Supporting Information

Brønsted acid and Lewis acid co-promoted Cascade Cyclization

Reaction and Application to Total Synthesis of Erysotramidine

Xiaolin Ju[#], Xiaojun Hu[#], Hongliang Shi, Shiqiang Ma, Feifei He, Xiaolei Wang, Xingang Xie, and Xuegong She*

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China *E-mail: shexg@lzu.edu.cn

Contents:

1. General information	2
2. Preparation and characterization of starting materials	3
3. General procedure for the cascade cyclization reaction	13
4. Characterization data for the products	15
5. Total Synthesis of Erysotramidine	20
6. References	29
7. NMR Spectra of New Compounds	

1. General information

Solvents were purified and dried by standard methods prior to use. All commercially available reagents were used without further purification unless otherwise noted. Oxygen-sensitive and moisture-sensitive reactions were carried out under argon atmosphere. Column chromatography was generally performed on silica gel (200-300 mesh) and reactions were monitored by thin layer chromatography (TLC) using silica gel GF254 plates with UV light to visualize the course of reaction.

High-resolution mass spectral analysis (HRMS) data were measured on a Bruker APEXII mass spectrometer by means of the electrospray ionization (ESI) technique. ¹H NMR and ¹³C NMR spectra were recorded on 400MHz and 600 MHz spectrometers. Chemical shifts are reported as δ values relative to internal chloroform (δ 7.26 for ¹H NMR and 77.0 for ¹³C NMR) or relative to internal tetramethylsilane (δ 0.0 for ¹H NMR). Substrates were purchased from TCI, Energy Chemical or Alfa Aesar and used as received. Oil bath was used as heat source for reactions above room temperature.

2. Preparation and characterization of starting materials

Figure. SI-1 Prepared substrates

Figure. SI-2 Failed substrates

General procedure for the substrates 1a-g and 1r-s:

A mixture of alkynic acid (10.0 mmol, 1.0 equiv.) and CDI (12.0 mmol, 1.2 equiv.) in DCM (50 mL) was stirred at room temperature for 0.5 h. Then phenylamine (15.0 mmol, 1.5 equiv.) was added to the mixture, the reaction was stirred at room temperature until completion (monitored by TLC). The solvent was evaporated under reduced pressure and the residue was purified through silica gel column chromatography (petroleum ether/ethyl acetate, 1/1) to afford **SI-1a**, yield 93-97%.

The compound **SI-1a** (4.1 mmol, 1.0 equiv.) was dissolved in THF (40 mL) under Ar, *n*-BuLi in hexane (2.5 M, 8.2 mmol, 2.1 equiv.) was added to the solution dropwise at -78 °C. Then added CH₃CHO (20.5 mmol, 5.0 equiv.) to the mixture after 0.5 h, and the reaction was raised to the room temperature after another 0.5 h, the mixture was stirred at this temperature for 12 h. Quenched with saturated NH₄Cl aqueous, the mixture was diluted with water and extracted with EtOAc, washed with brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate, 1/1; petroleum ether/ethyl acetate/DCM/MeOH, 10/10/10/1) to afford **SI-1b**, yield 52-63%, brsm 91-97%.

The compound **SI-1b** (2.5 mmol, 1.0 equiv.) was dissolved in DCM (25 mL), NaHCO₃ (7.6 mmol, 3.0 equiv.) and DMP (3.8 mmol, 1.5 equiv.) was added to the reaction and the mixture was stirred at room temperature until completion (monitored by TLC). Then Na₂S₂O₃ aqueous was added to the mixture and stirred until the solution was clear, the mixture was diluted with water and extracted with EtOAc, washed with brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate, 1/1) to afford **1a-g** and **1r-s**, yield 87-92%.

Substrate *N*-(3,4-dimethoxyphenethyl)-6-oxohept-4-ynamide (1a) was obtained as a white solid. Mp: 72-73 °C. ¹H NMR (400 MHz, CDCl₃) δ 6.81 (d, *J* = 8.4 Hz, 1H), 6.73 (d, *J* = 6.8 Hz, 2H), 5.63 (s, 1H), 3.87 (s, 3H), 3.87 (s, 3H), 3.52 (q, *J* = 6.8 Hz, 2H), 2.77 (t, *J* = 7.2 Hz, 2H), 2.70 (t, *J* = 7.2 Hz, 2H), 2.39 (t, *J* = 7.2 Hz, 2H),

2.30 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 184.6, 170.0, 149.1, 147.7, 131.1, 120.6, 111.8, 111.4, 91.8, 81.6, 55.9, 55.9, 40.8, 35.2, 34.3, 32.6, 15.1; HRMS ESI Calcd for C₁₇H₂₁NO₄ [M+H] ⁺: 304.1543, Found: 304.1544.

Substrate *N*-(3,4-dimethoxyphenethyl)-7-oxooct-5-ynamide (1b) was obtained as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 6.77 (d, *J* = 8.8 Hz, 1H), 6.68 (d, *J* = 6.0 Hz, 2H), 5.77 (s, 2H), 3.82 (s, 3H), 3.81 (s, 3H), 3.45 (q, *J* = 6.8 Hz, 2H), 2.72 (t, *J* = 6.8 Hz, 2H), 2.36 (t, *J* = 6.8 Hz, 2H), 2.26 (s, 3H), 2.21 (t, *J* = 7.2 Hz, 2H), 1.88 – 1.81 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 184.7, 171.6, 1489, 147.5, 131.1, 120.5, 111.7, 111.2, 92.7, 81.7, 55.8, 55.7, 40.5, 35.1, 34.7, 32.6, 23.3, 18.1; HRMS ESI Calcd for C₁₈H₂₃NO₄ [M+H]⁺: 318.1700, Found: 318.1699.

Substrate *N*-(2-(benzo[d] [1,3] dioxol-5-yl) ethyl)-6-oxohept-4-ynamide (1c) was obtained as a white solid. Mp: 81-82 °C. ¹H NMR (400 MHz, CDCl₃) δ 6.71 (d, *J* = 7.6 Hz, 1H), 6.65 (s, 1H), 6.60 (d, *J* = 6.8 Hz, 1H), 5.90 (s, 2H), 5.87 (s, 1H), 3.44 (q, *J* = 6.4 Hz, 2H), 2.70 (t, *J* = 6.8 Hz, 2H), 2.66 (t, *J* = 7.2 Hz, 2H), 2.38 (t, *J* = 7.6 Hz, 2H), 2.27 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 184., 170.1, 147.7, 146.1, 132.3, 121.5, 108.9, 108.3, 100.8, 92.0, 81.4, 40.8, 35.2, 34.1, 32.6, 15.0; HRMS ESI Calcd for C₁₆H₁₇NO₄ [M+H]⁺: 288.1230, Found: 288.1231.

Substrate *N*-(2-(benzo[d] [1,3] dioxol-5-yl) ethyl)-7-oxooct-5-ynamide (1d) was obtained as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 6.74 (d, *J* = 7.6 Hz, 1H), 6.67 (d, *J* = 1.6 Hz, 1H), 6.63 (d, *J* = 8.0 Hz, 1H), 5.94 (s, 2H), 5.61 (s, 1H), 3.47 (q, *J* = 6.4 Hz, 2H), 2.72 (t, *J* = 6.8 Hz, 2H), 2.41 (t, *J* = 6.8 Hz, 2H), 2.31 (s, 1H), 2.25 (t, *J* = 7.2 Hz, 2H), 1.92 – 1.85 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 184.9, 171.6, 147.9, 146.2, 132.5, 121.6, 109.0, 108.4, 100.9, 92.8, 81.9, 40.7, 35.4, 34.8, 32.8, 23.3, 18.3; HRMS ESI Calcd for C₁₇H₁₉NO₄ [M+H]⁺: 302.1387, Found: 302.1388.

Substrate N-(3-methoxyphenethyl)-6-oxohept-4-ynamide (1e) was obtained as

a white solid. Mp: 61-62 °C. ¹**H** NMR (400 MHz, CDCl₃) δ 7.22 (t, J = 8.0 Hz, 1H), 6.77 (dd, J = 8.0, 2.4 Hz, 2H), 6.73 (s, 1H), 5.88 (s, 1H), 3.79 (s, 3H), 3.52 (q, J = 6.8 Hz, 2H), 2.80 (t, J = 7.2 Hz, 2H), 2.69 (t, J = 7.2 Hz, 2H), 2.40 (t, J = 7.6 Hz, 2H), 2.30 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 184.7, 170.0, 159.7, 140.2, 129.6, 120.9, 114.4, 111.6, 92.0, 81.4, 55.1, 40.5, 35.5, 34.1, 32.6, 15.0; HRMS ESI Calcd for C₁₆H₁₉NO₃ [M+H]⁺: 274.1438, Found: 274.1436.

Substrate 6-oxo-*N***-phenethylhept-4-ynamide (1f)** was obtained as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.29 (m, 4H), 7.29 – 7.24 (m, 1H), 5.90 (s, 1H), 5.13 (p, *J* = 7.2 Hz, 1H), 2.70 (t, *J* = 7.6 Hz, 2H), 2.46 – 2.38 (m, 2H), 2.26 (s, 3H), 1.49 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 186.6, 169.6, 143.4, 128.7, 127.5, 126.1, 91.9, 81.6, 49.0, 34.4, 32.7, 21.7, 15.2; HRMS ESI Calcd for C₁₅H₁₇NO₂ [M+H]⁺: 244.1332, Found: 244.1331.

Substrate *N*-(3,4-dimethoxybenzyl)-6-oxohept-4-ynamide (1g) was obtained as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 6.84 – 6.79 (m, 3H), 6.34 (t, *J* = 6.0 Hz, 1H), 4.36 (d, *J* = 5.6 Hz, 2H), 3.85 (s, 6H), 2.72 (t, *J* = 7.6 Hz, 2H), 2.47 (t, *J* = 7.6 Hz, 2H), 2.28 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 184.9, 170.1, 149.0, 148.4, 130.6, 120.1, 111.2, 111.1, 92.1, 81.6, 55.9, 55.9, 43.6, 34.2, 32.7, 15.2; **HRMS ESI** Calcd for C₁₆H₁₉NO4 [M+H]⁺: 290.1387, Found: 290.1386.

