Synthesis, Structure Elucidation, and Functionalization of Sulfonamide Catenanes

Yu Wang^a, Shuai Lu^b, Xu-Qing Wang^a, Yan-Fei Niu^a, Heng Wang^{b*}, Wei Wang^{a*}

^a School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China

^b College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China

* Corresponding authors.

E-mail: wwang@chem.ecnu.edu.cn (W. W.); hengwang@szu.edu.cn (H. W.)

Table of Contents

Section A. Materials and general methods.

Section B. Synthesis and characterization of [2]catenanes 3 and 6.

Section C. CID/IMS measurements of [2]catenanes 3 and 6.

Section D. Synthesis and photophysical properties of pyrene-functionalized [2]catenane 7

and macrocycle 8.

Section E. DFT results and computational details.

Section F. References

Section A. Materials and general methods.

All reagents were commercially available and used as supplied without further purification. Deuterated solvents were purchased from Cambridge Isotope Laboratory. Compounds **B** and **C** were prepared according to the published procedures.^{S1-S3}

All solvents were dried according to standard procedures and all of them were degassed under N₂ for 30 minutes before use. All reactions were carried out under inert N₂ atmosphere. ¹H NMR; ¹³C NMR spectra were recorded on Bruker 400 MHz Spectrometer (¹H: 400 MHz) and Bruker 500 MHz Spectrometer (¹H: 500 MHz; ¹³C: 126 MHz) at 298 K. The ¹H and ¹³C NMR chemical shifts are reported relative to residual solvent signals. 2D-NMR spectra (¹H-¹H COSY, NOESY) were recorded on Bruker 400 MHz Spectrometer (¹H: 500 MHz Spectrometer (¹H: 400 MHz) and Bruker 500 MHz at 298 K.

ESI-MS was conducted on Waters Synapt G2-Si mass spectrometer with traveling wave ion mobility. The IM-MS experiments for complexes were performed under the following conditions: ESI capillary voltage, 3.0 kV; sample cone voltage, 20 V; extraction cone voltage, 1.0 V; source temperature 100 °C; desolvation temperature, 120 °C; cone gas flow, 10 L/h; desolvation gas flow, 700 L/h (N₂); source gas control, 0 mL/min; trap gas control, 2 mL/min; Helium cell gas control, 100 mL/min; ion mobility (IM) cell gas control, 30 mL/min; sample flow rate, 5 μ L/min; IM traveling wave height, 25 V; and IM traveling wave velocity, 1000 m/s.

UV-vis spectra and steady-state fluorescence spectra were recorded in a quartz cell (light path 10 mm) on a Shimadzu UV2700 UV-visible spectrophotometer and a Shimadzu RF-6000 fluorescence spectrophotometer.

All calculations were performed with the Gaussian 09 program.^{S4} The B3LYP functional was utilized for geometry optimization.^{S5-S7} The 6-31G* basis set was considered for all atoms.

Section B. Synthesis and characterization of [2]catenanes 3 and 6.

Scheme S1. The synthesis route of [2]catenanes 3 and 6.

Synthesis of macrocycle 1 and [2]catenane 3: **B** (0.360 g, 1.00 mmol, 1 eq.) in CHCl₃ (dry, 40 mL) and **A** (0.239 g, 1.00 mmol, 1 eq.) in CHCl₃ (dry, 40 mL) were added simultaneously *via* syringe pump to NEt₃ (0.7 mL, 5 mmol, 5 eq.) in CHCl₃ (dry, 160 mL) over 4 h at room temperature under N₂ before stirring for an additional 16 h. The reaction mixture was washed with 1 M HCl (aq.) (100 mL), 1 M KOH (aq.) (100 mL) and brine (100 mL), dried (MgSO₄) and the solvent removed *in vacuo*. The solution was concentrated and the residue was purified by column chromatography (SiO₂; DCM/Acetone = 10:1 for **1**, DCM/Acetone = 5:1 for **3**). Both **1** and **3** were obtained as white solids. **Macrocycle 1** (120 mg, 20%): ¹H NMR (500 MHz, DMSO-*d*₆) δ 9.12-9.14 (t, *J* = 5.0 Hz, 1H), 8.23 (s, 1H), 8.15-8.17 (t, *J* = 5.0 Hz, 1H), 7.98-8.00 (d, *J* = 10.0 Hz, 1H), 7.83-7.85 (d, *J* = 10.0 Hz, 2H), 7.53-7.56 (t, *J* = 5.0 Hz, 1H), 7.24-7.26 (d, *J* = 10.0 Hz, 2H), 6.94-6.95 (d, *J* = 10.0 Hz, 2H), 6.84-6.86 (d, *J* = 10.0 Hz, 2H), 6.45-6.47 (d, *J* = 10.0 Hz, 2H), 4.41-4.42 (d, *J* = 5.0 Hz, 2H), 4.14-4.15 (m, 2H), 4.08-4.09 (d, *J* = 5.0 Hz, 2H), 3.72-3.74 (m, 4H), 3.58-3.62 (m, 4H), 3.52-3.53 (m, 2H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 164.69, 158.04, 157.86, 142.28, 135.12, 132.34, 130.87, 129.56, 129.46, 129.36, 129.06, 128.85, 126.13, 115.35, 114.16, 70.70, 70.22, 69.31, 69.20, 67.99, 67.43, 46.23, 42.50, 31.17. HRMS (ESI-TOF): Calculated for [**1** + Na]⁺: 549.1666; Found: 549.1672.

