Alkali-Amide-Catalyzed Divergent sp² and sp³ C–H Alkylation of

Alkylthiophenes with Alkenes

Yan-Long Luo^a, Hui-Zhen Du^a and Bing-Tao Guan^{b*}

^aCollege of Chemistry, Nankai University, Tianjin 300071, China

^b Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China.

E-mail: bguan@fudan.edu.cn

Table of Contents

1. General Information	1
2. Optimization of Reaction Conditions	2
3. General Procedure and Analytical Data for Compounds 3 and 4	4
4. Kinetic Isotope Effect Experiments	14
5. Deprotonation Experiments	16
6. References	18
7. ¹ H and ¹³ C NMR Spectral Charts	19

1. General Information

All manipulations of air- and moisture-sensitive compounds were performed under an argon atmosphere by use of standard Schlenk techniques or a nitrogen atmosphere in a Mikrouna glovebox. THF, Et₂O, TBME and benzene were dried by distillation over sodium/benzophenone. THF-d⁸, benzene-d⁶, TMEDA, 18-crown-6, 12-crown-4, most thiophene and olefins purchased from innochem, J&K and TCI were dried over CaH₂, degassed and kept in a glovebox prior to use. Li[N(SiMe₃)₂] (1.0 M in THF), LiCH₂SiMe₃ (0.55 M in hexane) and lithium diisopropylamide (LDA) (2.0 M solution in THF/ hexane) were purchased from J&K. After a process for removing the solvents in vacuum, the metal amides were kept as solids under -30 °C in a glove box. NaDA^[1], KDA^[1], thiophene derivatives^[2], 5-D-2-butylthiophene^[3] (1c-D), 2-(butyl-1,1-D₂)thiophene^[4] (1c-D') and 2-butylthiophene lithium (1c-Li)^[3] were prepared according to procedures described in the literatures. TLC were performed on silica gel Huanghai HSGF254 plates and visualization of the developed chromatogram was performed by fluorescence quenching (λ_{max} = 254 nm). Flash chromatography was performed using Silica gel (200-300 mesh) purchased from Qingdao Haiyang Chemical Co., China. ¹H NMR and ¹³C NMR were recorded on a Bruker AV 400 (400 MHz for ¹H, 101 MHz for ¹³C) instrument in CDCl₃ with tetramethylsilane as an internal standard. Data were reported as follows: chemical shift in ppm (δ), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant (Hz), integration. High resolution mass spectra (HRMS) were recorded on an Agilent GCQTOF 7200 GC/MS with Electron Ionization (EI) resource.

2. Optimization of Reaction Conditions

	→ ^H + -	Cataly Ligar	yst (20 mol%) nd (20 mol%)		Ph +	H,P
H `S´	η	Ph Sol	vent 0.2 mL	H ⁻ S ⁻	+	$\int s \sim s$
1a		2a	24 N	3aa		4aa
Entry	Catalyst	T (°C)	Solvent	Additive	Yield (%) ^b 3aa/4aa	Ratio 3aa / 4aa ^c
1	LiHMDS	120	TMEDA	-	0/0	0/0
2	NaHMDS	120	TMEDA	-	0/0	0/0
3	KHMDS	120	TMEDA	-	5/0	4.4/1
4	LDA	120	TMEDA	-	0/31	1/22
5	NaDA	120	TMEDA	-	0/0	0/0
6	KDA	120	TMEDA	-	0/0	0/0
7	LiCH ₂ TMS	120	TMEDA	-	0/30	1/22
8	KHMDS	120	TMEDA	18-crown-6	32/0	> 20/1
9	KHMDS	80	TMEDA	18-crown-6	46/0	> 20/1
10	KHMDS	30	TMEDA	18-crown-6	64/0	> 20/1
11^d	KHMDS	30	TMEDA	18-crown-6	26/0	> 20/1
12 ^{<i>d</i>}	KHMDS	30	THF	18-crown-6	48/0	> 20/1
13 ^{<i>d</i>}	KHMDS	30	Et ₂ O	18-crown-6	60/0	> 20/1
14^d	KHMDS	30	TBME	18-crown-6	60/0	> 20/1
15 ^{<i>d</i>}	KHMDS	30	Benzene	18-crown-6	35/0	> 20/1
16 ^e	KHMDS	30	TBME	18-crown-6	86(80)/0	> 20/1
17	LDA	100	TMEDA	-	0/44	1/28
18	LDA	90	TMEDA	-	0/49	1/29
19	LDA	80	TMEDA	-	0/50	1/39
20	LDA	75	TMEDA	-	0/63	1/35
21	LDA	70	TMEDA	-	0/60	1/33
22	LDA	65	TMEDA	-	0/40	1/27
23 ^f	LDA	75	TMEDA	-	0/85(80)	< 1/20

Table S1. Optimization of reaction conditions^a

^{*a*}Conditions: 2-ethylthiophene (**1a**) (1.0 mmol), styrene (**2a**) (0.5 mmol), catalyst (20 mol%), solvent (0.2 mL), 24 h. ^{*b*}NMR yields based on styrene with 2-methoxynaphthalene as an internal standard. ^cDetermined by GC analysis. ^{*d*}KHMDS (10 mol%), 18-crown-6 (10 mol%), solvent (0.5 mL); ^{*e*}2-ethylthiophene (**1a**) (2.0 mmol), styrene (**2a**) (0.5 mmol), KHMDS (10 mol%), 18-crown-6 (15 mol%), TBME (0.5 mL), 36 h, isolated yield in parentheses. ^{*f*}2-ethylthiophene (**1a**) (0.5 mmol), styrene (**2a**) (2.0 mmol), LDA (20 mol%), TMEDA (0.3 mL), 36 h, isolated yield in parentheses.

