Supporting Information for

Diastereoselective Synthesis of Functionalized Tetrahydropyridazines Containing Indole Scaffolds *via* Inverse-Electron-Demand Aza-Diels–Alder Reaction

Taotao Chen,^a Chao Che,^a Zhefei Guo,^a Xiu-Qin Dong,^{*ac} Chun-Jiang Wang^{*ab}

^a Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of

Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China.

^b Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.

^c Suzhou Institute of Wuhan University, Suzhou, Jiangsu, 215123, P. R. China.

E-mail address: cjwang@whu.edu.cn; xiuqindong@whu.edu.cn.

Table of Contents

I.	General remarks	S2
II.	General procedure for the inverse electron-demand aza-Diels-Alder reaction	S2
III.	Optimization reaction conditions for the asymmetric IEDDA cyclization	S14
IV.	Gram-scale inverse-electron-demand aza-Diels-Alder reaction	S15
V.	Synthetic transformation	S16
VI.	The configuration determination of <i>trans</i> - 3b	S17
VII.	Reference	S18
VIII.	¹ H NMR and ¹³ C NMR spectra	S20
IX.	HPLC spectra	S47

I. General remarks

¹H NMR spectra were recorded on a Bruker 400 MHz spectrometer in CDCl₃. Chemical shifts are reported in ppm with the internal TMS signal at 0.0 ppm as a standard. The data are reported as (s = single, d = double, t = triple, q = quarte, m = multiple or unresolved, brs = broad single, coupling constant(s) in Hz, integration). ¹³C NMR spectra were recorded on a Bruker 100 MHz spectrometer in CDCl₃. Chemical shifts are reported in ppm with the internal chloroform signal at 77.0 ppm as a standard. Commercially obtained reagents were used without further purification. Solvents were purified prior to use according to the standard methods. Unless otherwise noted, all reactions were carried out under nitrogen atmosphere. All reactions were monitored by TLC with silica gel coated plates. Enantiomeric ratios were determined by chiral-phase HPLC analysis in comparison with authentic racemic materials using a chiralpak IE column. High Resolution Mass Spectra were recorded using ESI-TOF technique. 3-Vinylindoles,¹ azoalkenes,² were prepared according to the literature procedure.

II. General procedure for the inverse electron-demand aza-Diels-Alder reaction

A flame dried Schlenck tube was cooled to room temperature and filled with N₂. 3-vinylindoles (0.28 mmol), the azoalkene generating *in situ* from benzohydrazide (0.20 mmol), Na₂CO₃ (0.48 mmol) and CH₃CN (2.0 mL) were added into the Schlenck tube and filled with N₂ at room temperature. TLC analysis indicated completion of the reaction after about 30 h. Then the reaction mixture was concentrated *in vacuo* to obtain the crude product. The crude product was purified by flash silica gel chromatography to afford the product.

Trans-(6-(1-methyl-1*H*-indol-3-yl)-3,5-diphenyl-5,6-dihydropyridazin-1(4*H*)-yl)(phenyl)-methanone (3a):

Yield (87%); 81 mg; White solid; m.p. 239-241 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 (d, *J* =

7.8 Hz, 1H), 7.69-7.66 (m, 4H), 7.47 – 7.39 (m, 4H), 7.38 – 7.33 (m, 6H), 7.30 – 7.25 (m, 3H), 7.23 – 7.21 (m, 1H), 6.75 (s, 1H), 6.37 (s, 1H), 4.02 (d, J = 7.2 Hz, 1H), 3.66 (s, 3H), 2.95 (d, J = 18.3 Hz, 1H), 2.83 (dd, J = 18.3, 7.0 Hz, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.3, 146.4, 142.3, 137.7, 137.1, 135.2, 130.3, 129.9, 129.4, 128.9, 128.5, 127.4, 127.2, 126.9, 126.1, 125.5, 125.2, 122.0, 119.4, 118.9, 113.2, 109.7, 52.1, 38.5, 32.8, 24.7. HRMS (ESI-TOF) Calcd. For C₃₂H₂₈N₃O ([M+H]⁺): 470.2227, found: 470.2212.

opt-3a: Yield (81%); 75 mg; $[\alpha]^{20}_{D}$ = -27.2 (*c* 1.0, CHCl₃); >20:1 dr, it was determined by the crude ¹H NMR analysis. The product was analyzed by HPLC to determine the enantiomeric excess: 93% ee (Chiralpak IE, *i*-propanol/hexane = 40/60, flow rate 1.2 mL/min, λ = 230 nm); t_r = 28.7 and 34.0 min.

Trans-(2-methoxyphenyl)(6-(1-methyl-1*H*-indol-3-yl)-3,5-diphenyl-5,6-dihydropyridazin-1(4*H*)yl)methanone (3b):

Yield (84%); 83 mg; White solid; m.p. 189-190 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.79 (d, J = 9.3 Hz, 1H), 7.47 – 7.46 (m, 1H), 7.45-7.43 (m, 1H), 7.41 – 7.37 (m, 3H), 7.36 – 7.25 (m, 9H), 7.25 – 7.19 (m, 1H), 7.00-6.96 (m, 2H), 6.89 (s, 1H), 6.40 (s, 1H), 4.00 (d, J = 7.0 Hz, 1H), 3.79 (s, 3H), 3.69 (s, 3H), 2.84 (d, J = 18.1 Hz, 1H), 2.74 (dd, J = 18.1, 7.0 Hz, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.4, 156.0, 145.4, 142.6, 137.9, 137.4, 130.2, 129.1, 128.8, 128.4, 128.2, 127.4, 127.2, 127.1, 126.7, 125.34, 125.31, 121.9, 120.4, 119.3, 119.0, 113.5, 110.5, 109.7, 55.5, 51.3, 38.3, 32.9, 25.0. HRMS (ESI-TOF) Calcd. For C₃₃H₃₀N₃O₂ ([M+H]⁺): 500.2333, found: 500.2322.

Trans-(6-(1-methyl-1*H*-indol-3-yl)-3,5-diphenyl-5,6-dihydropyridazin-1(4*H*)-yl)(*m*-tolyl)-methanone (3c): Yield (86%); 83 mg; White solid; m.p. 168-170 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 (d, *J* = 7.8 Hz, 1H), 7.73 (t, *J* = 3.7 Hz, 2H), 7.58 (s, 1H), 7.54 (d, *J* = 7.0 Hz, 1H), 7.44 – 7.38 (m, 7H), 7.37 – 7.27 (m, 6H), 6.81 (s, 1H), 6.43 (s, 1H), 4.07 (d, *J* = 7.2 Hz, 1H), 3.70 (s, 3H), 2.98 (d, *J* = 18.3 Hz, 1H), 2.88 (dd, *J* = 18.2, 6.9 Hz, 1H), 2.45 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.4, 146.1, 142.3, 137.6, 137.1, 137.0, 135.1, 130.9, 130.5, 129.3, 128.8, 128.4, 127.13, 127.10, 126.9, 126.0, 125.5, 125.2, 122.0, 119.3, 118.9, 113.2, 109.6, 52.0, 38.4, 32.7, 24.7, 21.4. HRMS (ESI-TOF) Calcd. For C₃₃H₃₀N₃O ([M+H]⁺): 484.2383, found: 484.2375.

