Multi-component Cascade Reactions of HKAs: Synthesis of Highly Functionalized 5*H*-Chromeno[4,3-*d*]pyrimidines

Yun-Xiang Fan, Xin-Ling Cao, Li Chen, Yi-Hua Chen, and Sheng-Jiao Yan*

Key Laboratory of Medicinal Chemistry for Natural Resources (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China

Supporting Information

Table of Contents

General Information	S4
General Procedure for the Synthesis of 5 <i>H</i> -Chromeno[4,3- <i>d</i>]- pyrimidines 4a-4n'	S4
The proposed mechanism of the cascade reaction	S24
Scheme S1. The proposed mechanism of the cascade reaction	S24
The mechanism of the cascade reaction verified by HPLC-HRMS	S25
X-ray Structure and Dataof 4a	S25
Figure S1.X-Ray crystal structure of 4a	S26
Table S1. Crystal data and structure refinement for 4a	S26
Figure S2. ¹ H NMR (600 MHz, Chloroform- <i>d</i>) spectra of compound 4a	S27
Figure S3. ¹³ C NMR (150 MHz, Chloroform- <i>d</i>) spectra of compound 4a	S28
Figure S4. ¹ H NMR (600 MHz, Chloroform- <i>d</i>) spectra of compound 4b	S29
Figure S5. ¹³ C NMR (150 MHz, Chloroform- <i>d</i>) spectra of compound 4b	S30
Figure S6. ¹ H NMR (600 MHz, Chloroform- <i>d</i>) spectra of compound 4c	S31
Figure S7. ¹³ C NMR (150 MHz, Chloroform- <i>d</i>) spectra of compound 4c	S32
Figure S8. ¹⁹ F NMR (540 MHz, Chloroform- <i>d</i>) spectra of compound 4c	S33
Figure S9. ¹ H NMR (600 MHz, Chloroform- <i>d</i>) spectra of compound 4d	S34
Figure S10. ¹³ C NMR (150 MHz, Chloroform- <i>d</i>) spectra of compound 4d	S35
Figure S11. ¹ H NMR (600 MHz, Chloroform- <i>d</i>) spectra of compound 4e	S36
Figure S12. ¹³ C NMR (150 MHz, Chloroform- <i>d</i>) spectra of compound 4e	S37
Figure S13. ¹ H NMR (600 MHz, Chloroform- <i>d</i>) spectra of compound 4f	S38
Figure S14. ¹³ C NMR (150 MHz, Chloroform- <i>d</i>) spectra of compound 4f	S39
Figure S15. ¹ H NMR (600 MHz, Chloroform- <i>d</i>) spectra of compound 4g	S40
Figure S16. ¹³ C NMR (150 MHz, Chloroform- <i>d</i>) spectra of compound 4g	S41
Figure S17. ¹ H NMR (600 MHz, Chloroform- <i>d</i>) spectra of compound 4h	S42
Figure S18. ¹³ C NMR (150 MHz, Chloroform- <i>d</i>) spectra of compound 4h	S43
Figure S19. ¹ H NMR (600 MHz, Chloroform- <i>d</i>) spectra of compound 4i	S44
Figure S20. ¹³ C NMR (150 MHz, Chloroform- <i>d</i>) spectra of compound 4i	S45
Figure S21. ¹⁹ F NMR (540 MHz, Chloroform- <i>d</i>) spectra of compound 4i	S46
Figure S22. ¹ H NMR (600 MHz, Chloroform- <i>d</i>) spectra of compound 4j	S47

Figure S23. ¹³ C NMR (150 MHz, Chloroform- <i>d</i>) spectra of compound 4j	S48
Figure S24. ¹ H NMR (600 MHz, Chloroform- <i>d</i>) spectra of compound 4k	S49
Figure S25. ¹³ C NMR (150 MHz, Chloroform- <i>d</i>) spectra of compound 4k	S50
Figure S26. ¹ H NMR (600 MHz, Chloroform- <i>d</i>) spectra of compound 41	S51
Figure S27. ¹³ C NMR (150 MHz, Chloroform- <i>d</i>) spectra of compound 41	S52
Figure S28. ¹ H NMR (600 MHz, Chloroform- <i>d</i>) spectra of compound 4m	S53
Figure S29. ¹³ C NMR (150 MHz, Chloroform- <i>d</i>) spectra of compound 4m	S54
Figure S30. ¹ H NMR (600 MHz, Chloroform- <i>d</i>) spectra of compound 4n	S55
Figure S31. ¹³ C NMR (150 MHz,, Chloroform- <i>d</i>) spectra of compound 4n	S56
Figure S32. ¹ H NMR (600 MHz, Chloroform- <i>d</i>) spectra of compound 40	S57
Figure S33. ¹³ C NMR (150 MHz, Chloroform- <i>d</i>) spectra of compound 40	S58
Figure S34. ¹ H NMR (600 MHz, Chloroform- <i>d</i>) spectra of compound 4p	S59
Figure S35. ¹³ C NMR (150 MHz, Chloroform- <i>d</i>) spectra of compound 4p	S60
Figure S36. ¹ H NMR (600 MHz, Chloroform- <i>d</i>) spectra of compound 4q	S61
Figure S37. ¹³ C NMR (150 MHz, Chloroform- <i>d</i>) spectra of compound 4q	S62
Figure S38. ¹⁹ F NMR (540 MHz, Chloroform- <i>d</i>) spectra of compound 4q	S63
Figure S39. ¹ H NMR (600 MHz, Chloroform- <i>d</i>) spectra of compound 4r	S64
Figure S40. ¹³ C NMR (150 MHz, Chloroform- <i>d</i>) spectra of compound 4r	S65
Figure S41. ¹⁹ F NMR (540 MHz, Chloroform- <i>d</i>) spectra of compound 4r	S66
Figure S42. ¹ H NMR (600 MHz, Chloroform- <i>d</i>) spectra of compound 4s	S67
Figure S43. ¹³ C NMR (150 MHz, Chloroform- <i>d</i>) spectra of compound 4s	S68
Figure S44. ¹⁹ F NMR (540 MHz, Chloroform- <i>d</i>) spectra of compound 4s	S69
Figure S45. ¹ H NMR (600 MHz, Chloroform- <i>d</i>) spectra of compound 4t	S70
Figure S46. ¹³ C NMR (150 MHz, Chloroform- <i>d</i>) spectra of compound 4t	S71
Figure S47. ¹ H NMR (600 MHz, Chloroform- <i>d</i>) spectra of compound 4u	S72
Figure S48. ¹³ C NMR (150 MHz, Chloroform- <i>d</i>) spectra of compound 4u	S73
Figure S49. ¹ H NMR (600 MHz, Chloroform- <i>d</i>) spectra of compound 4v	S74
Figure S50. ¹³ C NMR (150 MHz, Chloroform- <i>d</i>) spectra of compound 4v	S75
Figure S51. ¹ H NMR (600 MHz, Chloroform- <i>d</i>) spectra of compound 4w	S76
Figure S52. ¹³ C NMR (150 MHz, Chloroform- <i>d</i>) spectra of compound 4w	S77
Figure S53. ¹ H NMR (600 MHz, Chloroform- <i>d</i>) spectra of compound 4x	S78
Figure S54. ¹³ C NMR (150 MHz, Chloroform- <i>d</i>) spectra of compound 4x	S79
Figure S55. ¹ H NMR (600 MHz, Chloroform- <i>d</i>) spectra of compound 4 y	S80
Figure S56. ¹³ C NMR (150 MHz, Chloroform- <i>d</i>) spectra of compound 4y	S81
Figure S57. ¹ H NMR (600 MHz, Chloroform- <i>d</i>) spectra of compound 4z	S82
Figure S58. ¹³ C NMR (150 MHz, Chloroform- <i>d</i>) spectra of compound 4z	S83
Figure S59. ¹⁹ F NMR (540 MHz, Chloroform- <i>d</i>) spectra of compound 4z	S84
Figure S60. ¹ H NMR (600 MHz, Chloroform- <i>d</i>) spectra of compound 4a'	S85
Figure S61. ¹³ C NMR (150 MHz, Chloroform- <i>d</i>) spectra of compound 4a'	S86
Figure S62. ¹ H NMR (600 MHz, Chloroform- <i>d</i>) spectra of compound 4b'	S87
Figure S63. ¹³ C NMR (150 MHz, Chloroform- <i>d</i>) spectra of compound 4b'	S88
Figure S64. ¹ H NMR (600 MHz, Chloroform- <i>d</i>) spectra of compound 4c'	S89
Figure S65. ¹³ C NMR (150 MHz, Chloroform- <i>d</i>) spectra of compound 4c'	S90
Figure S66. ¹ H NMR (600 MHz, Chloroform- <i>d</i>) spectra of compound 4d'	S91

Figure S67. ¹³ C NMR (150 MHz, Chloroform- <i>d</i>) spectra of compound 4d'	S92
Figure S68. ¹ H NMR (600 MHz, Chloroform- <i>d</i>) spectra of compound 4e'	S93
Figure S69. ¹³ C NMR (150 MHz, Chloroform- <i>d</i>) spectra of compound 4e'	S94
Figure S70. ¹ H NMR (600 MHz, Chloroform- <i>d</i>) spectra of compound 4f'	S95
Figure S71. ¹³ C NMR (150 MHz, Chloroform- <i>d</i>) spectra of compound 4f'	S96
Figure S72. ¹ H NMR (600 MHz, Chloroform- <i>d</i>) spectra of compound 4g'	
Figure S73. ¹³ C NMR (150 MHz, Chloroform- <i>d</i>) spectra of compound 4g'	S98
Figure S74. ¹ H NMR (600 MHz, Chloroform- <i>d</i>) spectra of compound 4h'	S99
Figure S75. ¹³ C NMR (150 MHz, Chloroform- <i>d</i>) spectra of compound 4h'	S100
Figure S76. ¹ H NMR (600 MHz, Chloroform- <i>d</i>) spectra of compound 4i'	S101
Figure S77. ¹³ C NMR (150 MHz, Chloroform- <i>d</i>) spectra of compound 4i'	S102
Figure S78. ¹ H NMR (600 MHz, Chloroform- <i>d</i>) spectra of compound 4j'	S103
Figure S79. ¹³ C NMR (150 MHz, Chloroform- <i>d</i>) spectra of compound 4j'	S104
Figure S80. ¹ H NMR (600 MHz, Chloroform- <i>d</i>) spectra of compound 4k'	S105
Figure S81. ¹³ C NMR (150 MHz, Chloroform- <i>d</i>) spectra of compound 4k'	S106
Figure S82. ¹ H NMR (600 MHz, Chloroform- <i>d</i>) spectra of compound 4l'	S107
Figure S83. ¹³ C NMR (150 MHz, Chloroform- <i>d</i>) spectra of compound 4l'	S108
Figure S84. ¹ H NMR (600 MHz, Chloroform- <i>d</i>) spectra of compound 4m'	S109
Figure S85. ¹³ C NMR (150 MHz, Chloroform- <i>d</i>) spectra of compound 4m'	S110
Figure S86. ¹ H NMR (600 MHz, Chloroform- <i>d</i>) spectra of compound 4n'	S111
Figure S87. ¹³ C NMR (150 MHz, Chloroform- <i>d</i>) spectra of compound 4n'	S112
Figure S88. HPLC of the reaction mixture	S113
Figure S89. HRMS of intermediate 5a/6a	S114
Figure S90. HRMS of intermediate 5a/6a	S115
Figure S91. HRMS of intermediate 7a	S116
Figure S92. HRMS of intermediate 8a/9a	S117
Figure S93. HRMS of intermediate 8a/9a	S118
Figure S94. HRMS of intermediate 10a/11a or target compound 4a	S119
Figure S95. HRMS of intermediate 10a/11a or target compound 4a	S120
Figure S96. HRMS of intermediate 10a/11a or target compound 4a	S121
References and Notes	S122

General Information

All compounds were fully characterised by spectroscopic data. The NMR spectra were recorded on a Bruker DRX600. Chemical shifts (δ) are expressed in ppm, *J* values are given in Hz, and deuterated Chloroform-*d* were used as solvent. IR spectra were recorded on a FT-IR Thermo Nicolet Avatar 360 using a KBr pellet. The reactions were monitored by thin layer chromatography (TLC) using silica gel GF₂₅₄. The melting points were determined on a XT-4A melting point apparatus and are uncorrected; HRMS were performed on an Agilent LC/Msd TOF instrument.