H S	H + Ph $\frac{LC}{So}$	DA (20 mol%) Ivent (0.2 mL) 120 °C, 24 h 4	→ ← Ph aa
Entry	Solvent	Additive	4aa Yield (%) ^b
1	THF	-	21
2	Benzene	-	0
3	PMDTA	-	0
4	TMEDA	12-crown-4	0
5	TMEDA	-	31
6	-	-	0

Table S2. Screening of solvents for LDA catalyzed 2-ethylthiophene sp² C-H alkylation reaction^a

^aConditions: 2-ethylthiophene (**1a**) (1.0 mmol), styrene (**2a**) (0.5 mmol), LDA (20 mol%), solvent (0.2 mL), 120 °C, 24 h. ^bNMR yields based on styrene with 2-methoxynaphthalene as an internal standard.

Table	S3.	Screening	of	temperature	and	ratio	for	LDA	catalyzed	2-ethylthiophene	sp ² C-F
alkyla	tion	reaction ^a									

H S 1a	$\frac{H}{2a} + \frac{LD}{TME}$	A (20 mol%) EDA (0.2 mL) °C, 24 h 4aa	∕Ph
Entry	T (°C)	Ratio (1a: 2a)	4aa Yield (%) ^b
1	100	2:1	44
2	90	2:1	49
3	80	2:1	50
4	75	2:1	63
5	70	2:1	60
6	65	2:1	40
7	75	1:1	54
8	75	1:2	76
9	75	1:3	79
10^c	75	1:3	81
11 ^c	75	1:4	82
$12^{c,d}$	75	1:4	85(80)

^{*a*}Conditions: 2-ethylthiophene (**1a**) (0.5 mmol), LDA (20 mol%), TMEDA (0.2 mL), 24 h. ^{*b*}NMR yields based on styrene with 2-methoxynaphthale-ne as an internal standard, isolated yields in parentheses. ^{*c*}0.3 mL TMEDA. ^{*d*}36 h.

3. General Procedure and Analytical Data for Compounds 3 and 4

Typical procedure for KHMDS catalyzed benzylic sp³ C-H Bond alkylation of alkylthiophene:

To a 25-mL Schlenk tube equipped with a Teflon septum and magnetic stir bar were added 2ethylthiophene **1a** (2.0 mmol, 224.4 mg), 4-methylstyrene **2b** (0.5 mmol, 59.1 mg), KHMDS (10.0 mg, 0.05 mmol), 18-crown-6 (0.075 mmol, 19.8 mg), TBME (0.5 mL). The mixture was heated at 40 $^{\circ}$ C for 48 h and cooled to room temperature. The direct purification by silica gel column chromatography (hexane) afforded compound **3ab** as a colorless oil (81.1 mg, 70 %).

Typical procedure for LDA catalyzed sp² C-H bond alkylation of alkylthiophene:

To a 25-mL Schlenk tube equipped with a Teflon septum and magnetic stir bar were added 2ethylthiophene **1a** (0.5 mmol, 56.1 mg), 4-methylstyrene **2b** (2.0 mmol, 236.4 mg), LDA (11.3 mg, 0.10 mmol), TMEDA (0.30 mL). The mixture was heated at 80 °C for 60 h and cooled to room temperature. The direct purification by silica gel column chromatography (hexane) afforded compound **4ab** as a colorless oil (87.8 mg, 76% yield).

2-(4-phenylbutan-2-yl) thiophene (3aa).^[5] Colorless oil, 86.0 mg (80% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.22 (m, 2H), 7.20-7.09 (m, 4H), 6.96-6.89 (m, 1H), 6.80 (d, *J* = 3.2 Hz, 1H), 3.11-3.00 (m, 1H), 2.58 (t, *J* = 8.0 Hz, 2H), 2.01-1.87 (m, 2H), 1.34 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 151.69, 142.34, 128.54, 128.45, 126.59, 125.87, 122.93, 122.66, 41.13, 35.04, 33.75, 23.53.

2-(4-(*p***-tolyl)butan-2-yl)thiophene (3ab)**. Colorless oil, 81.1 mg (70% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.16-7.13 (m, 1H), 7.10-7.04 (m, 4H), 6.96-6.90 (m, 1H), 6.85-6.79 (m, 1H), 3.09-3.01 (m, 1H), 2.55 (t, *J* = 8.0 Hz, 2H), 2.31 (s, 3H), 1.97-1.88 (m, 2H), 1.34 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) 151.80, 139.25, 135.29, 129.14, 128.42, 126.58, 122.91, 122.63, 41.25, 35.01, 33.28, 23.54, 21.14. HRMS (EI, m/z): Calcd. for C₁₅H₁₈S [M]⁺ 230.1129, found 230.1125.

2-(4-(*m***-tolyl)butan-2-yl)thiophene (3ac)**. Colorless oil, 103.5 mg (90% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.16 (m, 2H), 7.07-6.97 (m, 4H), 6.91-6.83 (m, 1H), 3.16-3.06 (m, 1H), 2.61 (t, *J* = 8.0

Hz, 2H), 2.37 (s, 3H), 2.04-1.92(m, 2H), 1.41 (d, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 151.78, 142.30, 137.97, 129.36, 128.35, 126.61, 126.58, 125.55, 122.91, 122.64, 41.18, 35.10, 33.70, 23.53, 21.54. HRMS (EI, m/z): Calcd. for C₁₅H₁₈S [M]⁺ 230.1129, found 230.1124.

