Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Table of Contents

General Information	2
Synthesis of substrates 1	3
Asymmetric amination of α-alkynyl ketone 3	19
Control experiments:	33
Derivatizations of chiral products:	34
References:	38
X-Ray structures	39
HPLC traces:	
NMR spectrums	72

General Information

Unless otherwise noted, all commercial reagents were used without further purification. Dichloromethane, toluene, ether, THF were purified by passage through an activated alumina column under argon. Thin-layer chromatography (TLC) analysis of reaction mixtures were performed using Huanghai silica gel HSGF254 TLC plates, and visualized under UV or by staining with ceric ammonium molybdate or potassium permanganate. Flash column chromatography was carried out on Huanghai Silica Gel HHGJ-300, 300-400 mesh. Nuclear magnetic resonance (NMR) spectra were recorded using Bruker Avance III HD spectrometer (FT, 500 MHz or 400 MHz for ¹H, 126 MHz or 101 MHz for f¹³C, 471 MHz for ¹⁹F, 202 MHz for ³¹P). Data for ¹H NMR were reported as follows: chemical shift (δ ppm downfield from tetramethylsilane and referenced to residual solvent peaks), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad resonance), integration, coupling constant (Hz). Data for ¹³C NMR were reported in terms of chemical shift. Mass spectral data were obtained from the Agilent Technologies 6230 TOF LC/MS spectrometer in electrospray ionization (ESI⁺) mode. Optical rotations were measured with an Autopol V Plus/VI digital polarimeter. X-Ray structure analyses were performed using a Bruker D8 Venture X-ray single crystal diffractometer. Enantiomeric excesses were determined on an Agilent 1260 Chiral HPLC using IA, IB, IC, ID and IG columns. Acid-wash molecular sieves (AW-300 MS) were purchased from Shanghai TOP Molecular Sieve Co., Ltd.

Synthesis of substrates 1

Method A:

General procedure of **method A**:

Synthesis of S1 (if S1 is not commercial available): To the mixture of EtPPh₃Br (1.4 equiv.) and t-BuOK (1.3 equiv.) was added THF at 0 $^{\circ}$ C. The mixture was stirred at 0 $^{\circ}$ C for 1 h, which was followed by adding the corresponding aldehyde (1.0 equiv.) dropwisely. After stirring overnight at rt, the mixture was quenched with saturated aqueous NH₄Cl solution, and the organic phase was separated. The aqueous phase was extracted with ethyl acetate for three times. The combined organic fractions were washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure to give a residue, which was purified by column chromatography to afford the corresponding alkenes S1.

Synthesis of S2 (if S2 is not commercial available): To a solution of the ArX (1.0

equiv.), $PdCl_2(PPh_3)_2$ (0.01 equiv.), and CuI (0.01 equiv.) in Et₃N was added the trimethylsilane acetylene (1.5 equiv.) under N₂ atmosphere. The resulting mixture was stirred at 80 °C for 6 hours. After the complete consumption of ArX as monitored by TLC analysis, the reaction mixture was quenched with water and extracted with ethyl acetate for three times. The combined organic layer was washed with brine, dried over Na₂SO₄, and concentrated under vacuum to give a residue, which was purified by column chromatography on silica gel to afford the desired product **S2**.

Alcohol **S5** was synthesized following a known protocol¹:

Step 1: NaIO₄ (7.24 g, 33.8 mmol, 1.05 equiv.) and 2-iodobenzoic acid (8.00 g, 32.2 mmol, 1.0 equiv.) were suspended in 30% (v:v) aq. AcOH (48 mL). The mixture was vigorously stirred and refluxed for 4 h. The reaction mixture was then diluted with cold water (180 mL) and allowed to cool to rt, protecting it from light. After 1 h, the crude product was collected by filtration, washed on the filter with ice water (3 x 20 mL) and acetone (3 x 20 mL), and air-dried in the dark to give the pure product **S3** as a colorless solid.

Step 2: Trimethylsilyl triflate (0.397 mL, 2.2 mmol, 1.1 equiv.) was added to a suspension of 2-iodosylbenzoic acid **S3** (528 mg, 2 mmol, 1.0 equiv.) in CH_2Cl_2 (5.3 mL) at room temperature. The resulting yellow mixture was stirred for 1 h, followed by the addition of **S2** (2.2 mmol, 1.1 equiv.). After stirring for 6 h at room temperature, saturated NaHCO₃ solution (5.3 mL) was added and the mixture was stirred vigorously for 30 min. After filtration, the filtrate was washed with saturated NaHCO₃ solution, dried over Na₂SO₄, filtered and concentrated in vacuo to give a residue, which was purified by column chromatography on silica gel (CH₂Cl₂/MeOH as eluent) to afford **S4**.

Step 3: A mixture of alkene **S1** (0.3 mmol, 3.0 eq), alkynyl benziodoxole **S4** (0.1 mmol, 1.0 eq), and $(NH_4)_2S_2O_8$ (0.2 mmol, 2.0 eq) in a solution of CH₃CN and H₂O (1.0 mL, v:v = 1:1) in a seal tube was stirred at 90 °C for 1-2 h. Then the reaction was cooled to room temperature, quenched by Et₃N, and extracted with ethyl acetate. Organic layers were combined and dried over Na₂SO₄. Solvent was evaporated under

reduced pressure to give a residue, which was purified by flash column chromatography (ethyl acetate/petroleum ether as eluent) to give the expected product **S5**.

Step 4: To a solution of **S5** (1.0 equiv.) in dichloromethane at room temperature was added Dess-Martin periodinane (2.0 equiv.) at rt. After stirring for 2 hours, the mixture was diluted with DCM and washed with water. The organic phase was dried over Na_2SO_4 , and concentrated in vacuo to give a residue. After adding petroleum ether into this residue, the mixture was filtered through Celite and the filtrate was concentrated in vacuo to give the desired compound **1** as yellow oil.

Method B:

Substrates 1k, 1x and 1y were synthesized with method B.

General procedure for **method B**:

Step 1: To a solution of the corresponding alkyne (1.9 mL, 13.4 mmol) in Et₂O (55 mL) at -78 °C was added n-BuLi (2.5 M in hexane, 5.35 mL, 13.4 mmol) over 20 min. After stirring at -78 °C for additional 20 min, trimethylalumina (2.0 M in toluene, 6.7 mL, 13.4 mmol) was added via syringe pump over 40 min. The reaction was stirred at -78 °C for 30 min, -45 °C for 30 min, and then cooled to -78 °C, whereupon 2,3-epoxybutane (1 mL, 1.2 mmol) in Et₂O (6 mL) was added over 15 min. After stirring for 15 min at the same temperature, boron trifluoride diethylether (1.56 mL, 12.3 mmol) in Et₂O (6 mL) was added slowly over 15 min. The mixture was stirred at -78 °C for 1 h, whereupon methanol (20 mL) was added slowly to quench the reaction. The reaction was then allowed to warm to 0 °C over 25 min before saturated aqueous NH₄Cl solution (20 mL) was added. After stirring at room temperature for additional 30 min, the mixture was diluted with water, extracted with ethyl acetate, dried over Na₂SO₄, filtered, and concentrated under vacuum to give a residue, which

was purified by column chromatography on silica gel to give the desired product **S6** as colorless oil.

Step 2: Transformation of **S6** into substrate **1** was using the same procedure as described above in method A.

Method C:

Substrates 11 and 1m were synthesized with method C.

General procedure of **method C**:

Step 1: n-BuLi (1.58 M in hexane, 11.5 mL, 18.2 mmol) was added to a stirred solution of phenylacetylene (1.9 g, 18.2 mmol) in THF (20 mL) at 0 °C, and the mixture was stirred at 0 °C for 30 min. To the resulting solution was added the corresponding aldehyde (1.3 mL, 18.2 mmol) at 0 °C, and the mixture was gradually warmed to rt. The reaction was quenched by the addition of water and extracted with ethyl acetate. The organic layer was washed with brine, dried over Na₂SO₄, and concentrated under vacuum to give a residue, which was purified by column chromatography (hexane:EtOAc = 8:1) to furnish the desired product **S7** as pale yellow oil.

Step 2: To a solution of the corresponding alcohol **S7** (1 equiv.) in dry CH_2Cl_2 (0.6 M) at 0 °C was added CBr_4 (1.2 equiv.) slowly. After stirring for 10 min, a solution of Ph_3P (1.5 equiv.) in CH_2Cl_2 (1.5 M) was added dropwisely at 0 °C. Then the reaction mixture was allowed to warm to rt. After completion of this reaction as monitored by TLC analysis, the solvent was removed under vacuum to give a residue, which was

purified by column chromatography to afford the desired product S8.

Step 3: To a well stirred suspension of aldehyde (1.0 mmol) and indium powder (2.0 mmol) in THF/H₂O (1:1, 5 mL) was added **S8** (2.0 mmol) slowly at 0 $^{\circ}$ C. A saturated NH₄Cl aqueous solution (7 mL) was added after one hour and the reaction was stirred at room temperature until the disappearance of the starting material (as monitored by TLC analysis). The mixture was extracted with ethyl acetate (3 x 10 mL). The combined organic layer was then washed with brine, dried with MgSO₄ and concentrated under reduced pressure to give a residue, which was purified by column chromatography to afford the product **S9**.

Step 4: Transformation of **S9** into substrate **1** was using the same procedure as described above in method A.

3,5-diphenylpent-4-yn-2-one (1a)

This reaction was performed on 0.4 mmol scale of **S5** according to **method A**. Purification by extraction with petroleum ether to give the product **1a** (93 mg, 99%). ¹H NMR (400 MHz, Chloroform-d) δ 7.54 – 7.49 (m, 4H), 7.40 (dd, *J* = 8.4, 6.5 Hz, 2H), 7.37 – 7.33 (m, 4H), 4.78 (s, 1H), 2.28 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 202.8, 135.0, 131.9, 129.1, 128.6, 128.5, 128.1, 128.1, 122.9, 87.4, 85.0, 53.3, 26.3. m/z HRMS (ESI) found [M+H]⁺ 235.1114, C₁₇H₁₅O⁺ requires 235.1117.

5-phenyl-3-(p-tolyl)pent-4-yn-2-one (1b)

This reaction was performed on 0.3 mmol scale of **S5** according to **method A**. Purification by extraction with petroleum ether to give the product **1b** (74 mg, 99%). ¹H NMR (500 MHz, Chloroform-d) δ 7.42 – 7.37 (m, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 7.23 (p, *J* = 3.4, 2.9 Hz, 3H), 7.09 (d, *J* = 7.9 Hz, 2H), 4.63 (s, 1H), 2.25 (s, 3H), 2.16 (s, 3H). ¹³C NMR (126 MHz, Chloroform-d) δ 202.9, 137.8, 132.0, 131.8, 129.7, 128.5, 128.4, 127.9, 122.9, 87.1, 85.2, 52.9, 26.2, 21.2. m/z HRMS (ESI) found [M+H]⁺ 249.1272, C₁₈H₁₇O⁺ requires 249.1274.

3-(4-methoxyphenyl)-5-phenylpent-4-yn-2-one (1c)

This reaction was performed on 0.3 mmol scale of **S5** according to **method A**. Purification by extraction with petroleum ether to give the product **1c** (79 mg, 99%). ¹H NMR (500 MHz, Chloroform-d) δ 7.53 – 7.46 (m, 2H), 7.45 – 7.39 (m, 2H), 7.37 – 7.31 (m, 3H), 6.94 – 6.90 (m, 2H), 4.71 (s, 1H), 3.82 (s, 3H), 2.26 (s, 3H). ¹³C NMR (126 MHz, Chloroform-d) δ 203.1, 159.5, 131.9, 129.2, 128.6, 128.5, 127.0, 123.0, 114.5, 87.1, 85.3, 55.5, 52.5, 26.1. m/z HRMS (ESI) found [M+H]⁺ 265.1219, C₁₈H₁₇O₂⁺ requires 265.1223.

3-(4-bromophenyl)-5-phenylpent-4-yn-2-one (1d)

This reaction was performed on 0.84 mmol scale of **S5** according to **method A**. Purification by extraction with petroleum ether to give the product **1d** (220 mg, 83%). ¹H NMR (400 MHz, Chloroform-d) δ 7.41 (td, *J* = 7.7, 7.1, 3.0 Hz, 4H), 7.29 – 7.25 (m, 5H), 4.63 (s, 1H), 2.20 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 202.1, 134.0, 132.1, 131.8, 129.8, 128.8, 128.5, 122.5, 122.2, 87.6, 84.4, 52.6, 26.4. m/z HRMS (ESI) found [M+H]⁺ 313.0218, C₁₇H₁₄BrO⁺ requires 313.0223.

