Supporting information

Table of contents

1. Materials and General methods 2
2. Synthesis 3
3. Crystal Structure Analysis 14
3.1 Experimental details on crystal growth 14
4. Photophysical Study 17
4.1 Spectroelectrochemistry of 3, 4, 5, 69 and 10 17
4.2 UV-Vis spectra 21
4.3 Fluorescence 22
5. Thermogravimetric Analyses (TGA) 24
6. Electrochemical spectra 25
7. Theoretical calculations 29
7.1 Optimized Structures, Molecular Orbitals and Corresponding Energies 31
7.2 UV-Vis Absorption Spectra Calculation 40
8. Complexation measurements of 18-21 with HBT 69
9. References: 74
10. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and IR Spectra of Products 75

1. Materials and General methods

All chemicals and solvents were purified according to the standard procedure. ${ }^{[\mathrm{S} 1]}$ The compounds $\left(\mathbf{1}, \mathbf{2}, \mathbf{7}, \mathbf{8}, \mathbf{2 2}, \mathbf{2 3}, \mathbf{2 4}\right.$, and 25) were synthesized according to our previous reports. ${ }^{[\mathrm{S} 2]}$

The melting points were determined on a WRS-2 melting point apparatus. Thermogravimetric analyses (TGA) were conducted on 1090B type thermal analyzer (Dupont Engineering Polymers). The high resolution mass spectral analysis (HRMS) was carried out on Bruker APEX II type mass spectrometer. The infrared (IR) spectra were recorded on the PerkinElmer Spectrum 400 spectrometer with the resolution of $2 \mathrm{~cm}^{-1}$.

The ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Advance III $400 \mathrm{MHz}(100 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$ NMR) or a VARIAN INOVA $600 \mathrm{MHz}\left(150 \mathrm{MHz}\right.$ for ${ }^{13} \mathrm{C}$ NMR) spectrometer. Chemical shifts for ${ }^{1} \mathrm{H}$ NMR spectra are reported in parts per million (ppm, δ scale) downfield from tetramethylsilane, and referenced internally to the residual proton in the solvent ($\mathrm{CDCl}_{3}: \delta 7.27, \mathrm{D}_{8}$-THF:3.58). Chemical shifts for ${ }^{13} \mathrm{C}$ NMR spectra are reported in parts per million (ppm, δ scale) downfield from tetramethylsilane, and are referenced to the ${ }^{13} \mathrm{C}$ resonance of the NMR solvent $\left(\mathrm{CDCl}_{3}: \delta 77.00, \mathrm{D}_{8}-\right.$ THF: $\delta 67.00$). Data are reported as follows: Chemical shift, multiplicity ($\mathrm{s}=\operatorname{singlet}, \mathrm{d}=\operatorname{doublet}, \mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet), coupling constants. J, are reported in hertz.

Cyclic voltammetry redox potential were obtained by cyclic voltammetry method on a RST 5000 electrochemical analyzer, with glassy carbon discs as working electrode, Pt wire as the counter electrode, and SCE electrode as the reference electrode. Measurement conditions: solvent, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; concentration, $1 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$; supporting electrolyte, $(n-\mathrm{Bu})_{4} \mathrm{NPF}_{6}(0.1 \mathrm{M})$; scan speed, $0.05 \mathrm{~V} \mathrm{~s}^{-1}$; temperature, $20^{\circ} \mathrm{C}$.

The UV-Vis absorption spectra were measured on a UV-2006 UV-Specterophotometer. Fluorescence excitation and emission were recorded on a RF-5301(pc)s Spectrofluorophotometer. Fluorescence lifetime and steady state were measured on a FLS920 Spectrofluorophotometer.

The single-crystal X-ray diffraction was carried out on a SuperNova (Agilent) diffractometer. The crystal structure was solved by a direct method SIR2004 ${ }^{[53]}$ and refined by full-matrix least-square method on F^{2} by means of SHELXL-97. ${ }^{[4]]}$ The calculated positions of the hydrogen atoms were included in the final refinement.

All the calculations were performed with Gaussian 16 software package. ${ }^{[55]}$ Geometry optimizations were carried out using B3LYP ${ }^{[56]} /\left[E F P C M\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)^{[57]}\right.$ method. The UV-Vis absorption spectra were calculated at TD- ω B97XD $/ \operatorname{IEFPCM}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)($ nstates $=40$, root $=1)$ level of theory using optimized structures. The optimized structures and molecular orbitals were displayed using Chemcraft. ${ }^{[88]}$ The calculated UV-Vis absorption spectra were displayed using Multiwfn software ${ }^{[59]}$.

2. Synthesis

1

7

16

18

17

19

20

22

24
4

21

23

Experimental details:

3: Compound $\mathbf{1}$ ($75 \mathrm{mg}, 0.1 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL), then tert-butyl nitrite (TBN, $128 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$) was added. The resulting mixture was stirred at room temperature (RT) for 6 h . The solvent was removed by evaporation under reduced pressure. The crude product was further purified by column chromatography on silica-gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford $\mathbf{4}$ as black powder (37 mg , yield,
55%). mp: 192.4-193.1 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.46-4.36(\mathrm{~m}, J=6.4 \mathrm{~Hz}, 8 \mathrm{H}), 1.90-1.75(\mathrm{~m}$, $8 \mathrm{H}), 1.65-1.54(\mathrm{~m}, 4 \mathrm{H}), 1.54-1.46(\mathrm{~m}, 4 \mathrm{H}), 1.05-0.98(\mathrm{~m}, 8 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.0$, $171.7,162.5,161.9,148.8,146.5,142.8,141.5,136.0,134.5,134.5,132.4,130.8,129.7,128.3,127.3$, $125.3,124.7,73.9,73.0,66.5,66.2,12.4,32.2,30.6,30.5,19.2,19.2,13.9,13.9,13.8,13.8$; $\operatorname{HRMS}\left(\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{O}_{8} \mathrm{~S}_{3}+\mathrm{H}\right)$: calculated for: 669.1645, found: 669.1663.

4: Compound 2 ($89 \mathrm{mg}, 0.1 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, then TBN ($128 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$) was added. The resulting mixture was stirred at RT for 6 h . The solvent was removed by evaporation under reduced pressure. The crude product was further purified by column chromatography on silicagel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford 5 as black powder (53 mg , yield, 65%). mp: 148.5-149.3 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.41(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.35-4.31(\mathrm{~m}, 6 \mathrm{H}), 1.89-1.75(\mathrm{~m}, 8 \mathrm{H}), 1.64-1.44(\mathrm{~m}, 8 \mathrm{H})$, $1.05-0.98(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.2,173.9,164.3,163.6,150.7,150.5,148.1$, $145.2,140.4,139.6,138.9,138.0,135.2,133.2,132.3,130.9,129.6,129.3,73.9,73.3,66.3,66.0$, 32.5, 32.3, 30.6, 30.5, 19.3, 19.2, 19.2, 13.9, 13.8, 13.7; $\mathrm{HRMS}\left(\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{O}_{8} \mathrm{Se}_{3}+\mathrm{H}\right)$: calculated for: 810.9986, found: 811.0021.

5: Compound $1(75 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathrm{NaNO}_{2}(69 \mathrm{mg}, 1.0 \mathrm{mmol})$ were dissolved in TFA $(10 \mathrm{~mL})$ in a 20 mL bottle with the lid screwed immediately. The reaction mixture was stirred for 10 minute at room temperature, then the lid was unscrewed to introduce air for 5 seconds. Repeating the same operation for 6 times. Finally, the reaction was quenched by adding distilled water and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The organic layers were combined and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, then concentrated in vacuo. The crude product was further purified by column chromatography on silica-gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: EA, $\left.50: 1, v / v\right)$ to afford $\mathbf{6}$ as brownish red solid (17 mg , yield, 42%). mp: 223.1-223.8 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.39(\mathrm{t}, J=6.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.81(\mathrm{p}, J=6.8 \mathrm{~Hz}$, $4 \mathrm{H}), 1.55-1.47(\mathrm{~m}, 4 \mathrm{H}), 1.02(\mathrm{t}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.7,172.2,161.5$,

6: Compound $2(89 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathrm{NaNO}_{2}(69 \mathrm{mg}, 1.0 \mathrm{mmol})$ were dissolved in TFA $(10 \mathrm{~mL})$ in a 20 mL bottle with the lid screwed immediately. The reaction mixture was stirred for 10 minute at room temperature, then the lid was unscrewed to introduce air for 5 seconds. Repeating the same operation for 6 times. Finally, the reaction was quenched by adding distilled water and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The organic layers were combined and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, then concentrated in vacuo. The crude product was further purified by column chromatography on silica-gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: EA, $\left.50: 1, v / v\right)$ to afford 7 as brownish red solid (25 mg , yield, 46%). mp: 239.1-239.7 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.35(\mathrm{t}, J=6.7 \mathrm{~Hz}, 4 \mathrm{H}), 1.82-1.75(\mathrm{~m}, 4 \mathrm{H})$, $1.53-1.44(\mathrm{~m}, 4 \mathrm{H}), 1.01(\mathrm{t}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.8,173.6,163.2,150.8$, 145.4, 143.0, 139.6, 138.7, 130.6, 66.8, 30.4, 19.2, 13.7; $\mathrm{HRMS}\left(\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{O}_{8} \mathrm{Se}_{3}+\mathrm{H}\right)$: calculated for: 696.8578, found: 696.8571.

9: Compound $2(82 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathrm{NaNO}_{2}(69 \mathrm{mg}, 1.0 \mathrm{mmol})$ were dissolved in TFA (10 mL) in a 20 mL bottle with the lid screwed immediately. The reaction mixture was stirred for 10 minute at room temperature, then the lid was unscrewed to introduce air for 5 seconds. Repeating the same operation for 6 times. Finally, the reaction was quenched by adding distilled water and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The organic layers were combined and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, then concentrated in vacuo. The crude product was further purified by column chromatography on silica-gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford $\mathbf{9}$ as red solid (63 mg , yield, 90%). mp: $>300^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.60(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.39(\mathrm{~s}, 18 \mathrm{H})$. Due to poor solubility, the crude product has not ${ }^{13} \mathrm{C}$ NMR.

10: Compound $2(96 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathrm{NaNO}_{2}(69 \mathrm{mg}, 1.0 \mathrm{mmol})$ were dissolved in TFA (10 mL) in a 20 mL bottle with the lid screwed immediately. The reaction mixture was stirred for 10 minute at room temperature, then the lid was unscrewed to introduce air for 5 seconds. Repeating the same operation for 6 times. Finally, the reaction was quenched by adding distilled water and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The organic layers were combined and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, then concentrated in vacuo. The crude product was further purified by column chromatography on silica-gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford 9 as red solid (77 mg , yield, 91%). mp : $>300^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.60(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.21(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.39(\mathrm{~s}, 18 \mathrm{H})$. Due to poor solubility, the crude product has not ${ }^{13} \mathrm{C}$ NMR.

12: Compound 3 ($334 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 3,6-bis(3,3-dimethylbut-1-yn-1-yl)benzene-1,2-diamine ($\mathbf{1 1}, 201 \mathrm{mg}, 0.75 \mathrm{mmol}$) were dissolved in $\mathrm{AcOH}(20 \mathrm{~mL})$ and $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$. The resulting mixture was stirred at $85^{\circ} \mathrm{C}$ for 4 h under the inert atmosphere. After cooling down to RT, the solvent was removed by evaporation under reduced pressure. The crude product was further purified by column chromatography on silica-gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: petro ether, $\left.1: 1, v / v\right)$ to afford $\mathbf{1 2}$ as red powder $(361 \mathrm{mg}$, yield, 81%). mp: 215.4-216.1 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.88(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.57(\mathrm{t}, J$ $=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.47-4.38(\mathrm{~m}, 6 \mathrm{H}), 1.98-1.78(\mathrm{~m}, 8 \mathrm{H}), 1.72-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.56-1.46(\mathrm{~m}, 22 \mathrm{H}), 1.09-$ $1.00(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 163.3,163.2,148.1,146.1,142.2,142.1,141.6,140.6$, $137.9,137.6,134.5,133.0,133.0,132.4,131.8,131.1,130.8,130.4,129.5,128.4,127.9,126.2,123.7$, $123.5,107.8,107.7,76.1,76.0,73.8,72.9,65.8,65.7,32.4,32.2,31.1,31.0,30.7,30.6,28.7,19.3$, 19.2, 19.2, 13.9, 13.8; HRMS ($\left.\mathrm{C}_{52} \mathrm{H}_{56} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{3}+\mathrm{H}\right)$: calculated for: 901.3373, found: 901.3395.