2-(4-(*o***-tolyl)butan-2-yl)thiophene (3ad)**. Colorless oil, 88.1 mg (77% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.24-7.04 (m, 5H), 7.01-6.95 (m, 1H), 6.91-6.84 (m, 1H), 3.21-3.10 (m, 1H), 2.62 (t, *J* = 8.0 Hz, 2H), 2.29 (s, 3H), 2.00-1.88 (m, 2H), 1.43 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 151.70, 140.59, 135.97, 130.30, 128.91, 126.59, 126.05, 126.01, 122.94, 122.68, 39.96, 35.59, 31.26, 23.54, 19.32. HRMS (EI, m/z): Calcd. for C₁₅H₁₈S [M]⁺ 230.1129, found 230.1123.

2-(4-(4-(tert-butyl)phenyl)butan-2-yl)thiophene (3ae). Colorless oil, 92.9 mg (68% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.30 (m, 2H), 7.18-7.15 (m, 1H), 7.14 - 7.10 (m, 2H), 6.98-6.91 (m, 1H), 6.88-6.81 (m, 1H), 3.14-3.05 (m, 1H), 2.59 (t, *J* = 8.0 Hz, 2H), 2.02-1.92 (m, 2H), 1.38-1.32 (m, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 151.81, 148.61, 139.25, 128.17, 126.57, 125.33, 122.90, 122.63, 41.09, 35.10, 34.47, 33.18, 31.56, 23.55. HRMS (EI, m/z): Calcd. for C₁₈H₂₄S [M]⁺ 272.1599, found 272.1593.

2-(4-(4-fluorophenyl)butan-2-yl)thiophene (3af). Colorless oil, 70.0 mg (60% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.20-7.04 (m, 3H), 7.03-6.91 (m, 3H), 6.88-6.79 (m, 1H), 3.12-3.02 (m, 1H), 2.58 (t, *J* = 8.0 Hz, 2H), 2.01-1.89 (m, 2H), 1.38 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 161.35 (d, *J_C*. *F* = 244.0 Hz), 151.52, 137.90 (d, *J_C*. *F* = 4.4 Hz), 129.83 (d, *J_C*. *F* = 7.9 Hz), 126.63, 122.98, 122.73, 115.16 (d, *J_C*. *F* = 21.2 Hz), 41.26, 34.98, 32.93, 23.53. HRMS (EI, m/z): Calcd. for C₁₄H₁₅FS [M]⁺ 234.0878, found 234.0875.

2-(4-(3-methoxyphenyl)butan-2-yl)thiophene (3ag). Colorless oil, 93.5 mg (76% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.29-7.24 (m, 1H), 7.23-7.17 (m, 1H), 7.03-6.96 (m, 1H), 6.91-6.86 (m, 1H), 6.85-6.77

(m, 3H), 3.85 (s, 3H), 3.16-3.07 (m, 1H), 2.64 (t, J = 8.0 Hz, 2H), 2.10-1.96 (m, 2H), 1.42 (d, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.73, 151.65, 143.98, 129.38, 126.58, 122.93, 122.65, 120.95, 114.32, 111.13, 55.22, 40.97, 35.00, 33.78, 23.53. HRMS (EI, m/z): Calcd. for C₁₅H₁₈OS [M]⁺ 246.1078, found 246.1074.

2-(4-(2-tolyl)butan-2-yl)thiophene (3ah). Colorless oil, 143.1 mg (98% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.15 (m, 11H), 7.06-6.94 (m, 1H), 6.78 (d, *J* = 2.8 Hz, 1H), 3.95 (t, *J* = 8.0 Hz, 1H), 3.03-2.90 (m, 1H), 2.41 (t, *J* = 8.0 Hz, 2H), 1.38 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 151.49, 145.05, 144.35, 128.65, 128.59, 128.29, 127.85, 126.60, 126.41, 126.25, 123.20, 122.80, 48.87, 45.51, 33.35, 24.11. HRMS (EI, m/z): Calcd. For C₂₀H₂₀S [M]⁺ 292.1286, found 292.1279.

2-(3,4-diphenylbutan-2-yl)thiophene (3ai). Colorless oil, 118.5 mg (81% yield, d.r. = 1.5: 1 determined by ¹H NMR). ¹H NMR (400 MHz, CDCl₃) δ 7.22-7.13 (m, 5H), 7.13-7.10 (m, 2H), 7.08-7.04 (m, 2H), 7.03-6.98 (m, 2H), 6.91-6.85 (m, 1H), 6.65 (d, *J* = 3.2 Hz, 1H), 3.48-3.39 (m, 1H), 3.23-3.15 (m, 2H), 3.03-2.94 (m, 1H), 1.43 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 148.72, 141.99, 140.80, 129.18, 128.18, 127.77, 126.33, 126.29, 125.82, 124.31, 122.85, 54.99, 40.34, 38.07, 19.92. ¹H NMR (400 MHz, CDCl₃) δ 7.22-7.17 (m, 3H), 7.16-7.12 (m, 1H), 7.09-6.99 (m, 5H), 6.98-6.94 (m, 1H), 6.91-6.86 (m, 1H), 6.78 (d, *J* = 6.8 Hz, 2H), 3.40-3.31 (m, 1H), 2.98-2.86 (m, 2H), 2.74-2.62 (m, 1H), 1.1 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 150.80, 142.84, 140.81, 129.01, 128.63, 128.20, 127.95, 126.63, 126.38, 125.65, 124.05, 123.07, 57.08, 41.25, 41.21, 22.31. HRMS (EI, m/z): Calcd. for C₂₀H₂₀S [M]⁺ 292.1286, found 292.1280.

triphenyl(3-(thiophen-2-yl)butyl)silane (3aj). Colorless oil, 122.5 mg (62% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.57-7.46 (m, 6H), 7.44-7.35 (m, 8H), 7.30-7.27 (m, 1H), 7.21-7.06 (m, 1H), 6.98-6.89 (m, 1H), 6.78 (d, *J* = 3.6 Hz, 1H), 3.10-2.94 (m, 1H), 1.87-1.74 (m, 2H), 1.41-1.28 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 151.46, 135.76, 135.15, 129.53, 127.99, 126.56, 123.11, 122.66, 38.53, 33.63, 22.85, 10.83.