Trans-(4-bromophenyl)(6-(1-methyl-1*H*-indol-3-yl)-3,5-diphenyl-5,6-dihydropyridazin-1(4*H*)-yl)methanone (3d):

Yield (81%); 89 mg; White solid; m.p. 190-192 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.81 (d, *J* = 7.9 Hz, 1H), 7.67 (dd, *J* = 7.9, 2.9 Hz, 2H), 7.55 (s, 4H), 7.41 – 7.33 (m, 7H), 7.32 – 7.25 (m, 3H), 7.23 – 7.20 (m, 1H), 6.73 (s, 1H), 6.34 (s, 1H), 4.00 (d, *J* = 7.3 Hz, 1H), 3.66 (s, 3H), 2.96 (d, *J* = 18.4 Hz, 1H), 2.84 (dd, *J* = 18.3, 7.0 Hz, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 169.3, 147.1, 142.2, 137.7, 136.9, 134.0, 131.7, 130.7, 129.6, 129.0, 128.7, 127.3, 126.9, 126.0, 125.6, 125.2, 124.9, 122.1, 119.5, 118.9, 113.1, 109.8, 52.3, 38.5, 32.9, 24.7. HRMS (ESI-TOF) Calcd. For C₃₂H₂₆BrN₃ONa ([M+Na]⁺): 570.1151, found: 570.1136.

Trans-(4-chlorophenyl)(6-(1-methyl-1*H*-indol-3-yl)-3,5-diphenyl-5,6-dihydropyridazin-1(4*H*)-yl)methanone (3e):

Yield (82%); 82 mg; White solid; m.p. 210-212 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.73 (d, *J* = 7.6 Hz, 1H), 7.59 (dd, *J* = 7.6, 2.9 Hz, 2H), 7.55 (d, *J* = 8.3 Hz, 2H), 7.31 – 7.26 (m, 9H), 7.25 – 7.16

(m, 3H), 7.13 - 7.10 (m, 1H), 6.65 (s, 1H), 6.27 (s, 1H), 3.92 (d, J = 7.3 Hz, 1H), 3.57 (s, 3H), 2.88 (d, J = 18.3 Hz, 1H), 2.75 (dd, J = 18.4, 7.0 Hz, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 169.1, 146.9, 142.1, 137.6, 136.9, 136.4, 133.5, 131.5, 129.5, 128.9, 128.6, 127.6, 127.2, 126.8, 125.9, 125.5, 125.2, 122.1, 119.4, 118.8, 113.0, 109.7, 52.3, 38.4, 32.8, 24.7. HRMS (ESI-TOF) Calcd. For C₃₂H₂₇ClN₃O ([M+H]⁺): 504.1837, found: 504.1825.

Trans-methyl 6-(1-methyl-1*H*-indol-3-yl)-3,5-diphenyl-5,6-dihydropyridazine-1(4*H*)-carboxylate (3f):

Yield (86%); 72 mg; White solid; m.p. 220-222 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.89 (dd, *J* = 7.9, 1.8 Hz, 2H), 7.78 (d, *J* = 7.9 Hz, 1H), 7.46 – 7.40 (m, 3H), 7.36 – 7.27 (m, 7H), 7.25 – 7.20 (m, 1H), 6.83 (s, 1H), 5.99 (s, 1H), 3.87 (d, *J* = 7.2 Hz, 1H), 3.81 (s, 3H), 3.70 (s, 3H), 2.88 (d, *J* = 18.3 Hz, 1H), 2.77 (dd, *J* = 18.3, 7.1 Hz, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 155.2, 147.1, 142.5, 137.52, 137.46, 129.3, 128.9, 128.5, 127.1, 126.9, 125.9, 125.6, 125.1, 122.0, 119.3, 118.7, 114.1, 109.7, 53.8, 53.7, 38.7, 32.8, 24.5. HRMS (ESI-TOF) Calcd. For C₂₇H₂₆N₃O₂ ([M+H]⁺): 424.2020, found: 424.2010.

Trans-tert-butyl 6-(1-methyl-1*H*-indol-3-yl)-3,5-diphenyl-5,6-dihydropyridazine-1(4*H*)-carboxy-late (3g):

Yield (84%); 78 mg; White solid; m.p. 159-160 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 (d, *J* = 8.0 Hz, 2H), 7.77 (d, *J* = 7.2 Hz, 1H), 7.46 – 7.39 (m, 3H), 7.38 – 7.28 (m, 7H), 7.24 (d, *J* = 7.9 Hz, 1H), 6.86 (s, 1H), 5.96 (s, 1H), 3.86 (d, *J* = 6.8 Hz, 1H), 3.70 (s, 3H), 2.83 (d, *J* = 18.2 Hz, 1H), 2.79 (dd, *J* = 17.7, 6.2 Hz, 1H), 1.43 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 153.4, 146.1, 142.9,

137.6, 137.4, 129.0, 128.7, 128.3, 126.93, 126.88, 126.0, 125.5, 125.2, 121.8, 119.2, 118.6, 114.4, 109.6, 81.3, 53.4, 38.8, 32.7, 28.1, 24.4. HRMS (ESI-TOF) Calcd. For C₃₀H₃₂N₃O₂([M+H]⁺): 466.2489, found: 466.2481.

Trans-(3-(4-fluorophenyl)-6-(1-methyl-1*H*-indol-3-yl)-5-phenyl-5,6-dihydropyridazin-1(4*H*)-yl)-(phenyl)methanone (3h):

Yield (80%); 78 mg; White solid; m.p. 217-218 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.81 (d, *J* = 7.9 Hz, 1H), 7.66 – 7.61 (m, 4H), 7.47 – 7.41 (m, 3H), 7.36 (d, *J* = 5.0 Hz, 4H), 7.30 – 7.26 (m, 3H), 7.23 – 7.18 (m, 1H), 7.02 (t, *J* = 8.6 Hz, 2H), 6.74 (s, 1H), 6.36 (s, 1H), 4.01 (d, *J* = 7.0 Hz, 1H), 3.67 (s, 3H), 2.90 (d, *J* = 18.2 Hz, 1H), 2.80 (dd, *J* = 18.2, 6.9 Hz, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.3, 163.5 (d, *J* = 248.2 Hz), 145.4, 142.2, 137.7, 135.2, 133.3 (d, *J* = 3.1 Hz), 130.3, 129.9, 129.0, 127.5, 127.4, 127.3, 126.9, 126.0, 125.2, 122.1, 119.4, 119.0, 115.5 (d, *J* = 21.6 Hz), 113.1, 109.7, 52.1, 38.4, 32.9, 24.8. HRMS (ESI-TOF) Calcd. For C₃₂H₂₇FN₃O ([M+H]⁺): 488.2133, found: 488.2122.