The materials were purchased from Adamas-beta Corporation Limited. All chemicals and solvents were used as received without further purification unless otherwise stated. HKAs **1** were prepared according to the literature.¹

General Procedure for the Synthesis of 5*H*-Chromeno[4,3-*d*]pyrimidines 4a-4n'

A 25-mL round bottom flask was charged with the 3-formylchromone 1 (0.22 mmol), the HKA 2 (0.2 mmol), and acetonitrile (4 mL). While stirring, the amidine hydrochloride 2 (0.22 mmol) were added to the mixture, which was refluxed until completion of the reaction while monitoring by thin-layer chromatography (TLC, approximately 3 hours). After cooling the reaction mixture to room temperature, the product and cesium salts precipitated out of solution and were collected by suction filtration. The product was isolated from the cesium salts after adding dichloromethane (DCM) to the filter cake to dissolve the product, and the filtrate was recrystallized by DCM to afford the white compounds 4a-4n'.

1-Phenyl-2-(2-phenyl-5*H*-chromeno[4,3-*d*]pyrimidin-5-yl)-2-(tetrahydropyrimidi n-2(1*H*)-ylidene)ethan-1-one (4a)

White solid (68mg, 74%); Mp: 260.2–260.6 °C; IR (KBr): 3403, 1589, 1537, 1393, 1342, 1255, 1195, 1108, 759 cm⁻¹; ¹H NMR (600 MHz, Chloroform-*d*) : δ = 12.33 (s, 1H, NH), 8.61 (d, *J* = 0.9 Hz, 1H, ArH), 8.54 (dd, *J* = 7.5, 2.2 Hz, 2H, ArH), 8.37 (dd, *J* = 7.7, 1.5 Hz, 1H, ArH), 7.53–7.47 (m, 3H, ArH), 7.47–7.44 (m, 2H, ArH), 7.43 – 7.37 (m, 1H, ArH), 7.26 (q, *J* = 7.6, 6.8 Hz, 3H, ArH), 7.15 (t, *J* = 7.9 Hz, 1H, ArH), 7.07 (d, *J* = 8.1 Hz, 1H, ArH), 6.14 (d, *J* = 0.9 Hz, 1H, CH), 5.53 (s, 1H, NH), 3.58–2.98 (m, 4H, CH₂), 1.98–1.90 (m, 2H, CH₂); ¹³C NMR (150 MHz, Chloroform-*d*) : δ = 188.6, 164.2, 160.2, 158.0, 156.9, 153.8, 142.4, 137.6, 133.3, 130.8, 128.6, 128.5, 128.2, 128.2, 126.6, 125.5, 124.5, 122.8, 122.0, 117.8, 85.1, 78.5, 39.3–37.7 (m), 20.1; HRMS (TOF ES⁺): *m*/z calcd for C₂₉H₂₄N₄O₂ [(M+H)⁺], 461.1972; found, 461.1973.

2-(9-Chloro-2-phenyl-5*H*-chromeno[4,3-*d*]pyrimidin-5-yl)-1-phenyl-2-(tetrahydr opyrimidin-2(1*H*)-ylidene)ethan-1-one (4b)

White solid (78mg, 70%); Mp: 248.1–248.5 °C; IR (KBr): 3417, 3367, 3323, 1609, 1436, 1391, 1105, 879, 698, 667 cm⁻¹; ¹H NMR (600 MHz, Chloroform-*d*) : δ = 12.31 (s, 1H, NH), 8.62 (d, 1H, ArH), 8.53 (dd, *J* = 6.6, 3.1 Hz, 2H, ArH), 8.30 (d, *J* = 2.6 Hz, 1H, ArH), 7.51 (dd, *J* = 5.1, 1.9 Hz, 3H, ArH), 7.45 (dd, *J* = 7.3, 2.0 Hz, 2H, ArH), 7.35 (dd, *J* = 8.7, 2.6 Hz, 1H, ArH), 7.30–7.24 (m, 3H, ArH), 7.02 (d, *J* = 8.7 Hz, 1H, ArH), 6.12 (s, 1H, CH), 5.42 (s, 1H, NH), 3.60–3.01 (m, 4H, CH₂), 1.99–1.94 (m, 2H, CH₂); ¹³C NMR (150 MHz, Chloroform-*d*) : δ = 188.8, 164.4, 160.1, 156.5, 155.9, 154.1, 142.3, 137.3, 133.0, 131.0, 128.7, 128.6, 128.2, 128.1, 126.6, 125.1, 124.4, 123.2, 119.3, 84.8, 78.8, 39.6–37.5 (m), 20.1; HRMS (TOF ES⁺): *m/z* calcd for C₂₉H₂₃ClN₄O₂ [(M+H)⁺], 495.1582; found, 495.1588.

2-(2-(4-Fluorophenyl)-5*H*-chromeno[4,3-*d*]pyrimidin-5-yl)-1-phenyl-2-(tetra hydropyrimidin-2(1*H*)-ylidene)ethan-1-one (4c)

White solid (69mg, 72%); Mp: 241.1–241.6 °C; IR (KBr): 3425, 3391, 1607, 1418, 1391, 1344, 1141, 1106, 760, 608 cm⁻¹; ¹H NMR (600 MHz, Chloroform-*d*) : δ = 12.31 (s, 1H, NH), 8.59 (s, 1H, ArH), 8.54 (dd, J = 8.7, 5.7 Hz, 2H, ArH), 8.36 – 8.32 (m, 2H, ArH), 7.47–7.44 (m, 2H, ArH), 7.44–7.40 (m, 1H, ArH), 7.26 (q, J = 6.0 Hz, 3H, ArH), 7.19–7.13 (m, 3H, ArH), 7.08 (d, J = 8.2 Hz, 1H, ArH), 6.13 (s, 1H, CH), 5.53 (s, 1H, NH), 3.50–3.16 (m, 4H, CH₂), 1.99–1.93 (m, 2H, CH₂); ¹³C NMR (150 MHz, Chloroform-*d*) : δ = 188.7, 164.8 (d, J_1 = 250.4 Hz), 163.3, 160.2, 158.0, 157.0, 153.8, 142.4, 133.8, 133.4, 130.3 (d, J_3 = 8.7 Hz), 128.5, 128.2, 126.6, 125.5, 124.4, 122.8, 121.9, 117.9, 115.5 (d, J_2 = 22.4 Hz), 85.1, 78.4, 39.4–37.7 (m), 20.1; HRMS (TOF ES⁺): m/z calcd for C₂₉H₂₃FN₄O₂ [(M+H)⁺], 479.1878; found, 479.1874.

1-Phenyl-2-(tetrahydropyrimidin-2(1*H*)-ylidene)-2-(2-(p-tolyl)-5*H*-chromeno[4,3*d*]pyrimidin-5-yl)ethan-1-one (4d)

Yellow solid (72mg, 76%); Mp: 225.4–225.8 °C; IR (KBr): 3404, 1614, 1585, 1418, 1380, 1191, 1103, 749, 664, 616 cm⁻¹; ¹H NMR (600 MHz, Chloroform-*d*) : δ = 12.33 (s, 1H, NH), 8.59 (d, *J* = 0.8 Hz, 1H, ArH), 8.43 (d, *J* = 8.2 Hz, 2H, ArH), 8.37 (dd, *J* = 7.7, 1.5 Hz, 1H, ArH), 7.46–7.44 (m, 2H, ArH), 7.43–7.39 (m, 1H, ArH), 7.30 (d, *J* = 8.1 Hz, 2H, ArH), 7.28–7.23 (m, 3H, ArH), 7.15 (t, *J* = 7.8 Hz, 1H, ArH), 7.07 (d, *J* = 8.1 Hz, 1H, ArH), 6.12 (s, 1H, CH), 5.53 (s, 1H, NH), 3.53–3.11 (m, 4H, CH₂), 2.43 (s, 3H, CH₃), 2.00–1.92 (m, 2H, CH₂); ¹³C NMR (150 MHz, Chloroform-*d*) : δ = 188.6, 164.3, 160.2, 158.0, 156.8, 153.7, 142.4, 141.0, 134.9, 133.2, 129.3, 128.5, 128.2, 128.1, 126.6, 125.5, 124.1, 122.8, 122.0, 117.8, 85.1, 78.4, 39.0 – 37.9 (m), 21.5, 20.1; HRMS (TOF ES⁺): *m*/*z* calcd for C₃₀H₂₆N₄O₂ [(M+H)⁺], 475.2129; found, 475.2128.

2-(9-Chloro-2-(p-tolyl)-5*H*-chromeno[4,3-*d*]pyrimidin-5-yl)-1-phenyl-2-(tetrahyd ropyrimidin-2(1*H*)-ylidene)ethan-1-one (4e)

White solid (81 mg, 80%); Mp: 231.0–231.5 °C; IR (KBr): 3410, 1609, 1581, 1186, 1102, 771, 657, 607 cm⁻¹; ¹H NMR (600 MHz, Chloroform-*d*) : δ = 12.31 (s, 1H, NH), 8.59 (d, *J* = 0.9 Hz, 1H, ArH), 8.41 (d, *J* = 8.2 Hz, 2H, ArH), 8.29 (d, *J* = 2.6 Hz, 1H, ArH), 7.44 (dd, *J* = 7.4, 2.0 Hz, 2H, ArH), 7.34 (dd, *J* = 8.7, 2.6 Hz, 1H, ArH), 7.30 (d, *J* = 8.0 Hz, 2H, ArH), 7.28–7.25 (m, 3H, ArH), 7.01 (d, *J* = 8.7 Hz, 1H, ArH), 6.10 (d, *J* = 0.8 Hz, 1H, CH), 5.42 (s, 1H, NH), 3.52–3.14 (m, 4H, CH₂), 2.43 (s, 3H, CH₃), 1.98–1.94 (m, 2H, CH₂); ¹³C NMR (150 MHz, Chloroform-*d*) : δ = 188.8, 164.5, 160.1, 156.5, 155.8, 154.0, 142.3, 141.3, 134.6, 132.9, 129.4, 128.6, 128.2, 128.2, 128.1, 126.6, 125.1, 124.0, 123.3, 119.3, 84.8, 78.8, 39.3–37.7 (m), 21.5, 20.1; HRMS (TOF ES⁺): *m*/*z* calcd for C₃₀H₂₅ClN₄O₂ [(M+H)⁺], 509.1739; found, 509.1743.

1-(4-Bromophenyl)-2-(2-phenyl-5*H*-chromeno[4,3-*d*]pyrimidin-5-yl)-2-(tetrahydr opyrimidin-2(1*H*)-ylidene)ethan-1-one (4f)

White solid (81mg, 75%); Mp: 290.2–290.8 °C; IR (KBr): 3391, 3344, 1606, 1422, 1389, 1193, 1131, 1107, 722 cm⁻¹; ¹H NMR (600 MHz, Chloroform-*d*) : δ = 12.22 (s, 1H, NH), 8.58 (s, 1H, ArH), 8.54 (dd, *J* = 6.6, 3.0 Hz, 2H, ArH), 8.39 (dd, *J* = 7.7, 1.4 Hz, 1H, ArH), 7.51 (dd, *J* = 5.1, 1.7 Hz, 3H, ArH), 7.46–7.42 (m, 1H, ArH), 7.40 (d, *J* = 8.5 Hz, 2H, ArH), 7.35 (d, *J* = 8.4 Hz, 2H, ArH), 7.18 (t, *J* = 7.5 Hz, 1H, ArH), 7.07 (d, *J* = 8.1 Hz, 1H, ArH), 6.06 (s, 1H, CH), 5.54 (s, 1H, NH), 3.58–3.11 (m, 4H, CH₂), 1.99–1.93 (m, 2H, CH₂); ¹³C NMR (150 MHz, Chloroform-*d*) : δ = 187.2, 164.4, 160.2, 157.9, 156.9, 153.7, 141.2, 137.5, 133.4, 131.4, 130.8, 128.6, 128.4, 128.2, 125.6, 124.3, 123.0, 122.7, 122.0, 117.8, 85.2, 78.3, 39.2–37.8 (m), 20.1; HRMS (TOF ES⁺): *m/z* calcd for C₂₉H₂₃BrN₄O₂ [(M+H)⁺], 539.1077; found, 539.1075.

