Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Electronic Supplementary Information

Aryl carbazole-based macrocycles: synthesis, their remarkably stable radical cations and host-guest complexation with fullerenes

Lijun Mao, Manfei Zhou, Yan-Fei Niu, Xiao-Li Zhao and Xueliang Shi*

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, 200062 Shanghai, People's Republic of China

E-mail: xlshi@chem.ecnu.edu.cn

Table of Contents

1. General Methods	S3
2. Synthetic Protocols	S4
3. Cyclic voltammetry	S7
4. Stability of diBrCz-Ar ⁺⁺ and M ₄ ⁺⁺	S8
5 Theoretical calculation	S9
5.1 Molecular modeling of M _n	S9
5.2 Molecular modeling of diBrCz-C4 and diBrCz-C4++	S11
5.3 Molecular modeling of M4 ⁺⁺	S11
6 Host-guest interaction of M _n and fullerene	S12
6.1 Fluorescence titration	S12
6.2 Job's plot of M₅⊃fullerene	S14
6.3 Charge transfer band	S15
6.4 MS of complex	S15
6.5 Molecular modeling of M ₅ and fullerene	S16
7 X-ray crystal data	S18
7.1 X-ray crystal data of diBrCz-Ar	S18
7.2 X-ray crystal data of (diBrCz-Ar) ₂ •DDQ	S19
7.3 X-ray crystal data of M ₄	S20
7.4 X-ray crystal data of M ₅	S21
8 Characterization of compound	S24
9 Reference	S37

1. General Methods

All chemicals were obtained from commercial suppliers and were used as received unless other-wise noted. All reactions were conducted with oven-dried glassware under atmosphere or nitrogen. Solvents were dried and distilled following usual protocols. Column chromatography was carried out using silica gel (200-300 mesh). Solvents for extraction and chromatography were reagent grade. CDCl₃ and CD₂Cl₂ were from Cambridge Isotope Laboratories (CIL). Analytical NMR spectra were recorded on Bruker AVANCE AV II-400 MHz or AVANCE AV II-500 MHz, at a constant temperature of 298 K, if not specifically indicated. Chemical shifts are reported in δ values in ppm using tetramethylsilane (TMS) or residual solvent as internal standard and coupling constants (J) are denoted in Hz. Multiplicities are denoted as follows: s = singlet, d = doublet, t = triplet, dd = doublet and m =multiplet. MALDI-TOF MS spectra were recorded on a Bruker Autoflex III MS and AXIMA Performance spectrometer, matrix is α -cyano-4-hydroxycinnamic acid (CCA), 2,6-dihydroxyacetophenone (DHAP) and 2,5-dihydroxybenzoic acid (DHB). ESI mass spectra were recorded on a Bruker Daltonics MicroTOF-Q II. ESI-MS were obtained on a Thermo-ITQ. UV-vis spectra were measured by SHIMADZU UV-2700. EPR spectra were obtained using Bruker EMX10/12 X-band variable-temperature apparatus. Cyclic voltammetry (CV) measurements were performed in dry CH₂Cl₂ on a CHI 620C electrochemical analyzer with a three-electrode cell, using 0.1 M n-Bu₄NPF₆ as supporting electrolyte, AgCl/Ag as reference electrode, gold disk as working electrode, Pt wire as counter electrode, with scan rate of 20 mV/s for CV. Steady-state fluorescence spectra were recorded in a conventional quartz cell (light path 10 mm) on a Cary Eclipse fluorescence spectrophotometer.

2. Synthetic Protocols

Scheme S1. Synthetic route of macrocycle M_n (n = 4 - 7).

