMBC spectrum of **3h** (500/125 MHz, 300 K, CDCl₃).

Figure S52. ¹³C NMR spectrum of 4h (150 MHz, 300 K, CDCl₃).

Figure S53. ¹H, ¹H COSY spectrum of **4h** (500 MHz, 300K, CDCl₃).

Figure S54. ¹H, ¹H NOESY spectrum of **4h** (500 MHz, 300 K, CDCl₃).

Figure S55. ¹H, ¹³C HSQC spectrum of **4h** (500/125 MHz, 300 K, CDCl₃).

Figure S56. ¹H, ¹³C HMBC spectrum of **4h** (500/125 MHz, 300 K, CDCl₃).

Figure S57. ¹H NMR spectrum of **3i** (500 MHz, 298 K, CDCl₃).

Figure S58. ¹³C NMR spectrum of 3i (500 MHz, 298 K, CDCl₃).

Figure S59. ¹H NMR spectrum of **3k** (500 MHz, 300 K, CDCl₃).

Figure S61. ¹H, ¹H COSY spectrum of **3k** (500 MHz, 300 K, CDCl₃).

Figure S62. ¹H, ¹H NOESY spectrum of **3k** (500 MHz, 300 K, CDCl₃).

Figure S63. ¹H, ¹³C HSQC spectrum of **3k** (600/150 MHz, 300 K, CDCl₃).

Figure S64. ¹H, ¹³C HMBC spectrum of **3k** (600/150 MHz, 300 K, CDCl₃).

Figure S65. ¹H NMR spectrum of **4k** (500 MHz, 300 K, CDCl₃).

Figure S67. ¹³C NMR spectrum of **1**-*t*Bu (125 MHz, 300 K, CDCl₃)

1-*t*Bu

Figure S68. ¹H, ¹H COSY spectrum of **1**-*t*Bu (500 MHz, 300 K, CDCl₃).

1-*t*Bu

Figure S69. ¹H, ¹H NOESY spectrum of **1**-*t*Bu (500 MHz, 300 K, CDCl₃).

Figure S70. ¹H, ¹³C HSQC spectrum of **1**-*t*Bu (500/125 MHz, 300 K, CDCl₃).

Figure S71. ¹H, ¹³C HMBC spectrum of **1**-*t*Bu (500/125 MHz, 300 K, CDCl₃).

Figure S72. ¹H NMR spectrum of 5a (500 MHz, 300 K, CDCl₃).

Figure S74. ¹H, ¹H COSY spectrum of **5a** (500 MHz, 300 K, CDCl₃).

Figure S75. ¹H, ¹H NOESY spectrum of **5a** (500 MHz, 300 K, CDCl₃).

Figure S76. ¹H, ¹H ROESY spectrum of **5a** (500 MHz, 300 K, CDCl₃).

Figure S77. ¹H, ¹³C HSQC spectrum of **5a** (500/125 MHz, 300 K, CDCl₃).

Figure S78. ¹H, ¹³C HMBC spectrum of 5a (500/125 MHz, 300 K, CDCl₃).

Figure S79. ¹H NMR spectrum of **5b** (500 MHz, 300 K, CDCl₃).

S63

Figure S81. ¹H, ¹H COSY spectrum of **5b** (500 MHz, 300 K, CDCl₃).

Figure S82. ¹H, ¹H NOESY spectrum of **5b** (500 MHz, 300 K, CDCl₃).

Figure S83. 1 H, 1 H ROESY spectrum of **5b** (500 MHz, 300 K, CDCl₃).

Figure S84. ¹H, ¹³C HSQC spectrum of **5b** (500/125 MHz, 300 K, CDCl₃).

Figure S85. ¹H, ¹³C HMBC spectrum of **5b** (500/125 MHz, 300 K, CDCl₃).

Figure S86. ¹H NMR spectrum of 5c (500 MHz, 300 K, CDCl₃).

Figure S87. ¹H, ¹H COSY spectrum of **5c** (500 MHz, 300 K, CDCl₃).

Figure S88. ¹H, ¹H NOESY spectrum of **5c** (500 MHz, 300 K, CDCl₃).

Figure S89. ¹H, ¹H ROESY spectrum of **5c** (500 MHz, 300 K, CDCl₃).

Figure S90. ¹H, ¹³C HSQC spectrum of **5c** (500/125 MHz, 300 K, CDCl₃).

Figure S91. ¹H, ¹³C HMBC spectrum of **5c** (500/125 MHz, 300 K, CDCl₃).

Figure S92. ¹H NMR spectrum of 5d (500 MHz, 300 K, CDCl₃).

Figure S93. ¹H, ¹H COSY spectrum of **5d** (500 MHz, 300 K, CDCl₃).

Figure S94. ¹H, ¹H NOESY spectrum of 5d (500 MHz, 300 K, CDCl₃).

Figure S95. ¹H, ¹H ROESY spectrum of 5d (500 MHz, 300 K, CDCl₃).

