Supporting Information

Aerobic Oxidative Hydroxysulfurization of *gem*-Difluoroalkenes towards α , α -Difluoro- β -Hydroxysulfides

Kai Xu,*^a Zhenli Xu,^a Mengzhen Zhang,^a Xiaoxiao Yan,^a Guoliang Mao,*^b Tao Wang,^a Yangjie Wu^c and Lantao Liu*^{a,c}

^a Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000 P. R. China. E-mail: liult05@iccas.ac.cn

^b College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318 (P. R. China)

^c College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (P. R. China)

Contents

Supporting Information	1
General Information	2
General procedure for the synthesis of α , α -difluoro- β -hydroxysulfides	2
Labeling experiments (Scheme 1)	2
References	
¹ H, ¹³ C and ¹⁹ F NMR spectra for all the compounds	13

General Information

¹H, ¹³C, and ¹⁹F NMR spectra was recoorded on a Bruker DPX-400 spectrometer at room temperature with CDCl₃ as the solvent and TMS as an internal standard. GC-MS analysis was performed on Agilent 4890D gas chromatograph. High-resolution mass spectra were collected on MALDI-FTMS or Thermo Scientific Exactive GC Orbitrap GC-MS System. Melting points were measured using a XT4A microscopic apparatus. IR spectra were obtained on a Bruker VECTOR22 spectrophotometer in KBr pellets. *gem*-Difluoroalkenes^[1] and (1,1-difluoro-2-(naphthalen-1-yl)ethyl)(p-tolyl)sulfane (**4aa**)^[2] were synthesized according to the reported literature. Solvents and chemicals were bought from commercial sources and used directly unless otherwise stated.

General procedure for the synthesis of a,a-difluoro-\beta-hydroxysulfides

A solution of *gem*-difluoroalkenes (0.2 mmol), thiol (1.0 mmol), ⁿBu₃N (0.4 mmol) and $K_2S_2O_8$ (0.3 mmol) in DME (1 mL) was stirred in a 10 mL Schlenk tube. Then this Schlenk tube was degassed thoroughly and ensuingly charged with oxygen balloon and the temperature was elevated to 80 °C for 14 h. The reaction mixture was cooled down with subsequent added into 0.7M HCl (4 mL) and extracted with ethyl acetate (10 mL) for three times. Then the combined organic layer was dried over anhydrous Na₂SO₄ and filtered. After removal of the solvent in vacuum, the final residue was purified by flash chromatography on silica gel (ethyl acetate/hexane) to give the pure product.

2,2-difluoro-1-(naphthalen-1-yl)-2-(p-tolylthio)ethanol (3aa)

Pale yellow oil, yield: 90%^a and 86%^b; ¹H NMR (400 MHz, CDCl₃) δ 7.90–7.78 (m, 4H), 7.47–7.41 (m, 5H), 7.08 (d, *J*=8.0 Hz, 2H), 5.79 (dd, *J*=11.6 Hz and 6.4 Hz, 1H), 3.14 (s, 1H), 2.28 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 140.4, 136.6, 133.7, 131.5, 131.5, 130.0, 129.8, 129.5 (t, ¹*J*_{*F*-*C*}=283.6 Hz), 128.9, 126.5, 126.3, 125.7, 125.3, 123.4, 122.4 (d, ³*J*_{*F*-*C*}=1.5 Hz), 71.8 (dd, ²*J*_{*F*-*C*}=28.4 Hz and 25.8 Hz), 21.4; ¹⁹F NMR (CDCl₃, 376 MHz) δ -78.9 (d, *J*=209.4 Hz, 1F), -84.5 (d, *J*=209.4 Hz, 1F); IR (KBr) 3583, 3426, 3052, 2943, 1595, 1489, 1396, 1037, 973, 794, 730, 512 cm⁻¹; HRMS (ESI): [M+Na]⁺ calcd. for C₁₉H₁₆F₂OSNa⁺ 353.0782, found: 353.0783.

Labeling experiments (Scheme 1)

The reaction was performed in the atmosphere of ${}^{18}O_2$ (97%), and the typical procedure for labeling experiment was consistent with the general procedure. The isolated products **3aa** was finally analyzed by HRMS. ${}^{18}O$ -labled product **3aa** was isolated in 92% yield with 94% isotopic purity under standard condition A and in 87% yield with 95% isotopic purity under standard condition B, respectively (scheme 1).

The HRMS spectra of ¹⁸O-3aa (94% purity) (eqn (1))

HRMS (ESI): $[^{16}\text{O-3aa}+\text{Na}]^+$ calcd. for $C_{19}H_{16}F_2OSNa^+$ 353.0782, found: 353.0780; HRMS (ESI): $[^{18}\text{O-3aa}+\text{Na}]^+$ calcd. for $C_{19}H_{16}F_2^{-18}OSNa^+$ 355.0825, found: 353.0822.

The HRMS spectra of ¹⁸O-3aa (95% purity)(eqn (2))

HRMS (ESI): $[^{16}O-3aa+Na]^+$ calcd. for $C_{19}H_{16}F_2OSNa^+$ 353.0782, found: 353.0779; HRMS (ESI): $[^{18}O-3aa+Na]^+$ calcd. for $C_{19}H_{16}F_2^{-18}OSNa^+$ 355.0825, found: 353.0822.

2,2-difluoro-1-(naphthalen-1-yl)-2-(o-tolylthio)ethanol (3ab)

Pale yellow oil, yield: 91%^a and 85%^b; ¹H NMR (400 MHz, CDCl₃) δ 7.95–7.82 (m, 4H), 7.56 (d, *J*=7.6 Hz, 1H), 7.51–7.43 (m, 3H), 7.30–7.19 (m, 2H), 7.15–7.10 (m, 1H), 5.85 (t, *J*=8.6 Hz, 1H), 3.02 (s, 1H), 2.40 (s, 3H); ¹³C

NMR (CDCl₃, 100 MHz) δ 144.2, 138.4, 133.6, 131.5, 131.5, 130.8, 130.5, 129.8, 129.8 (t, ${}^{1}J_{F-C}$ =284.2 Hz), 128.9, 126.5, 126.5, 126.2, 125.7, 125.3, 125.2, 123.3, 72.2 (dd, ${}^{2}J_{F-C}$ =28.0 Hz and 26.0 Hz), 21.5; 19 F NMR (CDCl₃, 376 MHz) δ -78.5 (d, *J*=207.9 Hz, 1F), -83.3 (d, *J*=208.3 Hz, 1F). IR (KBr) 3433, 3052, 2927, 1627, 1425, 1153, 1050, 973, 781, 740, 608 cm⁻¹; HRMS (ESI): [M+Na]⁺ calcd. for C₁₉H₁₆F₂OSNa⁺ 353.0782, found: 353.0783.