Trans-(3-(4-chlorophenyl)-6-(1-methyl-1*H*-indol-3-yl)-5-phenyl-5,6-dihydropyridazin-1(4*H*)-yl)-(phenyl)methanone (3i):

Yield (78%); 78 mg; White solid; m.p. 229-230 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.81 (d, *J* = 7.9 Hz, 1H), 7.65 (d, *J* = 7.4 Hz, 2H), 7.58 (d, *J* = 8.8 Hz, 2H), 7.49 – 7.38 (m, 3H), 7.35 – 7.33 (m,

4H), 7.32 - 7.24 (m, 5H), 7.15 - 7.13 (m, 1H), 6.73 (s, 1H), 6.36 (s, 1H), 4.01 (d, J = 7.1 Hz, 1H), 3.66 (s, 3H), 2.89 (d, J = 18.2 Hz, 1H), 2.79 (dd, J = 18.2, 6.9 Hz, 1H). ¹³C NMR (100 MHz, Chloroformd) δ 170.3, 145.2, 142.1, 137.7, 135.5, 135.3, 135.1, 130.3, 129.8, 128.9, 128.7, 127.4, 127.3, 126.8, 126.7, 125.9, 125.1, 122.1, 119.4, 118.9, 113.1, 109.7, 52.1, 38.3, 32.8, 24.6. HRMS (ESI-TOF) Calcd. For $C_{32}H_{27}CIN_3O$ ([M+H]⁺): 504.1837, found: 504.1826.

Trans-(3-(4-bromophenyl)-6-(1-methyl-1*H*-indol-3-yl)-5-phenyl-5,6-dihydropyridazin-1(4*H*)-yl)(phenyl)methanone (3j):

Yield (84%); 92 mg; White solid; m.p. 238-240 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.81 (d, *J* = 7.8 Hz, 1H), 7.64 (d, *J* = 7.4 Hz, 2H), 7.53 – 7.46 (m, 6H), 7.41 (t, *J* = 7.3 Hz, 2H), 7.36 – 7.35 (m, 4H), 7.31 – 7.28 (m, 2H), 7.23 – 7.19 (m, 1H), 6.73 (s, 1H), 6.36 (s, 1H), 4.01 (d, *J* = 7.1 Hz, 1H), 3.68 (s, 3H), 2.89 (d, *J* = 18.2 Hz, 1H), 2.79 (dd, *J* = 18.3, 6.9 Hz, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.4, 145.3, 142.1, 137.7, 136.0, 135.1, 131.7, 130.4, 129.9, 129.0, 127.5, 127.3, 127.0, 126.8, 126.0, 125.2, 123.7, 122.1, 119.4, 118.9, 113.1, 109.7, 52.2, 38.4, 32.9, 24.6. HRMS (ESI-TOF) Calcd. For C₃₂H₂₇BrN₃O ([M+H]⁺): 548.1332, found: 548.1316.

Trans-(6-(1*H*-indol-3-yl)-3,5-diphenyl-5,6-dihydropyridazin-1(4*H*)-yl)(phenyl)methanone (3k): Yield (80%); 72 mg; White solid; m.p. 182-183 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.23 (s, 1H), 7.82 (d, *J* = 8.8 Hz, 1H), 7.66 – 7.62 (m, 4H), 7.50 – 7.40 (m, 3H), 7.40 – 7.32 (m, 7H), 7.31 – 7.27 (m, 2H), 7.24 – 7.18 (m, 2H), 6.80 (d, *J* = 1.5 Hz, 1H), 6.40 (s, 1H), 4.01 (d, *J* = 5.4 Hz, 1H), 2.94 (d, *J* = 18.3 Hz, 1H), 2.78 (dd, J = 18.3, 7.1 Hz, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.4, 146.5, 142.2, 137.0, 136.9, 135.2, 130.2, 129.8, 129.4, 128.9, 128.5, 127.4, 127.2, 126.8, 125.5, 124.7, 122.3, 121.5, 119.7, 118.6, 114.6, 111.6, 52.1, 38.3, 24.7. HRMS (ESI-TOF) Calcd. For C₃₁H₂₆N₃O ([M+H]⁺): 456.2070, found: 456.2061.

Trans-(6-(1-benzyl-1*H*-indol-3-yl)-3,5-diphenyl-5,6-dihydropyridazin-1(4*H*)-yl)(phenyl)meth-anone (3l):

Yield (83%); 90 mg; White solid; m.p. 160-161 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.84 – 7.82 (m, 1H), 7.67 – 7.59 (m, 4H), 7.47 – 7.30 (m, 10H), 7.27 – 7.21 (m, 3H), 7.20 – 7.14 (m, 4H), 6.99 – 6.94 (m, 2H), 6.86 (s, 1H), 6.41 (s, 1H), 5.23 – 5.10 (m, 2H), 4.02 (d, *J* = 7.3 Hz, 1H), 2.92 (d, *J* = 18.3 Hz, 1H), 2.80 (dd, *J* = 18.3, 7.1 Hz, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.3, 146.6, 142.2, 137.2, 137.1, 135.2, 130.2, 129.8, 129.3, 128.9, 128.6, 128.4, 127.5, 127.3, 127.2, 126.9, 126.5, 125.7, 125.5, 125.4, 122.2, 119.6, 119.0, 113.8, 110.2, 52.0, 50.0, 38.5, 24.9. HRMS (ESI-TOF) Calcd. For C₃₈H₃₂N₃O ([M+H]⁺): 546.2540, found: 546.2530.

Trans-(6-(1-methyl-1*H*-indol-3-yl)-3-phenyl-5-(*m*-tolyl)-5,6-dihydropyridazin-1(4*H*)-yl)-(phen-yl)methanone (3m):

Yield (84%); 80 mg; White solid; m.p. 148-150 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 (d, *J* = 7.8 Hz, 1H), 7.70 – 7.65 (m, 4H), 7.49 – 7.38 (m, 3H), 7.35 – 7.21 (m, 8H), 7.13-7.05 (m, 2H), 6.74 (s, 1H), 6.34 (s, 1H), 3.97 (d, *J* = 7.2 Hz, 1H), 3.64 (s, 3H), 2.91 (d, *J* = 18.3 Hz, 1H), 2.81 (dd, *J* = 18.3, 7.0 Hz, 1H), 2.35 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.3, 146.5, 142.3, 138.4, 137.6, 137.1, 135.3, 130.2, 129.9, 129.3, 128.7, 128.4, 127.94, 127.91, 127.3, 126.0, 125.5, 125.2, 123.5,

122.0, 119.3, 118.9, 113.2, 109.6, 52.1, 38.4, 32.7, 24.9, 21.6. HRMS (ESI-TOF) Calcd. For C₃₃H₃₀N₃O ([M+H]⁺): 484.2383, found: 484.2375.