13: Compound $\mathbf{4}$ ($405 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathbf{1 1}(201 \mathrm{mg}, 0.75 \mathrm{mmol})$ were dissolved in $\mathrm{AcOH}(20 \mathrm{~mL})$ and $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$. The resulting mixture was stirred at $85^{\circ} \mathrm{C}$ for 4 h under the inert atmosphere. After cooling down to RT, the solvent was removed by evaporation under reduced pressure. The crude product was further purified by column chromatography on silica-gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: petro ether, 1 : $1, v / v$) to afford 13 as red powder (442 mg , yield, 85%). mp: 198.3-199.5 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.91-7.85(\mathrm{~m}, 2 \mathrm{H}), 4.47(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.41-4.34(\mathrm{~m}, 6 \mathrm{H}), 1.95-1.77(\mathrm{~m}, 4 \mathrm{H}), 1.70-1.60(\mathrm{~m}$, $2 \mathrm{H}), 1.57(\mathrm{~d}, J=1.3 \mathrm{~Hz} 18 \mathrm{H}), 1.54-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.08-0.98(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $164.9,164.8,149.1,148.0,143.3,142.7,142 ., 6142.5,141.5,140.8,139.6,137.1,135.7,135.3,133.4$, $132.9,132.6,132.4,132.3,132.0,131.3,130.7,123.6,123.5,107.6,107.6,76.0,73.7,73.1,65.8$, $65.6,32.5,32.3,31.1,30.6,30.6,28.7,19.4,19.3,19.3,13.9,13.9,13.8 ; \operatorname{HRMS}\left(\mathrm{C}_{52} \mathrm{H}_{56} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Se}_{3}+\mathrm{H}\right)$: calculated for: 1043.1715; found: 1043.1738.

28: Compound 5 ($277 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathbf{1 1}(295 \mathrm{mg}, 1.1 \mathrm{mmol})$ were dissolved in $\mathrm{AcOH}(20 \mathrm{~mL})$ and $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$. The resulting mixture was stirred at $85^{\circ} \mathrm{C}$ for 4 h under the inert atmosphere. After cooling down to RT, the solvent was removed by evaporation under reduced pressure. The crude product was further purified by column chromatography on silica-gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: petro ether, 1 : $1, v / v)$ to afford 28 as yellow powder (382 mg , yield, 75%). mp: $>300^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.94(\mathrm{~s}, 4 \mathrm{H}), 4.49(\mathrm{t}, J=6.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.85(\mathrm{dq}, J=8.4,6.6 \mathrm{~Hz} 4 \mathrm{H}), 1.60(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 36 \mathrm{H}), 1.60-1.54(\mathrm{~m}$, $4 \mathrm{H}), 1.04(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.1,142.5,142.2,141.7$, 141.1, 137.9, 137.3, 135.4, 134.7, 133.1, 133.0, 131.1, 128.1, 123.8, 123.7, 108.1, 108.0, 75.9, 75.9, 66.0, 31.2, 31.1, 31.1, 30.6, 28.8, 19.3, 13.8; HRMS $\left(\mathrm{C}_{64} \mathrm{H}_{58} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Se}+\mathrm{H}\right)$: calculated for: 1091.3697; found: 1091.9710.

29: Compound $\mathbf{6}$ ($348 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathbf{1 1}(295 \mathrm{mg}, 1.1 \mathrm{mmol})$ were dissolved in glacial acetic acid $(20 \mathrm{~mL})$ and TCM $(20 \mathrm{~mL})$. The resulting mixture was stirred at $85^{\circ} \mathrm{C}$ for 4 h under the inert atmosphere. After cooling down to RT, the solvent was removed by evaporation under reduced pressure. The crude product was further purified by column chromatography on silica-gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: petro ether, $1: 1, v / v$) to afford 29 as yellow powder (458 mg , yield, 79%). $\mathrm{mp}:>300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{~s}, 4 \mathrm{H}), 4.44(\mathrm{t}, J=6.7 \mathrm{~Hz}, 4 \mathrm{H}), 1.85(\mathrm{p}, J=6.7 \mathrm{~Hz}, 4 \mathrm{H}), 1.60(\mathrm{~d}, J=1.7 \mathrm{~Hz}$, $40 \mathrm{H}), 1.04(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.7,143.2,142.7,142.5,142.5,141.9$, $140.6,139.6,138.9,135.1,132.9,132.9,131.9,123.7,123.7,107.8,76.0,65.9,31.1,31.1,30.6,28.7$, 19.3, 13.8; HRMS ($\mathrm{C}_{64}{ }_{5}{ }_{58} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Se}_{3}+\mathrm{H}$): calculated for: 1161.2075; found: 1161.2089.

14: Compound $12(450 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathrm{NaOH}(400 \mathrm{mg}, 10 \mathrm{mmol})$ were dissolved in the mixed solvent of THF $(20 \mathrm{~mL})-\mathrm{EtOH}(20 \mathrm{~mL})-\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$, then stirred at $85^{\circ} \mathrm{C}$ for 12 h . After cooling down to RT, the reaction was quenched by adding HCl aqueous (3 N) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50$ mL). The organic layers were combined and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated under reduced pressure. The crude product was purified by column chromatography on silica-gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}, 3: 1, v / v\right)$ to afford $\mathbf{1 4}$ as red powder (245 mg , yield, 62%). $\mathrm{mp}:>300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{THF}-d_{8}$) $\delta 7.85(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.56(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.41(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.97$ $-1.85(\mathrm{~m}, 5 \mathrm{H}), 1.68(\mathrm{dt}, J=12.4,4.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.56(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 19 \mathrm{H}), 1.07(\mathrm{q}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{THF}-d_{8}$) $\delta 164.0,148.3,146.7,142.4,142.3,142.0,140.9,140.4,138.1,135.5$, $134.3,133.1,132.7,132.4,131.5,130.9,130.5,129.8,128.5,127.8,126.5,124.4,124.3,107.3,107.2$,
 HRMS $\left(\mathrm{C}_{44} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{3}+\mathrm{H}\right)$: calculated for: 789.2121, found: 789.2147.

15: Compound 13 (520 mg 0.5 mmol) and $\mathrm{NaOH}(400 \mathrm{mg}, 10 \mathrm{mmol})$ were dissolved in the mixed solvent of THF (20 mL)-EtOH (20 mL)- $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$, then stirred at $85^{\circ} \mathrm{C}$ for 12 h . After cooling down to RT , the reaction was quenched by adding HCl aqueous $(3 \mathrm{~N})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50$ $\mathrm{mL})$. The organic layers were combined and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated under reduced pressure. The crude product was further purified by column chromatography on silicagel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}, 3: 1, v / v\right)$ to afford $\mathbf{1 5}$ as red powder (279 mg , yield, 60%). mp: $>300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{THF}-d_{8}$) $\delta 7.76(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.37(\mathrm{t}, J=6.3 \mathrm{~Hz}, 4 \mathrm{H}), 1.91-1.85(\mathrm{~m}, 4 \mathrm{H})$, $1.71-1.65(\mathrm{~m}, 4 \mathrm{H}), 1.58(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 18 \mathrm{H}), 1.08(\mathrm{td}, J=7.4,4.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , THF- d_{8}) $\delta 164.8,149.5,147.8,143.1,142.9,142.5,141.6,141.3,140.7,137.8,137.2,136.2,135.9$, $135.3,132.9,132.5,132.32,131.3,130.8,130.8,129.6,124.4,124.1,107.0,106.9,77.1,77.1,73.6$, 73.1, 33.2, 33.0, 31.3, 31.2, 29.1, 19.9, 19.9, 14.0, 13.9; $\operatorname{HRMS}\left(\mathrm{C}_{44} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Se}_{3}+\mathrm{H}\right)$: calculated for: 931.0440, found: 931.0463.

30: Compound 28 (501 mg 0.5 mmol) and $\mathrm{NaOH}(400 \mathrm{mg}, 10 \mathrm{mmol})$ were dissolved in the mixed solvent of THF (20 mL)-EtOH (20 mL)- $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$, then stirred at $85^{\circ} \mathrm{C}$ for 12 h . After cooling down to RT , the reaction was quenched by adding HCl aqueous (3 N) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50$ $\mathrm{mL})$. The organic layers were combined and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated under reduced pressure. Due to poor solubility, the crude product was not further purified.

31: Compound 29 (558 mg 0.5 mmol) and $\mathrm{NaOH}(400 \mathrm{mg}, 10 \mathrm{mmol})$ were dissolved in the mixed solvent of THF (20 mL)-EtOH (20 mL) - $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$, then stirred at $85^{\circ} \mathrm{C}$ for 12 h . After cooling down to RT , the reaction was quenched by adding HCl aqueous (3 N) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50$ $\mathrm{mL})$. The organic layers were combined and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated under reduced pressure. Due to poor solubility, the crude product was not further purified.

16: Compound 14 ($160 \mathrm{mg}, 0.2 \mathrm{mmol}$), 4-tert-butylaniline ($40 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$) and $1,3-$ dicyclohexylcarbodiimide (DCC, $412 \mathrm{mg}, 2 \mathrm{mmol}$) were dissolved in anhydrous THF (50 mL). The resulting mixture was stirred at $80^{\circ} \mathrm{C}$ for 8 h under nitrogen. After cooling down to RT, the reaction was quenched by adding distilled water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The organic layers were combined and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, then concentrated under reduced pressure. The crude product was purified by column chromatography on silica-gel (eluent, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: petro ether, 1 : $1, \mathrm{v} / \mathrm{v}$) to afford 16 as red powder (36 mg , yield, 20%). $\mathrm{mp}:>300^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.90(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $4.59(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.35(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.89(\mathrm{dt}, J=29.1,7.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.57(\mathrm{~d}, J=18.1 \mathrm{~Hz}$, $22 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.05(\mathrm{dt}, J=14.9,7.3 \mathrm{~Hz}, 6 \mathrm{H}){ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.8,161.7,150.8$, $150.1,146.28,142.6,141.6,141.3,140.3,139.9,138.5,137.6,135.3,133.7,133.6,133.3,132.5$, $131.6,130.2,129.5,127.6,127.4,127.3,126.5,125.9,123.9,123.6,108.6,1078.0,34.7,32.3,32.1$, $31.5,31.1,31.0,29.7,28.7,19.2,19.2,13.9,13.9 ; \operatorname{HRMS}\left(\mathrm{C}_{54} \mathrm{H}_{51} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{3}+\mathrm{H}\right)$: calculated for: 902.3114, found: 902.3101.

17: Compound 15 ($190 \mathrm{mg}, 0.2 \mathrm{mmol}$), 4-tert-butylaniline ($40 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$) and DCC ($412 \mathrm{mg}, 2$ mmol) were dissolved in anhydrous THF (50 mL). The resulting mixture was stirred at $80^{\circ} \mathrm{C}$ for 8 h under nitrogen. After cooling down to RT, the reaction was quenched by adding distilled water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The organic layers were combined and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, then concentrated under reduced pressure. The crude product was further purified by column chromatography on silica-gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: petro ether, $\left.1: 1, \mathrm{v} / \mathrm{v}\right)$ to afford $\mathbf{1 7}$ as red powder (53 mg , yield, 25%). mp: $>300{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.37(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{t}, J=6.3$ $\mathrm{Hz}, 2 \mathrm{H}), 1.88-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.58(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 22 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.03(\mathrm{dt}, J=10.4,7.3 \mathrm{~Hz}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.5,162.5,150.9,150.7,147.8,145.7,142.8,142.4,142.1$, $141.5,141.0,140.1,137.4,136.5,135.0,133.6,133.2,132.9,132.2,131.1,130.8,130.7,130.1,129.3$, $127.5,126.3,123.6,123.5,108.2,107.7,76.3,75.7,73.0,72.1,34.7,32.4,31.5,31.1,28.7,19.3,13.9$. $\operatorname{HRMS}\left(\mathrm{C}_{54} \mathrm{H}_{51} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Se}_{3}+\mathrm{H}\right)$: calculated for: 1044.1456, found: 1044.1461.

18: Compound 30 ($182 \mathrm{mg}, 0.2 \mathrm{mmol}$), 4-tert-butylaniline $(40 \mu \mathrm{~L}, 0.25 \mathrm{mmol})$ and DCC ($412 \mathrm{mg}, 2$ mmol) were dissolved in anhydrous THF (50 mL). The resulting mixture was stirred at $80^{\circ} \mathrm{C}$ for 8 h under nitrogen. After cooling down to RT, the reaction was quenched by adding distilled water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The organic layers were combined and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, then concentrated under reduced pressure. The crude product was further purified by column chromatography on silica-gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: petro ether, $2: 1, \mathrm{v} / \mathrm{v}$) to afford $\mathbf{1 8}$ as red powder (37 mg , yield, 18%) $\mathrm{mp}: ~>300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87(\mathrm{~s}, 4 \mathrm{H}), 7.62(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.36$ $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.55(\mathrm{~s}, 18 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.9,151.1,143.1$,

19: Compound 31 ($210 \mathrm{mg}, 0.2 \mathrm{mmol}$), 4-tert-butylaniline ($40 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$) and DCC ($412 \mathrm{mg}, 2$ $\mathrm{mmol})$ were dissolved in anhydrous THF (50 mL). The resulting mixture was stirred at $80^{\circ} \mathrm{C}$ for 8 h under nitrogen. After cooling down to RT, the reaction was quenched by adding distilled water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The organic layers were combined and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, then concentrated under reduced pressure. The crude product was further purified by column chromatography on silica-gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: petro ether, $2: 1, \mathrm{v} / \mathrm{v}$) to afford $\mathbf{1 7}$ as red powder (35 mg , yield, 15%) . mp: $>300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ with 2 drops D-TFA) $\delta 7.97-7.86(\mathrm{~m}, 4 \mathrm{H})$, $7.64(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.58(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 36 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}) . ;$ Due to poor solubility, we failed to obtain ${ }^{13} \mathrm{C}$ NMR. $\mathrm{HRMS}\left(\mathrm{C}_{64} \mathrm{H}_{53} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{Se}_{3}+\mathrm{H}\right)$: calculated for: 1162.1776, found: 1162.1801.