2,2-difluoro-1-(naphthalen-1-yl)-2-(o-tolylthio)ethanol (3ac)

Pale yellow oil, yield: 92%^a; ¹H NMR (400 MHz, CDCl₃) δ 7.90–7.81 (m, 4H), 7.51–7.43 (m, 5H), 7.20–7.17 (m, 2H), 5.86–5.79 (m, 1H), 2.98–2.83 (m, 2H), 1.23 (s, 3H), 1.21 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 151.2, 136.7, 133.6, 131.5, 131.4, 129.7, 129.4 (t, ¹*J*_{*F*-*C*}=283.7 Hz), 128.9, 127.4, 126.4, 126.3, 125.7, 125.2, 123.3, 122.7, 71.7 (dd, ²*J*_{*F*-*C*}=28.7 Hz and 25.6 Hz), 34.0, 23.9, 23.9; ¹⁹F NMR (CDCl₃, 376 MHz) δ -78.8 (d, *J*=209.8 Hz, 1F), -85.1 (d, *J*=210.2 Hz, 1F). IR (KBr) 3417, 3058, 2965, 2866, 1601, 1457, 1406, 1057, 788, 733, 551 cm⁻¹; HRMS (EI): [M]⁺ calcd. for C₂₁H₂₀F₂OS⁺ 358.1203, found: 358.1201.

2-((4-(tert-butyl)phenyl)thio)-2,2-difluoro-1-(naphthalen-1-yl)ethanol (3ad)

Pale yellow oil, yield: 99%^a; ¹H NMR (400 MHz, CDCl₃) δ 7.87–7.79 (m, 4H), 7.49–7.40 (m, 5H), 7.34–7.31 (m, 2H), 5.81 (dd, *J*=12.0 Hz and 6.0 Hz, 1H), 3.16 (s, 1H), 1.28 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz) δ 153.4, 136.4, 133.6, 131.6, 131.5, 129.8, 129.5 (t, ¹*J*_{*F*-*C*}=283.6 Hz), 128.9, 126.5, 126.3, 126.3, 125.7, 125.3, 123.4, 122.5 (d, ³*J*_{*F*-*C*}=2.2 Hz), 71.7 (dd, ²*J*_{*F*-*C*}=28.7 Hz and 25.7 Hz), 34.8, 31.3; ¹⁹F NMR (CDCl₃, 376 MHz) δ -78.5 (d, *J*=209.8 Hz, 1F), -84.9 (d, *J*=209.4 Hz, 1F); IR (KBr) 3423, 3052, 2959, 2901, 2866, 1707, 1595, 1463, 1361, 1057, 781, 730, 608 cm⁻¹; HRMS (ESI): [M+Na]⁺ calcd. for C₂₂H₂₂F₂OSNa⁺ 395.1252, found: 395.1254.

2,2-difluoro-2-((4-methoxyphenyl)thio)-1-(naphthalen-1-yl)ethanol(3ae)

Pale yellow oil, yield: 97%^a and 89%^b; ¹H NMR (400 MHz, CDCl₃) δ 7.93–7.81 (m, 4H), 7.51–7.43 (m, 5H), 6.85–6.80 (m, 2H), 5.82 (dd, *J*=11.4 Hz and 6.2 Hz, 1H), 3.74 (s, 3H), 3.09 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 161.2, 138.4, 133.6, 131.5, 131.5, 129.7, 129.4 (t, ¹*J*_{*F*-*C*}=283.4 Hz), 128.9, 126.5, 126.3, 125.7, 125.2, 123.3, 116.3 (d, ³*J*_{*F*-*C*}=1.6 Hz), 114.7, 71.7 (dd, ²*J*_{*F*-*C*}=28.5 Hz and 25.7 Hz), 55.4; ¹⁹F NMR (CDCl₃, 376 MHz) δ -79.5 (d, *J*=209.8 Hz, 1F), -85.4 (d, *J*=209.8 Hz, 1F); IR (KBr) 3433, 3062, 2940, 2831, 1591, 1489, 1246, 1050, 1025, 791, 733, 525 cm⁻¹; HRMS (ESI): [M+Na]⁺ calcd. for C₁₉H₁₆F₂O₂SNa⁺ 369.0731, found: 369.0733.

2,2-difluoro-2-((3-methoxyphenyl)thio)-1-(naphthalen-1-yl)ethanol (3af)

Pale yellow oil, yield: 99%^a; ¹H NMR (400 MHz, CDCl₃) δ 7.95–7.83 (m, 4H), 7.52–7.43 (m, 3H), 7.25–7.20 (m, 1H), 7.17–7.14 (m, 1H), 7.10–7.08 (m, 1H), 6.94–6.90 (m, 1H), 5.87–5.81 (m, 1H), 3.72 (s, 3H), 2.99 (d, *J*=4.4 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 159.7, 133.6, 131.5, 131.4, 129.8, 129.8, 129.5 (t, ¹*J*_{*F*-*C*}=284.0 Hz), 128.9, 128.6, 126.9 (d, ³*J*_{*F*-*C*}=1.5 Hz), 126.5, 126.3, 125.7, 125.2, 123.3, 121.1, 116.3, 71.9 (dd, ²*J*_{*F*-*C*}=28.3 Hz and 25.7 Hz), 55.4; ¹⁹F NMR (CDCl₃, 376 MHz) δ -78.5 (d, *J*=209.8 Hz, 1F), -84.1 (d, *J*=209.4 Hz, 1F); IR (KBr) 3433, 3062, 2940, 2837, 1591, 1483, 1419, 1306, 1037, 861, 784, 733, 688 cm⁻¹; HRMS (ESI): [M+Na]⁺ calcd. for C₁₉H₁₆F₂O₂SNa⁺ 369.0731, found: 369.0733.