Figure S96. ¹H, ¹³C HSQC spectrum of **5d** (500/125 MHz, 300 K, CDCl₃)

Figure S97. ¹H, ¹³C HMBC spectrum of **5d** (500/125 MHz, 300 K, CDCl₃)

Figure S98. ESI(+) HRMS spectrum of 3a (experimental: upper trace; simulated: black, bottom trace).

Figure S99. ESI(-) HRMS spectrum of 4a (experimental: upper trace; simulated: black, bottom trace).

Figure S100. API(+) HRMS spectrum of 3b.

Figure S101. API(+) HRMS spectrum of 4b.

Figure S102. API(+) HRMS spectrum of 3c.

Figure S103. API(+) HRMS spectrum of 4c.

Figure S104. API(+) HRMS spectrum of 3d.

Figure S105. API(+) HRMS spectrum of 4d.

Figure S106. API(+) HRMS spectrum of 3e.

Figure S107. API(+) HRMS spectrum of 4e.

Figure S108. API(+) HRMS spectrum of 3f.

Figure S109. API(+) HRMS spectrum of 4f.

Figure S110. API(+) HRMS spectrum of 3g.

Figure S111. API(+) HRMS spectrum of 4g.

Figure S112. ESI(-) HRMS spectrum of 3h (experimental: upper trace; simulated: black, bottom trace).

Figure S113. ESI(-) HRMS spectrum of 4h (experimental: upper trace; simulated: black, bottom trace).

Figure S114. API(+) HRMS spectrum of 3i.

Figure S115. ESI(+) HRMS spectrum of 3k (experimental: upper trace; simulated: bottom traces).

Figure S116. ESI(+) HRMS spectrum of 4k (experimental: upper trace; simulated: bottom traces).

Figure S117. ESI(+) HRMS spectrum of 1-tBu (experimental: upper trace; simulated: bottom trace).

Figure S118. ESI(+) HRMS spectrum of **5a** (experimental: upper trace; simulated: black, bottom trace).

Figure S119. ESI(+) HRMS spectrum of **5b** (experimental: upper trace; simulated: black, bottom trace).

Figure S120. ESI(+) HRMS spectrum of 5c (experimental: upper trace; simulated: black, bottom trace).

Figure S121. ESI(+) HRMS spectrum of **5d** (experimental: upper trace; simulated: black, bottom trace).

Figure S122. UV-vis spectrum of 3a (CH₂Cl₂).

Figure S123. UV-vis spectrum of 4a (CH₂Cl₂).

Figure S124. UV-vis spectrum of 3b (CH₂Cl₂).

Figure S125. UV-vis spectrum of 4b (CH₂Cl₂).

Figure S126. UV-vis spectrum of 3c (CH₂Cl₂).

Figure S127. UV-vis spectrum of 4c (CH₂Cl₂).

Figure S128. UV-vis spectrum of 3d (CH₂Cl₂).

Figure S129. UV-vis spectrum of 4d (CH₂Cl₂).

Figure S130. UV-vis spectrum of 3e (CH₂Cl₂).

Figure S131. UV-vis spectrum of 4e (CH₂Cl₂).

Figure S132. UV-vis spectrum of 3f (CH₂Cl₂).

Figure S133. UV-vis spectrum of 4f (CH₂Cl₂).

Figure S134. UV-vis spectrum of 3g (CH₂Cl₂).

Figure S135. UV-vis spectrum of 4g (CH₂Cl₂).

Figure S136. UV-vis spectrum of 3h (CH₂Cl₂).

Figure S137. UV-vis spectrum of 4h (CH₂Cl₂).

Figure S138. UV-vis spectrum of 3i (CH₂Cl₂).

Figure S139. UV-vis spectrum of 3k (CH₂Cl₂).

Figure S140. UV-vis spectrum of 4k (CH₂Cl₂).

Figure S141. UV-vis spectrum of 1-tBu (CH₂Cl₂).

Figure S142. UV-vis spectrum of 5a (CH₂Cl₂).

Figure S143. UV-vis spectrum of 5b (CH₂Cl₂).

Figure S144. UV-vis spectrum of 5c (CH₂Cl₂).

Figure S145. UV-vis spectrum of 5d (CH₂Cl₂).

Figure S146. TD DFT-calculated electronic transitions (blue sticks) and UV-vis spectrum (black line) of **3a** (CH₂Cl₂).

Figure S147. TD DFT-calculated electronic transitions (blue sticks) and UV-vis spectrum (black line) of **4a** (CH₂Cl₂).

Figure S148. Correlation of experimental (500 MHz, $CDCI_3$, 300 K) and GIAO-calculated ¹H NMR chemical shifts of **3a**.

Figure S149. Correlation of experimental (500 MHz, $CDCI_3$, 300 K) and GIAO-calculated ¹H NMR chemical shifts of 4a.

