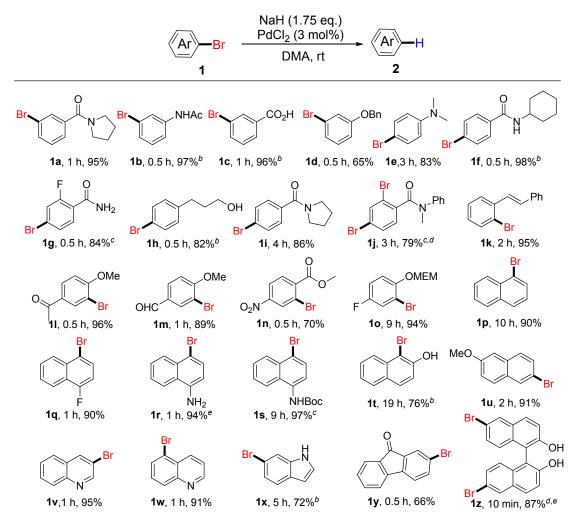
Facile and Practical Hydrodehalogenations of Organic Halides Enabled by Calcium Hydride and Palladium Chloride

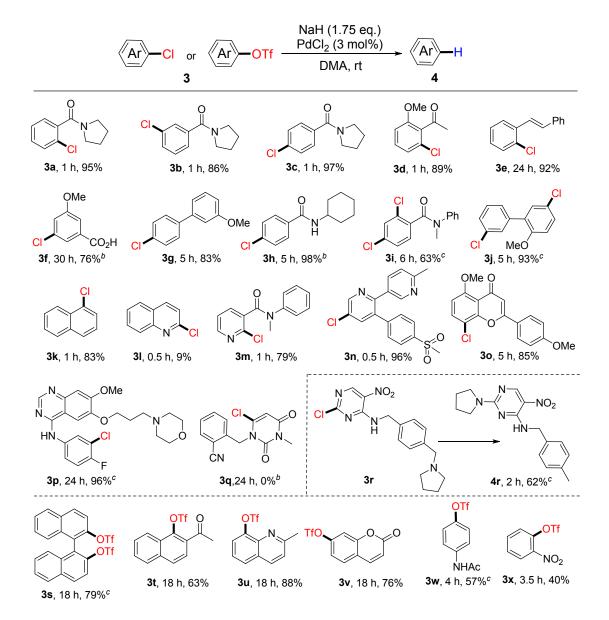
Jingjing Gui,^{+,a} Xin Cai,^{+,a} Lingyun Chen,^{+,a} Yuxin Zhou,^{+,a} Wenjing Zhu,^a Yuanrui Jiang,^a Min Hu,^a Xiaobei Chen,^{b,*} Yanwei Hu^{a,*} and Shilei Zhang^{a,*}

^aJiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China

^bState Key Laboratory of Bioreactor Engineering, and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China

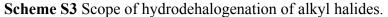

1. General Information	P2
2. The use of NaH for hydrodehalogenation	P2
3. The proposed mechanism for the generation of product 4r	P4
4. General procedure for hydrodehalogenation of aryl bromides	P5
5. General procedure for hydrodehalogenation of aryl chlorides and ary	yl
	trifl
	ates
	P14
6. General procedure for hydrodehalogenation of alkyl halides	P23
7. Complete or selective hydrodehalogenation by applying DMA or THI	Fas
solvent respectively	P35
8. General procedure for the reduction of trihalomethyl groups	P39
9. The procedures for the preparation of some substrates	P51
10. ¹ H and ¹³ C NMR spectra of products	P73
11. ¹ H and ¹³ C NMR spectra of some substrates	P191

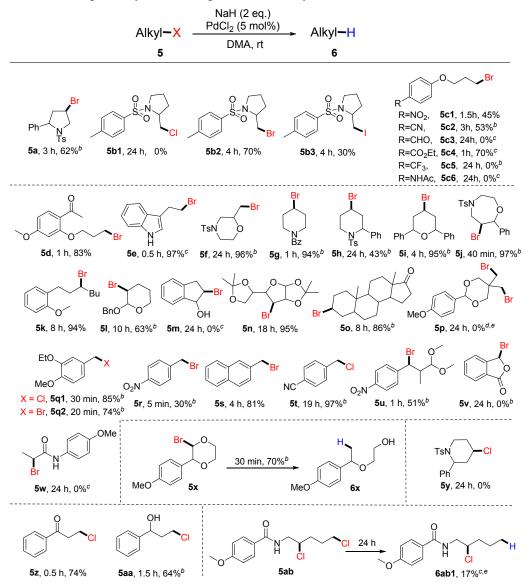
1. General Information


¹H and ¹³C NMR spectra were obtained from a solution in CDCl₃ or d^6 -DMSO with TMS as internal standard using a 600/151 MHz (¹H/¹³C) or 400/101 MHz (¹H/¹³C) spectrometer. Spin multiplicity are reported as singlet (s), doublet (d), triplet (t), doublet of doublet (dd) and multiplet (m). Coupling constant *J* is given in Hertz (Hz). Mass spectra were obtained in ESI mode. High-resolution mass spectra (HRMS) were obtained on a Q Exactive Plus orbitrap mass analyzer (Thermo Fisher Scientific) and are given in m/z. Chemicals, reagents and solvents were purchased from commercial suppliers and used without special instructions. Thin layer chromatography (TLC) was performed on silica gel HSGF254 plates. Column chromatography was performed using 200-300 Mesh silica gel. Visualization of spots on TLC plate was accomplished with UV light (254 nm).

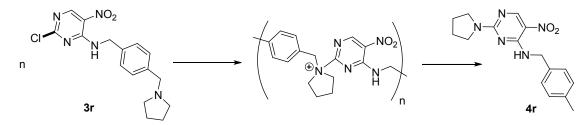
2. The use of NaH for hydrodehalogenation

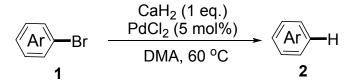
Scheme S1 Scope of hydrodehalogenation of aryl bromides.^a



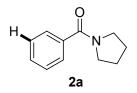

^{*a*}Reaction conditions unless otherwise specified: NaH (0.875 mmol, 1.75 equiv.) and PdCl₂ (0.015 mmol, 3 mol %) in DMA (0.5 mL) was stirred for 5 min under N₂ before 1 (0.5 mmol) in DMA (0.5 mL) was added, and then the reaction was stirred at rt for the specified time. ^{*b*}NaH (3.0 equiv.) was used. ^{*c*}NaH (4.0 equiv.) was used. ^{*d*}PdCl₂ (10 mol %) was used. ^{*e*}NaH (5.0 equiv.) was used.

Scheme S2 Scope of hydrodehalogenation of aryl chlorides and aryl triflates.^a

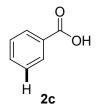

^{*a*}Reaction conditions unless otherwise specified: NaH (0.875 mmol, 1.75 equiv.) and PdCl₂ (0.015 mmol, 3 mol %) in DMA (0.5 mL) was stirred for 5 min under N₂ before **3** (0.5 mmol) in DMA (0.5 mL) was added, and then the reaction was stirred at rt for the specified time. ^{*b*}NaH (3.0 equiv.) was used. ^{*c*}NaH (4.0 equiv.) and PdCl₂ (10 mol %) were used.



^{*a*}Reaction conditions unless otherwise specified: NaH (1.0 mmol, 2.0 equiv.) and PdCl₂ (0.025 mmol, 5 mol %) in DMA (0.5 mL) was stirred for 5 min under N₂ before **5** (0.5 mmol) in DMA (0.5 mL) was added, and then the reaction was stirred at rt for the specified time. ^{*b*}NaH (3.0 equiv.) was used. ^{*c*}NaH (4.0 equiv.) was used. ^{*d*}NaH (6.0 equiv.) was used. ^{*e*}PdCl₂ (10 mol %) was used.


3. The proposed mechanism for the generation of product 4r

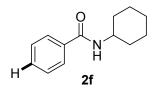
4. General procedure for hydrodehalogenation of aryl bromides

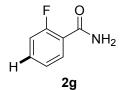

A mixture of $PdCl_2$ (4.4 mg, 0.025 mmol, 5 mol %) and calcium hydride (21 mg, 0.5 mmol, 1 equiv) in DMA (0.5 mL) was stirred for 5 min under N₂ before 1 (0.5 mmol) in DMA (0.5 mL) was added through syringe, and the mixture was stirred at 60 °C for the specified time. After the reaction was completed monitored with TLC, a saturated NH₄Cl aqueous solution was added to quench the reaction and the resulting mixture was extracted with EtOAc. The combined organic layers were washed with water and brine and dried over sodium sulfate and concentrated under reduced pressure. The crude product was purified by column chromatography to give desired product 2.

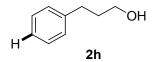
Phenyl(pyrrolidin-1-yl)methanone (**2a**). The title compound was prepared according to the general procedure at 60 °C for 11 h, as described above in 96% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.50 (dd, J = 7.0, 2.5 Hz, 2H), 7.41 – 7.30 (m, 3H), 3.64 (t, J = 7.0 Hz, 2H), 3.41 (t, J = 6.6 Hz, 2H), 1.94 (dd, J = 13.6, 6.6 Hz, 2H), 1.86 (dd, J = 13.0, 6.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 169.8, 137.3, 129.8, 128.3, 127.1, 49.7, 46.2, 26.5, 24.5. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₁H₁₄NO 176.1, found 176.1.

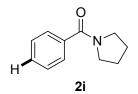
N-Phenylacetamide (2b). The title compound was prepared according to the general

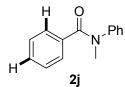
procedure (1.5 equiv of CaH₂ was used) at 60 °C for 4 h, as described above in 96% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 7.8 Hz, 2H), 7.41 (s, 1H), 7.31 (t, *J* = 7.6 Hz, 2H), 7.10 (t, *J* = 7.2 Hz, 1H), 2.17 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.8, 168.8, 138.1, 129.0, 124.4, 120.2, 120.1, 24.6. LR-MS (ESI): m/z [M+H]⁺ calcd for C₈H₁₀NO 136.1, found 136.1.

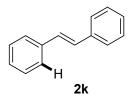

Benzoic acid (2c). The title compound was prepared according to the general procedure (1.5 equiv of CaH₂ was used) at 60 °C for 13 h, as described above in 98% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, *J* = 7.5 Hz, 2H), 7.63 (t, *J* = 7.3 Hz, 1H), 7.49 (t, *J* = 7.6 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 172.7, 134.0, 130.3, 129.5, 128.6. LR-MS (ESI): m/z [M+H]⁺ calcd for C₇H₇O₂ 123.0, found 123.1.

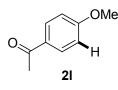

(Benzyloxy)benzene (2d). The title compound was prepared according to the general procedure at 60 °C for 23 h, as described above in 62% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.44 (m, 2H), 7.44 – 7.38 (m, 2H), 7.37 – 7.27 (m, 3H), 7.05 – 6.95 (m, 3H), 5.09 (s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 158.9, 137.2, 129.6, 128.7, 128.1, 127.6, 121.1, 115.0, 70.0. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₃H₁₃O 185.1, found 185.1.

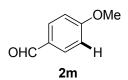

N,*N*-Dimethylaniline (2e). The title compound was prepared according to the general procedure at 60 °C for 8 h, as described above in 75% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.22 (m, 2H), 6.80 – 6.70 (m, 3H), 2.96 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 150.8, 129.2, 116.7, 112.8, 40.7. LR-MS (ESI): m/z [M+H]⁺ calcd for C₈H₁₂N 122.1, found 122.1.

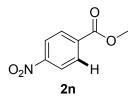

N-Cyclohexylbenzamide (2f). The title compound was prepared according to the general procedure (1.5 equiv of CaH₂ was used) at 60 °C for 13 h, as described above in 97% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.78 – 7.68(m, 2H), 7.52 – 7.36 (m, 3H), 5.97 (s, 1H), 4.05 – 3.90 (m, 1H), 2.10 – 1.96 (m, 2H), 1.83 – 1.70 (m, 2H), 1.50 – 1.35 (m, 2H), 1.33 – 1.10 (m, 4H). ¹³C NMR (151 MHz, CDCl₃) δ 165.8, 134.0, 131.8, 128.6, 125.9, 49.0, 33.3, 25.7, 25.0. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₃H₁₈NO 204.1, found 204.2.

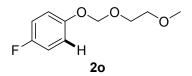

2-Fluorobenzamide (2g). The title compound was prepared according to the general procedure (2.0 equiv of CaH₂ was used) at 60 °C for 4 h, as described above in 88% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.14 – 8.07 (m, 1H), 7.53 – 7.45 (m, 1H), 7.29 – 7.23 (m, 1H), 7.17 – 7.09 (m, 1H), 6.82 – 6.30 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 165.2 (d, *J* = 3.0 Hz), 161.1 (d, *J* = 248.5 Hz), 134.0 (d, *J* = 10.1 Hz), 132.4 (d, *J* = 2.0 Hz), 124.9 (d, *J* = 4.0 Hz), 120.3 (d, *J* = 11.1 Hz), 116.2 (d, *J* = 24.2 Hz). LR-MS (ESI): m/z [M+H]⁺ calcd for C₇H₇FNO 140.1, found 140.1.


3-Phenylpropan-1-ol (2h). The title compound was prepared according to the general procedure (1.5 equiv of CaH₂ was used) at 60 °C for 6 h, as described above in 88% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.27 (m, 2H), 7.24 – 7.16 (m, 3H), 3.68 (t, J = 6.3 Hz, 2H), 2.72 (t, J = 7.6 Hz, 2H), 1.99 – 1.82 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 141.9, 128.5, 128.5, 125.9, 62.3, 34.3, 32.2. LR-MS (ESI): m/z [M+H]⁺ calcd for C₉H₁₃O 137.1, found 137.1.

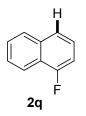

Phenyl(pyrrolidin-1-yl)methanone (2i, the same compound as 2a). The title compound was prepared according to the general procedure at 60 °C for 4 h, as described above in 98% yield.

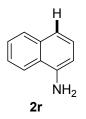

N-Methyl-N-phenylbenzamide (2j). The title compound was prepared according to the general procedure (2.0 equiv of CaH₂ and 10 mol % of PdCl₂ was used) at 60 °C for 9 h, as described above in 90% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.27 (m, 2H), 7.25 – 7.19 (m, 3H), 7.19 – 7.09 (m, 3H), 7.07 – 7.00 (m, 2H), 3.50 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 170.7, 145.0, 136.0, 129.7, 129.2, 128.8, 127.8, 127.0, 126.6, 38.5. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₄H₁₄NO 212.1, found 212.2.

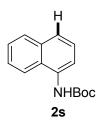

1,2-Diphenylethene (2k). The title compound was prepared according to the general procedure at 60 °C for 4 h, as described above in 91% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.50 (m, 4H), 7.37 – 7.33 (m, 4H), 7.27 – 7.22 (m, 2H), 7.12 – 7.08 (s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 137.3, 128.7, 128.7, 127.6, 126.5. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₄H₁₃ 181.1, found 181.1.


1-(4-Methoxyphenyl)ethan-1-one (2l). The title compound was prepared according to the general procedure at 60 °C for 8 h, as described above in 92% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 8.6 Hz, 2H), 6.93 (d, *J* = 8.6 Hz, 2H), 3.87 (s, 3H), 2.56 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 196.9, 163.6, 130.7, 130.5, 113.8, 55.6, 26.5. LR-MS (ESI): m/z [M+H]⁺ calcd for C₉H₁₁O₂ 151.1, found 151.1.

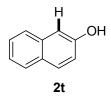
4-Methoxybenzaldehyde (2m). The title compound was prepared according to the general procedure at 60 °C for 10 h, as described above in 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.89 (s, 1H), 7.84 (d, *J* = 8.6 Hz, 2H), 7.01 (d, *J* = 8.5 Hz, 2H), 3.89 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 190.9, 164.7, 132.1, 130.1, 114.4, 55.7. LR-MS (ESI): m/z [M+H]⁺ calcd for C₈H₉O₂ 137.1, found 137.1.


Methyl 4-nitrobenzoate (2n). The title compound was prepared according to the general procedure at 60 °C for 48 h, as described above in 60% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, *J* = 8.6 Hz, 2H), 8.21 (d, *J* = 8.6 Hz, 2H), 3.98 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 165.3, 150.7, 135.6, 130.8, 123.7, 53.0. LR-MS (ESI): m/z [M+H]⁺ calcd for C₈H₈NO₄ 182.0, found 182.0.

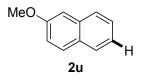

1-Fluoro-4-(2-methoxyethoxy)benzene (20). The title compound was prepared according to the general procedure at 60 °C for 10 h, as described above in 95% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.08 – 6.87 (m, 4H), 5.22 (s, 2H), 3.88 – 3.76 (m, 2H), 3.61 – 3.53 (m, 2H), 3.37 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 158.1 (d, *J* = 240.1 Hz), 153.5, 117.7 (d, *J* = 7.5 Hz), 115.9 (d, *J* = 22.7 Hz), 94.2, 71.7, 67.7, 59.1. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₀H₁₄FO₃ 201.1, found 201.1.


Naphthalene (2p). The title compound was prepared according to the general procedure at 60 °C for 24 h, as described above in 89% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.81 (m, 4H), 7.54 – 7.44 (m, 4H). ¹³C NMR (151 MHz, CDCl₃) δ 133.6, 128.0, 126.0.

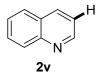
1-Fluoronaphthalene (2q). The title compound was prepared according to the general procedure at 60 °C for 5 h, as described above in 73% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.17 – 8.08 (m, 1H), 7.89 – 7.83 (m, 1H), 7.69 – 7.60 (m 1H), 7.60 – 7.50 (m, 2H), 7.46 – 7.36 (m, 1H), 7.21 – 7.11 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 158.9 (d, *J* = 252.2 Hz), 135.0, 127.6 (d, *J* = 3.0 Hz), 126.8, 126.3, 125.7 (d, *J* = 9.0 Hz) 123.9, 123.8 (d, *J* = 4.5 Hz), 120.7, 120.6. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₀H₈F 147.1, found 147.1.



Naphthalen-1-amine (2r). The title compound was prepared according to the general procedure (3.0 equiv of CaH₂ was used) at 60 °C for 18 h, as described above in 82% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.78 (m, 2H), 7.55 – 7.40 (m, 2H), 7.37 – 7.27 (m, 2H), 6.80 (d, *J* = 5.3 Hz, 1H), 4.04 (br, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 142.2, 134.5, 128.7, 126.4, 125.9, 125.0, 123.8, 120.9, 119.1, 109.8. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₀H₁₀N 144.1, found 144.1.

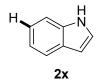


Tert-Butyl naphthalen-1-ylcarbamate (2s). The title compound was prepared according to the general procedure (2.0 equiv of CaH₂ was used) at 60 °C for 9 h, as described above in 96% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.94 – 7.82 (m, 3H),

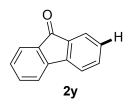

7.66 – 7.60(m, 1H), 7.55 – 7.42 (m, 3H), 6.85 (s, 1H), 1.56 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 153.6, 134.2, 133.1, 128.8, 126.6, 126.1, 126.0, 125.9, 124.6, 120.6, 118.7, 110.1, 80.8, 28.5. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₅H₁₈NO₂ 244.1, found 244.1.

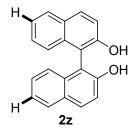
Naphthalen-2-ol (2t). The title compound was prepared according to the general procedure (1.5 equiv of CaH₂ was used) at 60 °C for 19 h, as described above in 79% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.82 – 7.72 (m, 2H), 7.69 (d, *J* = 8.2 Hz, 1H), 7.44 (t, *J* = 7.4 Hz, 1H), 7.33 (t, *J* = 7.4 Hz, 1H), 7.15 (s, 1H), 7.11 (dd, *J* = 8.8, 2.1 Hz, 1H), 5.02 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 153.4, 134.7, 130.0, 129.1, 127.9, 126.7, 126.5, 123.8, 117.9, 109.7. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₀H₉O 145.1, found 145.1. LR-MS (ESI): m/z 145.1 [M+H]⁺.

2-Methoxynaphthalene (2u). The title compound was prepared according to the general procedure at 60 °C for 5 h, as described above in 97% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.81 – 7.71 (m, 3H), 7.45 (t, *J* = 7.4 Hz, 1H), 7.34 (t, *J* = 7.3 Hz, 1H), 7.19 – 7.11 (m, 2H), 3.93 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 157.7, 134.7, 129.5, 129.1, 127.8, 126.9, 126.5, 123.7, 118.8, 105.9, 55.4. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₁H₁₁O 159.1, found 159.1.

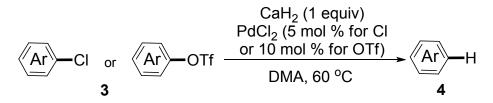


Quinoline (2v). The title compound was prepared according to the general procedure

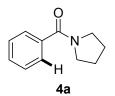

at 60 °C for 8 h, as described above in 66% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.92 (s, 1H), 8.24 – 8.04 (m, 2H), 7.87 – 7.64 (m, 2H), 7.62 – 7.48 (m, 1H), 7.46 – 7.31 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 150.5, 148.4, 136.2, 129.6, 128.4, 127.9, 126.6, 121.2. LR-MS (ESI): m/z [M+H]⁺ calcd for C₉H₈N 130.1, found 130.1.


Quinoline (2w, the same compound as 2v). The title compound was prepared according to the general procedure at 60 °C for 8 h, as described above in 80% yield.

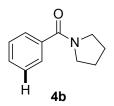
1*H*-Indole (2x). The title compound was prepared according to the general procedure (1.5 equiv of CaH₂ was used) at 60 °C for 5 h, as described above in 86% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (br, 1H), 7.68 (d, J = 7.8 Hz, 1H), 7.41 (d, J = 8.0 Hz, 1H), 7.25 – 7.19 (m, 2H), 7.18 – 7.10 (m, 1H), 6.63 – 6.43 (m, 1H). ¹³C NMR (151 MHz,CDCl₃) δ 135.9, 127.9, 124.3, 122.1, 120.8, 119.9, 111.2, 102.6. LR-MS (ESI): m/z [M+H]⁺ calcd for C₈H₈N 118.1, found 118.1.

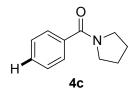


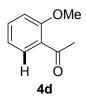
9*H***-Fluoren-9-one (2y).** The title compound was prepared according to the general procedure at 60 °C for 4 h, as described above in 89% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, *J* = 7.3 Hz, 2H), 7.43-7.39 (m, 4H), 7.23 (t, *J* = 7.2 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 193.8, 144.4, 134.7, 134.1, 129.0, 124.2, 120.3. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₃H₉O 181.1, found 181.1.



1,1'-Bi-2-naphthol (2z). The title compound was prepared according to the general procedure (3.0 equiv of CaH₂ and 10 mol % of PdCl₂ was used) at 60 °C for 5 h, as described above in 90% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.00 – 7.93 (m, 2H), 7.93 – 7.86 (m, 2H), 7.41 – 7.35 (m, 4H), 7.34 – 7.29 (m, 2H), 7.18 – 7.09 (m, 2H), 5.05 (s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 152.9, 133.6, 131.5, 129.6, 128.5, 127.6, 124.3, 124.2, 117.9, 111.0. LR-MS (ESI): m/z [M+H]⁺ calcd for C₂₀H₁₅O₂ 287.1, found 287.1.

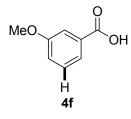

5. General procedure for hydrodehalogenation of aryl chlorides and aryl triflates


A mixture of PdCl₂ ('4.4 mg, 0.025 mmol, 5 mol %' for Cl, or '8.8 mg, 0.05 mmol, 10 mol %' for OTf) and calcium hydride (21 mg, 0.5 mmol, 1 equiv) in DMA (0.5 mL) was stirred for 5 min under N₂ before **3** (0.5 mmol) in DMA (0.5 mL) was added through syringe, and then the mixture was stirred at 60 °C for the specified time. After the reaction was completed monitored with TLC, a saturated NH₄Cl aqueous solution was added to quench the reaction and the resulting mixture was extracted with EtOAc. The combined organic layers were washed with water and brine and dried over sodium sulfate and concentrated under reduced pressure. The crude product was purified by column chromatography to give desired product **4**.

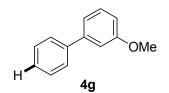

Phenyl(pyrrolidin-1-yl)methanone (4a, the same compound as 2a). The title compound was prepared according to the general procedure at 60 °C for 4 h, as described above in 83% yield.

Phenyl(pyrrolidin-1-yl)methanone (4b, the same compound as 2a). The title compound was prepared according to the general procedure at 60 °C for 4 h, as described above in 95% yield.

Phenyl(pyrrolidin-1-yl)methanone (4c, the same compound as 2a). The title compound was prepared according to the general procedure at 60 °C for 4 h, as described above in 99% yield.

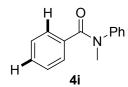


1-(2-Methoxyphenyl)ethan-1-one (4d). The title compound was prepared according to the general procedure at 60 °C for 6 h, as described above in 98% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 7.1 Hz, 1H), 7.46 (t, *J* = 7.3 Hz, 1H), 7.04 – 6.94 (m, 2H), 3.91 (s, 3H), 2.61 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 200.0, 159.0, 133.8,

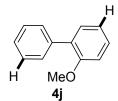

130.5, 128.4, 120.7, 111.7, 55.6, 32.0. LR-MS (ESI): $m/z \ [M+H]^+$ calcd for $C_9H_{11}O_2$ 151.1, found 151.1.

1,2-Diphenylethene (4e, the same compound as 2k). The title compound was prepared according to the general procedure at 60 °C for 24 h, as described above in 87% yield.

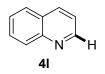
3-Methoxybenzoic acid (4f). The title compound was prepared according to the general procedure (1.5 equiv of CaH₂ was used) at 60 °C for 24 h, as described above in 50% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 7.5 Hz, 1H), 7.63 (s, 1H), 7.39 (t, *J* = 7.9 Hz, 1H), 7.17 (d, *J* = 7.7 Hz, 1H), 3.88 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 172.4, 159.7, 130.7, 129.7, 122.8, 120.6, 114.5, 55.6. LR-MS (ESI): m/z [M+H]⁺ calcd for C₈H₉O₃ 153.1, found 153.1.

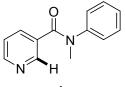


3-Methoxy-1,1'-biphenyl (4g). The title compound was prepared according to the general procedure at 60 °C for 4 h, as described above in 91% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.54 (m, 2H), 7.50 – 7.41 (m, 2H), 7.40 – 7.32 (m, 2H), 7.23 – 7.16 (m, 1H), 7.14 (s, 1H), 6.91 (d, *J* = 7.4 Hz, 1H), 3.88 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 160.0, 142.9, 141.2, 129.9, 128.9, 127.5, 127.3, 119.8, 113.0, 112.8, 55.4.

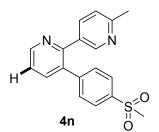

LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₃H₁₃O 185.1, found 185.1.

N-Cyclohexylbenzamide (4h, the same compound as 2f). The title compound was prepared according to the general procedure (1.5 equiv of CaH_2 was used) at 60 °C for 4 h, as described above in 97% yield.