3-(4-chlorophenyl)-5-phenylpent-4-yn-2-one (1e)

This reaction was performed on 0.45 mmol scale of **S5** according to **method A**. Purification by extraction with petroleum ether to give the product **1e** (115 mg, 96%). ¹H NMR (500 MHz, Chloroform-d) δ 7.50 (dd, J = 7.0, 2.8 Hz, 2H), 7.46 – 7.42 (m, 2H), 7.37 (d, J = 1.9 Hz, 1H), 7.36 (d, J = 2.1 Hz, 2H), 7.34 (t, J = 2.5 Hz, 1H), 7.32 (s, 1H), 4.74 (s, 1H), 2.29 (s, 3H). ¹³C NMR (126 MHz, Chloroform-d) δ 202.3, 134.1, 133.5, 131.9, 129.5, 129.2, 128.8, 128.6, 122.6, 87.7, 84.5, 52.6, 26.4. m/z HRMS (ESI) found [M+H]⁺ 269.0726, C₁₇H₁₄ClO⁺ requires 269.0728.

5-phenyl-3-(m-tolyl)pent-4-yn-2-one (1f)

This reaction was performed on 0.3 mmol scale of **S5** according to **method A**. Purification by extraction with petroleum ether to give the product **1f** (68.7 mg, 92%). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.52 – 7.48 (m, 2H), 7.35 – 7.30 (m, 4H), 7.30 – 7.27 (m, 2H), 7.13 (d, *J* = 7.4 Hz, 1H), 4.73 (s, 1H), 2.37 (s, 3H), 2.27 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 202.9, 138.8, 134.9, 131.8, 128.9, 128.8, 128.7, 128.6, 128.5, 125.1, 122.9, 87.2, 85.2, 53.2, 53.2, 26.2, 21.5. m/z HRMS (ESI) found [M+H]⁺ 249.1272, C₁₈H₁₇O⁺ requires 249.1274.

3-(3-methoxyphenyl)-5-phenylpent-4-yn-2-one (1g)

This reaction was performed on 0.37 mmol scale of **S5** according to **method A**. Purification by extraction with petroleum ether to give the product **1g** (87 mg, 88%). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.50 (dd, J = 6.6, 3.1 Hz, 2H), 7.37 – 7.28 (m, 4H), 7.11 – 7.05 (m, 2H), 6.87 (dd, J = 8.3, 2.6 Hz, 1H), 4.74 (s, 1H), 3.83 (s, 3H), 2.27 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 202.7, 160.2, 136.5, 131.9, 130.1, 128.7, 128.5, 122.9, 120.4, 113.8, 113.5, 87.4, 84.9, 55.4, 53.4, 26.2. m/z HRMS (ESI) found [M+H]⁺ 265.1219, C₁₈H₁₇O₂⁺ requires 265.1223.

5-phenyl-3-(o-tolyl)pent-4-yn-2-one (1h)

This reaction was performed on 0.3 mmol scale of **S5** according to **method A**. Purification by extraction with petroleum ether to give the product **1h** (71 mg, 96%). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.58 (d, J = 7.4 Hz, 1H), 7.39 (dd, J = 6.9, 3.1 Hz, 2H), 7.22 (p, J = 3.5 Hz, 3H), 7.18 (td, J = 7.4, 1.6 Hz, 1H), 7.15 – 7.11 (m, 1H), 7.09 (d, J = 8.2 Hz, 1H), 4.82 (s, 1H), 2.23 (s, 3H), 2.17 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 202.2, 136.5, 133.8, 131.8, 130.9, 128.8, 128.5, 128.4, 128.1, 126.7, 122.9, 86.7, 85.5, 50.8, 26.6, 19.6. m/z HRMS (ESI) found [M+H]⁺ 249.1269, C₁₈H₁₇O⁺ requires 249.1274.

3-(2-chlorophenyl)-5-phenylpent-4-yn-2-one (1i)

This reaction was performed on 0.3 mmol scale of **S5** according to **method A**. Purification by extraction with petroleum ether to give the product **1i** (79.8 mg, 99%). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.73 (dd, J = 7.7, 1.8 Hz, 1H), 7.51 – 7.46 (m, 2H), 7.41 (dd, J = 7.8, 1.5 Hz, 1H), 7.37 – 7.31 (m, 4H), 7.29 (dd, J = 7.7, 1.8 Hz, 1H), 5.26 (s, 1H), 2.40 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 200.8, 133.8, 133.8, 131.9, 130.6, 129.7, 129.4, 128.8, 128.5, 127.5, 122.7, 87.0, 84.2, 49.9, 28.1. m/z HRMS (ESI) found [M+H]⁺ 269.0726, C₁₇H₁₄ClO⁺ requires 269.0728.

3-(naphthalen-2-yl)-5-phenylpent-4-yn-2-one (1j)

This reaction was performed on 0.35 mmol scale of **S5** according to **method A**. Purification by extraction with petroleum ether to give the product **1***J* (89.7 mg, 88%). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.90 (s, 1H), 7.74 (t, *J* = 9.4 Hz, 3H), 7.49 – 7.42 (m, 3H), 7.42 – 7.35 (m, 2H), 7.27 – 7.21 (m, 3H), 4.83 (s, 1H), 2.19 (s, 3H).¹³C NMR (126 MHz, Chloroform-*d*) δ 202.7, 133.6, 133.0, 132.4, 131.9, 128.9, 128.7, 128.5, 128.1, 127.8, 127.2, 126.6, 126.4, 125.7, 122.9, 87.6, 85.0, 53.4, 26.4. m/z HRMS (ESI) found [M+H]⁺ 285.1271, C₂₁H₁₇O⁺ requires 285.1274.

3-methyl-5-phenylpent-4-yn-2-one (1k)

This reaction was performed on 0.71 mmol scale of **S6** according to **method B**. Purification by extraction with petroleum ether to give the product **1k** (115 mg, 94%). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.42 (dd, *J* = 6.8, 3.1 Hz, 2H), 7.34 – 7.28 (m, 3H), 3.51 (q, *J* = 7.1 Hz, 1H), 2.39 (s, 3H), 1.42 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 205.5, 131.7, 128.4, 128.4, 123.1, 87.8, 84.1, 40.5, 27.6, 16.7. m/z HRMS (ESI) found [M+H]⁺ 173.0960, C₁₂H₁₃O⁺ requires 173.0961.

3-ethyl-5-phenylpent-4-yn-2-one (11)

This reaction was performed on 0.47 mmol scale of **S9** according to **method C**. Purification by extraction with petroleum ether to give the product **11** (85.4 mg, 97%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.49 – 7.39 (m, 2H), 7.34 – 7.27 (m, 3H), 3.36 (dd, *J* = 8.1, 5.9 Hz, 1H), 2.37 (s, 3H), 1.96 – 1.73 (m, 2H), 1.07 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 205.6, 131.7, 128.4, 128.3, 123.2, 86.7, 85.2, 48.1, 27.9, 24.9. m/z HRMS (ESI) found [M+H]⁺ 187.1116, C₁₃H₁₅O⁺ requires 187.1117.

3-benzyl-5-phenylpent-4-yn-2-one (1m)

This reaction was performed on 0.97 mmol scale of **S9** according to **method C**. Purification by extraction with petroleum ether to give the product **1m** (196.9 mg, 82%).

¹H NMR (500 MHz, Chloroform-*d*) δ 7.39 – 7.35 (m, 2H), 7.34 – 7.28 (m, 7H), 7.26 – 7.22 (m, 1H), 3.70 (dd, J = 8.5, 5.8 Hz, 1H), 3.21 (dd, J = 13.6, 5.8 Hz, 1H), 3.03 (dd, J = 13.6, 8.5 Hz, 1H), 2.35 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 204.6, 138.4, 131.7, 129.4, 128.5, 128.4, 126.8, 123.0, 86.3, 86.0, 48.3, 37.4, 28.5. m/z HRMS (ESI) found [M+H]⁺ 249.1273, C₁₈H₁₇O⁺ requires 249.1274.

3-phenyl-5-(p-tolyl)pent-4-yn-2-one (1n)

This reaction was performed on 0.3 mmol scale of **S5** according to **method A**. Purification by extraction with petroleum ether to give the product **1n** (73.6 mg, 99%).

¹H NMR (500 MHz, Chloroform-*d*) δ 7.53 – 7.48 (m, 2H), 7.39 (dd, *J* = 8.0, 6.3 Hz, 4H), 7.35 – 7.31 (m, 1H), 7.15 (d, *J* = 7.9 Hz, 2H), 4.76 (s, 1H), 2.36 (s, 3H), 2.27 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 203.0, 138.8, 135.1, 131.7, 129.3, 129.1, 128.1, 128.1, 119.8, 84.3, 53.4, 21.6. m/z HRMS (ESI) found [M+H]⁺ 249.1269, C₁₈H₁₇O⁺ requires 249.1274.

5-(4-fluorophenyl)-3-phenylpent-4-yn-2-one (10)

This reaction was performed on 0.3 mmol scale of **S5** according to **method A**. Purification by extraction with petroleum ether to give the product **10** (71.8 mg, 95%). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.51 – 7.45 (m, 4H), 7.42 – 7.37 (m, 2H), 7.36 – 7.31 (m, 1H), 7.06 – 7.01 (m, 2H), 4.76 (s, 1H), 2.26 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 202.6, 135.0, 133.8 (d, J = 8.3 Hz),, 129.1, 128.2, 128.1, 119.0, 115.8 (d, J = 22.3 Hz), 86.2, 84.8, 53.3, 26.4. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -110.6. m/z HRMS (ESI) found [M+H]⁺ 253.1019, C₁₇H₁₄FO⁺ requires 253.1023.

5-(4-chlorophenyl)-3-phenylpent-4-yn-2-one (1p)

This reaction was performed on 0.3 mmol scale of **S5** according to **method A**. Purification by extraction with petroleum ether to give the product **1p** (75.6 mg, 94%).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.51 – 7.45 (m, 2H), 7.43 (d, *J* = 1.9 Hz, 1H), 7.42 – 7.39 (m, 3H), 7.33 (q, *J* = 2.3 Hz, 2H), 7.30 (d, *J* = 1.9 Hz, 1H), 4.76 (s, 1H), 2.26 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 202.5, 134.9, 134.7, 133.1, 129.2, 128.9, 128.2, 128.1, 53.3, 26.4. m/z HRMS (ESI) found [M+H]⁺ 269.0722, C₁₇H₁₄ClO⁺ requires 269.0728.

3-phenyl-5-(m-tolyl)pent-4-yn-2-one (1q)

This reaction was performed on 0.3 mmol scale of **S5** according to **method A**. Purification by extraction with petroleum ether to give the product **1q** (69.2 mg, 93%).

¹H NMR (500 MHz, Chloroform-*d*) δ 7.51 (dd, J = 7.4, 1.8 Hz, 2H), 7.41 – 7.37 (m, 2H), 7.32 (qd, J = 7.2, 1.4 Hz, 3H), 7.23 (t, J = 7.6 Hz, 1H), 7.16 (d, J = 7.5 Hz, 1H), 4.76 (s, 1H), 2.35 (s, 3H), 2.27 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 202.9, 138.2, 135.1, 132.4, 129.5, 129.1, 128.9, 128.4, 128.1, 122.7, 87.6, 84.6, 53.4, 26.3, 21.4. m/z HRMS (ESI) found [M+H]⁺ 249.1269, C₁₈H₁₇O⁺ requires 249.1274.

5-(3-methoxyphenyl)-3-phenylpent-4-yn-2-one (1r)

This reaction was performed on 0.3 mmol scale of **S5** according to **method A**. Purification by extraction with petroleum ether to give the product **1r** (71 mg, 90%). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.50 (d, *J* = 7.5 Hz, 2H), 7.39 (t, *J* = 7.4 Hz, 2H), 7.33 (t, *J* = 7.3 Hz, 1H), 7.24 (d, *J* = 7.9 Hz, 1H), 7.10 (d, *J* = 7.6 Hz, 1H), 7.02 (d, *J* = 2.4 Hz, 1H), 6.91 (dd, *J* = 8.3, 2.4 Hz, 1H), 4.76 (s, 1H), 3.82 (s, 3H), 2.27 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 202.8, 159.5, 135.0, 129.6, 129.1, 128.1, 128.1, 124.4, 123.9, 116.8, 115.2, 87.2, 84.9, 55.5, 53.3, 26.3. m/z HRMS (ESI) found [M+H]⁺ 265.1217, C₁₈H₁₇O₂⁺ requires 265.1223.