Trans-(6-(1-methyl-1*H*-indol-3-yl)-3-phenyl-5-(*p*-tolyl)-5,6-dihydropyridazin-1(4*H*)-yl)-(phen-yl)methanone (3n):

Yield (89%); 85 mg; White solid; m.p. 190-191 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.81 (d, *J* = 7.8 Hz, 1H), 7.70 – 7.64 (m, 4H), 7.45 – 7.39 (m, 3H), 7.33 – 7.19 (m, 8H), 7.14 (d, *J* = 7.9 Hz, 2H), 6.74 (s, 1H), 6.35 (s, 1H), 3.97 (d, *J* = 7.4 Hz, 1H), 3.62 (s, 3H), 2.90 (d, *J* = 18.3 Hz, 1H), 2.80 (dd, *J* = 18.3, 7.0 Hz, 1H), 2.30 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.3, 146.4, 139.2, 137.6, 137.1, 136.7, 135.2, 130.2, 129.9, 129.5, 129.3, 128.4, 127.3, 126.7, 126.0, 125.5, 125.2, 121.9, 119.3, 118.9, 113.2, 109.6, 52.1, 38.0, 32.7, 24.8, 21.0. HRMS (ESI-TOF) Calcd. For C₃₃H₃₀N₃O ([M+H]⁺): 484.2383, found: 484.2373.

Trans-(6-(1-methyl-1*H*-indol-3-yl)-3-phenyl-5-(4-(trifluoromethyl)phenyl)-5,6-dihydropyridazin-1(4*H*)-yl)(phenyl)methanone (30):

Yield (80%); 85 mg; White solid; m.p. 189-191 °C; ¹H NMR (400 MHz, Chloroform-d) δ 7.79 (d, J = 7.9 Hz, 1H), 7.71 – 7.65 (m, 4H), 7.61– 7.56 (m, 2H), 7.51 – 7.40 (m, 5H), 7.38 – 7.25 (m, 5H), 7.24 – 7.19 (m, 1H), 6.77 (s, 1H), 6.39 (s, 1H), 4.06 (d, J = 6.5 Hz, 1H), 3.66 (s, 3H), 2.93 (d, J = 18.2 Hz, 1H), 2.86 (dd, J = 18.3, 6.5 Hz, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.3, 146.3, 145.9, 137.7, 136.8, 134.9, 130.4, 129.9, 129.5 (q, J = 32.4 Hz), 128.6, 127.5, 127.4, 126.1, 125.9 (q, J = 3.7 Hz), 125.5, 125.1, 124.0 (q, J = 270.0 Hz), 122.1, 119.5, 118.7, 112.7, 109.8, 51.6, 38.4, 32.8, 24.6. HRMS (ESI-TOF) Calcd. For C₃₃H₂₇F₃N₃O ([M+H]⁺): 538.2101, found: 538.2087.

Trans-(5-(4-chlorophenyl)-6-(1-methyl-1*H*-indol-3-yl)-3-phenyl-5,6-dihydropyridazin-1(4*H*)-yl)-(phenyl)methanone (3p):

Yield (80%); 80 mg; White solid; m.p. 174-176 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.78 (d, J = 7.9 Hz, 1H), 7.71 – 7.63 (m, 4H), 7.50 – 7.39 (m, 3H), 7.34 – 7.30 (m, 4H), 7.29 – 7.17 (m, 6H), 6.73 (s, 1H), 6.34 (s, 1H), 3.97 – 3.94 (m, 1H), 3.64 (s, 3H), 2.88 (d, J = 18.3 Hz, 1H), 2.81 (dd, J = 18.3, 6.5 Hz, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 169.3, 145.0, 139.7, 136.6, 135.9, 134.0, 131.9, 129.4, 128.9, 128.5, 128.0, 127.5, 127.3, 126.4, 125.0, 124.5, 124.1, 121.1, 118.4, 117.8, 111.8, 108.7, 50.9, 36.9, 31.8, 23.7. HRMS (ESI-TOF) Calcd. For C₃₂H₂₇ClN₃O ([M+H]⁺): 504.1837, found: 504.1826.

Trans-(5-(4-bromophenyl)-6-(1-methyl-1*H*-indol-3-yl)-3-phenyl-5,6-dihydropyridazin-1(4*H*)-yl)(phenyl)methanone (3q):

Yield (78%); 85 mg; White solid; m.p. 184-185 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.77 (d, J = 5.3 Hz, 1H), 7.69 – 7.64 (m, 4H), 7.47 – 7.41 (m, 5H), 7.35 – 7.21 (m, 7H), 7.20 (dd, J = 6.6, 1.6 Hz, 1H), 6.74 (s, 1H), 6.35 (s, 1H), 3.96 (d, J = 4.5 Hz, 1H), 3.64 (s, 3H), 2.88 (d, J = 16.5 Hz, 1H), 2.81 (dd, J = 18.3, 6.5 Hz, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.2, 146.0, 141.2, 137.6, 136.8, 135.0, 131.9, 130.4, 129.9, 129.5, 128.6, 128.5, 127.4, 126.0, 125.4, 125.1, 122.0, 121.0, 119.4, 118.7, 112.8, 109.7, 51.8, 38.0, 32.8, 24.6. HRMS (ESI-TOF) Calcd. For C₃₂H₂₇BrN₃O ([M+H]⁺): 548.1332, found: 548.1320.

Trans-(6-(1-methyl-1*H*-indol-3-yl)-3-phenyl-5-(*o*-tolyl)-5,6-dihydropyridazin-1(4*H*)-yl)-(phen-yl)methanone (3r):

Yield (72%); 69 mg; White solid; m.p. 194-196 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.79 (d, *J* = 7.9 Hz, 1H), 7.62 (dd, *J* = 10.4, 6.6 Hz, 4H), 7.36 (dt, *J* = 14.2, 7.0 Hz, 3H), 7.30 – 7.19 (m, 6H), 7.17 – 7.06 (m, 4H), 6.71 (s, 1H), 6.17 (s, 1H), 4.10 (d, *J* = 6.7 Hz, 1H), 3.59 (s, 3H), 2.84 (dd, *J* = 18.4, 6.7 Hz, 1H), 2.77 (d, *J* = 18.3 Hz, 1H), 2.63 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.4, 147.3, 140.7, 137.6, 137.1, 135.6, 135.3, 131.0, 130.3, 130.0, 129.4, 128.5, 127.4, 127.2, 126.7, 126.6, 125.6, 125.4, 125.3, 121.9, 119.4, 119.1, 113.4, 109.7, 50.4, 34.9, 32.9, 25.4, 20.6. HRMS (ESI-TOF) Calcd. For C₃₃H₃₀N₃O ([M+H]⁺): 484.2383, found: 484.2373.