Synthesis of compound Cz-Ar

Under the protection of argon, carbazole (1.48 g, 8.82 mmol), compound 5-bromo-1,3-di-tert-butyl-2-methoxybenzene (2.40 g, 8.02 mmol), Pd(dba)₂ (922 mg, 1.60 mmol), P(*t*-Bu)₃·HBF₄ (931 mg, 3.21 mmol), and sodium tert-butoxide (1.54 g, 16.0 mmol) were added into a dry Schlenk tube. Then 30 mL of dry toluene was added to disperse the powder. After that, the mixture was stirred at reflux for 24 h. After cooling to room temperature, undissolved solid was filtered. The filtrate was concentrated under reduced pressure to obtain the crude product, which was purified by column chromatography using petroleum ether:dichloromethane = 20:1 as the eluent to give pure compound **Cz-Ar** as a white solid (2.73 g, 80%). ¹H NMR (400 MHz, CD₃COCD₃, 298 K) δ (ppm): 8.17 (d, *J* = 7.8 Hz, 2H), 7.49 (s, 2H), 7.43 - 7.37 (m, 4H), 7.24 (m, 2H), 3.82 (s, 3H), 1.50 (s, 18H). ¹³C NMR (100 MHz, CD₃COCD₃, 298 K) δ (ppm): 159.3, 146.1, 141.7, 132.9, 126.8, 125.8, 124.0, 121.0, 120.5, 110.5, 65.0, 36.7, 32.3. HR-ESI-TOF MS: m/z = 386.2467 (calculated for C₂₇H₃₂NO: 385.2484 [M+H]⁺).

Synthesis of compound diBrCz-Ar

Under the protection of argon, compound **Cz-Ar** (2.00 g, 5.19 mmol) was added into a dry Schlenk tube. Then 30 mL of dry DMF was added to disperse the powder. After cooling to 0°C, NBS (2.31 g, 13.0 mmol) was added to the solution. In the dark conditions, the mixture was stirred at room temperature for 8 h. The reaction was washed with EA and H₂O three times. The organic layer was concentrated under reduced pressure. the crude product was purified by column chromatography using petroleum ether:dichloromethane = 50:1 as the eluent to give pure compound **diBrCz-Ar** as a white solid (2.67 g, 95%). ¹H NMR (400 MHz, CD₃COCD₃, 298 K) δ (ppm): 8.22 (d, *J* = 1.9 Hz, 2H), 7.53 (dd, *J*₁ = 8.7 Hz, *J*₂ = 1.9 Hz, 2H), 7.37 (s, 2H), 7.28 (d, *J* = 8.7 Hz, 2H), 3.81 (s, 3H), 1.47 (s, 18H). ¹³C NMR (100 MHz, CD₃COCD₃, 298 K) δ (ppm): 159.4, 146.1, 140.5, 131.5, 129.7, 125.3, 124.0, 123.5, 112.9, 112.1, 64.9, 36.4, 32.2. HR-ESI-TOF MS: m/z = 544.0690 (calculated for C₂₇H₃₀NOBr₂: 544.0674 [M+H]⁺).

Synthesis of compound M_n

Bis[1,5-cyclooctanediene]nickel(0) (Ni[COD]₂, 1.00 g, 3.64 mmol), cis-1,5cyclooctanediene (0.629 g, 5.82 mmol) and 2,2'-bipyridine (0.727 g, 4.65 mmol) were added into a dry Schlenk tube. Then 30 mL of dry Toluene was added to disperse the powder. Under the protection of argon, the suspension was stirred at 80°C for 30 min to form the nickel catalyst complex, which was dark purple. After that, a solution of **diBrCz-Ar** (0.790 g, 1.45 mmol) in 30 mL of DMF was injected dropwise. Four days later, the reaction was quenched with 10.0 mL of aqueous HCl and extracted with dichloromethane. The organic layer was concentrated under reduced pressure. The residue was passed through a pad of silica gel (eluent: PE: $CH_2Cl_2 = 5:1$) and purified successively by GPC.

*M*₄: white solid (155 mg, 28 %), ¹H NMR (400 MHz, CD₂Cl₂, 298 K) δ (ppm): 9.00 (d, *J* = 1.4 Hz, 2H), 7.95 (dd, *J*₁ = 8.6 Hz, *J*₂ =1.7 Hz, 2H), 7.62-7.59 (m, 4H), 3.87 (s, 3H), 1.56 (s, 18H). ¹³C NMR (100 MHz, CD₂Cl₂, 298K) δ (ppm): 158.9, 145.8, 141.1, 133.9, 132.6, 125.3, 125.2, 124.8, 119.0, 110.8, 64.9, 36.5, 32.3. LR-MALDI-TOF MS: m/z = 1533.9 (calculated for C₁₀₈H₁₁₆N₄O₄: 1533.9). HR-MALDI-TOF MS: m/z = 1533.9120 (calculated for C₁₀₈H₁₁₆N₄O₄: 1533.9030).