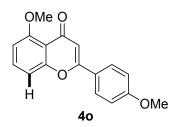

N-Methyl-N-phenylbenzamide (4i, the same compound as 2j). The title compound was prepared according to the general procedure $(2.0 \text{ equiv of CaH}_2 \text{ and } 10 \text{ mol }\%$ of PdCl₂ was used) at 60 °C for 24 h, as described above in 90% yield.


2-Methoxy-1,1'-biphenyl (4j). The title compound was prepared according to the general procedure (2.0 equiv of CaH₂ and 10 mol % of PdCl₂ was used) at 60 °C for 6 h, as described above in 97% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.56 (m, 2H), 7.49 – 7.40 (m, 2H), 7.40 – 7.32 (m, 2H), 7.22 – 7.16 (m, 1H), 7.15 – 7.11 (m, 1H), 6.94 – 6.87 (m, 1H), 3.87 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 160.1, 142.9, 141.2, 129.9, 128.9, 127.5, 127.3, 119.8, 113.0, 112.8, 55.4. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₃H₁₃O 185.1, found 185.1.

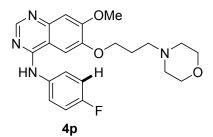
Naphthalene (4k, the same compound as 2p). The title compound was prepared according to the general procedure at 60 °C for 4 h, as described above in 97% yield.



Quinoline (41, the same compound as 2v). The title compound was prepared according to the general procedure at 60 °C for 3 h, as described above in 87% yield.

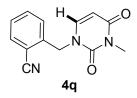

4m

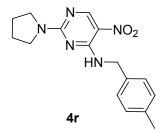
N-Methyl-*N*-phenylnicotinamide (4m). The title compound was prepared according to the general procedure at 60 °C for 9 h, as described above in 94% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.54 – 8.42 (m, 2H), 7.61 (d, *J* = 7.5 Hz, 1H), 7.31 – 7.22 (m, 2H), 7.22 – 7.16 (m, 1H), 7.15 – 7.09 (m, 1H), 7.09 – 7.01 (m, 2H), 3.52 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.2, 150.3, 149.7, 144.2, 136.2, 131.9, 129.6, 127.3, 127.1, 122.7, 38.4. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₃H₁₃N₂O 213.1, found 213.1.



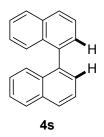
6'-Methyl-3-(4-(methylsulfonyl)phenyl)-2,3'-bipyridine (4n). The title compound was prepared according to the general procedure at 60 °C for 3 h, as described above

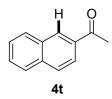
in 97% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.77 (d, J = 3.7 Hz, 1H), 8.41 (s, 1H), 7.89 (d, J = 8.2 Hz, 2H), 7.74 (d, J = 7.5 Hz, 1H), 7.64 – 7.58 (m, 1H), 7.44 – 7.37 (m, 3H), 7.10 (d, J = 8.0 Hz, 1H), 3.09 (s, 3H), 2.54 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 158.3, 154.4, 150.1, 149.8, 145.3, 139.8, 138.7, 137.5, 134.5, 132.3, 130.6, 127.9, 122.8, 122.7, 44.6, 24.4. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₈H₁₇N₂O₂S 325.1, found 325.2.


5-Methoxy-2-(4-methoxyphenyl)-4H-chromen-4-one (40). The title compound was prepared according to the general procedure at 60 °C for 5 h, as described above in 86% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 8.02 (d, J = 8.7 Hz, 2H), 7.69 (t, J = 8.4 Hz, 1H), 7.27 (d, J = 8.4 Hz, 1H), 7.11 (d, J = 8.8 Hz, 2H), 6.99 (d, J = 8.3 Hz, 1H), 6.77 (s, 1H), 3.86 (s, 3H), 3.85 (s, 3H). ¹³C NMR (151 MHz, DMSO- d_6) δ 176.4, 161.9, 160.1, 159.0, 157.5, 134.1, 127.8, 122.9, 114.5, 113.7, 109.9, 107.1, 106.9, 56.1, 55.5. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₇H₁₅O₄ 283.1, found 283.1.


N-(4-Fluorophenyl)-7-methoxy-6-(3-morpholinopropoxy)quinazolin-4-amine

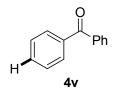
(4p). The title compound was prepared according to the general procedure (2.0 equiv of CaH₂ and 10 mol % of PdCl₂ was used) at 60 °C for 24 h, as described above in 87% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 9.51 (s, 1H), 8.42 (s, 1H), 7.88 – 7.70 (m, 3H), 7.27 – 7.10 (m, 3H), 4.25 – 4.12 (m, 2H), 4.00 – 3.86 (m, 3H), 3.67 – 3.50 (m, 4H), 2.68 – 2.44 (m, 6H), 2.07 – 1.92 (m, 2H). ¹³C NMR (151 MHz, DMSO- d_6) δ


158.3 (d, J = 241.6 Hz), 156.4, 154.3, 152.8, 148.2, 146.9, 140.5, 135.7, 124.4 (d, J = 7.5 Hz), 115.0 (d, J = 22.6 Hz), 108.7, 107.3, 102.7, 67.1, 66.2, 55.8, 55.0, 53.4, 25.9. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₂H₂₆FN₄O₃ 413.1989, found 413.1994.


2-((1-Methyl-2,6-dioxo-1,2,3,6-tetrahydropyridin-3-yl)methyl)benzonitrile (4q). The title compound was prepared according to the general procedure (1.5 equiv of CaH₂ was used) at 60 °C for 4 h, as described above in 75% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 7.6 Hz, 1H), 7.64 (t, *J* = 7.5 Hz, 1H), 7.58 (d, *J* = 7.6 Hz, 1H), 7.47 (t, *J* = 7.4 Hz, 1H), 7.40 (d, *J* = 7.9 Hz, 1H), 5.82 (d, *J* = 7.9 Hz, 1H), 5.13 (s, 2H), 3.35 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 163.0, 151.9, 142.1, 139.0, 133.6, 133.30, 130.1, 129.2, 117.7, 112.0, 102.4, 51.0, 28.0. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₃H₁₂N₃O₂ 242.0930, found 242.0931.

N-(4-Methylbenzyl)-5-nitro-2-(pyrrolidin-1-yl)pyrimidin-4-amine (4r). The title compound was prepared according to the general procedure (2.0 equiv of CaH₂ was used) at 60 °C for 8 h, as described above in 53% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.01 (s, 1H), 8.72 (s, 1H), 7.31 – 7.24 (m, 2H), 7.18 – 7.10 (m, 2H), 4.71 (d, *J* = 5.7 Hz, 2H), 3.76 – 3.64 (m, 2H), 3.62 – 3.52 (m, 2H), 2.34 (s, 3H), 2.05 – 1.91 (m, 4H). ¹³C NMR (151 MHz, CDCl₃) δ 159.3, 157.9, 155.6, 137.3, 135.1, 129.5, 127.8, 120.4, 47.6, 47.2, 44.3, 25.6, 25.3, 21.2. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₆H₂₀N₅O₂ 314.1617, found 314.1621.

1,1'-Binaphthalene (4s). The title compound was prepared according to the general procedure (2.0 equiv of CaH₂ was used) at 60 °C for 3 h, as described above in 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.02 – 7.98 (m, 4H), 7.64 (t, *J* = 7.5 Hz, 2H), 7.53 (dd, *J* = 12.3, 6.9 Hz, 4H), 7.44 (d, *J* = 8.4 Hz, 2H), 7.34 – 7.26 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 138.6, 133.7, 133.0, 128.3, 128.0, 126.7, 126.1, 126.0, 125.5. LR-MS (ESI): m/z [M+H]⁺ calcd for C₂₀H₁₅ 255.1, found 255.1.



1-(Naphthalen-2-yl)ethan-1-one (**4t**). The title compound was prepared according to the general procedure at 60 °C for 1.5 h, as described above in 95% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.47 (s, 1H), 8.04 (d, *J* = 8.4 Hz, 1H), 7.97 (d, *J* = 7.9 Hz, 1H), 7.92 – 7.86 (m, 2H), 7.58 (dt, *J* = 14.7, 6.9 Hz, 2H), 2.73 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 198.1, 135.6, 134.5, 132.5, 130.2, 129.5, 128.5, 128.4, 127.8, 126.8, 123.9, 26.7. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₂H₁₁O 171.1, found 171.1.

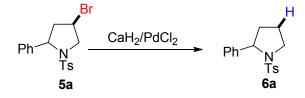


2-Methylquinoline (4u). The title compound was prepared according to the general procedure at 60 °C for 3.5 h, as described above in 92% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (t, *J* = 9.4 Hz, 2H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.69 (t, *J* = 7.5 Hz, 1H), 7.49 (t, *J* = 7.4 Hz, 1H), 7.27 (d, *J* = 7.7 Hz, 1H), 2.76 (s, 3H). ¹³C NMR (151 MHz,

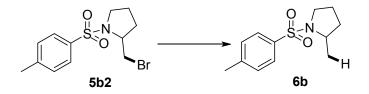
CDCl₃) δ 158.9, 147.7, 136.2, 129.4, 128.5, 127.5, 126.5, 125.7, 122.0, 25.3. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₀H₁₀N 144.1, found 144.1.

2*H***-Chromen-2-one (4v)**. The title compound was prepared according to the general procedure (2.0 equiv of CaH₂ and 15 mol % of PdCl₂ was used) at 60 °C for 6.5 h, as described above in 98% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.81 (m, 5H),7.51 – 7.49 (m, 5H). ¹³C NMR (151 MHz, CDCl₃) δ 196.7, 137.6, 132.4, 130.0, 128.3. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₃H₁₁O 183.1, found 183.1.

N-Phenylacetamide (4w, the same compound as 2b). The title compound was prepared according to the general procedure at 60 °C for 4 h, as described above in 69% yield.

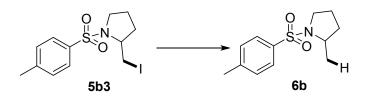


Nitrobenzene (4x). The title compound was prepared according to the general procedure at 60 °C for 3.5 h, as described above in 50% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, *J* = 8.0 Hz, 2H), 7.69 (t, *J* = 7.4 Hz, 1H), 7.53 (t, *J* = 8.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 148.2, 134.7, 129.4, 123.5. LR-MS (ESI): m/z [M+H]⁺ calcd for C₆H₆NO₂ 124.0, found 124.0.

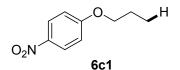

6. General procedure for hydrodehalogenation of alkyl halides

$$Alkyl-X \xrightarrow{PdCl_2 (5 \text{ mol }\%)} Alkyl-H$$

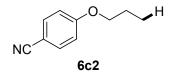
A mixture of $PdCl_2$ (4.4 mg, 0.025 mmol, 5 mol %) and calcium hydrogen (21 mg, 0.5 mmol, 1 equiv) in DMA (0.5 mL) was stirred for 5 min under N₂ before **5** (0.5 mmol) in DMA (0.5 mL) was added through syringe, and then the mixture was stirred at 60 °C for the specified time. After the reaction was completed monitored with TLC, a saturated NH₄Cl aqueous solution was added to quench the reaction and the resulting mixture was extracted with EtOAc. The combined organic layers were washed with water and brine and dried over sodium sulfate and concentrated under reduced pressure. The crude product was purified by column chromatography to give desired product **6**.



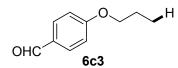
Phenyl-1-tosylpyrrolidine (6a). The title compound was prepared according to the general procedure (1.5 equiv of CaH₂ was used) at 60 °C for 6 h, as described above in 95% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 8.0 Hz, 2H), 7.34 – 7.27 (m, 6H), 7.25 – 7.20 (m, 1H), 4.782 – 4.73 (m, 1H), 3.67 – 3.58 (m, 1H), 3.50 – 3.37 (m, 1H), 2.43 (s, 3H), 2.03 – 1.93 (m, 1H), 1.91 – 1.76 (m, 2H), 1.71 – 1.62 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 143.4, 143.2, 135.2, 129.7, 128.4, 127.6, 127.1, 126.2, 63.4, 49.5, 35.9, 24.1, 21.6. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₇H₂₀NO₂S 302.1, found 302.1.



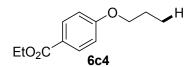
2-Methyl-1-tosylpyrrolidine (6b). The title compound was prepared according to the


general procedure at 60 °C for 19 h, as described above in 87% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.0 Hz, 2H), 7.30 (d, *J* = 7.9 Hz, 2H), 3.74 – 3.66 (m, 1H), 3.48 – 3.39 (m, 1H), 3.17 – 3.10 (m, 1H), 2.42 (s, 3H), 1.88 – 1.73 (m, 1H), 1.73 – 1.62 (m, 1H), 1.56-1.44 (m, 2H), 1.31 (d, *J* = 6.3 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 143.3, 135.1, 129.7, 127.6, 56.2, 49.2, 33.6, 24.1, 23.0, 21.6. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₂H₁₈NO₂S 240.1, found 240.1.

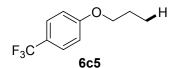
2-Methyl-1-tosylpyrrolidine (6b). The title compound was prepared according to the general procedure at 60 °C for 19 h, as described above in 70% yield.



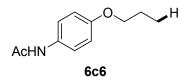
1-Nitro-4-propoxybenzene (6c1). The title compound was prepared according to the general procedure at 60 °C for 24 h, as described above in 57% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, *J* = 9.0 Hz, 2H), 6.94 (d, *J* = 9.0 Hz, 2H), 4.01 (t, *J* = 6.4 Hz, 2H), 1.92 – 1.77 (m, 2H), 1.06 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 164.4, 141.4, 126.0, 114.5, 70.5, 22.5, 10.6. LR-MS (ESI): m/z [M+H]⁺ calcd for C₉H₁₂NO₃ 182.1, found 182.1.



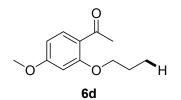
4-Propoxybenzonitrile (6c2). The title compound was prepared according to the general procedure (1.5 equiv of CaH₂ was used) at 60 °C for 24 h, as described above in 91% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, *J* = 8.5 Hz, 2H), 6.91 (d, *J* = 8.5 Hz, 2H), 3.93 (t, *J* = 6.5 Hz, 2H), 1.80 (dt, *J* = 13.9, 7.0 Hz, 2H), 1.02 (t, *J* = 7.4 Hz,


3H). ¹³C NMR (151 MHz, CDCl₃) δ 162.5, 133.9, 119.3, 115.2, 103.6, 69.9, 22.4,
10.4. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₀H₁₂NO 162.1, found 162.1.

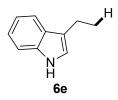
4-Propoxybenzaldehyde (6c3). The title compound was prepared according to the general procedure (2.0 equiv of CaH₂ was used) at 60 °C for 24 h, as described above in 58% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.86 (s, 1H), 7.81 (d, *J* = 8.5 Hz, 2H), 6.98 (d, *J* = 8.5 Hz, 2H), 3.99 (t, *J* = 6.5 Hz, 2H), 1.88 – 1.76 (m, 2H), 1.04 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 190.9, 164.4, 132.1, 129.9, 114.9, 70.0, 22.6, 10.6. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₀H₁₃O₂ 165.1, found 165.1.



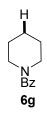
Ethyl 4-propoxybenzoperoxoate (6c4). The title compound was prepared according to the general procedure (2.0 equiv of CaH₂ was used) at 60 °C for 11 h, as described above in 92% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 8.7 Hz, 2H), 6.90 (d, J = 8.7 Hz, 2H), 4.34 (q, J = 7.1 Hz, 2H), 3.97 (t, J = 6.5 Hz, 2H), 1.89-1.76 (m, 2H), 1.38 (t, J = 7.1 Hz, 3H), 1.04 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.6, 163.0, 131.6, 122.8, 114.1, 69.8, 60.7, 22.6, 14.5, 10.6. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₂H₁₇O₃ 209.1, found 209.1.

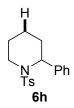


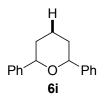
1-Propoxy-4-(trifluoromethyl)benzene (6c5). The title compound was prepared according to the general procedure (1.5 equiv of CaH₂ was used) at 60 °C for 9 h, as described above in 64% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, *J* = 8.5 Hz, 2H), 6.95 (d, *J* = 8.5 Hz, 2H), 3.96 (t, *J* = 6.5 Hz, 2H), 1.88 – 1.78 (m, 2H), 1.05 (t, *J* = 7.4


Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 161.8, 127.4, 127.0, 127.0, 126.96, 126.94, 125.6, 123.8, 123.1, 122.9, 122.6, 122.4, 114.6, 69.9, 25.3, 22.6, 10.6. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₀H₁₂F₃O 205.0840, found 205.0842.

N-(4-Propoxyphenyl)acetamide (6c6). The title compound was prepared according to the general procedure (2.0 equiv of CaH₂ was used) at 60 °C for 24 h, as described above in 98% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.49 (s, 1H), 7.36 (d, *J* = 8.9 Hz, 2H), 6.82 (d, *J* = 8.9 Hz, 2H), 3.88 (t, *J* = 6.6 Hz, 2H), 2.12 (s, 3H), 1.84 – 1.73 (m, 2H), 1.02 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.5, 156.1, 131.0, 122.1, 114.9, 69.9, 24.4, 22.7, 10.6. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₁H₁₆NO₂ 194.1, found 194.1.

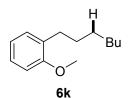

1-(4-Methoxy-2-propoxyphenyl)ethan-1-one (6d). The title compound was prepared according to the general procedure at 60 °C for 3 h, as described above in 97% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 8.7 Hz, 1H), 6.51 (d, *J* = 8.7 Hz, 1H), 6.43 (s, 1H), 4.00 (t, *J* = 6.3 Hz, 2H), 3.85 (s, 3H), 2.60 (s, 3H), 1.95 – 1.82 (m, 2H), 1.09 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 198.0, 164.6, 160.8, 132.8, 121.3, 105.1, 98.9, 70.2, 55.6, 32.3, 22.6, 11.0. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₂H₁₇O₃ 209.1178, found 209.1179.


3-Ethyl-1*H***-indole (6e)**. The title compound was prepared according to the general procedure (2.0 equiv of CaH₂ was used) at 60 °C for 3 h, as described above in 87% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.89 (br, 1H), 7.62 (d, *J* = 7.8 Hz, 1H), 7.36 (d, *J* = 8.0 Hz, 1H), 7.20 (t, *J* = 7.4 Hz, 1H), 7.12 (t, *J* = 7.4 Hz, 1H), 6.98 (s, 1H), 2.80 (q, *J* = 7.5 Hz, 2H), 1.34 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 136.5, 127.6, 122.0, 120.6, 119.2, 119.1, 119.0, 111.2, 18.5, 14.6. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₀H₁₂N 146.1, found 146.1.


2-Methyl-4-tosylmorpholine (6f). The title compound was prepared according to the general procedure (1.5 equiv of CaH₂ was used) at 60 °C for 36 h, as described above in 90% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 7.6 Hz, 2H), 7.34 (d, *J* = 7.4 Hz, 2H), 3.87 (m, 1H), 3.72-3.63 (m, 2H), 3.57-3.49 (m, 2H), 2.44 (s, 3H), 2.42-2.35 (m, 1H), 2.01 (m, 1H), 1.13 (d, *J* = 8.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 144.0, 132.3, 129.9, 128.0, 71.5, 66.0, 51.7, 45.4, 21.7, 18.8. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₂H₁₈NO₃S 256.1, found 256.1.

Phenyl(piperidin-1-yl)methanone (6g). The title compound was prepared according to the general procedure (1.5 equiv of CaH₂ was used) at 60 °C for 3 h, as described above in 94% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.40 (m, 1H), 7.39 – 7.37 (m, 4H), 3.82 – 3.62 (m, 2H), 3.42 – 3.24 (m, 2H), 1.76 – 1.63 (m, 4H), 1.57 – 1.41 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 170.4, 136.6, 129.4, 128.5, 126.9, 48.9, 43.2, 26.7, 25.7, 24.7. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₂H₁₆NO 190.1, found 190.1.

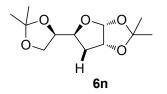
2-Phenyl-1-tosylpiperidine (6h). The title compound was prepared according to the general procedure (1.5 equiv of CaH₂ was used) at 60 °C for 24 h, as described above in 68% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.81 – 7.71(m, 2H), 7.38 – 7.27 (m, 6H), 7.25 – 7.20(m, 1H), 5.31 – 5.21 (m, 1H), 3.92 – 3.78 (m, 1H), 3.07 – 2.95 (m, 1H), 2.44 (s, 3H), 2.26 – 2.16 (m, 1H), 1.72 – 1.62 (m, 1H), 1.55 – 1.46 (m, 1H), 1.45 – 1.36 (m, 2H), 1.35 – 1.28 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 143.1, 139.0, 138.8, 129.8, 128.7, 127.14, 127.11, 126.9, 55.4, 42.0, 27.4, 24.4, 21.7, 19.1. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₈H₂₂NO₂S 316.1, found 316.2.



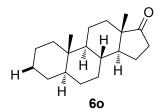
2,6-Diphenyltetrahydro-2*H***-pyran (6i)**. The title compound was prepared according to the general procedure (1.5 equiv of CaH₂ was used) at 60 °C for 24 h, as described above in 82% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.42 (m, 4H), 7.35 (t, *J* = 7.4 Hz, 4H), 7.29 – 7.27 (m, 1H), 7.25 – 7.22 (m, 1H), 4.63 – 4.55 (m, 2H), 2.10 – 2.00 (m, 1H), 1.98 – 1.90 (m, 2H), 1.90 – 1.81 (m, 1H), 1.69 – 1.58 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 143.6, 128.3, 127.3, 125.9, 80.3, 34.0, 24.6. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₇H₁₉O 239.1, found 239.2.

7-Phenyl-4-tosyl-1,4-oxazepane (6j). The title compound was prepared according to the general procedure (1.5 equiv of CaH_2 was used) at 60 °C for 8 h, as described

above in 87% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.76 – 7.64 (m, 2H), 7.37 – 7.29 (m, 4H), 7.29 – 7.27 (m, 2H), 7.25 – 7.21 (m, 1H), 4.71 – 4.64 (m, 1H), 4.13 – 4.06 (m, 1H), 3.81 – 3.67 (m, 2H), 3.65 – 3.57 (m, 1H), 3.39 – 3.29 (m, 1H), 3.27 – 3.19 (m, 1H), 2.44 (s, 3H), 2.37 – 3.36 (m, 1H), 2.09 – 1.97 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 143.5, 143.0, 136.1, 129.9, 128.6, 127.5, 127.2, 125.7, 81.6, 70.1, 51.8, 46.4, 37.9, 21.6. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₈H₂₂NO₃S 332.1, found 332.1.

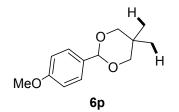

1-Heptyl-2-methoxybenzene (6k). The title compound was prepared according to the general procedure at 60 °C for 6 h, as described above in 96% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.21 – 7.09 (m, 2H), 6.93 – 6.81 (m, 2H), 3.83 (s, 3H), 2.66 – 2.55 (m, 2H), 1.61 – 1.53 (m, 2H), 1.317 – 1.24 (m, 8H), 0.92 – 0.83 (m, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 157.6, 131.5, 129.9, 126.9, 120.4, 110.3, 55.4, 32.0, 30.3, 30.0, 29.8, 29.4, 22.9, 14.3. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₄H₂₃O 207.2, found 207.2.

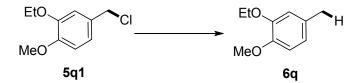
2-(Benzyloxy)tetrahydro-2*H***-pyran (61)**. The title compound was prepared according to the general procedure (1.5 equiv of CaH₂ was used) at 60 °C for 19 h, as described above in 66% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.27 (m, 5H), 4.79 (d, *J* = 11.9 Hz, 1H), 4.71 (s, 1H), 4.51 (d, *J* = 11.9 Hz, 1H), 3.98 – 3.88 (m, 1H), 3.61 – 3.50 (m, 1H), 1.95 – 1.82 (m, 1H), 1.80 – 1.70 (m, 1H), 1.69 – 1.64 (m, 1H), 1.64 – 1.60(m, 1H), 1.58 – 1.50 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 138.4, 128.5, 127.9, 127.6, 97.9, 69.0, 62.3, 30.7, 25.6, 19.5. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₂H₁₇O₂ 193.1, found 193.2.



2,3-Dihydro-1*H***-inden-1-ol (6m)**. The title compound was prepared according to the general procedure (2.0 equiv of CaH₂ was used) at 60 °C for 3 h, as described above in 67% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 5.2 Hz, 1H), 7.31-7.21 (m, 3H), 5.30-5.18 (s, 1H), 3.11 – 3.01 (m, 1H), 2.87 – 2.77 (m, 1H), 2.56-2.43 (m, 1H), 2.00-1.87 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 145.1, 143.4, 128.4, 126.8, 125.0, 124.3, 76.5, 36.0, 29.9. LR-MS (ESI): m/z [M+H]⁺ calcd for C₉H₁₁O 135.1, found 135.1.

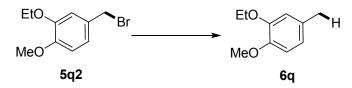
(3aR,5S,6aR)-5-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-


dimethyltetrahydrofuro[2,3-*d*][1,3]dioxole (6n). The title compound was prepared according to the general procedure at 60 °C for 24 h, as described above in 88% yield. ¹H NMR (400 MHz, CDCl₃) δ 5.81 (s, 1H), 4.75 (t, *J* = 3.7 Hz, 1H), 4.19 – 4.06 (m, 3H), 3.86 – 3.77 (m, 1H), 2.22 – 2.13 (m, 1H), 1.85 – 1.71 (m, 1H), 1.51 (s, 3H), 1.42 (s, 3H), 1.33 (d, *J* = 15.3 Hz, 7H). ¹³C NMR (151 MHz, CDCl₃) δ 112.7, 110.2, 103.5, 80.7, 80.7, 75.2, 65.6, 43.9, 26.8, 26.7, 26.5, 25.4. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₂H₂₁O₅ 245.1, found 245.2.

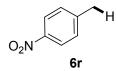

(5R,8R,9S,10S,13S,14S)-10,13-dimethyltetradecahydro-1H-

cyclopenta[a]phenanthren-17(2H)-one (60). The title compound was prepared

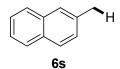
according to the general procedure (1.5 equiv of CaH₂ was used) for 8 h, as described above in 86% yield. ¹H NMR (400 MHz, CDCl₃) δ 2.49 – 2.36 (m, 1H), 2.12 – 1.98 (m, 1H), 1.99 – 1.86 (m, 1H), 1.83 – 1.72 (m, 2H), 1.71 – 1.62 (m, 3H), 1.56 – 1.44 (m, 3H), 1.44 – 1.37 (m, 1H), 1.14 – 1.16 (m, 9H), 1.10 – 1.00 (m, 1H), 0.99 – 0.87 (m, 2H), 0.87 – 0.83 (m, 3H), 0.82 – 0.77 (m, 3H), 0.76 – 0.67 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 221.5, 54.8, 51.6, 47.8, 47.0, 38.6, 36.4, 35.8, 35.1, 31.6, 31.0, 29.0, 28.7, 26.7, 22.1, 21.7, 20.0, 13.8, 12.2. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₉H₃₁O 275.2, found 275.2.