2,2-difluoro-2-((2-methoxyphenyl)thio)-1-(naphthalen-1-yl)ethanol (3ag)

Pale yellow oil, yield: 93%^a; ¹H NMR (400 MHz, CDCl₃) δ 7.86–7.80 (m, 3H), 7.72–7.69 (m, 1H), 7.61 (d, *J*=8.0 Hz, 1H), 7.51–7.34 (m, 4H), 7.07–6,97 (m, 2H), 5.50 (d, *J*=18.8 Hz, 1H), 4.04 (s, 1H), 3.90 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 160.5, 140.1, 133.6, 132.8, 131.7, 130.6, 129.6 (dd, ¹*J*_{*F*-*C*}=290.2 Hz and 281.8 Hz), 129.4, 128.8, 126.6, 126.2, 125.4, 125.2, 123.2, 121.8, 114.3 (d, ³*J*_{*F*-*C*}=6.5 Hz), 111.7, 70.4 (dd, ²*J*_{*F*-*C*}=33.1 Hz and 23.1 Hz), 56.3; ¹⁹F NMR (CDCl₃, 376 MHz) δ -77.4 (d, *J*=217.7 Hz, 1F), -93.1 (d, *J*=217.7 Hz, 1F); IR (KBr) 3430, 3068, 2937, 1623, 1582, 1483, 1431, 1069, 970, 794, 746 cm⁻¹; HRMS (ESI): [M+Na]⁺ calcd. for C₁₉H₁₆F₂O₂SNa⁺ 369.0731, found: 369.0734.

2,2-difluoro-1-(naphthalen-1-yl)-2-(phenylthio)ethanol (3ah)

Pale yellow oil, yield: 92%^a; ¹H NMR (400 MHz, CDCl₃) δ 7.95–7.92 (m, 1H), 7.89–7.84 (m, 3H), 7.59–7.45 (m, 5H), 7.42–7.31 (m, 3H), 5.89–5.83 (m, 1H), 2.93–2.91 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 136.5, 133.6, 131.5, 131.3, 130.0, 129.8, 129.5 (t, ¹*J*_{*F*-C}=283.9 Hz), 129.1, 128.9, 126.5, 126.3, 126.0, 125.7, 125.2, 123.3, 71.9 (dd, ²*J*_{*F*-C}=28.3 Hz and 25.7 Hz); ¹⁹F NMR (CDCl₃, 376 MHz) δ -78.7 (dd, *J*=209.4 Hz and 3.8Hz, 1F), -84.1 (d, *J*=209.2 Hz and 7.3 Hz, 1F); IR (KBr) 3420, 3058, 2924, 1598, 1441, 1162, 1053, 973, 861, 794, 746, 691 cm⁻¹; HRMS (ESI): [M+Na]⁺ calcd. for C₁₈H₁₄F₂OSNa⁺ 339.0626, found: 339.0624.

2,2-difluoro-1-(naphthalen-1-yl)-2-(naphthalen-1-ylthio)ethanol (3ai)

Pale yellow oil, yield: 76%^a; ¹H NMR (400 MHz, CDCl₃) δ 8.45 (d, *J*=8.0 Hz, 1H), 7.94–7.80 (m, 7H), 7.53–7.38 (m, 6H), 5.86 (dd, *J*=11.2 Hz and 6.8Hz, 1H), 3.00 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 137.6, 136.0, 134.2, 133.6, 131.5, 131.5, 131.4, 129.8, 129.7 (t, ¹*J*_{*F*-*C*}=285.0 Hz), 128.9, 128.4, 127.3, 126.5, 126.5, 126.3, 126.3, 125.7, 125.5, 125.2, 123.3, 123.3, 72.1 (dd, ²*J*_{*F*-*C*}=28.1 Hz and 26.1 Hz); ¹⁹F NMR (CDCl₃, 376 MHz) δ -78.0 (d, *J*=208.3 Hz, 1F), -83.4 (d, *J*=208.7 Hz, 1F); IR (KBr) 3401, 3049, 2924, 1620, 1502, 1438, 1146, 1053, 960, 852, 736 cm⁻¹; HRMS (ESI): [M+Na]⁺ calcd. for C₂₂H₁₆F₂OSNa⁺ 389.0782, found: 389.0780.

2,2-difluoro-2-((4-fluorophenyl)thio)-1-(naphthalen-1-yl)ethanol (3aj)

Pale yellow oil, yield: 68%^a and 69%^b; ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J*=8.0 Hz, 1H), 7.88–7.85 (m, 3H), 7.54–7.46 (m, 5H), 7.04–6.98 (m, 2H), 5.87 (t, *J*=8.2 Hz, 1H), 2.96 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 164.0 (d, ¹*J*_{*F*-*C*}=249.3 Hz), 138.8 (d, ³*J*_{*F*-*C*}=8.6 Hz), 133.6, 131.4, 131.3, 129.9, 129.3 (t, ¹*J*_{*F*-*C*}=283.7 Hz), 129.0, 126.6, 126.2, 125.8, 125.2, 123.2, 121.0, 116.3 (d, ²*J*_{*F*-*C*}=21.9 Hz), 72.0 (dd, ²*J*_{*F*-*C*}=27.7 Hz and 26.1 Hz); ¹⁹F NMR (CDCl₃, 376 MHz) δ -79.4 (d, *J*=207.9 Hz, 1F), -83.6 (d, *J*=208.3 Hz, 1F), -110.4 (s, 1F); IR (KBr) 3423, 3071, 2924, 1588, 1508, 1463, 1393, 1156, 1057, 832, 733 cm⁻¹; HRMS (ESI):[M+Na]⁺ calcd. for C₁₈H₁₃F₃OSNa⁺ 357.0531, found: 357.0534.