*M*₅: white solid (83.4 mg, 15 %), ¹H NMR (400 MHz, CD₂Cl₂, 298 K) δ (ppm): 8.56 (d, J = 1.4 Hz, 2H), 7.70 (dd, $J_1 = 8.6$ Hz, $J_2 = 1.7$ Hz, 2H), 7.56 (m, 4H), 3.85 (s, 3H), 1.54 (s, 18H). ¹³C NMR (100 MHz, CD₂Cl₂, 298K) δ (ppm): 159.1, 145.9, 141.1, 135.5, 132.4, 127.9, 125.6, 124.0, 119.3, 110.6, 64.9, 36.5, 32.3. LR-MALDI-TOF MS: m/z = 1917.4 (calculated for C₁₃₅H₁₄₅N₅O₅: 1917.1). HR-MALDI-TOF MS: m/z = 1917.1168 (calculated for C₁₃₅H₁₄₅N₅O₅: 1917.1249).

*M*₆: white solid (11.1 mg, 2 %), ¹H NMR (400 MHz, CD₂Cl₂, 298 K) δ (ppm): 8.34 (d, J = 1.0 Hz, 2H), 7.59 (dd, $J_1 = 8.5$ Hz, $J_2 = 1.6$ Hz, 2H), 7.46 - 7.40 (m, 4H), 3.73 (s, 3H), 1.41 (s, 18H). ¹³C NMR (100 MHz, CD₂Cl₂, 298K) δ (ppm): 157.7, 144.6, 139.8, 134.1, 131.4, 125.7, 124.2, 122.8, 118.7, 109.2, 63.7, 35.3, 31.1. LR-MALDI-TOF MS: m/z = 2300.6 (calculated for C₁₆₂H₁₇₄N₆O₆: 2300.3). HR-MALDI-TOF MS: m/z = 2300.3504 (calculated for C₁₆₂H₁₇₄N₆O₆: 2300.3528).

*M*₇: white solid (5.50 mg, 1 %), ¹H NMR (400 MHz, CD₂Cl₂, 298 K) δ (ppm): δ 8.34 (d, J = 0.9 Hz, 2H), 7.59 (dd, $J_1 = 8.4$ Hz, $J_2 = 1.1$ Hz, 2H), 7.47 - 7.41 (m, 4H), 3.73 (s, 3H), 1.42 (s, 18H). ¹³C NMR (100 MHz, CD₂Cl₂, 298K) δ (ppm): 157.7, 144.6, 139.8, 134.2, 131.5, 125.4, 124.1, 123.1, 118.8, 109.2, 63.7, 35.3, 31.1. LR-MALDI-TOF MS: m/z = 2684.9 (calculated for C₁₈₉H₂₀₃N₇O₇: 2684.6). HR-MALDI-TOF MS: m/z = 2684.5809 (calculated for C₁₈₉H₂₀₃N₇O₇: 2684.5811).

Synthesis of compound (diBrCz-Ar)₂•DDQ

Under the protection of argon, **diBrCz-Ar** (20.0 mg, 3.68×10^{-5} mmol) and DDQ (16.7 mg, 7.36×10^{-5} mmol) were added into a dry Schlenk tube. Then 5.0 mL of dry CH₂Cl₂ was added to disperse the powder. After that, the mixture was stirred for 2 h at room temperature.

Synthesis of compound M_4SbF_6

Under the protection of argon, M_4 (20.0 mg, 1.30×10^{-5} mmol) and AgSbF₆ (4.5 mg, 1.30×10^{-5} mmol) were added into a dry Schlenk tube. Then 5.0 mL of dry CH₂Cl₂ was added to disperse the powder. After that, the mixture was stirred for 30 min at room temperature.

Synthesis of compound C_4 - M_n

The synthesis of compound C_4 - M_n (n =4 - 7) was according to previous report.^{S1}

Scheme S2. Synthetic route of macrocycle C_4 - M_n (n = 4 - 7).

Fig. S1. The GPC trace (CH₂Cl₂, flow rate = 10 mL/min) for C₄-M_n (n = 4 - 7).

3. Cyclic voltammetry

Fig. S2. Cyclic voltammograms of **diBrCz-Ar** (blue line) and **diBrCz-C4** (red-line) measured in CH₂Cl₂ containing 0.1 M *n*Bu₄NPF₆ at 298 K.