Figure S150. Differential pulse voltammograms of selected acylated norcorroles recorded for DCM solutions with Bu_4NPF_6 (0.1 M) as supporting electrolyte, glassy carbon working electrode, platinum rod auxiliary electrode, and saturated calomel reference electrode.

Figure S151. Dependence of the calculated chemical shift of 17-H on O-C1'-C2-C3 torsion angle and the 17-H–phenyl centroid distance for **3a** (top) and selected structures calculated upon the relaxed DFT potential energy surface scan (bottom).

Computational methods

Density functional theory (DFT) calculations were performed by using the Gaussian 09.E01 program¹. DFT geometry optimizations were carried out in the unconstrained C_1 symmetry by using molecular mechanics or semiempirical models as starting geometries. DFT geometries were refined with the polarizable continuum model of solvation (PCM, standard dichloromethane parametrization) to meet standard convergence criteria, and the existence of a local minimum was verified by a normal mode frequency calculation. DFT calculations were performed by using the hybrid B3LYP functiona²⁻⁴ functional combined with the 6-31G(d,p) basis set for organic part of analyzed molecules and LANL2DZ pseudopotential for nickel(II) center. The structure optimization results are collected in the Table S1. The GIAO calculations of chemical shifts and NICS were performed by restraining the respected angle with ModRedundant option and optimization of geometry. The electronic spectra were simulated by means of time-dependent density functional theory (TD DFT) using the Tamm-Dancoff approximation for 30 states. The electronic transitions and UV/Vis/NIR were analyzed by means of the GaussSum program.⁵ The transitions were convoluted by Gaussian curves with 2000 cm⁻¹ half line width. The population analysis was performed with NBO5.0 package implemented in Gaussian.

Table S1. Computational details for **3a** and **4a**. Optimizations were performed at the $PCM(CH_2Cl_2)/B3LYP/6-31G(d,p)$ level of theory and LANL2DZ pseudopotential applied for nickel canter.

Structure	Code ^[a]	SCF E ^[b]	ZPV ^[c]	l. freq. ^[d]	G ^[e]	номо	LUMO	HLG
		a.u.	a.u.	cm ^{−1}	a.u.	eV	eV	eV
3a	PJC_3_002	-2122.705927	-2122.049433	11.89	-2122.129385	-5.03	-3.45	1.58
4a	PJC_3_001	-2122.696930	-2122.040874	12.52	-2122.120469	-4.99	-3.47	1.52

[a] Optimized geometry available as <code>.pdb file. [b] Electronic energy. [c] Zero-point vibrational energy. [d] Lowest vibrational frequency. [e] Gibbs free energy.

No.	Energy	Wavelength	Oscillator	Major contributions
	(cm⁻¹)	(nm)	Strength	
1	7140.42635994	1400.47659564	0.0005	HOMO->LUMO (100%)
2	12975.8476538	770.662562234	0.0002	H-1->LUMO (99%)
3	13804.1790523	724.418305651	0.0016	H-2->LUMO (98%)
4	16252.8782988	615.275634024	0.0009	H-3->LUMO (99%)
5	19403.2798985	515.376784355	0.004	H-4->LUMO (93%)
6	19559.7514577	511.253940094	0.1667	H-10->LUMO (11%), HOMO->L+1 (70%)
7	19729.9344422	506.844056137	0.0173	H-6->LUMO (88%)
8	20471.1579624	488.492151658	0.0012	H-5->LUMO (96%)
9	20754.258567	481.82882408	0.0183	H-9->LUMO (38%), H-8->LUMO (41%), H-7->LUMO (12%)
10	20755.8716759	481.791377214	0.0004	H-7->LUMO (86%)
11	21943.1197954	455.723711726	0.0199	H-9->LUMO (53%), H-8->LUMO (39%)
12	23641.7234228	422.98100782	0.0002	H-1->L+1 (96%)
13	24432.9533177	409.283309716	0.0948	H-10->LUMO (22%), H-2->L+1 (50%), HOMO->L+2 (17%)
14	24847.5222942	402.454614251	0.2572	H-10->LUMO (22%), H-2->L+1 (41%), HOMO->L+2 (22%)
15	25422.5956021	393.350866156	0.0003	H-12->LUMO (15%), H-11->LUMO (80%)
16	25494.3789463	392.243326307	0.007	H-13->LUMO (35%), H-12->LUMO (28%), H-11->LUMO (12%),
				H-1->L+3 (13%)
17	25560.5164094	391.228402424	0.0108	H-12->LUMO (15%), H-1->L+3 (39%)
18	25770.220561	388.044796758	0.0055	H-13->LUMO (49%), H-12->LUMO (39%)
19	26924.3999489	371.41031997	0.0128	H-3->L+1 (28%), H-3->L+3 (21%), H-2->L+3 (20%)
20	27016.3471538	370.146265262	0.0224	H-3->L+3 (41%), H-2->L+3 (13%)
21	27199.4350092	367.654695645	0.4022	H-10->LUMO (29%), HOMO->L+2 (51%)
22	27310.7395204	366.156324421	0.0165	H-3->L+1 (58%), H-2->L+3 (18%)
23	28269.7327364	353.735215441	0.4382	H-15->LUMO (12%), H-14->LUMO (73%)
24	28472.9844526	351.210109943	0.0667	H-9->L+1 (18%), H-8->L+1 (37%), H-8->L+2 (10%)
25	29860.2580704	334.893287808	0.0001	H-4->L+1 (95%)
26	30161.9094269	331.543996717	0.0018	H-6->L+1 (92%)
27	30253.8566318	330.536371667	0.1929	H-15->LUMO (76%), H-14->LUMO (10%)
28	30395.0036569	329.001440924	0.0002	H-17->LUMO (79%), H-16->LUMO (14%)
29	30441.7838137	328.495861517	0.0184	H-17->LUMO (16%), H-16->LUMO (66%)
30	30694.23535	325.794074554	0.0007	H-5->L+1 (96%)

