Supporting Information

Chiral Supramolecular Polymerization of Dicyanostilbenes with

Emergent Circularly Polarized Luminescence Behavior

Yueru Yin, Ze Chen, Yifei Han, Rui Liao,* and Feng Wang*

CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 P. R. China, E-mail: drfwang@ustc.edu.cn (F.W.); rliao@ustc.edu.cn (R.L.)

1.	Spectroscopy of (R) -1 [or (S) -1] at the monomeric and self-assembled states	S2
2.	Supramolecular polymerization thermodynamics of (R) -1	S 7
3.	Emission and CPL behaviors of (R) -1	S12
4.	Synthesis and structural characterization of (R)-1 and (S)-1	S14
5.	Appendix S1. Standard orientations of (R) -1 and (R) -1 ₂	S24

1. Spectroscopy of (R)-1 [or (S)-1] at the monomeric and self-assembled

states

Fig. S1 CD spectra of (*R*)-1 (black line, 0.01 mM) and (*S*)-1 (red line, 0.01 mM) in CHCl₃. No Cotton effect was observed, suggesting the dominance of molecularly dissolved state.

Fig. S2 UV-Vis spectra of (*S*)-1 (0.01 mM) in CHCl₃ (black line) and MCH (red line). As can be seen, (*S*)-1 exhibited the same absorption signal changes as compared to those of (*R*)-1.

Fig. S3 UV-Vis spectra of (*R*)-**1** in MCH (c = 0.01 mM, 10 mm cuvette). The arrows show spectral changes upon heating from 298 to 363 K. By varying the temperature between 298 K and 363 K, two isosbestic points existed in UV–Vis spectra ($\lambda = 301$ and 407 nm), suggesting reversible conversion of (*R*)-**1** between the monomeric and supramolecular polymeric states.

Fig. S4 (a) CD intensities of (*R*)-1 at 387 nm (c = 0.01 mM, 10 mm cuvette) *versus* temperature upon cooling (black dots) and heating (red dots) at the rate of 60 K h⁻¹. (b) Heating curves of (*R*)-1 at 387 nm (c = 0.01 mM, 10 mm cuvette) at three different melting rates. Slight thermal hysteresis was observed between the CD heating and cooling curves of (*R*)-1, illustrating the presence of pathway complexity for the supramolecular polymerization processes. The heating process was under thermodynamic control, since no distinct changes occurred upon variation of the heating rate.

Fig. S5 CD spectra of (*R*)-1 at different solvent compositions (c = 0.01 mM, 10 mm cuvette). As can be seen, no Cotton effects existed when the volume fraction of polar TCE exceeded 10% in MCH. In MCH/TCE (v/v = 95/5, $c = 1.00 \times 10^{-5}$ M), Cotton effects still existed, albeit for the lower CD intensity than that in pure MCH ($\Delta \varepsilon$ at 355 nm: 377 versus 521 L cm⁻¹ mol⁻¹).

Fig. S6 (a) Molar ellipticity values and (b) UV-Vis spectra of (R)-1 in MCH at four different monomer concentrations (2 mm cuvette): 0.20 mM (black line); 0.08 mM (red line); 0.04 mM (blue line); 0.01 mM (green line). As can be seen, the molar ellipticity values of (R)-1 in MCH at high concentrations were similar to those at 0.01mM.

Fig. S7 (a) Organogel of (*R*)-1 at the concentration of 10.0 mM in MCH. (b) Elastic modulus *G*' (black symbols) and viscous modulus *G*'' (red symbols) for the gels [9.85 mM of (*R*)-1 in MCH] as a function of oscillation frequency at 298 K with a strain of 0.2%.

Fig. S8 Concentration-dependent ¹H NMR spectra (300 MHz, $CDCl_3$, 298 K) of (*R*)-1. The arrow exhibits upfield shifting of the NH protons upon diluting the sample. The phenomenon reveals that intermolecular hydrogen bonds are involved in the (*R*)-1 self-assembly process.

Fig. S9 Simulated UV–Vis spectrum of (*R*)-1 via TD-DFT calculation.

Fig. S10 Simulated UV–Vis spectrum of (R)- $\mathbf{1}_2$ via TD-DFT calculation.

2. Supramolecular polymerization thermodynamics of (R)-1

shown in **Table S1**.

	1	1		
(<i>R</i>)-1	0.004 mM	0.006 mM	0.008 mM	0.01 mM
$T_{\rm e}$ (K)	351.2	353.8	355.6	357.2
$h_{\rm e}$ (kJ mol ⁻¹)	-114.2	-108.2	-114.9	-113.8
K_{a}	1.75×10^{-3}	1.45×10^{-3}	3.59×10^{-3}	4.49×10^{-3}

Table S1 Thermodynamic parameters of (*R*)-1 in MCH obtained by fittingtemperature-dependent CD data.

Fig. S12 Normalized UV–Vis absorbance intensities of (*R*)-1 *versus* temperature at 387 nm in MCH at different monomer concentrations: (a) 0.004 mM; (b) 0.006 mM; (c) 0.008 mM; (d) 0.01 mM. The red lines denote mathematical fitting of the curves by Meijer–Schenning–van der Schoot model. The quantitative thermodynamic values are shown in **Table S2**.

Fig. S13 Van't Hoff plots for (*R*)-1 in MCH obtained by fitting temperature-dependent UV–Vis data. The red line denotes the linear fitting curve. Depending on the modified van't Hoff plot, the enthalpy (ΔH) and entropy (ΔS) values for the whole supramolecular polymerization process were determined to be –156 kJ mol⁻¹ and –342 J mol⁻¹, respectively. Accordingly, the Gibbs free energy value (ΔG) was calculated to be –54.2 kJ mol⁻¹ at 298 K.