[2]Catenane 3 (108 mg, 18%): ¹H NMR (500 MHz, DMSO- d_6) δ 9.17-9.20 (t, J = 10.0 Hz, 2H), 8.25 (s, 2H), 8.14-8.16 (t, J = 5.0 Hz, 2H), 8.06-8.08 (d, J = 10.0 Hz, 2H), 7.87-7.88 (d, J = 5.0 Hz, 2H), 7.61-7.64 (t, J = 10.0 Hz, 2H), 7.23-7.25 (d, J = 10.0 Hz, 4H), 7.04-7.06 (d, J = 10.0 Hz, 4H), 6.89-6.90 (d, J = 5.0 Hz, 4H), 6.73-6.74 (d, J = 5.0 Hz, 4H), 4.41-4.42 (d, J = 5.0 Hz, 4H), 4.04-4.06 (m, 4H), 3.94-3.98 (m, 8H), 3.68-3.73 (m, 8H), 3.58-3.59 (m, 8H). ¹³C NMR (126 MHz, DMSO- d_6) δ

165.13, 158.03, 157.60, 141.68, 135.50, 131.93, 131.21, 129.76, 129.41, 128.56, 128.38, 126.98, 125.95, 114.76, 114.57, 69.97, 69.31, 67.97, 67.53, 56.30, 46.12, 43.07, 42.68, 32.38, 31.93, 30.30. HRMS (ESI-TOF): Calculated for [**3** + Na]⁺: 1075.3440; Found: 1075.3991.

Synthesis of macrocycle 4 and [2]catenane 6: C (0.404 g, 1.00 mmol, 1 eq.) in CHCl₃ (dry, 40 mL) and **A** (0.239 g, 1.00 mmol, 1 eq.) in CHCl₃ (dry, 40 mL) were added simultaneously via syringe pump to NEt₃ (0.7 mL, 5 mmol, 5 eq.) in CHCl₃ (dry, 160 mL) over 4 h at room temperature under N₂ before stirring for an additional 16 h. The reaction mixture was washed with 1 M HCl (aq) (100 mL), 1 M KOH (aq) (100 mL) and brine (100 mL), dried (MgSO₄) and the solvent removed *in vacuo*. The solution was concentrated and the residue was purified by column chromatography (SiO₂; DCM/Acetone = 10:1 for **4**, DCM/Acetone = 5:1 for **6**). Both **4** and **6** were obtained as white solids. **Macrocycle 4** (147 mg, 23%): ¹H NMR (500 MHz, DMSO-*d*₆) δ 9.12-9.15 (t, *J* = 10.0 Hz, 1H), 8.22 (s, 1H), 8.13-8.15 (t, *J* = 5.0 Hz, 1H), 7.99-8.01 (d, *J* = 10.0 Hz, 1H), 7.83-7.84 (d, *J* = 5.0 Hz, 2H), 7.54-7.57 (t, *J* = 10.0 Hz, 1H), 7.25-7.27 (d, *J* = 10.0 Hz, 2H), 6.91-6.93 (d, *J* = 10.0 Hz, 2H), 6.87-6.88 (d, *J* = 5.0 Hz, 2H), 6.50-6.52 (d, *J* = 10.0 Hz, 2H), 4.41-4.42 (d, *J* = 10.0 Hz, 2H), 4.06-4.09 (m, 4H), 3.73-3.78 (d, 4H), 3.53-3.63 (m, 10H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 164.81, 157.95, 157.84, 142.05, 135.18, 132.18, 130.98, 129.54, 129.37, 129.13, 128.85, 126.03, 114.77, 114.18, 70.59, 70.44, 70.31, 70.26, 69.27, 67.78, 67.45, 46.26, 42.52. HRMS (ESI-TOF): Calculated for [**4** + Na]⁺: 593.1928; Found: 593.1912.

[2]Catenane 6 (103 mg, 16%): ¹H NMR (500 MHz, DMSO-*d*₆) δ 9.18-9.20 (t, *J* = 5.0 Hz, 2H), 8.26 (s, 2H), 8.14-8.16 (t, *J* = 5.0 Hz, 2H), 8.06-8.07 (d, *J* = 5.0 Hz, 2H), 7.88-7.89 (d, *J* = 5.0 Hz, 2H), 7.61-7.65 (t, *J* = 10.0 Hz, 2H), 7.23-7.25 (d, *J* = 10.0 Hz, 4H), 7.06-7.07 (d, *J* = 5.0 Hz, 4H), 6.88-6.90 (d, *J* = 10.0 Hz, 4H), 6.74-6.76 (d, *J* = 10.0 Hz, 4H), 4.41-4.42 (d, *J* = 5.0 Hz, 4H), 4.03-4.05 (t, *J* = 5.0 Hz, 4H), 3.94-3.98 (m, 8H), 3.68-3.71 (m, 8H), 3.53-3.55 (m, 16H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 165.16, 158.05, 157.92, 141.65, 135.52, 131.91, 131.22, 129.77, 129.65, 129.41, 129.18, 128.65, 128.41, 126.98, 125.96, 114.75, 114.57, 114.26, 70.40, 70.31, 69.38, 69.35, 67.60, 67.54, 46.12, 42.70. HRMS (ESI-TOF): Calculated for [**6** + Na]⁺: 1163.3964; Found: 1163.3986.