Substrate *N*-(3-(3,4-dimethoxyphenyl)propyl)-6-oxohept-4-ynamide (1r) was obtained as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 6.79 (d, *J* = 8.4 Hz, 1H), 6.72 – 6.69 (m, 2H), 5.86 (s, 1H), 3.87 (s, 3H), 3.85 (s, 3H), 3.30 (q, *J* = 7.2 Hz, 2H), 2.70 (t, *J* = 7.6 Hz, 2H), 2.60 (t, *J* = 7.6 Hz, 2H), 2.40 (t, *J* = 7.6 Hz, 2H), 2.29 (s, 3H), 1.82 (p, *J* = 7.6 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 184.6, 170.0, 148.8, 147.2, 133.9, 120.1, 111.6, 111.2, 92.0, 81.5, 55.8, 55.7, 39.2, 34.2, 32.7, 32.6, 31.2, 15.1; HRMS ESI Calcd for C₁₈H₂₃NO₄ [M+H]⁺: 318.1700, Found: 318.1699.

Substrate *N*-(3,4-dimethoxyphenethyl)-8-oxonon-6-ynamide (1s) was obtained as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 6.81 (d, *J* = 8.4 Hz, 1H), 6.73 (dd, *J* = 5.2, 2.0 Hz, 2H), 5.78 (s, 1H), 3.86 (s, 3H), 3.86 (s, 3H), 3.50 (q, *J* = 6.8 Hz, 2H), 2.76 (t, *J* = 7.2 Hz, 2H), 2.37 (t, *J* = 6.8 Hz, 2H), 2.31 (s, 3H), 2.17 (t, *J* = 7.6 Hz, 2H), 1.73 (p, *J* = 7.6 Hz, 2H), 1.62 – 1.55 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 184.8, 172.2, 148.9, 147.5, 131.2, 120.5, 111.8, 111.2, 93.3, 81.5, 77.2, 55.8, 55.7, 40.5, 35.7, 35.1, 32.6, 26.9, 24.7, 18.6; **HRMS ESI** Calcd for C₁₉H₂₅NO₄ [M+H]⁺: 332.1857, Found: 332.1859.

General procedure for the substrates 1h-k:

A mixture of alkynic acid (3.0 mmol, 1.0 equiv.) and CDI (3.6 mmol, 1.2 equiv.) in DCM (30 mL) was stirred at room temperature for 0.5 h. Then tryptamine (4.5 mmol, 1.5 equiv.) was added to the mixture, the reaction was stirred at room temperature until completion (monitored by TLC). The solvent was evaporated under reduced pressure and the residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate, 1/1) to afford **SI-1c**, yield 89-92%.

The compound **SI-1c** (2.6 mmol, 1.0 equiv.) was dissolved in DMF (25 mL), NaH (5.8 mmol, 2.2 equiv.) was added to the mixture under 0 °C, the mixture was stirred at this temperature for 0.5 h, then added BnBr (2.9 mmol, 1.1 equiv.) dropwise to the mixture, raised to room temperature and the reaction was stirred at this temperature until completion (monitored by TLC). Quenched with saturated NH₄Cl aqueous, the mixture was diluted with water and extracted with Et₂O, washed with brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate, 3/1) to afford **SI-1d**, yield 76-87%.

The compound **SI-1d** (2.0 mmol, 1.0 equiv.) was dissolved in THF (50 mL) under Ar, *n*-BuLi in hexane (2.5 M, 4.3 mmol, 2.1 equiv.) was added to the solution dropwise at -78 °C. Then added CH₃CHO (10.0 mmol, 5.0 equiv.) to the mixture after 0.5 h, and the reaction was raised to the room temperature after another 0.5 h, the mixture was stirred at this temperature for 12 h. Quenched with saturated NH₄Cl aqueous, the mixture was diluted with water and extracted with EtOAc, washed with brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate, 1/1; petroleum ether/ethyl acetate/DCM/MeOH, 10/10/10/1) to afford **SI-1e**, yield 51-63%, brsm 90-95%.

The compound **SI-1e** (0.8 mmol, 1.0 equiv.) was dissolved in DCM (10 mL), NaHCO₃ (2.4 mmol, 3 equiv.) and DMP (1.2 mmol, 1.5 equiv.) was added to the reaction and the mixture was stirred at room temperature until completion (monitored by TLC). Then Na₂S₂O₃ aqueous was added to the mixture and stirred until the solution was clear, the mixture was diluted with water and extracted with EtOAc, washed with brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate, 1/1) to afford **1h-k**, yield 85-91%.

Substrate *N*-(2-(1-benzyl-1H-indol-3-yl) ethyl)-6-oxohept-4-ynamide (1h) was obtained as a light-yellow solid. Mp: 105-106 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 8.0 Hz, 1H), 7.33 – 7.28 (m, 4H), 7.22 – 7.18 (m, 1H), 7.15 – 7.11(m, 3H), 6.98 (s, 1H), 5.29 (s, 2H), 3.60 (q, J = 6.4 Hz, 2H), 2.98 (t, J = 6.8 Hz, 2H), 2.67 (t, J = 7.6 Hz, 2H), 2.33 (t, J = 7.2 Hz, 2H), 2.27 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 184.8, 169.9, 137.5, 136.7, 128.7, 127.8, 127.6, 126.8, 126.2, 122.0, 119.2, 118.8, 111.9, 109.89, 92.0, 81.5, 49.8, 39.8, 34.2, 32.7, 25.2, 15.1; HRMS ESI Calcd for C₂₄H₂₄N₂O₂ [M+H]⁺: 373.1911, Found: 373.1913.

Substrate *N*-(2-(1-benzyl-1H-indol-3-yl) ethyl)-7-oxooct-5-ynamide (1i) was obtained as a light-yellow solid. Mp: 83-84 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 7.6 Hz, 1H), 7.33 – 7.25 (m, 3H), 7.22 – 7.17 (m, 1H), 7.15 – 7.09 (m, 3H), 6.96 (s, 1H), 5.57 (s, 1H), 5.28 (s, 2H), 3.60 (q, *J* = 6.4 Hz, 2H), 2.97 (t, *J* = 6.8 Hz, 2H), 2.39 (t, *J* = 68 Hz, 2H), 2.29 (s, 3H), 2.21 (t, *J* = 7.2 Hz, 2H), 1.90 – 1.83 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 184.8, 171.6, 137.5 136.8, 128.8, 128.0, 127.6, 126.8, 126.1, 122.0, 119.2, 118.9, 112.1, 109.8, 92.7, 81.9, 49.9, 39.8, 34.9, 32.7, 25.3, 23.3, 18.3; HRMS ESI Calcd for C₂₅H₂₆N₂O₂ [M+H]⁺: 387.2067, Found: 387.2066.

Substrate *N*-(2-(1-benzyl-5-methoxy-1H-indol-3-yl)ethyl)-6-oxohept-4-ynam ide (1j) was obtained as a light-yellow solid. Mp: 102-103 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.25 (m, 3H), 7.16 (d, *J* = 8.8 Hz, 1H), 7.11 – 7.09 (m, 2H), 7.03 (d, *J*

= 2.4 Hz, 1H), 6.95 (s, 1H), 6.85 (dd, J = 8.8, 2.4 Hz, 1H), 5.59 (s, 1H), 5.24 (s, 2H), 3.86 (s, 3H), 3.60 (q, J = 6.8 Hz, 2H), 2.94 (t, J = 7.2 Hz, 2H), 2.67 (t, J = 7.2 Hz, 2H), 2.33 (t, J = 7.2 Hz, 2H), 2.26 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 184.6, 169.9, 154.0, 137.6, 132.1, 128.7, 128.2, 127.6, 126.8, 126.8, 112.2, 111.3, 110.7, 100.7, 91.9, 81.6, 55.9, 50.1, 39.7, 34.4, 32.6, 25.2, 15.1; **HRMS ESI** Calcd for C₂₅H₂₆N₂O₃ [M+H] +: 403.2016, Found: 403.2017.

Substrate *N*-(2-(1-benzyl-5-methoxy-1H-indol-3-yl)ethyl)-7-oxooct-5-ynamid e (1k) was obtained as a light-yellow solid. Mp: 81-82 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.25 (m, 3H), 7.16 (d, *J* = 8.8 Hz, 1H), 7.11 – 7.09 (m, 2H), 7.03 (d, *J* = 2.8 Hz, 1H), 6.94 (s, 1H), 6.84 (dd, *J* = 8.8, 2.4 Hz, 1H), 5.58 (s, 1H), 5.24 (s, 2H), 3.85 (s, 3H), 3.59 ((q, *J* = 6.8 Hz, 2H), 2.94 (t, *J* = 7.2 Hz, 2H), 2.39 (t, *J* = 6.8 Hz, 2H), 2.28 (s, 3H), 2.21 (t, *J* = 7.2 Hz, 2H),1.90 – 1.84 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 184.8, 171.5, 154.0, 137.6, 132.1, 128.7, 128.3, 127.6, 126.8, 126.8, 126.72, 112.2, 111.5, 110.6, 100.2, 92.7, 81.9, 55.9, 50.1, 39.6, 34.9, 32.7, 25.3, 23.3, 18.3; HRMS ESI Calcd for C₂₆H₂₈N₂O₃ [M+H]⁺: 417.2173, Found: 417.2171.

General procedure for the substrates 11-q:

Hex-5-ynoic acid (2.0 mmol, 1.0 equiv.) was dissolved in THF (20 mL) under Ar, *n*-BuLi in hexane (2.5 M, 4.2 mmol, 2.1 equiv.) was added to the solution dropwise at -78 °C, Then added ClCO₂CH₃ (6.0 mmol, 3.0 equiv.) to the mixture after 0.5 h, and the reaction was raised to the room temperature after another 3 h, the mixture was stirred at this temperature until completion (monitored by TLC). Quenched with 1 N HCl aqueous and regulate pH 2~3, the mixture was diluted with water and extracted with EtOAc, washed with brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate, 5/1) to afford **SI-1f**, yield 76%.

A mixture of **SI-1f** (1.0 mmol, 1.0 equiv.) and CDI (1.2 mmol, 1.2 equiv.) in DCM (10 mL) was stirred at room temperature for 0.5 h. Then arylethylamine (1.5 mmol, 1.5 equiv.) was added to the mixture, the reaction was stirred at room temperature until completion (monitored by TLC). The solvent was evaporated under reduced pressure

and the residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate, 1/1) to afford **SI-1g** and **1n-q**, yield 90-93%.