1-(4-Bromophenyl)-2-(2-(2-chlorophenyl)-5*H*-chromeno[4,3-*d*]pyrimidin-5-yl)-2-(tetrahydropyrimidin-2(1*H*)-ylidene)ethan-1-one (4g)

White solid (76 mg, 66%); Mp: 256.3–256.9 °C; IR (KBr): 3424, 3366, 1612, 1587, 1421, 1390, 1193, 1134, 1105 cm⁻¹; ¹H NMR (600 MHz, Chloroform-*d*) : δ = 12.20 (s, 1H, NH), 8.61 (s, 1H, ArH), 8.30 (dd, *J* = 7.7, 1.3 Hz, 1H, ArH), 7.86 (dd, *J* = 6.0, 3.4 Hz, 1H, ArH), 7.52 (dd, *J* = 5.8, 3.4 Hz, 1H, ArH), 7.45–7.43 (m, 1H, ArH), 7.42 (d, *J* = 8.3 Hz, 2H, ArH), 7.40–7.37 (m, 4H, ArH), 7.14 (t, *J* = 7.5 Hz, 1H, ArH), 7.08 (d, *J* = 8.2 Hz, 1H, ArH), 6.09 (s, 1H, CH), 5.54 (s, 1H, NH), 3.39 (s, 4H, CH₂), 2.00–1.96 (m, 2H, CH₂); ¹³C NMR (150 MHz, Chloroform-*d*) : δ = 187.3, 165.1, 160.2, 157.9, 157.0, 153.3, 141.1, 137.5, 133.6, 133.0, 131.9, 131.4, 130.8, 130.5, 128.5, 126.8, 125.9, 124.4, 123.1, 122.9, 121.7, 117.7, 85.0, 78.3, 39.0–38.1 (m), 20.1; HRMS (TOF ES⁺): *m*/*z* calcd for C₂₉H₂₂BrClN₄O₂ [(M+H)⁺], 573.0687; found, 573.0688.

1-(4-Bromophenyl)-2-(9-chloro-2-(2-chlorophenyl)-8-methyl-5*H*-chromeno[4,3-*d*] pyrimidin-5-yl)-2-(tetrahydropyrimidin-2(1*H*)-ylidene)ethan-1-one (4h)

Yellow solid (92 mg, 74%); Mp: 243.5–244.1 °C; IR (KBr): 3466, 3409, 1612, 1582, 1422, 1392, 1145, 1104, 706, 641 cm⁻¹; ¹H NMR (600 MHz, Chloroform-*d*) : δ = 12.17 (s, 1H, NH), 8.59 (s, 1H, ArH), 8.22 (s, 1H, ArH), 7.87–7.82 (m, 1H, ArH), 7.54–7.50 (m, 1H, ArH), 7.43 (d, *J* = 8.3 Hz, 2H, ArH), 7.41–7.38 (m, 2H, ArH), 7.36 (d, *J* = 8.2 Hz, 2H, ArH), 6.97 (s, 1H, ArH), 6.05 (s, 1H, CH), 5.48 (s, 1H, NH), 3.49–3.23 (m, 4H, CH₂), 2.41 (s, 3H, CH₃), 2.00–1.95 (m, 2H, CH₂); ¹³C NMR (150 MHz, Chloroform-*d*) : δ = 187.4, 165.2, 160.1, 156.2, 153.4, 142.2, 141.0, 137.3, 133.0, 131.9, 131.4, 130.8, 130.6, 128.9, 128.5, 126.8, 125.7, 124.0, 122.9, 120.6, 119.9, 84.8, 78.6, 39.1–38.1 (m), 20.7, 20.1; HRMS (TOF ES⁺): *m/z* calcd for C₃₀H₂₃BrCl₂N₄O₂ [(M+H)⁺], 621.0454; found, 621.0449.

1-(4-Bromophenyl)-2-(9-chloro-2-(4-(trifluoromethyl)phenyl)-5*H*-chromeno[4,3*d*]pyrimidin-5-yl)-2-(tetrahydropyrimidin-2(1*H*)-ylidene)ethan-1-one (4i)

Yellow solid (86 mg, 67%); Mp: 245.2–245.6 °C; IR (KBr): 3409, 1606, 1439, 1392, 1328, 1191, 1099, 647 cm⁻¹; ¹H NMR (600 MHz, Chloroform-*d*) : δ = 12.20 (s, 1H, NH), 8.65 (d, *J* = 8.2 Hz, 2H, ArH), 8.61 (d, *J* = 1.0 Hz, 1H, ArH), 8.31 (d, *J* = 2.6 Hz, 1H, ArH), 7.77 (d, *J* = 8.3 Hz, 2H, ArH), 7.45–7.37 (m, 3H, ArH), 7.34 (d, *J* = 8.4 Hz, 2H, ArH), 7.04 (d, *J* = 8.7 Hz, 1H, ArH), 6.05 (d, *J* = 0.9 Hz, 1H, CH), 5.40 (s, 1H, NH), 3.56–3.19 (m, 4H, CH₂), 2.01–1.96 (m, 2H, CH₂); ¹³C NMR (150 MHz, Chloroform-*d*) : δ = 187.4, 163.1, 160.1, 156.3 (d, *J*₂ = 21.6 Hz), 154.1, 141.0, 140.5, 133.4, 132.7, 132.5, 131.4, 128.5, 128.5, 128.4, 125.5 (d, *J*₃ = 3.7 Hz), 125.2, 125.0, 123.2, 122.9 (d, *J*₃ = 5.8 Hz), 119.3, 84.7, 78.7, 39.5–37.3 (m), 20.1; HRMS (TOF ES⁺): *m*/*z* calcd for C₃₀H₂₁BrClF₃N₄O₂ [(M+H)⁺], 641.0561; found, 641.0558.

1-(4-Bromophenyl)-2-(tetrahydropyrimidin-2(1*H*)-ylidene)-2-(2-(p-tolyl)-5*H*-chr omeno[4,3-*d*]pyrimidin-5-yl)ethan-1-one (4j)

White solid (73 mg, 68%); Mp: 267.6–268.3 °C; IR (KBr): 3411, 2962, 1419, 1391, 1195, 1106, 758, 656, 614 cm⁻¹; ¹H NMR (600 MHz, Chloroform-*d*) : δ = 12.20 (s, 1H, NH), 8.56 (s, 1H, ArH), 8.43 (d, *J* = 8.1 Hz, 2H, ArH), 8.38 (dd, *J* = 7.7, 1.5 Hz, 1H, ArH), 7.45–7.42 (m, 1H, ArH), 7.40 (d, *J* = 8.5 Hz, 2H, ArH), 7.34 (d, *J* = 8.4 Hz, 2H, ArH), 7.31 (d, *J* = 8.0 Hz, 2H, ArH), 7.17 (t, *J* = 7.1 Hz, 1H, ArH), 7.07 (d, *J* = 8.1 Hz, 1H, ArH), 6.05 (s, 1H, CH), 5.54 (s, 1H, NH), 3.50–3.28 (m, 4H, CH₂), 2.44 (s, 3H, CH₃), 1.99–1.95 (m, 2H, CH₂); ¹³C NMR (150 MHz, Chloroform-*d*) : δ = 187.2, 164.5, 160.2, 157.9, 156.8, 153.6, 141.1, 134.8, 133.3, 131.3, 129.3, 128.4, 128.1, 125.6, 123.9, 122.9, 122.7, 122.0, 117.7, 85.2, 78.3, 39.1–37.9 (m), 21.5, 20.1; HRMS (TOF ES⁺): *m*/*z* calcd for C₃₀H₂₅BrN₄O₂ [(M+H)⁺], 553.1234; found, 553.1237.

1-(4-Bromophenyl)-2-(9-chloro-2-(p-tolyl)-5*H*-chromeno[4,3-*d*]pyrimidin-5-yl)-2-(tetrahydropyrimidin-2(1*H*)-ylidene)ethan-1-one (4k)

White solid (89 mg, 76%); Mp: 269.1–269.6 °C; IR (KBr): 3428, 3284, 1606, 1388, 1349, 1192, 1132, 1105, 714, 603 cm⁻¹; ¹H NMR (600 MHz, Chloroform-*d*) : δ = 12.19 (s, 1H, NH), 8.57 (s, 1H, ArH), 8.42 (d, *J* = 8.0 Hz, 2H, ArH), 8.32 (d, *J* = 2.4 Hz, 1H, ArH), 7.41 (d, *J* = 8.2 Hz, 2H, ArH), 7.37 (dd, *J* = 8.7, 2.4 Hz, 1H, ArH), 7.34 –7.30 (m, 4H, ArH), 7.01 (d, *J* = 8.7 Hz, 1H, ArH), 6.03 (s, 1H, CH), 5.43 (s, 1H, NH), 3.51–3.19 (m, 4H, CH₂), 2.44 (s, 3H, CH₃), 2.00–1.95 (m, 2H, CH₂); ¹³C NMR (150 MHz, Chloroform-*d*) : δ = 187.3, 164.6, 160.1, 156.3, 155.9, 153.9, 141.4, 141.1, 134.5, 133.0, 131.4, 129.4, 128.4, 128.3, 128.2, 125.2, 123.8, 123.3, 122.8, 119.2, 84.9, 78.7, 21.5, 20.1; HRMS (TOF ES⁺): *m*/*z* calcd for C₃₀H₂₄BrClN₄O₂ [(M+H)⁺], 587.0844; found, 587.0839.

1-(4-Bromophenyl)-2-(9-chloro-8-methyl-2-(p-tolyl)-5*H*-chromeno[4,3-*d*]pyrimidi n-5-yl)-2-(tetrahydropyrimidin-2(1*H*)-ylidene)ethan-1-one (4l)

White solid (77 mg, 64%); Mp: 279.1–279.6 °C; IR (KBr): 3379, 1607, 1420, 1391, 1194, 1129, 1104, 724, 647, 601 cm⁻¹; ¹H NMR (600 MHz, Chloroform-*d*) : δ = 12.22 (s, 1H, NH), 8.54 (s, 1H, ArH), 8.42 (d, *J* = 8.1 Hz, 2H, ArH), 8.29 (s, 1H, ArH), 7.41 (d, *J* = 8.3 Hz, 2H, ArH), 7.32 (dd, *J* = 8.0, 4.3 Hz, 4H, ArH), 6.95 (s, 1H, ArH), 6.00 (s, 1H, CH), 5.44 (s, 1H, NH), 3.47–3.23 (m, 4H, CH₂), 2.44 (s, 3H, CH₃), 2.42 (s, 3H, CH₃), 1.99–1.95 (m, 2H, CH₂); ¹³C NMR (150 MHz, Chloroform-*d*) : δ = 187.3, 160.1, 156.2, 156.0, 153.7, 141.8, 141.3, 141.1, 134.6, 131.4, 129.4, 128.7, 128.4, 128.2, 125.4, 123.5, 122.8, 121.0, 119.9, 85.0, 78.6 , 21.5, 20.7, 20.1; HRMS (TOF ES⁺): *m/z* calcd for C₃₁H₂₆BrClN₄O₂ [(M+H)⁺], 601.1000; found, 601.0998.