$\begin{array}{c} \begin{array}{c} & 0 \\$

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 chemical shift (ppm)

Figure S2. ¹³C NMR spectrum (DMSO-*d*₆, 298 K, 126 MHz) of **1**.

Figure S4. ¹H NMR spectrum (DMSO-*d*₆, 298 K, 500 MHz) of **3**.

Figure S6. 2D ¹H-¹H COSY spectrum (DMSO-*d*₆, 298 K, 500 MHz) of **3**.

Figure S8. ¹H NMR spectrum (DMSO-*d*₆, 298 K, 500 MHz) of **4**.

Figure S10. 2D 1 H- 1 H COSY spectrum (DMSO- d_{6} , 298 K, 500 MHz) of 4.

Figure S11. ¹H NMR spectrum (DMSO-*d*₆, 298 K, 500 MHz) of 6.

Figure S12. ¹³C NMR spectrum (DMSO-*d*₆, 298 K, 126 MHz) of **6**.

Figure S13. 2D ¹H-¹H COSY spectrum (DMSO-*d*₆, 298 K, 500 MHz) of **6**.

Figure S14. Partial 2D 1 H- 1 H NOESY spectrum (DMSO- d_{6} , 298 K, 500 MHz) of 6.

Figure S15. HRMS (ESI-TOF-MS) spectrum of 1.

msTornado Analysis 1.10.2, 2020-08-20T15:39:45+08:00

Figure S16. HRMS (ESI-TOF-MS) spectrum of 3.

msTornado Analysis 1.10.2, 2021-01-21T14:12:42+08:00

Figure S17. HRMS (ESI-TOF-MS) spectrum of 4.

Intensity

Section C. CID/IMS measurements of [2]catenanes 3 and 6.

Figure S19. ESI-TOF-MS spectrum of 3.

Figure S20. ESI-TOF-MS spectrum of 6.

450						200 450			
475	475	475	475	475	475	475	475	475 1218202 48	1218202 45.198
50	0_S_C/	0_S_C/	0 S C/	0_S_C/	0_S_C/	0 S C/	0 S C/	5.1986	S C
- 52	т_1-2	T_1-2_	т_1-2 Т_1-2	Т_1-2_ Т_1-2_	T_1-2_	т <u>1-2</u>	т_1-2_	л_1-2_ г_	Т_1-2_
5 550	550 3MS2_10V_1	3MS2_30V_1	3MS2_50V_	3MS2_60V_1	3MS2_65V_	550 3MS2_70V_1	550 3MS2_75V_1	550 3MS2_80V_1	3MS2_85V_I
575	575 NIS-1 1	575 MS-1 1	575 NIS-1 1	575 NS-1 1	575 MS-1 1	575 NIS-1 1	575 MS-1 1	575 NS-1 1	MS-1 1
600	(0.033)	600 (0.033)	600 (0.033)	600 (0.033)	600 (0.033)	600 (0.033)	600 (0.033)	600 (0.033)	(0.034)
625	625	625	625	625	625	625	625	625	-
650	650	650	650	650	650	650	650	650	
675	675	675	675	675	675	675	675	675	
700	700	700	700	700	700	700	700	700	
725	725	725	725	725	725	725	725	725	
750	750	750	750	750	750	750	750	750	•
775	775	775	775	775	775	775	775	775	-
008	800	800	800	800	008	008	800	800	
825	825	825	825	825	825	825	825	825	
058	850	850	850	850	850	850	850	850	:
875	875	875	875	875	875	875	875	875	
006	006	900	000	000	900	000	900	000	-
925	925	925	925	925	925	925	925	925	
950	950	950	950	950	950	950	950	950	
975	975	975	975	975	975	975	975	975	
1000	1000	1000	1000	1000	1000	1000	1000	1000	
1025	1025	1025	1025	1025	1025	1025	1025	1025	-
1050	1050	1050	1050	1050	1050	1050	1050	1050	
1075	1075.3348	1075.3348	1075.3348	1075 1075.3348	1075.3206	1075.3206	1075.3348	1075 1075.3348	<u>.</u>
1100	1100	1100	1100	1100	1100 6.337(78.3285	1100 6.3221 78.3285	1100 6.3370 77.325	- 110) .3370	
1125	1125	1125	1125	1125	1125	1125	1125	1125	
1150	1150 TOF M	1150 TOF M	1150 TOF MS	1150 TOF MS	1150 TOF MX	1150 TOF M	1150 TOF MS	1150 TOF MS	TOF MS
1175	1175 SMS 107	1175 SMS 107	1175 SMS 107	1175 SMS 107	SMS 107				
1	15.50ES+ 3.66e5	15.50ES+ 4.45e5	15.50ES+ 2.95e5	15.50ES+ 2.27e5	15.50ES+ 1.49e5	15.50ES+ 5.51e4	15.50ES+ 1.63e4	15.50ES+ 1.47e3	75.50ES+ 172

<u> 1</u> 2 <u>1</u> 22 <u>-</u>28 <u>-</u>28 <u>-</u>28

Figure S21. Full gMS^2 mass spectrum of 3 at 10 - 85V collision voltage in the mass selected CID/IMS experiments.