The compound **SI-1g** (1.7 mmol, 1.0 equiv.) was dissolved in DMF (17 mL), NaH (3.7 mmol, 2.2 equiv.) was added to the mixture under 0 °C, the mixture was stirred at this temperature for 0.5 h, then add BnBr (1.9 mmol, 1.1 equiv.) dropwise to the mixture, raised to room temperature and the reaction was stirred at this temperature until completion (monitored by TLC). Quenched with saturated NH₄Cl aqueous, the mixture was diluted with water and extracted with Et₂O, washed with brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate, 3/1) to afford **11-m** as a colorless oil, yield 75-83%.

Substrate Methyl 7-((2-(1-benzyl-1H-indol-3-yl)ethyl)amino)-7-oxohept-2-yn oate (1l) was obtained as a light-yellow solid. Mp: 108-109 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 6.8 Hz, 1H), 7.32 – 7.25 (m, 4H), 7.20 – 7.10 (m, 4H), 7.00 (s, 1H), 5.47 (s, 1H), 5.27 (s, 2H), 4.10 – 4.01 (m, 2H), 3.70 (s, 3H), 3.25 (t, J = 6.4 Hz, 2H), 3.01 (t, J = 8.0 Hz, 2H), 2.56 (t, J = 6.4 Hz, 2H), 1.79 (p, J = 6.4 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 170.3, 167.9, 155.9, 137.5, 136.5, 128.7, 128.0, 127.5, 126.8, 126.0, 121.9, 119.2, 119.1, 111.7, 109.6, 96.0, 51.0, 49.9, 43.6, 33.4, 25.9, 22.4, 18.4; HRMS ESI Calcd for C₂₅H₂₆N₂O₃ [M+H]⁺: 403.2016, Found: 403.2017.

Substrate Methyl 7-((2-(1-benzyl-5-methoxy-1H-indol-3-yl)ethyl)amino)-7-o xohept-2-ynoate (1m) was obtained as a light-yellow solid. Mp: 104-105 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.25 (m, 4H), 7.21 (d, J = 2.4 Hz, 1H), 7.14 – 7.09 (m, 3H), 6.99 (s, 1H), 6.83 (dd, J = 8.8, 2.4 Hz, 1H), 5.51 (s, 1H), 5.24 (s, 2H), 4.03 – 3.99 (m, 2H), 3.90 (s, 3H), 3.69 (s, 3H), 3.26 (t, J = 6.4 Hz, 2H), 3.00 – 2.96 (m, 2H), 2.58 (t, J = 6.4 Hz, 2H), 1.81 (p, J = 6.4 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 170.4, 167.9, 156.0, 154.0, 137.6, 131.8, 128.7, 128.3, 127.6, 126.8, 126.71, 112.4, 111.1, 110.6, 100.4, 96.0, 55.7, 50.9, 50.1, 43.6, 33.5, 26.0, 22.4, 18.5; HRMS ESI Calcd for C₂₆H₂₈N₂O₄ [M+H]⁺: 433.2122, Found: 433.2120.

Substrate Methyl 7-((3,4-dimethoxyphenethyl) amino)-7-oxohept-2-ynoate (1n) was obtained as a white solid. Mp: 74-75 °C. ¹H NMR (400 MHz, CDCl₃) δ 6.82

(d, J = 8.8 Hz, 1H), 6.73 (d, J = 7.2 Hz, 2H), 5.59 (s, 1H), 3.87 (s, 3H), 3.76 (s, 3H), 3.51 (d, J = 6.8 Hz, 2H), 2.76 (t, J = 6.8 Hz, 2H), 2.39 (t, J = 6.8 Hz, 2H), 2.28 (d, J = 7.2 Hz, 2H), 1.90 (p, J = 7.2 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 171.5, 154.0, 149.0, 147.7, 131.2, 120.6, 111.8, 111.4, 88.6, 73.5, 55.9, 55.9, 52.6, 40.6, 35.2, 34.7, 23.1, 17.9; HRMS ESI Calcd for C₁₈H₂₃NO₅ [M+H]⁺: 334.1649, Found: 334.1647.

Substrate Methyl7-((2-(benzo[d][1,3]dioxol-5-yl)ethyl)amino)-7-oxohept-2-y noate (10) was obtained as a white solid. Mp: 81-82 °C. ¹H NMR (400 MHz, CDCl₃) δ 6.75 (d, J = 8.0 Hz, 1H), 6.68 (d, J = 1.6 Hz, 1H), 6.63 (dd, J = 7.6, 1.6 Hz, 1H), 5.94 (s, 2H), 5.56 (s, 1H), 3.76 (s, 3H), 3.47 (q, J=6.8 Hz, 2H), 2.73 (t, J = 7.2 Hz, 2H), 2.39 (t, J = 6.8 Hz, 2H), 2.26 (t, J = 7.6 Hz, 2H), 1.89 (p, J = 6.8 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 171.5, 154.1, 147.8, 146.2, 132.4, 121.6, 109.0, 108.4, 100.9, 88.6, 52.6, 40.7, 35.3, 34.7, 23.1, 17.9; HRMS ESI Calcd for C₁₇H₁₉NO₅ [M+Na] +: 340.1155, Found: 340.1154.

Substrate Methyl 7-((2-(1H-indol-3-yl) ethyl) amino)-7-oxohept-2-ynoate (1p) was obtained as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.58 (s, 1H), 7.57 (dd, J = 7.6, 12 Hz, 1H), 7.36 (dt, J = 8.0, 1.2 Hz, 1H), 7.21 – 7.17 (m, 1H), 7.12 – 7.08 (m, 1H), 6.99 (d, J = 2.0 Hz, 1H), 5.70 (t, J = 5.6 Hz, 1H), 3.75 (s, 3H), 3.56 (q, J = 6.4 Hz, 2H), 2.94 (t, J = 6.8 Hz, 2H), 2.34 (t, J = 6.8 Hz, 2H), 2.17 (t, J = 7.2 Hz, 2H), 1.84 (p, J = 7.2 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 171.6, 154.2, 136.3, 127.1, 122.3, 121.9, 119.2, 118.5, 112.4, 111.3, 88.81, 73.3, 52.6, 39.6, 34.6, 25.1, 23.0, 17.8; HRMS ESI Calcd for C₁₈H₂₀N₂O₃ [M+H]⁺: 313.1547, Found: 313.1546.

Substrate Methyl 7-((2-(5-methoxy-1H-indol-3-yl)ethyl)amino)-7-oxohept-2ynoate (1q) was obtained as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.26 (s, 1H), 7.26 (d, *J* = 8.8 Hz, 1H), 7.02 (d, *J* = 2.4 Hz, 1H), 7.01 (d, *J* = 2.4 Hz, 1H), 6.86 (dd, *J* = 8.8, 2.4 Hz, 1H), 5.64 (s, 1H), 3.85 (s, 3H), 3.75 (s, 3H), 3.58 (q, *J* = 6.4 Hz, 2H), 2.93 (t, *J* = 6.8 Hz, 2H), 2.36 (t, *J* = 6.8 Hz, 2H), 2.22 (t, *J* = 7.2 Hz, 2H), 1.87 (p, *J* = 7.2 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 171.6, 154.2, 154.0, 131.6, 127.6, 123.0, 112.3, 112.3, 112.0, 100.4, 88.8, 73.5, 55.9, 52.6, 39.4, 34.7, 25.2, 23.1, 17.9; HRMS ESI Calcd for C₁₉H₂₂N₂O₄ [M+H]⁺: 343.1652, Found: 343.1650.

3. General procedure for the tandem reaction

Me			MeO	N-40
	DCE, 80 °C	0= 2a	MeO 2a'	$\langle \rangle$
Entry	Acid (equiv.)	Time (h)	Product	yield
1^c	TfOH (1.0)	2	N.R.	
2^c	$H_{3}PO_{4}(1.0)$	2	N.R.	
3 ^c	TFA (1.0)	2	N.R.	
4	<i>p</i> -TsOH·H ₂ O (1.0)	2	2-21a'	93%
5^d	<i>p</i> -TsOH·H ₂ O (1.0); BF ₃ ·Et ₂ O (3.0)	2, 2	2-21a	81%
6^d	BF ₃ ·Et ₂ O (3.0)		Complex	
7	<i>p</i> -TsOH·H ₂ O (0.1)	2	2-21a'	13%
8	<i>p</i> -TsOH·H ₂ O (0.2)	2	2-21a'	27%
9 ^e	<i>p</i> -TsOH·H ₂ O (0.1)	2	2-21a'	13%
10^{e}	<i>p</i> -TsOH·H ₂ O (0.2)	2	2-21a'	29%
11^{d}	<i>p</i> -TsOH·H ₂ O (1.0); BF ₃ ·Et ₂ O (1.0)	2,24	2-21a	78%

Table SI-1a Optimization of the reaction conditions.^{*a, b*}

^{*a*}Reaction conditions: **1a** (0.1 mmol, 1.0 equiv.), acid, DCE (4 mL, 0.025M), then BF₃·Et₂O. ^{*b*}The yield was determined upon isolation of the target product. ^{*c*}The starting material was recovered. ^{*d*}BF₃·Et₂O was added under 0 °C, then raised to 30 °C. ^{*e*}In high concentration (0.1 M).

Table SI-1b Optimization of the reaction conditions.^{*a*, *b*}

		Acid E, 80 °C		
Entry	Solvent	Temp. (°C)	Time	yield
1	DCE	50	5	83%
2	DCE	30	15	85%
3	DCM	30	15	84%
4	CHCl ₃	30	15	85%
5^c	MeCN	30	23	N.R.
6 ^{<i>c</i>}	THF	30	15	N.R.

^{*a*}Reaction conditions: **1a** (0.1 mmol, 1.0 equiv.), *p*-TsOH·H₂O (0.1 mmol, 1.0 equiv.), solvent (4 mL), BF₃·Et₂O (0.3 mmol, 3.0 equiv.). ^{*b*}The yield was determined upon

isolation of the target product. "The starting material was recovered.