Dimethyl(phenyl)(3-(thiophen-2-yl)silane (3ak). Colorless oil, 78.2 mg (57% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.54-7.45 (m, 2H), 7.38-7.32 (m, 3H), 7.17-7.05 (m, 1H), 6.95-6.87 (m, 1H), 6.79-6.73 (m, 1H), 3.00-2.91 (m, 1H), 1.67-1.58 (m, 2H), 1.29 (d, *J* = 6.8 Hz, 3H), 0.78-0.70 (m, 2H), 0.25 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 151.93, 139.38, 133.70, 128.97, 127.87, 127.84, 126.51, 122.51, 38.44, 33.72, 22.75, 13.37, -2.98.

Diphenyl(3-(thiophen-2-yl)butyl)phosphane (3al). Colorless oil, 75.4 mg (47% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.51-7.33 (m, 10H), 7.18-7.10 (m, 1H), 6.96-6.88 (m, 1H), 6.82-6.74 (m, 1H), 3.22-3.13 (m, 1H), 2.22-2.09 (m, 2H), 1.89-1.72 (m, 2H), 1.34 (t, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 150.94, 138.66 (d, $J_{C-P} = 12.1$ Hz), 138.31(d, $J_{C-P} = 12.1$ Hz), 132,96, 132.79 (d, $J_{C-P} = 1.4$ Hz), 132.62, 128.66 (d, $J_{C-P} = 10.5$ Hz), 128.53 (d, $J_{C-P} = 1.8$ Hz), 128.46 (d, $J_{C-P} = 1.6$ Hz), 126.56, 123.07, 122.74, 36.58 (d, $J_{C-P} = 13.5$ Hz), 35.40 (d, $J_{C-P} = 16.8$ Hz), 25.60 (d, $J_{C-P} = 10.8$ Hz), 23.18. HRMS (EI, m/z): Calcd. for C₂₀H₂₁PS [M]⁺ 324.1102, found 324.1098.

2-(1,1-diphenylpentan-3-yl)thiophene (3bh). Colorless oil, 145.4 mg (97% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.31 (m, 2H), 7.29-7.17 (m, 9H), 7.00-6.95 (m, 1H), 6.72 (d, *J* = 3.2 Hz, 1H), 3.88 (dd, *J* = 4.8 Hz, 6.0 Hz, 1H), 2.73-2.65 (m, 1H), 2.57-2.48 (m, 1H), 2.31-2.23 (m, 1H), 1.80-1.71 (m, 1H), 1.66-1.60 (m, 1H), 0.81 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 149.36, 145.60, 143.93, 128.62, 128.47, 127.72, 126.49, 126.41, 126.11, 124.50, 123.05, 48.65, 43.80, 40.86, 31.48, 11.95. HRMS (EI, m/z): Calcd. for C₂₁H₂₂S [M]⁺ 306.1442, found 306.1435.

2-(1,1-diphenylhexan-3-yl)thiophene (3ch). Colorless oil, 136.8 mg (85% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.27 (m, 2H), 7.26-7.13 (m, 9H), 6.96-6.89 (m, 1H), 6.69-6.63 (m, 1H), 3.82 (dd, *J* = 4.4 Hz, 6.4 Hz, 1H), 2.79-2.68 (m, 1H), 2.53-2.42 (m, 1H), 2.27-2.15 (m, 1H), 1.64-1.54 (m, 2H), 1.23-1.10 (m, 2H), 0.79 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 149.74, 145.60, 143.87, 128.61, 128.47,

128.46, 127.71, 126.46, 126.40, 126.09, 124.34, 122.99, 48.61, 44.11, 40.93, 38.96, 20.57, 14.11. HRMS (EI, m/z): Calcd. for $C_{22}H_{24}S$ [M]⁺ 320.1599, found 320.1594.

2-(1,1-diphenylheptan-3-yl)thiophene (3dh). Colorless oil, 147.1 mg (88% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.30 (m, 2H), 7.29-7.16 (m, 9H), 6.99-6.94 (m, 1H), 6.70 (d, *J* = 3.6 Hz, 1H), 3.86 (dd, *J* = 4.4 Hz, 6.4 Hz, 1H), 2.82-2.69 (m, 1H), 2.59-2.46 (m, 1H), 2.31-2.20 (m, 1H), 1.76-1.57 (m, 2H), 1.28-1.11 (m, 4H), 0.85-0.82 (t, *J* = 6.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 149.87, 145.65, 143.94, 128.63, 128.50, 127.75, 126.49, 126.42, 126.12, 124.34, 122.99, 48.67, 44.16, 39.21, 38.44, 29.60, 22.74, 14.09. HRMS (EI, m/z): Calcd. for C₂₃H₂₆S [M]⁺ 334.1755, found 334.1753.