5-(3-chlorophenyl)-3-phenylpent-4-yn-2-one (1s)

This reaction was performed on 0.3 mmol scale of **S5** according to **method A**. Purification by extraction with petroleum ether to give the product **1s** (76 mg, 95%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.51 – 7.44 (m, 3H), 7.41 – 7.36 (m, 2H), 7.35 (dt, *J* = 5.2, 1.4 Hz, 1H), 7.33 – 7.28 (m, 2H), 7.23 (d, *J* = 7.9 Hz, 1H), 4.76 (s, 1H), 2.25 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 202.3, 134.8, 134.4, 131.8, 130.0, 129.8, 129.2, 129.0, 128.2, 128.1, 124.6, 86.4, 85.9, 53.3, 26.4. m/z HRMS (ESI) found [M+H]⁺ 269.0726, C₁₇H₁₄ClO⁺ requires 269.0728.

5-(2-chlorophenyl)-3-phenylpent-4-yn-2-one (1t)

This reaction was performed on 0.3 mmol scale of **S5** according to **method A**. Purification by extraction with petroleum ether to give the product **1t** (74 mg, 93%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.54 (ddd, J = 14.5, 7.3, 1.8 Hz, 3H), 7.45 – 7.37 (m, 3H), 7.36 – 7.32 (m, 1H), 7.31 – 7.26 (m, 1H), 7.25 – 7.20 (m, 1H), 4.81 (s, 1H), 2.32 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 202.6, 136.4, 134.7, 133.5, 129.7, 129.5, 129.1, 128.2, 128.1, 126.7, 122.8, 90.3, 84.4, 53.6, 26.3. m/z HRMS (ESI) found [M+H]⁺ 269.0724, C₁₇H₁₄ClO⁺ requires 269.0728.

3-phenyl-5-(o-tolyl)pent-4-yn-2-one (1u)

This reaction was performed on 0.3 mmol scale of **S5** according to **method A**. Purification by extraction with petroleum ether to give the product **1u** (68 mg, 92%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.56 – 7.50 (m, 2H), 7.49 – 7.44 (m, 1H), 7.43 – 7.37 (m, 2H), 7.36 – 7.32 (m, 1H), 7.24 (dd, J = 6.4, 1.5 Hz, 2H), 7.16 (td, J = 7.0, 6.4, 2.4 Hz, 1H), 4.82 (s, 1H), 2.49 (s, 3H), 2.29 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 202.9, 140.5, 135.2, 132.3, 129.7, 129.1, 128.7, 128.1, 125.8, 122.7, 88.8, 86.4, 53.6, 26.3, 21.0. m/z HRMS (ESI) found [M+H]⁺ 249.1269, C₁₈H₁₇O⁺ requires 249.1274.

5-(naphthalen-2-yl)-3-phenylpent-4-yn-2-one (1v)

This reaction was performed on 0.95 mmol scale of **S5** according to **method A**. Purification by extraction with petroleum ether to give the product **1v** (221 mg, 81%). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.03 (d, *J* = 1.6 Hz, 1H), 7.82 (td, *J* = 8.6, 4.5 Hz, 3H), 7.55 (dt, *J* = 8.2, 3.5 Hz, 3H), 7.52 – 7.48 (m, 2H), 7.44 – 7.39 (m, 2H), 7.37 – 7.33 (m, 1H), 4.82 (s, 1H), 2.31 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 202.8, 135.1, 133.1, 133.0, 131.8, 129.1, 128.5, 128.2, 128.1, 128.1, 127.9, 127.9, 126.9, 126.8, 120.1, 87.7, 85.3, 53.4, 26.4. m/z HRMS (ESI) found [M+H]⁺ 285.1269, C₂₁H₁₇O⁺ requires 285.1274.

3-phenyl-5-(thiophen-3-yl)pent-4-yn-2-one (1w)

This reaction was performed on 0.83 mmol scale of **S5** according to **method A**. Purification by extraction with petroleum ether to give the product **1w** (161 mg, 81%). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.52 – 7.48 (m, 3H), 7.42 – 7.38 (m, 2H), 7.35 – 7.33 (m, 1H), 7.29 (dd, *J* = 5.0, 3.0 Hz, 1H), 7.17 (dd, *J* = 5.0, 1.2 Hz, 1H), 4.76 (s, 1H), 2.27 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 202.7, 135.0, 130.0, 129.1, 129.1, 128.1, 128.1, 125.5, 121.8, 84.6, 82.4, 53.3, 26.3. m/z HRMS (ESI) found [M+H]⁺ 241.0680, C₁₅H₁₃SO⁺ requires 241.0682.

3-methylnon-4-yn-2-one (1x)

This reaction was performed on 2.1 mmol scale of **S6** according to **method B**. Purification by extraction with petroleum ether to give the product **1x** (302 mg, 94%). ¹H NMR (500 MHz, Chloroform-*d*) δ 3.24 (qt, *J* = 7.0, 2.4 Hz, 1H), 2.29 (s, 3H), 2.18 (td, *J* = 7.0, 2.4 Hz, 2H), 1.51 – 1.44 (m, 2H), 1.43 – 1.35 (m, 2H), 1.28 (d, *J* = 7.0 Hz, 3H), 0.90 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 206.5, 84.4, 78.4, 40.0, 31.0, 27.3, 22.1, 18.6, 17.0, 13.7. m/z HRMS (ESI) found [M+H]⁺ 153.1274, C₁₀H₁₇O⁺ requires 153.1274.

5-cyclopropyl-3-methylpent-4-yn-2-one (1y)

This reaction was performed on 2.17 mmol scale of **S6** according to **method B**. Purification by extraction with petroleum ether to give the product **1y** (255 mg, 86%). ¹H NMR (400 MHz, Chloroform-*d*) δ 3.21 (qd, J = 7.1, 2.0 Hz, 1H), 2.27 (s, 3H), 1.26 (d, J = 7.1 Hz, 3H), 1.24 – 1.18 (m, 1H), 0.79 – 0.69 (m, 2H), 0.66 – 0.60 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 206.3, 87.3, 73.7, 40.0, 27.3, 17.0, 8.2. m/z HRMS (ESI) found [M+H]⁺ 137.0961, C₉H₁₃O⁺ requires 137.0961.

Asymmetric amination of α-alkynyl ketone 3:

General procedure for the asymmetric synthesis of products 3:

To a 8 mL vial was added **2a** (0.4 mmol, 2.0 equiv.) and (*R*)-**A8** (0.02 mmol, 0.1 equiv.) and AW-500 MS (200 mg) subsequently under N₂ atmosphere. Then a solution of **1** (0.2 mmol, 1.0 equiv.) in dry CCl₄ (2 mL) was added using a syringe. After stirring at 40 °C for 16 h, the reaction mixture was cooled to rt and filtered through Celite. The filtrate were concentrated under vacuum to afford a residue, which was purified by column chromatography (petroleum ether/EtOAc = 15:1 to 8:1) to give the product **3**.

Di-tert-butyl-(*R*)-1-(4-oxo-1,3-diphenylpent-1-yn-3-yl)hydrazine-1,2-dicarboxylate (3a)

The reaction was performed on 1 mmol scale under the standard conditions. Purification by column chromatography (petroleum ether/EtOAc = 10:1) provided **3a** as yellow oil (243 mg, 52% yield.)

¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 (m, 1H), 7.71 – 7.51 (m, 3H), 7.38 (m, 6H), 6.62 – 6.26 (m, 1H), 2.72 – 2.13 (m, 3H), 1.56 – 1.41 (m, 18H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 201.4, 156.0, 154.5, 134.5, 131.8, 128.8, 128.7, 128.3, 128.1, 127.7, 122.2, 87.6, 83.4, 80.7, 75.3, 28.0, 27.8, 25.6. $[\alpha]^{21}_{D} = 3.60$ (c = 1.0, CHCl₃). m/z HRMS (ESI) found $[M+H]^+$ 465.2390, C₂₇H₃₃N₂O₅⁺ requires 465.2384. HPLC: Chiralpak IC column, 90:10 hexanes/isopropanol, 1 ml/min; t_R = 7.15 min (minor), 8.43 min (major); 96.5:3.5 er. Di-tert-butyl-(*R*)-1-(4-oxo-1-phenyl-3-(p-tolyl)pent-1-yn-3-yl)hydrazine-1,2-dicarbox ylate (**3b**)

The reaction was performed on 0.2 mmol scale under the standard conditions. Purification by column chromatography (petroleum ether/EtOAc = 10:1) provided **3b** as yellow oil (52 mg, 77% yield.)

¹H NMR (500 MHz, Chloroform-*d*) δ 7.78 – 7.56 (m, 1H), 7.50 (m, 3H), 7.33 (m, 3H), 7.18 (m, 2H), 6.58 – 5.89 (m, 1H), 2.62 – 2.13 (m, 6H), 1.53 – 1.35 (m, 18H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 156.1, 154.6, 138.6, 132.0, 131.9, 129.6, 129.1, 128.5, 125.6, 122.6, 83.8, 81.2, 80.9, 28.2, 28.0, 21.2, 14.2. $[\alpha]^{21}_{D} = 3.40$ (c = 1.0, CHCl₃). m/z HRMS (ESI) found [M+H]⁺ 479.2551, C₂₈H₃₅N₂O₅⁺ requires 479.2540. HPLC: Chiralpak IC column, 90:10 hexanes/isopropanol, 1 ml/min; t_R = 7.45 min (minor), 9.87 min (major); 96.5:3.5 er.

Di-tert-butyl-(*R*)-1-(3-(4-methoxyphenyl)-4-oxo-1-phenylpent-1-yn-3-yl)hydrazine-1, 2-dicarboxylate (**3c**)

The reaction was performed on 0.2 mmol scale under the standard conditions. Purification by column chromatography (petroleum ether/EtOAc = 10:1) provided **3c** as yellow oil (65 mg, 73% yield.)

¹H NMR (400 MHz, Chloroform-*d*) δ 7.70 (m, 1H), 7.51 (m, 3H), 7.41 – 7.28 (m, 3H), 6.89 (m, 2H), 6.36 – 5.89 (m, 1H), 3.79 (m, 3H), 2.61 – 2.14 (m, 3H), 1.50 – 1.35 (m,

18H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.9, 155.0, 153.5, 130.9, 128.9, 128.6, 127.8, 127.4, 121.4, 112.6, 87.7, 80.4, 79.8, 54.3, 27.1, 27.1, 24.8. $[\alpha]^{21}_{D} = -2.20$ (c = 1.0, CHCl₃). m/z HRMS (ESI) found $[M+H]^+$ 495.2495, C₂₈H₃₅N₂O₆⁺ requires 495.2490. HPLC: Chiralpak IC column, 90:10 hexanes/isopropanol, 1 ml/min; t_R = 9.39 min (minor), 13.71 min (major); 96.5:3.5 er.

 $\label{eq:linear} Di-tert-butyl-(R)-1-(3-(4-bromophenyl)-4-oxo-1-phenylpent-1-yn-3-yl)hydrazine-1, 2-dicarboxylate (3d)$

The reaction was performed on 0.2 mmol scale under the standard conditions. Purification by column chromatography (petroleum ether/EtOAc = 10:1) provided **3d** as yellow oil (61 mg, 56% yield.)

¹H NMR (400 MHz, Chloroform-*d*) δ 7.69 (m, 1H), 7.56 – 7.42 (m, 5H), 7.41 – 7.28 (m, 3H), 6.37 – 5.98 (m, 1H), 2.68 – 2.12 (m, 3H), 1.48 – 1.34 (m, 18H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 155.9, 154.7, 132.0, 131.9, 131.4, 130.3, 129.0, 128.6, 123.3, 122.1, 81.5, 81.3, 28.2, 28.1, 25.7. $[\alpha]^{21}_{D} = 12.20$ (c = 1.0, CHCl₃). m/z HRMS (ESI) found $[M+H]^+$ 543.1495, C₂₇H₃₂BrN₂O₅⁺ requires 543.1489. HPLC: Chiralpak IA column, 90:10 hexanes/isopropanol, 1 ml/min; t_R = 10.94 min (minor), 18.01 min (major); 97.5:2.5 er.