Fig. S3. Cyclic voltammograms of M_4 measured in CH_2Cl_2 containing 0.1 M nBu_4NPF_6 at 298 K.

compound	$E_{1/2}$	E_{ox}^{onset}	IPa
diBrCz-C4	+ 0.94 V	+1.19 V	5.35 eV
diBrCz-Ar	+ 1.10 V	+ 1.16 V	5.26 eV
M4	+ 0.22 V, +0.35 V, +0.62 V, +0.78 V	+ 0.16 V	4.66 eV

Table S1. Summary of the electrochemical data.

^aIP = - $(4.5 + \frac{E_{ox}^{onset}}{ox})$ ev^{S2}

4. Stability of diBrCz-Ar⁺⁺ and M₄⁺⁺

Fig. S4. UV-vis-NIR spectra of (diBrCz-Ar)₂•DDQ in CH₂Cl₂ at different time.

Fig. S5. UV-vis-NIR spectra of $M_4^{++} \cdot SbF_6^-$ in CH_2Cl_2 at different time.

5 Theoretical calculation

5.1 Molecular modeling of M_n

Geometries of macrocycles M_n (n = 4 - 7) were optimized at RB3LYP/6-311G(d,p) level of theory followed by frequency calculations to confirm the stationary points. All calculations were performed by the Gaussian 09 software package.^{S3}

Fig. S6. Chemical structure of M_4 (a) and its view of geometry (b and c) optimized by RB3LYP/6-311G(d,p) level of theory (all *t*-butyl were replaced by methyl to reduce the computational cost).

Fig. S7. Chemical structure of M_5 (a) and its view of geometry (b and c) optimized by RB3LYP/6-311G(d,p) level of theory (all *t*-butyl were replaced by methyl to reduce the computational cost).

Fig. S8. Chemical structure of M_6 (a) and its view of geometry (b and c) optimized by RB3LYP/6-311G(d,p) level of theory (all *t*-butyl were replaced by methyl to reduce the computational cost).

Fig. S9. Chemical structure of M_7 (a) and its view of geometry (b and c) optimized by RB3LYP/6-311G(d,p) level of theory (all *t*-butyl were replaced by methyl to reduce the computational cost).

5.2 Molecular modeling of diBrCz-C4 and diBrCz-C4+

Fig. S10. Chemical structure (a) and (d), spin density (b) and (e), and Mulliken atomic spin density values (c) and (f) of radical cation **diBrCz-C4**^{•+} and **diBrCz-Ar**^{•+} at the UB3LYP/6-311G(d,p) level of theory.

5.3 Molecular modeling of M₄⁺⁺

Fig. S11. Chemical structure (a), optimized geometry (b), and spin density map (c) of M_4^{++} at the UB3LYP/6-311G(d,p) level of theory.

6 Host-guest interaction of M_n and fullerene

6.1 Fluorescence titration

To determine the stoichiometry and association constant between M_5 and C_{60} , fluorescence titrations were done with solutions which had a constant concentration of M_5 (2.0 × 10⁻⁵ M) and varying concentrations of C_{60} . By a non-linear curve-fitting method, the association constant (K_a) of $M_5 \supset C_{60}$ was estimated to be (8.38 ± 0.33) × 10⁴ M⁻¹.

The non-linear curve-fitting was based on the equation: $\Delta F = (\Delta F_{\infty} / [\mathbf{M}_{5}]_{0}) \times (0.5[C_{60}]_{0} + 0.5([\mathbf{M}_{5}]_{0} + 1/K_{a}) - (0.5 ([C_{60}]_{0}^{2} + (2[C_{60}]_{0}(1/K_{a} - [\mathbf{M}_{5}]_{0})) + (1/K_{a} + [\mathbf{M}_{5}]_{0})^{2})^{0.5}))^{S4}$

Where ΔF is the change of emission intensity at $[\mathbf{M}_5]_0$, $\Delta \delta_{\infty}$ is the change of emission intensity when the host is completely complexed, $[\mathbf{M}_5]_0$ is the fixed initial concentration of the host, and $[C_{60}]_0$ is the initial concentration of C_{60} .