Table S2. TD DFT-calculated electronic transitions for 3a

No.	Energy	Wavelength	Oscillator	Major contributions
	(cm)	(nm)	Strength	
1	6615.35942666	1511.63366267	0.0015	HOMO->LUMO (100%)
2	12716.1371276	786.402340557	0.0012	H-1->LUMO (98%)
3	13702.5531943	729.791000131	0.0008	H-2->LUMO (98%)
4	16056.8855725	622.785779647	0.0009	H-5->LUMO (99%)
5	17561.1095826	569.44010018	0.0058	H-3->LUMO (97%)
6	18904.0227069	528.987938443	0.0003	H-4->LUMO (97%)
7	19462.9649262	513.796332569	0.0175	H-6->LUMO (81%), HOMO->L+1 (13%)
8	19562.9776754	511.169626931	0.1354	H-6->LUMO (16%), HOMO->L+1 (64%)
9	20442.9285574	489.166704854	0.0088	H-8->LUMO (86%)
10	20519.5512282	487.340092812	0.0018	H-7->LUMO (97%)
11	21961.6705472	455.338767535	0.019	H-10->LUMO (18%), H-9->LUMO (63%)
12	23944.1813337	417.637999839	0.0251	H-1->L+1 (93%)
13	24367.6224089	410.380620324	0.2152	H-10->LUMO (35%), HOMO->L+2 (46%)
14	24834.6174233	402.663742692	0.0018	H-2->L+1 (84%)
15	25206.4390151	396.724027301	0.0007	H-12->LUMO (59%), H-11->LUMO (26%)
16	25329.8418427	394.791253024	0.004	H-15->L+3 (13%), H-1->L+3 (67%)
17	25346.7794858	394.527439102	0.0054	H-13->LUMO (19%), H-12->LUMO (25%), H-11->LUMO (51%)
18	25559.709855	391.240747909	0.0292	H-13->LUMO (68%), H-11->LUMO (20%)
19	26521.1227344	377.057943593	0.4848	H-10->LUMO (24%), HOMO->L+1 (10%), HOMO->L+2 (40%)
20	26622.7485924	375.618616736	0.0001	H-5->L+1 (17%), H-5->L+3 (36%), H-2->L+3 (27%)
21	26937.3048197	371.232388204	0.0007	H-5->L+3 (36%), H-2->L+3 (36%)
22	27508.3453555	363.526045306	0.0005	H-5->L+1 (81%)
23	28117.2939494	355.653001957	0.4842	H-15->LUMO (16%), H-14->LUMO (76%)
24	28535.0891436	350.4457249	0.0006	H-3->L+1 (86%)
25	29801.3795971	335.554935214	0.0073	H-4->L+1 (95%)
26	29827.1893388	335.264576437	0.1515	H-15->LUMO (70%), H-14->LUMO (12%)
27	30108.6768346	332.130171477	0.0079	H-17->LUMO (14%), H-8->L+1 (11%), H-6->L+1 (37%)
28	30189.3322775	331.242834657	0.0083	H-17->LUMO (54%), H-16->LUMO (17%), H-6->L+1 (21%)
29	30256.2762951	330.509937921	0.0062	H-8->L+1 (12%), H-6->L+1 (36%)
30	30376.452905	329.202360502	0.0034	H-17->LUMO (23%), H-16->LUMO (65%)

Table S3. TD DFT-calculated electronic transitions for 4a

Table S4. NICS(z) indices (z = -1, 0, 1) for DFT-optimized structures of 3a and 4a

Bq		3a			4a	
	NICS(-1)	NICS(0)	NICS(1)	NICS(-1)	NICS(0)	NICS(1)
Α	29.2	32.6	25.2	35.1	38.7	29.6
В	32.0	34.1	27.6	34.8	37.3	30.8
С	32.1	35.6	27.5	35.2	38.6	29.6
D	32.8	33.7	26.1	38.7	39.4	28.8
E	2.2	2.8	-1.2	3.4	4.7	-1.7
F	2.8	1.3	-1.6	3.7	1.9	-0.1
G	4.7	4.4	1.3	6.0	5.4	2.1
Н	3.4	3.7	-0.2	3.4	4.2	-1.2

Due to a bowl-shaped distortion of the norcorrole ring, the paratropic ring current, and thus, the NICS values calculated on the convex (NICS(1)) and the concave (NICS(-1)) face differ. Nevertheless, for each set of NICS(z), the values calculated for **3a** are considerably lower than for **4**a.