560 1 700 750 800 850 560 700 750 800 850 560 700 750 800 850
750 800 850
750 800 850 750 800 850
800 850 800 850
1 1
900
950 1000 10
1050 1100
1166.3755

Figure S22. Full gMS² mass spectrum of **6** at 10 - 85V collision voltage in the mass selected CID/IMS experiments.

Figure S23. Normalized arrival time distributions of the species formed from [2]catenane 3 at 65 - 85 V collision voltage.

Figure S24. Normalized arrival time distributions of the species formed from [2]catenane **6** at 65 - 85 V collision voltage.

Fig. S25. Possible fragmentation pathways of the two isomers of macrocycle 2 and the expected m/z values of the corresponding sodiated *pseudo*-molecular ions.

Fig. S26. Possible fragmentation pathways of the two isomers of macrocycle 5 and the expected m/z values of the corresponding sodiated *pseudo*-molecular ions.

Figure S27. Partial gMS^2 mass spectrum of **3** at 10 - 85V collision voltage in the mass selected CID/IMS experiments in which the characteristic peaks of macrocycle **2** were not observed.

Figure S28. Partial gMS^2 mass spectrum of **6** at 10 - 85V collision voltage in the mass selected CID/IMS experiments in which the characteristic peaks of macrocycle **5** were not observed.

Section D. Synthesis and photophysical properties of pyrenefunctionalized [2]catenane 7 and macrocycle 8.

Scheme S2. The synthesis route of pyrene-functionalized [2]catenane 7 and macrocycle 8.

Synthesis of the [2]catenane 7: K₂CO₃ (15 mg, 0.108 mmol, 2.5 eq.) was added to a solution of [2]catenane **6** (50 mg, 0.043 mmol, 1 eq.) in DMF (20 mL) and then the suspension was stirred at room temperature for 30 min. 1-(Bromomethyl)pyrene (127 mg, 0.430 mmol, 10 eq.) was added and then the mixture was heated at 50°C for 48 h. After cooling to room temperature, then evaporating the organic solvent under reduced pressure, the residue was partitioned between H₂O (20 mL) and CH₂Cl₂ (3 × 20 mL); the combined organic phases were dried (MgSO₄) and concentrated. The residue was purified chromatographically (SiO₂; EtOAc/DCM = 1:4) to afford **7** as a white solid (52 mg, 78%). ¹H NMR (500 MHz, CD₂Cl₂) δ 7.86-8.15 (m, 22H), 7.69-7.71 (d, *J* = 10.0 Hz, 2H), 7.43-7.47 (t, *J* = 10.0 Hz, 2H), 7.11-7.12 (d, *J* = 10.0 Hz, 4H), 7.02-7.05 (t, *J* = 7.5 Hz, 2H), 6.72-6.74 (d, *J* = 10.0 Hz, 4H), 6.65-6.66 (d, *J* = 5.0 Hz, 4H), 6.25-6.26 (d, *J* = 5.0 Hz, 4H), 4.98 (s, 4H), 4.38-4.39 (d, *J* = 5.0 Hz, 4H), 4.20 (s, 4H), 3.92-3.93 (m, 4H), 3.70-3.71 (m, 4H), 3.54-3.59 (m, 20H). ¹³C NMR (126 MHz, CD₂Cl₂) δ 165.46, 158.19, 157.81, 140.03, 153.62, 131.46, 131.17, 131.09, 130.55, 130.45, 129.66, 129.43, 129.37, 129.09, 128.34, 127.73, 127.70, 127.68, 127.41, 127.20, 125.98, 125.41, 125.26, 124.54, 124.41, 124.30, 122.82, 114.55, 113.82, 70.65, 70.60, 69.52, 69.37, 67.49, 67.23, 51.01, 50.08, 43.37. HRMS (ESI-TOF): Calculated for [**7** + Na]⁺: 1591.5529; Found: 1591.5511.