	1	1		
(<i>R</i>)- 1	0.004 mM	0.006 mM	0.008 mM	0.01 mM
$T_{\rm e}$ (K)	350.9	352.7	355.3	356.7
$h_{\rm e}$ (kJ mol ⁻¹)	-104.7	-120.1	-109.3	-121.8
K_{a}	2.85×10^{-4}	1.81×10^{-4}	2.88×10^{-4}	1.26×10^{-4}

Table S2 Thermodynamic parameters of (*R*)-1 in MCH obtained by fittingtemperature-dependent UV–Vis data.

Fig. S14 Normalized CD intensities of (*R*)-1 *versus* temperature at 381 nm in MCH/TCE (95:5, *v/v*) at different monomer concentrations: (a) 0.004 mM; (b) 0.006 mM; (c) 0.008 mM; (d) 0.01 mM. The red lines denote mathematical fitting of the curves by the Meijer–Schenning–van der Schoot model. The quantitative thermodynamic values are shown in Table S3.

Table S3 Thermodynamic parameters of (*R*)-1 in MCH/TCE (95:5, v/v) obtained by fitting temperature-dependent CD data.

	U	1 1		
(<i>R</i>)- 1	0.004 mM	0.006 mM	0.008 mM	0.01 mM
$T_{\rm e}$ (K)	320.7	324.3	329.2	331.3
$h_{\rm e}$ (kJ mol ⁻¹)	-81.7	-80.4	-73.6	-70.5
K_{a}	8.69×10^{-4}	7.20×10^{-5}	6.37×10^{-4}	7.28×10^{-4}

Fig. S15 Normalized UV–Vis absorbance intensities of (*R*)-1 *versus* temperature at 381 nm in MCH/TCE (95:5, *v/v*) at different monomer concentrations: (a) 0.004 mM;
(b) 0.006 mM; (c) 0.008 mM; (d) 0.01 mM. The red lines denote mathematical fitting of the curves by the Meijer–Schenning–van der Schoot model. The quantitative thermodynamic values are shown in Table S4.

Inting temperature dependent of v vis data.									
fitting temperature-dependent UV–Vis data									
Table 54	Thermody	namic j	paramet	ers of (K)- I in .	MCH/I	CE (95:5,	v/v) o	btained by

(<i>R</i>)-1	0.004 mM	0.006 mM	0.008 mM	0.01 mM
$T_{\rm e}$ (K)	320.3	323.6	327.8	330.0
$h_{\rm e}$ (kJ mol ⁻¹)	-86.0	-86.3	-83.7	-92.6
K_{a}	5.97×10^{-4}	2.83×10^{-4}	8.73×10^{-4}	4.81×10^{-4}

Fig. S16 Van't Hoff plots for (*R*)-1 in MCH/TCE (95:5, *v/v*) obtained by fitting temperature-dependent UV–Vis data. The red line denotes the linear fitting curve. Depending on the modified van't Hoff plot, the enthalpy (ΔH) and entropy (ΔS) values for the whole supramolecular polymerization process were determined to be –79 kJ mol⁻¹ and –144 J mol⁻¹, respectively. Accordingly, the Gibbs free energy value (ΔG) was calculated to be –36.2 kJ mol⁻¹ at 298 K.

3. Emission and CPL behaviors of (R)-1

Fluorescence quantum yields of (*R*)-1 were determined by using optically matching solutions of Coumarin 102 ($\Phi_F=0.764$ in ethanol) and Coumarin 153 ($\Phi_F=0.544$ in ethanol) as standards. The quantum yield was calculated according to the following equation,

 $\Phi_{\rm F}({\rm x}) = \Phi_{\rm F}({\rm s}) (A_{\rm s}F_{\rm x}/A_{\rm x}F_{\rm s}) (n_{\rm x}/n_{\rm s})^2$(Eq. S1) In this equation, $\Phi_{\rm F}$ is the fluorescence quantum yield. *A* is the absorbance at the excitation wavelength. *F* is the area under the corrected emission curve, and *n* is the refractive index of the solvents used. Subscripts S and X refer to the standard and to the unknown, respectively. Therefore, the values of non-radiative rate $k_{\rm nr}$ and radiative rate $k_{\rm r}$ values can be calculated according to

$$\Phi_{\rm F} = k_{\rm r} \, \tau_{\rm F} = k_{\rm r} \, (k_{\rm r} + k_{\rm nr}) \, \dots \, ({\rm Eq. \ S2})$$

with $\tau_{\rm F}$ being the fluorescence lifetime.

Fig. S17 Fluorescent lifetime measurements of (R)-1 in MCH (c = 0.01 mM).

Table S5 Photophysical data of (R)-1 III CHC13 and MCH					
Solvent	$arPhi_{ m F}(\%)$	$\tau_{\rm F}({\rm ns})$	$k_{\rm r}({\rm s}^{-1})$	$k_{\rm nr}({\rm s}^{-1})$	
CHCl ₃	0.07	$< 1.0 \times 10^{-1}$	$>7.00 \times 10^{6}$	>9.99 ×10 ⁹	
MCH	48.4	8.37	5.78×10^{7}	6.17×10^{7}	

Table S5 Photophysical data of (*R*)-1 in CHCl₃ and MCH

Fig. S18 (a) Fluorescent spectra and (b) emission intensity at 550 nm of (*R*)-1 in MCH (c = 0.01 mM, 10 mm cuvette). The arrow in (a) shows spectral changes upon heating from 298 to 361 K.