 $\label{eq:linear} Di-tert-butyl-(R)-1-(3-(4-chlorophenyl)-4-oxo-1-phenylpent-1-yn-3-yl)hydrazine-1, 2-dicarboxylate (3e)$

The reaction was performed on 0.2 mmol scale under the standard conditions. Purification by column chromatography (petroleum ether/EtOAc = 10:1) provided **3e** as yellow oil (38.2 mg, 48% yield.)

¹H NMR (500 MHz, Chloroform-*d*) δ 7.80 (m, 1H), 7.57 – 7.47 (m, 3H), 7.40 – 7.30 (m, 5H), 6.34 – 5.93 (m, 1H), 2.66 – 2.31 (m, 3H), 1.50 – 1.38 (m, 18H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 155.9, 135.0, 133.4, 131.9, 130.0, 129.8, 129.2, 128.5, 122.1, 81.3, 61.3, 28.2, 28.1, 25.7. $[\alpha]^{21}_{D} = 14.00$ (c = 1.0, CHCl₃). m/z HRMS (ESI) found $[M+H]^+$ 499.2004, $C_{27}H_{32}CIN_2O_5^+$ requires 499.1994. HPLC: Chiralpak IC column, 90:10 hexanes/isopropanol, 1 ml/min; t_R = 5.27 min (minor), 7.80 min (major); 97:3 er .

 $\label{eq:linear} Di-tert-butyl-(R)-1-(4-oxo-1-phenyl-3-(m-tolyl)pent-1-yn-3-yl)hydrazine-1,2-dicarboxylate (3f)$

The reaction was performed on 0.2 mmol scale under the standard conditions. Purification by column chromatography (petroleum ether/EtOAc = 10:1) provided **3f** as yellow oil (47.5 mg, 66% yield.)

¹H NMR (500 MHz, Chloroform-*d*) δ 7.65 – 7.41 (m, 2H), 7.35 – 7.19 (m, 5H), 7.19 – 7.04 (m, 2H), 6.45 – 5.65 (m, 1H), 2.57 – 2.09 (m, 5H), 1.84 – 1.78 (m, 1H), 1.43 – 1.28 (m, 18H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 202.0, 154.6, 154.3, 137.7, 134.5, 132.0, 129.9, 128.9, 128.2, 126.9, 126.5, 125.6, 122.5, 86.3, 83.8, 81.0, 28.2, 28.0, 21.7, 14.7. $[\alpha]^{21}_{D} = 3.00$ (c = 1.0, CHCl₃). m/z HRMS (ESI) found $[M+H]^+$ 479.2549, C₂₈H₃₅N₂O₅⁺ requires 479.2540. HPLC: Chiralpak IC column, 90:10 hexanes/isopropanol, 1 ml/min; t_R = 6.73 min (minor), 8.17 min (major); 95.5:4.5 er.

2-dicarboxylate (3g)

The reaction was performed on 0.2 mmol scale under the standard conditions. Purification by column chromatography (petroleum ether/EtOAc = 10:1) provided **3g** as yellow oil (54 mg, 58% yield.)

¹H NMR (400 MHz, Chloroform-*d*) δ 7.52 (m, 3H), 7.42 – 7.25 (m, 4H), 7.20 (m, 1H), 6.90 (m, 1H), 6.40 – 5.96 (m, 1H), 3.83 (m, 3H), 2.66 – 2.17 (m, 3H), 1.53 – 1.37 (m, 18H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.0, 159.6, 154.6, 136.0, 132.0, 129.9, 129.0, 128.5, 122.4, 120.7, 115.8, 114.4, 83.2, 81.3, 81.0, 55.3, 28.2, 28.2, 25.9. $[\alpha]^{21}_{D}$ = 3.40 (c = 1.0, CHCl₃). m/z HRMS (ESI) found $[M+H]^+$ 495.2499, C₂₈H₃₅N₂O₆⁺ requires 495.2490. HPLC: Chiralpak IC column, 90:10 hexanes/isopropanol, 1 ml/min; t_R = 8.27 min (minor), 9.43 min (major); 96.5:3.5 er .

Di-tert-butyl-(*S*)-1-(4-oxo-1-phenyl-3-(o-tolyl)pent-1-yn-3-yl)hydrazine-1,2-dicarbox ylate (**3h**)

The reaction was performed on 0.2 mmol scale under the standard conditions. Purification by column chromatography (petroleum ether/EtOAc = 10:1) provided **3h** as yellow oil (45 mg, 47% yield.)

¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 (m, 2H), 7.29 – 7.07 (m, 6H), 7.06 – 6.88 (m, 1H), 6.39 – 6.00 (m, 1H), 2.67 – 2.22 (m, 6H), 1.40 – 1.28 (m, 18H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 155.0, 154.8, 139.4, 138.6, 133.6, 133.1, 131.7, 128.8, 128.4, 126.2, 125.7, 122.5, 88.9, 85.3, 83.5, 81.0, 28.3, 28.1, 26.0, 22.3. [α]²¹_D = 34.60 (c = 1.0, CHCl₃). m/z HRMS (ESI) found [M+H]⁺ 479.2549, C₂₈H₃₅N₂O₅⁺

requires 479.2540. HPLC: Chiralpak IC column, 90:10 hexanes/isopropanol, 1 ml/min; $t_R = 8.00 \text{ min (minor)}$, 9.04 min (major); 98:2 er .

Di-tert-butyl-(*S*)-1-(3-(2-chlorophenyl)-4-oxo-1-phenylpent-1-yn-3-yl)hydrazine-1,2-dicarboxylate (**3i**)

The reaction was performed on 0.2 mmol scale under the standard conditions. Purification by column chromatography (petroleum ether/EtOAc = 10:1) provided **3i** as yellow oil (50 mg, 69% yield.)

¹H NMR (400 MHz, Chloroform-*d*) δ 7.56 – 7.42 (m, 3H), 7.40 (m, 1H), 7.31 (m, 5H), 6.44 (m, 1H), 2.55 (m, 3H), 1.49 – 1.34 (m, 18H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 154.9, 154.3, 134.5, 133.6, 132.0, 131.8, 131.5, 129.7, 128.9, 128.3, 126.7, 122.4, 89.3, 83.8, 81.3, 28.3, 28.1, 25.5. $[\alpha]^{21}_{D} = 67.20$ (c = 1.0, CHCl₃). m/z HRMS (ESI) found $[M+H]^+$ 499.1999, C₂₇H₃₂ClN₂O₅⁺ requires 499.1994. HPLC: Chiralpak IC column, 90:10 hexanes/isopropanol, 1 ml/min; t_R = 8.38 min (minor), 11.80 min (major); 99:1 er .

Di-tert-butyl-(*R*)-1-(3-(naphthalen-2-yl)-4-oxo-1-phenylpent-1-yn-3-yl)hydrazine-1,2-dicarboxylate (**3j**)

The reaction was performed on 0.2 mmol scale under the standard conditions. Purification by column chromatography (petroleum ether/EtOAc = 10:1) provided **3j** as yellow oil (50 mg, 58% yield.) ¹H NMR (500 MHz, Chloroform-*d*) δ 8.43 – 7.97 (m, 1H), 7.86 (m, 3H), 7.76 – 7.66 (m, 1H), 7.62 – 7.46 (m, 4H), 7.42 – 7.31 (m, 3H), 6.52 – 5.90 (m, 1H), 2.69 – 2.15 (m, 3H), 1.53 – 1.33 (m, 18H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 156.2, 154.7, 133.6, 133.2, 132.1, 132.0, 129.1, 128.6, 128.4, 127.8, 127.6, 127.0, 126.7, 126.4, 125.4, 122.5, 83.8, 81.7, 81.1, 28.2, 28.1, 26.0. $[\alpha]^{21}_{D} = 6.40$ (c = 1.0, CHCl₃). m/z HRMS (ESI) found $[M+H]^+$ 515.2551, C₃₁H₃₅N₂O₅⁺ requires 515.2540. HPLC: Chiralpak IC column, 97:03 hexanes/isopropanol, 1 ml/min; t_R = 23.16 min (minor), 28.56 min (major); 95:5 er .

 $\label{eq:linear} Di-tert-butyl-(R)-1-(3-methyl-4-oxo-1-phenylpent-1-yn-3-yl)hydrazine-1,2-dicarboxy late (3k)$

The reaction was performed on 0.2 mmol scale under the standard conditions. Purification by column chromatography (petroleum ether/EtOAc = 10:1) provided **3k** as yellow oil (45 mg, 70% yield.)

¹H NMR (500 MHz, Chloroform-*d*) δ 7.99 – 7.43 (m, 1H), 7.40 (m, 2H), 7.30 (m, 2H), 6.37 (m, 1H), 2.59 – 2.27 (m, 3H), 1.74 – 1.62 (m, 3H), 1.48 (m, 18H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 133.3, 131.9, 128.4, 122.4, 40.8, 30.3, 28.3, 25.5. $[\alpha]^{21}_{D}$ = 33.00 (c = 1.0, CHCl₃). m/z HRMS (ESI) found [M+H]⁺ 403.2233, C₂₂H₃₁N₂O₅⁺ requires 403.2227. HPLC: Chiralpak IC column, 90:10 hexanes/isopropanol, 1 ml/min; t_R = 6.51 min (minor), 7.35 min (major); 99:1 er.

 $\label{eq:linear} Di-tert-butyl-(R)-1-(3-ethyl-4-oxo-1-phenylpent-1-yn-3-yl)hydrazine-1,2-dicarboxylate (31)$

The reaction was performed on 0.2 mmol scale under the standard conditions.

Purification by column chromatography (petroleum ether/EtOAc = 10:1) provided **31** as yellow oil (60 mg, 72% yield.)

¹H NMR (400 MHz, Chloroform-*d*) δ 7.34 (m, 2H), 7.22 (m, 3H), 6.47 – 6.15 (m, 1H), 2.40 (m, 3H), 2.21 – 1.87 (m, 2H), 1.43 – 1.36 (m, 18H), 0.98 (m, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 201.5, 154.8, 153.9, 132.0, 128.8, 128.3, 122.4, 88.4, 84.4, 81.2, 31.6, 28.3, 28.2, 25.3, 9.2. $[\alpha]^{21}_{D} = 62.00$ (c = 1.0, CHCl₃). m/z HRMS (ESI) found $[M+H]^+$ 417.2389, C₂₃H₃₃N₂O₅⁺ requires 417.2384 HPLC: Chiralpak IC column, 90:10 hexanes/isopropanol, 1 ml/min; t_R = 5.92 min (minor), 7.03 min (major); 99:1 er.

 $\label{eq:linear} Di-tert-butyl-(R)-1-(3-benzyl-4-oxo-1-phenylpent-1-yn-3-yl) hydrazine-1, 2-dicarboxyl ate (3m)$

The reaction was performed on 0.2 mmol scale under the standard conditions. Purification by column chromatography (petroleum ether/EtOAc = 10:1) provided **3m** as yellow oil (65 mg, 72% yield.)

¹H NMR (500 MHz, Chloroform-*d*) δ 7.33 – 7.29 (m, 2H), 7.25 (m, 6H), 7.22 – 7.17 (m, 2H), 4.86 (m, 1H), 3.57 – 3.35 (m, 1H), 3.25 (m, 1H), 2.46 (m, 3H), 1.44 – 1.25 (m, 18H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 131.8, 130.4, 129.0, 128.7, 128.4, 127.7, 127.3, 122.1, 90.2, 83.6, 81.8, 81.0, 31.6, 30.2, 28.1, 24.5. $[\alpha]^{21}_{D} = 185.00$ (c = 1.0, CHCl₃). m/z HRMS (ESI) found $[M+H]^+$ 479.2550, C₂₈H₃₅N₂O₅⁺ requires 479.2540. HPLC: Chiralpak IC column, 95:05 hexanes/isopropanol, 1 ml/min; t_R = 9.50 min (minor), 15.37 min (major); 99.5:0.5 er .

 $\label{eq:linear} Di-tert-butyl-(R)-1-(4-oxo-3-phenyl-1-(p-tolyl)pent-1-yn-3-yl)hydrazine-1,2-dicarbox ylate (3n)$

The reaction was performed on 0.2 mmol scale under the standard conditions. Purification by column chromatography (petroleum ether/EtOAc = 10:1) provided **3n** as yellow oil (52 mg, 73% yield.)

¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 (m, 1H), 7.60 (m, 1H), 7.39 (m, 5H), 7.15 (m, 2H), 6.38 – 5.91 (m, 1H), 2.71 – 2.13 (m, 6H), 1.52 – 1.36 (m, 18H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 154.6, 139.2, 134.8, 131.9, 129.1, 128.9, 128.3, 127.9, 119.4, 83.8, 81.0, 31.5, 28.2, 28.0, 21.6. $[\alpha]^{21}_{D} = 7.00$ (c = 1.0, CHCl₃). m/z HRMS (ESI) found $[M+H]^+$ 479.2549, C₂₈H₃₅N₂O₅⁺ requires 479.2540. HPLC: Chiralpak IC column, 90:10 hexanes/isopropanol, 1 ml/min; t_R = 8.61 min (minor), 10.08 min (major); 96.5:3.5 er.

 $\label{eq:linear} Di-tert-butyl-(R)-1-(1-(4-fluorophenyl)-4-oxo-3-phenylpent-1-yn-3-yl)hydrazine-1, 2-dicarboxylate (30)$

The reaction was performed on 0.2 mmol scale under the standard conditions. Purification by column chromatography (petroleum ether/EtOAc = 10:1) provided **30** as yellow oil (55 mg, 65% yield.)

¹H NMR (500 MHz, Chloroform-*d*) δ 7.91 – 7.67 (m, 1H), 7.60 – 7.55 (m, 1H), 7.55 – 7.46 (m, 2H), 7.43 – 7.31 (m, 3H), 7.03 (m, 2H), 6.32 – 5.90 (m, 1H), 2.63 – 2.07 (m, 3H), 1.50 – 1.35 (m, 18H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 163.9, 162.0, 156.2, 154.7, 135.4, 134.6, 134.0, 133.8, 129.0, 128.4, 128.2, 118.6, 115.8, 115.6, 87.9, 83.8, 81.4, 81.1, 28.2, 28.1, 25.9. ¹⁹F NMR (471 MHz, Chloroform-d) δ -109.5 –

-110.2 (m). $[\alpha]^{21}{}_{D} = 3.20$ (c = 1.0, CHCl₃). m/z HRMS (ESI) found $[M+H]^{+} 483.2297$, C₂₇H₃₂FN₂O₅⁺ requires 483.2290. HPLC: Chiralpak IC column, 90:10 hexanes/isopropanol, 1 ml/min; t_R = 6.17 min (minor), 7.17 min (major); 95.5:4.5 er.

 $\label{eq:linear} Di-tert-butyl-(R)-1-(1-(4-chlorophenyl)-4-oxo-3-phenylpent-1-yn-3-yl)hydrazine-1, 2-dicarboxylate ($ **3p**)

The reaction was performed on 0.2 mmol scale under the standard conditions. Purification by column chromatography (petroleum ether/EtOAc = 10:1) provided **3p** as ellow oil (62 mg, 81% yield.)

¹H NMR (400 MHz, Chloroform-*d*) δ 7.77 (m, 1H), 7.57 (m, 1H), 7.44 (m, 2H), 7.33 (m, 5H), 6.56 – 5.95 (m, 1H), 2.65 – 2.10 (m, 3H), 1.49 (s, 3H), 1.47 – 1.34 (m, 18H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 154.5, 134.5, 133.1, 128.8, 128.5, 128.2, 127.8, 121.0, 119.2, 81.1, 31.5, 28.0, 25.9. [α]²¹_D = 1.20 (c = 1.0, CHCl₃). m/z HRMS (ESI) found [M+H]⁺ 499.2004, C₂₇H₃₂ClN₂O₅⁺ requires 499.1994. HPLC: Chiralpak IC column, 90:10 hexanes/isopropanol, 1 ml/min; t_R = 6.68 min (minor), 7.81 min (major); 91% ee.

 $\label{eq:linear} Di-tert-butyl-(R)-1-(4-oxo-3-phenyl-1-(m-tolyl)pent-1-yn-3-yl)hydrazine-1,2-dicarboxylate (3q)$

The reaction was performed on 0.2 mmol scale under the standard conditions. Purification by column chromatography (petroleum ether/EtOAc = 10:1) provided 3q as yellow oil (78 mg, 72% yield.) ¹H NMR (500 MHz, Chloroform-*d*) δ 7.94 – 7.68 (m, 1H), 7.59 (m, 1H), 7.45 – 7.28 (m, 5H), 7.19 (m, 2H), 6.37 – 5.92 (m, 1H), 2.63 – 2.15 (m, 6H), 1.51 – 1.38 (m, 18H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 201.8, 156.1, 154.7, 138.0, 134.7, 132.6, 129.7, 129.0, 128.9, 128.6, 128.5, 128.3, 122.2, 83.2, 81.6, 81.0, 31.5, 28.2, 28.0, 21.3. $[\alpha]^{21}_{D}$ = 8.00 (c = 1.0, CHCl₃). m/z HRMS (ESI) found $[M+H]^+$ 479.2548, C₂₈H₃₅N₂O₅⁺ requires 479.2540. HPLC: Chiralpak IC column, 90:10 hexanes/isopropanol, 1 ml/min; t_R = 7.51 min (minor), 8.87 min (major); 93.5:6.5 er .

Di-tert-butyl-(*R*)-1-(1-(3-methoxyphenyl)-4-oxo-3-phenylpent-1-yn-3-yl)hydrazine-1, 2-dicarboxylate (**3r**)

The reaction was performed on 0.2 mmol scale under the standard conditions. Purification by column chromatography (petroleum ether/EtOAc = 10:1) provided $3\mathbf{r}$ as yellow oil (81 mg, 79% yield.)

¹H NMR (500 MHz, Chloroform-*d*) δ 7.72 (m, 1H), 7.56 – 7.47 (m, 1H), 7.28 (m, 3H), 7.21 – 7.11 (m, 1H), 7.04 (m, 1H), 7.00 – 6.92 (m, 1H), 6.88 – 6.78 (m, 1H), 6.35 – 5.92 (m, 1H), 3.72 (m, 3H), 2.55 – 2.04 (m, 3H), 1.38 – 1.18 (m, 18H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.5, 134.6, 129.6, 128.6, 128.4, 124.6, 116.6, 115.6, 81.1, 55.4, 28.2, 28.1, 25.9. $[\alpha]^{21}_{D} = 2.60$ (c = 1.0, CHCl₃). m/z HRMS (ESI) found [M+H]⁺ 495.2500, C₂₈H₃₅N₂O₆⁺ requires 495.2490. HPLC: Chiralpak IC column, 90:10 hexanes/isopropanol, 1 ml/min; t_R = 9.15 min (minor), 10.51 min (major); 97:3 er .

Di-tert-butyl-(*R*)-1-(1-(3-chlorophenyl)-4-oxo-3-phenylpent-1-yn-3-yl)hydrazine-1,2-dicarboxylate (**3s**)

The reaction was performed on 0.2 mmol scale under the standard conditions. Purification by column chromatography (petroleum ether/EtOAc = 10:1) provided **3s** as yellow oil (56 mg, 56% yield.)

¹H NMR (400 MHz, Chloroform-*d*) δ 7.84 – 7.57 (m, 1H), 7.53 – 7.39 (m, 2H), 7.38 – 7.13 (m, 6H), 6.28 – 5.84 (m, 1H), 2.56 – 2.04 (m, 3H), 1.41 – 1.28 (m, 18H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 154.6, 154.5, 135.1, 134.3, 131.9, 129.9, 129.3, 129.0, 128.5, 128.2, 127.8, 124.1, 87.4, 83.3, 81.7, 81.1, 28.2, 28.0, 25.9. $[\alpha]^{21}_{D} = 2.00$ (c = 1.0, CHCl₃). m/z HRMS (ESI) found [M+H]⁺ 499.2002, C₂₇H₃₂ClN₂O₅⁺ requires 499.1994. HPLC: Chiralpak IC column, 90:10 hexanes/isopropanol, 1 ml/min; t_R = 9.23 min (minor), 11.17 min (major); 96.5:3.5 er.

 $\label{eq:linear} Di-tert-butyl-(R)-1-(1-(2-chlorophenyl)-4-oxo-3-phenylpent-1-yn-3-yl)hydrazine-1, 2-dicarboxylate (3t)$

The reaction was performed on 0.2 mmol scale under the standard conditions. Purification by column chromatography (petroleum ether/EtOAc = 10:1) provided **3t** as yellow oil (60 mg, 81% yield.)

¹H NMR (500 MHz, Chloroform-*d*) δ 7.96 – 7.73 (m, 1H), 7.65 (m, 1H), 7.60 – 7.51 (m, 1H), 7.45 – 7.27 (m, 5H), 7.25 – 7.19 (m, 1H), 6.32 – 5.89 (m, 1H), 2.63 – 2.18 (m, 3H), 1.50 – 1.33 (m, 18H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 155.0, 153.1, 135.2, 132.6, 128.9, 127.8, 127.5, 127.2, 125.6, 123.3, 122.5, 121.4, 90.4, 84.7, 82.7, 79.9, 27.0, 26.9, 25.1. $[\alpha]^{21}_{D} = 1.40$ (c = 1.0, CHCl₃). m/z HRMS (ESI) found [M+H]⁺

499.2001, $C_{27}H_{32}ClN_2O_5^+$ requires 499.1994. HPLC: Chiralpak IC column, 90:10 hexanes/isopropanol, 1 ml/min; $t_R = 6.94$ min (minor), 7.97 min (major); 97:3 er.

 $\label{eq:linear} Di-tert-butyl-(R)-1-(4-oxo-3-phenyl-1-(o-tolyl)pent-1-yn-3-yl)hydrazine-1,2-dicarbox ylate (3u)$

The reaction was performed on 0.2 mmol scale under the standard conditions. Purification by column chromatography (petroleum ether/EtOAc = 10:1) provided **3u** as yellow oil (54 mg, 75% yield.)

¹H NMR (500 MHz, Chloroform-*d*) δ 7.97 – 7.72 (m, 1H), 7.63 (m, 1H), 7.51 (m, 1H), 7.39 (m, 3H), 7.31 – 7.12 (m, 3H), 6.36 – 5.91 (m, 1H), 2.68 – 2.17 (m, 6H), 1.52 – 1.35 (m, 18H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 156.1, 154.6, 140.8, 135.7, 132.6, 129.7, 128.9, 128.3, 125.7, 124.5, 123.6, 122.3, 83.8, 81.3, 81.0, 31.6, 28.2, 25.7, 20.9. $[\alpha]^{21}_{D} = 7.20$ (c = 1.0, CHCl₃). m/z HRMS (ESI) found [M+H]⁺ 479.2549, C₂₈H₃₅N₂O₅⁺ requires 479.2540. HPLC: Chiralpak IC column, 90:10 hexanes/isopropanol, 1 ml/min; t_R = 6.05 min (minor), 6.96 min (major); 95.5:4.5 er.

 $\label{eq:linear} Di-tert-butyl-(R)-1-(1-(naphthalen-2-yl)-4-oxo-3-phenylpent-1-yn-3-yl)hydrazine-1, 2-dicarboxylate (3v)$

The reaction was performed on 0.2 mmol scale under the standard conditions. Purification by column chromatography (petroleum ether/EtOAc = 10:1) provided 3v as yellow oil (62 mg, 75% yield.) ¹H NMR (500 MHz, Chloroform-*d*) δ 8.10 – 8.02 (m, 1H), 7.91 (m, 1H), 7.86 – 7.74 (m, 3H), 7.64 (m, 1H), 7.60 – 7.46 (m, 3H), 7.45 – 7.33 (m, 3H), 6.39 – 5.93 (m, 1H), 2.70 – 2.18 (m, 3H), 1.52 – 1.36 (m, 18H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 134.7, 133.1, 133.0, 132.2, 132.0, 129.0, 128.6, 128.4, 127.9, 127.1, 127.0, 126.8, 126.7, 119.7, 83.4, 81.7, 81.1, 68.1, 28.2, 28.1, 25.9. $[\alpha]^{21}_{D} = 3.20$ (c = 1.0, CHCl₃). m/z HRMS (ESI) found $[M+H]^+$ 515.2550, C₃₁H₃₅N₂O₅⁺ requires 515.2540. HPLC: Chiralpak IC column, 90:10 hexanes/isopropanol, 1 ml/min; t_R = 7.95 min (minor), 9.29 min (major); 96.5:3.5 er .

 $\label{eq:linear} Di-tert-butyl-(R)-1-(4-oxo-3-phenyl-1-(thiophen-3-yl)pent-1-yn-3-yl)hydrazine-1,2-di carboxylate (3w)$

The reaction was performed on 0.2 mmol scale under the standard conditions. Purification by column chromatography (petroleum ether/EtOAc = 10:1) provided **3w** as yellow oil (39 mg, 65% yield.)