1-(4-Fluorophenyl)-2-(2-phenyl-5*H*-chromeno[4,3-*d*]pyrimidin-5-yl)-2-(tetrahydr opyrimidin-2(1*H*)-ylidene)ethan-1-one (4m)

Yellow solid (64 mg, 67%); Mp: 268.8.6–269.3 °C; IR (KBr): 3398, 1605, 1372, 1193, 1122, 712, 668 cm⁻¹; ¹H NMR (600 MHz, Chloroform-*d*): $\delta = 12.25$ (s, 1H, NH), 8.59 (s, 1H, ArH), 8.54 (dd, J = 6.6, 2.9 Hz, 2H, ArH), 8.39 (dd, J = 7.7, 1.3 Hz, 1H, ArH), 7.50 (dd, J = 5.2, 1.7 Hz, 3H, ArH), 7.47 (dd, J = 8.4, 5.6 Hz, 2H, ArH), 7.45–7.42 (m, 1H, ArH), 7.17 (t, J = 7.5 Hz, 1H, ArH), 7.08 (d, J = 8.1 Hz, 1H, ArH), 6.95 (t, J = 8.7 Hz, 2H, ArH), 6.10 (s, 1H, CH), 5.53 (s, 1H, NH), 3.53–3.15 (m, 4H, CH₂), 2.00–1.93 (m, 2H, CH₂); ¹³C NMR (150 MHz, Chloroform-*d*): $\delta = 187.4$, 164.3, 163.7, 162.1, 160.2, 157.42 (d, $J_I = 153.8$ Hz), 153.7, 138.5 (d, $J_2 = 13.6$ Hz), 137.5, 133.4, 130.84, 128.7 (d, $J_3 = 8.2$ Hz), 128.6, 128.2, 125.6, 124.4, 122.9, 122.0, 117.8, 115.1 (d, $J_2 = 21.4$ Hz), 85.1, 78.4, 39.2–37.8 (m), 20.1; HRMS (TOF ES⁺): m/z calcd for C₂₉H₂₃FN₄O₂ [(M+H)⁺], 479.1878; found, 479.1875.

1-(4-Fluorophenyl)-2-(2-phenyl-5*H*-chromeno[4,3-*d*]pyrimidin-5-yl)-2-(tetrahydr opyrimidin-2(1*H*)-ylidene)ethan-1-one (4n)

White solid (77 mg, 71%); Mp: 246.9–247.3 °C; IR (KBr): 3392, 1611, 1422, 1391, 1195, 1132, 1105, 696, 612 cm⁻¹; ¹H NMR (600 MHz, Chloroform-*d*) : δ = 12.14 (s, 1H, NH), 8.58 (s, 1H, ArH), 8.56–8.52 (m, 2H, ArH), 8.38 (d, *J* = 7.6 Hz, 1H, ArH), 7.68 (s, 1H, ArH), 7.50 (d, *J* = 4.3 Hz, 3H, ArH), 7.44 (t, *J* = 7.4 Hz, 1H, ArH), 7.38 (d, *J* = 7.7 Hz, 2H, ArH), 7.17 (t, *J* = 7.5 Hz, 1H, ArH), 7.15–7.09 (m, 2H, ArH), 6.05 (s, 1H, CH), 5.55 (s, 1H, NH), 3.53–3.16 (m, 4H, CH₂), 1.97 (p, *J* = 5.3 Hz, 2H, CH₂); ¹³C NMR (150 MHz, Chloroform-*d*) : δ = 186.6, 164.4, 160.1, 157.9, 156.9, 153.7, 144.3, 137.5, 133.4, 131.6, 130.8, 130.1, 129.8, 128.6, 128.2, 125.6, 125.2, 124.3, 123.0, 122.0, 117.9, 85.2, 78.2, 38.9–38.2 (m), 20.1; HRMS (TOF ES⁺): *m/z* calcd for C₂₉H₂₃BrN₄O₂ [(M+H)⁺], 539.1077; found, 539.1081.

2-(9-Bromo-2-phenyl-5*H*-chromeno[4,3-*d*]pyrimidin-5-yl)-1-(3-bromophenyl)-2-(tetrahydropyrimidin-2(1*H*)-ylidene)ethan-1-one (40)

White solid (80 mg, 65%); Mp: 254.1–254.5 °C; IR (KBr): 3380, 1604, 1585, 1433, 1404, 1327, 1103, 715, 649, 605 cm⁻¹; ¹H NMR (600 MHz, Chloroform-*d*) : δ = 12.09 (s, 1H, NH), 8.58 (s, 1H, ArH), 8.53 (dd, J = 6.6, 3.0 Hz, 2H, ArH), 8.46 (d, J = 2.4 Hz, 1H, ArH), 7.67 (s, 1H, ArH), 7.55–7.49 (m, 4H, ArH), 7.38 (dd, J = 15.8, 7.8 Hz, 2H, ArH), 7.14 (t, J = 7.8 Hz, 1H, ArH), 7.00 (d, J = 8.6 Hz, 1H, ArH), 6.03 (d, J = 1.1 Hz, 1H), 5.43 (s, 1H, NH), 3.54–3.18 (m, 4H, CH₂), 2.01–1.93 (m, 2H, CH₂); ¹³C NMR (150 MHz, Chloroform-*d*) : δ = 186.8, 164.5, 160.1, 156.8, 155.8, 154.0, 144.1, 137.2, 135.9, 131.7, 131.0, 130.1, 129.8, 128.6, 128.2, 128.1, 125.2, 124.1, 123.7, 122.4, 119.7, 115.6, 84.9, 78.6, 39.1–37.9 (m), 20.1; HRMS (TOF ES⁺): *m*/*z* calcd for C₂₉H₂₂Br₂N₄O₂ [(M+H)⁺], 619.0162; found, 619.0159.

2-(9-Chloro-8-methyl-2-phenyl-5*H*-chromeno[4,3-*d*]pyrimidin-5-yl)-2-(tetrahydr opyrimidin-2(1*H*)-ylidene)-1-(p-tolyl)ethan-1-one (4p)

White solid (72 mg, 69%); Mp: 267.0–267.6 °C; IR (KBr): 3415, 3384, 3344, 1604, 1390, 1195, 1108, 756, 719, 682, 606 cm⁻¹; ¹H NMR (600 MHz, Chloroform-*d*) : δ = 12.33 (s, 1H, NH), 8.59 (s, 1H, ArH), 8.53 (dd, *J* = 7.2, 2.3 Hz, 2H, ArH), 8.28 (s, 1H, ArH), 7.51 (dd, *J* = 5.2, 1.7 Hz, 3H, ArH), 7.34 (d, *J* = 7.9 Hz, 2H, ArH), 7.08 (d, *J* = 7.9 Hz, 2H, ArH), 6.96 (s, 1H, ArH), 6.14 (s, 1H, CH), 5.40 (s, 1H, NH), 3.58–3.06 (m, 4H, CH₂), 2.41 (s, 3H, CH₃), 2.27 (s, 3H, CH₃), 2.00–1.93 (m, 2H, CH₂); ¹³C NMR (150 MHz, Chloroform-*d*) : δ = 188.9, 164.3, 160.2, 156.4, 156.1, 153.9, 141.8, 139.5, 138.5, 137.4, 130.9, 128.8, 128.6, 128.5, 128.2, 126.6, 125.3, 124.2, 121.0, 120.0, 84.8, 78.9, 21.2, 20.6, 20.2; HRMS (TOF ES⁺): *m*/*z* calcd for C₃₁H₂₇ClN₄O₂ [(M+H)⁺], 523.1895; found, 523.1890.

2-(Tetrahydropyrimidin-2(1*H*)-ylidene)-1-(p-tolyl)-2-(2-(4-(trifluoromethyl)phen yl)-5*H*-chromeno[4,3-*d*]pyrimidin-5-yl)ethan-1-one (4q)

White solid (73 mg, 67%); Mp: 218.3–218.7 °C; IR (KBr): 3393, 1609, 1423, 1328, 1122, 872, 767, 615 cm⁻¹; ¹H NMR (600 MHz, Chloroform-*d*) : δ = 12.34 (s, 1H, NH), 8.65 (d, *J* = 8.1 Hz, 2H, ArH), 8.62 (d, *J* = 1.1 Hz, 1H, ArH), 8.36 (dd, *J* = 7.7, 1.5 Hz, 1H, ArH), 7.75 (d, *J* = 8.3 Hz, 2H, ArH), 7.47–7.42 (m, 1H, ArH), 7.37 (d, *J* = 8.0 Hz, 2H, ArH), 7.19–7.15 (m, 1H, ArH), 7.11–7.06 (m, 3H, ArH), 6.20 (d, *J* = 0.9 Hz, 1H, CH), 5.49 (s, 1H, NH), 3.53–3.16 (m, 4H, CH₂), 2.27 (s, 3H, CH₃), 2.00–1.94 (m, 2H, CH₂); ¹³C NMR (150 MHz, Chloroform-*d*) : δ = 188.9, 162.8, 160.2, 158.1, 157.2 , 153.9, 140.9, 139.5, 138.5, 133.6, 132.4, 132.2, 128.8, 128.4, 126.7, 125.5, 125.5 (d, *J*₃ = 3.7 Hz), 124.2 (d, *J*₁ = 272.1 Hz), 122.9, 121.7, 117.9, 84.9, 78.6, 39.4–37.6 (m), 21.2, 20.2; HRMS (TOF ES⁺): *m*/*z* calcd for C₃₁H₂₅F₃N₄O₂ [(M+H)⁺], 543.2002; found, 543.2000.

2-(9-Chloro-2-(4-(trifluoromethyl)phenyl)-5*H*-chromeno[4,3-*d*]pyrimidin-5-yl)-2-(tetrahydropyrimidin-2(1*H*)-ylidene)-1-(p-tolyl)ethan-1-one (4r)

Yellow solid (89 mg, 71%); Mp: 214.8–215.6 °C; IR (KBr): 3407, 3312, 1382, 1326, 1130, 1096, 779, 744, 605 cm⁻¹; ¹H NMR (600 MHz, Chloroform-*d*) : δ = 12.31 (s, 1H, NH), 8.65 (d, *J* = 8.2 Hz, 2H, ArH), 8.63 (d, *J* = 1.0 Hz, 1H, ArH), 8.29 (d, *J* = 2.6 Hz, 1H, ArH), 7.76 (d, *J* = 8.3 Hz, 2H, ArH), 7.39–7.35 (m, 3H, ArH), 7.08 (d, *J* = 7.9 Hz, 2H, ArH), 7.05 (d, *J* = 8.7 Hz, 1H, ArH), 6.18 (d, *J* = 0.9 Hz, 1H, CH), 5.39 (s, 1H, NH), 3.50–3.17 (m, 4H, CH₂), 2.28 (s, 3H, CH₃), 2.00–1.95 (m, 2H, CH₂); ¹³C NMR (150 MHz, Chloroform-*d*) : δ = 189.1, 163.0, 160.1, 156.6, 154.2, 140.6, 139.3, 138.7, 133.2, 132.6, 132.4, 128.8, 128.5, 128.2, 126.7, 125.5(d, *J*₃ = 7.4 Hz), 125.4, 125.1, 125.0, 123.2, 123.0, 119.4, 84.5, 79.0, 39.6–37.6 (m), 31.6, 22.6, 21.2, 20.2, 14.1; HRMS (TOF ES⁺): *m*/*z* calcd for C₃₁H₂₄ClF₃N₄O₂ [(M+H)⁺], 577.1613; found, 577.1608.