2-(4,4-diphenylbutan-2-yl)benzo[b]thiophene (3eh). Colorless oil, 119.9 mg (70% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 8.0 Hz, 1H), 7.72 (d, *J* = 8.0 Hz, 1H), 7.37-7.23 (m, 11H), 7.22-7.17 (m, 1H), 6.98 (s, 1H), 3.98 (t, *J* = 8.0 Hz, 1H), 3.05-2.94 (m, 1H), 2.46 (t, *J* = 8.0 Hz, 2H), 1.42 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 152.29, 145.00, 144.12, 140.05, 139.06, 128.68, 128.59, 128.30, 127.79, 126.47, 126.28, 124.20, 123.62, 122.99, 122.47, 119.86, 48.83, 44.90, 34.23, 23.85. HRMS (EI, m/z): Calcd. for C₂₄H₂₂S [M]⁺ 342.1442, found 342.1440.

2-(3,3-diphenylpropyl)thiophene (3fh).^[6] Colorless oil, 43.2 mg (31% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.24 (m, 8H), 7.18 (t, *J* = 6.4 Hz, 2H), 7.12 (d, *J* = 4.8 Hz, 1H), 6.94-6.87 (m, 1H), 6.75 (d, *J* = 3.6 Hz, 1H), 3.97 (t, *J* = 8.0 Hz, 1H), 2.79 (t, *J* = 8.0 Hz, 2H), 2.44 (q, *J* = 8.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 145.04, 144.62, 128.66, 128.05, 126.86, 126.41, 124.41, 123.17, 50.50, 37.64, 28.35. HRMS (EI, m/z): Calcd. for C₁₉H₁₈S [M]⁺ 278.1129, found 278.1125.

2-(1,1,5,5-tetraphenylpentan-3-yl)thiophene (3fh2). Colorless oil, 64.8 mg (57% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.15 (m, 21H), 7.02 (dd, *J* = 3.6 Hz, 3.6 Hz, 1H), 6.62 (d, *J* = 3.6 Hz, 1H), 3.91 (dd,

 $J = 5.6 \text{ Hz}, 4.4 \text{ Hz}, 2\text{H}, 2.93-2.84 \text{ (m, 1H)}, 2.66-2.55 \text{ (m, 2H)}, 2.44-2.33 \text{ (m, 2H)}. {}^{13}\text{C NMR} (101 \text{ MHz}, \text{CDCl}_3) \delta 149.10, 145.21, 143.53, 128.51, 128.49, 128.19, 127.78, 126.56, 126.26, 126.14, 124.83, 123.37, 48.63, 44.40, 36.91. HRMS (EI, m/z): Calcd. for <math>C_{33}H_{30}S$ [M]⁺ 458.2068, found 458.2064.

2-ethyl-5-phenethylthiophene (**4aa**). Colorless oil, 86.2 mg (80% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.26 (m, 2H), 7.22-7.18 (m, 3H), 6.60-6.53 (m, 2H), 3.09-3.03 (m, 2H), 2.98-2.92 (m, 2H), 2.81-2.78 (q, *J* = 8.0 Hz, 2H), 1.28 (t, *J* = 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 145.33, 142.02, 141.45, 128.54, 128.50, 126.19, 123.89, 122.84, 38.19, 32.23, 23.59, 16.11. HRMS (EI, m/z): Calcd. for C₁₄H₁₆S [M]⁺ 216.0973, found 216.0965.

2-ethyl-5-(4-methylphenethyl)thiophene (4ab). Colorless oil, 87.8 mg (76% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.29-7.28 (m, 2H), 7.13-7.12 (m, 2H), 6.66-6.56 (m, 2H), 3.09-3.03 (m, 2H), 2.98-2.90 (m, 2H), 2.82 (q, *J* = 8.0 Hz, 2H), 2.35 (s, 3H), 1.31 (t, *J* = 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 145.29, 142.19, 138.40, 135.65, 129.19, 128.40, 123.84, 122.83, 37.77, 32.38, 23.60, 21.18, 16.12. HRMS (EI, m/z): Calcd. for C₂₁H₂₂S [M]⁺ 230.1129, found 230.1120.

2-ethyl-5-(3-methylphenethyl)thiophene (4ac). Colorless oil, 78.6 mg (68% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.19 (m, 1H), 7.11-7.00 (m, 3H), 6.67-6.55 (m, 2H), 3.08 (t, *J* = 7.2 Hz, 2H), 2.95 (t, *J* = 7.2 Hz, 2H), 2.82 (q, *J* = 8.0 Hz, 2H), 2.36 (s, 3H),1.32 (t, *J* = 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 145.29, 142.19, 141.42, 138.06, 129.35, 128.41, 126.93, 125.52, 123.83, 122.85, 38.19, 32.30, 23.60, 21.54, 16.13. HRMS (EI, m/z): Calcd. for C₁₅H₁₈S [M]⁺ 230.1129, found 230.1125.

2-ethyl-5-(2-methylphenethyl)thiophene (4ad). Colorless oil, 84.0 mg (73% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.18-7.12 (m, 4H), 6.63-6.54 (m, 2H), 3.01 (t, *J* = 7.2 Hz, 2H), 2.95 (t, *J* = 7.2 Hz, 2H), 2.80 (q, *J* = 8.0 Hz, 2H), 2.32 (s, 3H), 1.29 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 145.39, 142.22, 139.65, 136.09, 130.33, 128.86, 126.35, 126.15, 123.81, 122.91, 35.70, 31.02, 23.61, 19.40, 16.15. HRMS (EI, m/z): Calcd. for C₁₅H₁₈S [M]⁺ 230.1129, found 230.1121.