The compound **1a-g** (0.1 mmol, 1.0 equiv.) was dissolved in DCE (4 mL), added p-TsOH·H₂O (0.1 mmol, 1.0 equiv.) to the mixture and stirred at 50 °C until the material disappeared (monitored by TLC). Then the mixture was cooled to 0 °C and added BF₃·Et₂O dropwise for 2 h. The reaction was quenched with saturated NaHCO₃ aqueous, the mixture was diluted with water and extracted with DCM, washed with brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate/DCM/MeOH, 10/10/10/1) to afford **2a-e** and **2f'**, **2g'**, **2r'** as a colorless oil.

The compound **1h-m** (0.1 mmol, 1.0 equiv.) was dissolved in DCE (4 mL), added p-TsOH·H₂O (0.1mmol, 1.0 equiv.) to the mixture and stirred at 30 °C until completion (monitored by TLC). Then the reaction was quenched with saturated NaHCO₃ aqueous, the mixture was diluted with water and extracted with DCM, washed with brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate/DCM/MeOH, 10/10/1) to afford **2h-m** as a light-yellow oil.

4. Characterization data for the products

Substrate 8,9-dimethoxy-10b-(2-oxopropyl)-1,5,6,10-btetrahydropyrrolo [2,1 -a] isoquinolin-3(2H)-one (2a), yield 88%. ¹H NMR (400 MHz, CDCl₃) δ 6.60 (s, 1H), 6.58 (s, 1H), 4.33 (ddd, J = 13.6, 6.8, 2.0 Hz, 1H), 3.86 (s, 6H),3.21 –3.13 (m, 1H), 2.98 – 2.91 (m, 2H), 2.90 – 2.84 (m, 2H), 2.75 – 2.69 (m, 1H), 2.66 – 2.57 (m, 1H), 2.44 – 2.36 (m, 1H), 2.21 – 2.12 (m, 1H), 2.05 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 206.6, 173.3, 148.1, 147.9, 133.1, 124.6, 111.5, 108.0, 62.7, 56.0, 55.8, 52.0, 34.4, 32.4, 31.7, 30.6, 27.4; HRMS ESI Calcd for C₁₇H₂₁NO₄ [M+H] ⁺: 304.1543, Found: 304.1544.

Substrate 9,10-dimethoxy-11b-(2-oxopropyl)-1,2,3,6,7,11b-hexahydro-4H-py rido[2,1-a] isoquinolin-4-one (2b), yield 65%. ¹H NMR (400 MHz, CDCl₃) δ 6.71 (s, 1H), 6.59 (s, 1H), 4.94 (ddd, J = 12.8, 5.6, 2.0 Hz, 1H), 3.86 (s, 3H), 3.83 (s, 3H), 3.12 (d, J = 14.0 Hz, 1H), 3.05 – 2.85 (m, 4H), 2.69 – 2.63 (m, 1H), 2.58 – 2.52 (m, 1H), 2.43 – 2.35 (m, 1H), 2.01 (s, 3H), 1.93 – 1.84 (m, 1H), 1.83 – 1.77 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 206.8, 169.7, 148.0, 147.5, 132.4, 126.4, 111.5, 108.7, 60.6, 56.0, 55.8, 51.9, 35.9, 34.3, 32.8, 32.0, 28.3, 16.9; HRMS ESI Calcd for C₁₈H₂₃NO₄ [M+H] +: 318.1700, Found: 318.1699.

Substrate 11b-(2-oxopropyl)-1,5,6,11b-tetrahydro-1,3]dioxolo[4,5-g]pyro-lo [2,1-a] isoquinolin-3(2H)-one (2c), yield 78%. ¹H NMR (400 MHz, CDCl₃) δ 6.60 (s, 1H), 6.56 (s, 1H), 5.94 – 5.92 (m, 2H), 4.28 (ddd, J = 13.3, 7.0, 2.0 Hz, 1H), 3.19 – 3.12 (m, 1H), 2.98 (d, J = 14.8 Hz, 1H), 2.93 – 2.83 (m, 2H), 2.81 – 2.75 (m, 1H), 2.73 – 2.67 (m, 1H), 2.66 – 2.56 (m, 1H), 2.38 (ddd, J = 17.0, 7.6, 2.4 Hz, 1H), 2.17 – 2.08 (m, 1H), 2.06 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 206.2, 173.3, 146.6, 146.6, 134.3, 125.7, 108.7, 105.0, 101.0, 62.8, 52.2, 34.4, 32.2, 32.1, 30.6, 27.9; HRMS ESI Calcd for C₁₆H₁₇NO₄ [M+H]⁺: 288.1230, Found: 288.1231.

Substrate 12b-(2-oxopropyl)-1,2,3,6,7,12b-hexahydro-4H- [1,3] dioxolo[4,5-g]pyrido[2,1-a]isoquinolin-4-one (2d), yield 68%. ¹H NMR (400 MHz, CDCl₃) δ 6.69 (s, 1H), 6.57 (s, 1H), 5.94 – 5.92 (m, 2H), 4.87 (ddd, J = 13.0, 5.6, 2.4 Hz, 1H), 3.07 – 2.95 (m, 3H), 2.94 – 2.85 (m, 1H), 2.75 – 2.70 (m, 1H), 2.67 – 2.62 (m, 1H), 2.57 – 2.50 (m, 1H), 2.43 – 2.34 (m, 1H), 2.03 (s, 3H), 1.92 – 1.68 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 206.3, 169.8, 146.5, 146.5, 133.6, 127.7, 108.8, 105.4, 101.1, 60.9, 52.3, 36.1, 34.7, 32.6, 31.9, 28.8, 16.9; HRMS ESI Calcd for C₁₇H₁₉NO₄ [M+H]⁺: 302.1387, Found: 302.1388.

Substrate8-methoxy-10b-(2-oxopropyl)1,5,6,10btetrahydropyrrolo[2,1a]isoquin-olin-3(2H)-one (2e), yield 81%. ¹H NMR (400 MHz, CDCl₃) δ 7.05 (d, J = 8.4 Hz, 1H), 6.79 (dd, J = 8.6, 2.8 Hz, 1H), 6.64 (s, 1H), 4.30 (ddd, J = 13.2, 6.8, 2.0 Hz, 1H), 3.79 (s, 3H), 3.19 (td, J = 12.0, 4.8 Hz, 1H), 3.00 – 2.91 (m, 2H), 2.88 – 2.76 (m, 3H), 2.67 – 2.58 (m, 1H), 2.38 (ddd, J = 17.0, 10.2, 2.0 Hz, 1H), 2.19 – 2.10 (m, 1H), 2.03 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 206.4, 173.4, 158.2, 133.8, 133.5, 126.2, 113.5, 113.2, 62.5, 55.2, 52.2, 34.3, 32.2, 32.0, 30.6, 28.1; HRMS ESI Calcd for C₁₆H₁₉NO₃ [M+H] ⁺: 274.1438, Found: 274.1436.HRMS ESI Calcd for C₁₇H₂₁NO₃ [M+H] ⁺: 288.1594, Found: 288.1591.

Substrate (*E*)-5-(2-oxopropylidene)-1-phenethylpyrrolidin-2-one (2f'), yield 93%. ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.30 (m, 2H), 7.27 – 7.21 (m, 3H), 5.64 (t, J = 2.0 Hz, 1H), 3.77 – 3.74 (m, 2H), 3.25 – 3.21 (m, 2H), 2.88 – 2.84 (m, 2H), 2.52 – 2.48 (m, 2H), 2.19 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 196.8, 177.1, 159.4, 137.6, 128.6, 128.6, 126.8, 99.5, 41.7, 32.5, 31.6, 27.6, 25.5; HRMS ESI Calcd for C₁₅H₁₇NO₂ [M+H]⁺: 244.1332, Found: 244.1331.

Substrate (*E*)-1-(3,4-dimethoxybenzyl)-5-(2-oxopropylidene)pyrrolidin-2-on e (2g'), yield 91%. ¹H NMR (400 MHz, CDCl₃) δ 6.82 (dd, *J* = 6.4 Hz, *J* = 2.4 Hz, 1H), 6.78 – 6.76 (m, 2H), 5.71 (t, *J* = 2.0 Hz, 1H), 4.67 (s, 2H), 3.87 (s, 3H), 3.87 (s, 3H), 3.28 (ddd, *J* = 9.6, 5.2, 2.0 Hz, 2H), 2.65 – 2.62 (m, 2H), 2.14 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 196.8, 177.6, 159.2, 149.2, 148.6, 127.2, 119.5, 110.9, 110.4, 100.7, 55.9, 55.8, 44.0, 31.6, 27.8, 25.6; HRMS ESI Calcd for C₁₆H₁₉NO₄ [M+H]⁺: 290.1387, Found: 290.1386.

Substrate 11-benzyl-11b-(2-oxopropyl)-1,2,5,6,11,11b-hexahydro-3H-indolizi -no-[8,7-b] indol-3-one (2h), yield 81%. ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.51 (m, 1H), 7.30 – 7.23 (m, 3H), 7.17 – 7.12 (m, 2H), 7.09 – 7.06 (m, 1H), 6.88 – 6.86 (m, 2H), 5.46 – 5.35(m, 2H), 4.58 (ddd, J = 13.4, 6.0, 1.2 Hz, 1H), 3.21 – 3.11 (m, 2H), 2.99 – 2.85 (m, 2H), 2.75 – 2.61 (m, 3H), 2.40 – 2.33 (m, 1H), 2.28 – 2.20 (m, 1H), 2.02 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 205.6, 173.2, 137.6, 137.1, 136.9, 128.9, 127.5, 126.3, 125.5, 122.6, 120.0, 118.7, 110.1, 107.7, 61.5, 50.2, 47.7, 34.8, 32.1, 30.8, 29.6, 21.0; HRMS ESI Calcd for C₂₄H₂₄N₂O₂ [M+H]⁺: 373.1911, Found: 373.1913.