2-(9-Chloro-8-methyl-2-(4-(trifluoromethyl)phenyl)-5*H*-chromeno[4,3-*d*]pyrimidi n-5-yl)-2-(tetrahydropyrimidin-2(1*H*)-ylidene)-1-(p-tolyl)ethan-1-one (4s)

Yellow solid (86 mg, 73%); Mp: 219.2–219.6 °C; IR (KBr): 3389, 1613, 1418, 1385, 1327, 1132, 749, 685, 608 cm⁻¹; ¹H NMR (600 MHz, Chloroform-*d*) : δ = 12.31 (s, 1H, NH), 8.64 (d, *J* = 8.1 Hz, 2H, ArH), 8.60 (d, *J* = 1.0 Hz, 1H, ArH), 8.26 (s, 1H, ArH), 7.76 (d, *J* = 8.3 Hz, 2H, ArH), 7.35 (d, *J* = 8.0 Hz, 2H, ArH), 7.08 (d, *J* = 7.9 Hz, 2H, ArH), 6.98 (s, 1H, ArH), 6.15 (d, *J* = 0.9 Hz, 1H, CH), 5.41 (s, 1H, NH), 3.49–3.19 (m, 4H, CH₂), 2.42 (s, 3H, CH₃), 2.28 (s, 3H, CH₃), 1.99–1.95 (m, 2H, CH₂); ¹³C NMR (150 MHz, Chloroform-*d*) : δ = 189.0, 162.9, 160.2, 156.4, 156.4, 154.0, 142.1, 140.7, 139.4, 138.6, 132.5, 132.3, 128.8, 128.6, 128.5, 126.7, 125.5 (d, *J*₃ = 3.7 Hz), 125.3, 125.0, 123.2, 120.7, 120.1, 84.7, 78.86, 39.9–37.3 (m), 21.2, 20.7, 20.2; HRMS (TOF ES⁺): *m*/*z* calcd for C₃₂H₂₆ClF₃N₄O₂ [(M+H)⁺], 591.1769; found, 591.1769.

2-(Tetrahydropyrimidin-2(1*H*)-ylidene)-1-(p-tolyl)-2-(2-(p-tolyl)-5*H*-chromeno[4, 3-*d*]pyrimidin-5-yl)ethan-1-one (4t)

White solid (75 mg, 77%); Mp: 226.7–227.2 °C; IR (KBr): 3433, 3391, 1611, 1419, 1387, 1125, 764, 714, 680, 623 cm⁻¹; ¹H NMR (600 MHz, Chloroform-*d*) : δ = 12.36 (s, 1H, NH), 8.58 (d, *J* = 0.8 Hz, 1H, ArH), 8.43 (d, *J* = 8.1 Hz, 2H, ArH), 8.37 (dd, *J* = 7.7, 1.4 Hz, 1H, ArH), 7.44 – 7.39 (m, 1H, ArH), 7.36 (d, *J* = 8.0 Hz, 2H, ArH), 7.30 (d, *J* = 8.0 Hz, 2H, ArH), 7.15 (t, *J* = 7.5 Hz, 1H, ArH), 7.07 (dd, *J* = 7.6, 4.8 Hz, 3H, ArH), 6.17 (s, 1H, CH), 5.51 (s, 1H, NH), 3.52–3.11 (m, 4H, CH₂), 2.43 (s, 3H, CH₃), 2.26 (s, 3H, CH₃), 1.98–1.93 (m, 2H, CH₂); ¹³C NMR (150 MHz, Chloroform-*d*) : δ = 188.8, 164.3, 160.2, 158.1, 156.8, 153.8, 141.0, 139.6, 138.4, 134.9, 133.2, 129.3, 128.8, 128.1, 126.7, 125.5, 124.2, 122.7, 122.1, 117.8, 85.0, 78.6, 39.2–37.6 (m), 21.5, 21.2, 20.2; HRMS (TOF ES⁺): *m*/*z* calcd for C₃₁H₂₈N₄O₂ [(M+H)⁺], 489.2285; found, 489.2288.

2-(9-Chloro-2-(p-tolyl)-5*H*-chromeno[4,3-*d*]pyrimidin-5-yl)-2-(tetrahydropyrimi din-2(1*H*)-ylidene)-1-(p-tolyl)ethan-1-one (4u)

White solid (79 mg, 76%); Mp: 254.3–254.9 °C; IR (KBr): 3379, 3253, 1612, 1432, 1191, 1131, 787, 689, 602 cm⁻¹; ¹H NMR (600 MHz, Chloroform-*d*) : δ = 12.31 (s, 1H, NH), 8.58 (d, *J* = 1.0 Hz, 1H, ArH), 8.42 (d, *J* = 8.2 Hz, 2H, ArH), 8.30 (d, *J* = 2.6 Hz, 1H, ArH), 7.35 (dd, *J* = 8.6, 2.6 Hz, 3H, ArH), 7.31 (d, *J* = 8.0 Hz, 2H, ArH), 7.07 (d, *J* = 7.9 Hz, 2H, ArH), 7.02 (d, *J* = 8.7 Hz, 1H, ArH), 6.15 (d, *J* = 1.0 Hz, 1H, CH), 5.40 (s, 1H, NH), 3.50–3.15 (m, 4H, CH₂), 2.43 (s, 3H, CH₃), 2.27 (s, 3H, CH₃), 1.98–1.93 (m, 2H, CH₂); ¹³C NMR (150 MHz, Chloroform-*d*) : δ = 189.0, 164.4, 160.1, 156.6, 155.9, 154.1, 141.3, 139.5, 138.6, 134.6, 132.9, 129.4, 128.8, 128.2, 128.0, 126.7, 125.1, 124.1, 123.3, 119.3, 84.7, 79.0, 39.8–37.5 (m), 21.5, 21.2, 20.2; HRMS (TOF ES⁺): *m*/*z* calcd for C₃₁H₂₇ClN₄O₂ [(M+H)⁺], 523.1895; found, 523.1891.

2-(9-Chloro-8-methyl-2-(p-tolyl)-5*H*-chromeno[4,3-*d*]pyrimidin-5-yl)-2-(tetrahyd ropyrimidin-2(1*H*)-ylidene)-1-(p-tolyl)ethan-1-one (4v)

White solid (86 mg, 80%); Mp: 259.6–260.3 °C; IR (KBr): 3378, 1607, 1582, 1144, 1099, 881, 798, 715, 682 cm⁻¹; ¹H NMR (600 MHz, Chloroform-*d*) : δ = 12.33 (s, 1H, NH), 8.56 (s, 1H, ArH), 8.41 (d, *J* = 8.1 Hz, 2H, ArH), 8.27 (s, 1H, ArH), 7.34 (d, *J* = 7.9 Hz, 2H, ArH), 7.31 (d, *J* = 8.0 Hz, 2H, ArH), 7.07 (d, *J* = 7.9 Hz, 2H, ArH), 6.95 (s, 1H, ArH), 6.13 (s, 1H, CH), 5.39 (s, 1H, NH), 3.50–3.12 (m, 4H, CH₂), 2.43 (s, 3H, CH₃), 2.40 (s, 3H, CH₃), 2.27 (s, 3H, CH₃), 1.98–1.93 (m, 2H, CH₂); ¹³C NMR (150 MHz, Chloroform-*d*) : δ = 188.9, 164.4, 160.1, 156.4, 156.0, 153.8, 141.6, 141.2, 139.5, 138.5, 134.7, 129.3, 128.8, 128.5, 128.1, 126.6, 125.3, 123.8, 121.0, 120.0, 84.9, 78.9, 39.8–37.2 (m), 21.5, 21.2, 20.6, 20.2; HRMS (TOF ES⁺): *m/z* calcd for C₃₂H₂₉ClN₄O₂ [(M+H)⁺], 537.2052; found, 537.2047.

1-(4-Methoxyphenyl)-2-(tetrahydropyrimidin-2(1*H*)-ylidene)-2-(2-(p-tolyl)-5*H*-ch romeno[4,3-*d*]pyrimidin-5-yl)ethan-1-one (4w)

Yellow solid (73 mg, 72%); Mp:212.0–212.5 °C; IR (KBr): 3410, 1606, 1385, 1191, 1137, 1105, 713, 644, 612 cm⁻¹; ¹H NMR (600 MHz, Chloroform-*d*) : δ = 12.31 (s, 1H, NH), 8.57 (s, 1H, ArH), 8.43 (d, *J* = 8.1 Hz, 2H, ArH), 8.38 (d, *J* = 8.9 Hz, 1H, ArH), 7.44 (t, *J* = 7.8 Hz, 3H, ArH), 7.31 (d, *J* = 8.0 Hz, 2H, ArH), 7.16 (t, *J* = 7.5 Hz, 1H, ArH), 7.09 (d, *J* = 8.1 Hz, 1H, ArH), 6.79 (d, *J* = 8.7 Hz, 2H, ArH), 6.21 (s, 1H, CH), 5.48 (s, 1H, NH), 3.73 (s, 3H, OCH₃), 3.49–3.16 (m, 4H, CH₂), 2.43 (s, 3H, CH₃), 1.98–1.92 (m, 2H, CH₂); ¹³C NMR (150 MHz, Chloroform-*d*) : δ = 188.4, 164.3, 160.2, 160.0, 158.1, 156.8, 153.8, 141.0, 135.0, 134.9, 133.2, 129.3, 128.4, 128.1, 125.5, 124.3, 122.7, 122.1, 117.8, 113.4, 84.9, 78.7, 55.2, 39.5–37.6 (m), 21.5, 20.2; HRMS (TOF ES⁺): *m*/*z* calcd for C₃₁H₂₈N₄O₃ [(M+H)⁺], 505.2234; found, 505.2235.

5-(Nitro(tetrahydropyrimidin-2(1*H*)-ylidene)methyl)-2-phenyl-5*H*-chromeno[4,3*d*]pyrimidine (4x)

Yellow solid (69 mg, 58%); Mp: 216.8–217.6 °C; IR (KBr): 3403, 1512, 1393, 1345, 1253, 1197, 1112, 762 cm⁻¹; ¹H NMR (600 MHz, Chloroform-*d*): δ = 8.60 – 8.52 (m, 2H, ArH), 8.44 (d, *J* = 7.7 Hz, 1H, ArH), 8.38 (s, 1H, ArH), 7.55 – 7.51 (m, 3H, ArH), 7.46 (t, *J* = 7.7 Hz, 1H, ArH), 7.36 (s, 1H, CH), 7.23 (t, *J* = 7.4 Hz, 1H, ArH), 7.06 (d, *J* = 8.1 Hz, 1H, ArH), 3.50 – 3.38 (m, 4H, CH₂), 2.35 (t, *J* = 6.6 Hz, 1H, NH), 2.04 – 1.99 (m, 2H, CH₂), 1.88 (dt, *J* = 12.8, 6.4 Hz, 1H, NH); ¹³C NMR (150 MHz, Chloroform-*d*): δ = 164.8, 157.1, 156.9, 155.1, 152.8, 137.4, 133.4, 130.9, 128.6, 128.3, 125.7, 123.5, 121.9, 121.9, 117.8, 105.4, 74.4, 38.9, 19.3; HRMS (TOF ES⁺): *m/z* calcd for C₂₂H₂₀N₅O₃ [(M+H)⁺], 402.1561; found, 402.1559.

2-(Imidazolidin-2-ylidene)-1-phenyl-2-(2-phenyl-5*H*-chromeno[4,3-*d*]pyrimidin-5 -yl)ethan-1-one (4y)

Yellow solid (70 mg, 75%); Mp: 234.5–235.1 °C; IR (KBr): 3447, 3279, 1599, 1536, 1397, 1196, 1104, 746, 715, 690 cm⁻¹; ¹H NMR (600 MHz, Chloroform-*d*) : δ = 10.36 (s, 1H, NH), 8.59 (s, 1H, ArH), 8.55 (dd, *J* = 7.3, 2.3 Hz, 2H, ArH), 8.39 (dd, *J* = 7.7, 1.4 Hz, 1H, ArH), 7.50 (dd, *J* = 5.4, 1.6 Hz, 3H, ArH), 7.44 (dd, *J* = 6.5, 2.9 Hz, 2H, ArH), 7.43–7.39 (m, 1H, ArH), 7.30–7.26 (m, 3H, ArH), 7.15 (t, *J* = 7.3 Hz, 1H, ArH), 7.05 (d, *J* = 8.1 Hz, 1H, ArH), 6.14 (s, 1H, CH), 5.11 (s, 1H, NH), 3.87–3.67 (m, 2H, CH₂), 3.60–3.44 (m, 2H, CH₂); ¹³C NMR (150 MHz, Chloroform-*d*) : δ = 190.3, 165.8, 164.3, 158.0, 156.8, 154.2, 141.9, 137.6, 133.4, 130.8, 128.9, 128.6, 128.2, 128.2, 126.6, 125.5, 123.9, 122.7, 121.8, 117.7, 84.7, 77.5, 43.5, 43.0; HRMS (TOF ES⁺): *m*/*z* calcd for C₂₈H₂₂N₄O₂ [(M+H)⁺], 447.1816; found, 447.1813.