2-(4-(tert-butyl)phenethyl)-5-ethylthiophene (4ae). Colorless oil, 105.4 mg (77% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.30 (m, 2H), 7.19-7.13 (m, 2H), 6.63-6.56 (m, 2H), 3.06 (t, *J* = 8.8 Hz, 2H), 2.94 (t, *J* = 8.8 Hz, 2H), 2.80 (q, *J* = 8.0 Hz, 2H), 1.33-1.28 (m, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 149.01, 145.28, 142.33, 138.45, 128.14, 125.41, 123.77, 122.86, 37.68, 34.52, 32.23, 31.55, 23.61, 16.13. HRMS (EI, m/z): Calcd. for C₁₈H₂₄S [M]⁺ 272.1599, found 272.1591.

2-ethyl-5-(3-methoxyphenethyl)thiophene (4af). Colorless oil, 38.3 mg (31% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.28-7.23 (m, 1H), 6.89-6.83 (m, 1H), 6.82-6.77 (m, 2H), 6.65-6.59 (m, 2H), 3.83 (s, 3H), 3.1 (t, *J* = 8.8 Hz, 2H), 2.98 (t, *J* = 8.8 Hz, 2H), 2.84 (t, *J* = 7.2 Hz, 2H), 1.33 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.75, 145.35, 143.06, 141.96, 129.46, 123.93, 122.85, 120.93, 114.24, 111.58, 55.26, 38.23, 32.12, 23.59, 16.12. HRMS (EI, m/z): Calcd. for C₁₅H₁₈OS [M]⁺ 246.1078, found 246.1073.

(2-(5-ethylthiophen-2-yl)ethyl)triphenylsilane (4ag). Colorless oil, 168.5 mg (85% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.64-7.55 (m, 6H), 7.47-7.36 (m, 9H), 6.66-6.52 (m, 2H), 2.99-2.88 (m, 2H), 2.80 (q, *J* = 8.8 Hz, 2H), 1.90-1.78 (m, 2H), 1.30 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 145.89, 145.06, 135.76, 134.73, 129.70, 128.11, 122.80, 122.73, 24.82, 23.63, 16.16, 15.92. HRMS (EI, m/z): Calcd. for C₂₆H₂₆SSi [M]⁺ 398.1524, found 398.1521.

2-methyl-5-phenethylthiophene (**4ba**). Colorless oil, 86.1 mg (75% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.26 (m, 2H), 7.22-7.15 (m, 3H), 6.58-6.53 (m, 2H), 3.06 (t, *J* = 9.2 Hz, 2H), 2.95 (t, *J* = 8.4 Hz, 2H), 2.72 (t, *J* = 7.2 Hz, 2H), 1.72-1.62 (m, 2H), 0.96 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.53, 142.11, 141.47, 128.55, 128.49, 126.19, 123.87, 123.64, 38.19, 32.35, 32.25, 25.06, 13.83. HRMS (EI, m/z): Calcd. for C₁₅H₁₈S [M]⁺ 230.1129, found 230.1123.

2-butyl-5-phenethylthiophene (4ca). Colorless oil, 80.5 mg (66% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.27 (m, 2H), 7.25-7.18 (m, 3H), 6.64-6.51 (m, 2H), 3.07 (t, *J* = 7.2 Hz, 2H), 2.97 (t, *J* = 8.4 Hz,

2H), 2.76 (t, J = 7.2 Hz, 2H), 1.71-1.58 (m, 2H), 1.47-1.34 (m, 2H), 0.94 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.77, 142.06, 141.47, 128.56, 128.50, 126.19, 123.86, 123.53, 38.20, 33.99, 32.26, 29.97, 22.34, 13.99. HRMS (EI, m/z): Calcd. for C₁₆H₂₀S [M]⁺ 244.1286, found 244.1280.

2-pentyl-5-phenethylthiophene (4da). Colorless oil, 84.9 mg (66% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.35 (m, 2H), 7.34-7.23 (m, 3H), 6.74-6.56 (m, 2H), 3.17 (t, *J* = 8.8 Hz, 2H), 3.06 (t, *J* = 8.4 Hz, 2H), 2.86 (t, *J* = 7.6 Hz, 2H), 1.81-1.70 (m, 2H), 1.52-1.41 (m, 4H), 1.02 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.75, 142.02, 141.43, 128.53, 128.47, 126.16, 123.85, 123.50, 38.17, 32.24, 31.55, 31.43, 30.25, 22.57, 14.16. HRMS (EI, m/z): Calcd. for C₁₇H₂₂S [M]⁺ 258.1442, found 258.1432.

2-methyl-5-phenethylthiophene (**4ea**). Colorless oil, 41.1 mg (41% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.32 (m, 2H), 7.28-7.23 (m, 3H), 6.68-6.52 (m, 2H), 3.11 (t, *J* = 8.4 Hz, 2H), 3.00 (t, *J* = 8.4 Hz, 2H), 2.49 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 142.41, 141.42, 137.56, 128.56, 128.50, 126.20, 124.75, 124.15, 38.20, 32.14, 15.41. HRMS (EI, m/z): Calcd. for C₁₃H₁₄S [M]⁺ 202.0816, found 202.0810.

trimethyl(5-phenethylthiophen-2-yl)silane (4fa). Colorless oil, 64.5 mg (50% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.32 (m, 2H), 7.31-7.24 (m, 3H), 7.12 (d, J = 3.2 Hz, 1H), 6.91 (d, J = 3.2 Hz, 1H), 3.21 (t, J = 8.8 Hz, 2H), 3.05 (t, J = 9.2 Hz, 2H), 0.35 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 150.30, 141.42, 138.15, 134.13, 128.55, 128.52, 126.25, 125.92, 38.23, 32.07, 0.13. HRMS (EI, m/z): Calcd. for C₁₅H₂₀SSi [M]⁺ 260.1055, found 260.1047.