Fig. S19 CPL spectra of (*R*)-1 (blue lines) and (*S*)-1 (red lines): (a) in MCH (c = 0.01 mM, 10 mm cuvette); (b) for the drop-casting thin films. Angle-dependent (c) CPL and (d) g_{lum} value for the drop-casting thin film of (*R*)-1. Unlike the symmetrical CPL signals in dilute MCH (Fig. S19a), the CPL signals of (*S*)-1 and (*R*)-1 in the film state are not fully mirror symmetrical to each other (Fig. S19b). When rotating the sample about the optical axis, the CPL intensities and g_{lum} values showed slightly different amplitude. This result suggests that macroscopic aligning of supramolecular polymers might contribute to CPL signal enhancement in the film state.

4. Synthesis and structural characterization (R)-1 and (S)-1

Scheme S1 Synthetic Route toward (*R*)-1.

4.1 Synthesis of (R)-4

Compounds **3** (2.00 g, 2.96 mmol), (*R*)-1-(4-bromophenyl)ethan-1-amine (0.46 g, 2.47 mmol), DMAP (0.50 g, 4.15 mmol) and EDC HCl (1.14 g, 5.95 mmol) were mixed in CH₂Cl₂ (50 mL) under nitrogen and stirred at room temperature for 12 h. The solution was extracted with H₂O/CH₂Cl₂ for three times. The solvent was evaporated with a rotary evaporator. The residue was purified by flash column chromatography (silica gel, petroleum ether/CH₂Cl₂, 1 : 2 ν/ν as the eluent) to provide (*R*)-**4** as a white solid (1.69 g, 80%). ¹H NMR (400 MHz, CDCl₃, 298K) δ 7.47 (d, *J* = 8.5 Hz, 2H), 7.27 – 7.25(d, 2H), 6.93(s, 2H), 6.16 (d, *J* = 7.6 Hz, 1H), 5.26 (m, 1H), 4.01 – 3.96(m, 6H), 1.85 – 1.70 (m, 6H), 1.57(s, 3H), 1.50 – 1.40 (m, 6H), 1.37 – 1.23 (m, 48H), 0.88 (t, *J* = 6.8 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃, 298K) δ 166.8, 153.4, 142.7, 141.7, 132.1, 129.5, 128.3, 121.5, 106.1, 73.9, 69.8, 53.8, 49.1, 32.3, 30.6, 30.1, 30.0, 29.9, 29.8, 29.7, 26.4, 23.0, 14.5.

Fig. S21 ¹³C NMR spectrum (100 MHz, CDCl₃, 298 K) of (*R*)-4.

4.2 Synthesis of (R)-2

Compounds (*R*)-4 (808 mg, 0.942 mmol) and (4-formylphenyl)boronic acid (155 mg, 1.04 mmol) and Pd(PPh₃)₄ (109 mg, 0.094 mmol) were mixed in toluene (10 mL) and ethanol (8 mL) under nitrogen. Na₂CO₃ (2.12 g, 19.9 mmol) in H₂O (10 mL) was added to the reaction solution, and the whole mixture was refluxed for 24 h. the

solvent was evaporated with a rotary evaporator. The residue was extracted with H_2O/CH_2Cl_2 for three times, the CH₂Cl₂ solvent was evaporated with a rotary evaporator. The residue was purified by flash column chromatography (silica gel, petroleum ether/CH₂Cl₂, 1 : 2 ν/ν as the eluent) to provide (*R*)-2 as a white solid (515 mg, 62%).¹H NMR (400 MHz, CDCl₃, 298K) δ 10.05 (s, 1H) , 7.95 (d, *J* = 8.3 Hz, 2H) , 7.74 (d, *J* = 8.3 Hz, 2H), 7.63 (d, *J* = 8.3 Hz, 2H), 7.50 (d, *J* = 8.3 Hz, 2H), 6.98 (s, 2 H), 6.26 (d, *J* = 7.7 Hz, 1H), 5.38 (m, 1H), 4.00 (m, 6H), 1.85 – 1.70 (m, 6H), 1.65 (d, *J* = 6.9 Hz, 3H), 1.60 – 1.40 (m, 6H), 1.34 – 1.23 (m, 48H), 0.88 (t, *J* = 6.8 Hz, 9H). ¹³C NMR (101 MHz, CDCl₃, 298K) δ 192.2, 166.9, 153.5, 147.0, 144.1, 141.7, 139.1, 135.5, 130.6, 129.6, 128.0, 127.9, 127.3, 106.2, 73.9, 69.8, 49.4, 32.3, 30.7, 30.1, 30.0, 29.8, 29.7, 26.4, 23.0, 22.2, 14.5.

Fig. S23 ¹³C NMR spectrum (100 MHz, CDCl₃, 298 K) of (*R*)-2.

4.3 Spectroscopy of (R)-1

Fig. S24 ¹H NMR spectrum (300 MHz, CDCl₃, 298 K) of (*R*)-1.

Fig S26 MALDI-TOF mass spectrum of (*R*)-1.

Scheme S2. Synthetic route toward (S)-1.