9

20

20: Compound $\mathbf{9}(70 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathbf{1 1}(32 \mathrm{mg}, 0.12 \mathrm{mmol})$ were dissolved in glacial acetic acid $(20 \mathrm{~mL})$ and TCM (20 mL). The resulting mixture was stirred at $85^{\circ} \mathrm{C}$ for 4 h under the inert atmosphere. After cooling down to RT, the solvent was removed by evaporation under reduced pressure. The crude product was further purified by column chromatography on silica-gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: petro ether, $2: 1, v / v$) to afford 20 as yellow powder (80 mg , yield, 85%). mp: $>300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) $\delta 7.86$ (s, 1H), $7.60(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 1.54$ (s, 9H), $1.43(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.0,160.7,151.5,141.7,141.6,140.9,138.5,138.2$,
136.3, 133.8, 132.2, 129.8, 127.3, 126.7, 125.8, 124.0, 109.3, 75.3, 34.8, 31.4, 31.0, 28.8.HRMS $\left(\mathrm{C}_{56} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{3}+\mathrm{H}\right)$: calculated for: 935.2754 ; found: 935.2751.

10

20: Compound $9(85 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathbf{1 1}(32 \mathrm{mg}, 0.12 \mathrm{mmol})$ were dissolved in glacial acetic acid $(20 \mathrm{~mL})$ and TCM $(20 \mathrm{~mL})$. The resulting mixture was stirred at $85^{\circ} \mathrm{C}$ for 4 h under the inert atmosphere. After cooling down to RT, the solvent was removed by evaporation under reduced pressure. The crude product was further purified by column chromatography on silica-gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: petro ether, $2: 1, v / v$) to afford 20 as yellow powder (90 mg , yield, 86%). mp: $>300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) $\delta 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 1.55(\mathrm{~s}, 9 \mathrm{H}), 1.43(\mathrm{~s}, 10 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.9,161.8,151.5,149.5,145.0,143.1,142.4,140.8,136.2,136.0$, 133.5, 133.3, 129.9, 127.2, 126.6, 123.8, 109.1, 75.5, 34.8, 31.4, 31.1, 31.1, 28.8.HRMS $\left(\mathrm{C}_{56} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Se}_{3}+\mathrm{H}\right)$: calculated for:1077.1095; found: 1077.1096.

3. Crystal Structure Analysis

3.1 Experimental details on crystal growth

The single crystals of $\mathbf{4}$ (black needle), and $\mathbf{6}$ (black needle) were obtained by slowly evaporating their $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(1: 1, v / v), \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions at room temperature, respectively.

Selected crystallographic data of $\mathbf{4}$ and $\mathbf{6}$.

	$\mathbf{4}$	$\mathbf{6}$
CCDC number	2057108	2057109
Empirical formula	$\mathrm{C}_{68} \mathrm{H}_{72} \mathrm{O}_{16} \mathrm{Se}_{6}$	$\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{O}_{8} \mathrm{Se}_{3}$
Formula weight	1619.01	695.31
Temperature $[\mathrm{K}]$	$150.00(10)$	173.00
$\lambda[\AA]$	$1.54184(\mathrm{Cu}-\mathrm{K} \alpha)$	$0.71073(\mathrm{Mo}-\mathrm{K} \alpha)$
Crystal size $\left[\mathrm{mm}^{3}\right]$	$0.07 \times 0.04 \times 0.02$	$0.4 \times 0.2 \times 0.1$
Crystal system	monoclinic	triclinic
space group	$P 2_{1} / c$	$P-1$
$a[\AA]$	$16.2433(4)$	$8.7375(5)$
$b[\AA]$	$19.4044(5)$	$9.6492(7)$
$c[\AA]$	$21.7744(6)$	$15.5120(12)$
$\alpha\left[^{\circ}\right]$	90	$107.499(7)$
$\beta\left[^{\circ}\right]$	$108.927(3)$	$98.427(6)$
$\gamma\left[^{\circ}\right]$	90	$99.971(5)$
$V\left[\AA^{3}\right]$	$6492.0(3)$	$1200.68(16)$
Z	4	2
$d_{\text {calc }}\left[\mathrm{g}\right.$ cm $\left.{ }^{-3}\right]$	1.656	1.9231
$\mu\left[\mathrm{~mm}^{-1}\right]$	4.561	4.647
2θ max $\left.^{\circ}{ }^{\circ}\right]$	152.402	57.26
$D_{\text {ata/restraints/parameters }}$	$12821 / 65 / 893$	$5440 / 0 / 336$
$G o o F$	1.043	1.021
$R[I>2 \sigma(I)]$	0.071	0.0540
$w R_{2}$	0.1801	0.0888

Figure S1. a) Top view and b) side view of compound 4. The selected bond lengths are in unit of \AA. The n-Bu groups and H atoms are omitted for clarity in b).The cyan, grey, red, yellow balls represent hydrogen, carbon, oxygen, and selenium atoms, respectively.

Figure S2. a) Top view and b) side view of compound $\mathbf{6}$. The selected bond lengths are in unit of \AA. The n-Bu groups and H atoms are omitted for clarity in b). The cyan, grey, red, yellow balls represent hydrogen, carbon, oxygen, and selenium atoms, respectively.

4. Photophysical Study

4.1 Spectroelectrochemistry of $\mathbf{3 , 4 , 5 , 6 , 9}$, and 10

The in-situ investigation of the absorption spectra of $\mathbf{3 , 4 , 5 , 6 , 9}$, and $\mathbf{1 0}$ under constant electrochemical reduction potential was performed on a Zahner CIMPS type photo-electrochemical workstation using a standard three-electrode electrochemical cell with an transparent indium tin oxide (ITO) as the working electrode, Pt rod as the counter electrode, a SCE as the reference electrode and a tungsten halogen lamp (500 W) as light source. Measurement conditions: solvent, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; concentration, $1 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$; supporting electrolyte, $\left(n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}(0.1 \mathrm{M})\right.$; temperature, $20^{\circ} \mathrm{C}$.

Scheme S1. The reaction of $\mathbf{3 / 4}$ under the electrochemical condition.

Figure S3. Time-dependent UV-Vis spectra of $\mathbf{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}\right)$ under reduction potential of - 0.8 V , along with the photographs of $\mathbf{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}\right)$ before and after reduction.

Figure S4. Time-dependent UV-Vis spectra of $\mathbf{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}\right)$ under reduction potential of - 0.8 V , along with the photographs of $\mathbf{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}\right)$ before and after reduction.

Scheme S2. The reaction of $\mathbf{5 / 6}$ under the electrochemical condition.

Figure S5. Time-dependent UV-Vis spectra of $\mathbf{5}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}\right)$ under reduction potential of - 0.8 V , along with the photographs of $\mathbf{5}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}\right)$ before and after reduction.

Figure S6. Time-dependent UV-Vis spectra of $\mathbf{6}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}\right)$ under reduction potential of - 0.8 V , along with the photographs of $\mathbf{6}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}\right)$ before and after reduction.

Figure S7. Time-dependent UV-Vis spectra of $\mathbf{9}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}\right)$ under reduction potential of - 0.8 V , along with the photographs of $\mathbf{9}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}\right)$ before and after reduction.

Figure S8. Time-dependent UV-Vis spectra of $\mathbf{1 0}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10^{-4} \mathrm{~mol} \mathrm{~L} \mathrm{~L}^{-1}\right)$ under reduction potential of - 0.8 V , along with the photographs of $\mathbf{1 0}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}\right)$ before and after reduction.

4.2 UV-Vis spectra

The UV-Vis spectra of the compounds so far obtained were measured in their dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ solution ($\mathrm{c}=1.0 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$) at $20^{\circ} \mathrm{C}$ on a UV-2600 UV-Vis spectrometer (Shimadzu).
Table S1. UV-Vis spectra of compounds $\mathbf{1 - 1 0 , 1 6 - 2 5}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution.

Comp.	$\lambda_{\text {max }} / \mathbf{n m}$	$\log \varepsilon$	$\lambda_{\text {max }} / \mathbf{n m}$	$\log \varepsilon$	$\lambda_{\text {max }} / \mathbf{n m}$	$\log \varepsilon$	$\lambda_{\text {max }} / \mathbf{n m}$	$\log \varepsilon$
1	314	4.91	345	4.35				
2	312	4.82	341	4.36				
3	287	4.26	360	4.22	402	4.27	578	3.65
4	295	4.23	393	4.30	419	4.30	610	3.60
5	319	4.70	387	4.27				
6	350	4.45	423	4.05				
7	321	4.50	393	4.36	424	4.34		
8	262	4.61	335	4.27	413	4.43	437	4.39
9	350	4.53	408	3.89	506	3.52		
10	350	4.51	406	3.93	510	3.49		
16	298	4.67	336	4.46	404	4.36	429	4.40
17	306	4.72	343	4.53	440	4.60		
18	284	4.93	379	4.86	399	4.86		
19	286	4.92	350	4.62	396	4.83	412	4.86
20	274	4.69	350	4.73	380	4.70		
21	278	4.80	378	4.80	396	4.79		
22	268	4.79	313	5.01	378	4.71	496	4.37
23	278	4.72	311	4.86	379	4.68	487	4.27
24	304	4.33	364	4.67	449	4.06	514	4.09
25	302	4.35	358	4.69	434	3.93	502	3.94

Figure S9. UV-Vis absorption spectra of 1-6, 9-10 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}\right)$ at $20^{\circ} \mathrm{C}$.

Figure S10. UV-Vis absorption spectra of $\mathbf{1 , 7 , 1 6 , 1 8 , 2 0 , 2 4 , 2 5}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}\right)$ at $20^{\circ} \mathrm{C}$.

Figure S11. UV-Vis absorption spectra of 2, 8, 17, 19, 21-23in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}\right)$ at $20^{\circ} \mathrm{C}$.

4.3 Fluorescence

Fluorescence excitation and emission spectra were recorded with an RF-5301(pc)s Spectrofluorophotometer, fluorescence lifetime and steady state were measured on FLS920 Spectrofluorophotometer. Measurement conditions: solvent, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; concentration, $10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$, temperature, $20^{\circ} \mathrm{C}$.

Table S2. The emission and excitation properties of compounds $\mathbf{1 6 - 1 9}, \mathbf{2 2 - 2 3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution.

Comp.	$\lambda_{\text {ex }} / \mathbf{n m}$	$\lambda_{\text {em }} / \mathbf{n m}$	Stocks shift $/ \mathbf{c m}^{-1}$	$\boldsymbol{\Phi}_{\boldsymbol{F}} / \boldsymbol{\%}$	$\boldsymbol{\tau}_{\mathbf{1}} / \mathbf{n s}$	$\boldsymbol{\tau}_{2} / \mathbf{n s}$	$\boldsymbol{\tau}_{3} / \mathbf{n s}$
$\mathbf{1 6}$	533	691	4289	1.69	$1.11(96.5 \%)$	$5.81(3.5 \%)$	
$\mathbf{1 7}$	535	637	2993	0.15	$0.35(30.5 \%)$	$4.17(43 \%)$	$9.74(26.5 \%)$
$\mathbf{1 8}$	493	556	2298	5.71	$3.99(100 \%)$		
$\mathbf{1 9}$	500	571	2486	0.13	$0.19(73.7 \%)$	$4.08(26.3 \%)$	
$\mathbf{2 2}$	536	638	2982	17.22	$6.42(100 \%)$		
$\mathbf{2 4}$	525	638	3373	43.2	$19.20(100 \%)$		

$\lambda_{\text {ex: }}$ excitation wavelength; $\lambda_{\text {em }}$: maximum emission wavelength; Φ_{F} : fluorescence quantum yield; τ_{1} : fluorescence lifetime

Figure S12. Emission spectra of $\mathbf{1 6 - 1 9 , 2 2 , 2 4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}\right)$ at $20^{\circ} \mathrm{C}$.

5. Thermogravimetric Analyses (TGA)

Thermogravimetric analyses (TGA) were conducted on 1090B type thermal analyzer (Dupont Engineering polymers).

Table S3. Thermal stability of compounds 16, 18, 20, 22 and 24.

Comp.	$\mathbf{1 6}$	$\mathbf{1 8}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 5}$
$T_{d} /{ }^{\circ} C$	340	356	394	332	318

T_{d} : degradation temperature

Figure S13. Thermogravimetric analyses of compounds 16, 18, 20, 22, 24, 25.

Table S4. Thermal stability of compounds 17, 19, 21, 23 and 25.

Comp.	$\mathbf{1 7}$	$\mathbf{1 9}$	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$
$T_{d} /{ }^{\circ} C$	355	392	403	337	327

T_{d} : degradation temperature

Figure S14. Thermogravimetric analyses of compounds 17, 19, 21, 22, 23.