Trans-5-methyl-6-(1-methyl-1*H*-indol-3-yl)-3-phenyl-5,6-dihydropyridazin-1(4*H*)-yl)(phenyl)-methanone (3s):

Yield (82%); 66 mg; White solid; m.p. 153-155 °C; 1.5:1 dr; major: ¹H NMR (400 MHz, Chloroformd) δ 7.83 (s, 1H), 7.74 (d, J = 6.6 Hz, 2H), 7.62 – 7.57 (m, 2H), 7.44 – 7.39 (m, 3H), 7.33 – 7.29 (m, 3H), 7.20 (s, 1H), 7.16 – 7.09 (m, 2H), 6.69 (s, 1H), 6.07 (s, 1H), 3.62 (s, 3H), 2.74 (d, J = 19.3 Hz, 1H), 2.38 (dd, J = 17.4, 5.7 Hz, 2H), 1.26 (d, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 170.6, 146.8, 137.6, 136.5, 135.4, 130.0, 129.9, 129.1, 128.3, 127.4, 126.6, 125.5, 125.4, 121.8, 119.4, 119.0, 113.6, 109.5, 50.0, 32.7, 27.9, 26.6, 18.9. minor: ¹H NMR (400 MHz, Chloroform-d) δ 7.76 (s, 1H), 7.62 – 7.58 (m, 2H), 7.57 (s, 1H), 7.39 (t, J = 7.9 Hz, 3H), 7.29 – 7.26 (m, 2H), 7.18 (dd, J = 8.0, 3.6 Hz, 4H), 7.11 (d, J = 8.4 Hz, 1H), 6.66 (s, 1H), 6.14 (s, 1H), 3.57 (s, 3H), 2.74 (d, J = 17.0 Hz, 1H), 2.45 (dd, J = 17.8, 6.1 Hz, 2H), 0.98 (d, J = 6.4 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 169.5, 145.6, 137.6, 137.2, 135.6, 130.2, 129.9, 129.1, 128.4, 127.9, 127.2, 125.7, 125.3, 121.6, 119.6, 119.1, 111.5, 109.2, 52.1, 32.7, 28.1, 27.5, 18.4. HRMS (ESI-TOF) Calcd. For C₂₇H₂₅N₃ONa ([M+Na]⁺): 430.1890, found: 430.1881.

Trans-(6-(4-bromo-1-methyl-1*H*-indol-3-yl)-3,5-diphenyl-5,6-dihydropyridazin-1(4*H*)-yl)(phen-yl)methanone (3t):

Yield (78%); 85 mg; White solid; m.p. 236-237 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.62 – 7.58 (m, 4H), 7.40 – 7.32 (m, 5H), 7.28 – 7.22 (m, 6H), 7.14 (d, *J* = 5.4 Hz, 2H), 7.00 (t, *J* = 7.9 Hz, 1H), 6.85 (s, 1H), 6.71 (s, 1H), 4.08 (d, *J* = 6.7 Hz, 1H), 3.54 (s, 3H), 2.89 (d, *J* = 18.2 Hz, 1H), 2.74 (dd, *J* = 18.2, 6.9 Hz, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.1, 146.4, 142.1, 138.8, 137.1, 135.2, 130.3, 130.0, 129.3, 128.7, 128.5, 127.6, 127.4, 127.03, 127.01, 125.5, 124.3, 123.9, 122.8, 114.7, 113.9, 108.8, 50.6, 38.8, 33.1, 24.8. HRMS (ESI-TOF) Calcd. For C₃₂H₂₆BrN₃ONa ([M+Na]⁺): 570.1151, found: 570.1141.

Trans-(6-(6-chloro-1-methyl-1*H*-indol-3-yl)-3,5-diphenyl-5,6-dihydropyridazin-1(4*H*)-yl)(phen-yl)methanone (3u):

Yield (78%); 78 mg; White solid; m.p. 206-208 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.71 – 7.65 (m, 5H), 7.50 – 7.39 (m, 3H), 7.37 – 7.32 (m, 7H), 7.30 – 7.25 (m, 2H), 7.18 – 7.15 (m, 1H), 6.75 (s, 1H), 6.31 (s, 1H), 3.94 (d, *J* = 7.5 Hz, 1H), 3.62 (s, 3H), 2.96 (d, *J* = 18.3 Hz, 1H), 2.81 (dd, *J* = 18.3, 7.1 Hz, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.4, 146.4, 142.1, 138.1, 137.0, 135.1, 130.4, 130.0, 129.5, 129.0, 128.6, 128.3, 127.5, 127.3, 126.9, 126.8, 125.6, 123.8, 120.1, 119.8, 113.6, 109.8, 51.9, 38.6, 33.0, 24.7. HRMS (ESI-TOF) Calcd. For C₃₂H₂₇ClN₃O ([M+H]⁺): 504.1837, found: 504.1830.

Trans-(6-(5-bromo-1-methyl-1*H*-indol-3-yl)-3,5-diphenyl-5,6-dihydropyridazin-1(4*H*)-yl)(phen-yl)methanone (3v):

Yield (83%); 90 mg; White solid; m.p. 246-248 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.92 (s, 1H), 7.68 – 7.66 (m, 4H), 7.49 – 7.33 (m, 11H), 7.28 – 7.25 (m, 1H), 7.16 (d, *J* = 8.7 Hz, 1H), 6.74 (s, 1H), 6.29 (s, 1H), 3.94 (d, *J* = 7.4 Hz, 1H), 3.63 (s, 3H), 2.97 (d, *J* = 18.4 Hz, 1H), 2.80 (dd, *J* = 18.3, 7.1 Hz, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.3, 146.4, 141.9, 137.0, 136.4, 135.0, 130.4, 130.0, 129.5, 129.0, 128.6, 127.5, 127.4, 127.3, 126.90, 126.88, 125.6, 125.0, 121.5, 112.94, 112.88, 111.3, 51.8, 38.4, 33.0, 24.8. HRMS (ESI-TOF) Calcd. For C₃₂H₂₇BrN₃O ([M+H]⁺): 548.1332, found: 548.1319.