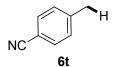


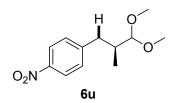
2-(4-Methoxyphenyl)-5,5-dimethyl-1,3-dioxane (6p). The title compound was prepared according to the general procedure (3.0 equiv of CaH₂ and 10 mol % of PdCl₂ was used) at 60 °C for 24 h, as described above in 79% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, *J* = 8.4 Hz, 2H), 6.89 (d, *J* = 8.4 Hz, 2H), 5.35 (s, 1H), 3.80 (s, 3H), 3.70 (dd, *J* = 46.8, 10.8 Hz, 4H), 1.29 (s, 3H), 0.79 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 160.1, 131.2, 127.5, 113.8, 101.8, 77.8, 55.4, 30.3, 23.2, 22.0. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₃H₁₉O₃ 223.1, found 223.1.

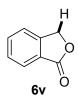


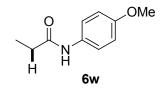
2-Ethoxy-1-methoxy-4-methylbenzene (6q). The title compound was prepared according to the general procedure (1.5 equiv of CaH₂ was used) at 60 °C for 3.5 h, as described above in 88% yield. ¹H NMR (400 MHz, CDCl₃) δ 6.77 (d, *J* = 7.9 Hz, 1H), 6.73 – 6.67 (m, 2H), 4.08 (q, *J* = 7.0 Hz, 2H), 3.84 (s, 3H), 2.29 (s, 3H), 1.46 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 148.2, 147.3, 130.5, 120.9, 114.1, 111.7, 64.3, 56.2, 21.1, 15.0. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₀H₁₅O₂ 167.1, found

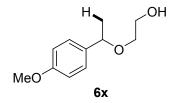

167.1.

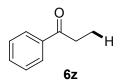

2-Ethoxy-1-methoxy-4-methylbenzene (6q). The title compound was prepared according to the general procedure (1.5 equiv of CaH_2 was used) at 60 °C for 40 min, as described above in 71% yield.


1-Methyl-4-nitrobenzene (6r). The title compound was prepared according to the general procedure at 60 °C for 24 h, as described above in 57% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 7.7 Hz, 2H), 7.31 (d, *J* = 7.7 Hz, 2H), 2.46 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 146.3, δ 146.1, 129.9, 123.7, 21.7. LR-MS (ESI): m/z [M+H]⁺ calcd for C₇H₈NO₂ 138.1, found 138.1.

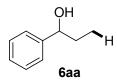

2-Methylnaphthalene (6s). The title compound was prepared according to the general procedure (2.0 equiv of NaH at rt instead of 1.0 equiv of CaH₂ at 60 °C was used) for 4 h, as described above in 81% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 7.8 Hz, 1H), 7.90 – 7.88 (m, 2H), 7.77 (s, 1H), 7.63 – 7.53 (m, 2H), 7.48 (d, J = 8.3 Hz, 1H), 2.68 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 135.9, 133.8, 131.8, 128.2, 127.8, 127.7, 127.4, 127.0, 126.0, 125.1, 21.8. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₁H₁₁ 143.1, found 143.1.


4-Methylbenzonitrile (6t). The title compound was prepared according to the general procedure at 60 °C for 1 h, as described above in 94% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 8.4 Hz, 2H), 7.27 (d, *J* = 8.4 Hz, 2H), 2.42 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 143.8, 132.2, 129.9, 119.2, 109.4, 22.0. LR-MS (ESI): m/z [M+H]⁺ calcd for C₈H₈N 118.1, found 118.1.

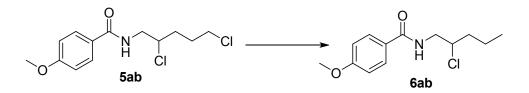

(*S*)-1-(3,3-dimethoxy-2-methylpropyl)-4-nitrobenzene (6u). The title compound was prepared according to the general procedure at 60 °C for 5 h, as described above in 54% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, *J* = 8.4 Hz, 2H), 7.32 (d, *J* = 8.4 Hz, 2H), 4.06 (d, *J* = 5.9 Hz, 1H), 3.40 (s, 3H), 3.38 (s, 3H), 3.00 (dd, *J* = 13.4, 4.2 Hz, 1H), 2.46 (dd, *J* = 13.2, 9.7 Hz, 1H), 2.15 – 1.98 (m, 1H), 0.85 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 149.0, 146.6, 130.1, 123.6, 108.2, 54.9, 54.3, 38.1, 38.0, 14.3. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₂H₁₈NO₄ 240.1, found 240.1.


Isobenzofuran-1(3*H***)-one (6v)**. The title compound was prepared according to the general procedure at 60 °C for 3 h, as described above in 67% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 7.6 Hz, 1H), 7.69 (t, *J* = 7.5 Hz, 1H), 7.57 – 7.47 (m, 2H), 5.33 (s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 171.2, 146.6, 134.1, 129.1, 125.8, 122.2, 69.8. LR-MS (ESI): m/z [M+H]⁺ calcd for C₈H₇O₂ 135.0, found 135.0.

N-(4-Methoxyphenyl)propionamide (6w). The title compound was prepared according to the general procedure (2.0 equiv of CaH₂ was used) at 60 °C for 4 h, as described above in 93% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, *J* = 8.8 Hz, 2H), 7.28 (s, 1H), 6.84 (d, *J* = 8.8 Hz, 2H), 3.78 (s, 3H), 2.36 (q, *J* = 7.5 Hz, 2H), 1.23 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 172.2, 156.4, 131.3, 121.9, 114.2, 55.6, 30.6, 9.9. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₀H₁₄NO₂ 180.1, found 180.1.



2-(1-(4-Methoxyphenyl)ethoxy)ethan-1-ol (6x). The title compound was prepared according to the general procedure (1.5 equiv of CaH₂ was used) at 60 °C for 6 h, as described above in 83% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.24 (d, *J* = 8.4 Hz, 2H), 6.89 (d, *J* = 8.4 Hz, 2H), 4.41 (d, *J* = 6.4 Hz, 1H), 3.81 (s, 3H), 3.74 – 3.64 (m, 2H), 3.46 – 3.35 (m, 2H), 1.45 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 159.2, 135.6, 127.5, 114.0, 78.1, 69.6, 62.1, 55.4, 23.9. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₁H₁₇O₃ 197.1, found 197.1.



Propiophenone (6z). The title compound was prepared according to the general procedure at 60 °C for 22 h, as described above in 67% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 7.6 Hz, 2H), 7.55 (t, *J* = 7.1 Hz, 1H), 7.46 (t, *J* = 7.4 Hz, 2H), 3.01 (q, *J* = 7.1 Hz, 2H), 1.23 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 200.9, 137.0, 133.0, 128.7, 128.1, 31.9, 8.3. LR-MS (ESI): m/z [M+H]⁺ calcd for

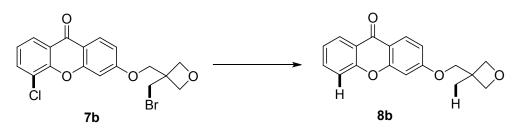
C₉H₁₁O 135.1, found 135.1.

1-Phenylpropan-1-ol (6aa). The title compound was prepared according to the general procedure (1.5 equiv of CaH₂ was used) at 60 °C for 24 h, as described above in 91% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, *J* = 3.9 Hz, 4H), 7.31 – 7.27 (m, 1H), 4.69 – 4.54 (m, 1H), 1.85 – 1.70 (m, 2H), 0.92 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.7, 128.5, 127.6, 126.1, 76.1, 32.0, 10.3. LR-MS (ESI): m/z [M+H]⁺ calcd for C₉H₁₃O 137.1, found 137.1.

N-(2-Chloropentyl)-4-methoxybenzamide (6ab). The title compound was prepared according to the general procedure (2.0 equiv of CaH₂ and 10 mol % of PdCl₂ was used) at 60 °C for 24 h, as described above in 45% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.5 Hz, 2H), 6.90 (d, *J* = 8.5 Hz, 2H), 4.72 – 4.63 (m, 1H), 4.15 – 4.02 (m, 1H), 3.84 (s, 3H), 3.69 – 3.56 (m, 1H), 1.77 – 1.65 (m, 1H), 1.63 – 1.35 (m, 3H), 0.98 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 163.9, 162.0, 129.9, 120.8, 113.7, 79.9, 60.1, 55.4, 37.7, 18.6, 14.1. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₃H₁₉ClNO₂ 256.1104, found 256.1106.

7. Complete or selective hydrodehalogenation by applying DMA or

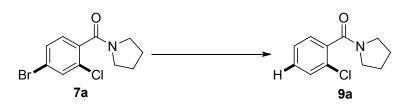
THF as solvent respectively


7.1. Complete hydrodehalogenation by using DMA as solvent

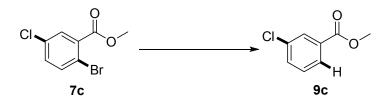
A mixture of $PdCl_2$ (8.8 mg, 0.05 mmol, 10 mol %) and calcium hydride (42 mg, 1.0 mmol, 2 equiv) in DMA (0.5 mL) was stirred for 5 min under N₂ before 7 (0.5 mmol)

in DMA (0.5 mL) was added through syringe, and then the reaction was stirred at 60 $^{\circ}$ C for the specified time. After the reaction was completed monitored with TLC, a saturated NH₄Cl aqueous solution was added to quench the reaction and the resulting mixture was extracted with EtOAc. The combined organic layers were washed with water and brine and dried over sodium sulfate and concentrated under reduced pressure. The crude product was purified by column chromatography to give desired product **8**.

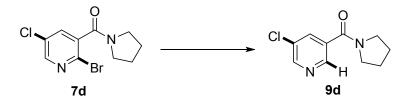
Phenyl(pyrrolidin-1-yl)methanone (8a, the same compound as 2a). The title compound was prepared according to the general procedure at 60 °C for 3 h, as described above in 88% yield.

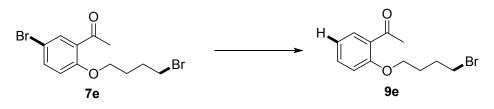


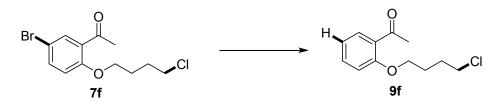
3-((3-Methyloxetan-3-yl)methoxy)-9H-xanthen-9-one (8b). The title compound was prepared according to the general procedure at 60 °C for 10 h, as described above in 90% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, *J* = 7.7 Hz, 1H), 8.27 (d, *J* = 8.7 Hz, 1H), 7.71 (t, *J* = 7.4 Hz, 1H), 7.47 (d, *J* = 8.2 Hz, 1H), 7.38 (t, *J* = 7.3 Hz, 1H), 6.99 (d, *J* = 8.7 Hz, 1H), 6.94 (s, 1H), 4.72 – 4.61 (m, 2H), 4.57 – 4.47 (m, 2H), 4.17 (s, 2H), 1.48 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 176.4, 164.5, 158.1, 156.3, 134.5, 128.5, 126.8, 124.0, 122.1, 117.8, 116.2, 113.6, 101.0, 79.7, 73.4, 39.7, 21.3. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₈H₁₇O₄ 297.1127, found 297.1132.


7.2. Selective hydrodehalogenation by using THF as solvent

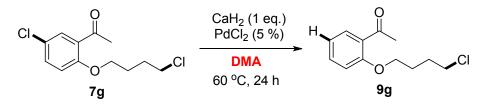
A mixture of PdCl₂ (4.4 mg, 0.025 mmol, 5 mol %) and calcium hydride (21 mg, 0.5


mmol, 1 equiv) in THF (0.5 mL) was stirred for 5 min under N₂ before 7 (0.5 mmol) in THF (0.5 mL) was added through syringe, and then the reaction was stirred at 60 °C for the specified time. After the reaction was completed monitored with TLC, a saturated NH₄Cl aqueous solution was added to quench the reaction and the resulting mixture was extracted with EtOAc. The combined organic layers were washed with water and brine and dried over sodium sulfate and concentrated under reduced pressure. The crude product was purified by column chromatography to give desired product 9.


(2-Chlorophenyl)(pyrrolidin-1-yl)methanone (9a). The title compound was prepared according to the general procedure at 60 °C for 7 h, as described above in 86% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.35 (m, 1H), 7.35 – 7.27 (m, 3H), 3.66 (t, J = 6.7 Hz, 2H), 3.26 – 3.10 (m, 2H), 2.0 – 1.81 (m, 4H). ¹³C NMR (151 MHz, CDCl₃) δ 166.9, 137.5, 130.2, 130.1, 129.8, 127.6, 127.3, 48.0, 45.6, 26.0, 24.7. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₁H₁₃ClNO 210.1, found 210.1.


Methyl 3-chlorobenzoate (9c). The title compound was prepared according to the general procedure at 60 °C for 17 h, as described above in 98% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (s, 1H), 7.92 (d, *J* = 7.6 Hz, 1H), 7.53 (d, *J* = 7.8 Hz, 1H), 7.38 (t, *J* = 7.7 Hz, 1H), 3.93 (s, 3H).¹³C NMR (151 MHz, CDCl₃) δ 162.0, 136.4, 129.3, 125.8, 120.4, 67.0. LR-MS (ESI): m/z [M+H]⁺ calcd for C₈H₈ClO₂ 171.0, found 171.0.

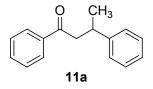
(5-Chloropyridin-3-yl)(pyrrolidin-1-yl)methanone (9d). The title compound was prepared according to the general procedure at 60 °C for 10 h, as described above in 96% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.62 (d, *J* = 10.9 Hz, 2H), 7.85 (s, 1H), 3.64 (t, *J* = 6.5 Hz, 2H), 3.45 (t, *J* = 6.1 Hz, 2H), 2.08 – 1.85 (m, 4H). ¹³C NMR (151 MHz, CDCl₃) δ 165.6, 149.9, 145.9, 134.9, 133.9, 132.2, 49.7, 46.6, 26.5, 24.5. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₀H₁₂ClN₂O 211.0638, found 211.0639.



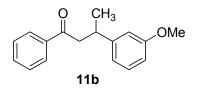
1-(2-(4-Bromobutoxy)phenyl)ethan-1-one (9e). The title compound was prepared according to the general procedure at 60 °C for 5 h, as described above in 82% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 7.5 Hz, 1H), 7.43 (t, J = 7.6 Hz, 1H), 6.98 (t, J = 7.4 Hz, 1H), 6.93 (d, J = 8.3 Hz, 1H), 4.09 (t, J = 4.9 Hz, 2H), 3.48 (t, J = 5.5 Hz, 2H), 2.61 (s, 3H), 2.13 – 1.92 (m, 4H). ¹³C NMR (151 MHz, CDCl₃) δ 199.9, 158.2, 133.7, 130.5, 128.5, 120.8, 112.3, 67.7, 44.7, 32.1, 29.5, 26.8. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₂H₁₆BrO₂ 271.0, found 271.0.

1-(2-(4-Chlorobutoxy)phenyl)ethan-1-one (9f). The title compound was prepared according to the general procedure at 60 °C for 24 h, as described above in 84% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 7.5 Hz, 1H), 7.44 (t, J = 7.6 Hz, 1H), 6.99 (t, J = 7.3 Hz, 1H), 6.94 (d, J = 8.3 Hz, 1H), 4.20 – 4.04 (m, 2H), 3.68 – 3.54 (m, 2H), 2.62 (s, 3H), 2.09 – 1.97 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 199.8, 158.2,

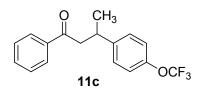
133.7, 130.5, 128.5, 120.7, 112.3, 67.5, 33.3, 32.1, 29.6, 27.9. HRMS (ESI): m/z $[M+H]^+$ calcd for $C_{12}H_{16}ClO_2$ 227.0839, found 227.0842.


1-(2-(4-Chlorobutoxy)phenyl)ethan-1-one (9g, the same compound as 9f). The title compound was prepared according to the general procedure in DMA at 60 °C for 24 h, as described above in 86% yield.

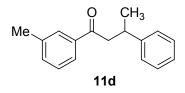
8. General procedure for the reduction of trihalomethyl groups


8.1. The complete dehalogenation of trihalomethyl groups by using DMA as solvent

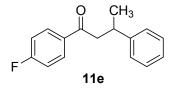
$$\begin{array}{c} \mathsf{R-CBr}_3 & \xrightarrow{\mathsf{CaH}_2 (3 \text{ equiv})} \\ \overset{\mathsf{PdCl}_2 (10 \%)}{\xrightarrow{\mathsf{DMA, rt}}} & \mathsf{R-CH}_3 \end{array}$$


A mixture of PdCl₂ (8.8 mg, 0.05 mmol, 10 mol %) and calcium hydride (63 mg, 1.5 mmol, 3 equiv) in DMA (1.0 mL) was stirred at room temperature under N₂ for 10 min until the mixture turned black. Compound **10** (0.5 mmol) in DMA (1.0 mL) was added through syringe, and the mixture was stirred at room temperature for specified time. After the reaction was completed monitored with TLC, a saturated NH₄Cl aqueous solution was added to quench the reaction and the resulting mixture was extracted with EtOAc. The combined organic layers were washed with water and brine and dried over sodium sulfate and concentrated under reduced pressure. The crude product was purified by column chromatography to give desired methyl prouct **11**.

1,3-Diphenylbutan-1-one (11a). The title compound was prepared according to the general procedure in 42% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.95 – 7.93 (m, 2H), 7.57 – 7.53 (m, 1H), 7.47 – 7.43 (m, 2H), 7.34 – 7.28 (m, 4H), 7.22 – 7.19 (m, 1H), 3.59 – 3.46 (m, 1H), 3.31 (dd, *J* = 16.5, 5.7 Hz, 1H), 3.20 (dd, *J* = 16.5, 8.3 Hz, 1H), 1.35 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 199.2, 146.7, 137.3, 133.1, 128.67, 128.65, 128.2, 127.0, 126.4, 47.1, 35.7, 22.0. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₆H₁₇O 225.1, found 225.1.



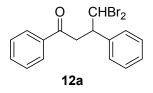
3-(3-Methoxyphenyl)-1-phenylbutan-1-one (11b). The title compound was prepared according to the general procedure in 43% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.93 (d, *J* = 7.6 Hz, 2H), 7.56 – 7.53 (m, 1H), 7.46 – 7.42 (m, 2H), 7.26 – 7.21 (m, 1H), 6.87 (d, *J* = 7.5 Hz, 1H), 6.82 (s, 1H), 6.76 – 6.74 (m, 1H), 3.80 (s, 3H), 3.51 – 3.46 (m, 1H), 3.30 (dd, *J* = 16.4, 5.5 Hz, 1H), 3.17 (dd, *J* = 16.5, 8.4 Hz, 1H), 1.33 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 199.2, 159.8, 148.5, 137.3, 133.1, 129.7, 128.7, 128.2, 119.4, 113.1, 111.4, 55.3, 47.1, 35.7, 21.9. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₇H₁₉O₂ 255.1, found 255.1.



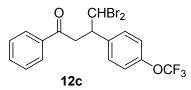
1-Phenyl-3-(4-(trifluoromethoxy)phenyl)butan-1-one (11c). The title compound was prepared according to the general procedure in 50% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.91 (d, *J* = 7.6 Hz, 2H), 7.55 (t, *J* = 7.2 Hz, 1H), 7.44 (t, *J* = 7.5 Hz, 2H), 7.29 (d, *J* = 8.3 Hz, 2H), 7.13 (d, *J* = 8.1 Hz, 2H), 3.60 – 3.48 (m, 1H), 3.28 (dd, *J* = 16.7, 6.2 Hz, 1H), 3.19 (dd, *J* = 16.7, 7.7 Hz, 1H), 1.34 (d, *J* = 6.9 Hz, 3H); ¹³C NMR

(101 MHz, CDCl₃): δ 198.8, 147.7 (d, J = 1.8 Hz), 145.4, 137.2, 133.2, 128.7, 128.3, 128.2, 121.2, 47.0, 35.0, 22.1. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₇H₁₆F₃O₂ 309.1102, found 309.1100.

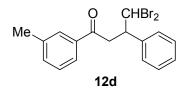
3-Phenyl-1-(m-tolyl)butan-1-one (11d). The title compound was prepared according to the general procedure in 54% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.75 – 7.73 (m, 2H), 7.38 – 7.27 (m, 6H), 7.23 – 7.19 (m, 1H), 3.55 – 3.48 (m, 1H), 3.30 (dd, *J* = 16.4, 5.6 Hz, 1H), 3.19 (dd, *J* = 16.5, 8.3 Hz, 1H), 2.41 (s, 3H), 1.35 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 199.4, 146.8, 138.5, 137.4, 133.8, 128.74, 128.65, 128.6, 127.0, 126.4, 125.4, 47.2, 35.7, 22.0, 21.5. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₇H₁₉O 239.1, found 239.1.



1-(4-Fluorophenyl)-3-phenylbutan-1-one (11e). The title compound was prepared according to the general procedure in 54% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.96 – 7.81 (m, 2H), 7.31 – 7.18 (m, 4H), 7.16 – 7.13 (m, 1H), 7.07 – 7.03 (m, 2H), 3.46 – 7.40 (m, 1H), 3.22 (dd, J = 16.4, 5.7 Hz, 1H), 3.10 (dd, J = 16.4, 8.1 Hz, 1H), 1.29 (d, J = 6.8 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 197.6, 165.8 (d, J = 254.5 Hz), 146.5, 133.8 (d, J = 2.7 Hz), 130.8 (d, J = 9.3 Hz), 128.7, 127.0, 126.5, 115.8 (d, J = 21.8 Hz), 47.1, 35.8, 22.0. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₆H₁₆FO 243.1, found 243.1.

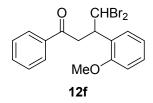

8.2. The mono-dehalogenation of trihalomethyl groups by using THF as solvent

$$R-CXY_{2} \xrightarrow[THF, 30 °C]{CaH_{2} (3 equiv)} R-CHY_{2}$$

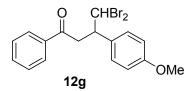

A mixture of PdCl₂ (13.3 mg, 0.075 mmol, 15 mol %) and calcium hydride (63 mg, 1.5 mmol, 3 equiv) in THF (1.0 mL) was stirred at room temperature under N₂ for 5 min until the mixture turned black. Compound **10** (0.5 mmol) in THF (0.5 mL) was added through syringe, and the mixture was stirred at 30 °C for specified time. After the reaction was completed monitored with TLC, a saturated NH₄Cl aqueous solution was added to quench the reaction and the resulting mixture was extracted with EtOAc. The combined organic layers were washed with water and brine and dried over sodium sulfate and concentrated under reduced pressure. The crude product was purified by column chromatography to give desired dihalomethyl prouct **12**.

4,4-Dibromo-1,3-diphenylbutan-1-one (**12a**). The title compound was prepared according to the general procedure at 30 °C for 5 h, as described above in 55% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.99 (d, J = 7.6 Hz, 2H), 7.59 (t, J = 7.3 Hz, 1H), 7.48 (t, J = 7.6 Hz, 2H), 7.39 – 7.30 (m, 5H), 6.05 (d, J = 4.0 Hz, 1H), 4.24 – 4.20 (m, 1H), 3.79 (d, J = 6.3 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 196.9, 138.9, 136.7, 133.6, 128.9, 128.8, 128.6, 128.2, 128.1, 51.8, 51.3, 41.0. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₆H₁₅Br₂O 382.9469, found 382.9471.

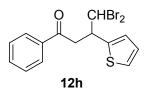
4,4-Dibromo-1-phenyl-3-(4-(trifluoromethoxy)phenyl)butan-1-one (**12c**). The title compound was prepared according to the general procedure at 30 °C for 5 h, as described above in 68% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.98 (d, *J* = 7.6 Hz, 2H), 7.60 (t, *J* = 7.3 Hz, 1H), 7.49 (t, *J* = 7.6 Hz, 2H), 7.43 (d, *J* = 8.4 Hz, 2H), 7.18 (d, *J* = 8.1 Hz, 2H), 6.03 (d, *J* = 3.7 Hz, 1H), 4.29 – 4.14 (m, 1H), 3.83 – 3.70 (m, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 196.6, 149.0, 137.4, 136.5, 133.8, 130.4, 128.9, 128.2, 120.9, 51.0, 50.5, 41.2. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₇H₁₄Br₂F₃O₂ 466.9292, found 466.9303.

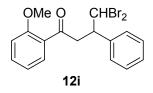


4,4-Dibromo-3-phenyl-1-(*m***-tolyl)butan-1-one (12d)**. The title compound was prepared according to the general procedure at 30 °C for 5 h, as described above in 57% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.80 – 7.78 (d, *J* = 6.9 Hz, 2H), 7.39 – 7.30 (m, 7H), 6.07 (d, *J* = 4.0 Hz, 1H), 4.24 – 4.20 (m, 1H), 3.79 – 3.77 (m, 2H), 2.42 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 197.1, 138.9, 138.6, 136.8, 134.3, 128.9, 128.7, 128.6, 128.1, 125.4, 51.9, 51.3, 41.1, 21.5. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₇H₁₇Br₂O 396.9626, found 396.9632.

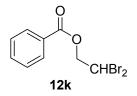


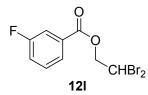
4,4-Dibromo-1-(4-fluorophenyl)-3-phenylbutan-1-one (**12e**). The title compound was prepared according to the general procedure at 30 °C for 5 h, as described above in 67% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.03 – 7.99 (m, 2H), 7.38 – 7.31 (m, 5H), 7.16 – 7.12 (m, 2H), 6.04 (d, *J* = 4.0 Hz, 1H), 4.22 – 4.18 (m, 1H), 3.75 (d, *J* = 5.8 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃): δ 195.3, 166.1 (d, *J* = 255.5 Hz), 138.8,


133.2 (d, J = 2.8 Hz), 130.9 (d, J = 9.3 Hz), 128.7 (d, J = 24.5Hz), 128.2, 116.0 (d, J = 21.9 Hz), 51.7, 51.3, 40.9. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₆H₁₄Br₂FO 400.9375, found 400.9378.

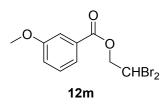

4,4-Dibromo-3-(2-methoxyphenyl)-1-phenylbutan-1-one (**12f**). The title compound was prepared according to the general procedure at 30 °C for 11 h, as described above in 74% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.00 (d, *J* = 7.6 Hz, 2H), 7.58 (t, *J* = 7.3 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 2H), 7.34 – 7.14 (m, 2H), 6.89 – 6.87 (m, 2H), 6.20 (d, *J* = 4.7 Hz, 1H), 4.64 – 4.55 (m, 1H), 3.99 – 3.91 (m, 1H), 3.89 (s, 3H), 3.83 – 3.77 (m, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 197.2, 157.2, 137.0, 133.4, 129.0, 128.9, 128.8, 128.2, 127.1, 120.6, 110.9, 55.7, 51.4, 46.3, 39.2. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₇H₁₇Br₂O₂ 412.9575, found 412.9579.