Synthesis of the macrocycle 8: K₂CO₃ (15 mg, 0.110 mmol, 1.2 eq.) was added to a solution of macrocycle 4 (50 mg, 0.088 mmol, 1 eq.) in DMF (20 mL) and then the suspension was stirred at room temperature for 30 min. 1-(Bromomethyl)pyrene (127 mg, 0.430 mmol, 5 eq.) was added and then the mixture was heated at 50°C for 48 h. After cooling to room temperature, then evaporating the organic solvent under reduced pressure, the residue was partitioned between H₂O (20 mL) and CH₂Cl₂ (3 \times 20 mL); the combined organic phases were dried (MgSO₄) and concentrated. The residue was purified chromatographically (SiO₂; EtOAc/DCM = 1:6) to afford 8 as a white solid (44 mg, 64%). ¹H NMR (500 MHz, CD₂Cl₂) δ 7.97-8.21 (m, 11H), 7.91-7.93 (d, J = 10.0 Hz, 1H), 7.49-7.52 (t, J = 10.0 Hz, 1H), 7.23-7.25 (d, J = 10.0 Hz, 2H), 6.89-6.90 (d, J = 5.0 Hz, 2H), 6.55-6.57 (d, J = 10.0 Hz, 2H), 6.43-6.45 (t, J = 5.0 Hz, 1H), 6.41-6.43 (d, J = 10.0 Hz, 2H), 5.12 (s, 2H), 4.48-4.49 (d, J = 5.0 Hz, 2H), 4.26 (s, 2H), 4.08-4.10 (m, 2H), 3.76-3.80 (m, 4H), 3.63-3.68 (m, 4H), 3.57-3.60 (m, 6H). ¹³C NMR (126 MHz, CD₂Cl₂) δ 165.01, 158.43, 158.23, 140.65, 135.50, 131.35, 131.30, 131.21, 130.68, 130.60, 129.85, 129.61, 129.45, 129.39, 129.12, 128.41, 127.85, 127.70, 127.57, 127.35, 127.30, 126.11, 125.41, 125.36, 125.07, 124.77, 124.71, 124.47, 122.66, 114.88, 114.12, 70.76, 70.71, 70.59, 70.54, 69.52, 69.44, 67.77, 67.39, 49.89, 49.14, 43.34. HRMS (ESI-TOF): Calculated for [8 + Na]⁺: 807.2711; Found: 807.2731.

25

Figure S30. ¹H NMR spectrum (CD₂Cl₂, 298 K, 500 MHz) of 8.

Figure S32. ¹³C NMR spectrum (CD₂Cl₂, 298 K, 126 MHz) of 8.

Figure S33. 2D ¹H-¹H COSY spectrum (CD₂Cl₂, 298 K, 400 MHz) of **7**.

Figure S34. Partial 2D ¹H-¹H NOESY spectrum (CD₂Cl₂, 298 K, 400 MHz) of 7.

Figure S35. HRMS (ESI-TOF-MS) spectrum of 7.

Figure S36. HRMS (ESI-TOF-MS) spectrum of 8.

Figure S37. UV-vis absorption spectra of 7 in DCM at different concentration.

Figure S38. UV–vis absorption spectra of 8 in DCM at different concentration.

Figure S39. Partial ¹H NMR spectra (400 MHz, CD₂Cl₂, 298 K) of (a) the [2]catenane **7** and (b) the solution in (a) after the addition of 1 equiv. of NaTFPB, and (c) the solution in (b) after the addition of 1 equiv. of [2.2.2]cryptand. #: Signals for the TFPB anion; *: Signals for the [2.2.2]cryptand.

Figure S40. Partial 2D ¹H-¹H COSY spectrum (CD₂Cl₂, 298 K, 400 MHz) of $7 \supset Na^+$ (1 eq.). #: Signals for the TFPB anion.

Figure S41. Partial 2D ¹H-¹H NOESY spectrum (CD₂Cl₂, 298 K, 400 MHz) of $7 \supset Na^+$ (1 eq.).

Figure S42. Stacked ¹H NMR spectra (500 MHz, 298K) of [2]catetane 7 (10 mM) titrated by Na⁺ (0 -5.0 equiv.) in CD₂Cl₂. #: Signals for the TFPB anion.

Figure S43. Stacked plots of UV–vis absorption spectra of [2]catetane 7 (10 μ M) titrated by Na⁺ (0 -5.0 equiv.) in DCM.

Figure S44. Stacked plots of emission spectra of [2]catetane 7 (10 μ M) titrated by Na⁺ (0 -5.0 equiv.) in DCM. (Excitation, 330 nm; emission, 485 nm.)

Figure S45. The Stern-Völmer plots of [2]catenane **7** titration with NaTFPB. (According to previous reports: *J. Am. Chem. Soc.* 2004, **126**, 14736; *J. Am. Chem. Soc.* 2017, **139**, 1554, the quenching constant (*Ksv*) was calculated based on the fluorescence quenching titration results and the Stern-Völmer equation. In accordance with the Stern-Völmer equation, the measured absorbance I₀/I at 485 nm varied as a function of

concentration (mM) in a linear relationship ($R^2 = 0.9982$), suggesting 1:1 stoichiometry of the interaction between Na⁺ and the host **7** in the range of not more than 1.0 eq. Na⁺. The *K*sv constant was calculated as 127129±2707 M⁻¹ with NaTFPB.)

Section E. DFT results and computational details

In order to verify the possibility of the bond breaking position of [2]catenanes **3** and **6**, we established model compound **S1**, and calculated the bond energies of its 6 chemical bonds.

Table S1. Bond energy analysis of radical fragments for model compound S1.