2-((4-bromophenyl)thio)-2,2-difluoro-1-(naphthalen-1-yl)ethanol (3ak)

Pale yellow oil, yield: 79%^a; ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J*=8.4 Hz, 1H), 7.82–7.81 (m, 3H), 7.46–7.28 (m, 7H), 5.81 (t, *J*=7.6 Hz, 1H), 3.29 (d, *J*=2.4 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 137.9, 133.7, 132.3, 131.4, 131.4, 130.0, 129.3 (t, ¹*J*_{*F*-*C*}=284.3 Hz), 129.0, 126.6, 126.3, 125.9, 125.2, 125.1, 124.9, 123.3, 72.2 (t, ²*J*_{*F*-*C*}=26.8 Hz); ¹⁹F NMR (CDCl₃, 376 MHz) δ -78.7 (d, *J*=206.8 Hz, 1F), -82.4 (d, *J*=206.8 Hz, 1F); IR (KBr) 3423, 3058, 2930, 1601, 1508, 1467, 1390, 1063, 1009, 788, 730, 611, 563 cm⁻¹; HRMS (EI and ESI): not detected.

2,2-difluoro-1-(naphthalen-1-yl)-2-((4-(trifluoromethyl)phenyl)thio)ethanol (3al)

Pale yellow oil, yield: 54%^a; ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J*=8.0 Hz, 1H), 7.88–7.84 (m, 3H), 7.62–7.59 (m, 2H), 7.54–7.46 (m, 5H), 5.93–5.87 (m, 1H), 3.01 (d, *J*=3.2 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 136.1, 133.7, 131.7 (q, ²*J*_{*F*-*C*}=32.6 Hz), 131.4, 131.2, 130.9, 130.0, 129.5 (t, ¹*J*_{*F*-*C*}=285.0 Hz), 129.0, 126.6, 126.3, 125.9, 125.8 (q, ³*J*_{*F*-*C*}=3.7 Hz), 125.2, 123.8 (q, ¹*J*_{*F*-*C*}=272.7 Hz), 123.2, 72.4 (t, ²*J*_{*F*-*C*}=26.7 Hz); ¹⁹F NMR (CDCl₃, 376 MHz) δ -62.9 (s, 3F), -78.4 (d, *J*=206.0 Hz, 1F), -81.4 (d, *J*=206.0 Hz, 1F); IR (KBr) 3417, 3058, 2962, 2930, 1607, 1515, 1399, 1060, 1012, 781, 730, 611 cm⁻¹; HRMS (EI): [M]⁺ calcd. for C₁₉H₁₃F₅OS⁺ 384.0607, found: 384.0606.

2,2-difluoro-1-(naphthalen-1-yl)-2-(thiophen-2-ylthio)ethanol (3am)

Pale yellow oil, yield: 47%^a; ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J*=8.4 Hz, 1H), 7.88–7.84 (m, 3H), 7.54–7.45 (m, 4H), 7.29 (dd, *J*=3.6 Hz and 1.2 Hz, 1H), 7.04 (dd, *J*=5.6 Hz and 3.6 Hz, 1H), 5.90–5.84 (m, 1H), 2.94 (d, *J*=4.0 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 138.7, 133.6, 133.1, 131.4, 131.1, 129.9, 128.9, 128.4 (t, ¹*J_F*. *c*=285.5 Hz), 127.9, 126.6, 126.2, 125.8, 125.2, 123.2, 122.8, 71.4 (dd, ²*J_F*.*c*=28.6 Hz and 25.2 Hz); ¹⁹F NMR (CDCl₃, 376 MHz) δ -79.8 (d, *J*=207.2 Hz, 1F), -86.6 (d, *J*=207.6 Hz, 1F); IR (KBr) 3423, 3100, 3058, 2927, 1598, 1518, 1402, 1169, 1063, 967, 791, 714 cm⁻¹; HRMS (ESI): [M+Na]⁺ calcd. for C₁₆H₁₂F₂OS₂Na⁺ 345.0190, found: 345.0191.

2,2-difluoro-2-((4-methylbenzyl)thio)-1-(naphthalen-1-yl)ethanol (3an)

Pale yellow oil, yield: 54%^a; ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J*=8.4 Hz, 1H), 7.87–7.82 (m, 3H), 7.54–7.45 (m, 3H), 7.15 (d, *J*=8.0 Hz, 2H), 7.07 (d, *J*=8.0 Hz, 2H), 5.85–5.80 (m, 1H), 3.97 (s, 2H), 2.83 (s, 1H), 2.29 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 137.3, 133.6, 133.1, 131.4, 131.4, 130.7 (t, ¹*J*_{*F*-*C*}=282.6 Hz), 129.8, 129.4, 129.0, 128.9, 126.5, 126.2, 125.7, 125.2, 123.4, 72.5 (t, ²*J*_{*F*-*C*}=26.9 Hz), 32.2 (t, ³*J*_{*F*-*C*}=4.3 Hz), 21.1; ¹⁹F NMR (CDCl₃, 376 MHz) δ -80.9 (d, *J*=209.8 Hz, 1F), -82.7 (d, *J*=209.8 Hz, 1F); IR (KBr) 3670, 3408, 3046, 2920, 2854, 1630, 1508, 1438, 1242, 1149, 1085, 1047, 967, 874, 781, 736, 643 cm⁻¹; HRMS (ESI): [M+Na]⁺ calcd. for C₂₀H₁₈F₂OSNa⁺ 367.0939, found: 367.0935.

2,2-difluoro-2-((4-methoxybenzyl)thio)-1-(naphthalen-1-yl)ethanol (3ao)

Pale yellow oil, yield: 42%^a; ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J*=8.4 Hz, 1H), 7.87–7.81 (m, 3H), 7.54–7.45 (m, 3H), 7.17 (d, *J*=8.8 Hz, 2H), 6.78 (d, *J*=8.4 Hz, 2H), 5.86–5.80 (m, 1H), 3.96 (s, 2H), 3.73 (s, 3H), 2.92 (d, *J*=3.6 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 159.0, 133.6, 131.5, 131.4, 130.7 (t, ¹*J*_{*F*-*C*}=282.6 Hz), 130.3, 129.8, 128.9, 128.1, 126.5, 126.2, 125.7, 125.2, 123.4, 114.1, 72.5 (t, ²*J*_{*F*-*C*}=27.0 Hz), 55.3, 31.9 (t, ³*J*_{*F*-*C*}=4.6 Hz); ¹⁹F NMR (CDCl₃, 376 MHz) δ -80.9 (d, *J*=209.8 Hz, 1F), -82.6 (d, *J*=210.2 Hz, 1F); IR (KBr) 3443, 3052, 2930, 2834, 1611, 1515, 1463, 1297, 1245, 1175, 1028, 970, 836, 788, 733 cm⁻¹; HRMS (ESI): [M+Na]⁺ calcd. for C₂₀H₁₈F₂O₂SNa⁺ 383.0888, found: 383.0887.