4.4 Synthesis of (S)-4

Compounds **3** (1.80 g, 2.66 mmol), (*S*)-1-(4-bromophenyl)ethan-1-amine (0.41 g, 2.22 mmol), DMAP (0.45 g, 3.73 mmol) and EDC HCl (1.03 g, 5.35 mmol) were mixed in CH₂Cl₂ (50 mL) under nitrogen and stirred at room temperature for 12 h. The solution was extracted with H₂O/CH₂Cl₂ for three times. The solvent was evaporated with a rotary evaporator. The residue was purified by flash column chromatography (silica gel, petroleum ether/CH₂Cl₂, 1 : 2 ν/ν as the eluent) to provide (*S*)-**4** as a white solid (1.61 g, 76%). ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 8.4 Hz, 2H), 7.27 (s, 1H), 7.25 (s, 1H), 6.93(s, 2H), 6.16 (d, *J* = 8.1 Hz, 1H), 5.28 – 5.22 (m, 1H), 4.01 – 3.96 (m, 6H), 1.83 – 1.71(m, 6H), 1.58 – 1.56 (m, 3H), 1.50 – 1.40 (m, 6H), 1.34 – 1.22 (m, 48H), 0.88 (t, *J* = 6.8 Hz, 9H). ¹³C NMR (100 MHz, CDCl₃, 298K) δ 166.8, 153.4, 142.7, 141.7, 132.0, 129.4, 128.3, 121.5, 106.1, 73.8, 69.7, 63.4, 49.1, 32.3, 30.1, 30.0, 29.7, 26.4, 23.0, 22.0, 14.5.

4.5 Synthesis of (S)-2

Compounds (*S*)-**4** (888 mg, 1.04 mmol) and (4-formylphenyl)boronic acid (171 mg, 1.14 mmol) and Pd(PPh₃)₄ (119 mg, 0.103 mmol) were mixed in toluene (10 mL) and ethanol (8 mL) under nitrogen. Na₂CO₃ (2.12 g, 19.9 mmol) in H₂O (10 mL) was

added to the reaction solution, and the whole was refluxed for 24 h. The solvent was then evaporated with a rotary evaporator. The residue was extracted with H₂O/CH₂Cl₂ for three times. The CH₂Cl₂ solvent was evaporated with a rotary evaporator. The residue was purified by flash column chromatography (silica gel, petroleum ether/CH₂Cl₂, 1 : 2 *v*/*v* as the eluent) to provide (*S*)-**2** as a white solid (680 mg, 74%). ¹H NMR (400 MHz, CDCl₃, 298 K) δ 10.05 (s, 1H) , 7.95 (d, *J* = 8.3 Hz, 2H), 7.74 (d, *J* = 8.3 Hz, 2H), 7.63 (d, *J* = 8.3 Hz, 2H), 7.50 (d, *J* = 8.3 Hz, 2H), 6.98 (s, 2 H), 6.26 (d, *J* = 7.7 Hz, 1H), 5.38 (m, 1H), 4.00 (m, 6H), 1.85 – 1.70 (m, 6H), 1.65 (d, *J* = 6.9 Hz, 3H), 1.60 – 1.40 (m, 6H), 1.34 – 1.23 (m, 48H), 0.88 (t, *J* = 6.8 Hz, 9H). ¹³C NMR (100 MHz, CDCl₃, 298K) δ 192.2, 166.9, 153.5, 147.0, 144.1, 141.7, 139.1, 135.5, 130.6, 129.6, 128.0, 127.9, 127.3, 106.2, 73.9, 69.8, 49.4, 32.3, 30.7, 30.1, 30.0, 29.9, 29.8, 29.7, 26.4, 23.0, 22.2, 14.5.

Fig. S29 ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of (*S*)-2.

Fig. S30 ¹³C NMR spectrum (100 MHz, CDCl₃, 298 K) of (*S*)-2.

S22

Fig. S32 ¹³C NMR spectrum (100 MHz, CDCl₃, 298 K) of (*S*)-1.

Fig. S33 MALDI-TOF mass spectrum of (S)-1.

5. Appendix S1. Standard orientations of (R)-1 and (R)-1₂

(*R*)-1 calculated *via* B3LYP

E(B3LYP) = -2452.525946 a.u. (ground state)						
Stoichiometry C54H42N4O2						
Framework group C1[X(C54H42N	M4O2)]					
Deg. of freedom 300						
Full point group	C1	NOp	1			
Largest Abelian subgroup	C1	NOp	1			
Largest concise Abelian subgroup	C1	NOp	1			
~ 1						

Standard orientation:

Center	Atomic	Atomic	Coor	dinatas (Angst	rome)
Number	Number	Туре	X	Y	Z
1	7	0	-14.486779	0.064319	-0.124182
2	6	0	-13.923323	-0.562746	-1.325728
3	1	0	-14.148760	0.145918	-2.127595
4	6	0	-12.402295	-0.670637	-1.214823
5	6	0	-11.728514	-1.878835	-1.009554
6	6	0	-11.639326	0.504700	-1.300572
7	6	0	-10.339023	-1.914406	-0.890052
8	1	0	-12.280336	-2.812624	-0.955958
9	6	0	-10.254745	0.471198	-1.183991
10	1	0	-12.147411	1.453755	-1.452088
11	6	0	-9.572794	-0.741905	-0.974336
12	1	0	-9.842200	-2.872038	-0.761469
13	1	0	-9.694278	1.400480	-1.232876
14	6	0	-8.096956	-0.780759	-0.851092
15	6	0	-7.278538	0.087051	-1.598502
16	6	0	-7.461160	-1.683920	0.018975