Bu

4-butyl-2-phenethylthiophene (4ga). Colorless oil, 74.0 mg (61% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.31 (m, 2H), 7.29-7.23 (m, 3H), 6.74 (s, 1H), 6.65 (s, 1H), 3.13 (t, *J* = 8.8 Hz, 2H), 3.02 (t, *J* = 8.4 Hz, 2H), 2.59 (t, *J* = 7.6 Hz, 2H), 1.65-1.58 (m, 2H), 1.44-1.36 (m, 2H), 0.97 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.31, 143.02, 141.37, 128.56, 128.49, 126.20, 126.01, 117.60, 38.17, 32.72, 32.25, 30.36, 22.52, 14.07. HRMS (EI, m/z): Calcd. for C₁₆H₂₀S [M]⁺ 244.1286, found 244.1280.

2,5-diphenethylthiophene (**4ha**). Colorless oil, 62.4 mg (43% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.32 (m, 4H), 7.28-7.23 (m, 6H), 6.62-6.56 (m, 2H), 3.12 (t, *J* = 6.4 Hz, 4H), 3.00 (t, *J* = 8.4 Hz, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 142.43, 141.38, 128.57, 128.50, 126.21, 124.00, 38.18, 32.22. HRMS (EI, m/z): Calcd. for C₂₀H₂₀S [M]⁺ 292.1286, found 292.1280.

2-phenethylthiophene (4ha') Colorless oil, 14.0 mg (15% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.27 (m, 2H), 7.25-7.18 (m, 3H), 7.18-7.07 (m, 1H), 6.96-6.86 (m, 1H), 6.84-6.74 (m, 1H), 3.15 (t, *J* = 7.2 Hz, 2H), 2.99 (t, *J* = 8.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 144.62, 141.26, 128.58, 128.53, 126.83, 126.26, 124.48, 123.21, 38.23, 31.97. HRMS (EI, m/z): Calcd. for C₁₂H₁₂S [M]⁺ 188.0660, found 188.0654.

5-(2,4-diphenylbutyl)-2,2'-bithiophene (4ia). Colorless oil, 133.5 mg (71% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.26 (m, 4H), 7.24-7.19 (m, 3H), 7.18-7.13 (m, 3H), 7.12-7.08 (m, 2H), 7.06-7.03 (m, 1H), 7.02-6.98 (m, 1H), 6.61 (d, *J* = 3.6 Hz, 1H), 3.21-3.13 (m, 1H), 3.03-2.96 (m, 2H), 2.77-2.67 (m, 1H), 2.61-2.52 (m, 1H), 2.17-2.07 (m, 1H), 2.02-1.92 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 147.25, 141.03, 138.91, 137.09, 134.16, 128.21, 127.56, 127.46, 127.32, 126.85, 125.24, 124.93, 124.32, 122.95, 122.23, 122.18, 43.73, 42.25, 37.47, 32.65. HRMS (EI, m/z): Calcd. for C₂₄H₂₂S₂ [M]⁺ 374.1163, found 374.1158.

Triphenyl(2-(5-(4-phenylbutan-2-yl)thiophen-2-yl)silane (5). 2-Ethylthiophene 1a (2.0 mmol, 224.4 mg), styrene 2b (0.5 mmol, mg), KHMDS (10.0 mg, 0.05 mmol), 18-crown-6 (0.075 mmol, 19.8 mg), TBME (0.5 mL). The tube was sealed, removed from the glovebox and heated at 30 °C for 36 h. The mixture was cooled to room temperature and purified directly by silica gel column chromatography (hexane) to afford compound **3aa** as a colorless oil (88.1 mg, 82%). 2-(4-phenylbutan-2-yl)thiophene (**3aa**) (0.5 mmol, 108.1 mg), triphenylvinylsilan **2g** (2.0 mmol, 572.9 mg), LDA (11.3 mg, 0.10 mmol), TMEDA (0.30 mL). The tube was sealed, removed from the glovebox and heated at 70 °C for 60 h. The mixture was cooled to room temperature and purified directly by silica gel column chromatography (hexane) to afford compound **5** as a colorless oil (193.3mg, 77% yield). Therefore, the total yield of the two steps is 63% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.60-7.56 (m, 5H), 7.48-7.37 (m, 10H), 7.32-7.27

(m, 3H), 7.20-7.17 (m, 2H), 6.70-6.53 (m, 2H), 3.04-2.91 (m, 3H), 2.67-2.55 (m, 2H), 1.99-1.81 (m, 4H), 1.34 (d, J = 6.8 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ 149.03, 145.59, 142.35, 135.73, 134.67, 129.68, 128.51, 128.39, 128.09, 125.80, 122.52, 122.42, 40.98, 35.22, 33.74, 24.89, 23.49, 15.79. HRMS (EI, m/z): Calcd. for C₃₄H₃₄SSi [M]⁺ 502.2150, found 502.2147.

2-butylthiophene lithium (**1c-Li**). ¹H NMR (400 MHz, C₆D₆) δ 7.63-7.50 (m, 1H), 7.32-7.22 (m, 1H), 3.15 (t, *J* = 7.6 Hz, 2H), 2.00 (s, 12 H), 1.90-1.82 (m, 2H), 1.72 (s, 4 H), 1.50-1.40 (m, 2H), 0.93 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, C₆D₆) δ 173.94, 150.94, 137.41, 125.77, 56.92, 46.42, 35.47, 30.53, 22.84, 14.30.