Substrate 12-benzyl-12b-(2-oxopropyl)-2,3,6,7,12,12b-hexahydroindolo[2,3-a] qu-inolizin-4(1H)-one (2i), yield 76%. ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.51 (m, 1H), 7.29 – 7.23 (m, 3H), 7.17 – 7.12 (m, 2H), 7.10 – 7.06 (m, 1H), 6.88 – 6.86 (m, 2H), 5.52 – 5.42 (m, 2H), 5.15 – 5.11 (m, 1H), 3.26 (d, *J* = 14.8 Hz, 1H), 3.11 – 2.94 (m, 2H), 2.88 (d, *J* = 14.4 Hz, 1H), 2.82 – 2.77 (m, 1H), 2.55 – 2.43 (m, 2H), 2.37 – 2.29 (m, 1H), 2.13 – 2.04 (m, 4H), 1.64 – 1.45 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 205.6, 170.7, 137.8, 137.1, 137.1, 128.8, 127.4, 126.2, 125.4, 122.8, 120.0, 118.6, 111.2, 110.0, 60.6, 51.7, 48.5, 37.3 33.1, 32.5, 32.1, 21.3, 17.1; HRMS ESI Calcd for C₂₅H₂₆N₂O₂ [M+H]⁺: 387.2067, Found: 387.2066.

Substrate 11-benzyl-8-methoxy-11b-(2-oxopropyl)-1,2,5,6,11,11b-hexahydro - 3H-indolizino[8,7-b] indol-3-one (2j), yield 60%. ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.23 (m, 3H), 6.96 – 6.94 (m, 2H), 6.86 (dd, J = 7.8, 1.6 Hz, 2H), 6.79 (dd, J = 8.8, 2.4 Hz, 1H), 5.41 – 5.32 (m, 2H), 4.58 (ddd, J = 13.4, 6.2, 1.2 Hz, 1H), 3.85 (s, 1H), 3.20 – 3.07 (m, 2H), 2.95 – 2.82 (m, 2H), 2.74 – 2.61 (m, 3H), 2.41 – 2.36 (m, 1H), 2.26 – 2.22 (m, 1H), 2.03 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 205.7, 173.3, 154.5, 138.2, 137.1, 132.2, 128.9, 127.6, 126.7, 125.5, 112.6, 111.0, 107.3, 100.6, 61.6, 55.9, 50.3, 47.9, 34.9, 32.1, 30.9, 29.6, 21.1; HRMS ESI Calcd for C₂₅H₂₆N₂O₃ [M+H] ⁺: 403.2016, Found: 403.2017.

Substrate12-benzyl-9-methoxy-12b-(2-oxopropyl)-2,3,6,7,12,12b-hexahydroindo-lo[2,3-a] quinolizin-4(1H)-one (2k), yield 62%. ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.20 (m, 2H), 6.98 – 6.94 (m, 2H), 6.87 – 6.85 (m, 2H), 6.80 (dd, J = 8.8, 2.4Hz, 1H), 5.48 – 5.38 (m, 2H), 5.13 (ddd, J = 12.8, 5.2, 1.2 Hz, 1H), 3.85 (s, 3H), 3.25 (d, J = 14.4 Hz, 1H), 3.07 (td, J = 12.0, 4.0 Hz, 1H), 2.99 – 2.91 (m, 2H), 2.87 (d, J =14.4 Hz, 1H), 2.75 (ddd, J = 15.0, 4.0, 1.2 Hz, 1H), 2.54 – 2.43 (m, 2H), 2.38 – 2.30 (m, 1H), 2.10 – 2.03 (m, 4H), 1.64 – 1.47 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 170.7, 154.4, 137.6, 137.3, 132.9, 128.8, 127.4, 126.4, 125.4, 112.8, 110.9, 110.8, 100.3, 60.6, 55.8, 51.7, 48.6, 37.3, 33.1, 32.5, 32.1, 21.4, 17.1; HRMS ESI Calcd for C₂₆H₂₈N₂O₃ [M+H] ⁺: 417.2173, Found: 417.2171.

Substrate Methyl 2-(12-benzyl-4-oxo-1,2,3,4,7,12-hexahydroindolo[2,3-a] quin-olizin-12b(6H)-yl) acetate (2l), yield 81%. ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.51 (m, 1H), 7.32 – 7.23 (m, 3H), 7.17 – 7.11 (m, 2H), 7.08 – 7.03 (m, 1H), 6.90 (dd, J = 8.0, 1.6 Hz, 2H), 5.52 – 5.41 (m, 2H), 5.09 (ddd, J = 13.0, 5.4, 1.2 Hz, 1H), 3.62 (s, 3H), 3.17 – 3.09 (m, 2H), 2.99 – 2.91 (m, 2H), 2.87 (d, J = 14.0 Hz, 1H), 2.77 (ddd, J = 15.6, 4.0, 1.2 Hz, 1H), 2.60 – 2.53 (m, 1H), 2.47 – 2.30 (m, 2H), 2.15 – 2.08 (m, 1H), 1.69 – 1.59 (m, 1H), 1.56 – 1.47 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 170.4, 169.9, 137.8, 137.1, 137.1, 128.8, 127.4, 126.2, 125.4, 122.7, 119.9, 118.6, 111.3, 110.0, 60.0, 52.0, 48.6, 44.6, 37.1, 33.6, 32.4, 21.3, 17.0; HRMS ESI Calcd for C₂₅H₂₆N₂O₃ [M+H] +: 403.2016, Found: 403.2017.

Substrate Methy 12-(12-benzyl-9-methoxy-4-oxo-1,2,3,4,7,12-hexahydroindolo-[2,3-a] quin-olizin-12b(6H)-yl) acetate (2m), yield 60%. ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.27 (m, 1H), 7.26 – 7.21 (m, 2H), 6.98 – 6.87 (m, 4H), 6.79 (dd, J = 8.8, 2.4 Hz, 1H), 5.42 (d, J = 4.0 Hz, 2H), 5.09 (ddd, J = 13.2, 5.4, 1.2 Hz, 1H), 3.85 (s, 3H), 3.62 (s, 3H), 3.16 – 3.09 (m, 2H), 2.97 – 2.88 (m, 1H), 2.85 (d, J = 15.4 Hz, 1H), 2.75 – 2.69 (m, 1H), 2.55 (ddd, J = 14.0, 8.0, 3.2 Hz, 1H), 2.47 – 2.30 (m, 2H), 2.11 (ddd, J = 13.6, 10.0, 3.6 Hz, 1H), 1.66 – 1.59 (m, 1H), 1.57 – 1.48 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 170.4, 170.0, 154.4, 137.7, 137.3, 133.0, 128.9, 127.4, 126.5, 125.4, 112.8, 110.9, 110.9, 100.4, 60.1, 55.9, 52.1, 48.7, 44.6, 37.1, 33.6, 32.4, 21.4, 17.0; **HRMS ESI** Calcd for C₂₆H₂₈N₂O₄ [M+H]⁺: 433.2122, Found: 433.2120.

Substrate (*E*)-1-(3-(3,4-dimethoxyphenyl)propyl)-5-(2-oxopropylidene)pyro lidin-2-one (1r'), yield 93%. ¹H NMR (400 MHz, CDCl₃) δ 6.82 (d, *J* = 8.8 Hz, 1H), 6.75 (dd, *J* = 6.4, 2.0 Hz, 2H), 5.49 (s, 1H), 3.88 (s, 3H), 3.86 (s, 3H), 3.54 (t, *J* = 7.2 Hz, 2H), 3.20 (td, *J* = 7.0, 2.0 Hz, 2H), 2.62 (t, *J* = 7.6 Hz, 2H), 2.51 – 2.47 (m, 2H), 2.15 (s, 3H), 1.89 (p, *J* = 7.2 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 196.6, 177.2, 159.5, 148.8, 147.3, 133.1, 120.0, 111.5, 111.1, 99.4, 55.8, 55.7, 39.7, 32.4, 31.4, 27.6, 27.5, 25.5; HRMS ESI Calcd for C₁₈H₂₃NO₄ [M+H]⁺: 318.1700, Found: 318.1699.

5. Total Synthesis of Erysotramidine

The compound 9^1 (0.6 g, 5.5 mmol, 1.0 equiv.) was dissolved in toluene (55 mL), added 3,4-dimethoxyphenethylamine 8 (1.8 mL/2.0 g, 11.0 mmol, 2.0 equiv.), the mixture was heated to 80 °C until completion (monitored by TLC). The solvent was evaporated under reduced pressure and the residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate/DCM/MeOH, 10/10/10/1) to afford the product 7, yield 97%.

Substrate *N*-(3,4-dimethoxyphenethyl)-3-(hydroxymethyl) pent-4-ynamide (7) was obtained as a light-yellow solid. Mp: 71-72°C. ¹H NMR (400 MHz, CDCl₃) δ 6.81 (d, *J* = 8.0 Hz, 1H), 6.74 (d, *J* = 7.2 Hz, 2H), 6.10 (t, *J* = 5.6 Hz, 1H), 3.87 (s, 3H), 3.86 (s, 3H), 3.72 – 3.62 (m, 2H), 3.51 (q, *J* = 6.8 Hz, 2H), 3.39 (t, *J* = 6.4, 1H), 3.06 – 3.00 (m, 1H), 2.77 (t, *J* = 6.8 Hz, 2H), 2.45 (qd, *J* = 14.4, 6.8 Hz, 2H), 2.13 (d, *J* = 2.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 170.8, 148.8, 147.5, 131.0, 120.5, 111.7, 111.1, 83.5, 71.3, 64.5, 55.8, 40.8, 38.5, 35.0, 31.3; HRMS ESI Calcd for C₁₆H₂₁NO₄ [M+H]⁺: 292.1543, Found: 292.1542.

The compound 7 (2.0 g, 6.8 mmol, 1.0 equiv.) was dissolved in THF (70 mL) under Ar, *n*-BuLi in hexane (2.5 M, 8.7 mL, 21.8 mmol, 3.2 equiv.) was added to the solution dropwise at -78 °C. Then added CH₃CHO (6.8 mL, 34.0 mmol, 5 equiv.) to the mixture after 0.5 h, and the reaction was raised to the room temperature after another 0.5 h, the mixture was stirred at this temperature for 12 h. Quenched with saturated NH₄Cl aqueous, the mixture was diluted with water and extracted with EtOAc, washed with brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate, 1/1; petroleum ether/ethyl acetate/DCM/MeOH, 10/10/10/2) to afford the product **10** as a light-yellow oil, yield 47%, brsm 82%.