17	6	0	-5.894691	0.059355	-1.492691
18	1	0	-7.736308	0.781646	-2.296524
19	6	0	-6.078486	-1.714209	0.129726
20	1	0	-8.059944	-2.348062	0.635239
21	6	0	-5.254498	-0.850047	-0.623438
22	1	0	-5.313346	0.745920	-2.094909
23	1	0	-5.616023	-2.416321	0.819636
24	6	0	-3.816342	-0.971006	-0.426156
25	6	0	-2.751416	-0.384355	-1.045824
26	6	0	-1.346727	-0.644661	-0.637901
27	6	0	-0.295130	-0.514596	-1.562648
28	6	0	-1.018384	-1.035987	0.671736
29	6	0	1.018345	-0.784803	-1.200820
30	6	0	0.295084	-1.306031	1.033615
31	1	0	-1.792648	-1.101559	1.429827
32	6	0	1.346694	-1.175997	0.108858
33	1	0	1.792513	-0.719335	-1.958997
34	6	0	2.751408	-1.435871	0.516717
35	6	0	3.816570	-0.850773	-0.104139
36	6	0	5.254356	-0.974200	0.093877
37	6	0	6.080412	-0.100670	-0.646002
38	6	0	5.892012	-1.896357	0.951476
39	6	0	7.462742	-0.130742	-0.529976
40	1	0	5.619166	0.622960	-1.314098
41	6	0	7.275414	-1.925348	1.060839
42	1	0	5.309738	-2.605339	1.526231
43	6	0	8.095932	-1.045309	0.330013
44	1	0	8.060380	0.579505	-1.093540
45	1	0	7.734142	-2.667896	1.707010
46	6	0	9.571140	-1.083079	0.459903
47	6	0	10.406342	-0.828940	-0.643981
48	6	0	10.184336	-1.374894	1.687848
49	6	0	11.790187	-0.865576	-0.520186
50	1	0	9.964623	-0.633364	-1.617067
51	6	0	11.573554	-1.409880	1.810275
52	1	0	9.569889	-1.551338	2.566238
53	6	0	12.399642	-1.155197	0.710954
54	1	0	12.417341	-0.674358	-1.387291
55	1	0	12.005445	-1.638129	2.780204
56	6	0	13.926518	-1.152426	0.787802
57	1	0	14.304927	-1.645951	-0.111800
58	7	0	14.447983	0.216402	0.692794
59	6	0	14.982799	0.728185	-0.456766
60	8	0	15.100198	0.059380	-1.483385

61	1	0	14.406473	0.794864	1.519707
62	6	0	-14.887763	1.371173	-0.088316
63	8	0	-14.839780	2.102132	-1.077332
64	1	0	-14.579685	-0.504851	0.704991
65	6	0	14.517262	-1.849603	2.016558
66	1	0	14.146960	-2.876715	2.096698
67	1	0	15.607881	-1.879630	1.936371
68	1	0	14.263559	-1.327625	2.947682
69	6	0	-14.649608	-1.879517	-1.614859
70	1	0	-14.552297	-2.593424	-0.787373
71	1	0	-15.715734	-1.687889	-1.767786
72	1	0	-14.249918	-2.354836	-2.516463
73	6	0	15.447012	2.158359	-0.396240
74	6	0	14.938357	3.102802	0.506519
75	6	0	16.421058	2.555023	-1.322281
76	6	0	15.411179	4.415291	0.495657
77	1	0	14.143059	2.835760	1.198058
78	6	0	16.900229	3.862714	-1.326087
79	1	0	16.785321	1.819259	-2.031545
80	6	0	16.398210	4.795652	-0.415093
81	1	0	15.002160	5.141659	1.192631
82	1	0	17.662569	4.156979	-2.042328
83	1	0	16.768066	5.817466	-0.420855
84	6	0	-15.417925	1.869296	1.228980
85	6	0	-15.074555	1.308182	2.467072
86	6	0	-16.277687	2.975357	1.195887
87	6	0	-15.598677	1.832291	3.648974
88	1	0	-14.366355	0.485284	2.524940
89	6	0	-16.808839	3.491891	2.375180
90	1	0	-16.512528	3.414715	0.232096
91	6	0	-16.472624	2.919781	3.604787
92	1	0	-15.317141	1.396492	4.603703
93	1	0	-17.482017	4.344021	2.337086
94	1	0	-16.882668	3.325588	4.525719
95	1	0	-0.513180	-0.219810	-2.584673
96	1	0	0.513156	-1.600715	2.055673
97	1	0	3.552317	-0.139045	-0.882908
98	6	0	2.911464	-2.320621	1.633343
99	7	0	2.986825	-3.036259	2.549481
100	1	0	-3.551251	-1.682101	0.352922
101	6	0	-2.910843	0.504505	-2.159183
102	7	0	-2.985648	1.224849	-3.071637

1 1 1

$E((\omega b97xd) = -2451.710949 \text{ a.u.} (g$	round state	e)		
Stoichiometry C54H42N4O2				
Framework group C1[X(C54H4	2N4O2)]			
Deg. of freedom 300				
Full point group	C1	NOp		
Largest Abelian subgroup	C1	NOp		
Largest concise Abelian subgroup	C1	NOp		
Standard orientation:				

Center	Atomic	Atomic	Coor		
Number Number		Туре	X	Y	
1	7	0	-14.415690	0.049453	-0.202836
2	6	0	-13.843113	-0.452301	-1.447372
3	1	0	-14.064029	0.323705	-2.185618
4	6	0	-12.327492	-0.559804	-1.324572
5	6	0	-11.644284	-1.773403	-1.298615
6	6	0	-11.588178	0.621971	-1.203525
7	6	0	-10.260215	-1.808992	-1.151688
8	1	0	-12.182031	-2.710471	-1.406530
9	6	0	-10.210051	0.588274	-1.058140
10	1	0	-12.110526	1.575256	-1.218639
11	6	0	-9.520795	-0.631221	-1.027952
12	1	0	-9.747007	-2.766692	-1.160611
13	1	0	-9.660757	1.518871	-0.946101
14	6	0	-8.046955	-0.671299	-0.872822
15	6	0	-7.227034	0.257677	-1.524398
16	6	0	-7.434805	-1.635482	-0.064126
17	6	0	-5.847592	0.225180	-1.387836