2-((4-chlorobenzyl)thio)-2,2-difluoro-1-(naphthalen-1-yl)ethanol (3ap)

Pale yellow oil, yield: 48%^a; ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J*=8.4 Hz, 1H), 7.87–7.80 (m, 3H), 7.54–7.46 (m, 3H), 7.23–7.14 (m, 4H), 5.87–5.80 (m, 1H), 3.92 (s, 2H), 2.84 (d, *J*=4.4 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 135.0, 133.6, 133.4, 131.4, 131.4, 130.6 (t, ¹*J*_{*F*-*C*}=282.9 Hz), 130.4, 129.9, 128.9, 128.8, 126.6, 126.2, 125.8, 125.2, 123.3, 72.5 (t, ²*J*_{*F*-*C*}=26.9 Hz), 31.7 (t, ³*J*_{*F*-*C*}=4.4 Hz); ¹⁹F NMR (CDCl₃, 376 MHz) δ -80.6 (d, *J*=208.7 Hz, 1F), -82.2 (d, *J*=208.3 Hz, 1F); IR (KBr) 3443, 3049, 2924, 1640, 1598, 1489, 1399, 1246, 1143, 1092, 1044, 1015, 970, 788, 736, 506 cm⁻¹; HRMS (EI and ESI): not detected.

2,2-difluoro-1-(naphthalen-1-yl)-2-(octylthio)ethanol (3aq)

Pale yellow oil, yield: 73%^a and 27%^b; ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J*=8.4 Hz, 1H), 7.87–7.82 (m, 3H), 7.54–7.45 (m, 3H), 5.83 (t, *J*=9.0 Hz, 1H), 2.98 (s, 1H), 2.75 (t, *J*=7.4 Hz, 2H), 1.62–1.53 (m, 2H), 1.32–1.22 (m, 10H), 0.88–0.84 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 133.6, 131.7, 131.5, 131.1 (t, ¹*J*_{*F*-*C*}=283.5 Hz), 129.7, 128.9, 126.4, 126.2, 125.7, 125.2, 123.4, 72.5 (t, ²*J*_{*F*-*C*}=27.1 Hz), 31.8, 29.8, 29.1, 29.0, 28.8, 28.0 (t, ³*J*_{*F*-*C*}=3.5 Hz), 22.7, 14.1; ¹⁹F NMR (CDCl₃, 376 MHz) δ -80.8 (d, *J*=209.4 Hz, 1F), -83.1 (d, *J*=209.4 Hz, 1F); IR (KBr) 3427, 3058, 2953, 2924, 2850, 1659, 1598, 1508, 1467, 1041, 791, 733 cm⁻¹; HRMS (ESI): [M+Na]⁺ calcd. for C₂₀H₂₆F₂OSNa⁺ 375.1565, found: 375.1566.

2-(cyclopentylthio)-2,2-difluoro-1-(naphthalen-1-yl)ethanol (3ar)

Pale yellow oil, yield: 52%^a; ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J*=8.4 Hz, 1H), 7.86–7.81 (m, 3H), 7.54–7.44 (m, 3H), 5.85–5.79 (m, 1H), 3.52–3.44 (m, 1H), 2.95 (s, 1H), 2.09–2.00 (m, 2H), 1.70–1.47 (m, 6H); ¹³C NMR (CDCl₃, 100 MHz) δ 133.6, 131.7, 131.5, 131.1 (t, ¹*J*_{*F*-*C*}=281.6 Hz), 129.7, 128.9, 126.4, 126.2, 125.7, 125.2, 123.5, 72.5 (t, ²*J*_{*F*-*C*}=27.1 Hz), 41.3, 34.6, 34.5, 24.6, 24.6; ¹⁹F NMR (CDCl₃, 376 MHz) δ -79.4 (d, *J*=209.8 Hz, 1F), -81.9 (d, *J*=210.2 Hz, 1F); IR (KBr) 3427, 3052, 2959, 2866, 1630, 1595, 1511, 1444, 1399, 1354, 1316, 1246, 1153, 1044, 861, 781, 743, 605cm⁻¹; HRMS (ESI): [M+Na]⁺ calcd. for C₁₇H₁₈F₂OSNa⁺ 331.0939, found: 331.0936.

2,2-difluoro-1-(naphthalen-2-yl)-2-(p-tolylthio)ethanol (3ba)

Pale yellow oil, yield: 94%^a; ¹H NMR (400 MHz, CDCl₃) δ 7.84 (s, 1H), 7.85–7.82 (m, 3H), 7.57 (d, *J*=8.4 Hz, 1H), 7.50–7.43 (m, 4H), 7.13 (d, *J*=8.0 Hz, 2H), 5.13 (dd, *J*=10.6 Hz and 8.2 Hz, 1H), 2.98 (s, 1H), 2.33 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 140.4, 136.6, 133.6, 132.9, 132.7, 130.0, 129.0 (t, ¹*J*_{*F*-*C*}=282.9 Hz), 128.3, 128.1, 127.8, 127.6, 126.6, 126.3, 125.0, 122.2, 76.2 (t, ²*J*_{*F*-*C*}=26.6 Hz), 21.3; ¹⁹F NMR (CDCl₃, 376 MHz) δ -81.2 (d, *J*=209.8 Hz, 1F), -84.8 (d, *J*=209.8 Hz, 1F); IR (KBr) 3366, 3055, 2921, 1598, 1492, 1367, 1156, 1060, 980, 800, 746 cm⁻¹; HRMS (ESI): [M+Na]⁺ calcd. for C₁9H₁₆F₂OSNa⁺ 353.0782, found: 353.0781.