5-d-2-butylthiophene (**1c-D**). ¹H NMR (400 MHz, CDCl₃) δ 6.93 (d, *J* = 3.2 Hz, 1H), 6.85-6.75 (m, 1H), 2.85 (t, *J* = 7.6 Hz, 2H), 1.72-1.64 (m, 2H), 1.45-1.37 (m, 2H), 0.96 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 145.86, 126.60, 124.01, 122.93-122.65 (t, 1C, *J*_{CD} = 28.6 Hz), 34.07, 29.74, 22.35, 13.97.

2-(butyl-1,1-d²)thiophene(1c-D'). ¹H NMR (400 MHz, CDCl₃) δ 7.13 (d, *J* = 5.2 Hz, 1H), 6.97-6.91 (m, 1H), 6.83-6.78 (m, 1H), 1.68 (t, *J* = 7.6 Hz, 2H), 1.45-1.37 (m, 2H), 0.96 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 145.83, 126.75, 124.02, 122.83, 33.87, 29.21-28.85 (m, 1C), 22.29, 13.96.

4. Kinetic Isotope Effect Experiments

4.1 Kinetic isotope effect in KHMDS catalyzed benzylic sp³ C-H Bond alkylation of 2-butylthiophene:

To a 25-mL Schlenk tube equipped with a Teflon septum and magnetic stir bar were added 2butylthiophene **1c** (1.0 mmol, 140.3 mg), styrene **2a** (0.25 mmol, 26.0 mg), KHMDS (5.0 mg, 0.025 mmol), 18-crown-6 (0.038 mmol, 10.0 mg), THF (0.5 mL). The mixture was heated at 40 $^{\circ}$ C and monitored by GC analysis every 1.5 hours. The reaction of deuterated 2-butylthiophene **1c-D'** was carried out and monitored under exact same conditions. The kinetic isotope effect was proved to be 2.9.

K_H/ K_D = 2.4571/ 0.8571 = 2.9

4.2 Kinetic isotope effect in LDA catalyzed sp² C-H Bond alkylation of 2butylthiophene:

To a 25-mL Schlenk tube equipped with a Teflon septum and magnetic stir bar were added 2butylthiophene **1c** (0.25 mmol, 35.1 mg), styrene **2a** (1.00 mmol, 104.2 mg), LDA (5.7 mg, 0.025 mmol), TMEDA (0.3 mL). The mixture was heated at 80 °C and monitored by ¹H NMR once every 10 minters. The reaction of deuterated 2-butylthiophene **1c-D** was carried out and monitored under exact same conditions. The kinetic isotope effect was proved to be 0.83. The ¹H NMR yields of **4ca** and **4ca**-**D** were determined by integral of C-H group (δ : 6.56 ppm) of alkylation products using the C-H group (2-butylthiophene plus product) as an internal standard.

5. Deprotonation Experiments

5.1 Deprotonation with LDA or KHMDS

In a glovebox, to a 25-mL Schlenk tube equipped with a Teflon septum and magnetic stir bar were added 2-butylthiophene **1c** (0.5 mmol, 70.2 mg), LDA (56.5mg, 0.5 mmol), TMEDA (0.3 mL). The mixture was heated at 30 °C for 6 h and quenched with deuterium water. The solvent was removed under vacuum to afford the crude product, which was characterized by ¹HNMR. The deprotonation reaction with KHMDS/18-C-6 was carried out under the same conditions in TBME.

5.2 Catalytic alkylation of 2-butylthiophene with 1c-Li as catalyst.

To a 25-mL Schlenk tube equipped with a Teflon septum and magnetic stir bar were added 2butylthiophene **1c** (0.5 mmol, 70.1 mg), styrene **2a** (2.0 mmol, 208.4 mg), 2-butylthiophene lithium **1c**-**Li** (13.8 mg, 0.05 mmol), TMEDA (0.30 mL). The mixture was heated at 80 °C for 60 h, and then cooled to room temperature. The direct purification by silica gel column chromatography (hexane) afforded compound **4ca** as a colorless oil (65.7 mg, 49% yield).

5.3 H-D exchange between 1e and 1c-D'

(1) To a 25-mL Schlenk tube equipped with a Teflon septum and magnetic stir bar were added deuterated 2-butylthiophene **1c-D** (0.20 mmol, 28.2 mg), KHMDS (0.20 mmol, 39.9 mg), 18-crown-6 (0.30 mmol, 79.3 mg), TBME (0.5 mL). The mixture was heated at 30 °C for 24 h. After that, the mixture was characterized in CDCl₃ by ¹HNMR (shown below).

6. References

- [1] Barr, D.; Dawson, A. J.; Wakefield, B. J. J. Chem. Soc., Chem. Commun. 1992, 204-204.
- [2] Ai, Q.; Pang, S.; Ahn, K. Chem. Eur.J. 2016, 22, 656-662.
- [3] He, C.; Wang, Z.; Wu, C.; Qing, F.; Zhang, X. Chem. Sci. 2013, 4, 3508-3513.
- [4] Shoji H.; Kobatake S. Chem. Commun. 2013, 49, 2362-2364.
- [5] Odachowski M, Bonet A, Essafi S, Conti-Ramsden P, Harvey J N, Leonori D, and Aggarwal V K.
- J. Am. Chem. Soc. 2016, 138, 9521-9532.
- [6] Gu F.; Huang W.; Liu X.; Chen W.; Cheng X. Adv. Synth. Catal. 2018, 360, 925-931.

7. ¹H and ¹³C NMR Spectral Charts

3ai+3ai'

-150.95 -138.19 (138.19 (132.97 (132.97 (132.97 (132.78)

7725 = 5227 = 5227 = 5227 = 5227 = 5227 = 5227 = 5227 = 5227 = 5227 = 5227 = 5227 = 5227 = 5277 =

 $\begin{array}{c} 7.73\\ 7.72\\$