2-(2-(4-Fluorophenyl)-5*H*-chromeno[4,3-*d*]pyrimidin-5-yl)-2-(imidazolidin-2-ylid ene)-1-phenylethan-1-one (4z)

White solid (64 mg, 69%); Mp: 253.7–254.5 °C; IR (KBr): 3451, 1603, 1537, 1408, 1195, 1104, 758, 714, 608 cm⁻¹; ¹H NMR (600 MHz, Chloroform-*d*) : δ = 10.36 (s, 1H, NH), 8.58–8.54 (m, 3H, ArH), 8.35 (d, *J* = 7.6 Hz, 1H, ArH), 7.44 (dd, *J* = 6.5, 2.9 Hz, 2H, ArH), 7.41 (d, *J* = 8.3 Hz, 1H, ArH), 7.30–7.26 (m, 3H, ArH), 7.16 (dt, *J* = 12.5, 8.1 Hz, 3H, ArH), 7.05 (d, *J* = 8.2 Hz, 1H, ArH), 6.13 (s, 1H, CH), 5.10 (s, 1H, NH), 3.85–3.74 (m, 2H, CH₂), 3.60–3.48 (m, 2H, CH₂); ¹³C NMR (150 MHz, Chloroform-*d*) : δ = 190.3, 165.8, 164.8 (d, *J*₁ = 250.5 Hz), 163.4, 158.1, 156.9, 154.2, 141.8, 133.8 (d, *J*₃ = 2.9 Hz), 133.4, 130.3 (d, *J*₃ = 8.7 Hz), 128.9, 128.2, 126.5, 125.5, 123.8, 122.7, 121.7, 117.8, 115.5 (d, *J*₂ = 21.6 Hz), 84.7, 77.5, 43.5, 43.0; HRMS (TOF ES⁺): *m*/*z* calcd for C₂₈H₂₁FN₄O₂ [(M+H)⁺], 465.1721; found, 465.1718.

2-(Imidazolidin-2-ylidene)-1-phenyl-2-(2-(p-tolyl)-5*H*-chromeno[4,3-*d*]pyrimidin-5-yl)ethan-1-one (4a')

Yellow solid (59 mg, 64%); Mp: 205.1–205.7 °C; IR (KBr): 3419, 3388, 1600, 1531, 1193, 757, 713, 636, 614 cm⁻¹; ¹H NMR (600 MHz, Chloroform-*d*) : δ = 10.35 (s, 1H, NH), 8.57 (s, 1H, ArH), 8.44 (d, *J* = 8.0 Hz, 2H, ArH), 8.37 (d, *J* = 7.5 Hz, 1H, ArH), 7.43 (dd, *J* = 6.3, 2.6 Hz, 2H, ArH), 7.40 (t, *J* = 7.2 Hz, 1H, ArH), 7.30 (d, *J* = 8.0 Hz, 2H, ArH), 7.28–7.25 (m, 3H, ArH), 7.14 (t, *J* = 7.5 Hz, 1H, ArH), 7.04 (d, *J* = 8.1 Hz, 1H, ArH), 6.12 (s, 1H, CH), 5.12 (s, 1H, NH), 3.84–3.73 (m, 2H, CH₂), 3.58–3.46 (m, 2H, CH₂), 2.42 (s, 3H, CH₃); ¹³C NMR (150 MHz, Chloroform-*d*) δ 190.3, 165.8, 164.4, 158.0, 156.7, 154.1, 141.9, 141.1, 134.9, 133.3, 129.3, 128.9, 128.2, 128.1, 126.5, 125.5, 123.5, 122.6, 121.9, 117.7, 84.8, 77.5, 43.5, 43.0, 21.5; HRMS (TOF ES⁺): *m*/*z* calcd for C₂₉H₂₄N₄O₂ [(M+H)⁺], 461.1972; found, 461.1969.

1-(4-Bromophenyl)-2-(9-chloro-2-(p-tolyl)-5*H*-chromeno[4,3-*d*]pyrimidin-5-yl)-2-(imidazolidin-2-ylidene)ethan-1-one (4b')

White solid (80 mg, 70%); Mp: 262.3–262.9 °C; IR (KBr): 3465, 3382, 1594, 1539, 1435, 1406, 1193, 1107, 755, 703 cm⁻¹; ¹H NMR (600 MHz, Chloroform-*d*) : δ = 10.28 (s, 1H, NH), 8.54 (s, 1H, ArH), 8.42 (d, *J* = 8.1 Hz, 2H, ArH), 8.32 (d, *J* = 2.5 Hz, 1H, ArH), 7.42 (d, *J* = 8.3 Hz, 2H, ArH), 7.35 (dd, *J* = 8.7, 2.5 Hz, 1H, ArH), 7.31 (dd, *J* = 8.3, 2.7 Hz, 4H, ArH), 6.98 (d, *J* = 8.7 Hz, 1H, ArH), 6.04 (s, 1H, CH), 5.05 (s, 1H, NH), 3.86–3.76 (m, 2H, CH₂), 3.61–3.51 (m, 2H, CH₂), 2.44 (s, 3H, CH₃); ¹³C NMR (150 MHz, Chloroform-*d*) : δ = 189.0, 165.7, 164.6, 156.4, 155.8, 154.3, 141.4, 140.5, 134.5, 133.0, 131.4, 129.4, 128.3, 128.2, 128.1, 125.1, 123.3, 123.1, 123.1, 119.1, 84.4, 77.7, 43.5, 43.0, 21.5; HRMS (TOF ES⁺): *m*/*z* calcd for C₂₉H₂₂BrClN₄O₂ [(M+H)⁺], 573.0687; found, 573.0679.

5-(Imidazolidin-2-ylidene(nitro)methyl)-2-phenyl-5*H*-chromeno[4,3-*d*]pyrimidine (4c')

Yellow solid (83 mg, 71%); Mp: 264.5–265.2 °C; IR (KBr): 3446, 3275, 1516, 1387, 1189, 1107, 756, 713, 682 cm⁻¹; ¹H NMR (600 MHz, Chloroform-*d*): δ = 8.62 (s, 2H, NH), 8.51 (d, *J* = 4.8 Hz, 2H, ArH), 8.38 (d, *J* = 6.7 Hz, 2H, ArH), 7.57 (d, *J* = 5.3 Hz, 3H, ArH), 7.46 (t, *J* = 7.9 Hz, 1H, ArH), 7.16 (t, *J* = 7.6 Hz, 1H, ArH), 6.98 (d, *J* = 8.2

Hz, 1H, ArH), 6.78 (s, 1H, CH), 3.71 (s, 4H, CH₂); ¹³C NMR (150 MHz, Chloroform-*d*): δ = 162.9, 160.4, 158.3, 155.9, 153.1, 137.7, 133.9, 131.2, 129.2, 128.2, 125.2, 123.0, 122.1, 120.2, 117.4, 105.7, 72.8, 43.9; HRMS (TOF ES⁺): *m/z* calcd for C₂₁H₁₈N₅O₂ [(M+H)⁺], 388.1404; found, 388.1404.

2-(2-Cyclopropyl-5*H*-chromeno[4,3-*d*]pyrimidin-5-yl)-1-phenyl-2-(tetrahydropyr imidin-2(1*H*)-ylidene)ethan-1-one (4d')

Yellow solid (56 mg, 66%); Mp: 218.7–219.3 °C; IR (KBr): 3424, 1613, 1440, 1193, 1122, 763, 712, 668 cm⁻¹; ¹H NMR (600 MHz, Chloroform-*d*): δ = 12.32 (s, 1H, NH), 8.37 (d, *J* = 1.0 Hz, 1H, ArH), 8.16 (dd, *J* = 7.7, 1.6 Hz, 1H, ArH), 7.41 (dd, *J* = 7.6, 1.7 Hz, 2H, ArH), 7.40–7.35 (m, 1H, ArH), 7.28–7.22 (m, 3H, ArH), 7.09 (td, *J* = 7.7, 0.9 Hz, 1H, ArH), 7.03 (d, *J* = 8.2 Hz, 1H, ArH), 6.04 (d, *J* = 1.0 Hz, 1H, CH), 5.47 (s, 1H, NH), 3.59–3.08 (m, 4H, CH₂), 2.31–2.23 (m, 1H, CH), 1.98–1.93 (m, 2H, CH₂), 1.21–1.17 (m, 2H, CH₂), 1.09–1.05 (m, 2H, CH₂); ¹³C NMR (150 MHz, Chloroform-*d*): δ = 188.6, 171.8, 160.2, 158.0, 156.5, 153.2, 142.5, 133.1, 128.4, 128.1, 126.6, 125.3, 123.1, 122.6, 121.9, 117.7, 85.0, 78.3, 39.2–37.8 (m), 20.1, 18.2, 10.6; HRMS (TOF ES⁺): *m*/*z* calcd for C₂₆H₂₄N₄O₂ [(M+H)⁺], 425.1972; found, 425.1969.

2-(9-Chloro-2-cyclopropyl-5*H*-chromeno[4,3-*d*]pyrimidin-5-yl)-1-phenyl-2-(tetra hydropyrimidin-2(1*H*)-ylidene)ethan-1-one (4e')

White solid (64 mg, 70%); Mp: 265.4–266.2 °C; IR (KBr): 3398, 1606, 1514, 1441, 1349, 1193, 1133, 714, 689 cm⁻¹; ¹H NMR (600 MHz, Chloroform-*d*) : δ = 12.26 (s, 1H, NH), 8.38 (s, 1H, ArH), 8.10 (d, *J* = 2.4 Hz, 1H, ArH), 7.42–7.38 (m, 2H, ArH), 7.31 (dd, *J* = 8.7, 2.4 Hz, 1H, ArH), 7.26–7.24 (m, 3H, ArH), 6.98 (d, *J* = 8.7 Hz, 1H, ArH), 6.02 (s, 1H, CH), 5.37 (s, 1H, NH), 3.53–3.12 (m, 4H, CH₂), 2.35–2.23 (m, 1H, CH), 1.99–1.92 (m, 2H, CH₂), 1.22–1.16 (m, 2H, CH₂), 1.11–1.07 (m, 2H, CH₂); ¹³C NMR (150 MHz, Chloroform-*d*) : δ = 188.7, 172.1, 160.1, 156.5, 155.5, 153.5, 142.3, 132.8, 128.6, 128.2, 128.0, 126.6, 124.9, 123.1, 123.0, 119.2, 84.7, 78.7, 39.4 – 37.7 (m), 20.1, 18.2, 10.9; HRMS (TOF ES⁺): *m*/*z* calcd for C₂₆H₂₃ClN₄O₂ [(M+H)⁺], 459.1582; found, 459.1583.