4,4-Dibromo-3-(4-methoxyphenyl)-1-phenylbutan-1-one (**12g**). The title compound was prepared according to the general procedure at 30 °C for 5 h, as described above in 65% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.98 (d, *J* = 7.6 Hz, 2H), 7.58 (t, *J* = 7.3 Hz, 1H), 7.47 (t, *J* = 7.6 Hz, 2H), 7.29 (d, *J* = 8.5 Hz, 2H), 6.86 (d, *J* = 8.5 Hz, 2H), 6.01 (d, *J* = 3.8 Hz, 1H), 4.22 – 4.07 (m, 1H), 3.78 (s, 3H), 3.77 – 3.69 (m, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 197.1, 159.3, 136.8, 133.5, 130.9, 130.0, 128.8, 128.2, 114.0, 55.3, 52.6, 50.6, 41.0. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₇H₁₇Br₂O₂ 412.9575, found 412.9580.

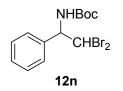

4,4-Dibromo-1-phenyl-3-(thiophen-2-yl)butan-1-one (**12h**). The title compound was prepared according to the general procedure at 30 °C for 19 h, as described above in 62% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.93 (d, *J* = 7.6 Hz, 2H), 7.53 (t, *J* = 7.3 Hz, 1H), 7.42 (t, *J* = 7.6 Hz, 2H), 7.22 – 7.14 (m, 1H), 7.02 – 7.00 (m, 1H), 6.94 – 6.86 (m, 1H), 6.03 (d, *J* = 3.1 Hz, 1H), 4.48 – 4.44 (m, 1H), 3.68 (d, *J* = 6.2 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 196.5, 141.4, 136.6, 133.7, 128.9, 128.3, 127.1, 126.8, 125.2, 51.3, 46.9, 42.8. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₄H₁₃Br₂OS 388.9033, found 388.9034.


4,4-Dibromo-1-(2-methoxyphenyl)-3-phenylbutan-1-one (**12i**). The title compound was prepared according to the general procedure at 30 °C for 4 h, as described above in 61% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.55 – 7.53 (m, 1H), 7.48 – 7.45 (m, 1H), 7.33 – 7.27 (m, 5H), 6.99 – 6.94 (m, 2H), 6.03 (d, *J* = 4.2 Hz, 1H), 4.17 – 4.09 (m, 1H), 3.94 (s, 3H), 3.89 – 3.72 (m, 2H); ¹³C NMR (151 MHz, CDCl₃): δ 199.3, 158.6, 139.2, 133.9, 130.5, 129.1, 128.4, 128.0, 127.9, 120.9, 111.7, 55.8, 52.0, 51.6, 46.4. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₇H₁₇Br₂O₂ 412.9575, found 412.9579.

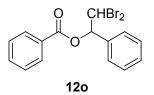
4,4-Dibromo-3-phenyl-1-(thiophen-3-yl)butan-1-one (12j). The title compound was prepared according to the general procedure at 30 °C for 12 h, as described above in 51% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.14 – 8.12 (m, 1H), 7.55 – 7.53 (m, 1H), 7.38 – 7.27 (m, 6H), 6.04 (d, *J* = 4.0 Hz, 1H), 4.23 – 4.14 (m, 1H), 3.77 – 3.58 (m, 2H); ¹³C NMR (151 MHz, CDCl₃): δ 191.2, 142.0, 138.8, 132.4, 128.9, 128.6, 128.2, 127.0, 126.7, 51.7, 51.2, 42.1. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₄H₁₃Br₂OS 388.9033, found 388.9035.



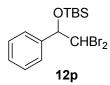
2,2-Dibromoethyl benzoate (12k). The title compound was prepared according to the general procedure at 30 °C for 14 h, as described above in 64% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.09 (d, *J* = 7.6 Hz, 2H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.47 (t, *J* = 7.6 Hz, 2H), 5.86 (t, *J* = 6.2 Hz, 1H), 4.80 (d, *J* = 6.3 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃): δ 165.6, 133.8, 130.0, 129.2, 128.7, 77.4, 77.2, 77.0, 69.6, 39.8. HRMS (ESI): m/z [M+H]⁺ calcd for C₉H₉Br₂O₂ 308.8949, found 308.8958.



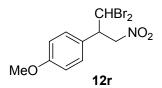
2,2-Dibromoethyl-3-fluorobenzoate (121). The title compound was prepared according to the general procedure at 30 °C for 2 h, as described above in 72% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 7.7 Hz, 1H), 7.76 (d, J = 9.0 Hz, 1H), 7.46 (dd, J = 13.6, 7.8 Hz, 1H), 7.35 – 7.28 (m, 1H), 5.85 (t, J = 6.2 Hz, 1H), 4.81 (d, J = 6.2 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 164.3 (d, J = 1.5 Hz), 162.5 (d, J = 247.6 Hz), 131.1 (d, J = 7.5 Hz), 130.2 (d, J = 7.5 Hz), 125.6 (d, J = 3.0 Hz), 120.7 (d, J = 21.1 Hz), 116.8 (d, J = 22.6 Hz), 69.7, 39.3. HRMS (ESI): m/z [M+H]⁺ calcd for


C₉H₈Br₂FO₂ 326.8855, found 326.8862.

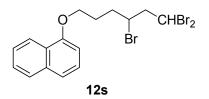
2,2-Dibromoethyl-3-methoxybenzoate (12m). The title compound was prepared according to the general procedure at 30 °C for 14 h, as described above in 69% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 7.6 Hz, 1H), 7.59 (s, 1H), 7.38 (t, J = 8.0 Hz, 1H), 7.15 (dd, J = 8.2, 1.7 Hz, 1H), 5.86 (t, J = 6.3 Hz, 1H), 4.80 (d, J = 6.3 Hz, 2H), 3.87 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 165.3, 159.6, 130.3, 129.6, 122.3, 120.0, 114.4, 69.5, 55.5, 39.6. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₀H₁₁Br₂O₃ 338.9054, found 338.9056.



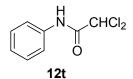
tert-Butyl (2,2-dibromo-1-phenylethyl)carbamate (12n). The title compound was prepared according to the general procedure at 30 °C for 4 h, as described above in 76% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.37 (m, 5H), 5.97 (m, 1H), 5.49 (m, 1H), 5.34 (br, 1H), 1.47 (s, 9H); ¹³C NMR (151 MHz, CDCl₃): δ 154.9, 137.3, 128.5, 127.2, 80.5, 61.5, 50.1, 28.3. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₃H₁₈Br₂NO₂ 379.9684, found 379.9689.

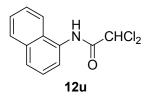

2,2-Dibromo-1-phenylethyl benzoate (12o). The title compound was prepared according to the general procedure at 30 °C for 1 h, as described above in 79% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 7.7 Hz, 2H), 7.51 (t, *J* = 7.3 Hz, 1H), 7.39

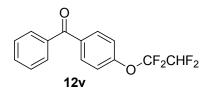
(dd, J = 9.1, 6.3 Hz, 4H), 7.31 – 7.23 (m, 3H), 6.29 (d, J = 4.9 Hz, 1H), 5.84 (d, J = 4.9 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 164.7, 135.6, 133.6, 130.0, 129.3, 129.2, 128.6, 128.5, 127.6, 78.7, 45.7. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₅H₁₃Br₂O₂ 384.9262, found 384.9265.

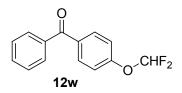


tert-Butyl(2,2-dibromo-1-phenylethoxy)dimethylsilane (12p). The title compound was prepared according to the general procedure at 30 °C for 1.5 h, as described above in 76% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.58 (m, 2H), 7.56 (d, J = 4.3 Hz, 3H), 5.85 (d, J = 5.2 Hz, 1H), 5.16 (d, J = 5.1 Hz, 1H), 1.12 (s, 9H), 0.37 (s, 3H), 0.08 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 145.5, 134.3, 133.8, 133.2, 85.7, 57.3, 31.4, 24.0, 1.1, 0.8. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₄H₂₃Br₂OSi 394.9864, found 394.9868.

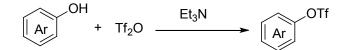

[(Dibromomethyl)sulfonyl]benzene (12q). The title compound was prepared according to the general procedure at 30 °C for 2 h, as described above in 61% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.06 (d, *J* = 7.7 Hz, 2H), 7.78 (t, *J* = 7.4 Hz, 1H), 7.64 (t, *J* = 7.7 Hz, 2H), 6.26 (s, 1H); ¹³C NMR (151 MHz, CDCl₃): δ 135.5, 132.3, 131.3, 129.3, 50.6. LR-MS (ESI): m/z [M+H]⁺ calcd for C₇H₇Br₂O₂S 314.9, found 314.9.

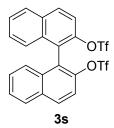

1-(1,1-Dibromo-3-nitropropan-2-yl)-4-methoxybenzene (12r). The title compound was prepared according to the general procedure at 30 °C for 5 h, as described above in 49% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.26 (d, J = 8.4 Hz, 2H), 6.90 (d, J = 8.5 Hz, 2H), 5.83 (d, J = 4.4 Hz, 1H), 5.14 (dd, J = 13.5, 4.9 Hz, 1H), 4.97 (dd, J = 13.4, 9.6 Hz, 1H), 4.24 (dt, J = 9.2, 4.5 Hz, 1H), 3.81 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 160.1, 129.5, 126.5, 114.4, 76.7, 55.3, 53.1, 46.4. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₀H₁₂Br₂NO₃ 353.9163, found 353.9164.


1-[(4,6,6-Tribromohexyl)oxy]naphthalene (12s). The title compound was prepared according to the general procedure at 30 °C for 2 h, as described above in 58% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.25 (t, *J* = 2.2 Hz, 1H), 7.81 (t, *J* = 2.2 Hz, 1H), 7.51–7.48 (m, 2H), 7.44 (d, *J* = 8.2 Hz, 1H), 7.37 (t, *J* = 7.9 Hz, 1H), 6.80 (d, *J* = 7.4 Hz, 1H), 5.93 (dd, *J* = 9.6, 3.8 Hz, 1H), 4.29 – 4.25 (m, 1H), 4.19 (d, *J* = 4.8 Hz, 2H), 2.95 – 2.81 (m, 2H), 2.25 (m, 2H), 2.19 – 2.07 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 154.5, 134.5, 127.5, 126.4, 125.8, 125.6, 125.2, 122.0, 120.4, 104.6, 67.0, 66.9, 51.6, 36.6, 36.0, 27.5. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₆H₁₈Br₃O 464.8887, found 464.8889.

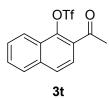

2,2-Dichloro-*N***-phenylacetamide (12t)**. The title compound was prepared according to the general procedure at 30 °C for 1 h, as described above in 88% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.35 (s, 1H), 7.56 (d, *J* = 7.5 Hz, 2H), 7.37 (t, *J* = 7.2 Hz, 2H), 7.20 (t, *J* = 7.1 Hz, 1H), 6.10 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 162.0, 136.4, 129.3, 125.8, 120.4, 67.0. LR-MS (ESI): m/z [M+H]⁺ calcd for C₈H₈Cl₂NO 204.0, found 204.1.

2,2-Dichloro-*N***-(naphthalen-1-yl)acetamide** (12u). The title compound was prepared according to the general procedure at 30 °C for 1 h, as described above in 90% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.58 (s, 1H), 7.90-7.85 (m, 3H), 7.78 (d, *J* = 8.1 Hz, 1H), 7.62 – 7.45 (m, 3H), 6.17 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 162.6, 134.1, 130.5, 128.9, 127.3, 127.1, 126.9, 126.4, 125.6, 121.2, 120.2, 67.1. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₂H₁₀Cl₂NO 254.0, found 254.0.

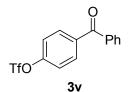

Phenyl[4-(1,1,2,2-tetrafluoroethoxy)phenyl]methanone (12v). The title compound was prepared according to the general procedure at 30 °C for 18 h, as described above in 57% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.6 Hz, 2H), 7.80 (d, *J* = 7.3 Hz, 2H), 7.61 (t, *J* = 7.3 Hz, 1H), 7.50 (t, *J* = 7.6 Hz, 2H), 7.33 (d, *J* = 8.4 Hz, 2H), 5.95 (t, *J* = 53.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 195.3, 152.0, 137.2, 135.6, 132.7, 131.9, 130.0, 128.4, 121.0. HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₅H₁₀F₄NaO₂ 321.0515, found 321.0522.

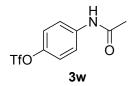

[4-(Difluoromethoxy)phenyl](phenyl)methanone $(12w)^{[1]}$. The title compound was prepared according to the general procedure at 30 °C for 18 h, as described above in 68% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 8.1 Hz, 2H), 7.77 (d, J = 7.3 Hz, 2H), 7.59 (t, J = 7.1 Hz, 1H), 7.48 (t, J = 7.3 Hz, 2H), 7.20 (d, J = 8.1 Hz, 2H), 6.63 (t, J = 73.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 195.3, 154.3 (t, J = 6.1 Hz), 137.4, 134.5, 132.6, 132.2, 129.9, 128.4, 118.6, 115.4 (t, J = 524.5 Hz). LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₄H₁₀F₂NaO₂ 271.1, found 271.1.

9. The procedures for the preparation of some substrates


Procedure 1: the preparation of aryl triflates (for: **3s-x**)

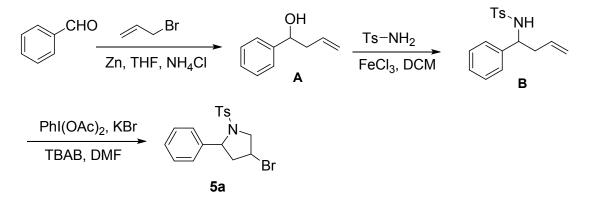
To a solution of phenol (2.0 mmol, 1.0 equiv), DMAP (3.0 mmol, 1.5 equiv) and Et_3N (2.4 mmol, 1.2 equiv) in CH_2Cl_2 (8 mL) at 0 °C was added Tf_2O (2.4 mmol, 1.2 equiv) dropwise within 15 min. Then the reaction was raised to room temperature and stirred until completion of the reaction monitored by TLC. Water was added to quench the reaction and the resulting mixture was extracted with CH_2Cl_2 for three times. The combined organic layers were washed with water and brine and dried over sodium sulfate and concentrated under reduced pressure. The crude product was purified by column chromatography to give desired product **3s-x**.


[1,1'-Binaphthalene]-2,2'-diyl bis(trifluoromethanesulfonate) (3s). The title compound was prepared according to the general procedure in 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, *J* = 9.1 Hz, 2H), 8.01 (d, *J* = 8.2 Hz, 2H), 7.60 (dd, *J* = 15.2, 8.3 Hz, 4H), 7.41 (t, *J* = 7.6 Hz, 2H), 7.26 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 145.3, 133.1, 132.3, 132.0, 128.3, 127.9, 127.3, 126.7, 123.4, 118.1 (q, *J* = 215.1 Hz), 114.9. LR-MS (ESI): m/z [M+H]⁺ calcd for C₂₂H₁₃F₆O₆S₂ 551.0, found 551.1.


2-AcetyInaphthalen-1-yl trifluoromethanesulfonate (3t). The title compound was prepared according to the general procedure in 91% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, *J* = 7.7 Hz, 1H), 7.95 (d, *J* = 8.4 Hz, 2H), 7.70 (m, 3H), 2.73 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 198.3, 142.0, 136.0, 130.0, 128.9, 128.6, 128.5, 127.9, 126.6, 124.4, 122.3, 118.5 (q, *J* = 215.1 Hz), 29.7. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₃H₁₀F₃O₄S 319.0, found 319.0.

2-Methylquinolin-8-yl trifluoromethanesulfonate (3u). The title compound was prepared according to the general procedure in 87% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, *J* = 8.5 Hz, 1H), 7.80 (d, *J* = 8.0 Hz, 1H), 7.57 (d, *J* = 7.5 Hz, 1H), 7.48 (t, *J* = 7.9 Hz, 1H), 7.39 (d, *J* = 8.5 Hz, 1H), 2.79 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.8, 145.6, 140.4, 135.7, 128.0, 127.8, 124.9, 123.5, 120.9, 118.9 (q, *J* = 214.1 Hz), 25.5. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₁H₉F₃NO₃S 292.0, found 292.1.

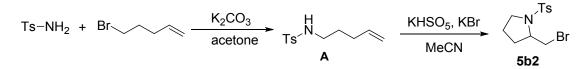
4-Benzoylphenyl trifluoromethanesulfonate (3v). The title compound was prepared according to the general procedure in 89% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 8.6 Hz, 2H), 7.80 (d, *J* = 7.6 Hz, 2H), 7.64 (t, *J* = 7.4 Hz, 1H), 7.52 (t, *J* = 7.7 Hz, 2H), 7.41 (d, *J* = 8.7 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 194.8, 151.9, 137.6, 136.7, 133.0, 132.1, 130.0, 128.5, 121.4, 117.6 (t, *J* = 215.1 Hz). LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₄H₁₀F₃O₄S 331.0, found 331.0.



4-Acetamidophenyl trifluoromethanesulfonate (3w). The title compound was prepared according to the general procedure in 83% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, *J* = 8.8 Hz, 2H), 7.33 (s, 1H), 7.22 (d, *J* = 8.9 Hz, 2H), 2.20 (s, 3H). LR-MS (ESI): m/z [M+H]⁺ calcd for C₉H₉F₃NO₄S 284.0, found 284.1.

2-Nitrophenyl trifluoromethanesulfonate (3x). The title compound was prepared according to the general procedure in 60% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, *J* = 7.8 Hz, 1H), 7.77 (t, *J* = 7.5 Hz, 1H), 7.60 (t, *J* = 7.8 Hz, 1H), 7.48 (d, *J* = 8.2 Hz, 1H). LR-MS (ESI): m/z [M+H]⁺ calcd for C₇H₅F₃NO₅S 272.0, found 272.0.

Procedure 2 (for: 5a)

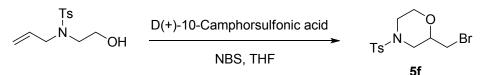

To a suspension of zinc (1.3 g, 20 mmol, 2.0 equiv) in THF (10 mL) at 0 °C was added a solution of allyl bromide (1.2 g, 10 mmol, 1.0 equiv) in THF (80 mL) dropwise. The resulting suspension was stirred for 0.5 h, followed by the addition of a solution of benzaldehyde (1.2 g, 10 mmol, 1.0 equiv) in THF (10 mL) slowly. The reaction mixture was stirred for another 1.5 h, and an aqueous ammonium chloride solution (saturated, 100 mL) was added dropwise. The mixture was extracted with DCM for three times. The organic layers were combined and washed with brine, dried

over MgSO₄, filtered and the solvent removed under reduced pressure to give the title compound **A** (1.02 g, 70%) as a colourless oil, which was pure enough to be used in the next step without further purification.

To a stirred solution of **A** (740 mg, 5 mmol , 1.0 equiv) in anhydrous DCM (50 mL) under N₂ was added *p*-toluenesulfonamide (1.1 g, 6.5 mmol, 1.3 equiv) and FeCl₃ (162 mg, 1.0 mmol, 0.2 equiv) successively at room temperature. After stirred at room temperature for 1 h, the reaction was quenched by addition of H₂O and then extracted with DCM. The combined organic layer was washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel to afford the corresponding product **B** (902 mg, 60%).

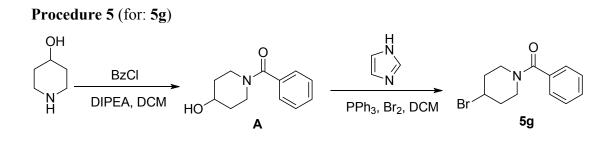
A solution of **B** (1.5 g, 5 mmol) in anhydrous DMF (20 mL) was treated with PhI(OAc)₂ (2.42 g, 7.5 mmol, 1.5 equiv), TBAB (805 mg, 2.5 mmol, 0.5 equi) and KBr (2.38 g, 20 mmol, 4.0 equiv). The reaction mixture was stirred at room temperature under N₂ for 5 h, and then quenched with saturated solution of Na₂S₂O₃. The mixture was extracted with DCM for three times, dried over anhydrous Na₂SO₄, and the crude product was purified by flash column chromatography to provide the corresponding product **5a** (1.48 g, 78%). ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 7.2 Hz, 2H), 7.35-7.25 (m, 4H), 7.28-7.26 (m, 1H), 7.26 – 7.21 (m, 2H), 4.74 (t, *J* = 7.6 Hz, 1H), 4.21-4.13 (m, 1H), 3.88 – 3.78 (m, 1H), 3.64 (t, *J* = 10.2 Hz, 1H), 292-2.82 (m, 1H), 2.42 (s, 3H), 2.27-2.16 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 143.9, 141.3, 135.4, 129.9, 128.7, 127.8, 127.5, 126.6, 63.3, 57.4, 46.6, 40.3, 21.7. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₇H₁₉BrNO₂S 380.0, found 380.0.

Procedure 3 (for: 5b1-5b3)



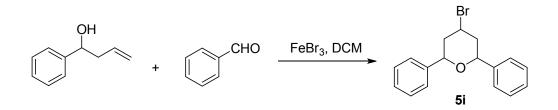
 $T_{s}NH_{2}$ (1.71 g, 10 mmol) was dissolved in acetone (50 mL), followed by the addition of $K_{2}CO_{3}$ (2.76 g, 20 mmol, 2.0 equiv) and 5-bromopent-1-ene (1.63 g, 11 mmol, 1.1

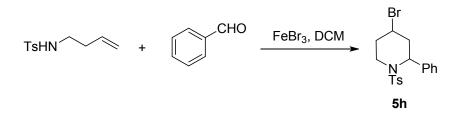
equiv) to the solution. The reaction mixture was refluxed for 6 h. The resulting mixture was quenched with water and extracted with EtOAc for three times. The combined organic layers were washed with water and brine and dried over sodium sulfate, and concentrated under reduced pressure. The crude product was purified by column chromatography to give desired product A (2.17 g, 91%).


A solution of **A** (1.20 g, 5 mmol), potassium monopersulfate triple salt (2.02 g, 12 mmol, 1.2 equiv) and KBr (2.56 g, 12 mmol, 1.2 equiv) in MeCN (25 mL) was stirred at room temperature for 7 h. The resulting mixture was quenched with NaHCO₃ (aq) and extracted with EtOAc for three times. The combined organic layers were washed with water and brine and dried over sodium sulfate and concentrated under reduced pressure. The crude product was purified by column chromatography to give desired product **5b2** (1.29 g, 81%). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 7.8 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 3.85-3.73 (m, 2H), 3.51-3.43(m, 1H), 3.41-3.31 (m, 1H), 3.20-3.12 (m, 1H), 2.44 (s, 3H), 1.99 – 1.90 (m, 1H), 1.89-1.80 (m, 1H), 1.79 – 1.70 (m, 1H), 1.57-1.52 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 143.9, 134.1, 130.0, 127.7, 60.5, 49.9, 36.2, 30.4, 23.9, 21.7. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₂H₁₇BrNO₂S 318.0, found 318.0.

Procedure 4 (for: 5f)

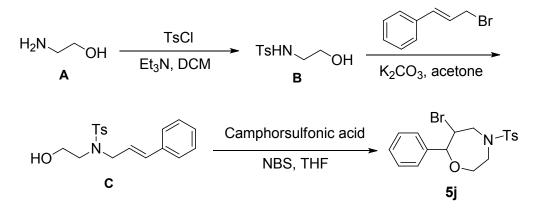
To a solution of *N*-allyl-N-(2-hydroxyethyl)-4-methylbenzenesulfonamide (892 mg, 3.5 mmol) and D(+)-10-Camphorsulfonic acid (81 mg, 0.35 mmol, 0.1 equiv) in THF (10 mL), NBS (685 mg, 3.85 mmol, 1.1 equiv) was added by small portions at 0°C. Then the reaction mixture was stirred at 0°C for 5 h. And the resulting mixture was quenched with NaHCO₃ (aq) and extracted with EtOAc, the combined organic layers were washed with water and brine and dried over sodium sulfate and concentrated under reduced pressure. The crude product was purified by column chromatography to give the desired product **5f** (931 mg, 93%). ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d,


J = 8.0 Hz, 2H), 7.35 (d, J = 7.9 Hz, 2H), 4.00-3.95 (m, 1H), 3.80 – 3.66 (m, 3H), 3.53-3.46 (m, 1H), 3.38-3.26 (m, 2H), 2.48 – 2.40 (m, 4H), 2.27-2.17 (m 1H). ¹³C NMR (151 MHz, CDCl₃) δ 144.5, 132.4, 130.2, 128.2, 74.4, 66.4, 49.2, 45.6, 31.7, 21.9. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₂H₁₇BrNO₃S 334.0, found 334.1.


BzCl (564 mg, 4 mmol, 1.0 equiv) was added slowly to a mixture of 4hydroxypiperidine (606 mg, 6 mmol, 1.5 equiv), DIPEA (1.29 g, 10 mmol, 2.5 equiv) in DCM (8 mL) at 0 °C. The reaction mixture was warmed to room temperature. After stirred for 2 h, the mixture was added water and extracted with DCM for three times, the combined organic layers were washed with brine and dried over anhydrous Na₂SO₄, and the crude product was purified by flash column chromatography to provide the corresponding product **A** (780 mg, 95%).

A (451 mg, 2.2 mmol) in DCM (10 mL) was treated with imidazole (150 mg, 2.2 mmol, 1.0 equiv), PPh₃ (577 mg, 2.2 mmol, 1.0 equiv) and Br₂ (352 mg, 2.2 mmol, 1.0 equiv) at rt. The reaction mixture was stirred overnight at room temperature. The resulting brown suspension was added DCM (10 mL) and washed with Na₂S₂O₃ (saturated) and brine. The organic phase was dried over Na₂SO₄ and filtered, concentrated under reduced pressure, and the residue was purified by flash chromatography to afford the corresponding product **5g** (340 mg, 58%). ¹H NMR (400 MHz, CDCl₃) δ 7.4-7.36 (m, 5H), 4.49 – 4.38 (m, 1H), 4.04 – 3.31 (m, 4H), 2.29-1.84 (dd, *J* = 79.6, 26.4 Hz, 5H). ¹³C NMR (151 MHz, CDCl₃) δ 170.6, 135.8, 129.9, 128.7, 127.0, 49.0, 46.0, 40.4, 36.3, 35.4. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₂H₁₅BrNO 268.0, found 268.1.

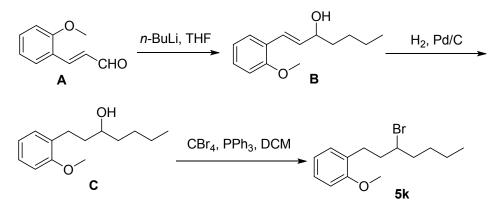
Procedure 6 (for: **5i**, **5h**, **5y**)



To a solution of 1-phenylbut-3-en-1-ol (740 mg, 5 mmol) and PhCHO (530 mg, 5 mmol, 1.0 equiv) in DCM (25 mL) at 0 °C was added FeBr₃ (1.48 g, 5 mmol, 1.0 equiv). The reaction mixture was stirred at 0 °C for 10 min. Water was added to quench the reaction and stirred at 0 °C for another 5 min. The mixture was filtered and the filtrate was extracted with DCM for three times. The combined organic layers were washed with water and brine and dried over sodium sulfate and concentrated under reduced pressure. The crude product was purified by column chromatography to give the desired product **5i** (630 mg, 40%). ¹H NMR (400 MHz, CDCl₃) δ 7.46–7.40 (m, 4H), 7.40–7.33 (m, 4H), 7.33–7.27 (m, 2H), 4.63-4.54 (m, 2H), 4.53-4.42 (m, 1H), 2.61-2.53 (m, 2H), 2.13 (q, *J* = 12.1 Hz, 2H). ¹³C NMR (151 MHz, cdcl₃) δ 141.4, 128.6, 127.9, 126.0, 79.9, 46.3, 45.3. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₇H₁₈BrO 317.1, found 317.1.