Substrate *N*-(3,4-dimethoxyphenethyl)-6-hydroxy-3-(hydroxymethyl)hept-4 - yna-mide (10). ¹H NMR (400 MHz, CDCl₃) δ 6.80 (d, *J* = 8.4 Hz, 1H), 6.73 (d, *J* = 5.2 Hz, 2H), 6.40 (q, *J* = 5.2 Hz, 1H), 4.45 (q, *J* = 6.4 Hz, 1H), 3.86 (s, 3H), 3.85 (s, 3H), 3.63 (d, *J* = 5.2 Hz, 2H), 3.48 (q, *J* = 6.8 Hz, 2H), 3.01 (p, *J* = 6.0, 4.4 Hz, 1H), 2.76 (t, *J* = 7.2 Hz, 2H), 2.41 (qd, *J* = 14.4, 6.4 Hz, 2H), 1.37 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.5, 149.0, 147.7, 131.2, 120.7, 112.0, 111.4, 85.6, 83.2, 64.5, 57.9, 55.9, 41.0, 38.7, 35.2, 31.7, 24.4; HRMS ESI Calcd for C₁₈H₂₅NO₅ [M+H] +: 336.1805, Found: 336.1806.

The compound **10** (70mg, 0.2 mmol, 1.0 equiv.) was dissolved in DCM (5 mL), then MnO_2 (696mg, 8.0 mmol, 40.0 equiv.) was added to the mixture and the reaction was stirred at room temperature until completion (monitored by TLC). The mixture filtered through a plug of celite, washed with DCM and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate, 1/1.5) to afford the product **6a** as a light-yellow oil, yield 87%.

Substrate *N*-(3,4-dimethoxyphenethyl)-3-(hydroxymethyl)-6-oxohept-4-yna mide (6a). ¹H NMR (400 MHz, CDCl₃) δ 6.81 (d, J = 8.4 Hz, 1H), 6.73 (dd, J = 5.4 Hz, J = 2.0 Hz, 2H), 6.11 – 6.05 (m, 1H), 3.87 (s, 3H), 3.86 (s, 3H), 3.76 – 3.68(m, 2H), 3.51 (q, J = 6.8 Hz, 2H), 3.22 (p, J = 6.4, 6.0 Hz, 1H), 2.77 (t, J = 7.2 Hz, 2H), 2.49 (qd, J = 14.6, 6.8 Hz, 2H), 2.31 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 184.7, 170.2, 149.0, 147.6, 131.0, 120.6, 111.8, 111.3, 92.3, 82.8, 63.8, 55.8, 55.8, 40.9, 37.7, 35.1, 32.7, 31.6; HRMS ESI Calcd for C₁₈H₂₃NO₅ [M+H]⁺: 334.1649, Found: 334.1648.

MeO. MeO	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}{c} \end{array}\\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	
Entry	Conditions	Results
1	1 equiv. p-TsOH·H ₂ O, 30 °C, DCM	93% 6a'
2	1 equiv. p-TsOH·H ₂ O, 50 °C, DCM	91% 6a'
3	1 equiv. p-TsOH·H ₂ O, 30 °C, DCE	94% 6a'
4	1 equiv. p-TsOH·H ₂ O, 50 °C, DCE	92% 6a'
5	1 equiv. p-TsOH·H ₂ O, 80 °C, DCE	Complex
6	1.5 equiv. p-TsOH·H ₂ O, 30 °C, DCE	91% 6a'
7^c	1 equiv. p-TsOH·H ₂ O, 30 °C, DCE; 3equiv. BF ₃ ·Et ₂ O	90% 6a'

Table SI-2 Optimization of the reaction conditions. *a,b*

^{*a*}Reaction conditions: **6a** (0.1 mmol, 1.0 equiv.), acid (0.1 mmol, 1.0 equiv.), solvent (4 mL). ^{*b*}The yield was determined upon isolation of the target product. ^{*c*}BF₃·Et₂O (0.3 mmol, 3.0 equiv.) was added to the mixture until the material disappeared (monitored by TLC); reaction temperature was from 0 °C to 60 °C.

Substrate (*E*)-1-(3,4-dimethoxyphenethyl)-4-(hydroxymethyl)-5-(2-oxopropy lidene)pyrrolidin-2-one (6a') was obtained as a light-yellow oil; ¹H NMR (400 MHz,

CDCl₃) δ 6.79 (d, J = 8.86 Hz, 1H), 6.72 (dd, J = 6.4, 2.0 Hz, 2H), 6.15 (t, J = 5.4 Hz, 1H), 5.28 (s, 1H), 4.55 (dd, J = 11.2, 5.6 Hz, 1H), 4.06 (dd, J = 12.8, 11.2 Hz, 1H), 3.86 (s, 3H), 3.84 (s, 3H), 3.47 (q, J = 6.4, 2H), 2.89 (td, J = 12.4, 5.6 Hz, 1H), 2.74 (t, J = 6.8 Hz, 2H), 2.57 (dd, J = 15.0, 5.6 Hz, 1H), 2.13 (dd, J = 15.0, 6.8 Hz, 1H), 1.99 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 193.8, 175.0, 170.5, 149.0, 147.6, 131.3, 120.6, 111.9, 111.3, 104.2, 71.36, 55.9, 55.8, 40.8, 40.6, 35.2, 32.7, 20.9; HRMS ESI Calcd for C₁₈H₂₃NO₅ [M+H]⁺: 334.1649, Found: 334.1648.

The compound 7 (7.93 g, 27.2 mmol, 1.0 equiv.) was dissolved in DMF (270 mL), NaH (1.30 g, 32.6 mmol, 1.2 equiv.) was added to the mixture under 0 °C, the mixture was stirred at this temperature for 0.5 h, then added BnBr (3.55 mL, 29.9 mmol, 3 equiv.) dropwise to the mixture, raised to room temperature and the reaction was stirred at this temperature until completion (monitored by TLC). Quenched with saturated NH₄Cl aqueous, the mixture was diluted with water and extracted with Et₂O, washed with brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate, 2/1) to afford the product **14** as a yellow oil, 91%.

Substrate 3-((benzyloxy)methyl)-*N*-(3,4-dimethoxyphenethyl)pent-4-yna-m ide (14). ¹HNM R (400 MHz, CDCl₃) δ 7.36 – 7.28 (m, 5H), 6.79 (d, *J* = 8.0 Hz, 0H), 6.72 (d, *J* = 7.2 Hz, 2H), 5.81 (q, *J* = 4.8 Hz, 1H), 4.53 (s, 2H), 3.86 (s, 3H), 3.85 (s, 3H), 3.57 – 3.43 (m, 4H), 3.20 – 3.13 (m, 1H), 2.73 (t, *J* = 6.8Hz, 2H), 2.50 (dd, *J* = 14.4, 6.0 Hz, 1H), 2.34 (dd, *J* = 14.4, 8.4 Hz, 0H), 2.10 (d, *J* = 2.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 170.1, 148.6, 147.2, 137.6, 131.1, 128.1, 127.4, 127.3, 120.3, 111.6, 111.0, 83.7, 72.7, 71.3, 70.4, 55.6, 55.5, 40.5, 38.4, 34.9, 28.8; HRMS ESI Calcd for C₂₃H₂₇NO₄ [M+H]⁺: 382.2013, Found: 382.2015.

The compound 14 (0.77g, 2.0 mmol, 1.0 equiv.) was dissolved in THF (25 mL) under Ar, *n*-BuLi in hexane (2.5 M, 1.7 mL, 4.2 mmol, 2.1 equiv.) was added to the solution dropwise at -78 °C. Then added CH₃CHO in THF (0.6 mL, 10.0 mmol, 5 equiv.) to the mixture after 0.5 h, and the reaction was raised to the room temperature after another 0.5 h, the mixture was stirred at this temperature for 12 h. Quenched with saturated NH₄Cl aqueous, the mixture was diluted with water and extracted with EtOAc, washed with brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate, 1/1; petroleum ether/ethyl acetate/DCM/MeOH, 10/10/10/1) to afford the product 15 as a yellow oil, yield 59%, brsm 98%.

Substrate 3-((benzyloxy)methyl)-*N*-(3,4-dimethoxyphenethyl)-6-hydroxyhpt -4-ynamide (15). ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.28 (m, 5H), 6.79 (d, *J* = 8.8 Hz, 1H), 6.73 – 6.70 (m, 2H), 5.96 – 5.93 (m, 1H), 4.51 (s, 2H), 4.45 (q, *J* = 7.6, 6.8 Hz, 1H), 3.86 (s, 3H), 3.84 (s, 3H), 3.56 – 3.43 (m, 4H), 3.14 (qd, *J* = 7.2, 2.0 Hz, 1H), 2.73 (t, *J* = 7.2 Hz, 2H), 2.49 (dd, *J* = 14.0, 5.6 Hz, 1H), 2.30 (dd, *J* = 14.2, 8.0 Hz, 1H), 1.38 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.7, 149.0, 147.6, 137.8, 131.3, 128.4, 127.7, 127.6, 111.9, 111.4, 85.0, 83.3, 72.9, 71.7, 58.1, 55.9, 55.8, 40.7, 39.0, 35.2, 29.3, 29.3, 24.4; HRMS ESI Calcd for C₂₅H₃₁NO₅ [M+H] ⁺: 426.2275, Found: 426.2274.

The compound **15** (1.59 g, 3.7 mmol, 1.0 equiv.) was dissolved in DCM (30 mL), NaHCO₃ (0.94g, 11.2 mmol, 3.0 equiv.) and DMP (2.37 g, 5.60 mmol, 1.5 equiv.) was added to the reaction and the mixture was stirred at room temperature until completion (monitored by TLC). Then Na₂S₂O₃ aqueous was added to the mixture and stirred until the solution was clear, the mixture was diluted with water and extracted with EtOAc, washed with brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate, 1/1) to afford the product **6b** as a yellow oil, yield 94%.

3-((benzyloxy)methyl)-*N*-(**3,4-dimethoxyphenethyl)**-**6-oxohept-4-ynamide** (**6b)**. ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.28 (m, 5H), 6.79 (d, *J* = 8.8 Hz, 1H), 6.72 – 6.70 (m, 2H), 5.72 (t, *J* = 6.0 Hz, 1H), 4.52 (s, 1H), 3.86 (s, 1H), 3.85 (s, 1H), 3.60 – 3.53 (m, 2H), 3.50 – 3.43 (m, 2H), 3.40 – 3.34 (m, 1H), 2.73 (t, *J* = 7.2 Hz, 2H), 2.52 (dd, *J* = 14.8, 6.4 Hz, 1H), 2.38 (dd, *J* = 14.6, 7.2 Hz, 1H), 2.30 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 184.4, 169.6, 149.0, 147.6, 137.6, 131.1, 128.4, 127.8, 127.6, 120.5, 111.8, 111.3, 92.4, 82.3, 73.1, 70.5, 55.8, 55.8, 40.7, 37.8, 35.1, 32.7, 29.4; HRMS ESI Calcd for C₂₅H₂₉NO₅ [M+H]⁺: 424.2118, Found: 424.2121.