6. Electrochemical spectra

The redox potentials were obtained by CV and DPV methods on RST 5000 electrochemical analyzer with glassy carbon discs as the working electrode, Pt wire as the counter electrode, and SCE electrode as the reference electrode. Measurement conditions: solvent, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; concentration, $1 \times 10^{-}$ ${ }^{4} \mathrm{~mol} \mathrm{~L}^{-1}$; supporting electrolyte, $(n-\mathrm{Bu})_{4} \mathrm{NPF}_{6}(0.1 \mathrm{M})$; scan speed, $50 \mathrm{mV} \mathrm{S}^{-1}$; temperature, $20^{\circ} \mathrm{C}$.

Figure S15. CV and DPV of $\mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}, \mathbf{7}, \mathbf{9}$, and $\mathbf{1 0}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(c=10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}\right)$ at RT. Reference electrode: SCE.

Figure S16. CV and DPV of 1-2 and 22-25 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(c=10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}\right)$ at RT. Reference electrode: SCE.

Potential / V

Potential / V

Figure S17. CV and DPV of 7-8 and 16-21 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(c=10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}\right)$ at RT. Reference electrode: SCE.

7. Theoretical calculations

All calculations were carried out with the Gaussian 16 programs. For DFT calculations, we used the hybrid gradient corrected exchange functional of Lee, Yang, and Parr. A standardized 6-31G basis set was used together with polarization (d) functions. The UV-Vis absorption spectra were calculated at TD- ω B97XD $/ \operatorname{IEFPCM}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)($ nstates $=40$, root $=1)$ level of theory using optimized structures. The optimized structures and molecular orbitals are displayed using Chemcraft. ${ }^{[88]}$ The calculated UV-Vis absorption spectra were displayed using Multiwfn software. ${ }^{[59]}$

1

4

9

3

6

8

10

18

24

22

23

26

Scheme S3. The chemical structures of mentioned compounds 1-10 and 16-25.

7.1 Optimized Structures, Molecular Orbitals and Corresponding Energies

Table S5. The calculated energy levels for the frontier orbitals for compounds 1-10 and 16-25.

Compound	Energy levels / eV						
	HOMO-2	HOMO-1	HOMO	LUMO	LUMO+1	LUMO+2	$E_{g}^{\text {ga] }}$
1	-6.22	-5.15	-5.01	-0.97	-0.86	-0.40	4.03
2	-6.18	-5.21	-5.03	-0.97	-0.87	-0.22	4.06
3	-6.81	-6.60	-6.01	-3.33	-2.57	-1.00	2.68
4	-6.74	-6.39	-5.85	-3.35	-2.56	-1.06	2.50
5	-7.31	7.19	-7.14	-4.16	-3.54	-2.90	2.98
6	-7.14	-6.99	-6.92	-4.15	-3.55	-2.89	2.77
7	-6.40	-6.40	-6.04	-2.73	-2.72	-1.55	3.31
8	-6.41	-6.28	-5.90	-2.72	-2.69	-1.52	3.17
9	-6.98	-6.69	-6.69	-3.94	-3.14	-2.99	2.75
10	-6.80	-6.69	-6.68	-3.89	-3.10	-2.93	2.79
16	-6.23	-5.82	-5.55	-2.77	-2.54	-1.44	2.78
17	-6.03	-5.74	-5.50	-2.77	-2.54	-1.43	2.72
18	-6.13	-5.70	-5.62	-2.93	-2.72	-2.55	2.69
19	-5.99	-5.68	-5.60	-2.96	-2.73	-2.57	2.65
20	-6.45	-6.44	-5.79	-3.05	-2.74	-2.71	2.74
21	-6.38	-6.23	-5.75	-3.03	-2.73	-2.67	2.72
22	-6.18	-5.89	-5.37	-2.49	-1.36	-0.88	2.88
23	-5.50	-5.40	-4.93	-2.49	-1.08	-0.95	2.44
24	-6.15	-6.08	-5.46	-2.50	-1.38	-0.89	2.96
25	-5.58	-5.50	-5.04	-2.48	-1.12	-1.07	2.57
26	-6.77	-6.77	-5.98	-.344	-1.84	-1.71	2.54
27	-6.67	-6.63	-5.29	-3.45	-1.88	-1.00	1.84

$[\mathrm{a}] \boldsymbol{E}_{g}=\mathbf{E}_{\mathrm{LUMO}}-\mathbf{E}_{\text {номо }}$

Figure S18. Schematic plot of HOMO-LUMO levels of compounds 1-6 and 9-10.

——LUMO +2 _LUMO +1 ——LUMO ——HOMO ——HOMO-1 ——HOMO-2
Figure S19. Schematic plot of HOMO-LUMO levels of compounds1, 7, 16, 18, 20, and 24-27.

Figure S20. Schematic plot of HOMO-LUMO levels of compounds 2, 8, 17, 19, 21-23, 26, and 27.

Figure S21. Calculated molecular orbitals of compound 1.

Figure S22. Calculated molecular orbitals of compound 2.

Figure S23. Calculated molecular orbitals of compound 3.

Figure S24. Calculated molecular orbitals of compound 4.

Figure S25. Calculated molecular orbitals of compound 5.

Figure S26. Calculated molecular orbitals of compound 6.

Figure S27. Calculated molecular orbitals of compound 7.

HOMO
LUMO +1
LUMO +2

HOMO-1

HOMO-2

Figure S28. Calculated molecular orbitals of compound 8.

Figure S29. Calculated molecular orbitals of compound 9.

Figure S30. Calculated molecular orbitals of compound 10.

Figure S31. Calculated molecular orbitals of compound 16.

Figure S32. Calculated molecular orbitals of compound 17.

Figure S33. Calculated molecular orbitals of compound 18.

Figure S34. Calculated molecular orbitals of compound 19.

HOMO-1

HOMO-2

Figure S35. Calculated molecular orbitals of compound 20.

igure S36. Calculated molecular orbitals of compound 21.

Figure S37. Calculated molecular orbitals of compound 22.

Figure S38. Calculated molecular orbitals of compound 23.

Figure S39. Calculated molecular orbitals of compound 24.

Figure S40. Calculated molecular orbitals of compound 25.

7.2 UV-Vis Absorption Spectra Calculation

Figure S41. Calculated UV-Vis absorption spectra and corresponding excitation states (ESs) of 1.

Table S6. Calculated excitation energy, excitation wavelength, oscillator strength, transition type and corresponding contribution of each excited state (ES) of $\mathbf{1}$.

Excited State (ES)	Excitation Energy /eV	Excitation Wavelength / nm	Oscillator Strength	Transition Type	Contribution
1	3.7485	330.75	0.0285	HOMO-2 \rightarrow LUMO+2	2.39\%
				HOMO-1 \rightarrow LUMO+1	30.35\%
				HOMO \rightarrow LUMO	58.56\%
3	4.4802	276.74	0.7996	HOMO-1 \rightarrow LUMO	20.54\%
				HOMO-1 \rightarrow LUMO+1	19.63\%
				HOMO \rightarrow LUMO	11.13\%
				HOMO \rightarrow LUMO+1	18.06\%
				HOMO \rightarrow LUMO +2	17.97\%
4	4.5198	274.31	1.2134	HOMO-1 \rightarrow LUMO	23.97\%
				HOMO-1 \rightarrow LUMO+1	33.07\%
				HOMO \rightarrow LUMO	16.87\%
				HOMO \rightarrow LUMO+1	19.38\%
5	4.5700	271.30	0.3840	HOMO-3 \rightarrow LUMO+1	2.63\%
				HOMO-2 \rightarrow LUMO	6.62\%
				HOMO-1 \rightarrow LUMO	6.22\%
				HOMO-1 \rightarrow LUMO+1	7.85\%
				HOMO \rightarrow LUMO	4.28\%
				HOMO \rightarrow LUMO +1	5.00\%
				HOMO \rightarrow LUMO+2	53.96\%
28	6.2986	196.84	0.167	HOMO-11 \rightarrow LUMO	2.20\%
				HOMO-5 \rightarrow LUMO+1	4.29\%
				HOMO-4 \rightarrow LUMO+2	8.42\%
				HOMO-3 \rightarrow LUMO+2	21.94\%
				HOMO-2 \rightarrow LUMO+2	7.79\%
				HOMO-1 \rightarrow LUMO+4	2.88\%
				HOMO \rightarrow LUMO +8	14.31\%
				HOMO \rightarrow LUMO+9	2.63\%
				HOMO \rightarrow LUMO +10	4.24\%
35	6.5918	188.09	0.1821	HOMO-8 \rightarrow LUMO	7.73\%
				HOMO-8 \rightarrow LUMO+2	2.03\%
				HOMO-5 \rightarrow LUMO	2.32\%
				HOMO-3 \rightarrow LUMO+7	2.13\%
				HOMO-2 \rightarrow LUMO+2	5.24\%
				HOMO-2 \rightarrow LUMO+4	3.18\%
				HOMO-1 \rightarrow LUMO+4	2.54\%
				HOMO-1 \rightarrow LUMO+8	11.43\%
				HOMO-1 \rightarrow LUMO+9	16.98\%
				HOMO \rightarrow LUMO+9	2.74\%
				HOMO \rightarrow LUMO +10	2.26\%
				HOMO \rightarrow LUMO+11	14.32\%

Figure S42. Calculated UV-Vis absorption spectra and corresponding excitation states (ESs) of 7.

Table S7. Calculated excitation energy, excitation wavelength, oscillator strength, transition type and corresponding contribution of each excited state (ES) of 7.

Excited State (ES)	Excitation Energy /eV	Excitation Wavelength / nm	Oscillator Strength	Transition Type	Contribution
1	3.4087	363.73	0.6009	HOMO-1 \rightarrow LUMO+1	2.05\%
				$\mathbf{H O M O} \rightarrow$ LUMO	$\mathbf{9 1 . 8 7 \%}$
2	3.6437	340.27	0.1025	HOMO-7 \rightarrow LUMO+1	7.20\%
				HOMO \rightarrow LUMO+1	88.08\%
3	3.7734	328.58	0.2630	HOMO-1 \rightarrow LUMO	89.28\%
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+2$	4.00\%
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+4$	2.32\%
4	4.0818	303.75	0.3446	HOMO-7 \rightarrow LUMO	7.47\%
				HOMO-6 \rightarrow LUMO+1	15.74\%
				HOMO-4 \rightarrow LUMO	5.69\%
				HOMO1 \rightarrow LUMO+2	$\mathbf{5 8 . 4 8 \%}$
				HOMO \rightarrow LUMO	3.67\%
10	4.537	273.27	0.1922	HOMO-13 \rightarrow LUMO	3.39\%
				HOMO-7 \rightarrow LUMO	63.84\%
				HOMO-6 \rightarrow LUMO+1	9.61\%
				HOMO-4 \rightarrow LUMO+1	4.91\%
				HOMO-1 \rightarrow LUMO+2	8.15\%
12	4.7044	263.55	0.443	HOMO-7 \rightarrow LUMO	2.40\%
				HOMO-7 \rightarrow LUMO+1	42.37\%
				HOMO-6 \rightarrow LUMO	5.21\%

				HOMO-4 \rightarrow LUMO	2.49\%
				HOMO-1 \rightarrow LUMO	3.19\%
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+1$	3.02\%
				$\mathbf{H O M O} \rightarrow$ LUMO+2	$\mathbf{2 5 . 5 1 \%}$
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+4$	3.48\%
30	5.7106	217.11	0.2984	HOMO-19 \rightarrow LUMO	3.18\%
				HOMO-13 \rightarrow LUMO+1	22.74\%
				HOMO-6 \rightarrow LUMO+2	26.44\%
				HOMO-5 \rightarrow LUMO	2.67\%
				HOMO-4 \rightarrow LUMO+2	3.43\%
				HOMO-1 \rightarrow LUMO+2	4.99\%
				$\mathbf{H O M O} \rightarrow$ LUMO+9	13.90\%
35	5.9104	209.77	0.202	HOMO-17 \rightarrow LUMO	4.66\%
				HOMO-15 \rightarrow LUMO	45.72\%
				HOMO-14 \rightarrow LUMO	2.84\%
				HOMO-13 \rightarrow LUMO	7.19\%
				HOMO-7 \rightarrow LUMO+2	3.88\%
				HOMO-6 \rightarrow LUMO+3	5.21\%
				HOMO-1 \rightarrow LUMO+3	9.56\%
37	5.9999	206.65	0.3159	HOMO-19 \rightarrow LUMO	2.19\%
				HOMO-19 \rightarrow LUMO+1	3.00\%
				HOMO-17 \rightarrow LUMO+1	2.71\%
				HOMO12 \rightarrow LUMO+1	15.798\%
				HOMO-12 \rightarrow LUMO+2	5.75\%
				HOMO-11 \rightarrow LUMO	15.79\%
				HOMO-7 \rightarrow LUMO+2	6.87\%
				HOMO-1 \rightarrow LUMO+3	17.77\%
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+4$	4.06\%

Figure S43. Calculated UV-Vis absorption spectra and corresponding excitation states (ESs) of $\mathbf{1 6 .}$

Table S8. Calculated excitation energy, excitation wavelength, oscillator strength, transition type and corresponding contribution of each excited state (ES) of 16.