18	1	0	-7.676334	1.008910	-2.167116
19	6	0	-6.057115	-1.668084	0.078946
20	1	0	-8.047704	-2.348912	0.478895
21	6	0	-5.231937	-0.749794	-0.588508
22	1	0	-5.254632	0.967653	-1.907832
23	1	0	-5.606104	-2.419920	0.721859
24	6	0	-3.789150	-0.871358	-0.379644
25	6	0	-2.745244	-0.367199	-1.075644
26	6	0	-1.333064	-0.595451	-0.671634
27	6	0	-0.323909	-0.694384	-1.635373
28	6	0	-0.979711	-0.732556	0.674933
29	6	0	0.988948	-0.945441	-1.265878
30	6	0	0.333166	-0.983367	1.044448
31	1	0	-1.732171	-0.613592	1.448517
32	6	0	1.342265	-1.082935	0.080704
33	1	0	1.741197	-1.064516	-2.039628
34	6	0	2.753996	-1.313111	0.484668
35	6	0	3.800157	-0.817136	-0.213809
36	6	0	5.241358	-0.948626	0.000341
37	6	0	6.076273	-0.022104	-0.642909
38	6	0	5.845332	-1.943853	0.783202
39	6	0	7.452507	-0.062953	-0.487024
40	1	0	5.633186	0.754407	-1.261487
41	6	0	7.223336	-1.987059	0.929112
42	1	0	5.245177	-2.704777	1.267177
43	6	0	8.053099	-1.046903	0.306425
44	1	0	8.069491	0.688638	-0.970590
45	1	0	7.667558	-2.784628	1.517209
46	6	0	9.524899	-1.096274	0.476952
47	6	0	10.384452	-0.834354	-0.598121
48	6	0	10.092913	-1.405723	1.714258
49	6	0	11.760280	-0.879192	-0.435406
50	1	0	9.968395	-0.621389	-1.578924
51	6	0	11.475074	-1.449903	1.876166
52	1	0	9.449123	-1.591526	2.569536
53	6	0	12.327307	-1.185702	0.806575
54	1	0	12.415202	-0.682644	-1.280487
55	1	0	11.878319	-1.692009	2.854808
56	6	0	13.846994	-1.183204	0.925393
57	1	0	14.249410	-1.732628	0.069618
58	7	0	14.363740	0.172162	0.768276
59	6	0	14.885544	0.630683	-0.402392
60	8	0	15.025248	-0.083285	-1.387974
61	1	0	14.302064	0.794231	1.559648

62	6	0	-14.778409	1.350218	-0.029520
63	8	0	-14.717282	2.178770	-0.929543
64	1	0	-14.518387	-0.598767	0.562855
65	6	0	14.396868	-1.799896	2.208009
66	1	0	14.028019	-2.821745	2.336549
67	1	0	15.488773	-1.827079	2.164204
68	1	0	14.108133	-1.221707	3.094045
69	6	0	-14.551819	-1.738812	-1.860321
70	1	0	-14.448024	-2.522598	-1.100260
71	1	0	-15.618201	-1.542605	-1.998962
72	1	0	-14.143547	-2.122834	-2.799796
73	6	0	15.306400	2.072749	-0.411500
74	6	0	14.690949	3.050988	0.372725
75	6	0	16.338634	2.436670	-1.277770
76	6	0	15.119212	4.373348	0.307111
77	1	0	13.847040	2.798498	1.009726
78	6	0	16.773515	3.754895	-1.334289
79	1	0	16.785320	1.670060	-1.902202
80	6	0	16.166381	4.725105	-0.539564
81	1	0	14.628234	5.130180	0.911308
82	1	0	17.584074	4.028430	-2.002943
83	1	0	16.502455	5.756603	-0.587735
84	6	0	-15.284924	1.711723	1.337780
85	6	0	-14.859407	1.068405	2.502132
86	6	0	-16.194888	2.766172	1.429636
87	6	0	-15.356398	1.460981	3.741152
88	1	0	-14.107123	0.285004	2.457195
89	6	0	-16.699600	3.149917	2.665780
90	1	0	-16.491625	3.275367	0.518720
91	6	0	-16.283398	2.495845	3.823550
92	1	0	-15.011902	0.963907	4.642897
93	1	0	-17.414969	3.964326	2.728254
94	1	0	-16.673438	2.799648	4.790418
95	1	0	-0.571649	-0.594032	-2.688004
96	1	0	0.580883	-1.083525	2.097103
97	1	0	3.534944	-0.184400	-1.058692
98	6	0	2.931677	-2.056047	1.701078
99	7	0	3.017003	-2.646684	2.696299
100	1	0	-3.518839	-1.505060	0.462922
101	6	0	-2.923273	0.383976	-2.286631
102	7	0	-3.008538	0.982977	-3.276840

29.00.03.05.05 29.00.03.05.05 29.00.03.05.05

$E(\omega b97xd) = -4903.527545 \text{ a.u. (ground state)}$						
Stoichiometry C108H84N8O4						
Framework group C1[X(C108H8	4N8O4)]					
Deg. of freedom 606						
Full point group	C1	NOp	1			
Largest Abelian subgroup	C1	NOp	1			
Largest concise Abelian subgroup	C1	NOp	1			
Standard orientation:						

Center Atomic Atomic Coordinates (Angstroms) Number Number Type Х _____ -----_____