1-(4-Bromophenyl)-2-(2-cyclopropyl-5*H*-chromeno[4,3-*d*]pyrimidin-5-yl)-2-(tetra hydropyrimidin-2(1*H*)-ylidene)ethan-1-one (4f')

White solid (65 mg, 65%); Mp: 287.1–287.6 °C; IR (KBr): 3400, 1588, 1540, 1445, 1366, 1193, 1106, 759, 702, 663 cm⁻¹; ¹H NMR (600 MHz, Chloroform-*d*): δ = 12.20 (s, 1H, NH), 8.33 (d, *J* = 1.0 Hz, 1H, ArH), 8.18 (dd, *J* = 7.7, 1.6 Hz, 1H, ArH), 7.39 (d, *J* = 8.5 Hz, 3H, ArH), 7.31 (d, *J* = 8.4 Hz, 2H, ArH), 7.13–7.09 (m, 1H, ArH), 7.03 (d, *J* = 8.2 Hz, 1H, ArH), 5.96 (d, *J* = 1.0 Hz, 1H, CH), 5.48 (s, 1H, NH), 3.58–3.11 (m, 4H, CH₂), 2.30 – 2.24 (m, 1H, CH), 1.99–1.93 (m, 2H, CH₂), 1.21–1.17 (m, 2H, CH₂), 1.11–1.05 (m, 2H, CH₂); ¹³C NMR (150 MHz, Chloroform-*d*): δ = 187.1, 171.9, 160.1, 157.8, 153.1, 141.2, 133.2, 131.3, 128.4, 125.4, 122.9, 122.8, 122.6, 121.8, 117.7, 85.1, 78.2, 39.2–37.7 (m), 20.1, 18.2; HRMS (TOF ES⁺): *m*/*z* calcd for C₂₆H₂₃BrN₄O₂ [(M+H)⁺], 479.1878; found, 479.1875.

1-(4-Bromophenyl)-2-(9-chloro-2-cyclopropyl-5*H*-chromeno[4,3-*d*]pyrimidin-5-yl)-2-(tetrahydropyrimidin-2(1*H*)-ylidene)ethan-1-one (4g')

White solid (84 mg, 78%); Mp: 263.1–263.6 °C; IR (KBr): 3415, 3384, 3336, 1604, 1390, 1195, 1108, 756, 719, 606 cm⁻¹; ¹H NMR (600 MHz, Chloroform-*d*) : δ = 12.18 (s, 1H, NH), 8.34 (s, 1H, ArH), 8.12 (d, *J* = 2.6 Hz, 1H, ArH), 7.39 (d, *J* = 8.4 Hz, 2H, ArH), 7.32 (dd, *J* = 8.7, 2.6 Hz, 1H, ArH), 7.29 (d, *J* = 8.3 Hz, 2H), 6.97 (d, *J* = 8.7 Hz, 1H, ArH), 5.94 (s, 1H, CH), 5.38 (s, 1H, NH), 3.53–3.13 (m, 4H, CH₂), 2.33–2.22 (m, 1H, CH), 2.01–1.92 (m, 2H, CH₂), 1.22–1.16 (m, 2H, CH₂), 1.12–1.06 (m, 2H, CH₂); ¹³C NMR (150 MHz, Chloroform-*d*) : δ = 187.3, 172.2, 160.0, 156.3, 155.5, 153.4, 141.1, 132.9, 131.3, 128.4, 128.1, 125.0, 123.1, 122.8, 122.8, 119.2, 84.8, 78.5, 39.4–37.6 (m), 20.0, 18.3, 10.9; HRMS (TOF ES⁺): *m*/*z* calcd for C₂₆H₂₂BrClN₄O₂ [(M+H)⁺], 537.0687; found, 537.0690.

1-(4-Bromophenyl)-2-(9-chloro-2-cyclopropyl-8-methyl-5*H*-chromeno[4,3-*d*]pyri midin-5-yl)-2-(tetrahydropyrimidin-2(1*H*)-ylidene)ethan-1-one (4h')

White solid (82 mg, 74%); Mp: 236.3–236.9 °C; IR (KBr): 3389, 3273, 1607, 1439, 1387, 1193, 1109, 752, 719, 606 cm⁻¹; ¹H NMR (600 MHz, Chloroform-*d*) : δ = 12.15 (s, 1H, NH), 8.31 (s, 1H, ArH), 8.09 (s, 1H, ArH), 7.39 (d, *J* = 8.1 Hz, 2H, ArH), 7.29 (d, *J* = 8.1 Hz, 2H, ArH), 6.91 (s, 1H, ArH), 5.91 (s, 1H, CH), 5.40 (s, 1H, NH), 3.50–3.20 (m, 4H, CH₂), 2.39 (s, 3H, CH₃), 2.29–2.24 (m, 1H, CH), 1.98–1.94 (m, 2H, CH₂), 1.20–1.17 (m, 2H, CH₂), 1.11–1.06 (m, 2H, CH₂); ¹³C NMR (150 MHz, Chloroform-*d*) : δ = 187.15 , 172.07 , 160.05 , 156.13 , 155.70 , 153.11 , 141.69 , 141.10 , 131.32 , 128.58 , 128.33 , 125.22 , 122.70 , 122.49 , 120.78 , 119.84 , 84.99 , 78.43 , 39.3–37.9 (m), 20.60 , 20.03 , 18.22 , 10.80; HRMS (TOF ES⁺): *m/z* calcd for C₂₇H₂₄BrClN₄O₂ [(M+H)⁺], 551.0844; found, 551.0845.

2-(2-Cyclopropyl-5*H*-chromeno[4,3-*d*]pyrimidin-5-yl)-1-(4-fluorophenyl)-2-(tetra hydropyrimidin-2(1*H*)-ylidene)ethan-1-one (4i')

White solid (72 mg, 81%); Mp: 239.2–239.8 °C; IR (KBr): 3416, 3384, 3336, 1604, 1390, 1193, 1108, 756, 719, 606 cm⁻¹; ¹H NMR (600 MHz, Chloroform-*d*) : δ = 12.21 (s, 1H, NH), 8.34 (d, *J* =0.66 Hz, 1H, ArH), 8.18 (dd, *J* = 7.7, 1.6 Hz, 1H, ArH), 7.43 (dd, *J* = 8.5, 5.6 Hz, 2H, ArH), 7.41–7.37 (m, 1H, ArH), 7.14–7.07 (m, 1H, ArH), 7.04 (d, *J* = 8.1 Hz, 1H, ArH), 6.94 (t, *J* = 8.7 Hz, 2H, ArH), 6.00 (d, *J* =0.72 Hz, 1H, CH), 5.48 (s, 1H, NH), 3.64–2.92 (m, 4H, CH₂), 2.35–2.20 (m, 1H, CH), 2.05–1.92 (m, 2H, CH₂), 1.24–1.13 (m, 2H, CH₂), 1.10–1.02 (m, 2H, CH₂); ¹³C NMR (150 MHz, Chloroform-*d*) : δ = 187.3, 171.9, 162.81 (d, *J*₁ = 247.6 Hz), 160.1, 157.9, 156.5, 153.1, 138.5 (d, *J*₃ = 3.2 Hz), 133.2, 128.7 (d, *J*₃ = 8.2 Hz), 125.4, 123.0, 122.8, 121.8, 117.7, 115.1 (d, *J*₂ = 21.4 Hz), 115.0, 85.1, 78.3, 39.3–37.4 (m), 20.1, 18.2, 10.7; HRMS (TOF ES⁺): *m/z* calcd for C₂₆H₂₃FN₄O₂ [(M+H)⁺], 460.1585; found, 460.1588.

2-(9-Chloro-2-cyclopropyl-5*H*-chromeno[4,3-*d*]pyrimidin-5-yl)-2-(tetrahydropyri midin-2(1*H*)-ylidene)-1-(p-tolyl)ethan-1-one (4j')

White solid (75 mg, 79%); Mp: 224.4–224.8 °C; IR (KBr): 3415, 3384, 3336, 1604, 1390, 1195, 1108, 756, 719, 606 cm⁻¹; ¹H NMR (600 MHz, Chloroform-*d*) : δ = 12.32 (s, 1H, NH), 8.37–8.35 (m, 1H, ArH), 8.10 (d, *J* = 2.6 Hz, 1H, ArH), 7.31 (d, *J* = 7.6 Hz, 3H, ArH), 7.06 (d, *J* = 7.8 Hz, 2H, ArH), 6.98 (d, *J* = 8.7 Hz, 1H, ArH), 6.06 (s, 1H, CH), 5.34 (s, 1H, NH), 3.51–3.13 (m, 4H, CH₂), 2.29–2.24 (m, 1H, CH), 2.27 (s, 3H, CH₃), 1.99–1.92 (m, 2H, CH₂), 1.21–1.16 (m, 2H, CH₂), 1.11–1.06 (m, 2H, CH₂); ¹³C NMR (151 MHz, Chloroform-*d*) : δ = 188.9, 172.0, 160.1, 156.5, 155.5, 153.5, 139.4, 138.5, 132.7, 128.8, 127.9, 126.6, 124.8, 123.2, 123.1, 119.2, 84.6, 78.8, 39.4–37.5 (m), 21.2, 20.1, 18.2, 10.8; HRMS (TOF ES⁺): *m*/*z* calcd for C₂₇H₂₅ClN₄O₂ [(M+H)⁺], 473.1739; found, 473.1740.

2-(9-Chloro-2-cyclopropyl-8-methyl-5*H*-chromeno[4,3-*d*]pyrimidin-5-yl)-2-(tetra hydropyrimidin-2(1*H*)-ylidene)-1-(p-tolyl)ethan-1-one (4k')

White solid (84 mg, 86%); Mp: 234.6–235.3 °C; IR (KBr): 3437, 1747, 1613, 1574, 1435, 1191, 1143, 1028, 715, 606 cm⁻¹; ¹H NMR (600 MHz, Chloroform-*d*) : δ = 12.29 (s, 1H, NH), 8.34 (s, 1H, ArH), 8.08 (s, 1H, ArH), 7.30 (d, *J* = 7.6 Hz, 2H, ArH), 7.06 (d, *J* = 7.7 Hz, 2H, ArH), 6.92 (s, 1H, ArH), 6.04 (s, 1H, CH), 5.36 (s, 1H, NH), 3.51–3.14 (m, 4H, CH₂), 2.38 (s, 3H, CH₃), 2.27 (s, 3H, CH₃), 1.98–1.93 (m, 2H, CH₂), 1.21–1.15 (m, 2H, CH₂), 1.10–1.06 (m, 2H, CH₂); ¹³C NMR (150 MHz, Chloroform-*d*) : δ = 188.82 , 171.87 , 160.08 , 156.34 , 155.68 , 153.30 , 141.52 , 139.49 , 138.42 , 128.76 , 128.36 , 126.58 , 125.12 , 122.81 , 120.86 , 119.91 , 84.79 , 78.73 , 39.4–37.6 (m), 21.21 , 20.59 , 20.14 , 18.21 , 10.73; HRMS (TOF ES⁺): *m/z* calcd for C₂₈H₂₇ClN₄O₂ [(M+H)⁺], 487.1895; found, 487.1895.

2-(2-Cyclopropyl-5*H*-chromeno[4,3-*d*]pyrimidin-5-yl)-1-(4-methoxyphenyl)-2-(tet rahydropyrimidin-2(1*H*)-ylidene)ethan-1-one (4l')

White solid (75 mg, 82%); Mp: 230.2–230.9 °C; IR (KBr): 3415, 3384, 3344, 1604, 1390, 1195, 1108, 756, 719, 682 cm⁻¹; ¹H NMR (600 MHz, Chloroform-*d*) : δ = 12.22 (s, 1H, NH), 8.27 (s, 1H, ArH), 8.10 (dd, *J* = 7.7, 1.5 Hz, 1H, ArH), 7.33 (d, *J* = 8.7 Hz, 2H, ArH), 7.32–7.29 (m, 1H, ArH), 7.02 (t, *J* = 7.5 Hz, 1H, ArH), 6.97 (d, *J* = 8.1 Hz, 1H, ArH), 6.70 (d, *J* = 8.7 Hz, 2H, ArH), 6.04 (s, 1H, CH), 5.36 (s, 1H, NH), 3.66 (s, 3H, OCH₃), 3.49–2.98 (m, 4H), 2.23–2.16 (m, 1H, CH), 1.91–1.84 (m, 2H, CH₂), 1.15–1.08 (m, 2H, CH₂), 1.02–0.97 (m, 2H, CH₂); ¹³C NMR (150 MHz, Chloroform-*d*) : δ = 188.3, 171.7, 160.2, 159.9, 158.1, 156.5, 153.2, 135.0, 133.1, 128.4, 125.3, 123.3, 122.6, 121.9, 117.7, 113.4, 84.8, 78.5, 55.2, 20.2, 18.2, 10.6; HRMS (TOF ES⁺): *m/z* calcd for C₂₇H₂₆N₄O₃ [(M+H)⁺], 455.2078; found, 455.2064.