Excited State (ES)	Excitation Energy /eV	Excitation Wavelength / nm	Oscillator Strength	Transition Type	Contribution
1	2.9432	421.35	0.2686	HOMO-1 \rightarrow LUMO	14.40\%
				HOMO \rightarrow LUMO	77.63\%
2	3.2945	376.33	0.1367	HOMO-2 \rightarrow LUMO	2.43\%
				HOMO-1 \rightarrow LUMO	5.78\%
				HOMO-1 \rightarrow LUMO+1	17.31\%
				HOMO \rightarrow LUMO	4.38\%
				HOMO \rightarrow LUMO+1	59.59\%
6	3.8092	325.49	0.8741	HOMO-5 \rightarrow LUMO	4.77\%
				HOMO-2 \rightarrow LUMO	13.19\%
				HOMO-2 \rightarrow LUMO+1	39.18\%
				HOMO-1 \rightarrow LUMO+1	15.64\%
				HOMO \rightarrow LUMO+1	9.75\%
				HOMO \rightarrow LUMO +2	2.35\%
10	4.4027	281.61	0.3469	HOMO-9 \rightarrow LUMO	9.52\%
				HOMO-9 \rightarrow LUMO+1	3.77\%
				HOMO-6 \rightarrow LUMO+1	31.86\%
				HOMO-5 \rightarrow LUMO	4.15\%
				HOMO-5 \rightarrow LUMO+1	12.80\%
				HOMO-1 \rightarrow LUMO+2	7.45\%
				HOMO \rightarrow LUMO+2	9.38\%

				HOMO \rightarrow LUMO+4	3.11\%
12	4.5016	275.42	0.4646	HOMO-9 \rightarrow LUMO+1	8.01\%
				HOMO-6 \rightarrow LUMO	2.06\%
				HOMO-6 \rightarrow LUMO+1	11.78\%
				HOMO-5 \rightarrow LUMO	3.28\%
				HOMO-2 \rightarrow LUMO	2.18\%
				HOMO-2 \rightarrow LUMO+1	2.65\%
				HOMO-1 \rightarrow LUMO+2	16.35\%
				HOMO-1 \rightarrow LUMO+3	2.61\%
				HOMO \rightarrow LUMO+2	28.32\%
				HOMO \rightarrow LUMO+3	5.11\%
15	4.6906	264.33		HOMO-6 \rightarrow LUMO+1	4.00\%
				HOMO-5 \rightarrow LUMO	28.09\%
				HOMO-5 \rightarrow LUMO+1	3.94\%
				HOMO-4 \rightarrow LUMO	7.65\%
				HOMO-4 \rightarrow LUMO+1	3.02\%
				HOMO-2 \rightarrow LUMO	8.45\%
				HOMO-2 \rightarrow LUMO+1	3.17\%
				HOMO-2 \rightarrow LUMO+3	6.24\%
				HOMO-1 \rightarrow LUMO+3	6.82\%
				HOMO \rightarrow LUMO+2	7.53\%
				HOMO \rightarrow LUMO+5	3.18\%
16	4.7424	261.44	0.1549	HOMO-11 \rightarrow LUMO	12.31\%
				HOMO-9 \rightarrow LUMO	12.04\%
				HOMO-6 \rightarrow LUMO	14.31\%
				HOMO-6 \rightarrow LUMO+1	6.44\%
				HOMO-5 \rightarrow LUMO+1	2.30\%
				HOMO-2 \rightarrow LUMO	2.19\%
				HOMO-2 \rightarrow LUMO+2	2.53\%
				HOMO-1 \rightarrow LUMO	3.10\%
				HOMO-1 \rightarrow LUMO+1	7.05\%
				HOMO \rightarrow LUMO+1	6.00\%
				HOMO \rightarrow LUMO+3	11.18\%
17	4.7754	259.63	0.6757	HOMO-11 \rightarrow LUMO	2.02\%
				HOMO-9 \rightarrow LUMO	2.61\%
				HOMO-5 \rightarrow LUMO	6.65\%
				HOMO-2 \rightarrow LUMO+1	2.01\%
				HOMO-1 \rightarrow LUMO+2	6.14\%
				HOMO-1 \rightarrow LUMO+3	11.28\%
				HOMO-1 \rightarrow LUMO+4	5.88\%
				HOMO-1 \rightarrow LUMO+5	3.29\%
				HOMO \rightarrow LUMO+2	3.96\%
				HOMO \rightarrow LUMO+3	31.75\%
				HOMO \rightarrow LUMO+4	8.36\%

25	5.1747	239.6	0.5404	HOMO-9 \rightarrow LUMO	20.26\%
				HOMO-5 \rightarrow LUMO	3.84\%
				HOMO-5 \rightarrow LUMO+1	3.09\%
				HOMO-4 \rightarrow LUMO+1	2.91\%
				HOMO-2 \rightarrow LUMO+2	6.11\%
				HOMO-2 \rightarrow LUMO+3	2.27\%
				HOMO-1 \rightarrow LUMO+2	12.74\%
				HOMO \rightarrow LUMO+3	11.39\%
				HOMO \rightarrow LUMO+4	15.57\%
39	5.9101	209.78	0.1894	HOMO-19 \rightarrow LUMO	3.85\%
				HOMO-15 \rightarrow LUMO+1	25.36\%
				HOMO-14 \rightarrow LUMO	6.20\%
				HOMO-14 \rightarrow LUMO+2	4.79\%
				HOMO-5 \rightarrow LUMO+3	3.49\%
				HOMO-2 \rightarrow LUMO+2	3.84\%
				HOMO-2 \rightarrow LUMO+7	3.34\%
				HOMO-1 \rightarrow LUMO+3	3.43\%
				HOMO-1 \rightarrow LUMO+5	3.84\%
				HOMO \rightarrow LUMO+9	2.44\%
				HOMO \rightarrow LUMO +10	4.27\%

Figure S44. Calculated UV-Vis absorption spectra and corresponding excitation states (ESs) of $\mathbf{1 8}$.

Table S9. Calculated excitation energy, excitation wavelength, oscillator strength, transition type and corresponding contribution of each excited state (ES) of $\mathbf{1 8}$.

Excited State (ES)	Excitation Energy /eV	Excitation Wavelength / nm	Oscillator Strength	Transition Type	Contributio n
1	2.9289	423.31	0.0195	HOMO-1 \rightarrow LUMO+1	31.97\%
				HOMO \rightarrow LUMO	60.19\%
2	2.9982	413.52	0.2871	HOMO-2 \rightarrow LUMO+1	2.26\%
				HOMO-1 \rightarrow LUMO	53.66\%
				HOMO \rightarrow LUMO+1	38.21\%
4	3.4166	362.89	0.7348	HOMO-16 \rightarrow LUMO+1	4.01\%
				HOMO-12 \rightarrow LUMO+1	5.06\%
				HOMO-2 \rightarrow LUMO	68.25\%
				HOMO-1 \rightarrow LUMO+1	6.33\%
				HOMO \rightarrow LUMO	4.51\%
7	3.6353	341.05	0.9290	HOMO-6 \rightarrow LUMO	5.02\%
				HOMO-5 \rightarrow LUMO	2.94\%
				HOMO-3 \rightarrow LUMO+1	6.29\%
				HOMO-2 \rightarrow LUMO+2	42.83\%
				HOMO-1 \rightarrow LUMO+1	3.11\%
				HOMO \rightarrow LUMO+2	28.48\%
				HOMO \rightarrow LUMO+4	2.13\%
9	3.7893	327.19	0.8219	HOMO-6 \rightarrow LUMO	6.43\%

				HOMO-6 \rightarrow LUMO+2	3.97\%
				HOMO-5 \rightarrow LUMO	3.58\%
				HOMO-5 \rightarrow LUMO+2	2.30\%
				HOMO-3 \rightarrow LUMO+1	41.78\%
				HOMO-1 \rightarrow LUMO+1	7.01\%
				HOMO-1 \rightarrow LUMO+3	4.41\%
				HOMO \rightarrow LUMO+2	19.06\%
10	3.2900	316.29	1.3745	HOMO-3 \rightarrow LUMO+2	29.90\%
				HOMO-2 \rightarrow LUMO+1	23.15\%
				HOMO-1 \rightarrow LUMO+2	34.14\%
24	4.7577	260.60	1.0976	HOMO-3 \rightarrow LUMO	2.34\%
				HOMO-2 \rightarrow LUMO+6	2.27\%
				HOMO-1 \rightarrow LUMO+4	23.78\%
				HOMO-1 \rightarrow LUMO+5	10.87\%
				HOMO \rightarrow LUMO+3	24.43\%
				HOMO \rightarrow LUMO+6	18.63\%
25	4.7750	259.65	0.4218	HOMO-16 \rightarrow LUMO+1	4.06\%
				HOMO-13 \rightarrow LUMO	6.22\%
				HOMO-11 \rightarrow LUMO	3.32\%
				HOMO-6 \rightarrow LUMO	2.90\%
				HOMO-2 \rightarrow LUMO+4	3.56\%
				HOMO-1 \rightarrow LUMO+3	14.80\%
				HOMO-1 \rightarrow LUMO+6	14.80\%
				HOMO \rightarrow LUMO+4	17.00\%
				HOMO \rightarrow LUMO+5	11.61\%
34	5.1425	241.10	0.1966	HOMO-16 \rightarrow LUMO+1	2.56\%
				HOMO-11 \rightarrow LUMO	7.91\%
				HOMO-11 \rightarrow LUMO+2	2.29\%
				HOMO-6 \rightarrow LUMO	7.99\%
				HOMO-6 \rightarrow LUMO+2	15.08\%
				HOMO-5 \rightarrow LUMO+2	3.00\%
				HOMO-3 \rightarrow LUMO+1	5.49\%
				HOMO-2 \rightarrow LUMO	4.51\%
				HOMO-2 \rightarrow LUMO+4	2.19\%
				HOMO-1 \rightarrow LUMO+1	10.73\%
				HOMO-1 \rightarrow LUMO+3	2.12\%
				HOMO-1 \rightarrow LUMO+7	2.92\%
				HOMO- \rightarrow LUMO	6.29\%
				HOMO \rightarrow LUMO +4	8.50\%
				HOMO \rightarrow LUMO+5	2.28\%

Figure S45. Calculated UV-Vis absorption spectra and corresponding excitation states (ESs) of $\mathbf{2 0}$.

Table S10. Calculated excitation energy, excitation wavelength, oscillator strength, transition type and corresponding contribution of each excited state (ES) of $\mathbf{2 0}$.
\(\left.$$
\begin{array}{|c|c|c|c|l|c|}\hline \begin{array}{c}\text { Excited } \\
\text { State } \\
\text { (ES) }\end{array} & \begin{array}{c}\text { Excitation } \\
\text { Energy } \\
\text { eV }\end{array} & \begin{array}{c}\text { Excitation } \\
\text { Wavelength / } \\
\text { nm }\end{array}
$$ \& \begin{array}{c}Oscillator

Strength\end{array} \& \& Transition Type\end{array}\right]\)| Contribution |
| :---: |
| 1 |

7	3.927	315.72	1.0479	HOMO-11 \rightarrow LUMO	2.66\%
				HOMO-11 \rightarrow LUMO+2	5.65\%
				HOMO10 \rightarrow LUMO+2	4.52\%
				HOMO-2 \rightarrow LUMO+1	2.33\%
				HOMO-1 \rightarrow LUMO+2	71.56\%
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+1$	8.19\%
10	4.2068	294.72	0.9115	HOMO-7 \rightarrow LUMO+2	8.03\%
				HOMO-5 \rightarrow LUMO+2	3.96\%
				HOMO-2 \rightarrow LUMO+2	47.97\%
				HOMO-1 \rightarrow LUMO+1	24.29\%
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+2$	7.87\%
18	4.728	262.24	0.5843	HOMO-17 \rightarrow LUMO	3.57\%
				HOMO-7 \rightarrow LUMO	17.77\%
				HOMO-5 \rightarrow LUMO	8.31\%
				HOMO-2 \rightarrow LUMO	5.57\%
				HOMO-2 \rightarrow LUMO+3	3.63\%
				HOMO-1 \rightarrow LUMO+1	3.10\%
				HOMO \rightarrow LUMO+3	22.36\%
				HOMO \rightarrow LUMO+5	24.19\%
20	4.7847	259.13	0.235	HOMO-7 \rightarrow LUMO	26.20\%
				HOMO-5 \rightarrow LUMO	14.57\%
				HOMO-1 \rightarrow LUMO+1	3.53\%
				HOMO \rightarrow LUMO+3	22.8\%
				HOMO \rightarrow LUMO+5	16.53\%
36	5.3882	230.1	0.4525	HOMO26 \rightarrow LUMO+2	2.58\%
				HOMO-15 \rightarrow LUMO+1	7.18\%
				HOMO-11 \rightarrow LUMO	3.97\%
				HOMO-11 \rightarrow LUMO+2	8.92\%
				HOMO-10 \rightarrow LUMO	4.68\%
				HOMO10 \rightarrow LUMO+2	3.86\%
				HOMO-5 \rightarrow LUMO+1	2.25\%
				HOMO-1 \rightarrow LUMO+3	8.02\%
				$\mathrm{HOMO} \rightarrow$ LUMO+1	6.77\%
				HOMO \rightarrow LUMO+4	21.84\%
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+6$	6.35\%

Figure S46. Calculated UV-Vis absorption spectra and corresponding excitation states (ESs) of $\mathbf{2 4 .}$

Table S11. Calculated excitation energy, excitation wavelength, oscillator strength, transition type and corresponding contribution of each excited state (ES) of 24.