4-Bromo-2-phenyl-1-tosylpiperidine (5h). The title compound was prepared according to procedure 6 as described above in 62% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 8.1 Hz, 2H), 7.37 – 7.28 (m, 6H), 7.26-7.21 (m, 1H), 5.38-5.30 (m, 1H), 4.08 – 3.96 (m, 1H), 3.96.3.85 (m, 1H), 3.08 – 2.98 (m, 1H), 2.89-2.78 (m, 1H), 2.44 (s, 3H), 2.11 – 1.96 (m, 2H), 1.79 – 1.70 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 143.7, 138.0, 137.3, 130.0, 129.0, 127.5, 127.0, 126.6, 56.8, 43.8, 42.3, 38.6, 36.0, 21.6. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₈H₂₁BrNO₂S 394.0, found 394.1.

Procedure 7 (for: 5j)

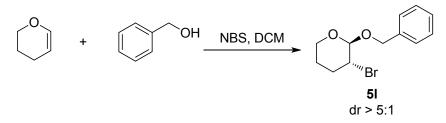

To a solution of A (610 mg, 10 mmol, 1.0 equiv) in 50 mL of CH_2Cl_2 was added Et_3N (3.03 g, 30 mmol, 3.0 equiv) and TsCl (2.28 g, 12 mmol, 1.2 equiv), and the reaction was stirred at 0 °C for 0.5 h. The resulting solution was warmed slowly to room temperature and stirred for another 16 h. The product was washed with water and extracted with DCM for three times. the combined organic layers were dried over Na_2SO_4 , filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography to give the desired product **B**.

N-(2-Hydroxyethyl)-4-methylbenzenesulfonamide **B** (1.08 g, 5 mmol, 1.0 equiv) and K_2CO_3 (6.9 g, 50 mmol, 10.0 equiv) was dissolved in 50 mL of acetone. Cinnamyl bromide (1.28 g, 6.5 mmol, 1.3 equiv) was then added via syringe, and the resulting mixture was stirred at room temperature for 16 h and filtered, the filtrate was then removed in vacuo, and the residue was dissolved in CH_2Cl_2 and washed with water; the organic layer was dried over Na_2SO_4 , filtered, and concentrated in vacuo. The residue was purified by column chromatography to give the desired product **C**.

C (662 mg, 2 mmol, 1.0 equiv) was dissolved in 20 mL THF at 0 °C. (\pm)-CSA (46.4 mg, 0.2 mmol, 0.1 equiv) was added, followed by NBS (392 mg, 2.2 mmol, 1.1 equiv). The mixture was then stirred at 0 °C for 12 h. The reaction was warmed slowly to room temperature and was stirred for additional 5 h. The reaction was quenched by adding 5 mL of saturated NaHCO₃ solution to the reaction mixture. The product was then extracted with EtOAc for three times, and the combined organic layers were dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by column chromatography to give desired product **5j** (589 mg, 72%). ¹H NMR (400 MHz, CDCl₃) δ 7.82-7.72 (m², 2H), 7.41 – 7.31 (m, 5H), 7.31-7.26 (m,

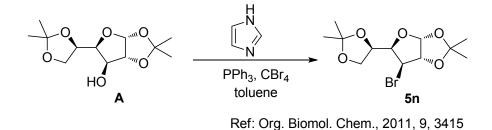
2H), 4.51 (d, J = 9.4 Hz, 1H), 4.22 – 4.09 (m, 2H), 4.07 – 3.95 (m, 1H), 3.86 – 3.70 (m, 2H), 3.60-3.38 (m, 2H), 2.46 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 143.9, 139.7, 136.1, 130.1, 128.7, 128.5, 127.4, 127.2, 88.8, 70.0, 53.5, 53.0, 50.4, 21.7. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₈H₂₁BrNO₃S 410.0, found 410.0.

Procedure 8 (for: 5k)

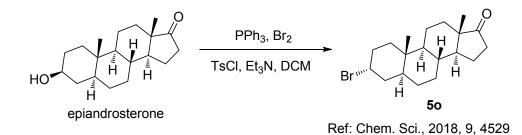

A solution of **A** (1.7 g, 10.4 mmol, 1.0 equiv) in THF (50 mL) under N₂ was cooled to -78 °C. *n*-BuLi (1.6 M, 6.5 mL, 10.4 mmol, 1.0 equiv) was added dropwise, and the resulting mixture was gradually warm to rt and stirred for 1 h at rt. The reaction was then cooled to 0 °C, and a saturated aqueous ammonium chloride (10 mL) was added to quench the reaction. The organic phase was separated, and the aqueous layer was extracted with diethyl ether (2 × 15 mL). The combined organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography to give the desired product **B** (1.65 g, 72%).

The above product **B** (1.1 g, 5 mmol) was dissolved in MeOH (25 mL), and Pd/C (110 mg, 10% W/W) was added as a catalyst. The reactor was loaded with H₂ balloon and stirred at rt for 5 h. After completion of the reaction monitored by TLC, the solution was filtered to remove Pd/C. The resulting filtrate was evaporated under reduced pressure to give the desired product **C**.

To a solution of the above product C (666 mg, 3 mmol) and PPh₃ (1.02 g, 3.9 mmol, 1.3 equiv) in DCM (6 mL) was added CBr₄ (1.30 g, 3.9 mmol, 1.3 equiv) by small portions at 0 °C. Then the reaction mixture was stirred at 0°C for 1 h. The resulting

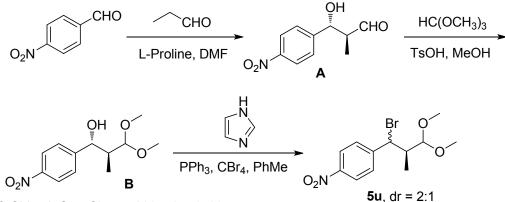

mixture was purified by column chromatography directly to give the desired product **5k** (670 mg, 78%). ¹H NMR (400 MHz, CDCl₃) δ 7.24-7.14 (m, 2H), 6.93 – 6.82 (m, 2H), 4.07 – 3.98 (m, 1H), 3.83 (s, 3H), 2.96 – 2.85 (m, 1H), 2.78 – 2.67 (m, 1H), 2.15-2.04 (m, 2H), 1.89-1.80 (m, 2H), 1.55-1.46 (m, 1H), 1.45 – 1.23 (m, 3H), 0.91 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 157.6, 130.2, 129.6, 127.4, 120.5, 110.4, 58.7, 55.3, 39.1, 39.0, 29.8, 28.7, 22.3, 14.1. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₄H₂₂BrO 285.1, found 285.1.

Procedure 9 (for: 5l)


A solution of benzyl alcohol (540 mg, 5 mmol) and NBS (1.07 g, 6 mmol, 1.2 equiv) in DCM (30 mL) was cooled to -10 °C under N₂. A solution of 3,4-dihydro-2*H*-pyran (462 mg, 5.5 mmol, 1.1 equiv) in DCM (5 mL) was added dropwise. The resulting mixture was gradually warmed to 0 °C and stirred for 3 h, and then warmed to rt and stirred overnight. The reaction was quenched with saturated aqueous Na₂S₂O₃ and extracted with DCM for three times. The combined organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography to give the desired product **5l** (810 mg, 60%, dr > 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.27 (m, 5H), 4.87 – 4.76 (m, 1H), 4.74 – 4.66 (m, 1H), 4.64 – 4.53 (m, 1H), 4.07 – 4.00 (m, 1H), 3.99 – 3.91 (m, 1H), 3.66 – 3.52 (m, 1H), 2.48 – 2.36 (m, 1H), 2.03 – 1.86 (m, 2H), 1.57 – 1.50 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 137.5, 128.6, 128.1, 128.0, 100.2, 69.8, 62.6, 49.4, 30.1, 23.3. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₂H₁₆BrO₂ 271.0, found 271.0.

Procedure 10 (for: 5n)

Carbon tetrabromide (14.92 g, 45 mmol, 2.25 equiv) was added to the solution of diacetone- α -D-glucose **A** (5.21 g, 20 mmol), triphenylphosphine (5.24 g, 20 mmol, 1.0 equiv) and imidazole (2.72 g, 40 mmol, 2.0 equiv) in toluene (200 mL). The brown mixture was reflux for 3 h, followed by the addition of NaHCO₃ (aq., 50 mL). The organic layer was seperated and washed with aqueous Na₂S₂O₃, water and brine sequentially, dried over MgSO₄, and concentrated to give a yellow oil. The yellow oil was purified by flash chromatography to give the desired iodide **5n** as a white solid (1.51 g, 23%). ¹H NMR (400 MHz, CDCl₃) δ 5.82 (d, *J* = 3.1 Hz, 1H), 4.68 (t, *J* = 3.5 Hz, 1H), 4.40 – 4.32 (m, 1H), 4.25-4.19 (m, 1H), 4.106-4.04(m, 2H), 3.94-3.86 (m, 1H), 1.58 (s, 3H), 1.48 (s, 3H), 1.38 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 111.4, 109.8, 105.7, 80.6, 78.8, 76.9, 67.3, 35.3, 26.9, 26.6, 26.3, 25.3. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₂H₂₀BrO₅ 323.0, found 323.1.

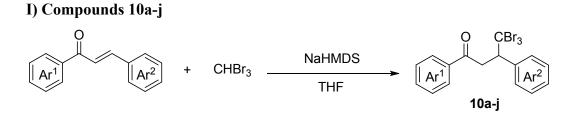

Procedure 11 (for: 50)

To a solution of PPh₃ (1.31 g, 5 mmol, 2.5 eq) in DCM (40 mL) at 0 °C was added Br_2 (480 mg, 3 mmol, 1.5 equiv) dropwise, followed by the addition of Et_3N (303 mg, 3.0 mmol, 1.5 equiv) and TsCl (76 mg, 0.4 mmol, 0.2 equiv), and the reaction was stirred for 10 min. A solution of epiandrosterone (580 mg, 2 mmol) in DCM (10 mL) was

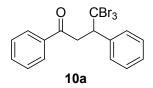
added dropwise within 10 min and then allowed to stir overnight at room temperature. The reaction was quenched with water, extracted twice with DCM, and the combined organic layers were washed with aqueous NaHSO₃, dried over MgSO₄, filtered, and concentrated under reduced pressure. The resulting mixture was purified by column chromatography to give the desired product **50** (485 mg, 69%). ¹H NMR (400 MHz, CDCl₃) δ 4.70-4.62 (m, 1H), 2.43-2.32 (m, 1H), 2.07 – 1.95 (m, 1H), 1.94-1.82 (m, 3H), 1.77 – 1.67 (m, 4H), 1.67-1.57 (m, 2H), 1.51 – 1.37 (m, 4H), 1.25-1.14 (m, 5H), 1.06-0.93 (m, 1H), 0.87-0.81 (m, 1H), 0.79 (s, 3H), 0.74 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 221.5, 55.8, 54.1, 51.5, 47.9, 40.3, 37.3, 36.5, 36.0, 35.1, 33.0, 31.6, 31.1, 30.8, 27.7, 21.9, 20.2, 14.0, 12.5. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₉H₃₀BrO 353.1, found 353.2.

Procedure 12 (for: 5u)

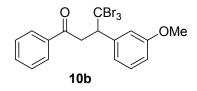
Ref: Chin. J. Org. Chem., 2007, 27, 1509

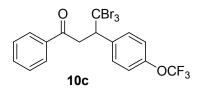

To a solution of freshly distilled propionaldehyde (1.16 g, 20 mmol, 2.0 equiv) in DMF (35 mL) at 0 °C was added 4-nitrobenzaldehyde (1.5 g, 10 mmol) and L-Proline (230 mg, 2 mmol, 0.2 equiv). After 5 h, the resulting solution was diluted with ethyl acetate and washed successively with water and brine. The combined aqueous layers were back-extracted with 3 portions of dichloromethane. The organic layers were combined, dried over anhydrous Na₂SO₄, and then concentrated.

To a solution of the above crude product **A** in MeOH (20 mL) were added triethyl orthoformate (1.59 g, 15 mmol, 1.5 equiv) and *p*-toluenesulfonic acid (172 mg, 1 mmol, 0.1 equiv). After 1 h of stirring at rt, the reaction was quenched with H_2O and extracted with EtOAc. The combined organic layers were washed with brine, dried

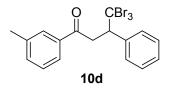

over Na_2SO_4 and concentrated. The residue was purified by flash column chromatography to give the desired acetal product **B** (1.57 g, 61%).

CBr₄ (4.15 g, 12.5 mmol, 2.5 equiv) was added to the solution of the above acetal **B** (1.27 g, 5 mmol), triphenylphosphine (1.96 g, 7.5 mmol, 1.5 equiv) and imidazole (680 mg, 10 mmol, 2.0 equiv) in toluene (40 mL). The brown mixture was reflux for 3 h, followed by the addition of NaHCO₃ (aq.). The organic layer was seperated and washed with Na₂S₂O₃ (aq.), water and brine, dried over MgSO₄, and concentrated to give a yellow oil. The yellow oil was purified by flash chromatography to give the desired product **5u** as a yellow oil (1.43g, 90%, dr = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, *J* = 8.3 Hz, 2H), 7.64 – 7.49 (m, 2H), 5.33 (d, *J* = 4.7 Hz, 0.69H), 5.04 (d, *J* = 9.0 Hz, 0.35H), 4.50 (d, *J* = 3.7 Hz, 0.34H), 4.12 (d, *J* = 6.4 Hz, 0.62H), 3.55 – 3.38 (m, 4H), 3.30 (s, 2H), 2.57 – 2.47 (m, 1H), 2.16 – 2.06 (m, 1H), 1.06 (d, *J* = 6.6 Hz, 2H), 0.83 (d, *J* = 6.9 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 148.1, 147.6, 147.5, 147.46, 129.3, 129.26, 123.9, 123.7, 106.8, 106.6, 56.7, 56.5, 55.9, 55.8, 54.5, 54.2, 44.2, 44.1, 10.8. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₂H₁₇BrNO₄ 318.0, found 318.1.

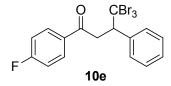

Procedure 13: the preparation of various trihalomethyl substrates


To a solution of chalcone (3 mmol, 1 equiv) in dry THF (8 mL) at -60 °C under N_2 was added CHBr₃ (4.5 mmol, 1.5 equiv) in THF (1 mL), then NaHMDS (6 mmol, 2 equiv) was added slowly *via* syringe. The reaction was stirred at -60 °C for 10-20 min and then quenched with water, extracted for three times with ethyl acetate, the organic layers were combined, washed with saturated brine, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the residue was purified by column chromatography to give the desired product **10a-j**.

4,4,4-Tribromo-1,3-diphenylbutan-1-one (10a). The title compound was prepared according to the general procedure in 83% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.96-7.94 (m, 2H), 7.64-7.62 (m, 2H), 7.57-7.55 (m, 1H), 7.48-7.44 (m, 2H), 7.35-7.32 (m, 3H), 4.71 (dd, *J* = 7.7, 4.1 Hz, 1H), 4.03-4.01 (m, 2H); ¹³C NMR (151 MHz, CDCl₃): δ 195.5, 138.2, 136.6, 133.6, 130.4, 128.8, 128.6, 128.22, 128.17, 62.9, 50.5, 43.8. HRMS(ESI): m/z [M + Na]⁺ calcd for C₁₆H₁₃Br₃NaO 482.8394, found 482.8395.

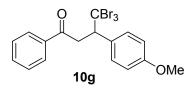


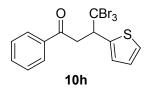
4,4,4-Tribromo-3-(3-methoxyphenyl)-1-phenylbutan-1-one (10b). The title compound was prepared according to the general procedure in 79% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.95 (d, *J* = 7.6 Hz, 2H), 7.63-7.52 (m, 1H), 7.46 (t, *J* = 7.5 Hz, 2H), 7.29-7.14 (m, 3H), 6.92-6.86 (m, 1H), 4.69 (dd, *J* = 8.0, 3.6 Hz, 1H), 4.00-3.97 (m, 2H), 3.79 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 195.4, 159.1, 139.7, 136.5, 133.5, 129.0, 128.8, 128.2, 122.8, 116.5, 113.5, 62.8, 55.3, 50.1, 43.9. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₇H₁₆Br₃O₂ 490.9, found 490.9.



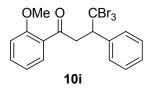
4,4,4-Tribromo-1-phenyl-3-(4-(trifluoromethoxy)phenyl)butan-1-one (10c). The title compound was prepared according to the general procedure in 43% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.95 (d, *J* = 7.6 Hz, 2H), 7.66 (d, *J* = 8.5 Hz, 2H), 7.59 (t,

J = 7.3 Hz, 1H), 7.47 (t, J = 7.6 Hz, 2H), 7.17 (d, J = 8.2 Hz, 2H), 4.73 (dd, J = 8.6, 3.0 Hz, 1H), 4.11-3.91 (m, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 195.3, 149.3 (d, J = 1.4 Hz), 136.8, 136.4, 133.8, 131.8, 128.9, 128.2, 120.4, 62.2, 49.5, 43.8. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₇H₁₃Br₃F₃O₂ 544.8, found 544.8.

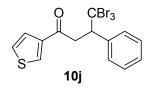

4,4,4-Tribromo-3-phenyl-1-(m-tolyl)butan-1-one (10d). The title compound was prepared according to the general procedure in 71% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.76-7.75 (m, 2H), 7.65-7.63 (m, 2H), 7.39-7.33 (m, 5H), 4.71 (dd, *J* = 7.6, 4.1 Hz, 1H), 4.01-3.99 (m 2H), 2.40 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 195.7, 138.7, 138.3, 136.6, 134.3, 130.4, 128.72, 128.70, 128.6, 128.2, 125.4, 63.0, 50.5, 43.9, 21.5. LR-MS (ESI): m/z [M+Na]⁺ calcd for C₁₇H₁₅Br₃NaO 496.9, found 496.9.


4,4,4-Tribromo-1-(4-fluorophenyl)-3-phenylbutan-1-one (10e). The title compound was prepared according to the general procedure in 86% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.99-7.96 (m, 2H), 7.64-7.61 (m, 2H), 7.34-7.26 (m, 3H), 7.12 (t, *J* = 8.4 Hz, 2H), 4.70 (dd, *J* = 6.9, 4.8 Hz, 1H), 4.02-3.98 (m, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 194.0, 166.0 (d, *J* = 255.5 Hz), 138.1, 133.0 (d, *J* = 3.1 Hz), 130.9 (d, *J* = 9.4 Hz), 130.3, 128.7, 128.2, 116.0 (d, *J* = 22.0 Hz), 63.0, 50.3, 43.7. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₆H₁₃Br₃FO 478.8, found 478.9.

4,4,4-Tribromo-1-(2-methoxyphenyl)-3-phenylbutan-1-one (**10f**). The title compound was prepared according to the general procedure in 62% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.93 (d, *J* = 7.6 Hz, 2H), 7.65 (d, *J* = 7.5 Hz, 1H), 7.55 (t, *J* = 7.3 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.31-7.28 (m, 1H), 6.91 (t, *J* = 7.6 Hz, 2H), 5.44-5.42 (m, 1H), 4.06-3.93 (m, 2H), 3.90 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 195.8, 158.5, 136.7, 133.4, 129.6, 128.8, 128.2, 127.4, 127.1, 120.3, 111.6, 56.1, 53.1, 50.6, 44.0. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₇H₁₆Br₃O₂ 490.9, found 490.9.

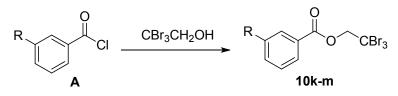


4,4,4-Tribromo-3-(4-methoxyphenyl)-1-phenylbutan-1-one (**10g**). The title compound was prepared according to general procedure in 45% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.95 (d, *J* = 6.1 Hz, 2H), 7.54-7.46 (m, 5H), 6.85 (d, *J* = 7.0 Hz, 2H), 4.64 (s, 1H), 3.99 (d, *J* = 3.8 Hz, 2H), 3.78 (s, 3H);¹³C NMR (151 MHz, CDCl₃): δ 195.7, 159.7, 136.6, 133.5, 131.5, 130.1, 128.8, 128.2, 113.5, 62.4, 55.3, 52.0, 43.7. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₇H₁₆Br₃O₂ 490.9, found 490.9.

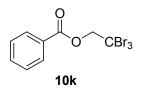


4,4,4-Tribromo-1-phenyl-3-(thiophen-2-yl)butan-1-one (10h). The title compound was prepared according to the general procedure in 87% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.94 (d, *J* = 7.6 Hz, 2H), 7.56 (t, *J* = 7.2 Hz, 1H), 7.45 (t, *J* = 7.5 Hz, 2H), 7.26-7.24 (m, 2H), 6.97-6.88 (m, 1H), 5.01 (t, *J* = 5.8 Hz, 1H), 3.96 (d, *J* = 5.9 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 195.2, 140.4, 136.5, 133.7, 129.7, 128.9, 128.3,

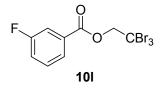
126.3, 125.9, 59.2, 50.3, 45.6. LR-MS (ESI): $m/z [M+H]^+$ calcd for $C_{14}H_{12}Br_3OS$ 466.8, found 466.8.

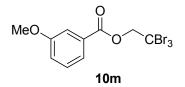


4,4,4-Tribromo-1-(2-methoxyphenyl)-3-phenylbutan-1-one (**10i**). The title compound was prepared according to the general procedure in 62% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.51-7.49 (m, 2H), 7.41-7.36 (m, 2H), 7.27-7.25 (m, 3H), 6.97-6.79 (m, 2H), 4.54 (dd, J = 8.1, 3.2 Hz, 1H), 4.00-3.97 (m, 2H), 3.89 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 198.4, 159.0, 138.8, 134.4, 131.1, 131.0, 128.9, 128.4, 128.3, 121.4, 112.1, 63.7, 56.3, 51.3, 49.4. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₇H₁₆Br₃O₂ 490.9, found 490.9.

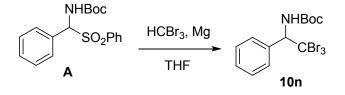


4,4,4-Tribromo-3-phenyl-1-(thiophen-3-yl)butan-1-one (**10j**). The title compound was prepared according to the general procedure in 81% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.12-8.10 (m, 1H), 7.62-7.60 (m, 2H), 7.51 (d, *J* = 4.8 Hz, 1H), 7.40-7.27 (m, 4H), 4.67 (dd, *J* = 7.6, 4.3 Hz, 1H), 3.95-3.87 (m, 2H); ¹³C NMR (151 MHz, CDCl₃): δ 189.7, 141.8, 138.1, 132.5, 130.3, 128.7, 128.2, 127.0, 126.7, 62.8, 50.3, 44.9. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₄H₁₂Br₃OS 466.8, found 466.8.

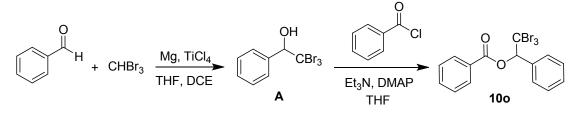



To a solution of 2,2,2-tribromoethanol (592 mg, 2.1 mmol, 1.05 equiv), diisopropylethylamine (388 mg, 3.0 mmol, 1.5 equiv) and DMAP (0.2 mmol, 0.1 equiv) in DCM (15 mL) was added acyl chloride A (2.0 mmol, 1.0 equiv) slowly, then the reaction was stirred at rt for 1 h. The reaction was quenched with 5% aqueous NaHCO₃ and extracted with DCM for three times, the organic layers were combined, washed with saturated brine, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the residue was purified by column chromatography to give the desired product **10k-m**.

2,2,2-Tribromoethyl benzoate (10k). The title compound was prepared according to the general procedure in 79% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 7.6 Hz, 1H), 7.64 (t, *J* = 7.4 Hz, 1H), 7.51 (t, *J* = 7.6 Hz, 1H), 5.17 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 164.7, 133.8, 130.1, 128.8, 128.6, 77.3, 35.8. LR-MS (ESI): m/z [M+H]⁺ calcd for C₉H₈Br₃O₂ 386.8, found 386.7.


2,2,2-Tribromoethyl-3-fluorobenzoate (10l). The title compound was prepared according to the general procedure in 72% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 7.6 Hz, 1H), 7.84 (d, *J* = 8.8 Hz, 1H), 7.49 (dd, *J* = 13.5, 7.7 Hz, 1H), 7.34 (t, *J* = 7.4 Hz, 1H), 5.16 (s, 2H). LR-MS (ESI): m/z [M+H]⁺ calcd for C₉H₇Br₃FO₂ 404.8, found 404.8.

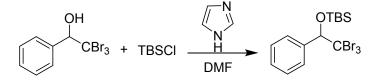
2,2,2-Tribromoethyl-3-methoxybenzoate (10m). The title compound was prepared according to the general procedure in 69% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.78


(d, J = 7.5 Hz, 1H), 7.68 (s, 1H), 7.41 (t, J = 7.9 Hz, 1H), 7.17 (d, J = 7.9 Hz, 1H), 5.16 (s, 2H), 3.88 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 165.3, 159.6, 130.3, 129.6, 122.3, 120.0, 114.4, 69.5, 55.5, 39.6. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₀H₁₀Br₃O₃ 416.8, found 416.7.

III) Compound 10n

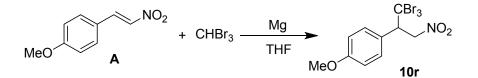
A solution of **A** (347 mg, 1 mmol) in THF (5 mL) was added Mg (192 mg, 8 mmol) and HCBr₃ (5.56 g, 22 mmol) at 0 °C. The reaction was stirred and warmed to rt within 2 h. Aqueous NH₄Cl was added to quench the reaction, and extracted with EtOAc for three times, the organic layers were combined, washed with saturated brine, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the residue was purified by column chromatography to give the desired product **10n**. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 6.2 Hz, 2H), 7.39 – 7.38 (m, 3H), 5.79 – 5.53 (m, 1H), 1.45 (s, 9H); ¹³C NMR (151 MHz, CDCl₃): δ 154.3, 135.9, 129.8, 129.1, 128.1, 81.0, 70.0, 50.7, 28.4. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₃H₁₇Br₃NO₂ 457.9, found 457.9.