Trans-(6-(1,5-dimethyl-1*H*-indol-3-yl)-3,5-diphenyl-5,6-dihydropyridazin-1(4*H*)-yl)-(phenyl)methanone (3w):

Yield (74%); 71 mg; White solid; m.p. 192-194 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.67 (t, J = 6.8 Hz, 4H), 7.58 (s, 1H), 7.47 – 7.36 (m, 6H), 7.35 – 7.32 (m, 4H), 7.25 (t, J = 7.1 Hz, 1H), 7.18 (d, J = 8.3 Hz, 1H), 7.09 (d, J = 6.9 Hz, 1H), 6.70 (s, 1H), 6.35 (s, 1H), 4.00 (d, J = 7.2 Hz, 1H), 3.61 (s, 3H), 2.94 (d, J = 18.2 Hz, 1H), 2.83 (dd, J = 18.3, 6.9 Hz, 1H), 2.52 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.2, 146.2, 142.3, 137.1, 136.1, 135.2, 130.2, 129.9, 129.3, 128.9, 128.53, 128.45, 127.3, 127.1, 126.9, 126.0, 125.5, 125.4, 123.6, 118.5, 112.6, 109.4, 52.0, 38.2, 32.8, 24.7, 21.6. HRMS (ESI-TOF) Calcd. For C₃₃H₃₀N₃O ([M+H]⁺): 484.2383, found: 484.2375.

Trans-6-(5-methoxy-1-methyl-1*H*-indol-3-yl)-3,5-diphenyl-5,6-dihydropyridazin-1(4*H*)-yl)-(phe-nyl)methanone (3x):

Yield (80%); 79 mg; White solid; m.p. 192-194 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.69 – 7.65 (m, 4H), 7.50 – 7.39 (m, 4H), 7.37 – 7.32 (m, 7H), 7.23 – 7.22 (m, 1H), 7.19 (d, *J* = 8.8 Hz, 1H), 6.94 – 6.92 (m, 1H), 6.74 (s, 1H), 6.32 (s, 1H), 3.96 (d, *J* = 7.1 Hz, 1H), 3.89 (s, 3H), 3.64 (s, 3H), 2.96 (d, *J* = 18.3 Hz, 1H), 2.86 (dd, *J* = 18.3, 6.9 Hz, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.4, 154.0, 146.4, 142.4, 137.1, 135.3, 133.1, 130.3, 130.0, 129.4, 129.0, 128.5, 127.4, 127.2, 127.0, 126.9, 126.6, 125.5, 112.8, 112.1, 110.5, 101.1, 56.1, 52.0, 38.5, 33.0, 24.9. HRMS (ESI-TOF) Calcd. For C₃₃H₃₀N₃O₂ ([M+H]⁺): 500.2333, found: 500.2320.

III. Optimization reaction conditions for the asymmetric IEDDA cyclization

As shown in Table S1, a series of chiral oxazoline ligands was firstly examined in the Cu-catalyzed inverse-electron-demand aza-Diels-Alder (IEDDA) reaction between *in situ* generated azoalkene and 3-vinylindole **1a** in the presence of Na₂CO₃, and ligand **L3** could deliver the desired product **opt-3a** with the best result in 72% yield and 75% ee (entry 3). Subsequently, the solvent effect was investigated in the Cu(OTf)₂/**L3** catalytic system, this transformation was proceeded smoothly in several solvents, such as THF, MeCN and DCE (entries 5-7), and high yield and good enantioselectivity was given in MeCN (entry 6, 96% yield, 89% ee). It was found that another metal precursor Cu(MeCN)₄BF₄ also can provide similar reaction result with Cu(OTf)₂ (entry 9 *vs* entry 6, 93% yield, 89% ee). In addition, when the azoalkene was generated *in situ* from (*Z*)-*N'*-(2-chloro-1-phenylethylidene)benzohydrazide in the presence of Na₂CO₃, good yield and better enantioselectivity was afforded (entry 10, 81% yield, 93% ee). Some bases, such as NaHCO₃, K₂CO₃ and K₃PO₄, were also inspected into this asymmetric cycloaddition reaction, poor to good reaction results could be provided (entries 11-13, 32-82% yields, 15%-89% ee).

				Ph			
	Ph P + P Ph	h 0 N NH [Cu]/L (10 mol %) base (2.4 eq.), solve > 20:1 dr) P ent	h N Ph		L1: R = Ph L2: R = ${}^{t}Bu$ L3: R = ${}^{i}Pr$	N PPh ₂ L4
entry	ligand	[Cu]	Х	base	solvent	yield $(\%)^b$	ee (%) ^c
1	L1	Cu(OTf) ₂	Br	Na ₂ CO ₃	DCM	75	21
2	L2	Cu(OTf) ₂	Br	Na ₂ CO ₃	DCM	76	30
3	L3	Cu(OTf) ₂	Br	Na ₂ CO ₃	DCM	72	75
4	L4	Cu(OTf) ₂	Br	Na ₂ CO ₃	DCM	57	19
5	L3	Cu(OTf) ₂	Br	Na ₂ CO ₃	THF	75	0
6	L3	Cu(OTf) ₂	Br	Na ₂ CO ₃	MeCN	96	89
7	L3	Cu(OTf) ₂	Br	Na ₂ CO ₃	DCE	91	31
8	L3	(CuOTf•1/2Ph) ₂	Br	Na ₂ CO ₃	MeCN	67	73
9	L3	Cu(MeCN)4BF4	Br	Na ₂ CO ₃	MeCN	93	89
10	L3	Cu(OTf) ₂	Cl	Na ₂ CO ₃	MeCN	81	93
11	L3	Cu(OTf) ₂	Cl	NaHCO ₃	MeCN	82	89
12	L3	Cu(OTf) ₂	Cl	K ₂ CO ₃	MeCN	76	73
13	L3	Cu(OTf) ₂	Cl	K ₃ PO ₄	MeCN	32	15

Table S1. Optimization reaction conditions for the asymmetric IEDDA cyclization.^a

^{*a*} Reaction conditions: **1a** (0.14 mmol), **2a** (0.10 mmol), [Cu] (0.010 mmol), ligand (0.012 mmol), base (0.24 mmol) in 1 mL solvent at room temperature for 24 h. The dr value was determined by the crude ¹H NMR analysis. ^{*b*} Yield was obtained after chromatographic purification. ^{*c*} The ee value was determined by HPLC analysis.

IV. Gram-scale inverse-electron-demand aza-Diels-Alder reaction

A flame dried Schlenck tube was cooled to room temperature and filled with N₂. 3-vinylindole **1a** (5.6 mmol), the azoalkene generating *in situ* from benzohydrazide **2g** (4.0 mmol), Na₂CO₃ (9.6 mmol) and CH₃CN (40 mL) were added into the Schlenck tube and filled with N₂ at room temperature. TLC analysis indicated completion of the reaction after about 30 h. Then the reaction mixture was

concentrated *in vacuo* to obtain the crude product. The crude product was purified by flash silica gel chromatography to afford the product **3g** in 72% yield (1.32 g).