Excited State(ES)	Excitation Energy /eV	Excitation Wavelength / nm	Oscillator Strength	Transition Type	Contributio n
1	3.0179	410.82	0.2919	HOMO \rightarrow LUMO	96.42\%
2	3.6942	335.61	0.1205	HOMO-4 \rightarrow LUMO	3.57\%
				HOMO-1 \rightarrow LUMO	74.15\%
				HOMO-1 \rightarrow LUMO+2	2.60\%
				HOMO \rightarrow LUMO+1	12.36\%
9	4.7424	261.44	0.2767	HOMO-6 \rightarrow LUMO	2.41\%
				HOMO-5 \rightarrow LUMO	8.81\%
				HOMO-1 \rightarrow LUMO+1	3.32\%
				HOMO \rightarrow LUMO+2	76.47\%
11	5.0351	246.24	0.4099	HOMO-5 \rightarrow LUMO+2	2.26\%
				HOMO-3 \rightarrow LUMO	3.21\%
				HOMO-1 \rightarrow LUMO+1	72.85\%
				HOMO-1 \rightarrow LUMO+5	2.39\%
				HOMO \rightarrow LUMO+2	4.25\%
				HOMO \rightarrow LUMO+3	6.68\%
26	5.9547	208.21	0.7727	HOMO-12 \rightarrow LUMO	14.62\%
				HOMO-5 \rightarrow LUMO+1	7.52\%
				HOMO-4 \rightarrow LUMO+2	7.99\%
				HOMO-3 \rightarrow LUMO+1	11.01\%

Figure S47. Calculated UV-Vis absorption spectra and corresponding excitation states (ESs) of $\mathbf{2 5}$.

Table S12. Calculated excitation energy, excitation wavelength, oscillator strength, transition type and corresponding contribution of each excited state (ES) of $\mathbf{2 5}$.

Excited State (\mathbf{E} S)	Excitation Energy /eV	Excitation Wavelength / nm	Oscillator Strength	Transition Type	Contributio n
1	2.7329	453.68	0.2416	HOMO-2 \rightarrow LUMO	2.12\%
				HOMO \rightarrow LUMO	89.31\%

2	3.2315	383.67	0.3588	HOMO-6 \rightarrow LUMO	6.11\%
				HOMO-2 \rightarrow LUMO	16.62\%
				HOMO-1 \rightarrow LUMO	61.49\%
				HOMO \rightarrow LUMO	2.24\%
				HOMO \rightarrow LUMO+1	4.52\%
3	3.3037	375.28	0.2090	HOMO-6 \rightarrow LUMO	4.67\%
				HOMO-2 \rightarrow LUMO	70.54\%
				HOMO-1 \rightarrow LUMO	11.49\%
				HOMO-1 \rightarrow LUMO+2	2.20\%
				HOMO \rightarrow LUMO+1	2.48\%
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+2$	2.17\%
5	4.0015	309.84	1.4731	HOMO-1 \rightarrow LUMO	8.25\%
				HOMO-1 \rightarrow LUMO+3	2.81\%
				$\mathbf{H O M O} \rightarrow$ LUMO+1	74.13\%
9	4.4406	279.20	0.2278	HOMO-8 \rightarrow LUMO	18.05\%
				HOMO-7 \rightarrow LUMO	2.48\%
				HOMO-5 \rightarrow LUMO	$\mathbf{2 8 . 6 1 \%}$
				HOMO-3 \rightarrow LUMO	9.12\%
				HOMO-3 \rightarrow LUMO+1	2.29\%
				HOMO-2 \rightarrow LUMO+2	2.53\%
				HOMO-1 \rightarrow LUMO+1	3.86\%
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+2$	5.18\%
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+4$	4.87\%
12	4.6445	266.95	0.7025	HOMO-4 \rightarrow LUMO	7.75\%
				HOMO-3 \rightarrow LUMO	6.52\%
				HOMO-2 \rightarrow LUMO+1	4.35\%
				HOMO-2 \rightarrow LUMO+2	2.01\%
				HOMO-2 \rightarrow LUMO+4	2.25\%
				HOMO-1 \rightarrow LUMO+1	36.78\%
				HOMO-1 \rightarrow LUMO+5	2.33\%
				HOMO \rightarrow LUMO+3	20.13\%
				HOMO \rightarrow LUMO+4	3.63\%
13	4.7056	263.48	0.3505	HOMO-4 \rightarrow LUMO	9.82\%
				HOMO-3 \rightarrow LUMO	13.94\%
				HOMO-2 \rightarrow LUMO+2	15.20\%
				HOMO-2 \rightarrow LUMO+3	6.03\%
				HOMO-2 \rightarrow LUMO+4	2.97\%
				HOMO-1 \rightarrow LUMO+1	2.78\%
				HOMO-1 \rightarrow LUMO+3	2.13\%
				$\mathbf{H O M O} \rightarrow$ LUMO+2	10.56\%
				HOMO \rightarrow LUMO+3	21.04\%
16	4.8914	253.47	0.3219	HOMO-10 \rightarrow LUMO	$\mathbf{2 8 . 8 1 \%}$
				HOMO-6 \rightarrow LUMO	23.37\%
				HOMO-1 \rightarrow LUMO	5.45\%

				HOMO-1 \rightarrow LUMO+2	2.26\%
				HOMO-1 \rightarrow LUMO+3	12.64\%
17	5.0806	244.03	0.2793	HOMO-10 \rightarrow LUMO	28.57\%
				HOMO-10 \rightarrow LUMO+2	2.32\%
				HOMO-6 \rightarrow LUMO	22.64\%
				HOMO-5 \rightarrow LUMO	3.64\%
				HOMO-2 \rightarrow LUMO+1	12.59\%
				HOMO-1 \rightarrow LUMO+1	6.40\%
				HOMO \rightarrow LUMO+4	5.47\%
35	5.9059	209.93	0.1246	HOMO-16 \rightarrow LUMO	2.71\%
				HOMO-13 \rightarrow LUMO	2.32\%
				HOMO-12 \rightarrow LUMO	6.86\%
				HOMO-5 \rightarrow LUMO+2	8.72\%
				HOMO-5 \rightarrow LUMO+3	2.54\%
				HOMO-3 \rightarrow LUMO+1	16.79\%
				HOMO-3 \rightarrow LUMO+2	$\mathbf{1 2 . 2 1 \%}$
				HOMO-3 \rightarrow LUMO+3	9.27\%
				HOMO-2 \rightarrow LUMO+2	2.31\%
				HOMO \rightarrow LUMO+6	2.32\%
				HOMO \rightarrow LUMO+7	2.79\%
39	6.0069	206.40	0.2112	HOMO-14 \rightarrow LUMO	3.32\%
				HOMO-12 \rightarrow LUMO	2.97\%
				HOMO-4 \rightarrow LUMO+1	25.76\%
				HOMO-4 \rightarrow LUMO +2	15.75\%
				HOMO-4 \rightarrow LUMO +3	7.45\%
				HOMO \rightarrow LUMO+3	2.20\%
				HOMO \rightarrow LUMO+4	4.29\%
				HOMO \rightarrow LUMO+6	2.74\%
				HOMO \rightarrow LUMO+7	3.55\%

Figure S48. Calculated UV-Vis absorption spectra and corresponding excitation states (ESs) of $\mathbf{2}$.

Table S13. Calculated excitation energy, excitation wavelength, oscillator strength, transition type and corresponding contribution of each excited state (ES) of $\mathbf{2}$.

Excited State (ES)	Excitation Energy /eV	Excitation Wavelength / nm	Oscillator Strength	Transition Type	Contributi on
1	3.8158	324.93	0.0368	HOMO-1 \rightarrow LUMO	3.31\%
				HOMO-1 \rightarrow LUMO+1	27.15\%
				HOMO \rightarrow LUMO	59.57\%
				HOMO \rightarrow LUMO +1	3.20\%
3	4.5231	274.11	0.9475	HOMO-1 \rightarrow LUMO	35.79\%
				HOMO-1 \rightarrow LUMO+1	18.51\%
				HOMO \rightarrow LUMO	6.46\%
				HOMO \rightarrow LUMO+1	22.23\%
				HOMO \rightarrow LUMO+2	4.80\%
4	4.5820	270.59	0.8759	HOMO-1 \rightarrow LUMO	11.78\%
				HOMO-1 \rightarrow LUMO+1	34.68\%
				HOMO-1 \rightarrow LUMO+3	2.05\%
				HOMO \rightarrow LUMO	17.40\%
				HOMO \rightarrow LUMO+1	9.20\%
				HOMO \rightarrow LUMO+3	11.38\%
5	4.5963	269.75	0.2413	HOMO-4 \rightarrow LUMO+3	7.40\%
				HOMO-4 \rightarrow LUMO+5	2.45\%
				HOMO-3 \rightarrow LUMO +3	4.79\%

				HOMO-2 \rightarrow LUMO+2	7.36\%
				HOMO-1 \rightarrow LUMO+6	20.48\%
				HOMO-1 \rightarrow LUMO+7	8.54\%
28	6.2169	199.43	0.1787	HOMO-7 \rightarrow LUMO	3.57\%
				HOMO-6 \rightarrow LUMO+1	2.01\%
				HOMO-5 \rightarrow LUMO+1	30.84\%
				HOMO-4 \rightarrow LUMO+2	2.33\%
				HOMO-3 \rightarrow LUMO+2	5.86\%
				HOMO-2 \rightarrow LUMO+2	5.54\%
				HOMO-1 \rightarrow LUMO+6	2.51\%
				HOMO-1 \rightarrow LUMO+7	6.37\%
				HOMO \rightarrow LUMO+7	4.58\%
				HOMO \rightarrow LUMO+9	4.54\%
				HOMO \rightarrow LUMO+10	7.31\%

Figure S49. Calculated UV-Vis absorption spectra and corresponding excitation states (ESs) of $\mathbf{8}$.

Table S14. Calculated excitation energy, excitation wavelength, oscillator strength, transition type and corresponding contribution of each excited state (ES) of $\mathbf{8}$.

Excited State $(\mathbf{E S})$	Excitation Energy / eV	Excitation Wavelength / nm	Oscillator Strength	Transition Type	Contributi on
1	3.292	376.62	0.5651	HOMO-1 \rightarrow LUMO+1	4.04%
		HOMO \rightarrow LUMO	$\mathbf{8 9 . 4 3 \%}$		

2	3.4377	360.67	0.2208	HOMO-6 \rightarrow LUMO+1	7.20\%
				HOMO \rightarrow LUMO+1	85.51\%
3	3.5384	350.4	0.1854	HOMO-1 \rightarrow LUMO	89.28\%
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+2$	3.13\%
4	3.8838	319.23	0.3355	HOMO-7 \rightarrow LUMO+1	6.18\%
				HOMO-6 \rightarrow LUMO	4.78\%
				HOMO-4 \rightarrow LUMO+1	9.22\%
				HOMO-1 \rightarrow LUMO+1	65.4\%
				HOMO \rightarrow LUMO	6.03\%
13	4.6477	266.77	0.304	HOMO-7 \rightarrow LUMO	2.92\%
				HOMO-4 \rightarrow LUMO	5.26\%
				HOMO-1 \rightarrow LUMO	4.73\%
				HOMO \rightarrow LUMO+2	73.58\%
				HOMO \rightarrow LUMO+4	3.79\%
28	5.4586	227.13	0.4454	HOMO-13 \rightarrow LUMO	27.12\%
				HOMO-11 \rightarrow LUMO	6.93\%
				HOMO7 \rightarrow LUMO+2	5.53\%
				HOMO-5 \rightarrow LUMO	3.86\%
				HOMO4 \rightarrow LUMO+1	3.44\%
				HOMO-4 \rightarrow LUMO+2	19.61\%
				HOMO-1 \rightarrow LUMO+2	$\mathbf{1 2 . 5 1 \%}$
				HOMO \rightarrow LUMO+11	6.90\%
35	5.6596	219.07	0.1897	HOMO-15 \rightarrow LUMO	$\mathbf{2 2 . 1 6 \%}$
				HOMO-15 \rightarrow LUMO+1	3.45\%
				HOMO-14 \rightarrow LUMO	7.82\%
				HOMO-13 \rightarrow LUMO	6.78\%
				HOMO13 \rightarrow LUMO+2	2.81\%
				HOMO-7 \rightarrow LUMO+2	6.09\%
				HOMO-4 \rightarrow LUMO+2	5.10\%
				HOMO-4 \rightarrow LUMO+3	2.47\%
				HOMO-1 \rightarrow LUMO+3	17.49\%
				HOMO-1 \rightarrow LUMO+4	5.83\%
38	5.8293	212.69	0.4823	HOMO13 \rightarrow LUMO+2	4.63\%
				HOMO-12 \rightarrow LUMO	24.37\%
				HOMO11 \rightarrow LUMO+1	28.35\%
				HOMO-7 \rightarrow LUMO+2	5.46\%
				HOMO-6 \rightarrow LUMO+2	36.40\%
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+4$	8.19\%
40	5.9306	209.06	0.2172	HOMO16 \rightarrow LUMO+1	6.88\%
				HOMO-15 \rightarrow LUMO	4.52\%
				HOMO15 \rightarrow LUMO+1	10.12\%
				HOMO-14 \rightarrow LUMO	6.01\%
				HOMO14 \rightarrow LUMO+1	3.16\%
				HOMO12 \rightarrow LUMO+1	7.00\%

Figure S50. Calculated UV-Vis absorption spectra and corresponding excitation states (ESs) of $\mathbf{1 7 .}$

Table S15. Calculated excitation energy, excitation wavelength, oscillator strength, transition type and corresponding contribution of each excited state (ES) of 17.