Table SI-3 Optimization of the reaction conditions.^{*a,b*}

Entry	Conditions	Results
1	1 equiv. p-TsOH·H ₂ O, 30 °C, DCE	17% 6b' , 11% 11
2	1 equiv. p-TsOH, 30 °C, DCE	13% 6b' , 8% 11

3	1 equiv. TfOH·H ₂ O, 30 °C, DCE	N.R.
4	1 equiv. p-TsOH·H ₂ O, 30 °C, DCM	17% 6b' , 15% 11
5	1 equiv. p-TsOH·H ₂ O, 50 °C, DCM	15% 6b' , 8% 11
6	1 equiv. p-TsOH·H ₂ O, 30 °C, THF	N.R.
7	1 equiv. p-TsOH·H ₂ O, 30 °C, MeOH	N.R.
8	1 equiv. p-TsOH·H ₂ O, 30 °C, i-PrOH	N.R.

^{*a*}Reaction conditions: **6b** (0.1 mmol, 1.0 equiv.), acid (0.1 mmol, 1.0 equiv.), solvent (4 mL). ^{*b*}The yield was determined upon isolation of the target product.

Substrate (*E*)-4-((benzyloxy)methyl)-1-(3,4-dimethoxyphenethyl)-5-(2-oxop ropylidene) pyrrolidin-2-one (6b') was obtained as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.33 – 7.30 (m, 2H), 7.26 – 7.24 (m, 3H), 6.78 (d, *J* = 9.0 Hz, 1H), 6.73 (dd, *J* = 5.6, 1.8 Hz, 2H), 5.60 (s, 1H), 4.50 (d, *J* = 12.6 Hz, 1H), 4.45 (d, *J* = 12.0 Hz, 1H), 4.06 (dt, *J* = 10.2, 5.4 Hz, 1H), 3.88 (s, 3H), 3.85 (s, 3H), 3.80 (ddd, *J* = 13.8, 8.4, 6.6 Hz, 1H), 3.68 (dd, *J* = 9.0, 3.6 Hz, 2H), 3.63 (ddd, *J* = 14.1, 9.6, 6.0 Hz, 1H), 3.56 (dd, *J* = 9.0, 5.4 Hz, 1H), 2.80 – 2.72 (m, 2H), 2.58 – 2.57 (m, 3H), 2.18 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 196.2, 176.3, 161.0, 149.1, 147.9, 138.0, 130.4, 128.3, 127.6, 127.5, 120.7, 112.0, 111.3, 99.9, 72.9, 71.6, 55.9, 55.9, 41.7, 37.3, 32.6, 32.2, 31.9; HRMS ESI Calcd for C₂₅H₂₉NO₅ [M+H]⁺: 424.2118, Found: 424.2121.

Substrate 8,9-dimethoxy-1-methylene-10b-(2-oxopropyl)-1,5,6,10b-tetrahyd -ropyrrolo [2,1-a] isoquinolin-3(2H)-one (11) was obtained as a light-yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 6.88 (s, 1H), 6.56 (s, 1H), 5.52 (t, J = 2.4 Hz, 1H), 5.33 (d, J = 2.8 Hz, 1H), 4.41 (ddd, J = 13.2, 7.0, 2.0 Hz, 1H), 3.87 (s, 3H), 3.85 (s, 3H), 3.36 – 3.29 (m, 1H), 3.16 – 3.14 (m, 3H), 3.13 – 3.08 (m, 1H), 3.05 – 3.00 (m, 1H), 2.67 – 2.62 (m, 1H), 2.10 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 204.1, 172.1, 148.4, 147.4, 144.8, 130.0, 125.8, 111.9, 110.4, 108.0, 65.8, 56.0, 55.8, 52.8, 37.8, 34.8, 31.3, 27.1.; HRMS ESI Calcd for C₁₈H₂₁NO₄ [M+H]⁺: 316.1543, Found: 316.1541.

The compound 7 (1.9 g, 6.5 mmol, 1.0 equiv.) was dissolved in DMF (65 mL), NaH (0.3 g, 7.8 mmol, 1.2 equiv.) was added to the mixture under 0 °C, the mixture was stirred at this temperature for 0.5 h, then added MeI (2.0 mL/4.6 g, 32.5 mmol, 5 equiv.) dropwise to the mixture, raised to room temperature and the reaction was stirred at this temperature until completion (monitored by TLC). Quenched with saturated NH₄Cl aqueous, the mixture was diluted with water and extracted with Et₂O, washed with brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate, 2/1) to afford the product **16** as a yellow oil, 69%.

Substrate N-(3,4-dimethoxyphenethyl)-3-(methoxymethyl) pent-4-ynamide

(16). ¹H NMR (400 MHz, CDCl₃) δ 6.79 (d, J = 8.4 Hz, 1H), 6.73 (d, J = 7.2 Hz, 2H), 5.76 (s, 1H), 3.86 (s, 3H), 3.85 (s, 3H), 3.51 (qd, J = 7.0, 2.4 Hz, 2H), 3.46 – 3.39 (m, 2H), 3.34 (s, 3H), 3.16 – 3.08 (m, 1H), 2.76 (t, J = 7.2 Hz, 2H), 2.44 (dd, J = 14.4, 6.0 Hz, 1H), 2.31 (dd, J = 14.4, 8.0 Hz, 1H), 2.09 (d, J = 2.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 170.3, 149.0, 147.7, 131.2, 120.6, 111.8, 111.3, 83.9, 74.0, 70.6, 58.9, 55.9, 55.8, 40.7, 38.7, 35.2, 28.9; HRMS ESI Calcd for C₁₇H₂₃NO₄ [M+H] ⁺: 306.1700, Found: 306.1698.

The compound **16** (0.76g, 2.5 mmol, 1.0 equiv.) was dissolved in THF (25 mL) under Ar, *n*-BuLi in hexane (2.5 M, 2.1 mL, 5.3 mmol, 2.1 equiv.) was added to the solution dropwise at -78 °C. Then added CH₃CHO in THF (5 M, 2.5 mL, 12.5 mmol, 5 equiv.) to the mixture after 0.5 h, and the reaction was raised to the room temperature after another 0.5 h, the mixture was stirred at this temperature for 12 h. Quenched with saturated NH₄Cl aqueous, the mixture was diluted with water and extracted with EtOAc, washed with brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate, 1/1; petroleum ether/ethyl acetate/DCM/MeOH, 10/10/10/1) to afford the product **17** as a yellow oil, yield 59%, brsm 87%.

Substrate *N*-(3,4-dimethoxyphenethyl)-6-hydroxy-3-(methoxymethyl)hept-4ynamide (17). ¹H NMR (400 MHz, CDCl₃) δ 6.80 (d, *J* = 8.8 Hz, 1H), 6.73 (d, *J* = 6.4 Hz, 2H), 5.93 (s, 1H), 4.45 (q, *J* = 6.8 Hz, 1H), 3.86 (s, 3H), 3.85 (s, 3H), 3.50 (q, *J* = 6.8 Hz, 2H), 3.44 – 3.35 (m, 2H), 3.32 (s, 3H), 3.11 (q, *J* = 5.6 Hz, 1H), 2.76 (t, *J* = 6.8 Hz, 2H), 2.43 (dd, *J* = 14.4, 5.6 Hz, 1H), 2.27 (dd, *J* = 14.2, 8.0 Hz, 1H), 1.37 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.7, 149.0, 147.6, 131.3, 120.6, 111.9, 111.3, 84.9, 83.4, 74.2, 58.8, 58.1, 55.9, 55.8, 40.7, 38.9, 35.2, 29.1, 29.1, 24.4; HRMS ESI Calcd for C₁₉H₂₇NO₅ [M+H]⁺: 350.1962, Found: 350.1959.

The compound **17** (0.51 g, 1.5 mmol, 1.0 equiv.) was dissolved in DCM (15 mL), NaHCO₃ (0.37g, 4.5 mmol, 3.0 equiv.) and DMP (0.93 g, 2.3 mmol, 1.5 equiv.) was added to the reaction and the mixture was stirred at room temperature until completion (monitored by TLC). Then Na₂S₂O₃ aqueous was added to the mixture and stirred until the solution was clear, the mixture was diluted with water and extracted with EtOAc, washed with brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate, 1/1) to afford the product **6c** as a yellow oil, yield 82%.

Substrate N-(3,4-dimethoxyphenethyl)-3-(methoxymethyl)-6-oxohept-4-yna -

mide (6c).¹H NMR (400 MHz, CDCl₃) δ 6.79 (d, J = 8.4 Hz, 1H), 6.71 (d, J = 6.4 Hz, 2H), 5.75 (d, J = 6.8 Hz, 1H), 3.85 (s, 3H), 3.84 (s, 3H), 3.52 – 3.44 (m, 4H), 3.35-3.28 (m, 4H), 2.75 (t, J = 7.2 Hz, 2H), 2.47 (dd, J = 14.8, 6.4 Hz, 1H), 2.35 (dd, J = 14.4, 7.6 Hz, 1H), 2.29 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 184.5, 169.6, 148.9, 147.6, 131.0, 120.5, 111.7, 111.2, 92.4, 82.2, 73.0, 58.9, 55.8, 55.8, 40.7, 37.7, 35.1, 32.7, 29.2; HRMS ESI Calcd for C₁₉H₂₅NO₅ [M+H]⁺: 348.1805, Found: 348.1804.

The compound **6c** (194 mg, 0.56 mmol, 1.0 equiv.) was dissolved in DCE (10 mL), added *p*-TsOH·H₂O (144 mg, 0.75 mmol, 1.0 equiv.) to the mixture and stirred at 45 °C until completion (monitored by TLC). Then the reaction was quenched with saturated NaHCO₃ aqueous, the mixture was diluted with water and extracted with DCM, washed with brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate/DCM/MeOH, 10/10/10/1) to afford the product **11** as a light-yellow oil, yield 36%.