IV) Compound 10o

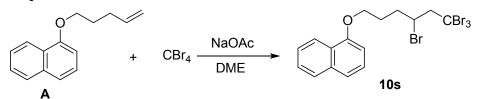


A mixture of Mg (576 mg, 24.0 mmol, 6.0 equiv), 1,2-dichloroethane (40 mL) and $TiCl_4$ (2 mL) was stirred at -30 °C under N₂ for 1 min, followed by the addition of aldehyde (424 mg, 4.0 mmol, 1.0 equiv) and HCBr₃ (6 mL), and stirred for 10 min before THF (6 mL) was added. The reaction was stirred at -30 °C for another 5 h. Aqueous NH₄Cl was added to quench the reaction, and extracted with DCM for three

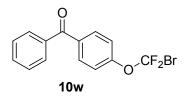
times, the organic layers were combined, washed with saturated brine, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the residue was purified by column chromatography to give the desired product **A**.


To a solution of above **A** (1.0 mmol, 1.0 equiv), DMAP (0.5 mmol, 0.5 equiv) and Et₃N (4.0 mmol, 4.0 equiv) was added benzoyl chloride (4.0 mmol, 4.0 equiv). The reaction was stirred at rt for 5 h. Water was added to quench the reaction, and extracted with EtOAc for three times, the organic layers were combined, washed with saturated brine, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the residue was purified by column chromatography to give the desired product **10o** in 80% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, *J* = 7.5 Hz, 2H), 7.80 (d, *J* = 7.0 Hz, 2H), 7.63 (t, *J* = 6.9 Hz, 1H), 7.51 (t, *J* = 7.0 Hz, 2H), 7.45 – 7.35 (m, 3H), 6.60 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 164.0, 133.8, 133.7, 130.1, 130.0, 129.7, 129.0, 128.6, 127.8, 84.3, 45.2. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₅H₁₂Br₃O₂ 462.8, found 462.8.

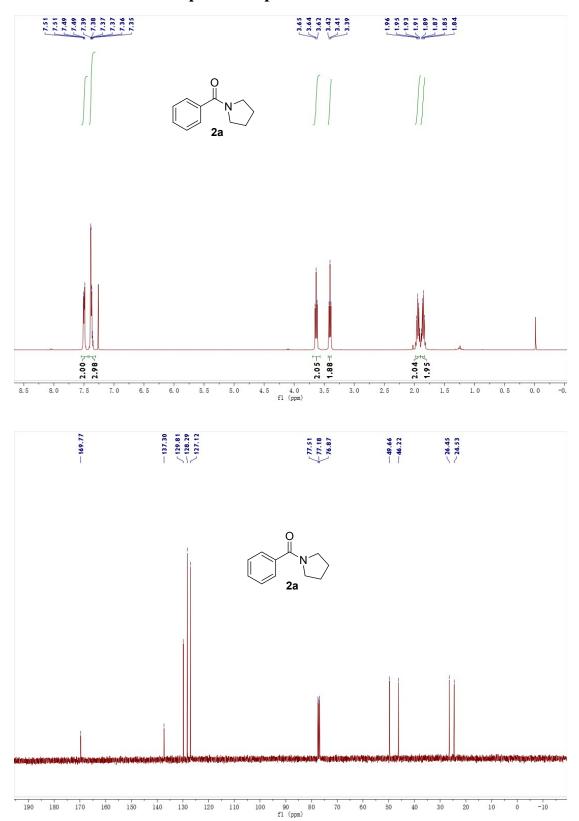
V) Compound 10p


A solution of 2,2,2-tribromo-1-phenylethanol (359 mg, 1 mmol) in DMF (0.5 mL) at 0 °C was added imidazole (544 mg, 8.0 mmol, 8.0 equiv) and TBSCl (904 mg, 6.0 mmol, 6.0 equiv). The reaction was warmed to rt and stirred for 3 h. Water was added to quench the reaction, and extracted with EtOAc for three times, the organic layers were combined, washed with saturated brine, dried over sodium sulfate, concentrated under reduced pressure, and the residue was purified by column chromatography to give the desired product **10p** in 66% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, *J* = 7.0 Hz, 2H), 7.74 – 7.65 (m, 3H), 5.40 (s, 1H), 1.27 (s, 9H), 0.53 (s, 3H), 0.10 (s, 3H). LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₄H₂₂Br₃OSi 472.9, found 472.9.

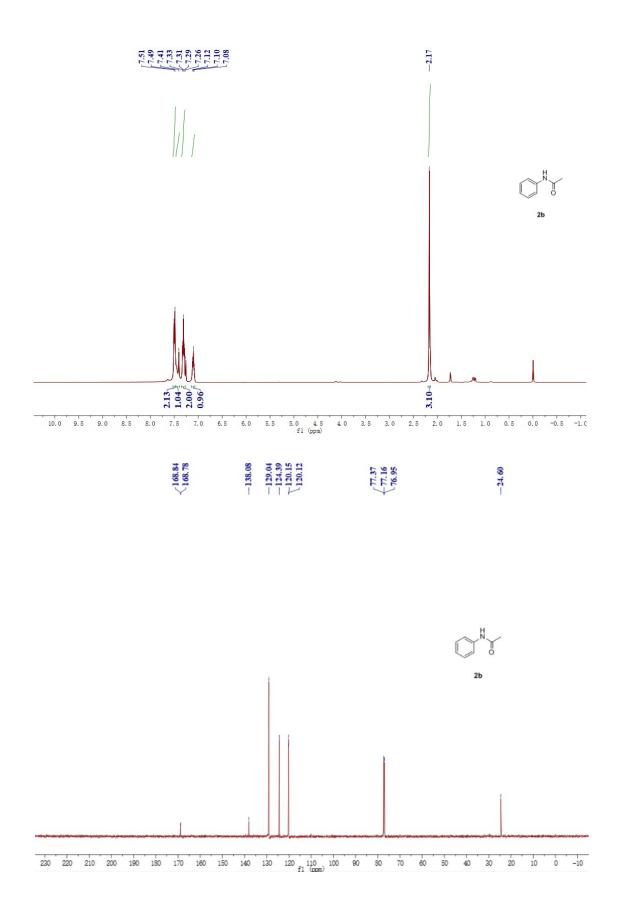
VI) Compound 10r

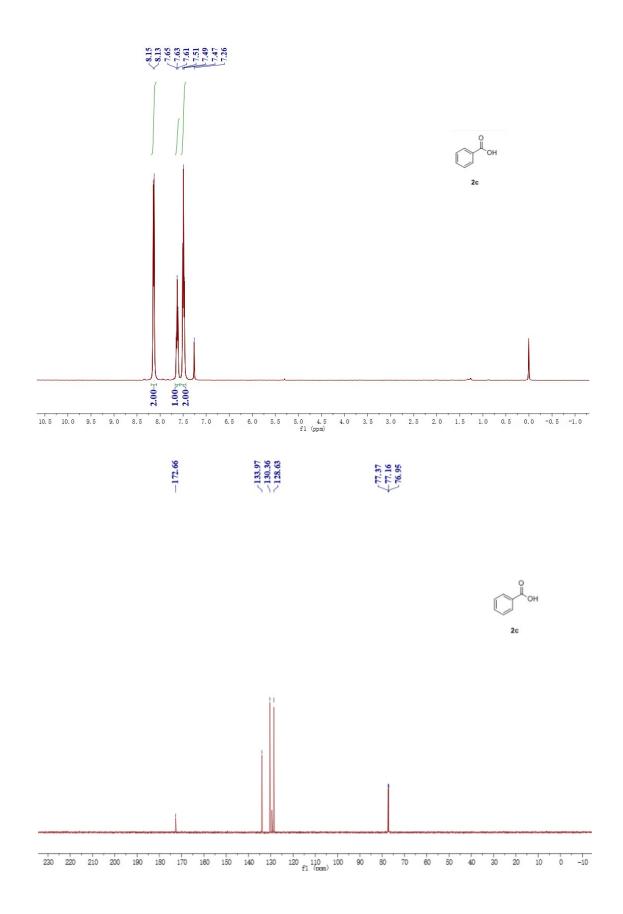

A solution of **A** (358 mg, 2.0 mmol, 1.0 equiv) in THF (9 mL) was added Mg (384 mg, 16.0 mmol, 8.0 equiv). The reaction was cooled to 0 °C and CHBr₃ (11.1 g, 44 mmol, 22 equiv) was added within 10 min. The reaction was stirred at 0 °C for 30 min and then warmed to rt gradually. When the reaction was completed monitored by TLC, it was filtered and the filtrate was added ice-water, and extracted with EtOAc for three times, the organic layers were combined, washed with saturated brine, dried over sodium sulfate, concentrated under reduced pressure, and the residue was purified by column chromatography to give the desired product **10r** in 71% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.49 (d, *J* = 8.5 Hz, 2H), 6.91 (d, *J* = 8.5 Hz, 2H), 5.40 (dd, *J* = 13.3, 3.3 Hz, 1H), 5.10 (dd, *J* = 13.0, 10.7 Hz, 1H), 4.67 (dd, *J* = 10.3, 3.3 Hz, 1H), 3.82 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 160.6, 131.4, 125.9, 114.1, 78.0, 64.0, 55.4, 44.2. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₀H₁₁Br₃NO₃ 431.8, found 431.8.

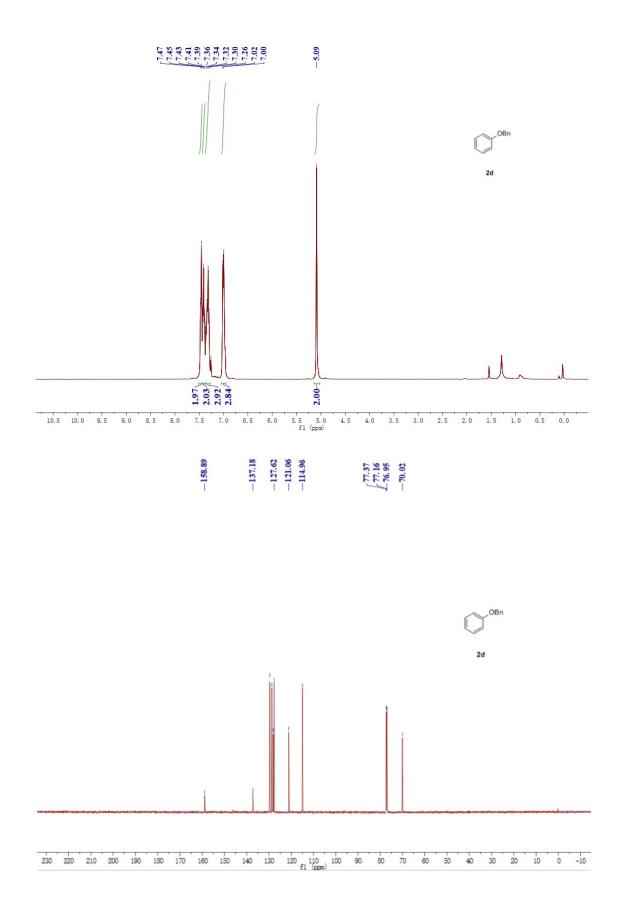
VII) Compound 10s

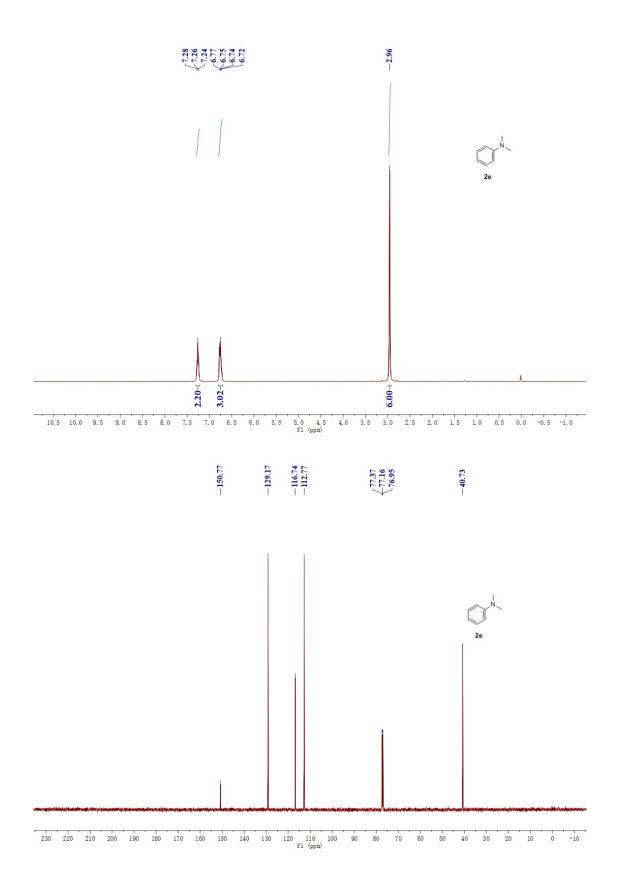


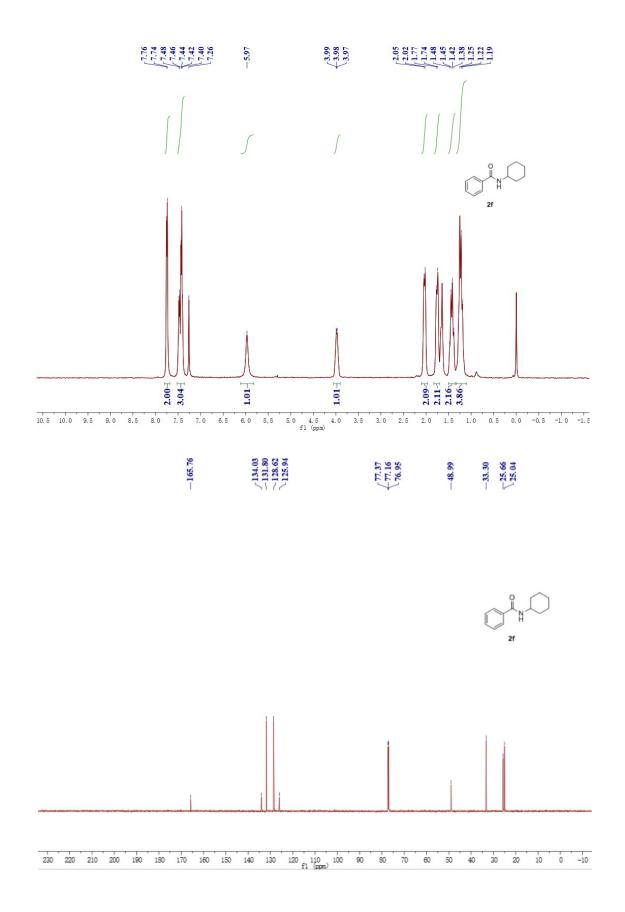
A solution of CBr₄ (10.0 mmol, 2.0 equiv) and NaOAc (7.5 mmol, 1.5 equiv) in 1,2dimethoxyethane (20 mL) was added A (5.0 mmol, 1.0 equiv) under N₂. The reaction was refluxed until completion monitored by TLC. The reaction was quenched with water and extracted with methyl *tert*-butyl ether for three times, the organic layers were combined, washed with saturated brine, dried over sodium sulfate, concentrated under reduced pressure, and the residue was purified by column chromatography to give the desired product **10s** in 69% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, *J* = 7.8 Hz, 1H), 7.79 (d, *J* = 7.5 Hz, 1H), 7.51 – 7.40 (m, 3H), 7.37 (t, *J* = 7.8 Hz, 1H), 6.81 (d, *J* = 7.4 Hz, 1H), 4.35 (dd, *J* = 8.4, 4.2 Hz, 1H), 4.27 – 4.16 (m, 2H), 3.92 (dd, *J* = 16.1, 4.1 Hz, 1H), 3.62 (dd, *J* = 16.1, 5.2 Hz, 1H), 2.53 (ddd, *J* = 14.4, 10.6, 3.7 Hz, 1H), 2.34 – 2.11 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.5, 134.5, 127.5, 126.4, 125.8, 125.6, 125.2, 122.0, 120.4, 104.6, 77.3, 77.0, 76.7, 67.0, 66.9, 51.6, 36.6, 36.0, 27.5. LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₆H₁₇Br₄O 544.8, found 544.8. VIII) Compound 10v-w

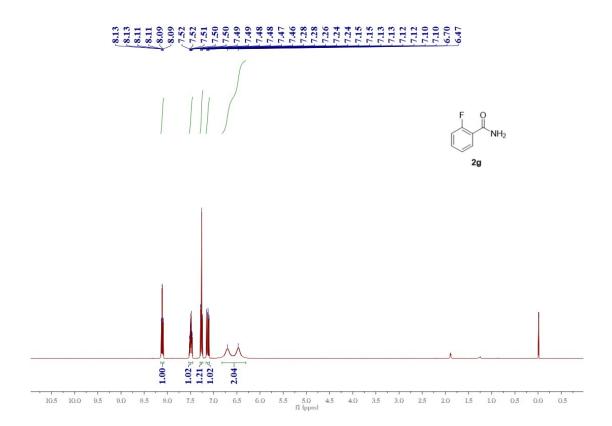

A suspension of KH (3.15 mmol, 1.05 equiv) in DMF (2 mL) was added A (3.0 mmol, 1.0 equiv) in portions within 30 min at 10 °C. Then 1,2-dibromotetrafluoroethane was added, and the resulting mixture was heated at 120 °C until completion monitored by TLC. The reaction was quenched with water and extracted with EtOAc for three times, the organic layers were combined, washed with saturated brine, dried over sodium sulfate, concentrated under reduced pressure, and the residue was purified by column chromatography to give the desired product **10v** in 79% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.5 Hz, 2H), 7.80 (d, *J* = 7.4 Hz, 2H), 7.62 (t, *J* = 7.3 Hz, 1H), 7.51 (t, *J* = 7.6 Hz, 2H), 7.35 (d, *J* = 8.3 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 195.2, 151.9, 137.2, 136.0, 132.8, 131.9, 130.0, 128.5, 121.1, 116.2 (t, *J* = 51.3 Hz), 113.6 (t, *J* = 43.8 Hz). LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₅H₁₀BrF₄O₂ 377.0, found 377.0.

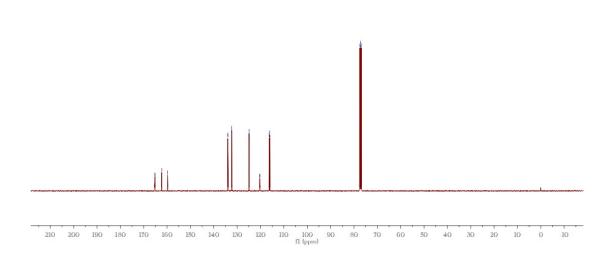


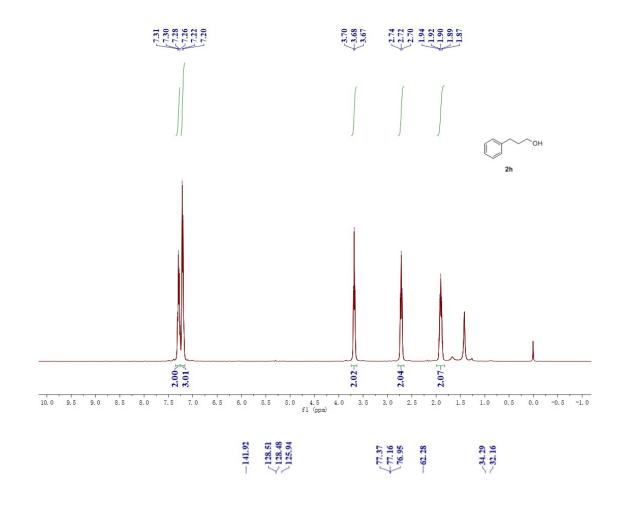

[4-(Bromodifluoromethoxy)phenyl](phenyl)methanone (10w). The title compound was prepared according to the general procedure in 73% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.9 (d, J = 8.6 Hz, 2H), 7.8 (d, J = 7.4 Hz, 2H), 7.6 (t, J = 7.3 Hz, 1H), 7.5 (t, J = 7.5 Hz, 2H), 7.4 (d, J = 8.3 Hz, 2H). LR-MS (ESI): m/z [M+H]⁺ calcd for C₁₄H₁₀BrF₂O₂ 327.0, found 327.0.