	ΔH_{S1} (kcal/mol)	$\Delta H_{radicall}$ (kcal/mol)	$\Delta H_{radical2}$ (kcal/mol)	Bond energy ^a (kcal/mol)
S1	-1161.8			
Bond [1]		-683.0	-478.7	71.6
Bond [2]		-134.4	-1027.3	53.6
Bond [3]		-79.1	-1082.6	79.2
Bond [4]		-247.8	-913.9	95.6
Bond [5]		-134.4	-1027.3	90.5
Bond [6]		-79.1	-1082.6	87.0

^a (Bond energy (ΔH) = $\Delta H_{radical_1}$ + $\Delta H_{radical_2}$ - ΔH_{S1})

Cartesian Coordinates for All of the Calculated Structures

S1, E_(SCF Done)=-1161.819322

С	-0.790583000	-1.090276000	0.190757000
С	-0.874779000	-2.433616000	-0.172760000
С	0.283580000	-3.086730000	-0.603278000
С	1.496316000	-2.404188000	-0.651847000
С	1.580728000	-1.062072000	-0.250618000

С	0.421923000	-0.398929000	0.162583000
Н	-1.826645000	-2.950028000	-0.109875000
Н	0.235730000	-4.131233000	-0.897068000
Н	2.402633000	-2.890926000	-0.996269000
Н	0.434832000	0.649352000	0.441939000
С	2.935232000	-0.402035000	-0.320873000
0	3.809317000	-0.836046000	-1.066465000
Ν	-2.652131000	0.667579000	-0.659071000
Н	-3.112759000	0.038282000	-1.317709000
Ν	3.113669000	0.683783000	0.490223000
Н	2.409845000	0.891103000	1.184506000
С	4.365499000	1.430031000	0.545064000
Н	4.834586000	1.285500000	1.527911000
Н	5.019737000	0.974786000	-0.201070000
С	-3.438370000	1.904199000	-0.445843000
Н	-4.428618000	1.689474000	-0.019577000
Н	-2.890196000	2.507632000	0.280500000
С	-3.578232000	2.647535000	-1.771787000
Н	-4.127762000	2.051612000	-2.510928000
Н	-4.132650000	3.580015000	-1.620610000
Н	-2.595385000	2.888199000	-2.188873000
С	4.165938000	2.921390000	0.267698000
Н	3.487206000	3.378841000	0.998093000
Н	5.124120000	3.449831000	0.328005000
Н	3.746738000	3.078422000	-0.731517000
S	-2.265244000	-0.224783000	0.734282000
0	-3.293505000	-1.237827000	1.010248000
0	-1.887283000	0.760658000	1.752641000

Bond [1] radical₁, $E_{(SCF Done)}$ =-683.007342

Ν	-0.473687000	-0.527649000	-0.126392000
Н	-0.504565000	-1.425654000	0.349881000
С	-1.549543000	0.428072000	0.167834000
Н	-1.451261000	0.827860000	1.187057000
Н	-1.437036000	1.273133000	-0.516731000
С	-2.909005000	-0.237794000	-0.026989000
Н	-3.038753000	-1.088433000	0.653099000
Н	-3.708798000	0.479772000	0.184645000
Н	-3.025051000	-0.598116000	-1.053825000
S	1.120909000	0.008588000	-0.281225000
0	1.971590000	-1.057644000	0.304896000
0	1.190662000	1.425882000	0.161998000

Bond [1] radical₂, $E_{(SCF Done)}$ =-478.697923

С	2.398018000	-1.564952000	-0.094284000
С	3.445889000	-0.675154000	-0.001669000
С	3.106404000	0.686413000	0.073976000
С	1.768609000	1.080008000	0.058790000
С	0.736482000	0.134167000	-0.018078000
С	1.061855000	-1.235666000	-0.111181000
Н	4.483887000	-0.996424000	0.007006000
Н	3.892199000	1.434904000	0.142151000
Н	1.495317000	2.128788000	0.102253000
Н	0.292491000	-1.993899000	-0.232953000
С	-0.680383000	0.649167000	-0.027414000
0	-0.938029000	1.797565000	-0.378174000
Ν	-1.640687000	-0.237574000	0.380453000
Н	-1.345555000	-1.105353000	0.803994000

С	-3.056052000	0.105248000	0.438833000
Н	-3.385944000	0.129450000	1.486788000
Н	-3.134612000	1.121419000	0.047200000
С	-3.924324000	-0.863909000	-0.366324000
Н	-3.829170000	-1.892194000	0.004370000
Н	-4.980370000	-0.580441000	-0.291336000
Н	-3.638194000	-0.855686000	-1.423140000

Bond [2] radical₁, $E_{(SCF Done)}$ =-134.420739

Ν	1.325532000	-0.269507000	-0.114431000
Н	1.197598000	-1.088545000	0.502410000
С	0.140391000	0.543678000	0.045651000
Н	0.202623000	1.049124000	1.028726000
Н	0.159096000	1.338847000	-0.710277000
С	-1.185712000	-0.231967000	-0.026386000
Н	-1.249722000	-0.977389000	0.775973000
Н	-2.039087000	0.448299000	0.073397000
Н	-1.277303000	-0.754054000	-0.984798000

Bond [2] radical₂, E_(SCF Done)=-1027.313097

С	1.660186000	0.250795000	-0.084557000
С	2.131502000	1.561575000	-0.014147000
С	1.197279000	2.596525000	0.061020000
С	-0.167843000	2.313523000	0.054185000
С	-0.628161000	0.990309000	-0.007281000
С	0.299623000	-0.053124000	-0.098561000
Η	3.198118000	1.758296000	-0.004866000
Η	1.538462000	3.625646000	0.123739000
Η	-0.906197000	3.107352000	0.091600000