Fig. S12. Fluorescence spectral (excitation wavelength = 350 nm) changes of M_5 (2.0 × 10⁻⁵ M) on addition of C₆₀ (0 - 6.0 × 10⁻⁵ M) in toluene at 298 K.

Fig. S13. Determination of the binding constant of $M_5 \supset C_{60}$ in toluene at 298 K. Fitting result based on plot of emission intensity of M_5 at 415 nm.

To determine the stoichiometry and association constant between M_5 and C_{70} , fluorescence titrations were done with solutions which had a constant concentration of M_5 (2.0 × 10⁻⁵ M) and varying concentrations of C_{70} . By a non-linear curve-fitting method, the association constant (K_a) of $M_5 \supset C_{70}$ was estimated to be (7.64 ± 0.26) × 10⁴ M⁻¹.

Fig. S14. Fluorescence spectral (excitation wavelength = 350 nm) changes of M_5 (2.0 × 10⁻⁵ M) on addition of C_{70} (0 - 6.0 × 10⁻⁵ M) in toluene at 298 K.

Fig. S15. Determination of the binding constant of $M_5 \supset C_{70}$ in toluene at 298 K. Fitting result based on plot of emission intensity of M_5 at 415 nm.

6.2 Job's plot of M₅⊃fullerene

Fig. S16. Fluorescence spectra (excitation wavelength = 350 nm) of M_5 and C_{60} with different molar ratios when the total concentrations of M_5 and C_{60} were fixed at 1.0×10^{-5} M in toluene (left) and Job's plot for M_5 and C_{60} (right).

Fig. S17. Fluorescence spectra (excitation wavelength = 350 nm) of M_5 and C_{70} with different molar ratios when the total concentrations of M_5 and C_{70} were fixed at 1.0×10^{-5} M in toluene (left) and Job's plot for M_5 and C_{70} (right).

6.3 Charge transfer band

Fig. S18. UV-vis spectral of \mathbf{M}_5 (5.0 × 10⁻⁵ M, black line), $\mathbf{M}_5 \supset C_{60}$ (5.0 × 10⁻⁵ M, blue line), and C_{60} (5.0 × 10⁻⁵ M, yellow line) in toluene at 298 K.

6.4 MS of complex

Fig. 19. LR-MALDI-TOF MS of compound $M_5 \supset C_{60}$.

Fig. 20. LR-MALDI-TOF MS of compound $M_5 \supset C_{70}$.

6.5 Molecular modeling of M₅ and fullerene

Geometries of host-guest complex were optimized at RB3LYP-D3/6-311+G(d,p) level of theory with BESS correction as well as frequency calculations to confirm the stationary points. All calculations were performed by the Gaussian 09 software package.^{S3}

Fig. S21. Top view (a) and side view (b) of optimized geometry of $M_5 \supset C_{60}$ at the RB3LYP-D3/6-311+G(d,p) level of theory.

Fig. S22. Top view (a) and side view (b) of optimized geometry of $M_5 \supset C_{70}$ at the RB3LYP-D3/6-311+G(d,p) level of theory.

7 X-ray crystal data

7.1 X-ray crystal data of diBrCz-Ar

X-ray crystallography of single crystal obtained by slow evaporation solutions of **diBrCz-Ar** (2 mg) in CHCl₃ (1 mL) for 2 days. CCDC number: 2073892.

Fig. S23. X-ray crystal structure of diBrCz-Ar with top (left) and side views (right).

Identification code	exp_1861
Empirical formula	C ₂₇ H ₂₉ Br ₂ NO
Formula weight	543.33
Temperature/K	169.99(10)
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	8.7418(2)
b/Å	40.2906(7)
c/Å	14.2849(2)
α/°	90
β/°	103.339(2)
γ/°	90
Volume/Å ³	4895.58(16)
Z	8
$\rho_{calc}g/cm^3$	1.474
μ/mm ⁻¹	4.334
F(000)	2208.0
Crystal size/mm ³	$0.44 \times 0.38 \times 0.32$
Radiation	$CuK\alpha \ (\lambda = 1.54184)$

Table S2. Crystal data and structure refinement for	or diBrCz-Ar .
---	-----------------------