V. Synthetic transformation

To a solution of 3g (0.2 mmol) in 1 mL CH₂Cl₂ was added CF₃COOH (0.6 mmol) at room temperature, and the corresponding mixture was stirred at this temperature until the reaction completed (monitoring by TLC). The solvent was removed under reduced pressure and the residue was purified by column chromatography (PE:EA = 3:1) on silica gel to afford desired compound **4** in 62% yield.

To a solution of **3v** (0.10 mmol) in THF/H₂O (4:1 v/v) was added Pd(PPh₃)₄ (0.01 mmol), phenylboronic acid (0.20 mmol) and K₂CO₃ (20.7 mg, 0.15 mmol). The resulting mixture was stirred at 100 °C for 24 h under argon atmosphere. After the completion of the reaction which was indicated by TLC, water (5 mL) was added to the reaction mixture, which was then extracted with ethyl acetate (3 ×5 mL). The combined organic layers were dried and concentrated under the reduced pressure to give a residue. Finally, the residue was purified by preparative thin layer chromatography (PE:DCM = 1:1) on silica gel to afford pure product **5** in 80% yield.

Trans-3-(4,6-diphenyl-2,3,4,5-tetrahydropyridazin-3-yl)-1-methyl-1H-indole (4):

Yield (62%); 45 mg; Yellow liquid; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.74 (d, *J* = 7.1 Hz, 2H), 7.68 (d, *J* = 7.9 Hz, 1H), 7.36 (t, *J* = 7.3 Hz, 2H), 7.29 (t, *J* = 8.0 Hz, 2H), 7.19 – 7.15 (m, 4H), 7.12 – 7.04 (m, 4H), 6.83 (s, 1H), 4.57 (d, *J* = 9.7 Hz, 1H), 3.61 (s, 3H), 3.06 (dd, *J* = 18.2, 6.4 Hz, 1H), 2.91 (dd, *J* = 18.2, 10.0 Hz, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 143.7, 143.0, 138.1, 137.0, 128.5, 128.4, 127.9, 127.69, 127.65, 126.61, 126.60, 124.5, 121.6, 119.6, 119.1, 112.7, 109.3, 55.4, 43.1, 32.7, 32.0. HRMS (ESI-TOF) Calcd. For C₂₅H₂₄N₃ ([M+H]⁺): 366.1965, found: 366.1957.

Trans-(6-(1-methyl-5-phenyl-1H-indol-3-yl)-3,5-diphenyl-5,6-dihydropyridazin-1(4H)-yl)(phen-yl)methanone (5):

Yield (80%); 44 mg; White solid; m.p. 214-216 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.98 (s, 1H), 7.69 (d, *J* = 6.9 Hz, 6H), 7.54 – 7.38 (m, 7H), 7.38 – 7.31 (m, 8H), 7.28 – 7.25 (m, 1H), 6.79 (s, 1H), 6.42 (s, 1H), 4.03 (d, *J* = 7.1 Hz, 1H), 3.69 (s, 3H), 2.97 (d, *J* = 18.3 Hz, 1H), 2.87 (dd, *J* = 18.3, 6.9 Hz, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.4, 146.4, 142.5, 142.2, 137.3, 137.1, 135.2, 133.1, 130.4, 130.0, 129.4, 129.0, 128.8, 128.6, 127.6, 127.4, 127.3, 126.9, 126.8, 126.5, 125.7, 125.6, 122.1, 117.5, 113.7, 110.0, 52.0, 38.6, 33.0, 24.9. HRMS (ESI-TOF) Calcd. For C₃₈H₃₂N₃O ([M+H]⁺): 546.2467, found: 546.2520.

VI. The configuration determination of trans-3b

In a 10 mL oven-dried glass sample vial, 40 mg pure **3b** and 1.0 mL CH_2Cl_2 were added, and then 3 mL *n*-hexane was slowly added to the solution, which was sealed with perforated paper at room temperature to grow crystals.³

Bond precision: C-C = 0.0077 ÅWavelength = 0.71073Cell:a = 10.973(3)b = 27.895(9)c = 9.090(3)

	alpha = 90	beta = 112.891(6)	gamma = 90
Temperature:	200 K		
	Calculated	Reported	
Volume	2563.3(14)	2563.3(14	-)
Space group	P 21/c	P 1 21/c 1	
Hall group	-P 2ybc	-P 2ybc	
Moiety formula	C33 H29 N3 O2	C33 H29 1	N3 O2
Sum formula	C33 H29 N3 O2	C33 H29 I	N3 O2
Mr	499.59	499.59	
Dx,g cm-3	1.295	1.295	
Ζ	4	4	
Mu (mm-1)	0.081	0.081	
F000	1056.0	1056.0	
F000'	1056.41		
h,k,lmax	13,33,10	13,33,10	
Nref 4514		4384	
Tmin,Tmax	0.994, 0.996	0.511, 0.7	745
Tmin'	0.992		
Correction meth	d = # Reported T	Limits: Tmin = 0.511	Tmax = 0.745
AbsCorr = MUI	TI-SCAN		
Data completene	ess = 0.971	Theta(max) = 25.000	
R(reflections) =	0.1067(3111)	wR2(reflections) = 0.2	2845(4384)
S = 1.193		Npar = 345	

VII. Reference

1. Gao H.-Y.; Wu X.-X.; Zhang J.-L. Gold(I)-Catalyzed, Highly Diastereoselective, Tandem Heterocyclizations/[3+2] Cycloadditions: Synthesis of Highly Substituted Cyclopenta[c]furans. *Chem. Eur. J.* **2011**, *17*, 2838.

2. Chen J.-R.; Dong W.-R.; M. Candy; Pan F.-F.; M. Jörres; C. Bolm. Enantioselective Synthesis of

Dihydropyrazoles by Formal [4+1] Cycloaddition of in Situ-Derived Azoalkenes and Sulfur Ylides. *J. Am. Chem. Soc.* **2012**, *134*, 6924.