Situations of the dummy atoms Bq in **3a** (top) and **4a** (bottom).

Table S5. Natural Population Analysis Results for 1b

Atc	m	Charge	Core	Valence	Rydberg	Total
С	1	0.09809	1.99889	3.88200	0.02102	5.90191
С	2	-0.23744	1.99893	4.22676	0.01175	6.23744
С	3	-0.30335	1.99892	4.29191	0.01253	6.30335
С	4	0.19331	1.99893	3.78685	0.02091	5.80669
Ν	5	-0.45966	1.99906	5.44657	0.01403	7.45966
Н	6	0.25533	0.00000	0.74338	0.00129	0.74467
Н	7	0.25442	0.00000	0.74441	0.00118	0.74558
С	8	0.19330	1.99893	3.78686	0.02091	5.80670
С	9	-0.30332	1.99892	4.29188	0.01253	6.30332
Ν	10	-0.45965	1.99906	5.44657	0.01403	7.45965
С	11	-0.23751	1.99893	4.22683	0.01176	6.23751
Н	12	0.25443	0.00000	0.74440	0.00118	0.74557
С	13	0.09806	1.99889	3.88203	0.02102	5.90194
Н	14	0.25539	0.00000	0.74332	0.00129	0.74461
С	15	0.09704	1.99886	3.88744	0.01666	5.90296
С	16	0.09806	1.99889	3.88203	0.02102	5.90194
С	17	-0.23751	1.99893	4.22683	0.01176	6.23751
Ν	18	-0.45965	1.99906	5.44657	0.01403	7.45965
С	19	-0.30332	1.99892	4.29188	0.01253	6.30332
Н	20	0.25539	0.00000	0.74332	0.00129	0.74461
С	21	0.19330	1.99893	3.78686	0.02091	5.80670
Н	22	0.25443	0.00000	0.74440	0.00118	0.74557
С	23	0.19331	1.99893	3.78685	0.02091	5.80669
С	24	-0.30335	1.99892	4.29191	0.01253	6.30335
Ν	25	-0.45966	1.99906	5.44657	0.01403	7.45966
С	26	-0.23744	1.99893	4.22676	0.01175	6.23744
Н	27	0.25442	0.00000	0.74441	0.00118	0.74558
С	28	0.09809	1.99889	3.88200	0.02102	5.90191
Н	29	0.25533	0.00000	0.74338	0.00129	0.74467
С	30	0.09704	1.99886	3.88744	0.01666	5.90296
Ni	31	0.52442	17.99125	9.46774	0.01659	27.47558
С	32	-0.07739	1.99876	4.06378	0.01485	6.07739
С	33	0.00285	1.99882	3.98433	0.01400	5.99715
С	34	0.00189	1.99882	3.98532	0.01397	5.99811
С	35	-0.23903	1.99882	4.22826	0.01195	6.23903
С	36	-0.23943	1.99882	4.22865	0.01195	6.23943
С	37	-0.01551	1.99887	4.00237	0.01426	6.01551

Н	38	0.23881	0.00000	0.75930	0.00190	0.76119
Н	39	0.23867	0.00000	0.75944	0.00189	0.76133
C	40	-0.07739	1.99876	4.06378	0.01485	6.07739
C	41	0.00285	1.99882	3.98433	0.01400	5.99715
C	42	0.00189	1.99882	3.98532	0.01397	5.99811
C	43	-0.23903	1.99882	4.22826	0.01195	6.23903
C	44	-0.23943	1.99882	4.22865	0.01195	6.23943
C	45	-0.01551	1.99887	4.00237	0.01426	6.01551
Н	46	0.23881	0.00000	0.75930	0.00190	0.76119
Н	47	0.23867	0.00000	0.75944	0.00189	0.76133
C	48	-0.70430	1.99923	4.69793	0.00714	6.70430
Н	49	0.25201	0.00000	0.74617	0.00182	0.74799
Н	50	0.25198	0.00000	0.74619	0.00183	0.74802
Н	51	0.24427	0.00000	0.75429	0.00144	0.75573
C	52	-0.70476	1.99923	4.69842	0.00711	6.70476
Н	53	0.25220	0.00000	0.74600	0.00180	0.74780
Н	54	0.25222	0.00000	0.74599	0.00180	0.74778
Н	55	0.24483	0.00000	0.75372	0.00144	0.75517
C	56	-0.69946	1.99923	4.69300	0.00722	6.69946
Н	57	0.25012	0.00000	0.74820	0.00168	0.74988
Н	58	0.24442	0.00000	0.75403	0.00155	0.75558
Н	59	0.24498	0.00000	0.75346	0.00157	0.75502
C	60	-0.70430	1.99923	4.69793	0.00714	6.70430
Н	61	0.25201	0.00000	0.74617	0.00182	0.74799
Н	62	0.25198	0.00000	0.74619	0.00183	0.74802
Н	63	0.24427	0.00000	0.75429	0.00144	0.75573
C	64	-0.70476	1.99923	4.69842	0.00711	6.70476
Н	65	0.25220	0.00000	0.74600	0.00180	0.74780
Н	66	0.25222	0.00000	0.74599	0.00180	0.74778
Н	67	0.24483	0.00000	0.75372	0.00144	0.75517
C	68	-0.69946	1.99923	4.69300	0.00722	6.69946
Н	69	0.25012	0.00000	0.74820	0.00168	0.74988
Н	70	0.24442	0.00000	0.75403	0.00155	0.75558
Н	71	0.24498	0.00000	0.75346	0.00157	0.75502
=================	====	==============	==========	=========	===========	=======================================