2Θ range for data collection/°	6.728 to 134.158
Index ranges	$-10 \le h \le 9, -48 \le k \le 47, -17 \le l \le 17$
Reflections collected	49730
Independent reflections	$8703 [R_{int} = 0.1220, R_{sigma} = 0.0545]$
Data/restraints/parameters	8703/210/573
Goodness-of-fit on F ²	1.064
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0758, wR_2 = 0.1963$
Final R indexes [all data]	$R_1 = 0.0784, wR_2 = 0.1988$
Largest diff. peak/hole / e Å ⁻³	1.89/-1.47

7.2 X-ray crystal data of (diBrCz-Ar)₂•DDQ

X-ray crystallography of single crystal obtained by slow evaporation solutions of (diBrCz-Ar)₂•DDQ (10 mg) in CH₂Cl₂ (1 mL). CCDC number: 2071725.

Fig. S24. X-ray crystal structure of (diBrCz-Ar)₂•DDQ with top and side views.

Fig. S25. The bond length of DDQ anion in (diBrCz-Ar)₂•DDQ.

Identification code	exp_1755
Empirical formula	$C_{31}H_{29}Br_2ClN_2O_2$
Formula weight	656.83
Temperature/K	170.00(10)
Crystal system	triclinic
Space group	P-1
a/Å	10.5868(5)

Table S3. Crystal data and structure refinement for (diBrCz-Ar)₂•DDQ.

b/Å	10.6482(6)
c/Å	13.8870(6)
α/°	107.508(5)
β/°	104.966(4)
γ/°	94.584(4)
Volume/Å ³	1421.06(13)
Z	2
$\rho_{calc}g/cm^3$	1.535
μ/mm ⁻¹	4.729
F(000)	664.0
Crystal size/mm ³	$0.26 \times 0.22 \times 0.16$
Radiation	$CuK\alpha (\lambda = 1.54184)$
2Θ range for data collection/°	9.46 to 134.154
Index ranges	$-12 \le h \le 9, -12 \le k \le 12, -16 \le l \le 16$
Reflections collected	13645
Independent reflections	5043 [$R_{int} = 0.0875$, $R_{sigma} = 0.0929$]
Data/restraints/parameters	5043/114/377
Goodness-of-fit on F ²	1.020
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0700, wR_2 = 0.1778$
Final R indexes [all data]	$R_1 = 0.0943, WR_2 = 0.1922$
Largest diff. peak/hole / e Å ⁻³	1.29/-0.93

7.3 X-ray crystal data of M_4

X-ray crystallography of single crystal obtained by vapor diffusion of MeOH (2 mL) into solutions of M_4 (2 mg) in CHCl₃ (1 mL). CCDC number: 2071727.

Fig. S26. X-ray crystal structure of M_4 with top and side views.

Identification code	MLJ_H4_0m
Empirical formula	$C_{108}H_{116}N_4O_4$
Formula weight	1534.04
Temperature/K	273.15
Crystal system	monoclinic
Space group	C2/c
a/Å	26.709(3)
b/Å	24.342(3)
c/Å	20.0808(16)
α/°	90
β/°	113.763(2)
γ/°	90
Volume/Å ³	11948.8(19)
Z	4
$\rho_{calc}g/cm^3$	0.853
μ/mm ⁻¹	0.071
F(000)	3296.0
Crystal size/mm ³	$0.26 \times 0.18 \times 0.16$
Radiation	$\lambda = 0.82704$
20 range for data collection/°	3.878 to 62.476
Index ranges	$-32 \le h \le 28, -29 \le k \le 28, -20 \le l \le 22$
Reflections collected	38346
Independent reflections	10295 [$R_{int} = 0.1002, R_{sigma} = 0.1087$]
Data/restraints/parameters	10295/334/537
Goodness-of-fit on F ²	1.086
Final R indexes [I>=2σ (I)]	$R_1 = 0.1790, wR_2 = 0.3630$
Final R indexes [all data]	$R_1 = 0.2529, wR_2 = 0.3894$
Largest diff. peak/hole / e Å ⁻³	0.56/-0.64

Table S4. Crystal data and structure refinement for M_4 .

7.4 X-ray crystal data of M₅

X-ray crystallography of single crystal obtained by vapor diffusion of MeOH (2 mL) into solutions of M_5 (2 mg) in CHCl₃ (1 mL). CCDC number: 2071729.