3. CCDC 2077849 (3b) contains the supplementary crystallographic data for this paper.

VIII. ¹H NMR and ¹³C NMR spectra

S21

S33

$$\begin{array}{c} & 7.7612 \\ & 7.56161 \\ & 7.56888 \\ & 7.56888 \\ & 7.56888 \\ & 7.56888 \\ & 7.5688 \\ & 7.5681 \\ & 7.5831 \\ & 7.1623 \\ & 7.1630 \\$$

3.96823.95053.395053.388353.388353.63632.92042.92142.89212.84652.84652.84652.8465

IX. HPLC spectra

Data File E:\DATA\CTT\CTT\CTT-3A 2021-01-25 19-46-02\CTT-3a1.D Sample Name: ctt-3a-rac

Acq. Operator :	SYSTEM Seq. Line : 2
Acq. Instrument :	1260 Locat i on : 31
Injection Date :	1/25/2021 7:54:09 PM Ini: 1
	l ni Volume : 15.000 μl
Aca. Method :	E:\DATA\CTT\CTT\CTT-3A 2021-01-25 19-46-02\IE-60-40-1.2mL-15uI-alInm-40min.
00002000 D	Μ
Last changed :	1/25/2021 7:46:02 PM by SYSTEM
Analysis Method :	E: \ DATA\ CTT\ CTT\ CTT- 3A 2021- 01- 25 19- 46- 02\ E- 60- 40- 1, 2mL- 15ul - al nm 40mi n.
,	M (Sequence Net hod)
Last changed :	1/28/2021 7:38:02 PM by SYSTEM
Last shanged .	(modified after loading) (Ourrent integration events modified)
Additional Info	(noar i o a ar o i o car og (car o a con o con
DAD1 D. Sig	=230.4 Ref=360.100 (E:\DATA\CTT\CTT\CTT-3A 2021-01-25 19-46-02\CTT-3a1.D)
mAU 1	· · · · · · · · · · · · · · · · · · ·
	33 (8)
100 -	2,2
-	$\langle \rangle$
80 -	
-	
60 -	
1	
-	
40 -	
-	
-	
20 -	
-	
0	
24	20 28 30 32 34 30 38 11
	Area Percent Report
Sorted By	: Signal
Multiplier	1 0000
Dilution	1,0000
Do not uno Multir	alier & Dilution Factor with LSTD
LO NOT USE MUITIP	The a difution factor with site
~	
Signal 1: DAD1 D,	Sig=230, 4 Het =360, 100
Peak Ret Time Type	ə Width Area Height Area
# [min]	[min] [mAU*s] [mAU] %
	.
1 28.656 BB	1. 1053 7886. 20508 109. 09609 50. 0699
2 34.233 BB	1. 2156 7864. 18555 94. 04229 49. 9301
Totals:	1.57504e4 203.13838

*** End of Report ***

1260 1/ 28/ 2021 7: 38: 45 PM SYSTEM

Page 1 of 1

Data File E:\DATA\CTT\CTT\CTT-3A 2021-01-25 19-46-02\CTT-3a2.D Sample Name: ctt-3a-opt

Acq. Operator :	SYSTEM Seq. Li ne : 3
Aca. Instrument :	1260 Location : 32
Injection Date :	1/25/2021 8:35:07 PM Ini: 1
	Ini Volume : 15.000 µl
Aca. Method :	E:\DATA\CTT\CTT\CTT-3A_2021-01-25_19-46-02\E-60-40-1_2mL-15u -a nm+40min.
	Μ
Last changed :	1/25/2021 7:46:02 PM by SYSTEM
Analysis Method :	E-\ DATA) CTL CTL CTL 3A 2021-01-25 19-46-02\ E-60-40-1 2ml - 15ul - al L nm 40mi n
And yor o not nod .	M (Sequence Method)
last changed .	1/28/2021 7:38:02 PM by SVSTEM
Last changed .	(modified after Loading) (Our ent integration events modified)
Additional Info:	Peak(s) manually integrated
	Tean(s) manuariy imegrateu
mall	
-	\ ^{\$}
200	
-	
450	
150 -	
100 -	
-	
50	
50	
30	88
30	78°662
0	58.662
0	26 28 30 32 34 36 38 min
0-24	Signature Signature 88
0 - 24	Sign
0	No No<
	Signature Signature 26 28 30 32 34 36 38 min Ar ea Per cent Report
	Ng Ng 26 28 30 32 34 36 38 min
0 24 Sorted By	Signal
o 24 Sorted By Multiplier	Signal Signal : 1.0000
Sorted By Multiplier Diution	Signal : Signal : 1.0000 : 1.0000
Sorted By Multiplier Dilution Do not use Multip	Ar ea Per cent Report : Si gnal : 1.0000 : 1.0000 : 1.0000
Sorted By Multiplier Diution Do not use Multip	Signal 26 28 30 32 34 36 38 min Area Percent Report . Signal 1 1.0000 1.0000 1.0000 1.0000 1.0000 i 1.0000 1.0000 1.0000 1.0000 1.0000
Sorted By Multiplier Diution Do not use Multip	Signal : Signal : 1.0000 : 1.0000 : 1.0000 : 1.0000 : 1.0000 : 1.0000 : 1.0000
Sorted By Multiplier Diution Do not use Multip	30 32 34 36 38 min 26 28 30 32 34 36 38 min Area Percent Report
Sorted By Multiplier Dilution Do not use Multip Signal 1: DAD1 D,	Signal : Signal : 1.0000 : 1.0000 : 1.0000 : 1.0000 Sig=230, 4 Ref = 360, 100
Sorted By Multiplier Dilution Do not use Multip Signal 1: DAD1 D, Peak BetTime Turce	Image: Signal Image: Signal Image: Signal
Sorted By Multiplier Dilution Do not use Multip Signal 1: DAD1 D, Peak RetTime Type	Signal : Signal : 1.0000 : 1.0000 : 1.0000 : 1.0000 : 1.0000 : 1.0000 : 1.0000 : 1.0000 : 1.0000 : 1.0000 : 1.0000 : 1.0000 : 1.0000 : 1.0000 : 1.0000 : 1.0000 : 1.0000 : 1.0000 : 1.0000 Width Area Height Area (riph) [rm0]#
Sorted By Multiplier Dilution Do not use Multip Signal 1: DAD1 D, Peak RetTime Type # [min]	Signal
Sorted By Multiplier Dilution Do not use Multip Signal 1: DAD1 D, Peak RetTime Type # [min]	Signal 26 28 26 28 30 32 34 36 38 min Ar ea Per cent Report
Sorted By Multiplier Dilution Do not use Multip Signal 1: DAD1 D, Peak RetTime Type # [min]	Signal 26 28 26 28 30 32 34 36 36 38 min Ar ea Per cent Report
Sorted By Multiplier Dilution Do not use Multip Signal 1: DAD1 D, Peak RetTime Type # [min] 1 28.662 BB 2 34.035 BB	Image: Signal Image: Signal Image: Signal
Sorted By Multiplier Dilution Do not use Multip Signal 1: DAD1 D, Peak RetTime Type # [min] 1 28.662 BB 2 34.035 BB	Image: Signal Image: Signal Image: Signal
Sorted By Multiplier Diution Do not use Multip Signal 1: DAD1 D, Peak RetTime Type # [min] 	Image: Signal Image: Signal Image: Signal

*** End of Report ***

1260 1/ 28/ 2021 7: 38: 07 PM SYSTEM

Page 1 of 1