1-(4-(tert-butyl)phenyl)-2,2-difluoro-2-(p-tolylthio)ethanol (3ca)

Pale yellow oil, yield: 99%^a; ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J*=8.0 Hz, 2H), 7.39 (s, 4H), 7.14 (d, *J*=8.0 Hz, 2H), 4.93 (dd, *J*=11.6 Hz and 8.0 Hz, 1H), 2.80 (s, 1H), 2.34 (s, 3H), 1.32 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz) δ 152.1, 140.2, 136.5, 132.4, 129.9, 128.9 (t, ¹*J*_{*F*-*C*}=284.8 Hz), 127.6, 125.3, 122.4, 76.0 (t, ²*J*_{*F*-*C*}=26.7 Hz), 34.7, 31.3, 21.3; ¹⁹F NMR (CDCl₃, 376 MHz) δ -81.5 (d, *J*=209.0 Hz, 1F), -85.2 (d, *J*=208.7 Hz, 1F); IR (KBr) 3427, 3026, 2962, 2866, 1620, 1492, 1402, 1162, 1057, 980, 807, 788, 506 cm⁻¹; HRMS (ESI): [M+Na]⁺ calcd. for C₁₉H₂₂F₂OSNa⁺ 359.1252, found: 359.1253.

2,2-difluoro-1-(4-methoxyphenyl)-2-(p-tolylthio)ethanol (3da)

Pale yellow solid, mp 61–63 °C, yield: 98%^a and 88%^b; ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J*=8.0 Hz, 2H), 7.39 (d, *J*=8.8 Hz, 2H), 7.15 (d, *J*=7.6 Hz, 2H), 6.91–6.88 (m, 2H), 4.91 (t, *J*=9.6 Hz, 1H), 3.79 (s, 3H), 2.85 (s, 1H), 2.34 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 160.2, 140.3, 136.5, 129.9, 129.1, 129.0 (t, ¹*J*_{*F*-*C*}=284.4 Hz), 127.4, 122.3, 113.8, 75.7 (t, ²*J*_{*F*-*C*}=26.6 Hz), 55.3, 21.3; ¹⁹F NMR (CDCl₃, 376 MHz) δ -82.1 (d, *J*=208.3 Hz, 1F), -85.2 (d, *J*=208.3 Hz, 1F); IR (KBr) 3452, 3017, 2988, 2892, 1611, 1515, 1425, 1242, 1053, 1025, 791, 749 cm⁻¹; HRMS (ESI): [M+Na]⁺ calcd. for C₁₆H₁₆F₂O₂SNa⁺ 333.0731, found: 333.0734.

2,2-difluoro-1-(3-methoxyphenyl)-2-(p-tolylthio)ethanol (3ea)

Pale yellow oil, yield: 92%^a; ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J*=8.0 Hz, 2H), 7.30–7.25 (m, 1H), 7.15 (d, *J*=8.0 Hz, 2H), 7.05–7.02 (m, 2H), 6.92–6.88 (m, 1H), 4.94 (dd, *J*=11.2 Hz and 8.0 Hz, 1H), 3.79 (s, 3H), 2.96 (s, 1H), 2.34 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 159.5, 140.3, 136.8, 136.5, 129.9, 129.3, 128.9 (t, ¹*J*_{*F-C*}=284.9 Hz), 122.2, 120.3, 114.8, 113.3, 76.0 (t, ²*J*_{*F-C*}=26.6 Hz), 55.3, 21.3; ¹⁹F NMR (CDCl₃, 376 MHz) δ -81.5 (d, *J*=209.1 Hz, 1F), -85.0 (d, *J*=208.7 Hz, 1F); IR (KBr) 3436, 2921, 2834, 1604, 1489, 1454, 1255, 1044, 993, 807, 698, 509 cm⁻¹; HRMS (ESI): [M+Na]⁺ calcd. for C₁₆H₁₆F₂O₂SNa⁺ 333.0731, found: 333.0733.

2,2-difluoro-1-(2-methoxyphenyl)-2-(p-tolylthio)ethanol (3fa)

Pale yellow oil, yield: 99%^a; ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J*=8.0 Hz, 2H), 7.40 (d, *J*=7.6 Hz, 1H), 7.36–7.31 (m, 1H), 7.16 (d, *J*=8.0 Hz, 2H), 7.02–6.91 (m, 2H), 5.30–5.23 (m, 1H), 3.86 (s, 3H), 3.78 (d, *J*=7.6 Hz, 1H), 2.35 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 157.7, 140.0, 136.5, 130.1, 129.8, 129.8, 129.3 (t, ¹*J*_{*F*-*C*}=285.8 Hz), 123.4, 122.7, 120.9, 111.3, 73.5 (dd, ²*J*_{*F*-*C*}=27.8 Hz and 25.8 Hz), 55.7, 21.3; ¹⁹F NMR (CDCl₃, 376 MHz) δ -81.4 (d, *J*=205.3 Hz, 1F), -85.1 (d, *J*=204.9 Hz, 1F); IR (KBr) 3574, 3500, 3026, 2962, 2933, 2834, 1598, 1489, 1457, 1431, 1053, 976, 752 cm⁻¹; HRMS (ESI): [M+Na]⁺ calcd. for C₁₆H₁₆F₂O₂SNa⁺ 333.0731, found: 333.0735.