Fig. S27. X-ray crystal structure of M_5 with top and side views.

2	5
Identification code	MLJ_H4_0m
Empirical formula	$C_{108}H_{116}N_4O_4$
Formula weight	1534.04
Temperature/K	273.15
Crystal system	monoclinic
Space group	C2/c
a/Å	26.709(3)
b/Å	24.342(3)
c/Å	20.0808(16)
α/°	90
β/°	113.763(2)
γ/°	90
Volume/Å ³	11948.8(19)
Z	4
$\rho_{calc}g/cm^3$	0.853
μ/mm ⁻¹	0.071
F(000)	3296.0
Crystal size/mm ³	$0.26\times0.18\times0.16$
Radiation	$\lambda = 0.82704$
2\Theta range for data collection/°	3.878 to 62.476
Index ranges	$-32 \le h \le 28, -29 \le k \le 28, -20 \le l \le 22$
Reflections collected	38346
Independent reflections	10295 [$R_{int} = 0.1002, R_{sigma} = 0.1087$]
Data/restraints/parameters	10295/334/537

Table S5. Crystal data and structure refinement for M₅.

Goodness-of-fit on F ²	1.086
Final R indexes [I>= 2σ (I)]	$R_1 = 0.1790, wR_2 = 0.3630$
Final R indexes [all data]	$R_1 = 0.2529, wR_2 = 0.3894$
Largest diff. peak/hole / e Å ⁻³	0.56/-0.64

8 Characterization of compound

Fig. S29. The ¹³C NMR (100 MHz, 298 K) spectrum of compound Cz-Ar in CD₃COCD₃.

Fig. S30. HR-ESI-TOF MS of compound Cz-Ar.

Fig. S31. The ¹H NMR (400 MHz, 298 K) spectrum of compound diBrCz-Ar in CD₂Cl₂.

Fig. S32. The ¹³C NMR (100 MHz, 298 K) spectrum of compound diBrCz-Ar in CD₂Cl₂.

Fig. S33. HR-ESI-TOF MS of compound diBrCz-Ar.

Fig. S35. The 13 C NMR (100 MHz, 298 K) spectrum of compound M_4 in CD_2Cl_2 .

Fig. S36. LR-MALDI-TOF MS of compound M4.

Fig. S37. HR-MALDI-TOF MS of compound M4.

Fig. S38. 2D COSY (500 MHz, 298 K) spectrum of compound M₄ in CD₂Cl₂.

Fig. S39. 2D NOESY (500 MHz, 298 K) spectrum of compound M_4 in CD_2Cl_2 .

Fig. S41. The ${}^{13}C$ NMR (100 MHz, 298 K) spectrum of compound M_5 in CD_2Cl_2 .

Fig. S42. LR-MALDI-TOF MS of compound M₅.

Fig. S43. HR-MALDI-TOF MS of compound M₅.

Fig. S44. 2D COSY (500 MHz, 298 K) spectrum of compound M₅ in CD₂Cl₂.

Fig. S45. 2D NOESY (500 MHz, 298 K) spectrum of compound M_5 in CD_2Cl_2 .

Fig. S47. The ¹H NMR (100 MHz, 298 K) spectrum of compound M_6 in CD_2Cl_2 .

Fig. S48. LR-MALDI-TOF MS of compound M₆.

Fig. S49. HR-MALDI-TOF MS of compound M₆.

Fig. S51. The ¹H NMR (100 MHz, 298 K) spectrum of compound M_7 in CD_2Cl_2 .

Fig. S52. LR-MALDI-TOF MS of compound M₇.

Fig. S53. HR-MALDI-TOF MS of compound M₇.

9 Reference

[S1] (a) L. S. Coumont and J. G. C. Veinot, *Tetrahedron Lett.*, 2015, 56, 5595-5598;
(b) H. Zhu, B. Shi, K. Chen, P. Wei, D. Xia, J. H. Mondal, and F. Huang, *Org. Lett.*, 2016, *18*, 5054-5057.

[S2] X.-F. Liao, J. Wang, S.-Y. Chen, L. Chen and Y.-W. Chen, *Chin. J. Polym. Sci.*, 2016, **34**, 491-504.

[S3] Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.

[S4] Pall Thordarson, Chem. Soc. Rev., 2011, 40, 1305-1323.