Excited State (E S)	Excitation Energy /eV	Excitation Wavelength / nm	Oscillator Strength	Transition Type	Contributio n
1	2.8966	428.04	0.2664	HOMO-1 \rightarrow LUMO	20.29\%
				HOMO \rightarrow LUMO	70.73\%
2	3.1615	392.17	0.1286	HOMO-7 \rightarrow LUMO	2.71\%
				HOMO-1 \rightarrow LUMO	9.17\%
				HOMO-1 \rightarrow LUMO+1	10.76\%
				HOMO \rightarrow LUMO	8.57\%
				HOMO \rightarrow LUMO+1	59.87\%
3	3.2519	381.26	0.6967	HOMO-7 \rightarrow LUMO	5.36\%
				HOMO-1 \rightarrow LUMO	53.88\%
				HOMO-1 \rightarrow LUMO+1	11.11\%

				HOMO \rightarrow LUMO	7.03\%
				HOMO \rightarrow LUMO+1	10.92\%
				HOMO \rightarrow LUMO+2	3.10\%
4	3.487	355.56	0.1065	HOMO-4 \rightarrow LUMO	4.03\%
				HOMO-2 \rightarrow LUMO	57.22\%
				HOMO-2 \rightarrow LUMO+1	18.20\%
				HOMO-1 \rightarrow LUMO+1	5.23\%
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+3$	2.70\%
6	3.6532	339.38	0.7449	HOMO-4 \rightarrow LUMO	4.60\%
				HOMO-2 \rightarrow LUMO	18.73\%
				HOMO-2 \rightarrow LUMO+1	36.29\%
				HOMO-1 \rightarrow LUMO	2.62\%
				HOMO-1 \rightarrow LUMO+1	14.14\%
				HOMO \rightarrow LUMO+1	8.67\%
9	4.057	294.8	0.1762	HOMO-7 \rightarrow LUMO	6.39\%
				HOMO-7 \rightarrow LUMO+1	2.47\%
				HOMO-5 \rightarrow LUMO+1	20.67\%
				HOMO-4 \rightarrow LUMO+1	44.10\%
				HOMO-1 \rightarrow LUMO+2	2.03\%
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+2$	3.10\%
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+4$	2.70\%
11	4.3407	285.63	0.5361	HOMO-7 \rightarrow LUMO	2.43\%
				HOMO-7 \rightarrow LUMO+1	8.69\%
				HOMO-6 \rightarrow LUMO	7.64\%
				HOMO-5 \rightarrow LUMO	7.08\%
				HOMO-4 \rightarrow LUMO	5.39\%
				HOMO-2 \rightarrow LUMO+1	2.16\%
				HOMO-1 \rightarrow LUMO+2	14.67\%
				HOMO \rightarrow LUMO+2	29.42\%
				HOMO \rightarrow LUMO+3	2.84\%
14	4.5147	274.62	0.2408	HOMO-11 \rightarrow LUMO	2.13\%
				HOMO-7 \rightarrow LUMO	2.43\%
				HOMO-7 \rightarrow LUMO+1	2.39\%
				HOMO-6 \rightarrow LUMO	12.84\%
				HOMO-5 \rightarrow LUMO	7.81\%
				HOMO-4 \rightarrow LUMO	12.46\%
				HOMO-4 \rightarrow LUMO+1	2.52\%
				HOMO-2 \rightarrow LUMO	3.75\%
				HOMO-2 \rightarrow LUMO+1	7.01\%
				HOMO-2 \rightarrow LUMO+3	3.85\%
				HOMO-1 \rightarrow LUMO+4	2.75\%
				HOMO \rightarrow LUMO+2	21.69\%
				HOMO \rightarrow LUMO+5	2.62\%
18	4.7494	261.05	0.7087	HOMO-2 \rightarrow LUMO+4	2.35\%

				HOMO-1 \rightarrow LUMO+2	7.63\%
				HOMO-1 \rightarrow LUMO+3	17.62\%
				HOMO-1 \rightarrow LUMO+4	8.34\%
				HOMO-1 \rightarrow LUMO+5	3.18\%
				HOMO \rightarrow LUMO+2	5.66\%
				HOMO \rightarrow LUMO+3	35.52\%
				HOMO \rightarrow LUMO+4	5.11\%
23	4.9939	248.27	0.2618	HOMO-11 \rightarrow LUMO	18.99\%
				HOMO-7 \rightarrow LUMO	4.90\%
				HOMO-7 \rightarrow LUMO+1	11.32\%
				HOMO-4 \rightarrow LUMO+1	5.19\%
				HOMO-2 \rightarrow LUMO+2	23.60\%
				HOMO-1 \rightarrow LUMO+2	7.52\%
				HOMO-1 \rightarrow LUMO+3	5.02\%
25	5.0585	245.00	0.1642	HOMO-7 \rightarrow LUMO	9.42\%
				HOMO-4 \rightarrow LUMO	2.47\%
				HOMO-2 \rightarrow LUMO+3	3.89\%
				HOMO-2 \rightarrow LUMO+7	8.62\%
				HOMO-2 \rightarrow LUMO+8	2.57\%
				HOMO-1 \rightarrow LUMO+2	2.66\%
				HOMO-1 \rightarrow LUMO+3	5.79\%
				HOMO \rightarrow LUMO+3	10.11\%
				HOMO \rightarrow LUMO+4	16.59\%
				HOMO \rightarrow LUMO+5	2.45\%
				HOMO \rightarrow LUMO+7	5.07\%
28	5.2249	239.29	0.2915	HOMO-15 \rightarrow LUMO	7.73\%
				HOMO-7 \rightarrow LUMO	5.51\%
				HOMO-4 \rightarrow LUMO+2	10.15\%
				HOMO-2 \rightarrow LUMO+3	9.88\%
				HOMO-1 \rightarrow LUMO+1	7.32\%
				HOMO-1 \rightarrow LUMO+2	5.26\%
				HOMO \rightarrow LUMO+1	3.72\%
				HOMO \rightarrow LUMO+2	2.89\%
				HOMO \rightarrow LUMO+3	2.47\%
				HOMO \rightarrow LUMO+4	3.24\%
				HOMO \rightarrow LUMO+5	11.54\%

Figure S51. Calculated UV-Vis absorption spectra and corresponding excitation states (ESs) of 19.

Table S16. Calculated excitation energy, excitation wavelength, oscillator strength, transition type and corresponding contribution of each excited state (ES) of 19.

Excited State (ES)	Excitation Energy / eV	Excitation Wavelength / nm	Oscillator strength	Transition Type	Contributio n
1	2.8814	430.29	0.0162	HOMO-1 \rightarrow LUMO+1	30.71\%
				HOMO \rightarrow LUMO	58.90\%
				HOMO \rightarrow LUMO+2	2.52\%
2	2.9565	419.36	0.2683	HOMO-2 \rightarrow LUMO+1	4.33\%
				HOMO-1 \rightarrow LUMO	54.59\%
				HOMO \rightarrow LUMO+1	34.52\%
3	3.2769	378.36	0.2093	HOMO-11 \rightarrow LUMO	3.26\%
				HOMO-11 \rightarrow LUMO+1	4.97\%
				HOMO-3 \rightarrow LUMO	2.43\%
				HOMO-3 \rightarrow LUMO+2	3.34\%
				HOMO-2 \rightarrow LUMO	42.49\%
				HOMO-2 \rightarrow LUMO+1	9.37\%
				HOMO-2 \rightarrow LUMO+2	2.36\%
				HOMO-1 \rightarrow LUMO+1	2.72\%
				HOMO-1 \rightarrow LUMO+2	3.82\%
				HOMO \rightarrow LUMO	5.73\%
				HOMO \rightarrow LUMO +1	6.28\%
				HOMO \rightarrow LUMO+2	2.12\%
6	3.4927	354.99	1.1322	HOMO-5 \rightarrow LUMO	5.32\%

				HOMO-3 \rightarrow LUMO+1	4.15\%
				HOMO-2 \rightarrow LUMO	4.84\%
				HOMO-2 \rightarrow LUMO+2	45.46\%
				HOMO-1 \rightarrow LUMO+1	3.43\%
				HOMO \rightarrow LUMO+2	26.02\%
				HOMO-7 \rightarrow LUMO	3.42\%
				HOMO-5 \rightarrow LUMO	10.16\%
				HOMO-5 \rightarrow LUMO+2	2.99\%
9	3.6507	339.61	0.8121	HOMO-3 \rightarrow LUMO+1	$\mathbf{5 1 . 7 8 \%}$
				HOMO-1 \rightarrow LUMO+1	8.89\%
				HOMO-1 \rightarrow LUMO+3	2.36\%
				HOMO \rightarrow LUMO+2	9.63\%
				HOMO-3 \rightarrow LUMO+2	33.95\%
10	3	50	2390	HOMO-2 \rightarrow LUMO+1	16.50\%
10	3.7743	. 5	239	HOMO-1 \rightarrow LUMO+2	35.11\%
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+1$	4.31\%
				HOMO-5 \rightarrow LUMO+1	2.18\%
				HOMO-3 \rightarrow LUMO	4.28\%
				HOMO-3 \rightarrow LUMO+4	2.61\%
				HOMO-2 \rightarrow LUMO+6	2.64\%
25	4.7317	262.03	0.9522	HOMO-1 \rightarrow LUMO	3.35\%
				HOMO-1 \rightarrow LUMO+4	22.17\%
				HOMO-1 \rightarrow LUMO+5	9.46\%
				HOMO \rightarrow LUMO+3	18.29\%
				$\mathbf{H O M O} \rightarrow$ LUMO+6	15.91\%
				HOMO-7 \rightarrow LUMO+2	4.32\%
				HOMO-5 \rightarrow LUMO	7.26\%
				HOMO-2 \rightarrow LUMO+4	4.04\%
26	4.7586	260.55	0.2697	HOMO-1 \rightarrow LUMO+3	15.98\%
				HOMO-1 \rightarrow LUMO+6	16.74\%
				HOMO \rightarrow LUMO+4	21.21\%
				HOMO \rightarrow LUMO+5	11.75\%
39	5.1895	238.91	0.3645	HOMO-19 \rightarrow LUMO+1	2.07\%
				HOMO-11 \rightarrow LUMO+1	5.11\%
				HOMO-7 \rightarrow LUMO+2	7.21\%
				HOMO-6 \rightarrow LUMO+2	4.23\%
				HOMO-3 \rightarrow LUMO+3	27.98\%
				HOMO-3 \rightarrow LUMO+8	2.31\%
				HOMO-1 \rightarrow LUMO+3	$\mathbf{1 7 . 8 1 \%}$
				HOMO-1 \rightarrow LUMO+6	7.98\%
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+4$	2.16\%

Figure S52. Calculated UV-Vis absorption spectra and corresponding excitation states (ESs) of 21.

Table S17. Calculated excitation energy, excitation wavelength, oscillator strength, transition type and corresponding contribution of each excited state (ES) of 21.

Excited State (ES)	Excitation Energy / eV	Excitation Wavelength / nm	Oscillator Strength	Transition Type	Contributi on
1	2.8015	427.31	0.1511	HOMO \rightarrow LUMO	88.25\%
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+2$	5.41\%
6	3.5925	345.12	0.323	HOMO-7 \rightarrow LUMO	2.84\%
				HOMO-5 \rightarrow LUMO	8.96\%
				HOMO-5 \rightarrow LUMO+2	3.89\%
				HOMO-2 \rightarrow LUMO+2	14.33\%
				HOMO-1 \rightarrow LUMO+1	59.90\%
7	3.6969	335.37	1.6814	HOMO-8 \rightarrow LUMO	5.04\%
				HOMO-8 \rightarrow LUMO+2	3.34\%
				HOMO-5 \rightarrow LUMO+1	2.25\%
				HOMO-2 \rightarrow LUMO+1	19.57\%
				HOMO-1 \rightarrow LUMO	6.00\%
				HOMO-1 \rightarrow LUMO+2	32.44\%
				HOMO \rightarrow LUMO+1	24.77\%
8	3.7961	309.81	0.7583	HOMO-7 \rightarrow LUMO+2	2.31\%
				HOMO-5 \rightarrow LUMO+2	7.91\%
				HOMO-2 \rightarrow LUMO+2	51.30\%
				HOMO-1 \rightarrow LUMO+1	23.33\%
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+2$	8.58\%
20	4.7442	261.34	0.7095	HOMO-5 \rightarrow LUMO	4.02\%

				HOMO-2 \rightarrow LUMO+5	2.66\%
				HOMO \rightarrow LUMO+3	46.06\%
				HOMO \rightarrow LUMO+5	32.08\%
37	5.3406	232.15	0.4616	HOMO-8 \rightarrow LUMO	5.25\%
				HOMO-8 \rightarrow LUMO+3	3.37\%
				HOMO-2 \rightarrow LUMO+4	2.84\%
				HOMO-1 \rightarrow LUMO+3	3.56\%
				HOMO-1 \rightarrow LUMO+5	5.26\%
				HOMO \rightarrow LUMO+1	9.65\%
				HOMO \rightarrow LUMO+4	39.83\%
				HOMO \rightarrow LUMO+6	15.09\%

Figure S53. Calculated UV-Vis absorption spectra and corresponding excitation states (ESs) of 22.