2,2-difluoro-2-(p-tolylthio)-1-(4-(trifluoromethoxy)phenyl)ethanol (3ga)

White solid, mp 57–59 °C, yield: 80%^a; ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J*=8.4 Hz, 2H), 7.44 (d, *J*=8.0 Hz, 2H), 7.21 (d, *J*=8.0 Hz, 2H), 7.16 (d, *J*=8.0 Hz, 2H), 4.97 (dd, *J*=11.6 Hz and *J*=7.2 Hz, 1H), 2.97 (s, 1H), 2.35 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 149.7 (d, ³*J*_{*F*-*C*}=6.0 Hz), 140.6, 136.5, 133.8, 130.0, 129.4, 128.6 (t, ¹*J*_{*F*-*C*</sup>=284.7 Hz), 121.8, 120.6, 120.4 (q, ¹*J*_{*F*-*C*}=257.4 Hz), 75.2 (dd, ²*J*_{*F*-*C*}=28.1 Hz and 26.3 Hz), 21.3; ¹⁹F NMR (CDCl₃, 376 MHz) δ -57.8 (s, 1F), -81.4 (d, *J*=210.9 Hz, 1F), -86.0 (d, *J*=211.7 Hz, 1F); IR (KBr) 3436, 3052, 3026, 2924, 2866, 1909, 1595, 1508, 1409, 1255, 1047, 791, 717 cm⁻¹; HRMS (EI): [M]⁺ calcd. for C₁₆H₁₃F₅O₂S⁺ 364.0556, found: 364.0555.}

1-(4-chlorophenyl)-2,2-difluoro-2-(p-tolylthio)ethanol (3ha)

Pale yellow solid, mp 85–87 °C, yield: 99%^a; ¹H NMR (400 MHz, CDCl₃) δ 7.45–7.32 (m, 6H), 7.16 (d, *J*=8.0 Hz, 2H), 4.93 (dd, *J*=11.2 Hz and 7.6 Hz, 1H), 2.94 (s, 1H), 2.35 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 140.5, 136.5, 135.0, 133.7, 130.0, 129.2, 128.7 (t, ¹*J*_{*F*-*C*}=284.6 Hz), 128.5, 121.9, 75.3 (dd, ²*J*_{*F*-*C*}=27.6 Hz and 26.4 Hz), 21.3; ¹⁹F NMR (CDCl₃, 376 MHz) δ -81.5 (d, *J*=210.9 Hz, 1F), -85.8 (d, *J*=210.6 Hz, 1F); IR (KBr) 3593, 3420, 3055, 2901, 2856, 1595, 1486, 1403, 1040, 989, 768, 701, 541 cm⁻¹; HRMS (EI and ESI): not detected.

2,2-difluoro-1-(4-fluorophenyl)-2-(p-tolylthio)ethanol (3ia)

Pale yellow solid, mp 58–60 °C, yield: 99%^a; ¹H NMR (400 MHz, CDCl₃) δ 7.47–7.43 (m, 4H), 7.17 (d, *J*=8.0 Hz, 2H), 7.10–7.04 (m, 2H), 4.95 (t, *J*=9.4 Hz, 1H), 2.84 (s, 1H), 2.36 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 163.2 (d, ¹*J*_{*F*-*C*}=246.2 Hz), 140.5, 136.5, 131.0, 130.0, 129.7 (d, ³*J*_{*F*-*C*}=8.5 Hz), 128.7 (t, ¹*J*_{*F*-*C*}=284.2 Hz), 121.9, 115.3 (d, ²*J*_{*F*-*C*}=21.6 Hz), 75.3 (dd, ²*J*_{*F*-*C*}=27.6 Hz and 26.3 Hz), 21.3; ¹⁹F NMR (CDCl₃, 376 MHz) δ -81.8 (d, *J*=210.6 Hz, 1F), -85.9 (d, *J*=210.2 Hz, 1F), -112.6 (s, 1F); IR (KBr) 3590, 3436, 3074, 2921, 1607, 1511, 1419, 1076, 1044, 980, 810, 756, 701 cm⁻¹; HRMS (EI): [M]⁺ calcd. for C₁₅H₁₃F₃OS⁺ 298.0639, found: 298.0637.

2,2-difluoro-2-(p-tolylthio)-1-(4-(trifluoromethyl)phenyl)ethanol (3ja)

Pale yellow solid, mp 66–68 °C, yield: 81%^a and 30%^b; ¹H NMR (400 MHz, CDCl₃) δ 7.65–7.58 (m, 4H), 7.44 (d, *J*=8.0 Hz, 2H), 7.17–7.04 (d, *J*=8.0 Hz, 2H), 5.02 (dd, *J*=11.6 Hz and 7.2 Hz, 1H), 3.00 (s, 1H), 2.36 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 140.6, 139.0, 136.5, 131.1 (q, ²*J*_{*F*-*C*}=32.5 Hz), 130.1, 128.6 (t, ¹*J*_{*F*-*C*}=284.3 Hz), 128.3, 125.2 (q, ³*J*_{*F*-*C*}=3.73 Hz), 124.0 (q, ¹*J*_{*F*-*C*}=272.1 Hz), 121.7, 75.3 (t, ²*J*_{*F*-*C*}=27.2 Hz), 21.3; ¹⁹F NMR (CDCl₃, 376 MHz) δ -62.7 (s, 3F), -81.0 (d, *J*=212.4 Hz, 1F), -86.0 (d, *J*=212.4 Hz, 1F); IR (KBr) 3369, 2921, 2853, 1620, 1489, 1422, 1329, 1066, 1015, 961, 791, 720, 502 cm⁻¹; HRMS (EI): [M]⁺ calcd. for C₁₆H₁₃F₅OS⁺ 348.0607, found: 348.0604.

methyl 4-(2,2-difluoro-1-hydroxy-2-(p-tolylthio)ethyl)benzoate (3ka)

Pale yellow solid, mp 75–77 °C, yield: 66%^a; ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J*=8.4 Hz, 2H), 7.56 (d, *J*=8.0 Hz, 2H), 7.44 (d, *J*=8.4 Hz, 2H), 7.17 (d, *J*=8.0 Hz, 2H), 5.06–4.99 (m, 1H), 3.92 (s, 3H), 2.96 (d, *J*=3.6 Hz, 1H), 2.36 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 166.8, 140.5, 140.1, 136.5, 130.7, 130.0, 129.5, 128.7 (t, ¹*J*_{*F*-</sup>*c*=284.9 Hz), 127.9, 121.8, 75.6 (dd, ²*J*_{*F*-*c*}=27.7 Hz and *J*=26.4 Hz), 52.2, 21.3; ¹⁹F NMR (CDCl₃, 376 MHz) δ - 81.0 (d, *J*=211.7 Hz, 1F), -85.7 (d, *J*=211.3 Hz, 1F); IR (KBr) 3407, 3004, 2953, 2917, 2847, 1787, 1694, 1611, 1585, 1489, 1415, 1303, 1095, 788, 745, 570 cm⁻¹; HRMS (ESI): [M+H]⁺ calcd. for C₁₇H₁₇F₂O₃S⁺ 339.0861, found: 339.0864.}