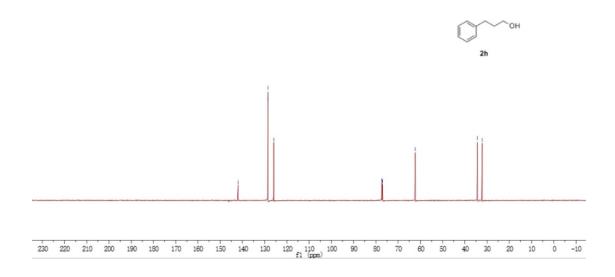


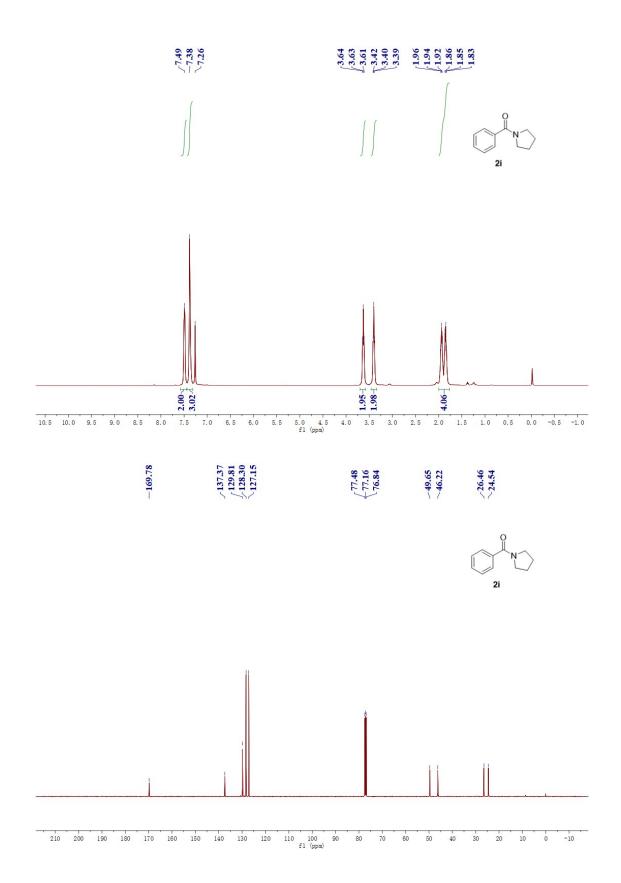

10. ¹H and ¹³C NMR spectra of products

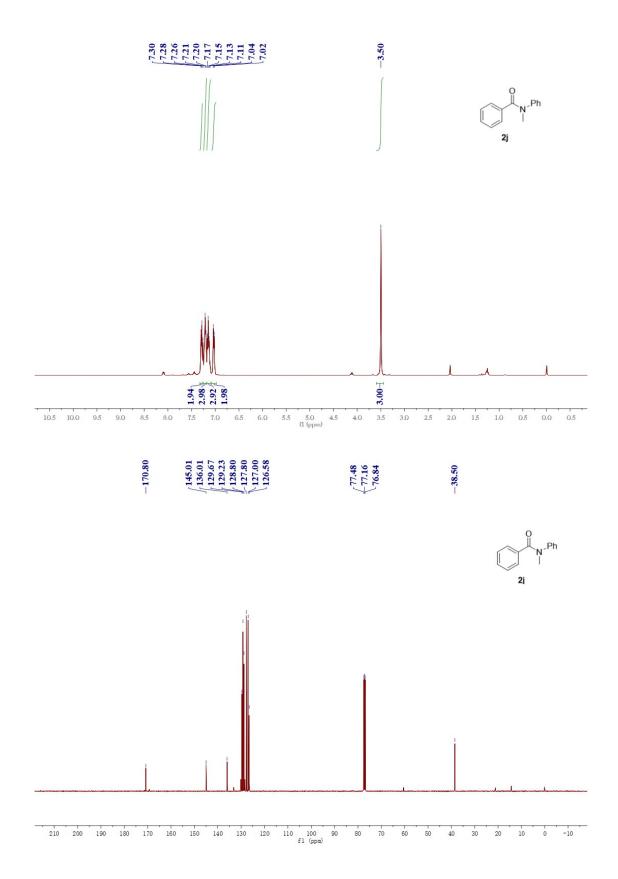


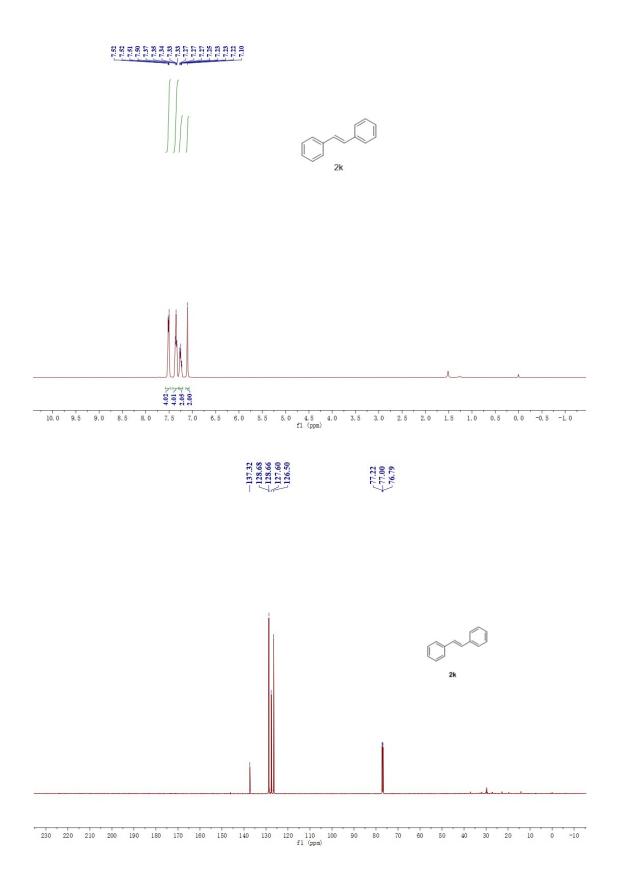


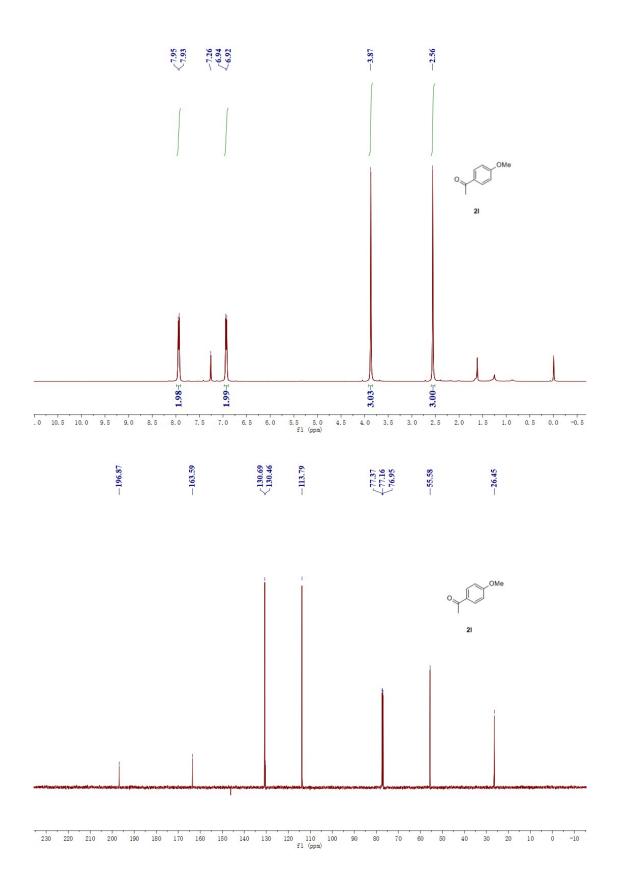


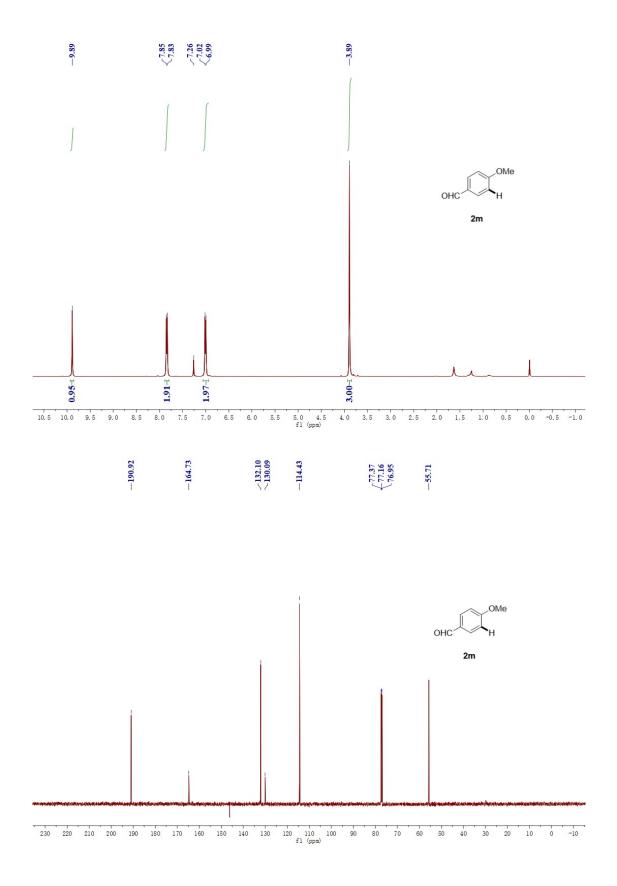


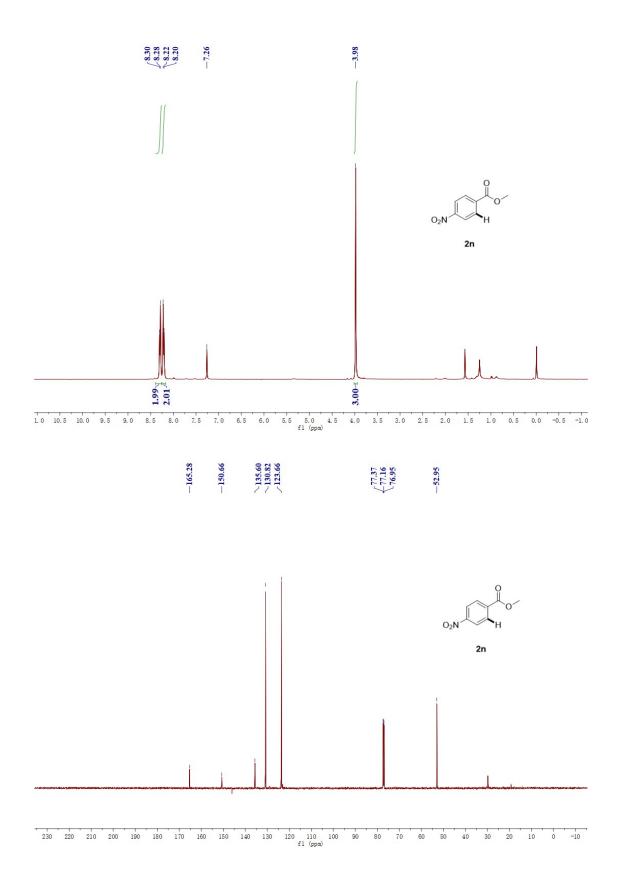

$\int_{165.06}^{165.21} \int_{159.83}^{165.18} \int_{159.83}^{165.29} \int_{133.95}^{133.95} \int_{132.36}^{133.95} \int_{132.36}^{132.38} \int_{122.39}^{124.89} \int_{120.28}^{124.89} \int_{116.06}^{116.06} \int_{116.06}^{177.48} \int_{77.16}^{77.48} \int_{77.48}^{77.48} \int_{76.84}^{77.48} \int_{76.84$