¹H NMR (500 MHz, Chloroform-*d*) δ 7.78 (m, 1H), 7.61 – 7.48 (m, 2H), 7.44 – 7.27 (m, 4H), 7.22 – 7.12 (m, 1H), 6.53 – 5.86 (m, 1H), 2.62 – 2.12 (m, 3H), 1.48 – 1.27 (m, 18H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 154.3, 134.6, 130.0, 129.6, 128.9, 128.5, 128.4, 125.6, 125.5, 83.8, 81.0, 31.6, 28.1, 25.9. $[\alpha]^{21}_{D} = 1.20$ (c = 1.0, CHCl₃). m/z HRMS (ESI) found $[M+H]^+$ 471.1958, C₂₅H₃₁SN₂O₅⁺ requires 471.1948. HPLC: Chiralpak IC column, 90:10 hexanes/isopropanol, 1 ml/min; t_R = 8.37 min (minor), 9.80 min (major); 96:4 er .

Di-tert-butyl (*R*)-1-(3-methyl-2-oxonon-4-yn-3-yl)hydrazine-1,2-dicarboxylate (3x)

The reaction was performed on 0.2 mmol scale under the standard conditions. Purification by column chromatography (petroleum ether/EtOAc = 10:1) provided 3x as yellow oil (41 mg, 53% yield.)

¹H NMR (500 MHz, Chloroform-*d*) δ 6.29 (m, 1H), 2.51 – 2.24 (m, 3H), 2.18 (m, 2H), 1.48 (m, 13H), 1.42 – 0.87 (m, 15H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 31.6, 30.5, 28.3, 24.3, 23.4, 22.0, 18.6, 13.6. [α]²¹_D = 36.60 (c = 1.0, CHCl₃). m/z HRMS (ESI) found [M+H]⁺ 383.2543, C₂₀H₃₅N₂O₅⁺ requires 383.2540. HPLC: Chiralpak IC column, 90:10 hexanes/isopropanol, 1 ml/min; t_R = 7.31 min (major); > 99.5:0.5 er.

 $\label{eq:linear} Di-tert-butyl-(R)-1-(1-cyclopropyl-3-methyl-4-oxopent-1-yn-3-yl)hydrazine-1,2-dicar boxylate ($ **3y**)

The reaction was performed on 0.2 mmol scale under the standard conditions. Purification by column chromatography (petroleum ether/EtOAc = 10:1) provided **3y** as yellow oil (22 mg, 32% yield.)

¹H NMR (500 MHz, Chloroform-*d*) δ 6.50 – 6.31 (m, 1H), 2.48 – 2.24 (m, 3H), 1.48 – 1.43 (m, 21H), 1.26 – 1.20 (m, 1H), 0.75 (m, 2H), 0.65 (m, 2H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 29.8, 28.1, 22.8, 14.3, 8.6, 1.2. $[\alpha]^{21}_{D} = 19.00$ (c = 1.0, CHCl₃). m/z HRMS (ESI) found [M+H]⁺ 367.2233, C₁₉H₃₁N₂O₅⁺ requires 367.2227. HPLC: Chiralpak IC column, 90:10 hexanes/isopropanol, 1 ml/min; t_R = 7.06 min (minor), 8.69 min (major); 97:3 er .

Control experiments:

Transformation of **4a** into product **5a** was using the same procedure as described above in the general procedure for the asymmetric synthesis of products **3**.

Di-tert-butyl (S,E)-1-(4-oxo-1,3-diphenylpent-1-en-3-yl)hydrazine-1,2-dicarboxylate (5a)

The reaction was performed on 0.2 mmol scale under the standard conditions. Purification by column chromatography (petroleum ether/EtOAc = 10:1) provided **5a** as yellow oil (35 mg, 56% yield.)

¹H NMR (500 MHz, Chloroform-d) δ 7.66 (d, J = 7.3 Hz, 1H), 7.45 (d, J = 7.8 Hz, 2H), 7.40 – 7.28 (m, 7H), 6.73 – 6.33 (m, 2H), 6.33 – 5.82 (m, 1H), 2.63 – 2.21 (m, 3H), 1.43 (m, 18H). ¹³C NMR (126 MHz, Chloroform-d) δ 136.4, 129.4, 128.8, 128.7, 128.3, 128.2, 128.2, 128.0, 126.8, 81.5, 28.3, 28.1. $[\alpha]^{23}_{D} = 4.40$ (c = 1.0, CHCl₃). m/z HRMS (ESI) found [M+H]⁺ 467.2535, C₂₇H₃₅N₂O₅⁺ requires 467.2540. HPLC: Chiralpak IA column, 90:10 hexanes/isopropanol, 1 ml/min; t_R = 10.15 min (minor), 14.10 min (major); 72:28 er.

Derivatizations of chiral products:

Di-tert-butyl-(*S*)-1-(4-oxo-1,3-diphenylpentan-3-yl)hydrazine-1,2-dicarboxylate (**7a**) To a solution of **3a** (87 mg, 0.19 mmol, 96.5:3.5 er) in EtOAc (5.0 mL) was added 10% Pd/C (200 mg) at room temperature. The mixture was stirred under H₂ atmosphere (1 atm) for 3 h, then filtered through celite and the filtrate were concentrated under

vacuum to afford a residue, which was purified by column chromatography (petroleum ether/EtOAc = 30:1 to 10:1) to give the product **7a** (65 mg, 74%, 96:4 er). ¹H NMR (400 MHz, Methanol- d_4) δ 7.96 – 7.40 (m, 2H), 7.36 (t, J = 7.6 Hz, 2H), 7.29 (dd, J = 7.1, 2.1 Hz, 1H), 7.27 - 7.05 (m, 5H), 2.80 - 2.48 (m, 2H), 2.48 - 2.32 (m, 3H), 2.22 (qt, J = 13.3, 6.6 Hz, 2H), 1.62 – 1.19 (m, 18H). ¹³C NMR (126 MHz. Methanol-d₄) δ 129.6, 129.5, 129.3, 129.3, 128.8, 128.3, 127.0, 81.9, 32.6, 28.7, 28.4, 28.0. $[\alpha]_{D}^{23}$ = -66.40 (c = 1.0, CHCl₃). m/z HRMS (ESI) found $[M+H]^{+}$ 469.2703, 469.2697. $C_{27}H_{37}N_2O_5^+$ requires HPLC: Chiralpak IC column, 95:05 hexanes/isopropanol, 1 ml/min; $t_R = 8.52 \text{ min (minor)}$, 9.57 min (major); 96:4 er.

(3S)-3-amino-3,5-diphenylpentan-2-ol (8a)

To a solution of **7a** (96 mg, 0.2 mmol, 95:5 er) in DCM (5.0 mL) was added TFA (0.5 mL) at 0 °C. After stirring for 3 h at room temperature, the reaction mixture was concentrated under vacuum to afford a residue. To a solution of the above residue in MeOH (5 mL) was added a spoon of Raney Ni (~2 g) at rt. After stirring overnight under H₂ atmosphere (1 atm), the mixture was filtered through Celite and the filtrate were concentrated under vacuum to afford a residue, which was purified by preparative thin layer chromatography (petroleum ether/EtOAc = 5:1) to give the product **8a** (38 mg, 72%, 94.5:5.5 er, 4:1 dr). ¹H NMR (500 MHz, Methanol-*d*₄) δ 7.52 (dd, *J* = 8.8, 6.7 Hz, 2H), 7.46 – 7.39 (m, 3H), 7.26 (t, *J* = 7.5 Hz, 2H), 7.21 – 7.11 (m, 3H), 4.62 (s, 1H), 4.13 (q, *J* = 6.5 Hz, 1H), 2.57 (td, *J* = 12.2, 4.7 Hz, 1H), 2.50 – 2.36 (m, 2H), 2.32 (td, *J* = 12.1, 4.2 Hz, 1H), 1.10 – 0.93 (m, 3H). ¹³C NMR (126 MHz, Methanol-*d*₄) δ 142.2, 137.6, 130.1, 129.6, 129.3, 129.2, 127.2, 127.0, 72.2, 67.4, 39.8, 30.5, 18.0. [α]²³_D = 38.40 (c = 1.0, CHCl₃). m/z HRMS (ESI) found [M+H]⁺ 256.1689, C₁₇H₂₂NO⁺ requires 256.1696. HPLC: Chiralpak IA column, 95:05 hexanes/ethanol, 1 ml/min; t_R = 10.02 min (major), 28.94 min (minor); 94.5:5.5 er.

Di-tert-butyl-1-((3*R*,4*R*)-4-hydroxy-1,3-diphenylpent-1-yn-3-yl)hydrazine-1,2-dicarb oxylate (**9a**)

To a solution of **3a** (75 mg, 0.16 mmol, 96:4 er, 1 equiv.) in MeOH (7.0 mL) was added NaBH₄ (37 mg, 0.19 mmol, 1.2 equiv.) at 0 °C. After stirring for 1 h under N₂ atmosphere (1 atm) at room temperature, the solvent was evaporated under vacuum to afford a residue, which was dissolved in EtOAc. The organic phase was washed with water, dried over Na₂SO₄ and concentrated under reduced pressure to afford a residue, which was purified by column chromatography (petroleum ether/EtOAc = 10:1 to 8:1) to give the product **9a** (54 mg, 72%, 96.5:3.5 er, 3:1 dr). ¹H NMR (500 MHz, Acetone-*d*₆) δ 8.42 (m, 1H), 8.19 – 7.83 (m, 1H), 7.76 – 7.62 (m, 2H), 7.59 (d, *J* = 6.8 Hz, 2H), 7.46 (m, 6H), 5.11 (q, *J* = 6.6 Hz, 1H), 1.70 – 1.17 (m, 18H), 0.95 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (101 MHz, Acetone-*d*₆) δ 155.6, 136.1, 132.9, 132.7, 129.8, 129.4, 129.3, 128.4, 122.8, 81.5, 68.5, 28.3, 16.7. [α]²³_D = 56.00 (c = 1.0, CHCl₃). m/z HRMS (ESI) found [M+H]⁺ 467.2551, C₂₇H₃₅N₂O₅⁺ requires 467.2540. HPLC: Chiralpak IA column, 90:10 hexanes/isopropanol, 1 ml/min; t_R = 8.73 min (minor), 12.85 min (major); 96.5:3.5 er.

Tert-butyl-(3a*S*,4*R*)-4-methyl-6-oxo-2,3a-diphenyl-3a,4-dihydro-1H,6H-pyrazolo[1,5c]oxazole-1-carboxylate (**10a**)

To a solution of **9a** (32 mg, 0.07 mmol, 3:1 dr, 96.5:3.5 er, 1 equiv.) in cyclohexane (0.5 mL) was added PPh₃AuNTf₂ (3 mg, 0.0035 mmol, 0.05 equiv.) at room temperature. After stirring at 50 °C overnight, the reaction mixture was purified by preparative thin layer chromatography (petroleum ether/EtOAc = 6:1) to give the product **10a** (27 mg, 100%, 96.5:3.5 er, 3:1 dr). ¹H NMR (500 MHz, Acetone- d_6) δ
7.70 – 7.59 (m, 2H), 7.56 – 7.42 (m, 4H), 7.36 (m, 4H), 6.55 (d, J = 9.6 Hz, 1H), 5.26 (q, J = 6.6 Hz, 1H), 1.60 (d, J = 6.4 Hz, 1H), 1.20 (d, J = 12.6 Hz, 9H), 1.03 (d, J = 6.6 Hz, 2H). ¹³C NMR (126 MHz, Acetone- d_6) δ 162.6, 162.3, 154.3, 154.2, 147.6, 146.0, 140.7, 138.4, 135.1, 135.0, 132.4, 132.3, 129.9, 129.9, 129.7, 129.6, 129.2, 128.9, 128.3, 128.2, 126.7, 126.2, 117.2, 111.9, 82.9, 82.9, 81.8, 80.4, 80.0, 78.7, 28.5, 27.9, 19.9, 17.1. [α]²³_D = 99.20 (c = 1.0, CHCl₃). m/z HRMS (ESI) found [M+H]⁺ 393.1812, C₂₃H₂₅N₂O₄⁺ requires 393.1809. HPLC: Chiralpak IA column, 90:10 hexanes/ethanol, 1 ml/min; t_R = 8.42 min (minor), 11.01 min (major); 96.5:3.5 er.