* Total * -0.00000 97.94909 203.42781 0.62310 302.00000

Table S6. Natural Population Analysis Results for 3a

At	om	Charge	Core	Valence	Rydberg	Total
С	1	0.10661	1.99888	3.87365	0.02086	5.89339
С	2	-0.22490	1.99893	4.21423	0.01174	6.22490
С	3	-0.29396	1.99892	4.28247	0.01258	6.29396
С	4	0.21707	1.99894	3.76286	0.02113	5.78293
Ν	5	-0.45965	1.99905	5.44647	0.01413	7.45965
Н	6	0.25905	0.00000	0.73968	0.00127	0.74095
Н	7	0.25833	0.00000	0.74051	0.00116	0.74167
С	8	0.17763	1.99893	3.80263	0.02081	5.82237
С	9	-0.29910	1.99892	4.28771	0.01247	6.29910
Ν	10	-0.45738	1.99905	5.44428	0.01405	7.45738
С	11	-0.24125	1.99893	4.23055	0.01177	6.24125
Н	12	0.25505	0.00000	0.74378	0.00117	0.74495
С	13	0.10124	1.99890	3.87865	0.02121	5.89876
Н	14	0.25604	0.00000	0.74267	0.00129	0.74396
С	15	0.09978	1.99886	3.88473	0.01663	5.90022
С	16	0.10068	1.99889	3.87902	0.02140	5.89932
С	17	-0.20909	1.99889	4.19964	0.01055	6.20909
Ν	18	-0.44721	1.99906	5.43395	0.01420	7.44721
С	19	-0.20425	1.99884	4.18992	0.01549	6.20425
С	20	0.23614	1.99890	3.74195	0.02301	5.76386
С	21	0.20682	1.99893	3.77195	0.02229	5.79318
С	22	-0.28877	1.99891	4.27631	0.01355	6.28877
Ν	23	-0.45889	1.99905	5.44580	0.01404	7.45889
С	24	-0.23275	1.99893	4.22224	0.01158	6.23275
Н	25	0.26576	0.00000	0.73263	0.00161	0.73424
С	26	0.10222	1.99889	3.87791	0.02097	5.89778
Н	27	0.25676	0.00000	0.74197	0.00127	0.74324
С	28	0.09899	1.99886	3.88552	0.01663	5.90101
Ni	29	0.52904	17.99125	9.46310	0.01661	27.47096
С	30	-0.07883	1.99876	4.06527	0.01480	6.07883
С	31	0.00331	1.99882	3.98389	0.01399	5.99669
С	32	0.00222	1.99882	3.98499	0.01397	5.99778
С	33	-0.23867	1.99882	4.22790	0.01195	6.23867
С	34	-0.23903	1.99882	4.22826	0.01195	6.23903
С	35	-0.01486	1.99887	4.00173	0.01425	6.01486