Y

Ζ

1		7	0	14.687802 -2.	072737 -1.4	65436
	2	6	0	13.80802	6 -1.911978	-2.653444
	3	1	0	13.98445	1 -2.793800	-3.335792
	4	6	0	12.34995	0 -1.884398	-2.216436
	5	6	0	11.89594	4 -0.951821	-1.273704
	6	6	0	11.44400	9 -2.798380	-2.773484
	7	6	0	10.55291	7 -0.926479	-0.895583
	8	1	0	12.59919	7 -0.240826	-0.828132
	9	6	0	10.09683	9 -2.767462	-2.407590
	10	1	0	11.79006	1 -3.542914	-3.491035
	11	6	0	9.64337	6 -1.829111	-1.467574
	12	1	0	10.21043	4 -0.197286	-0.162514
	13	1	0	9.39805	6 -3.480184	-2.844526
	14	6	0	8.21588	5 -1.788535	-1.084011
	15	6	0	7.23076	3 -1.568957	-2.059619
	16	6	0	7.83520	3 -1.970005	0.256065
	17	6	0	5.88197	8 -1.540479	-1.704204
	18	1	0	7.51990	1 -1.423134	-3.100971
	19	6	0	6.48737	9 -1.942729	0.613407
	20	1	0	8.59729	3 -2.147551	1.014457
	21	6	0	5.50086	6 -1.736810	-0.366546
	22	1	0	5.12211	5 -1.357130	-2.469704
	23	1	0	6.20097	3 -2.096840	1.652624
	24	6	0	4.08552	7 -1.700706	0.026257

25	6	0	3.084506	-2.352699	-0.594788
26	6	0	1.668523	-2.199172	-0.179789
27	6	0	0.738751	-1.681865	-1.096255
28	6	0	1.257764	-2.555743	1.112939
29	6	0	-0.595013	-1.521693	-0.720968
30	6	0	-0.077392	-2.394520	1.489328
31	1	0	1.977053	-2.966390	1.821010
32	6	0	-1.005274	-1.881513	0.571845
33	1	0	-1.315025	-1.113971	-1.429819
34	6	0	-2.431344	-1.726958	0.957534
35	6	0	-3.388795	-2.532873	0.462184
36	6	0	-4.821820	-2.469687	0.780560
37	6	0	-5.755969	-2.542131	-0.268558
38	6	0	-5.274353	-2.368089	2.105554
39	6	0	-7.122699	-2.496438	0.004380
40	1	0	-5.413825	-2.625161	-1.299475
41	6	0	-6.642654	-2.336329	2.378719
42	1	0	-4.559181	-2.316841	2.926666
43	6	0	-7.573940	-2.395903	1.330613
44	1	0	-7.843860	-2.542296	-0.811427
45	1	0	-6.989150	-2.252875	3.409054
46	6	0	-9.022594	-2.344232	1.625559
47	6	0	-9.815182	-1.320163	1.083234
48	6	0	-9.610101	-3.307890	2.458775
49	6	0	-11.173683	-1.250881	1.392747
50	1	0	-9.366298	-0.566832	0.432761
51	6	0	-10.971381	-3.235904	2.764149
52	1	0	-9.002748	-4.114299	2.867957
53	6	0	-11.757403	-2.196946	2.250106
54	1	0	-11.780330	-0.446681	0.967279
55	1	0	-11.412554	-3.990820	3.413462
56	6	0	-13.231402	-2.051915	2.589290
57	1	0	-13.511499	-0.956156	2.550753
58	7	0	-14.024521	-2.759446	1.542414
59	6	0	-14.920347	-2.078567	0.730423
60	8	0	-15.107326	-0.873079	0.861643
61	1	0	-13.867138	-3.757171	1.441310
62	6	0	15.329873	-3.275794	-1.199828
63	8	0	15.239187	-4.231919	-1.957724
64	1	0	14.780604	-1.253956	-0.853185
65	6	0	-13.601569	-2.592347	3.972027
66	1	0	-12.987560	-2.121560	4.750642
67	1	0	-14.652183	-2.378910	4.209434
68	1	0	-13.465848	-3.676095	4.058240

69	6	0	14.176221	-0.615857	-3.384923
70	1	0	14.167427	0.248468	-2.704067
71	1	0	15.182835	-0.678473	-3.814818
72	1	0	13.473793	-0.410763	-4.199290
73	6	0	-15.639203	-2.919276	-0.279376
74	6	0	-14.930538	-3.576949	-1.292529
75	6	0	-17.036343	-3.004633	-0.216463
76	6	0	-15.626005	-4.329719	-2.243134
77	1	0	-13.844859	-3.492906	-1.349001
78	6	0	-17.724478	-3.763929	-1.166770
79	1	0	-17.581227	-2.474524	0.566478
80	6	0	-17.020210	-4.425861	-2.178445
81	1	0	-15.080436	-4.839443	-3.036675
82	1	0	-18.810775	-3.836529	-1.120635
83	1	0	-17.559516	-5.015932	-2.919565
84	6	0	16.161257	-3.296664	0.050717
85	6	0	15.670819	-2.804056	1.266112
86	6	0	17.442124	-3.862772	-0.017209
87	6	0	16.470384	-2.865919	2.411668
88	1	0	14.666759	-2.381925	1.325360
89	6	0	18.238208	-3.918364	1.129732
90	1	0	17.802911	-4.268373	-0.964824
91	6	0	17.752918	-3.419335	2.343400
92	1	0	16.089568	-2.484048	3.357344
93	1	0	19.232723	-4.358044	1.078868
94	1	0	18.372283	-3.469490	3.237212
95	6	0	-1.700919	2.709899	0.059622
96	6	0	-1.219499	2.756014	-1.257424
97	6	0	-0.813855	2.492736	1.125168
98	6	0	-3.145443	2.913767	0.334363
99	6	0	0.145672	2.607038	-1.506832
100	1	0	-1.909509	2.923156	-2.084267
101	6	0	0.550932	2.344422	0.875855
102	6	0	-4.087814	2.050150	-0.088279
103	6	0	1.037070	2.415023	-0.439676
104	1	0	1.237391	2.172150	1.704365
105	6	0	-5.534199	2.184173	0.135946
106	6	0	2.495037	2.310181	-0.694312
107	6	0	-6.412538	1.983601	-0.943813
108	6	0	-6.054801	2.494860	1.402353
109	6	0	3.382280	3.113324	-0.075680
110	6	0	-7.787931	2.119448	-0.763458
111	1	0	-6.019155	1.733746	-1.927759
112	6	0	-7.432734	2.629921	1.581043