Determination of the relative configuration of 8a.

(4*S*,4'*S*,5*R*,5'*R*)-3,3'-carbonylbis(5-methyl-4-phenethyl-4-phenyloxazolidin-2-one) (8a')

To a solution of **8a** (18 mg, 0.07 mmol, 94.5:5.5 er, 1 equiv.) in DCM (1 mL) was added TEA (17.8 mg, 0.175 mmol, 2.5 equiv.) and triphosgene (11 mg in 0.5 m DCM, 0.035 mmol, 0.5 equiv.) at 0 °C. After stirring overnight at room temperature, the solvent was evaporated under vacuum to afford a residue, which was purified by thin layer chromatography (petroleum ether/EtOAc = 5:1) to give the product **8a'** (9 mg, 40%).^{2 1}H NMR (500 MHz, Chloroform-d) δ 7.41 (t, J = 7.6 Hz, 4H), 7.32 (m, J = 16.9, 7.9 Hz, 10H), 7.19 (m, 6H), 4.17 (q, J = 6.4 Hz, 2H), 2.94 – 2.80 (m, 2H), 2.63 (m, 2H), 2.53 (m, 4H), 1.01 (d, J = 6.4 Hz, 6H). ¹³C NMR (126 MHz, Chloroform-d) δ 156.8, 156.5, 141.1, 138.3, 128.8, 128.7, 128.4, 128.1, 126.3, 126.3, 71.0, 67.0, 35.2, 30.2, 17.9.

References:

1. Li, Y.; Lu, R.; Sun, S.; Liu, L., Metal-Free Three-Component Oxyalkynylation of Alkenes. *Org. Lett.* **2018**, *20*, 6836-6839.

2. Brimble, M. A.; Duckworth, M. S.; Lee, C. K. Y., Synthesis of Chiral Diazanedicarboxylates. *Aust. J. Chem.* **1998**, *51*, 907-914.

X-Ray structures

X-ray structure of 10a (CCDC 2074968)

Single crystal data of 10a

Identification code	
Empirical formula	C ₂₃ H ₂₄ IN ₂ O ₄
Formula weight	392.44
Temperature / K	150.0
Crystal system	hexagonal
Space group	P65
a/Å, b/Å, c/Å	10.8014(2), 10.8014(2), 31.6209(8)
$\alpha /^{\circ}, \ \beta /^{\circ}, \ \gamma /^{\circ}$	90, 90, 120
Volume/Å ³	3194.96(14)
Z	6
$\rho_{calc}g/cm^{-3}$	1.224
μ/mm^{-1}	0.685
F(000)	1248.0
Crystal size/mm ³	0.2 x 0.15 x 0.1
Theta range for data collection	9.454 to 158.562 °
Index ranges	$-13 \le h \le 13, -13 \le k \le \! 13, -40 \le l \le 37$
Reflections collected	80320
Independent reflections	4587 [$R_{int} = 0.0559$, $R_{sigma} = 0.0170$]
Data/restraints/parameters	4587/1/266
Goodness-of-fit on F ²	1.075
Final R indexes $[I > = 2\sigma (I)]$	$R_1 = 0.0271, wR_2 = 0.0644$
Final R indexes [all data]	$R_1 = 0.0293$, $wR_2 = 0.0657$
Largest diff. peak/hole / e Å ⁻³	0.14 and -0.13

HPLC traces:

Di-tert-butyl-(R)-1-(4-oxo-1,3-diphenylpent-1-yn-3-yl)hydrazine-1,2-dicarboxylate (3a)

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	7.102	BVR	5515.3	363.5	0.2184	49.399	0.842
2	8.377	VV R	5649.6	317.1	0.2539	50,601	0.862

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	7.151	BB	139.3	9.7	0.1753	3.652	0.879
2	8.425	FM	3675.3	206.6	0.2965	96.348	0.851

Full HPLC spectrum of 3a

Di-tert-butyl-(*R*)-1-(4-oxo-1-phenyl-3-(p-tolyl)pent-1-yn-3-yl)hydrazine-1,2-dicarbox ylate (**3b**)

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	7.421	BB	3102.3	209	0.2287	49.294	0.782
2	9.843	BB	3191.2	125.5	0.3791	50.706	0.845

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	7.445	MF	303.2	21.2	0.2379	3.390	0
2	9.866	VBR	8639.9	340.2	0.3912	96.610	0.877

Di-tert-butyl-(*R*)-1-(3-(4-methoxyphenyl)-4-oxo-1-phenylpent-1-yn-3-yl)hydrazine-1, 2-dicarboxylate (**3c**)

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	9.388	BB	168.4	7.5	0.2709	3.265	0.777
2	13.712	BB	4988.2	136.5	0.5413	96.735	0.834

 $\label{eq:linear} Di-tert-butyl-(R)-1-(3-(4-bromophenyl)-4-oxo-1-phenylpent-1-yn-3-yl)hydrazine-1,2-dicarboxylate (3d)$

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	10.943	VB	230.4	6	0.5078	2.496	0.718
2	18.014	BB	9002.5	116.1	1.1887	97.504	0.912

Di-tert-butyl-(*R*)-1-(3-(4-chlorophenyl)-4-oxo-1-phenylpent-1-yn-3-yl)hydrazine-1,2-dicarboxylate (**3e**)

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	5.287	FM	1497.5	176.3	0.1416	49.529	0.783
2	7.85	BB	1526	77	0.3056	50.471	0.903

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	5.267	VB	87	10.3	0.1287	2.942	0.754
2	7.801	FM	2870.8	146.8	0.326	97.058	0.907

 $\label{eq:linear} \begin{array}{l} \text{Di-tert-butyl-}(R) - 1 - (4 - \text{oxo-1-phenyl-3-}(m - \text{tolyl}) \text{pent-1-yn-3-yl}) \text{hydrazine-1,2-dicarbox} \\ \text{xylate (3f)} \end{array}$

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	6.734	MF	323.9	23.3	0.2314	4,448	0.819
2	8.171	BB	6958.3	374.1	0.29	95.552	0.85

Di-tert-butyl-(*R*)-1-(3-(3-methoxyphenyl)-4-oxo-1-phenylpent-1-yn-3-yl)hydrazine-1, 2-dicarboxylate (**3g**)

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	8.266	BB	225.1	11.9	0,2297	3.645	0,956
2	9.429	BB	5952.4	277.8	0.331	96.355	0.8

Di-tert-butyl-(*S*)-1-(4-oxo-1-phenyl-3-(o-tolyl)pent-1-yn-3-yl)hydrazine-1,2-dicarbox ylate (**3h**)

552.6

0.283

98.124

2

9.041

BB

9993.8

0.817

Di-tert-butyl-(*S*)-1-(3-(2-chlorophenyl)-4-oxo-1-phenylpent-1-yn-3-yl)hydrazine-1,2-dicarboxylate (**3i**)

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	8.527	BB	3790.3	238.7	0.2463	50.770	0.803
2	12.035	BB	3675.4	124.6	0.4532	49.230	0.916

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	8.383	BB	136.8	8.7	0.23	1.125	0.795
2	11.803	BB	12015.2	415.5	0.4453	98.875	0.869

 $\label{eq:linear} Di-tert-butyl-(R)-1-(3-(naphthalen-2-yl)-4-oxo-1-phenylpent-1-yn-3-yl)hydrazine-1, 2-dicarboxylate (3j)$

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	23.16	BB	551.6	8.7	0.7402	4.836	0.898
2	28.558	BB	10855.1	145.7	0.9784	95.164	0.815

 $\label{eq:linear} Di-tert-butyl-(R)-1-(3-methyl-4-oxo-1-phenylpent-1-yn-3-yl)hydrazine-1,2-dicarboxy late (3k)$

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	6.511	BB	97.6	9.5	0.1568	1.033	0.902
2	7.354	BB	9347	559.6	0.2609	98.967	0.912

 $\label{eq:linear} \begin{array}{l} \text{Di-tert-butyl-}(R)-1-(3-\text{ethyl-4-oxo-1-phenylpent-1-yn-3-yl}) hydrazine-1,2-dicarboxylat e (31) \end{array}$

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	5.921	BB	3008.7	323.8	0.1434	49.296	0.804
2	7.033	BB	3094.6	187.8	0.2573	50.704	0.942

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	5.92	BB	68.1	8	0.1312	0.683	0.91
2	7.028	BB	9905.4	599	0.2599	99,317	0.929

 $\label{eq:linear} Di-tert-butyl-(R)-1-(3-benzyl-4-oxo-1-phenylpent-1-yn-3-yl) hydrazine-1,2-dicarboxyl ate (3m)$

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	9.351	BB	3070.2	181.5	0.2593	49.476	0.759
2	15.072	BB	3135.2	106.1	0.4568	50.524	0.821

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	9.5	BB	157.8	8.6	0.28	0.600	0.701
2	15.372	BB	26145.4	845.1	0.4789	99.400	0.728

 $\label{eq:linear} Di-tert-butyl-(R)-1-(4-oxo-3-phenyl-1-(p-tolyl)pent-1-yn-3-yl)hydrazine-1,2-dicarbox ylate (3n)$

2

10.08

FM

4596.6

171.8

0.446

96.466

0.762

_	_
E	E
0	~

 $\label{eq:linear} Di-tert-butyl-(R)-1-(1-(4-fluorophenyl)-4-oxo-3-phenylpent-1-yn-3-yl)hydrazine-1, 2-dicarboxylate (30)$

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	6.168	BB	2712.9	243.7	0.1719	49.359	0.815
2	7.182	BB	2783.4	198.5	0.2171	50.641	0.86

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	6.17	BB	252.7	21.8	0.175	4.174	0.796
2	7.174	BB	5801	415.9	0.2162	95.826	0.843

 $\label{eq:linear} Di-tert-butyl-(R)-1-(1-(4-chlorophenyl)-4-oxo-3-phenylpent-1-yn-3-yl)hydrazine-1, 2-dicarboxylate ($ **3p**)

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	6.684	FM	283.9	15	0.3158	4.410	1.132
2	7.809	BB	6154.5	301.6	0.3141	95.590	0.776

 $\label{eq:linear} \begin{array}{l} \text{Di-tert-butyl-}(R) - 1 - (4 - 0xo - 3 - phenyl - 1 - (m - tolyl) pent - 1 - yn - 3 - yl) hydrazine - 1,2 - dicarboxylate (3q) \end{array}$

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	7.511	BV	221.4	8.5	0.374	6.395	1.125
2	8.871	VB	3240.8	160.7	0.3113	93.605	0.809

Di-tert-butyl-(*R*)-1-(1-(3-methoxyphenyl)-4-oxo-3-phenylpent-1-yn-3-yl)hydrazine-1, 2-dicarboxylate (**3r**)

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	9.092	BV	2292	103.7	0.3378	47.122	0.753
2	10.451	VB	2572	94.8	0.4124	52.878	0.829

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	9.145	BB	50.6	2.4	0.3273	2.889	0.89
2	10.508	BB	1700.5	67.2	0.3912	97.111	0.823

Di-tert-butyl-(*R*)-1-(1-(3-chlorophenyl)-4-oxo-3-phenylpent-1-yn-3-yl)hydrazine-1,2-dicarboxylate (**3s**)

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	9.228	BB	44.1	2	0.3317	3.483	0.858
2	11.173	BB	1221.6	40.8	0.4531	96.517	0.764

 $\label{eq:linear} Di-tert-butyl-(R)-1-(1-(2-chlorophenyl)-4-oxo-3-phenylpent-1-yn-3-yl)hydrazine-1, 2-dicarboxylate (3t)$

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	6.937	BB	239.2	16.7	0.214	2.668	0.912
2	7.968	BVR	8724.5	534.3	0.2517	97.332	0.84

 $\label{eq:linear} Di-tert-butyl-(R)-1-(4-oxo-3-phenyl-1-(o-tolyl)pent-1-yn-3-yl)hydrazine-1,2-dicarbox ylate (3u)$

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	6.053	VV R	559.9	49.4	0.1683	4.446	0.778
2	6.962	VB	12031.9	912.4	0.2078	95.554	0.806

 $\label{eq:linear} Di-tert-butyl-(R)-1-(1-(naphthalen-2-yl)-4-oxo-3-phenylpent-1-yn-3-yl)hydrazine-1, 2-dicarboxylate (3v)$