Н	-0.008496000	-1.089016000	-0.191704000
С	-2.122848000	0.777078000	-0.007470000
0	-2.882634000	1.680203000	-0.345987000
N	-2.552705000	-0.457156000	0.389008000
Н	-1.885249000	-1.098665000	0.793013000
С	-3.964805000	-0.821053000	0.444252000
Н	-4.262603000	-0.967307000	1.491393000
Н	-4.513239000	0.043091000	0.064383000
С	-4.273513000	-2.075304000	-0.375473000
Н	-3.703985000	-2.941177000	-0.016030000
Н	-5.338159000	-2.323634000	-0.300556000
Н	-4.028187000	-1.920606000	-1.431206000
S	2.851252000	-1.104925000	-0.275232000
0	4.135543000	-0.649282000	0.325129000
0	2.168331000	-2.350550000	0.174495000

Bond [3] radical₁, E_(SCF Done)=-79.091826

С	0.795448000	0.000004000	-0.023361000
Н	1.354029000	-0.927709000	0.051459000
Н	1.354368000	0.927439000	0.051671000
С	-0.694382000	0.000074000	-0.000706000
Н	-1.109783000	-0.886012000	-0.496804000
Н	-1.095416000	-0.003514000	1.029165000
Н	-1.109591000	0.889328000	-0.491090000

С	-1.430842000	0.412352000	-0.054133000
С	-1.824538000	1.751021000	-0.079851000
С	-0.836865000	2.736315000	-0.042889000

С	0.509533000	2.379053000	0.007510000
С	0.897434000	1.031904000	0.001096000
С	-0.087440000	0.038670000	-0.018100000
Н	-2.876862000	2.008566000	-0.132657000
Н	-1.120713000	3.784345000	-0.055506000
Н	1.289306000	3.132013000	0.050913000
Н	0.162095000	-1.016411000	0.014387000
С	2.377538000	0.739151000	0.047204000
0	3.168914000	1.580070000	0.464739000
Ν	-3.050079000	-1.041209000	1.555019000
Н	-3.771092000	-1.782537000	1.571428000
Ν	2.760544000	-0.492888000	-0.401753000
Н	2.078255000	-1.078144000	-0.862192000
С	4.152666000	-0.929037000	-0.418817000
Н	4.487149000	-1.040069000	-1.459234000
Н	4.728157000	-0.115058000	0.026233000
С	4.361318000	-2.236406000	0.347938000
Н	3.763916000	-3.052115000	-0.077623000
Н	5.414050000	-2.537441000	0.303482000
Н	4.079075000	-2.120222000	1.399376000
S	-2.675959000	-0.866166000	-0.074685000
0	-3.878912000	-0.348496000	-0.743141000
0	-2.053010000	-2.122041000	-0.521130000

Bond [4] radical₁, E_(SCF Done)=-247.75747

С	-1.428708000	0.313629000	-0.302894000
0	-1.881091000	-0.739681000	0.072973000
Ν	-0.209297000	0.838585000	-0.086778000
Н	-0.003001000	1.721585000	-0.531865000

С	0.879481000	0.134937000	0.611641000
Н	1.349864000	0.836775000	1.310754000
Н	0.402410000	-0.651831000	1.201283000
С	1.917968000	-0.455167000	-0.343273000
Н	2.388386000	0.325654000	-0.952682000
Н	2.709194000	-0.962681000	0.220828000
Н	1.454504000	-1.182531000	-1.017496000

Bond [4] radical₂, $E_{(SCF Done)}$ =-913.90945

С	-1.019279000	0.115089000	0.107429000
С	-1.922003000	0.682763000	-0.793383000
С	-3.202667000	0.137067000	-0.925128000
С	-3.579796000	-0.972424000	-0.153670000
С	-2.637967000	-1.474810000	0.721133000
С	-1.365209000	-0.989937000	0.904216000
Н	-1.621802000	1.550127000	-1.370864000
Н	-3.909644000	0.577506000	-1.623450000
Н	-4.572298000	-1.404914000	-0.245245000
Н	-0.660366000	-1.408620000	1.615419000
Ν	1.572190000	-0.330671000	-0.503626000
Н	1.507853000	-0.163428000	-1.508289000
С	2.978623000	-0.442770000	-0.055151000
Н	3.543182000	0.480583000	-0.247829000
Н	2.956567000	-0.595720000	1.025636000
С	3.638650000	-1.627133000	-0.756596000
Н	3.666827000	-1.485988000	-1.844172000
Н	4.672028000	-1.737570000	-0.410566000
Н	3.097915000	-2.555097000	-0.545905000
S	0.619253000	0.834788000	0.283406000

0	0.624930000	2.100496000	-0.464009000
0	1.008100000	0.791271000	1.695639000

Bond [5] radical₁, $E_{(SCF Done)}$ =-134.420735

1	1.325303000	-0.269646000	-0.114592000
]	1.196998000	-1.088014000	0.503155000
(0.140424000	0.543793000	0.045720000
1	0.202716000	1.048726000	1.029056000
1	0.158946000	1.339081000	-0.710079000
(-1.185480000	-0.231966000	-0.026384000
1	-1.249928000	-0.977284000	0.776060000
]	-2.038953000	0.448288000	0.072696000
]	-1.276568000	-0.754240000	-0.984763000