Н	36	0.23917	0.00000	0.75894	0.00189	0.76083
н	37	0.23900	0.00000	0.75911	0.00189	0.76100
С	38	-0.08145	1.99876	4.06791	0.01477	6.08145
С	39	0.00387	1.99882	3.98333	0.01399	5.99613
С	40	0.00176	1.99882	3.98546	0.01396	5.99824
С	41	-0.23793	1.99882	4.22715	0.01196	6.23793
С	42	-0.23882	1.99882	4.22803	0.01196	6.23882
С	43	-0.01367	1.99887	4.00054	0.01425	6.01367
Н	44	0.23993	0.00000	0.75819	0.00188	0.76007
Н	45	0.23943	0.00000	0.75868	0.00189	0.76057
С	46	-0.70439	1.99923	4.69799	0.00717	6.70439
Н	47	0.25241	0.00000	0.74580	0.00179	0.74759
Н	48	0.25052	0.00000	0.74763	0.00185	0.74948
Н	49	0.24567	0.00000	0.75289	0.00144	0.75433
С	50	-0.70530	1.99923	4.69892	0.00715	6.70530
Н	51	0.25275	0.00000	0.74546	0.00179	0.74725
Н	52	0.25207	0.00000	0.74617	0.00175	0.74793
н	53	0.24620	0.00000	0.75237	0.00143	0.75380
С	54	-0.69977	1.99923	4.69329	0.00724	6.69977
Н	55	0.25072	0.00000	0.74762	0.00167	0.74928
н	56	0.24492	0.00000	0.75353	0.00155	0.75508
н	57	0.24554	0.00000	0.75291	0.00155	0.75446
С	58	-0.70446	1.99923	4.69808	0.00715	6.70446
н	59	0.25245	0.00000	0.74575	0.00180	0.74755
н	60	0.25133	0.00000	0.74685	0.00182	0.74867
н	61	0.24484	0.00000	0.75372	0.00144	0.75516
С	62	-0.70497	1.99923	4.69861	0.00713	6.70497
Н	63	0.25174	0.00000	0.74646	0.00180	0.74826
Н	64	0.25274	0.00000	0.74548	0.00177	0.74726
Н	65	0.24532	0.00000	0.75324	0.00144	0.75468
С	66	-0.69956	1.99923	4.69310	0.00723	6.69956
Н	67	0.25056	0.00000	0.74777	0.00167	0.74944
Н	68	0.24454	0.00000	0.75391	0.00155	0.75546
Н	69	0.24496	0.00000	0.75348	0.00156	0.75504
Н	70	0.26219	0.00000	0.73629	0.00152	0.73781
C	71	0.54956	1.99898	3.41615	0.03531	5.45044
C	72	-0.13188	1.99883	4.11767	0.01538	6.13188
C	73	-0.21979	1.99892	4.20806	0.01282	6.21979
C	74	-0.19859	1.99892	4.18560	0.01408	6.19859
C	75	-0.24022	1.99895	4.22719	0.01408	6.24022
Н	76	0.24940	0.00000	0.74857	0.00204	0.75060
C	77	-0.24041	1.99895	4.22766	0.01379	6.24041
н	78	0.25525	0.00000	0.74218	0.00257	0.74475
C	79	-0.22340	1.99895	4.21081	0.01363	6.22340
Н	80	0.24806	0.00000	0.75031	0.00163	0.75194
Н	81	0.24828	0.00000	0.75009	0.00163	0.75172
Н	82	0.24723	0.00000	0.75116	0.00161	0.75277
0	83	-0.60197	1.99975	6.58610	0.01612	8.60197
	====	==========	=========	=========	==========	

* Total * -0.00000 113.94117 241.28506 0.77378 356.00000

Table S7. Natural Population Analysis Results for 4a

Ato	om	Charge	Core	Valence	Rydberg	Total
С	1	0.10463	1.99888	3.87566	0.02083	5.89537
С	2	-0.21978	1.99893	4.20907	0.01177	6.21978
С	3	-0.29780	1.99891	4.28627	0.01262	6.29780
С	4	0.21854	1.99893	3.76141	0.02112	5.78146
Ν	5	-0.46075	1.99905	5.44749	0.01421	7.46075
Н	6	0.25964	0.00000	0.73903	0.00133	0.74036
Н	7	0.25797	0.00000	0.74087	0.00116	0.74203
С	8	0.17609	1.99892	3.80415	0.02084	5.82391
С	9	-0.29852	1.99891	4.28713	0.01248	6.29852
Ν	10	-0.45792	1.99906	5.44482	0.01404	7.45792
С	11	-0.24270	1.99893	4.23199	0.01178	6.24270
Н	12	0.25494	0.00000	0.74388	0.00118	0.74506
С	13	0.10123	1.99890	3.87870	0.02118	5.89877
Н	14	0.25579	0.00000	0.74292	0.00129	0.74421
С	15	0.10687	1.99886	3.87746	0.01682	5.89313
С	16	0.13978	1.99887	3.83886	0.02248	5.86022
С	17	-0.14956	1.99884	4.13559	0.01513	6.14956
Ν	18	-0.44292	1.99907	5.42980	0.01404	7.44292
С	19	-0.26752	1.99885	4.25716	0.01151	6.26752
С	20	0.16926	1.99892	3.81090	0.02092	5.83074
Н	21	0.26128	0.00000	0.73739	0.00133	0.73872
С	22	0.20884	1.99894	3.77123	0.02099	5.79116
С	23	-0.30211	1.99892	4.29063	0.01257	6.30211
Ν	24	-0.46012	1.99905	5.44697	0.01410	7.46012
С	25	-0.22883	1.99893	4.21816	0.01173	6.22883
Н	26	0.25642	0.00000	0.74241	0.00117	0.74358
С	27	0.09945	1.99889	3.88068	0.02098	5.90055
Н	28	0.25728	0.00000	0.74143	0.00128	0.74272
С	29	0.09781	1.99886	3.88669	0.01665	5.90219
Ni	30	0.53111	17.99125	9.46117	0.01647	27.46889
С	31	-0.07880	1.99876	4.06525	0.01479	6.07880
С	32	0.00344	1.99882	3.98375	0.01398	5.99656
С	33	0.00196	1.99882	3.98525	0.01397	5.99804
С	34	-0.23863	1.99882	4.22785	0.01196	6.23863
С	35	-0.23915	1.99882	4.22838	0.01195	6.23915