113	1	0	-5.382355	2.626919	2.252365
114	6	0	4.840981	3.097880	-0.252532
115	6	0	-8.309946	2.450380	0.499657
116	1	0	-8.462861	1.968745	-1.605554
117	1	0	-7.826857	2.891442	2.563325
118	6	0	5.518440	4.318753	-0.426829
119	6	0	5.572271	1.900841	-0.216313
120	6	0	-9.769683	2.604591	0.677773
121	6	0	6.905507	4.337597	-0.558708
122	1	0	4.956863	5.251581	-0.468248
123	6	0	6.963056	1.920854	-0.341164
124	1	0	5.059876	0.946856	-0.088565
125	6	0	-10.515012	3.376278	-0.231898
126	6	0	-10.427533	1.976189	1.744399
127	6	0	7.639095	3.138797	-0.507363
128	1	0	7.425156	5.283794	-0.708273
129	1	0	7.520158	0.981353	-0.307662
130	6	0	-11.894736	3.494218	-0.084336
131	1	0	-10.011510	3.889075	-1.050766
132	6	0	-11.814138	2.094277	1.887647
133	1	0	-9.861078	1.381822	2.460408
134	6	0	9.113473	3.168513	-0.620869
135	6	0	-12.557909	2.847006	0.973539
136	1	0	-12.477673	4.082634	-0.803817
137	1	0	-12.305233	1.591903	2.719214
138	6	0	9.868167	4.016101	0.206180
139	6	0	9.770277	2.348990	-1.552407
140	6	0	-14.072512	2.986029	1.049875
141	6	0	11.260241	4.042173	0.102465
142	1	0	9.366124	4.650646	0.935464
143	6	0	11.162473	2.375144	-1.651393
144	1	0	9.192449	1.689101	-2.201524
145	1	0	-14.342574	4.052044	0.782224
146	7	0	-14.682892	2.089116	0.026572
147	6	0	-14.666456	2.660352	2.420855
148	6	0	11.916014	3.220601	-0.824806
149	1	0	11.832336	4.707034	0.746139
150	1	0	11.659854	1.722345	-2.371585
151	6	0	-14.959693	2.569349	-1.248271
152	1	0	-14.816321	1.109283	0.295610
153	1	0	-14.193559	3.262510	3.205425
154	1	0	-15.742429	2.879310	2.440828
155	1	0	-14.552517	1.602929	2.689970
156	6	0	13.431302	3.224024	-0.952069

157	8	0	-14.707852	3.739497	-1.530363
158	6	0	-15.558001	1.624847	-2.244510
159	7	0	14.047251	2.832383	0.348589
160	1	0	13.747588	2.454887	-1.717101
161	6	0	13.953038	4.597227	-1.379560
162	6	0	-16.045569	0.354772	-1.914070
163	6	0	-15.627222	2.073594	-3.574896
164	6	0	14.497782	1.536983	0.572834
165	1	0	14.078297	3.536771	1.077939
166	1	0	13.702432	5.389826	-0.665730
167	1	0	15.043567	4.592609	-1.501437
168	1	0	13.516908	4.890015	-2.344526
169	6	0	-16.585963	-0.465877	-2.908765
170	1	0	-16.010203	-0.007976	-0.879347
171	6	0	-16.170235	1.252919	-4.564868
172	1	0	-15.254221	3.073575	-3.818791
173	8	0	14.446919	0.691826	-0.315052
174	6	0	15.059373	1.271094	1.934329
175	6	0	-16.648420	-0.019327	-4.232077
176	1	0	-16.956717	-1.456464	-2.647046
177	1	0	-16.223058	1.604907	-5.593290
178	6	0	14.315527	1.550298	3.088616
179	6	0	16.334147	0.697942	2.032979
180	1	0	-17.070924	-0.660133	-5.004115
181	6	0	14.858208	1.268377	4.344859
182	1	0	13.313092	1.970780	3.010499
183	6	0	16.872744	0.422317	3.293232
184	1	0	16.897360	0.459582	1.127990
185	6	0	16.137148	0.709186	4.447413
186	1	0	14.283374	1.481394	5.245322
187	1	0	17.864325	-0.023323	3.371967
188	1	0	16.558528	0.493455	5.429204
189	1	0	0.519994	2.651726	-2.529874
190	1	0	-1.195500	2.437183	2.148203
191	1	0	1.062573	-1.404402	-2.102542
192	1	0	-0.398331	-2.671974	2.493094
193	1	0	3.020918	3.875976	0.627794
194	6	0	2.872602	1.312550	-1.653700
195	7	0	3.152435	0.500035	-2.427979
196	1	0	-3.793087	1.162788	-0.661800
197	6	0	-3.440179	4.107734	1.074050
198	7	0	-3.656228	5.077447	1.665778
199	1	0	-3.113866	-3.321717	-0.252767
200	6	0	-2.685946	-0.653987	1.874639

201	7	0	-2.866794	0.219981	2.610452
202	1	0	3.865969	-1.074340	0.899800
203	6	0	3.290019	-3.232525	-1.710137
204	7	0	3.436760	-3.953285	-2.602229