Bond [5] radical₂, E_(SCF Done)=-1027.254423

(0.232970000	-0.606739000	-0.028858000
(0.573849000	-1.267287000	-1.213083000
(1.867451000	-1.138767000	-1.723052000
(2.807614000	-0.358487000	-1.052225000
(2.456516000	0.294150000	0.141282000
(1.161776000	0.167560000	0.660775000
ł	-0.164905000	-1.880395000	-1.718823000
ł	2.138942000	-1.651680000	-2.641115000
ł	3.818160000	-0.246895000	-1.433520000
ł	0.891348000	0.654910000	1.591447000
(3.447705000	1.122622000	0.873658000
(4.580866000	1.343413000	0.569686000
1	-2.336873000	0.149945000	-0.437278000
ł	-3.226021000	-0.331426000	-0.572708000

C	-2.	485883000	1.585135000	-0.127391000
Η	-2.	935700000	1.739769000	0.861534000
Η	-1.	480609000	2.019395000	-0.099734000
C	-3.	315267000	2.259502000	-1.217035000
Η	-4.	327861000	1.840055000	-1.262360000
Η	-3.	409691000	3.330098000	-1.007665000
Η	-2.	848569000	2.135194000	-2.199164000
S	-1.	428001000 -	0.794097000	0.632307000
С	-1.	875841000 -	2.169346000	0.394024000
С	-1.	421195000 -	0.211467000	1.979006000

Bond [6] radical₁, $E_{(SCF Done)}$ =-79.091825

	0.795387000	0.000009000	-0.023346000
	1.353851000	-0.927775000	0.051477000
	1.354525000	0.927332000	0.051580000
-	-0.694358000	0.000102000	-0.000710000
-	-1.109727000	-0.884617000	-0.499252000
-	-1.095328000	-0.006294000	1.029184000
-	-1.109496000	0.890692000	-0.488655000

Bond [6] radical₂ , E _(SCF Done) =-1082.288786	
---	--

С	-0.081621000	0.871431000	0.055256000
С	-0.538816000	2.069199000	-0.495015000
С	-1.888474000	2.188527000	-0.842785000
С	-2.758994000	1.123226000	-0.635438000
С	-2.289643000	-0.075091000	-0.073819000
С	-0.941723000	-0.203781000	0.276994000
Н	0.155411000	2.890735000	-0.635752000
Н	-2.254965000	3.116842000	-1.270583000

Н	-3.809184000	1.198047000	-0.898675000
Н	-0.575627000	-1.127873000	0.710124000
С	-3.248784000	-1.185879000	0.160745000
0	-4.427145000	-1.152601000	-0.229300000
Ν	2.214224000	-0.385046000	-0.618216000
Н	2.460314000	0.130957000	-1.463102000
Ν	-2.764171000	-2.346951000	0.715548000
Н	-3.553181000	-2.849146000	1.141253000
С	3.297323000	-1.299245000	-0.190750000
Н	4.221237000	-0.753127000	0.046209000
Н	2.959926000	-1.787166000	0.725611000
С	3.551970000	-2.327136000	-1.290306000
Н	3.890817000	-1.849068000	-2.217733000
Н	4.333915000	-3.025721000	-0.973631000
Н	2.642921000	-2.895513000	-1.510192000
S	1.645739000	0.724683000	0.530870000
0	2.262022000	2.042473000	0.323288000
0	1.719972000	0.049201000	1.828753000

Section F. References

- [1] M. J. Barrell, D. A. Leigh, P. J. Lusby, A. M. Z. Slawin, Angew. Chem. Int. Ed.
 2008, 47, 8036-8039.
- [2] M. Muraoka, H. Irie, Y. Nakatsuji, Org. Biomol. Chem. 2010, 8, 2408-2413.
- [3] S. Chen, Y. Zhao, C. Bao, Y. Zhou, C. Wang, Q. Lin, L. Zhu, *Chem. Commun.* 2018, 54, 1249-1252.
- [4] M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. heeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. Hratchian, A. Izmaylov, J. Bloino, G. Zheng, J. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. Montgomery, J. Peralta, F. Ogliaro, M. Bearpark, J. Heyd, E. Brothers, K. Kudin, V. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. Burant, S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. Milam, M. Klene, J. Knox, J. Cross, V. Bskken, C. Adamo, J. Jaramillo, R. Gomperts, R. Stratmann, O. Yazyev, A. Austin, R. Cammi, C. Pomelli, J. Ochterski, R. Marin, K. Morokuma, V. Zakrzewski, G. Voth, P. Salvador, J. Dannenberg, S. Dapprich, A. Daniels, O. Farkas, J. Foresman, J. Ortiz, J. Cioslowski, D. Fox, *Gaussian 09, Revision A.02*, Gaussian, Inc., Wallingford, CT, **2009**.
- [5] A. Becke, J. Chem. Phys. 1993, 98, 5648-5653.
- [6] C. Lee, W. Yang, Phys. Rev. B 1988, 37, 785-789.
- [7] J. Perdew, K. Burke, Y. Wang, Phys. Rev. B 1996, 54, 16533-16539.