	#	Time	Туре	Area	Height	Width	Area%	Symmetry
	1	8.033	BB	2291	136	0.2545	49.494	0.803
ſ	2	9.431	BB	2337.8	113.3	0.3173	50.506	0.817

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	7.948	BB	532.6	29.2	0.2718	3.665	0.816
2	9.292	BB	13997.6	700.3	0.3082	96.335	0.749

 $\label{eq:linear} Di-tert-butyl-(R)-1-(4-oxo-3-phenyl-1-(thiophen-3-yl)pent-1-yn-3-yl)hydrazine-1,2-dicarboxylate (3w)$

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	8,366	VB	161.7	7.7	0.3362	3.973	0.893
2	9.802	BB	3907.6	162.3	0.371	96.027	0.735

Di-tert-butyl (*R*)-1-(3-methyl-2-oxonon-4-yn-3-yl)hydrazine-1,2-dicarboxylate (**3x**)

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	5.741	BB	96.6	11.8	0.123	50.248	0.832
2	7.285	BB	95.7	5.2	0.2173	49.752	0.956

Di-tert-butyl-(*R*)-1-(1-cyclopropyl-3-methyl-4-oxopent-1-yn-3-yl)hydrazine-1,2-dicarboxylate (**3y**)

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	7.168	BB	102.8	9.5	0.1286	50,107	0.837
2	8.839	BB	102.4	4.4	0.2759	49.893	0.921

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	7.061	BB	10.8	1	0.1279	2.828	0.891
2	8.696	MF	369.6	16.3	0.3775	97.172	0

Di-tert-butyl (S,E)-1-(4-oxo-1,3-diphenylpent-1-en-3-yl)hydrazine-1,2-dicarboxylate (5a)

 #	Time	Туре	Area	Height	Width	Area%	Symmetry
1	10.404	VBR	1947.4	56	0.4069	50.240	0.934
2	14.95	MM	1928.8	12.3	2.6113	49.760	0.843

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	10.149	BB	1834.4	57.9	0.3808	28.115	0.875
2	14.099	MM	4690.3	34.4	2.2724	71.885	0.774

Di-tert-butyl (S)-1-(4-oxo-1,3-diphenylpentan-3-yl)hydrazine-1,2-dicarboxylate (7a)

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	8.522	BB	91.6	5.9	0.2365	3.981	0.814
2	9.573	BB	2208.6	114.6	0.2969	96.019	0.663

(3S)-3-benzamido-3,5-diphenylpentan-2-yl benzoate (8a-1)

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	10.385	BB	5155.5	372.7	0.2114	37.525	0.772
2	14.12	BB	1726.7	38.7	0.6447	12.568	0.644
3	18.931	BB	1751.7	43.7	0.5896	12.750	0.747
4	30.76	BB	5104.8	75	0.99	37.156	0.702

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	10.017	BB	24121	1707.1	0.2168	75.604	0.687
2	13.4	VV R	6120.7	142.7	0.6148	19.185	0.437
3	18.065	BB	299.2	8	0.5181	0.938	0.793
4	28,937	BB	1363.3	22.5	0.8003	4.273	0.763

 $\label{eq:constraint} Di-tert-butyl-1-((3R,4R)-4-hydroxy-1,3-diphenylpent-1-yn-3-yl)hydrazine-1,2-dicarboxylate (9a)$

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	8.865	BB	2878.6	220	0.1981	36.233	0.796
2	10.537	BV	1016.7	65.9	0.2269	12.798	0.855
3	11.183	VB	1008.4	61.3	0.2401	12.692	0.843
4	13.235	BV	3041	147.5	0.2935	38.277	0.835

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	8.729	MF	169.8	13.4	0.2108	2.375	0
2	10.317	MF	1769.9	119.6	0.2467	24.759	0.841
3	10.647	FM	101.9	6.4	0.2672	1.426	0
4	12.854	MF	5106.9	250.8	0.3394	71.440	0.863

Tert-butyl-(3aS,4R)-4-methyl-6-oxo-2,3a-diphenyl-3a,4-dihydro-1H,6H-pyrazolo[1,5-

c]oxazole-1-carboxylate (10a)

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	8,314	BV	768.9	72.4	0.1619	36.363	0.817
2	8.7	VB	269.5	22.7	0.1783	12.746	0.809
3	10.923	BB	800.3	56.7	0.2146	37.847	0.839
4	11.946	BB	275.8	17.6	0.2389	13.044	0.842

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	8.418	VV R	508.6	45.8	0.1677	2.552	0.831
2	8.812	VB	172.8	14.4	0.1805	0.867	0.866
3	11.006	BV	14884.6	973.8	0.2323	74.684	0.617
4	12.128	VB	4364	261.3	0.2529	21.897	0.732

NMR spectrums

3,5-diphenylpent-4-yn-2-one (1a)

5-phenyl-3-(p-tolyl)pent-4-yn-2-one (1b)

3-(3-methoxyphenyl)-5-phenylpent-4-yn-2-one (1g)

3-(2-chlorophenyl)-5-phenylpent-4-yn-2-one (1i)

3-(naphthalen-2-yl)-5-phenylpent-4-yn-2-one (1j)

3-methyl-5-phenylpent-4-yn-2-one (1k)

3-ethyl-5-phenylpent-4-yn-2-one (11)

5-(4-fluorophenyl)-3-phenylpent-4-yn-2-one (10)

5-(4-chlorophenyl)-3-phenylpent-4-yn-2-one (1p)

3-phenyl-5-(m-tolyl)pent-4-yn-2-one (1q)

5-(3-methoxyphenyl)-3-phenylpent-4-yn-2-one (1r)

5-(3-chlorophenyl)-3-phenylpent-4-yn-2-one (1s)

5-(2-chlorophenyl)-3-phenylpent-4-yn-2-one (1t)

3-phenyl-5-(o-tolyl)pent-4-yn-2-one (1u)

5-(naphthalen-2-yl)-3-phenylpent-4-yn-2-one (1v)

3-phenyl-5-(thiophen-3-yl)pent-4-yn-2-one (1w)

3-methylnon-4-yn-2-one (1x)

5-cyclopropyl-3-methylpent-4-yn-2-one (1y)

Di-tert-butyl (*R*)-1-(4-oxo-1,3-diphenylpent-1-yn-3-yl)hydrazine-1,2-dicarboxylate (**3a**)

 $\label{eq:linear} Di-tert-butyl-(R)-1-(4-oxo-1-phenyl-3-(p-tolyl)pent-1-yn-3-yl)hydrazine-1,2-dicarbox ylate (3b)$

Di-tert-butyl-(*R*)-1-(3-(4-methoxyphenyl)-4-oxo-1-phenylpent-1-yn-3-yl)hydrazine-1, 2-dicarboxylate (**3c**)

Di-tert-butyl-(*R*)-1-(3-(4-bromophenyl)-4-oxo-1-phenylpent-1-yn-3-yl)hydrazine-1,2-dicarboxylate (**3d**)

 $\label{eq:linear} Di-tert-butyl-(R)-1-(3-(4-chlorophenyl)-4-oxo-1-phenylpent-1-yn-3-yl)hydrazine-1,2-dicarboxylate (3e)$

 $\label{eq:linear} \begin{array}{l} \text{Di-tert-butyl-}(R) - 1 - (4 - \text{oxo-1-phenyl-3-}(m - \text{tolyl}) \text{pent-1-yn-3-yl}) \text{hydrazine-1,2-dicarbox} \\ \text{xylate (3f)} \end{array}$

Di-tert-butyl-(*R*)-1-(3-(3-methoxyphenyl)-4-oxo-1-phenylpent-1-yn-3-yl)hydrazine-1, 2-dicarboxylate (**3g**)

Di-tert-butyl-(*S*)-1-(4-oxo-1-phenyl-3-(o-tolyl)pent-1-yn-3-yl)hydrazine-1,2-dicarbox ylate (**3h**)

Di-tert-butyl-(*S*)-1-(3-(2-chlorophenyl)-4-oxo-1-phenylpent-1-yn-3-yl)hydrazine-1,2-dicarboxylate (**3i**)

 $\label{eq:linear} Di-tert-butyl-(R)-1-(3-(naphthalen-2-yl)-4-oxo-1-phenylpent-1-yn-3-yl)hydrazine-1, 2-dicarboxylate (3j)$

 $\label{eq:linear} Di-tert-butyl-(R)-1-(3-methyl-4-oxo-1-phenylpent-1-yn-3-yl)hydrazine-1,2-dicarboxy late (3k)$

 $\label{eq:linear} \begin{array}{l} \text{Di-tert-butyl-}(R)-1-(3-\text{ethyl-4-oxo-1-phenylpent-1-yn-3-yl}) hydrazine-1,2-dicarboxylat e (\textbf{3l}) \end{array}$

 $\label{eq:linear} Di-tert-butyl-(R)-1-(3-benzyl-4-oxo-1-phenylpent-1-yn-3-yl) hydrazine-1,2-dicarboxyl ate (3m)$

70

60

90 80

50 40 30 20 10 0 -10

220 210 200 190 180 170 160 150 140 130 120 110 100 f1 (ppm)

 $\label{eq:linear} Di-tert-butyl-(R)-1-(4-oxo-3-phenyl-1-(p-tolyl)pent-1-yn-3-yl)hydrazine-1,2-dicarbox ylate (3n)$

-300000 -200000 -100000 -0 --100000 --200000

-20

 $\label{eq:linear} Di-tert-butyl-(R)-1-(1-(4-fluorophenyl)-4-oxo-3-phenylpent-1-yn-3-yl)hydrazine-1, 2-dicarboxylate (\textbf{3o})$

Di-tert-butyl-(*R*)-1-(1-(4-chlorophenyl)-4-oxo-3-phenylpent-1-yn-3-yl)hydrazine-1,2-dicarboxylate (**3p**)

 $\label{eq:linear} \begin{array}{l} \text{Di-tert-butyl-}(R) - 1 - (4 - 0xo - 3 - phenyl - 1 - (m - tolyl) pent - 1 - yn - 3 - yl) hydrazine - 1,2 - dicarboxylate (3q) \end{array}$

Di-tert-butyl-(*R*)-1-(1-(3-methoxyphenyl)-4-oxo-3-phenylpent-1-yn-3-yl)hydrazine-1, 2-dicarboxylate (**3r**)

Di-tert-butyl-(*R*)-1-(1-(3-chlorophenyl)-4-oxo-3-phenylpent-1-yn-3-yl)hydrazine-1,2-dicarboxylate (**3s**)

 $\label{eq:linear} Di-tert-butyl-(R)-1-(1-(2-chlorophenyl)-4-oxo-3-phenylpent-1-yn-3-yl)hydrazine-1, 2-dicarboxylate (3t)$

 $\label{eq:linear} Di-tert-butyl-(R)-1-(4-oxo-3-phenyl-1-(o-tolyl)pent-1-yn-3-yl)hydrazine-1,2-dicarbox ylate (3u)$

 $\label{eq:linear} Di-tert-butyl-(R)-1-(1-(naphthalen-2-yl)-4-oxo-3-phenylpent-1-yn-3-yl)hydrazine-1, 2-dicarboxylate (3v)$

 $\label{eq:linear} Di-tert-butyl-(R)-1-(4-oxo-3-phenyl-1-(thiophen-3-yl)pent-1-yn-3-yl)hydrazine-1,2-dicarboxylate (3w)$

Di-tert-butyl-(*R*)-1-(3-methyl-2-oxonon-4-yn-3-yl)hydrazine-1,2-dicarboxylate (**3x**)

Di-tert-butyl-(*R*)-1-(1-cyclopropyl-3-methyl-4-oxopent-1-yn-3-yl)hydrazine-1,2-dicar boxylate (**3y**)

Di-tert-butyl (S,E)-1-(4-oxo-1,3-diphenylpent-1-en-3-yl)hydrazine-1,2-dicarboxylate (5a)

Di-tert-butyl-(S)-1-(4-oxo-1,3-diphenylpentan-3-yl)hydrazine-1,2-dicarboxylate (7a)

(3S)-3-amino-3,5-diphenylpentan-2-ol (8a)

Di-tert-butyl-1-((3R,4R)-4-hydroxy-1,3-diphenylpent-1-yn-3-yl)hydrazine-1,2-dicarb oxylate (**9a**)

Tert-butyl-(3a*S*,4*R*)-4-methyl-6-oxo-2,3a-diphenyl-3a,4-dihydro-1H,6H-pyrazolo[1,5-c]oxazole-1-carboxylate (**10a**)

(8a')

HSQC

HMBC

NOE