Table S18. Calculated excitation energy, excitation wavelength, oscillator strength, transition type and corresponding contribution of each excited state (ES) of 22.

Excited State(ES)	Excitation Energy /eV	Excitation Wavelength / nm	Oscillator Strength	Transition Type	Contribution
1	2.9344	422.52	0.3376	HOMO \rightarrow LUMO	96.55\%
2	3.5355	350.68	0.1073	HOMO-4 \rightarrow LUMO	2.74\%
				HOMO-1 \rightarrow LUMO	78.56\%
				HOMO-1 \rightarrow LUMO+2	2.12\%
				HOMO \rightarrow LUMO+1	9.62\%
4	4.1076	301..84	0.9967	HOMO-4 \rightarrow LUMO	6.52\%
				HOMO-1 \rightarrow LUMO	13.45\%
				HOMO \rightarrow LUMO+1	73.50\%

9	4.6518	266.53	0.1134	HOMO-4 \rightarrow LUMO	2.16\%
				HOMO-3 \rightarrow LUMO	6.04\%
				HOMO-1 \rightarrow LUMO+1	11.32\%
				$\mathbf{H O M O} \rightarrow$ LUMO+2	72.54\%
12	4.9119	252.42	0.3354	HOMO-6 \rightarrow LUMO	2.94\%
				HOMO-1 \rightarrow LUMO+1	67.80\%
				HOMO \rightarrow LUMO+2	13.12\%
27	5.7277	216.46	0.5991	HOMO-12 \rightarrow LUMO	3.46\%
				HOMO-11 \rightarrow LUMO	35.79\%
				HOMO-10 \rightarrow LUMO	12.34\%
				HOMO-3 \rightarrow LUMO+1	4.46\%
				HOMO-1 \rightarrow LUMO+2	10.97\%
				HOMO-1 \rightarrow LUMO+3	6.52\%
				HOMO-1 \rightarrow LUMO+5	5.37\%
				HOMO \rightarrow LUMO+6	4.19\%
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+10$	4.66\%
28	5.8667	211.34	$0 . .2132$	HOMO-16 \rightarrow LUMO	5.22\%
				HOMO-13 \rightarrow LUMO	19.45\%
				HOMO-12 \rightarrow LUMO	5.24\%
				HOMO-11 \rightarrow LUMO	2.34\%
				HOMO-10 \rightarrow LUMO	4.03\%
				HOMO-8 \rightarrow LUMO+1	2.52\%
				HOMO-6 \rightarrow LUMO+1	8.51\%
				HOMO-5 \rightarrow LUMO+1	2.25\%
				HOMO-4 \rightarrow LUMO+2	6.92\%
				HOMO-3 \rightarrow LUMO+1	12.14\%
				HOMO \rightarrow LUMO+6	10.67\%
				HOMO \rightarrow LUMO+10	2.07\%
29	5.8667	211.34	0.2132	HOMO-6 \rightarrow LUMO+2	6.18\%
				HOMO-4 \rightarrow LUMO+1	13.35\%
				HOMO-4 \rightarrow LUMO+2	2.89\%
				HOMO-3 \rightarrow LUMO+1	3.17\%
				HOMO-3 \rightarrow LUMO+2	10.82\%
				HOMO-1 \rightarrow LUMO+6	29.95\%
				HOMO-1 \rightarrow LUMO+8	6.38\%
				HOMO \rightarrow LUMO+3	5.62\%
				HOMO \rightarrow LUMO+5	5.26\%
39	6.1902	200.29	0.2677	HOMO-17 \rightarrow LUMO	9.66\%
				HOMO-16 \rightarrow LUMO	5.36\%
				HOMO-12 \rightarrow LUMO	2.72\%
				HOMO-6 \rightarrow LUMO+2	30.35\%
				HOMO-5 \rightarrow LUMO+2	10.55\%
				HOMO-3 \rightarrow LUMO+2	9.36\%

Figure S54. Calculated UV-Vis absorption spectra and corresponding excitation states (ESs) of $\mathbf{2 3}$.

Table S19. Calculated excitation energy, excitation wavelength, oscillator strength, transition type and corresponding contribution of each excited state (ES) of 23.

Excited State (ES)	Excitation Energy /eV	Excitation Wavelength / nm	Oscillator Strength	Transition Type	Contributio n
1	2.6372	470.13	0.2343	HOMO-2 \rightarrow LUMO	3.50\%
				HOMO \rightarrow LUMO	89.85\%
2	3.1660	391.61	0.1256	HOMO-6 \rightarrow LUMO	2.95\%
				HOMO-2 \rightarrow LUMO	71.59\%
				HOMO-1 \rightarrow LUMO	14.33\%
				HOMO \rightarrow LUMO	2.32\%
				HOMO \rightarrow LUMO+1	2.25\%
3	3.2500	381.49	0.3381	HOMO-6 \rightarrow LUMO	4.13\%
				HOMO-5 \rightarrow LUMO	7.84\%
				HOMO-3 \rightarrow LUMO	2.25\%
				HOMO-2 \rightarrow LUMO	17.27\%
				HOMO-1 \rightarrow LUMO	54.28\%
				HOMO-1 \rightarrow LUMO+2	3.22\%
				HOMO \rightarrow LUMO+1	5.90\%
5	3.9277	315.66	1.4411	HOMO-1 \rightarrow LUMO	9.96\%
				HOMO-1 \rightarrow LUMO+3	2.17\%
				HOMO \rightarrow LUMO+1	74.70\%

11	4.4516	278.51	0.2285	HOMO-6 \rightarrow LUMO	5.54\%
				HOMO-5 \rightarrow LUMO	4.60\%
				HOMO-4 \rightarrow LUMO	25.58
				HOMO-4 \rightarrow LUMO+2	2.57\%
				HOMO-3 \rightarrow LUMO	13.60\%
				HOMO \rightarrow LUMO+2	29.22\%
				HOMO \rightarrow LUMO+3	4.43\%
14	4.6768	265.11	0.8102	HOMO-2 \rightarrow LUMO+2	3.69\%
				HOMO-1 \rightarrow LUMO+1	33.12\%
				HOMO-1 \rightarrow LUMO+5	2.14\%
				HOMO \rightarrow LUMO+3	31.09\%
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+5$	3.31\%
				HOMO \rightarrow LUMO+7	3.08\%
19	4.8717	254.50	0.4618	HOMO-15 \rightarrow LUMO	2.455\%
				HOMO-13 \rightarrow LUMO	3.89\%
				HOMO-6 \rightarrow LUMO	7.62\%
				HOMO-5 \rightarrow LUMO	8.53\%
				HOMO-4 \rightarrow LUMO+1	4.03\%
				HOMO-1 \rightarrow LUMO	6.35\%
				HOMO-1 \rightarrow LUMO+2	11.16\%
				HOMO-1 \rightarrow LUMO+3	32.33\%
				HOMO \rightarrow LUMO+1	3.90\%
20	5.0361	246.17	0.3308	HOMO-10 \rightarrow LUMO	42.04\%
				HOMO-6 \rightarrow LUMO	12.41\%
				HOMO-5 \rightarrow LUMO	3.56\%
				HOMO-2 \rightarrow LUMO+1	20.39\%
				HOMO-2 \rightarrow LUMO+5	2.66\%
				HOMO \rightarrow LUMO+5	2.10\%
21	5.0717	244.46	0.2889	HOMO-6 \rightarrow LUMO	10.62\%
				HOMO-5 \rightarrow LUMO	10.55\%
				HOMO-3 \rightarrow LUMO+1	6.09\%
				HOMO-2 \rightarrow LUMO+2	$\mathbf{1 2 . 6 3 \%}$
				HOMO-2 \rightarrow LUMO+3	6.88\%
				HOMO-1 \rightarrow LUMO+1	6.21\%
				$\mathrm{HOMO} \rightarrow$ LUMO+2	4.74\%
				HOMO \rightarrow LUMO+5	10.77\%
				HOMO \rightarrow LUMO+7	10.77\%
31	5.6479	219.52	0.1270	HOMO-15 \rightarrow LUMO	2.52\%
				HOMO-13 \rightarrow LUMO	3.80\%
				HOMO-6 \rightarrow LUMO+1	5.77\%
				HOMO-5 \rightarrow LUMO+2	2.27\%
				HOMO-4 \rightarrow LUMO+1	39.38\%
				HOMO-1 \rightarrow LUMO+3	12.19\%
				HOMO-1 \rightarrow LUMO+5	10.36\%

8. Complexation measurements of 18-21 with HBT

Figure S55. Emission spectra of 18 in toluene $\left(1 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}\right)$ in the presence of HBT.

Figure S56. Emission spectra of $\mathbf{1 9}$ in toluene $\left(1 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}\right)$ in the presence of HBT.

Figure S57. Emission spectra of 20 in toluene $\left(1 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}\right)$ in the presence of HBT.

Figure S58. Emission spectra of 21 in toluene $\left(1 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}\right)$ in the presence of HBT.

Figure S59. The Job-plot for complex 21•HBT in toluene solution $\left(c[21]+c[\mathbf{H B T}]=1 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}\right)$.

Figure S60. The combination ratio of 21 and HBT is $1: 1$.

b)

c)

$\Delta G(\mathrm{mix})=1.1 \mathrm{Kcal} / \mathrm{mol}$

Figure S61. Optimized geometries of three possible structures of $\mathbf{2 1} \cdot \mathbf{H B T}$

Table S20. The calculated energy levels for the frontier orbitals for compounds HBT, 21, 21-HBT.

Compound	Energy levels $/ \mathrm{eV}$				
	HOMO-1	HOMO	LUMO	LUMO+1	$E_{\mathrm{g}}{ }^{[\mathrm{ad]}}$
HBT	-5.08	-5.08	-0.49	-0.49	4.59
$\mathbf{2 1}$	-6.23	-5.75	-3.03	-2.73	2.72
$\mathbf{2 1} \cdot \mathbf{H B T}$	5.19	-5.18	-2.84	-2.53	2.34

$[\mathrm{a}] \boldsymbol{E}_{g}=\mathbf{E}_{\text {LUMO }}-\mathbf{E}_{\text {номо }}$

Figure S62. Schematic plot of HOMO-LUMO levels of compounds HBT, 21, 21•HBT.

Figure S63. Calculated molecular orbitals of compounds $21 \cdot{ }^{\mathbf{H}} \mathbf{H T}$.

9. References:

[S1] W. L. F. Armarege, C. L. L. Chai., Purification of Laboratory Chemicals, $5^{\text {th }}$ ed.
[S2] a) X. Li, Y. Zhu, J. Shao, B. Wang, S. Zhang, Y. Shao, X. Jin, X. Yao, R. Fang, X. Shao, Angew. Chem. Int. Ed., 2014, 53, 535; b) X. Hou, J. Sun, Z. Liu, C. Yan, W. Song, H. Zhang, S. Zhou, X. Shao, Chem. Commun. 2018, 54, 10981.c) X. Li, Y. Zhu, J. Shao, L.Chen, S. Zhao, B. wang, S. Zhang, Y . Shao, H. Zhang, X. Shao, Angew. Chem. Int. Ed., 2015, 54, 267;d) Y. Sun, X. Li, C. Sun, X. Hou, D. Lin, H. Zhang, C. Di, D. Zhu, X. Shao, Angew. Chem. Int. Ed., 2017, 56, 13470.
[S3] M. C. Burla, R Caliandro., M. Camalli, B. Carrozzini, G. L. Cascarano, L. de Caro, C. Giacovazzo, G. Polidori, R. Spagna, J. Appl. Cryst. 2005, 38, 381.
[S4] G. M. Sheldrick, SHELXL-97, A Program for Crystal Structure Refinement, University of Göttingen, Göttingen, Germany, 1997.
[S5] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford CT, 2016.
[S6] a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648; b) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B. 1988, 37, 785.
[S7] J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999.
[S8] G. A. Andrienko, Chemcraft, Version 1.8 (built 523b);
[S9] T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580.

10. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and IR Spectra of Products

$\begin{array}{lllllllllllllllllll}30 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$

 $\stackrel{N}{N}$ 울

$\begin{array}{lllllllllllllllllll}30 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

ه~o

$\left.\begin{array}{lllllllllllllllll}30 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20\end{array}\right) 10$

30	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

30	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

| 10 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

ペ

숭NN

| 30 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