С	36	-0.01464	1.99887	4.00151	0.01426	6.01464
Н	37	0.23926	0.00000	0.75885	0.00189	0.76074
Н	38	0.23894	0.00000	0.75917	0.00189	0.76106
С	39	-0.07742	1.99875	4.06299	0.01568	6.07742
С	40	0.01709	1.99882	3.96947	0.01462	5.98291
С	41	0.00058	1.99882	3.98667	0.01393	5.99942
С	42	-0.23604	1.99881	4.22522	0.01200	6.23604
С	43	-0.24027	1.99882	4.22948	0.01197	6.24027
С	44	-0.01499	1.99887	4.00183	0.01428	6.01499
Н	45	0.23767	0.00000	0.76043	0.00191	0.76233
н	46	0.23727	0.00000	0.76083	0.00190	0.76273
С	47	-0.70315	1.99923	4.69675	0.00717	6.70315
н	48	0.24957	0.00000	0.74861	0.00182	0.75043
н	49	0.24842	0.00000	0.74966	0.00193	0.75158
н	50	0.24480	0.00000	0.75375	0.00145	0.75520
C	51	-0.70424	1.99922	4.69787	0.00716	6.70424
н	52	0.26065	0.00000	0.73680	0.00255	0.73935
н	53	0.24537	0.00000	0.75288	0.00175	0.75463
Н	54	0.24171	0.00000	0.75683	0.00146	0.75829
C	55	-0.69895	1.99923	4.69253	0.00719	6.69895
н	56	0.24812	0.00000	0.75019	0.00169	0.75188
Н	57	0.24268	0.00000	0.75579	0.00153	0.75732
Н	58	0.24651	0.00000	0.75188	0.00161	0.75349
C	59	-0.70419	1.99923	4.69782	0.00715	6.70419
н	60	0.25193	0.00000	0.74627	0.00181	0.74807
н	61	0.25138	0.00000	0.74680	0.00182	0.74862
н	62	0.24482	0.00000	0.75374	0.00144	0.75518
C	63	-0.70499	1.99923	4.69862	0.00714	6.70499
н	64	0.25269	0.00000	0.74550	0.00180	0.74731
Н	65	0.25190	0.00000	0.74633	0.00178	0.74810
Н	66	0.24535	0.00000	0.75321	0.00144	0.75465
C	67	-0.69961	1.99923	4.69315	0.00723	6.69961
H	68	0.25040	0.00000	0.74793	0.00167	0.74960
н	69	0.24459	0.00000	0.75386	0.00155	0.75541
н	70	0.24526	0.00000	0.75318	0.00156	0.75474
С	71	0.55452	1.99899	3.41023	0.03625	5.44548
C	72	-0.14288	1.99882	4.12848	0.01558	6.14288
C	73	-0.21138	1.99892	4.19985	0.01261	6.21138
C	74	-0.19220	1.99892	4.17907	0.01422	6.19220
C	75	-0.24267	1.99895	4.22959	0.01413	6.24267
Н	76	0.25201	0.00000	0.74601	0.00198	0.74799
С	77	-0.24160	1.99895	4.22888	0.01377	6.24160
H	78	0.25741	0.00000	0.73991	0.00268	0.74259
C	79	-0.21796	1.99895	4.20539	0.01361	6.21796
H	80	0.24840	0.00000	0.74997	0.00162	0.75160
Н	81	0.24860	0.00000	0.74978	0.00162	0.75140
Н	82	0.24766	0.00000	0.75074	0.00160	0.75234
0	83	-0.57562	1.99974	6.55918	0.01670	8.57562

* Total * -0.00000 113.94110 241.28390 0.77501 356.00000

Figure S152. Comparison of the NPA charges distribution across macrocyclic ring atoms of 1b, 3a, and 4a.

Figure S153. Comparison of the relative energies for DFT models of the benzoylation reaction intermediates $[H3a]^+$ and $[H4a]^+$.

References

1. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09 Revision E.01.

- 2. A. D. Becke, Phys.Rev.A, 1988, 38, 3098.
- 3. A. D. Becke, J.Chem. Phys., 1993, 98, 5648.
- 4. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 1988, 37, 785.
- 5. N. M. O'Boyle, A. L. Tenderholt, and K. M. Langner, J.Comp.Chem., 2008, 29, 839.