The compound **10** (136 mg, 0.43 mmol, 1.0 equiv.) was dissolved in mixed solvents $THF/H_2O = 1/1$ (5 mL), then NBS (92 mg, 0.52 mmol, 1.2 equiv.) was added to the mixture and stirred at room temperature until completion (monitored by TLC). Then the reaction was quenched with saturated NaHCO₃ aqueous, the mixture was diluted with water and extracted with EtOAc, washed with brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure to afford crude product which was used in the next reaction without further purification.

The crude product (10 mg, 0.025 mmol, 1.0 equiv.) was dissolved in MeOH (2 mL), K_2CO_3 (5 mg, 0.038 mmol, 1.5 equiv.) was added to the mixture and stirred at room temperature for 0.5 h. Then the mixture was diluted with water and extracted with EtOAc, washed with brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate, 1/1 to 1/2) to afford the product **12** as a light-yellow oil, 34%.²

Substrate1-(hydroxymethyl)-8,9-dimethoxy-10b-(2-oxopropyl)-6,10bdihydropyrrolo [2,1-a] isoquinolin-3(5H)-one (12). ¹H NMR (400 MHz, CDCl₃) δ 7.28 (s, 1H), 6.61 (s, 1H), 5.93 (s, 1H), 4.77 (d, J = 14.8 Hz, 1H), 4.66 – 4.60 (m, 1H), 4.52 (dd, J = 13.6, 6.0 Hz, 1H), 4.11 – 4.07 (m, 1H), 3.91 (s, 3H), 3.86 (s, 3H), 3.31 – 3.21 (m, 2H), 2.98 – 2.89 (m, 1H), 2.64 (dd, J = 15.8, 4.0 Hz, 1H), 2.17 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 209.3 , 170.8, 164.4, 148.5, 148.2, 126.9, 126.0, 123.1, 111.9, 109.3, 60.1, 56.1, 55.9, 51.9, 35.5, 32.9, 29.7, 29.2; **HRMS ESI** Calcd for C₁₈H₂₁NO₅ [M+H]⁺: 332.1492, Found: 332.1491.

The compound **12** (27 mg, 0.08 mmol, 1.0 equiv.) was dissolved in DCM (2 mL), added NMO (28 mg, 0.24 mmol, 3.0 equiv.) and 4 Å MS to the reaction under 0 °C. Then TPAP (3mg, 0.008mmol, 0.1 equiv.) was added to the mixture after 10 minutes and stirred at room temperature until completion (monitored by TLC). After the reaction is completed, the solvent was evaporated under reduced pressure and the residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate, 1/1) to afford the product **13** as a light-yellow oil, 58%.

Substrate 8,9-dimethoxy-3-oxo-10b-(2-oxopropyl)-3,5,6,10b-tetrahydropyrr olo [2,1-a] isoquinoline-1-carbaldehyde (13). ¹H NMR (400 MHz, CDCl₃) δ 10.06 (s, 1H), 7.38 (s, 1H), 6.90 (s, 1H), 6.59 (s, 1H), 4.53 – 4.48 (m, 1H), 3.85 (s, 3H), 3.84 (s, 3H), 3.57 (d, J = 15.6 Hz, 1H), 3.29 (d, J = 16.0 Hz, 1H), 3.27 – 3.21 (m, 1H), 3.05 – 2.96 (m, 1H), 2.67 (dd, J = 16.0, 4.4 Hz, 1H), 2.06 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 203.3, 188.3, 168.6, 157.9, 148.5, 147.9, 140.7, 126.9, 125.2, 111.8, 110.1, 66.8, 55.9, 55.8, 49.6, 35.6, 31.7, 28.5; HRMS ESI Calcd for C₁₈H₁₉NO₅[M+H] ⁺: 330.1336, Found: 330.1338.

The compound **13** (7 mg, 0.02mmol, 1.0 equiv.) was dissolved in EtOH (1 mL), then KOH (6 mg, 0.10mmol, 10.0 equiv.) was added to the mixture and and stirred at room temperature until completion (monitored by TLC). Quenched with saturated NH₄Cl aqueous, the mixture was diluted with water and extracted with EtOAc, washed with brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure, the residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate, 1/2) to afford the product **4** as a colorless oil, yield 80%.

Substrate (*S*)-11,12-dimethoxy-8,9-dihydro-1H-indolo [7a,1-a] isoquinoline-2, 6-dione (4). ¹H NMR (400 MHz, CDCl₃) δ 7.76 (dd, J = 10.0, 1.2 Hz, 1H), 6.85 (s, 1H), 6.66 (s, 1H), 6.42 (d, J = 10.0 Hz, 1H), 6.38 (s, 1H), 4.21 (ddd, J = 13.2, 6.6, 4.8Hz, 1H), 3.84 (s, 3H), 3.72 (s, 3H), 3.40 (ddd, J = 13.0, 8.0, 5.6 Hz, 1H), 3.27 (d, J =14.8 Hz, 1H), 3.03 (ddd, J = 16.0, 8.8, 6.8 Hz, 1H), 2.86 – 2.79 (m, 2H).¹³C NMR (101 MHz, CDCl₃) δ 195.2, 169.7, 154.8, 148.8, 147.3, 138.5, 131.9, 128.1, 126.0, 125.6, 112.5, 107.9, 67.7, 55.9, 55.9, 52.5, 36.9, 27.7; HRMS ESI Calcd for C₁₈H₁₇NO₄[M+H] +: 312.1230, Found: 312.1227.

A 10-mL sealed tube with a magnetic stir bar was charged with 4 (6 mg, 0.016 mmol, 1.0 equiv.) and CeCl₃·7H₂O (18 mg, 0.048 mmol, 3.0 equiv.) in MeOH (1 mL). Then NaBH₄ (2 mg, 0.048 mmol, 3.0 equiv.) was added to the mixture at 0 °C. The mixture was stirred for 5 min and quenched with water (1 mL). Then the mixture was extracted with DCM, washed with brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure to afford crude alcohol which was used in the next reaction without further purification.

A 10-mL sealed tube with a magnetic stir bar was charged with the crude product (5 mg, 0.016 mmol, 1.0 equiv), KOH (9 mg, 0.160 mmol, 10.0 equiv) and Et₄NBr (7 μ l, 0.048 mmol, 5.0 equiv) in THF (1 mL). Then CH₃I (10 μ l, 0.160 mmol, 10 equiv) was added to the mixture and stirred at room temperature until completion (monitored by TLC). The reaction was quenched with water (1 mL) and extracted with DCM, washed with brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate, 1/1) to afford the product Erysotramidine (**3**) as a colorless oil, yield 95%.³⁻⁵

Substrate (13bS)-2,11,12-trimethoxy-1,2,8,9-tetrahydro-6H-indolo [7a,1-a] isoquinolin-6-one (3). ¹H NMR (400 MHz, CDCl₃) δ 6.91 (dd, J = 10.0, 2.4 Hz, 1H), 6.80 (s, 1H), 6.72 (s, 1H), 6.33 (dt, J = 10.4, 1.6 Hz, 1H), 6.03 (s, 1H), 4.01 (ddd, J = 12.8, 8.4, 7.2 Hz, 1H), 3.87 (s, 3H), 3.84 – 3.83 (m, 1H), 3.77 (s, 3H), 3.62 (ddd, J = 12.8, 7.2, 5.6 Hz, 1H), 3.35 (s, 3H), 3.13 – 3.05 (m, 1H), 3.03 – 2.98 (m, 1H), 2.81 (ddd, J = 11.6, 5.2, 1.2 Hz, 1H), 1.72 (dd, J = 11.6, 10.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 171.0, 157.0, 148.6, 147.0, 136.3, 128.7, 126.6, 124.2, 120.3, 112.2, 108.2, 74.9, 66.4, 56.4, 56.1, 55.9, 41.4, 37.3, 27.1.

6. References

- Malová Križková, P., Lindner, W., Hammerschmidt, F. Synthesis 2018, 50 (03), 651–657.
- 2 Peng, Y., Yang, J.-H., Li, W.-D. Z. Tetrahedron 2006, 62 (6), 1209–1215.
- 3 Gao, S., Tu, Y. Q., Hu, X., Wang, S., Hua, R., Jiang, Y., Zhao, Y., Fan, X., Zhang, S. Org. Lett. **2006**, 8 (11), 2373–2376.
- 4 Tietze, L. F., Tölle, N., Kratzert, D., Stalke, D. Org. Lett. 2009, 11 (22), 5230–5233.
- 5 L'Homme, C., Ménard, M.-A., Canesi, S. J. Org. Chem. 2014, 79 (17), 8481– 8485.

7. NMR Spectra of New Compound

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1(

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -
7.1 7.1 7.2</t

1.001 2.00∡ 2.00₫ 2.00 3.00 4 2.00H 0001 0001 0001 0001 2.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 - 137.5 - 136.7 - 136.7 - 127.8 - 127.8 - 127.8 - 126.8 - 126.2 - 126.2 - 119.2 - 119.2 - 119.2 - 109.8 — 169.9 — 184.8 - 81.5 -- 49.8 ∧ 39.8 → 34.2 ∧ 32.7 > 25.2 — 15.1 нŃ Bn 1h ¹³C NMR (101 MHz, CDCl₃)

7.62 7.60 7.60 7.60 7.60 7.60 7.72 </tr

7,775 7,775 7,753 7,753 7,753 7,753 7,755 7,752

¹H NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

$\begin{array}{c} 6.6 \\ 6.5 \\ 5.5 \\$

$\begin{array}{c} 7.7.06\\ 6.6.80\\ 6.6.80\\ 7.7.06\\$

 $\begin{array}{c} 7.55\\ 5.56\\ 7.75\\ 5.56\\ 7.75\\$

77.38 77.38 77.39 77.33 77.43 77.44 77

- 7 28 - 6 61 - 7 28 - 6 61 - 7 28 - 7 4 55 - 4 56 - 2 59 - 2 59 - 2 59 - 2 59 - 2 56 - 2

— 10.06

¹H NMR (400 MHz, CDCl₃)

$\begin{array}{c} 0.02\\$