1-(benzo[b]thiophen-2-yl)-2,2-difluoro-2-(p-tolylthio)ethanol (3la)

Pale yellow solid, mp 86–88 °C, yield: 68%^a; ¹H NMR (400 MHz, CDCl₃) δ 7.83–7.78 (m, 1H), 7.76–7.70 (m, 1H), 7.47 (d, *J*=8.0 Hz, 2H), 7.37–7.29 (m, 3H), 7.14 (d, *J*=8.0 Hz, 2H), 5.27 (dd, *J*=9.4 Hz and 8.6 Hz, 1H), 3.13 (s, 1H), 2.33 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 140.6, 140.1, 139.0, 138.5, 136.6, 130.0, 128.4 (t, ¹*J*_{*F*}-*c*=285.0 Hz), 124.9, 124.5, 124.3, 124.0, 122.4, 121.9, 73.2 (t, ²*J*_{*F*-*C*}=28.5 Hz), 21.3; ¹⁹F NMR (CDCl₃, 376 MHz) δ -82.0 (d, *J*=210.6 Hz, 1F), -84.8 (d, *J*=209.8 Hz, 1F); IR (KBr) 3542, 3423, 3058, 2914, 2850, 1630, 1598, 1492, 1460, 1066, 791, 756 cm⁻¹; HRMS (EI): [M]⁺ calcd. for C₁₇H₁₄F₂OS₂⁺ 336.0454, found: 336.0452.

2,2-difluoro-1,1-diphenyl-2-(p-tolylthio)ethanol (3ma)

Colorless oil, yield: 99%^a; ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J*=6.8 Hz, 4H), 7.43 (d, *J*=8.0 Hz, 2H), 7.35–7.26 (m, 6H), 7.13 (d, *J*=8.0 Hz, 2H), 3.15 (s, 1H), 2.32 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 140.4, 140.3, 136.8, 131.2 (t, ¹*J*_{*F*-*C*}=289.4 Hz), 129.9, 128.3, 128.0, 127.9, 122.7, 81.6 (t, ²*J*_{*F*-*C*}=23.8 Hz), 21.4; ¹⁹F NMR (CDCl₃, 376 MHz) δ -77.7; IR (KBr) 3526, 3420, 3068, 3033, 2914, 2847, 1640, 1601, 1492, 1444, 1348, 1037, 745 cm⁻¹; HRMS (ESI): [M+Na]⁺ calcd. for C₂₁H₁₈F₂OSNa⁺ 379.0939, found: 379.0940.

1,1-difluoro-3-phenyl-1-(p-tolylthio)propan-2-ol (3na)

Pale yellow oil, yield: 28%; 7.53 (d, *J*=8.0 Hz, 2H), 7.35–7.30 (m, 2H), 7.27–7.22 (m, 3H), 7.20 (d, *J*=8.0 Hz, 2H), 4.13–4.03 (m, 1H), 3.17–3.11 (m, 1H), 2.88–2.82 (m, 1H), 2.37 (s, 3H), 2.21 (d, *J*=4.4 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 140.4, 136.9, 136.6, 130.0, 129.5, 129.5 (t, ¹*J*_{*F*-*C*}=281.8 Hz), 128.7, 126.9, 122.1 (t, ³*J*_{*F*-*C*}=2.2 Hz), 75.0 (²*J*_{*F*-*C*}, *J*=26.6 Hz), 36.9 (t, ³*J*_{*F*-*C*}=1.8 Hz), 21.3; ¹⁹F NMR (CDCl₃, 376 MHz) δ -82.7 (d, *J*=210.9 Hz, 1F); IR (KBr) 3516, 3446, 3062, 3030, 2921, 2853, 1636, 1489, 1454, 1383, 1281, 1162, 1101, 1041, 941, 807, 736, 701 cm⁻¹; HRMS (EI): [M+Na]⁺ calcd. for C₁₆H₁₆F₂OSNa⁺ 317.0782, found: 317.0782.

(1,1-difluoro-2-(naphthalen-1-yl)ethyl)(p-tolyl)sulfane (4aa)

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J*=8.4 Hz, 1H), 7.86–7.80 (m, 2H), 7.54–7.41 (m, 6H), 7.15 (d, *J*=8.0 Hz, 2H), 3.90 (t, *J*=14.6 Hz, 2H), 2.34 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 140.2, 136.3, 133.9, 132.7, 129.9, 129.8, 129.0 (t, ¹*J*_{*F*-C}=280.5 Hz), 128.7, 128.7, 128.5 (t, ³*J*_{*F*-C}=2.5 Hz), 126.3, 125.7, 125.2, 124.3, 123.4, 41.6 (t, ²*J*_{*F*-C}=24.6 Hz), 21.3; IR (KBr) 3426, 3045, 2917, 1911, 1645, 1591, 1495, 1444, 1396, 1328, 1210, 1143, 1056, 976, 883, 851, 809, 777, 701, 499 cm⁻¹; ¹⁹F NMR (CDCl₃, 376 MHz) δ -70.7; HRMS (ESI): [M+Na]⁺ calcd. for C₁₉H₁₆F₂SNa⁺ 337.0833, found: 337.0837.

References

[1] H.Sakaguchi, Y. Uetake, M. Ohashi, T. Niwa, S. Ogoshi and T. Hosoya, J. Am. Chem. Soc., 2017, 139, 12855.

[2] D. L. Orsi, B. J. Easley, A. M. Lick and R. A. Altman, Org. Lett., 2017, 19, 1570.

¹H, ¹³C and ¹⁹F NMR spectra for all the compounds NMR spectra of **3aa**

NMR spectra of **3ab**

NMR spectra of 3ad

NMR spectra of **3af**

NMR spectra of **3ah**

25

NMR spectra of 3aj

NMR spectra of 3al

NMR spectra of 3an

NMR spectra of 3ap

NMR spectra of 3ar

NMR spectra of 3ca

NMR spectra of **3ea**

49

NMR spectra of 3ia

NMR spectra of 3ka

55

NMR spectra of **3ma**

NMR spectra of 4aa