2-(2-Cyclopropyl-5*H*-chromeno[4,3-*d*]pyrimidin-5-yl)-2-(imidazolidin-2-ylidene)-1-phenylethan-1-one (4m')

Yellow solid (62 mg, 75%); Mp: 214.4 – 214.8 °C; IR (KBr): 3400, 3333, 1598, 1537, 1486, 1194, 1105, 730, 702, 615 cm⁻¹; ¹H NMR (600 MHz, Chloroform-*d*) : δ = 10.36 (s, 1H, NH), 8.35 (s, 1H, ArH), 8.18 (dd, *J* = 7.7, 1.5 Hz, 1H, ArH), 7.41 (dd, *J* = 6.6, 2.8 Hz, 2H, ArH), 7.39–7.35 (m, 1H, ArH), 7.27 (d, *J* = 3.2 Hz, 2H, ArH), 7.09 (t, *J* = 7.8 Hz, 1H, ArH), 7.01 (d, *J* = 8.1 Hz, 1H, ArH), 6.05 (s, 1H, CH), 5.01 (s, 1H, NH), 3.86–3.73 (m, 2H, CH₂), 3.61–3.49 (m, 2H, CH₂), 2.31–2.25 (m, 1H, CH), 1.22–1.17 (m, 2H, CH₂), 1.10–1.05 (m, 2H, CH₂); ¹³C NMR (150 MHz, Chloroform-*d*) : δ = 190.3, 171.9, 165.7, 158.0, 156.4, 153.6, 141.9, 133.2, 128.8, 128.2, 126.5, 125.3, 122.5, 121.7, 117.6, 84.7, 77.4, 43.4, 43.0, 26.9, 18.2, 10.7; HRMS (TOF ES⁺): *m/z* calcd for C₂₅H₂₂N₄O₂ [(M+H)⁺], 411.1816; found, 411.1814.

2-(2-(Tert-butyl)-5*H*-chromeno[4,3-*d*]pyrimidin-5-yl)-1-phenyl-2-(tetrahydro-pyr imidin-2(1*H*)-ylidene)ethan-1-one (4n')

White solid (88 mg, 67%); Mp: 282.8–283.4 °C; IR (KBr): 3393, 2912, 1609, 1421, 1368, 1123, 767, 613 cm⁻¹; ¹H NMR (600 MHz, Chloroform-*d*): δ = 12.36 (s, 1H, NH), 8.51 (s, 1H, ArH), 8.28 (dd, *J* = 7.7, 1.6 Hz, 1H, ArH), 7.48 – 7.44 (m, 2H, ArH), 7.44 – 7.39 (m, 1H, ArH), 7.28 (dd, *J* = 7.9, 2.3 Hz, 3H, ArH), 7.13 (t, *J* = 7.6 Hz, 1H, ArH), 7.07 (d, *J* = 8.2 Hz, 1H, ArH), 6.10 (s, 1H, CH), 5.52 (s, 1H, NH), 3.56 – 3.13 (m, 4H, CH₂), 2.00 (q, *J* = 5.9 Hz, 2H, CH₂), 1.47 (s, 9H, CH₃); ¹³C NMR (150 MHz, Chloroform-*d*): δ = 188.6, 177.0, 160.2, 158.0, 156.1, 153.0, 142.5, 133.0, 128.4, 128.1, 126.6, 125.4, 123.1, 122.7, 122.2, 117.7, 84.9, 78.4, 39.5, 39.1-38.0 (m), 29.6, 20.1; HRMS (TOF ES⁺): *m*/*z* calcd for C₂₇H₂₉N₄O₂ [(M+H)⁺], 441.2285; found, 441.2283.

The proposed mechanism of the cascade reaction

Scheme S1. The proposed mechanism of the cascade reaction.

The proposed mechanism of the multi-component cascade reaction is shown in Scheme S1 of the supporting information. Firstly, the nucleophilic α -C of the HKA **2a** underwent Michael addition onto the double bond of the 3-formylchromone **1a** substrate to form intermediate **5a**. Then, the nucleophilic amine nitrogen atom of intermediate **5a** attacked the aldehyde of the chromone moiety through an intramolecular cyclization reaction, which afforded intermediate **6a**. Intermediate **6a** underwent base-mediated dehydration to form **7a**. Next, the amidine nitrogen of substrate **3a** attacked the double bond of intermediate **7a** through another intermolecular Michael addition to form the intermediate **8a**, which then underwent

an intramolecular condensation reaction followed by dehydration to obtain intermediate **10a**. After ring opening and elimination reaction to form the intermediate **11a**, which finally underwent a 1,3-H shift to afford the 5*H*-Chrom -eno[4,3-d]pyrimidine product **4a**.

The mechanism of the cascade reaction verified by HPLC-HRMS

To confirm the mechanism of this cascade reaction, the mixture of 4-oxo-4*H*-chromene-3-carbaldehyde 1a, HKAs 2a, benzamidine hydrochloride 3a and 1,4-dioxane was refluxed for 1 h. Subsequently, the reaction mixture was analyzed by high-performance liquid chromatography-high resolution mass spectrometry (HPLC-HRMS). The four molecular ion peaks that appeared in the high-resolution mass spectrumwere: HRMS (TOF ES⁺): m/z calcd. for C₂₂H₂₁N₂O₄ $[M+H]^+$, 377.1496; found, 377.1488. HRMS (TOF ES⁺): m/z calcd. for $C_{22}H_{21}N_2O_4$ [M+H]⁺, 377.1496; found, 377.1491. There are the HRMS spectrum of intermediates **5a/6a** (SI, Figure S89–S90); HRMS (TOF ES⁺): m/z calcd. for $C_{22}H_{19}N_2O_3[M+H]^+$, 359.1390; found, 359.1385, which is the HRMS spectra of intermediate 7a (SI, Figure S91); HRMS (TOF ES⁺): m/z calcd. for C₂₉H₂₇N₄O₃ [M+H]⁺, 479.2078; found, 479.2065. HRMS (TOF ES⁺): m/z calcd. for C₂₉H₂₇N₄O₃ [M+H]⁺, 479.2078; found, 479.2070, which are the HRMS spectra of compound 8a/9a (SI, Figure S92-S93); HRMS (TOF ES⁺): m/z calcd. for C₂₉H₂₅N₄O₂ [M+H]⁺, 461.1972; found, 461.1957. HRMS (TOF ES⁺): m/z calcd. for C₂₉H₂₅N₄O₂ [M+H]⁺, 461.1972; found, 461.1955. HRMS (TOF ES⁺): m/z calcd. for C₂₉H₂₅N₄O₂ [M+H]⁺, 461.1972; found, 461.1954. There are the HRMS spectrum of intermediate 10a/11a or the target compound 4a (SI, Figure S94-S96). Based on the molecular ion peaks of intermediate 5a-11a, the proposed mechanism of the cascade reaction is reasonable (Scheme S1).

X-ray Structure and Dataof 4a

Single crystal culture and confirmation: First, compound 4a was added to a bottle and dissolved by the addition of DCM (1.5 mL). Then, a few drops of ethyl acetate and a few drops of DCM were added. The bottle was opened in the air at room temperature for 4 days. Some crystals appeared, and for single crystal parsing, crystals were selected with sizes of 0.18 mm x 0.12 mm x 0.11 mm. The Bruker D8 Venture diffractometer was used to obtain single crystal diffraction at 296(2) K with the use of four-circle diffractomete Mo K (lambda = 0.71073 A) for diffraction intensity data collection, using phi and omega scanning. The crystal structure was solved by the atomic method using the SHELXT program (Supporting Information, Figure S1, CCDC 2078187).²

Figure S1.X-Ray crystal structure of 4a, ellipsoids are drawn at the 30% probability level.

Table S1. Crystal data and structure refinement for 4a	
Identification code	WW
Empirical formula	C29H24N4O2
Formula weight	460.52
Temperature/K	296.15
Crystal system	monoclinic
Space group	P21/c
a/Å	11.343(5)
b/Å	16.715(8)
c/Å	13.695(6)
α/ °	90
β/ °	110.156(7)
γ/ °	90
Volume/Å3	2437.6(19)
Z	4
pcalcg/cm3	1.255
μ/mm 1	0.081
F(000)	968.0
Crystal size/mm3	$0.18 \times 0.12 \times 0.11$
Radiation	MoKα ($\lambda = 0.71073$)
2Θ range for data collection/°	4.536 to 50.018
Index ranges	$-11 \le h \le 13, -19 \le k \le 18, -15 \le l \le 16$
Reflections collected	12254
Independent reflections	4288 [Rint = 0.0266, Rsigma = 0.0302]
Data/restraints/parameters	4288/1/316
Goodness-of-fit on F2	1.025
Final R indexes $[I \ge 2\sigma(I)]$	R1 = 0.0597, wR2 = 0.1569
Final R indexes [all data]	R1 = 0.0825, wR2 = 0.1770
Largest diff. peak/hole / e Å-3	0.50/-0.29

Figure S4. ¹H NMR (600 MHz, Chloroform-*d*) spectra of compound 4b

Figure S6. ¹H NMR (600 MHz, Chloroform-*d*) spectra of compound 4c

Figure S9. ¹H NMR (600 MHz, Chloroform-*d*) spectra of compound 4d

Figure S11. ¹H NMR (600 MHz, Chloroform-*d*) spectra of compound 4e

Figure S15. ¹H NMR (600 MHz, Chloroform-*d*) spectra of compound 4g

Figure S17. ¹H NMR (600 MHz, Chloroform-*d*) spectra of compound 4h

Figure S19. ¹H NMR (600 MHz, Chloroform-*d*) spectra of compound 4i

Figure S34. ¹H NMR (600 MHz, Chloroform-*d*) spectra of compound 4p

Figure S39. ¹H NMR (600 MHz, Chloroform-*d*) spectra of compound 4r

Figure S41. ¹⁹F NMR (540 MHz, Chloroform-*d*) spectra of compound 4r

Figure S53. ¹H NMR (600 MHz, Chloroform-*d*) spectra of compound **4**x

S80

0.0000

S87

Figure S68. ¹H NMR (600 MHz, Chloroform-*d*) spectra of compound 4e'

Figure S70. ¹H NMR (600 MHz, Chloroform-*d*) spectra of compound 4f'

Figure S72. ¹H NMR (600 MHz, Chloroform-*d*) spectra of compound 4g'

Figure S74. ¹H NMR (600 MHz, Chloroform-*d*) spectra of compound 4h'

Figure S80. ¹H NMR (600 MHz, Chloroform-*d*) spectra of compound 4k'

Figure S82. ¹H NMR (600 MHz, Chloroform-*d*) spectra of compound 4l'

Figure S86. ¹H NMR (600 MHz, Chloroform-*d*) spectra of compound 4n'

Figure S89. HRMS of intermediate 5a/6a

Figure S93. HRMS of intermediate 8a/9a

Figure S94. HRMS of intermediate 10a/11a or target compound 4a

Figure S95. HRMS of intermediate 10a/11a or target compound 4a

Figure S96. HRMS of intermediate 10a/11a or target compound 4a

References and Notes

1. 1. (a) K. Li, L. Chen, Y.-X. Fan, Y. Wei, S.-J. Yan, J. Org. Chem., 2019, 84, 11971. (b) Q.-X. Zi, C.-L. Yang, K. Li, Q. Luo, J. Lin, S.-J. Yan, J. Org. Chem., 2020, 85, 327.

2. CCDC 2078187 contain the supplementary crystallographic data for compound **4a**. These data can be obtained free of charge from The Cambridge Crystallographic Data Center *via* <u>www.ccdc.cam.ac.uk/data_request/cif</u>