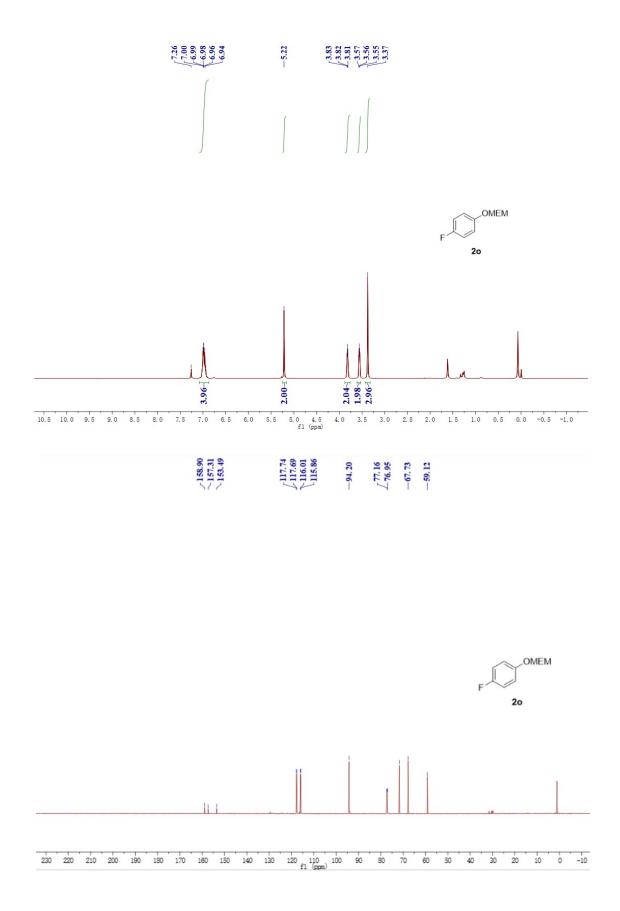


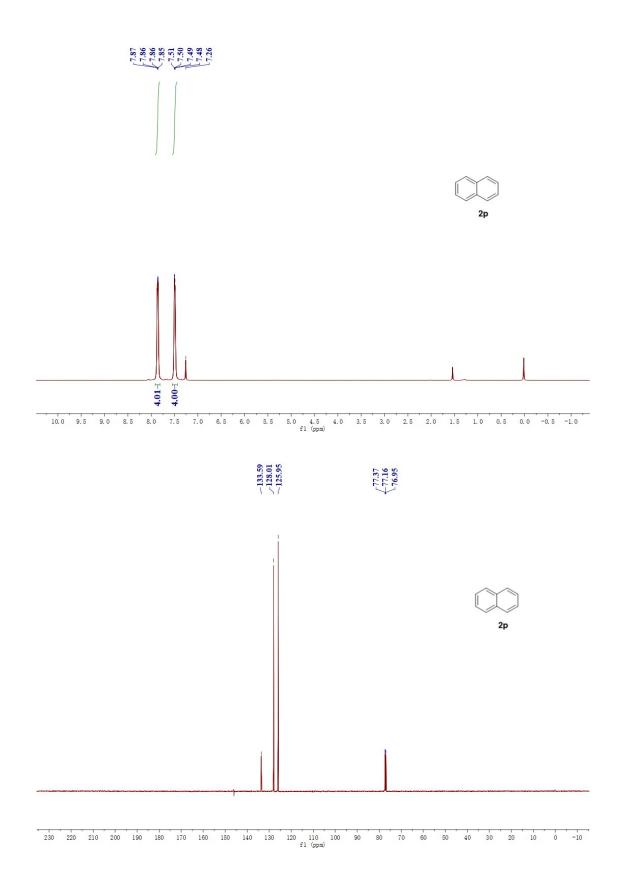


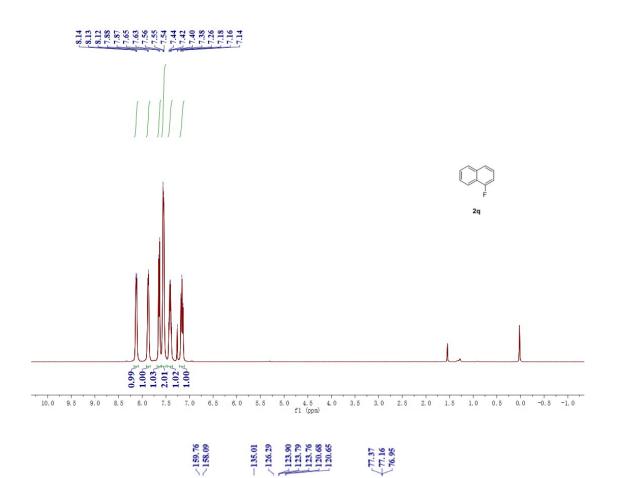


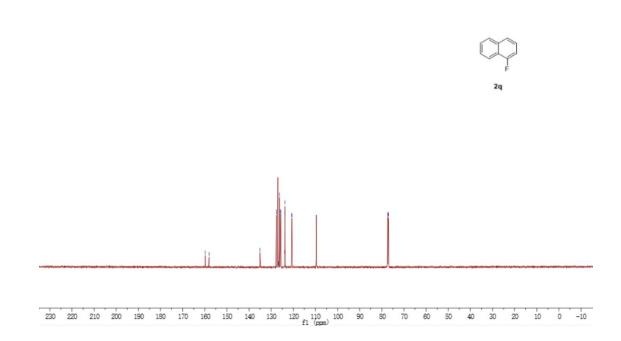


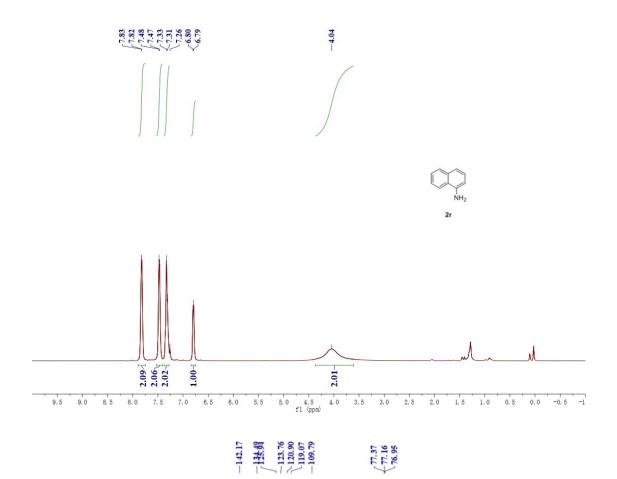


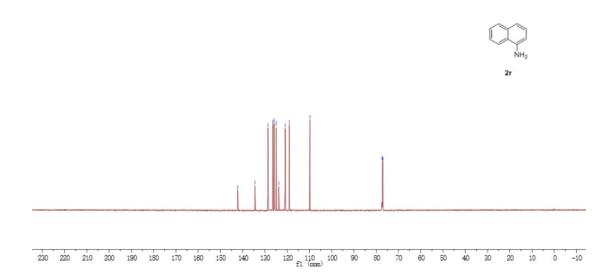


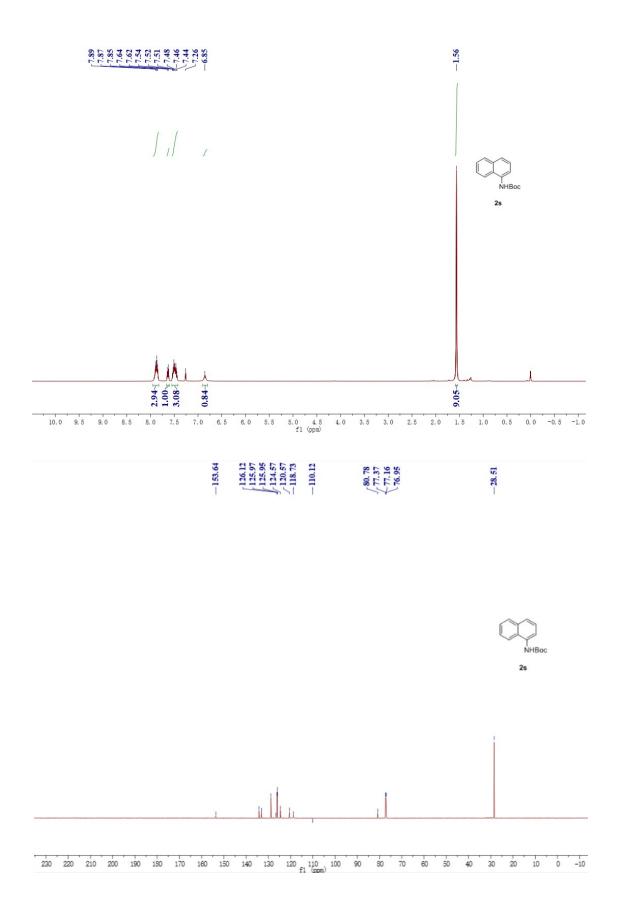


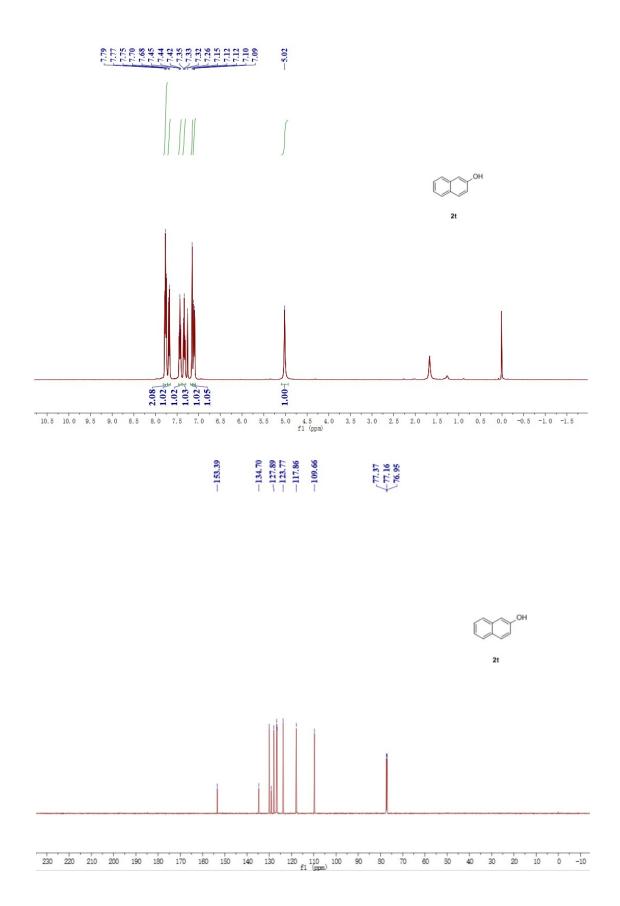


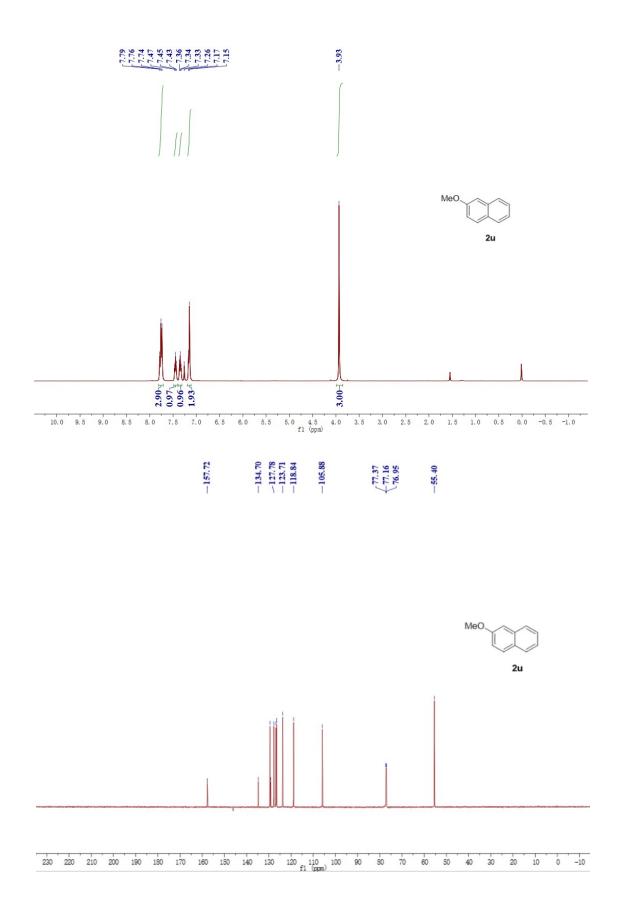


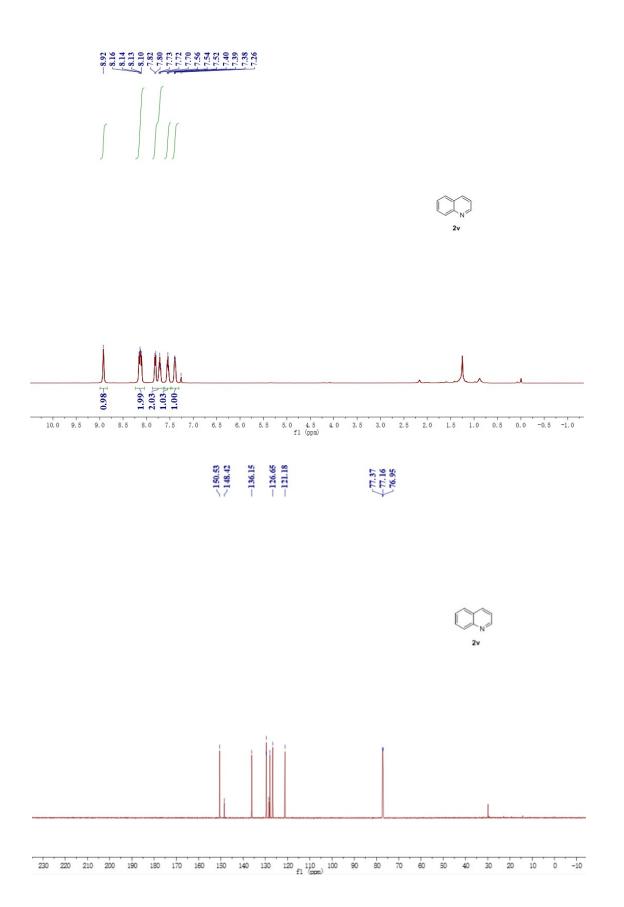


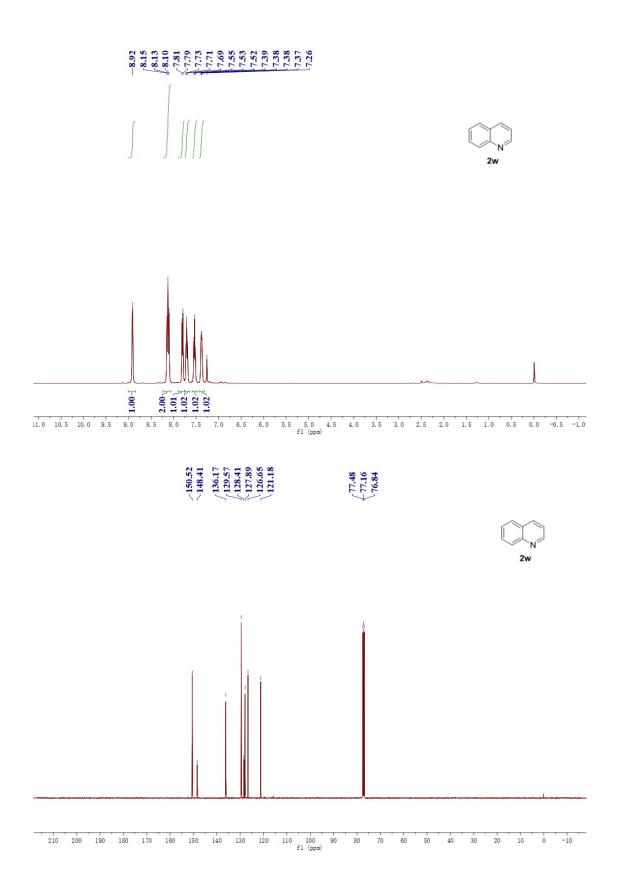


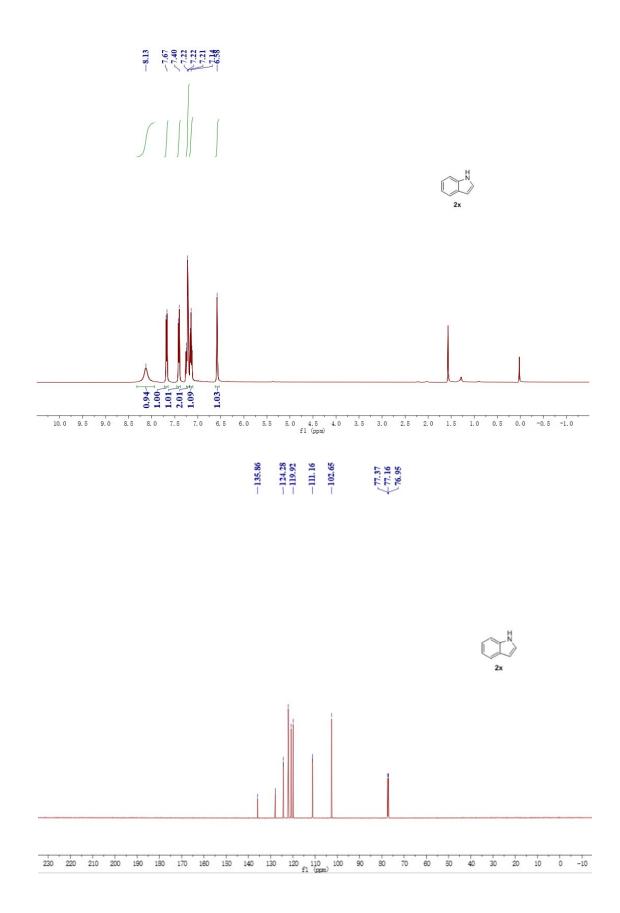


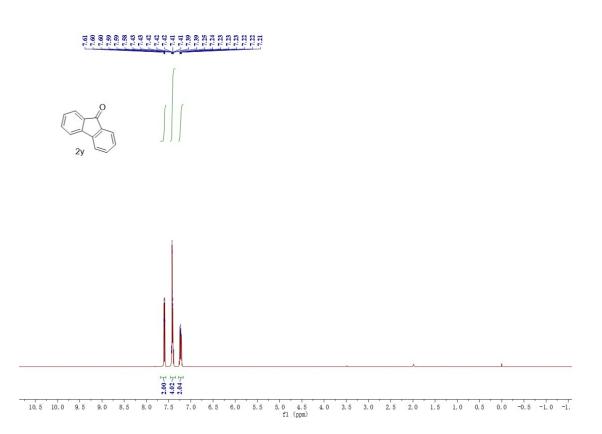


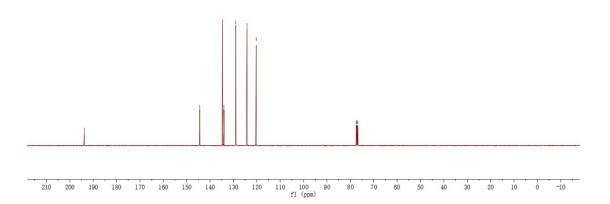


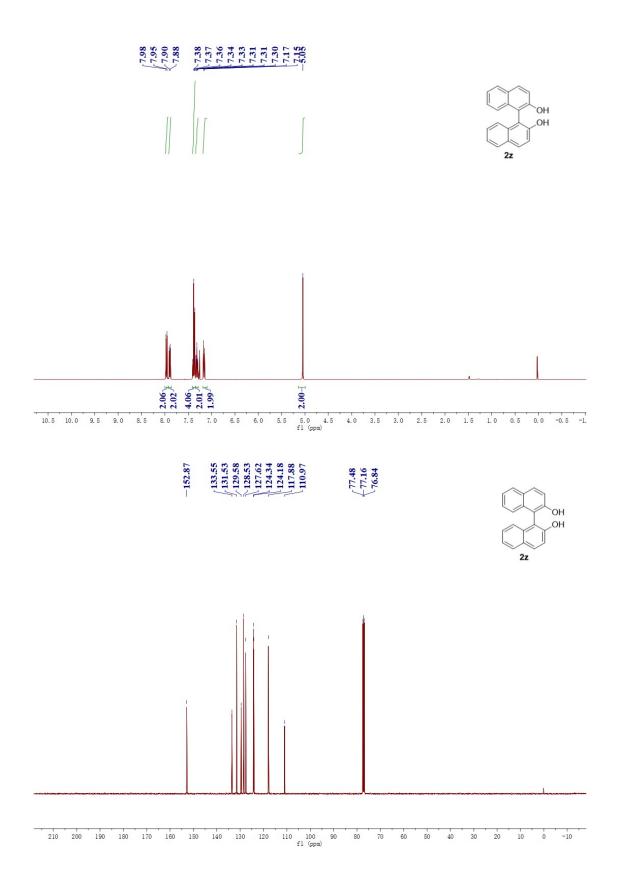


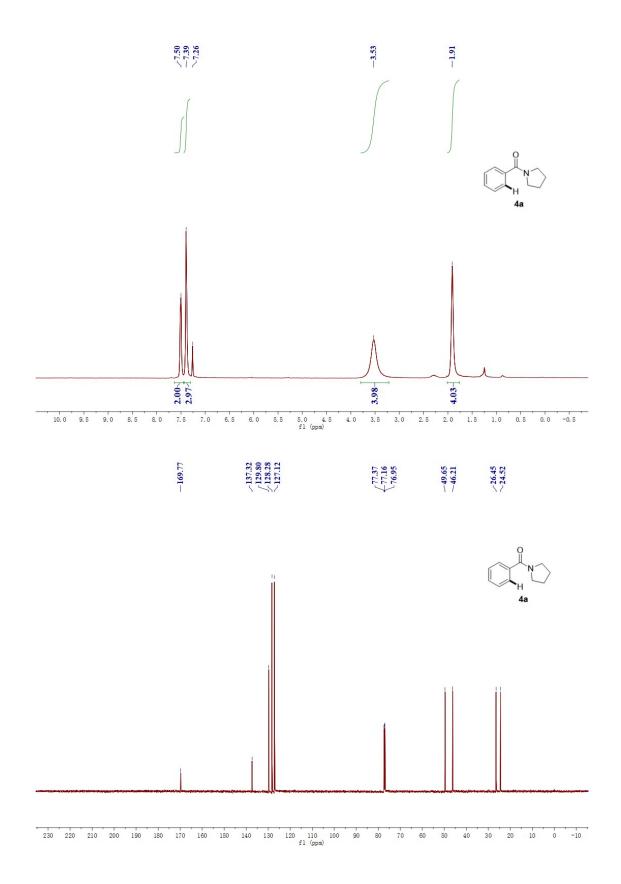


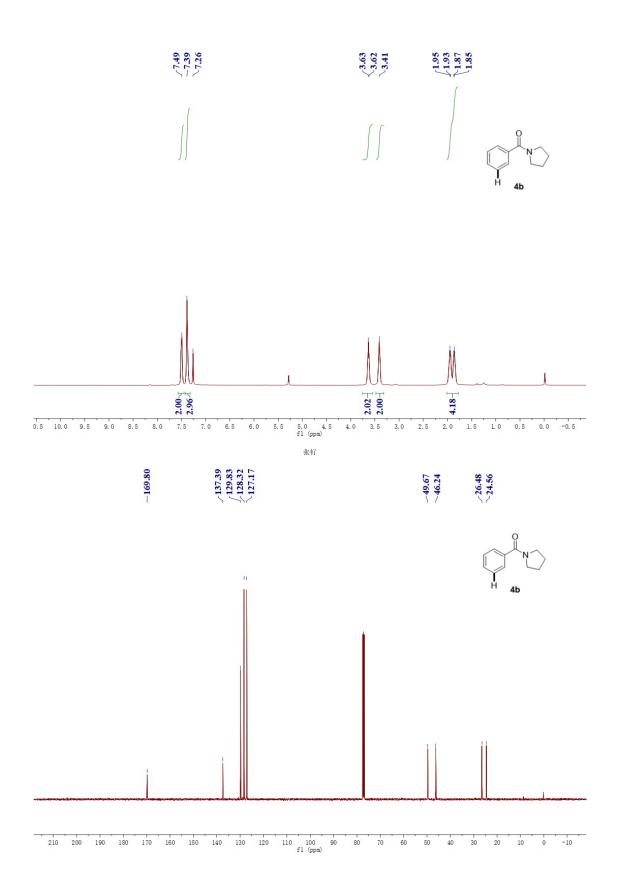


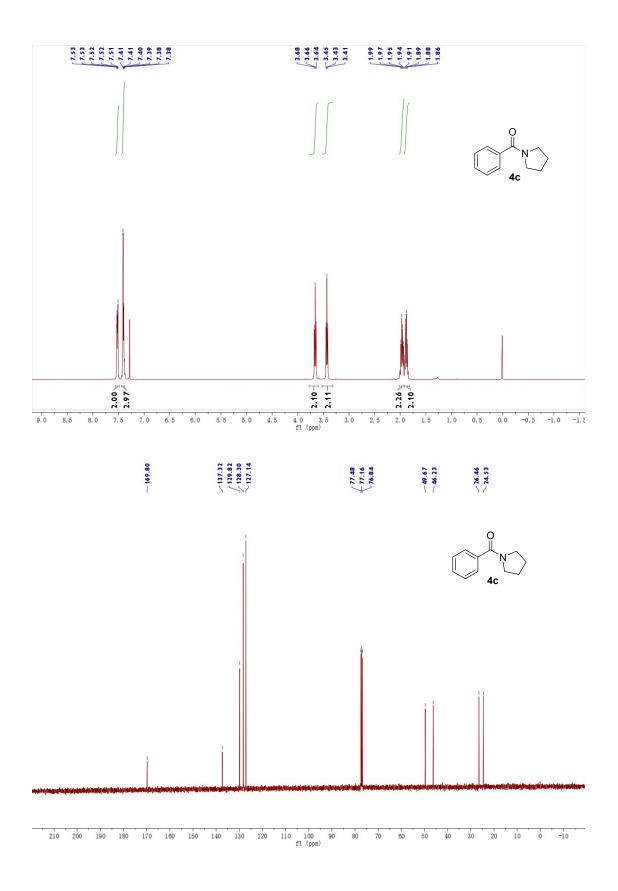


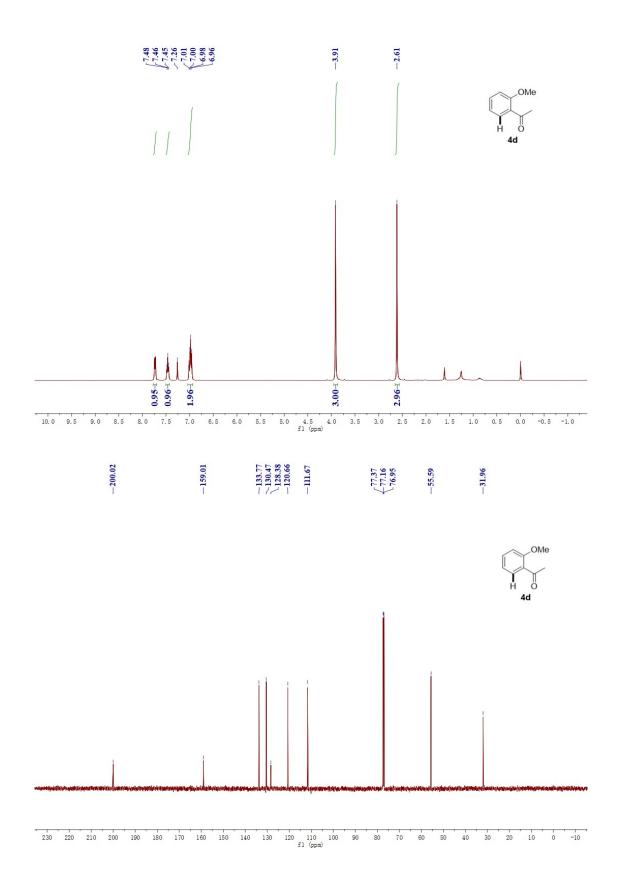


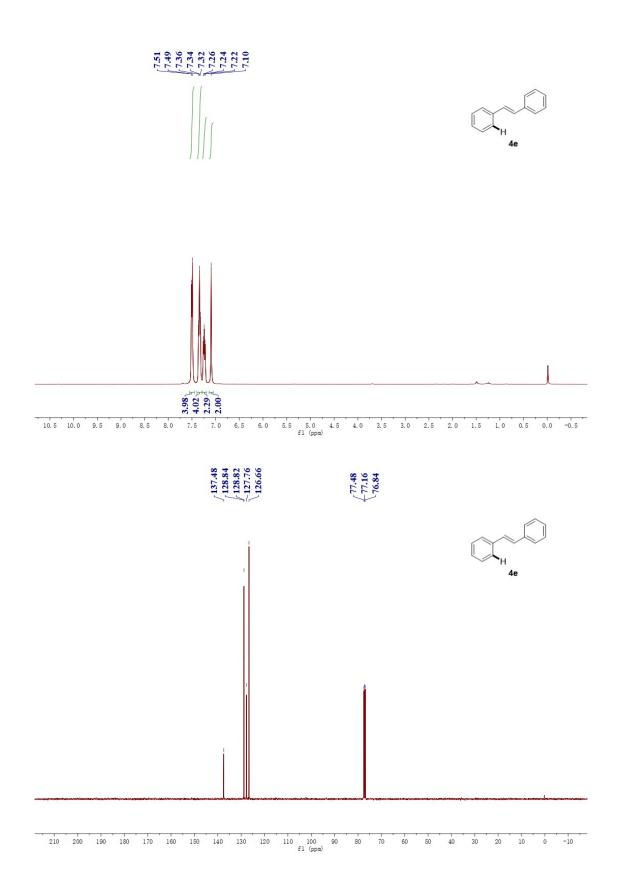


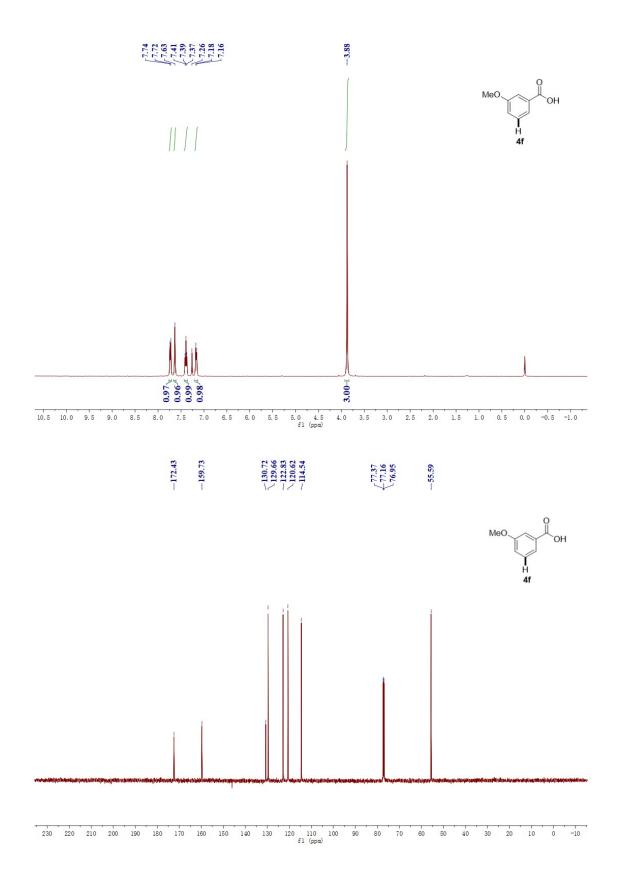


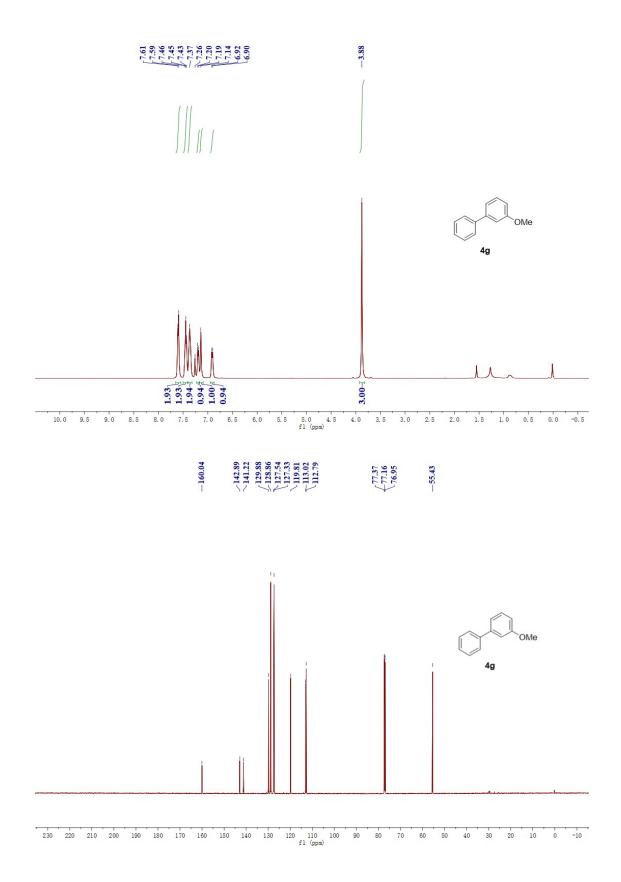


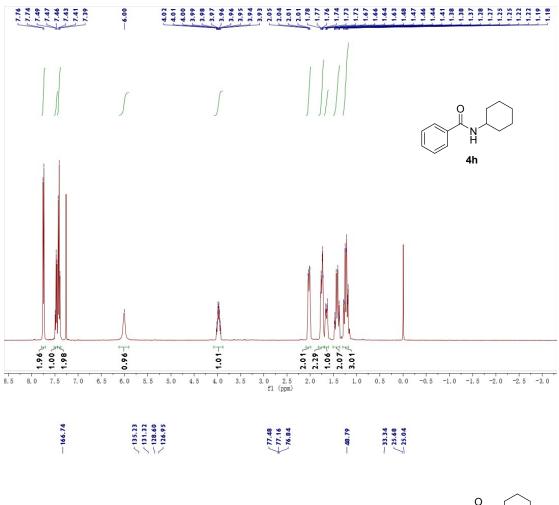


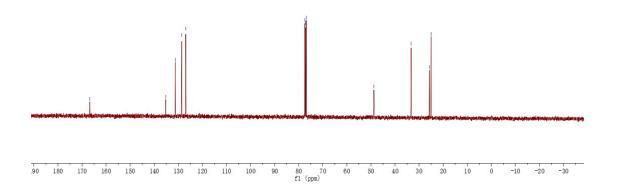


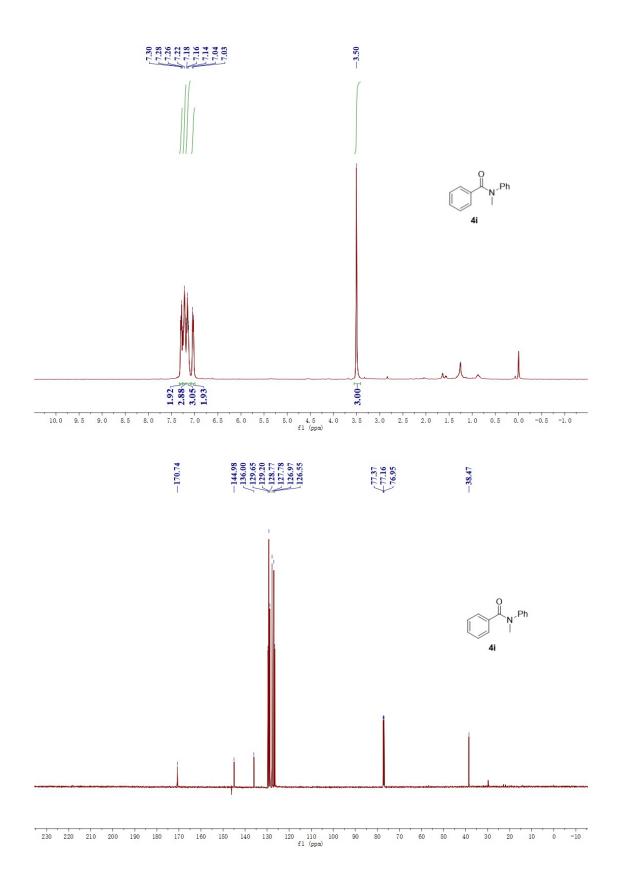


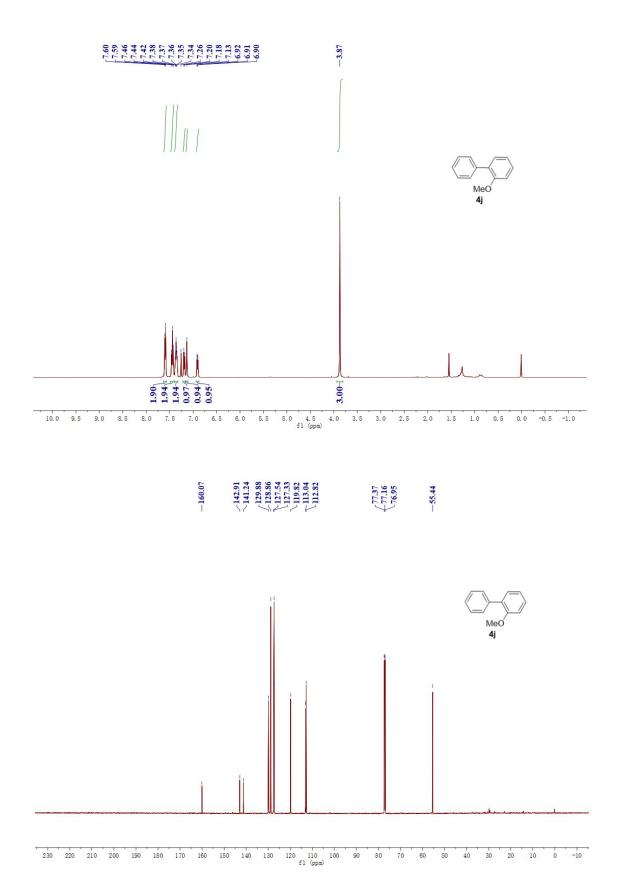


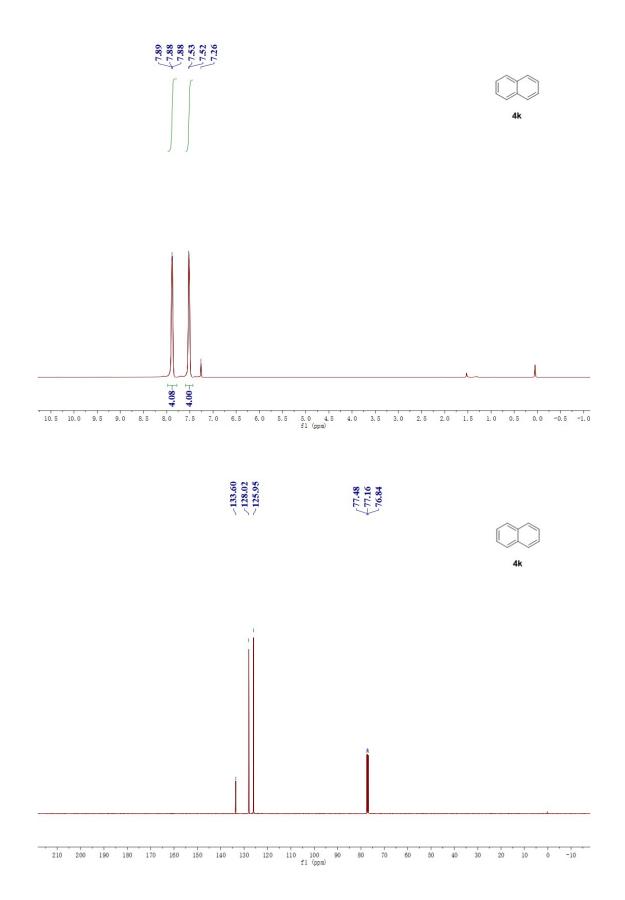


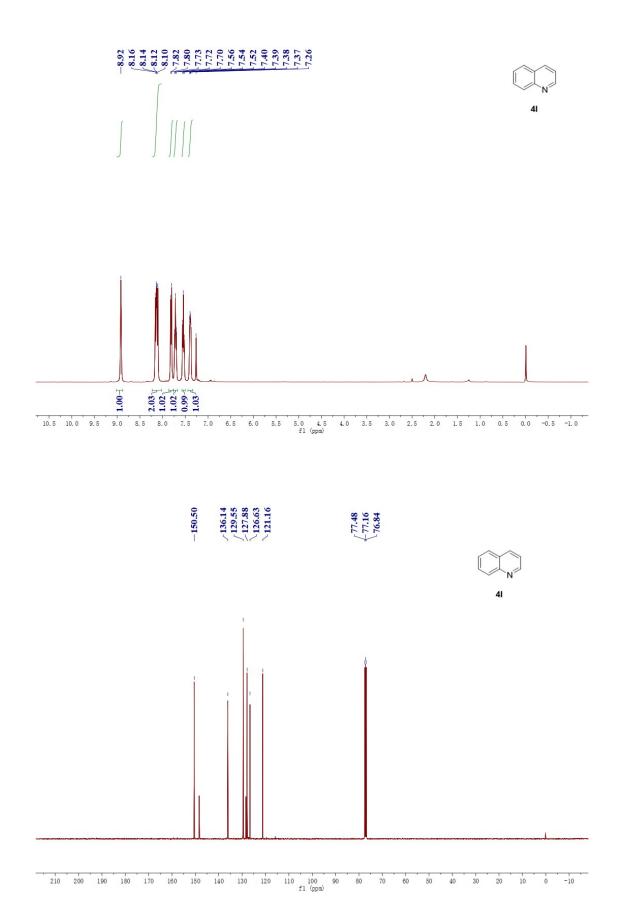


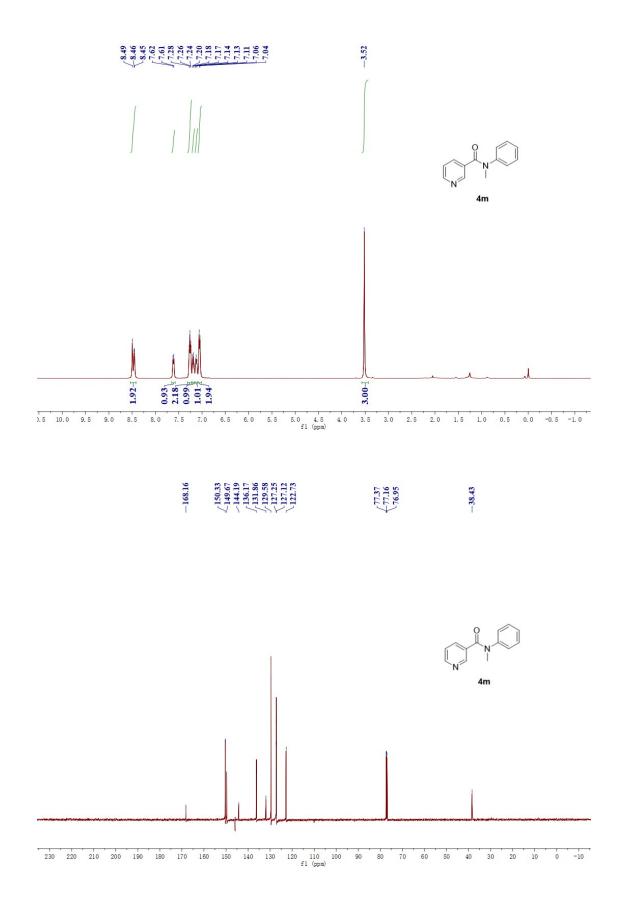


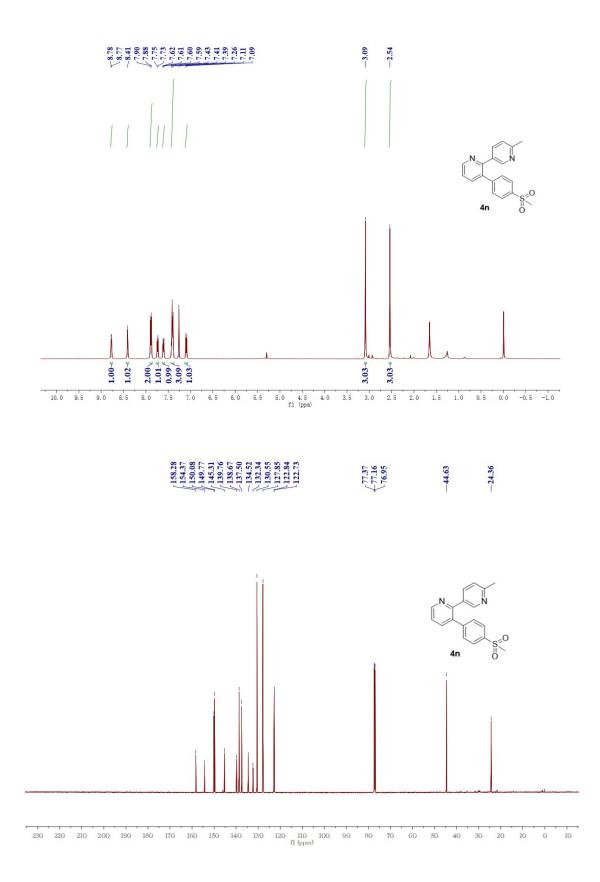


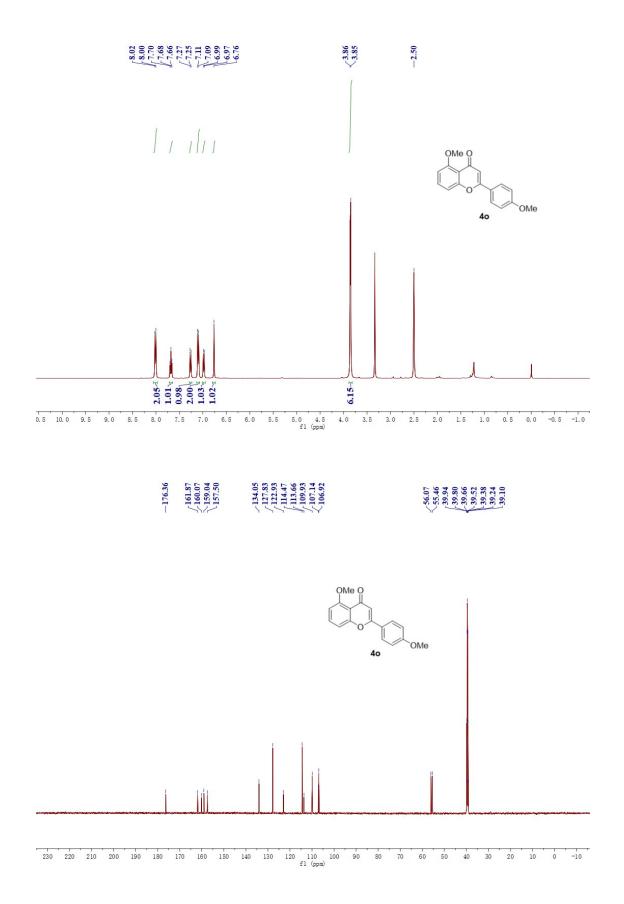


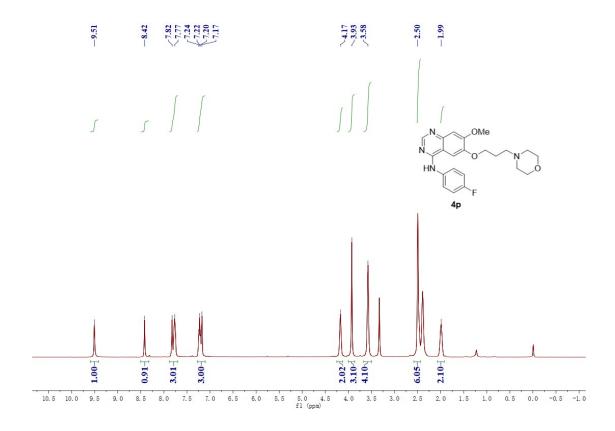


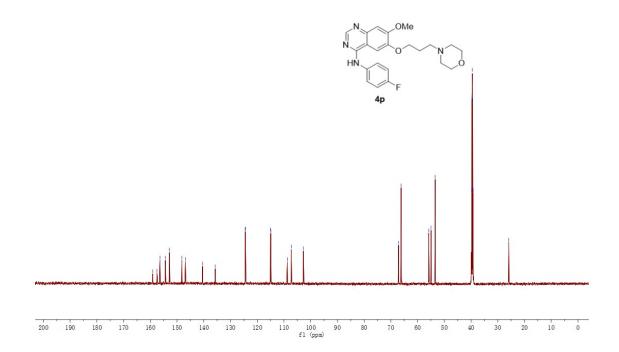


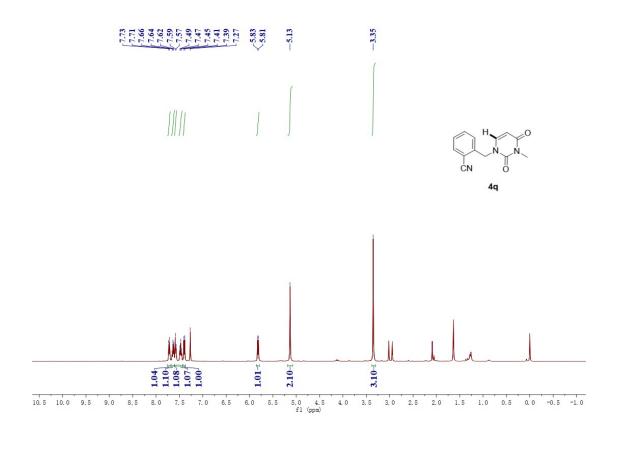


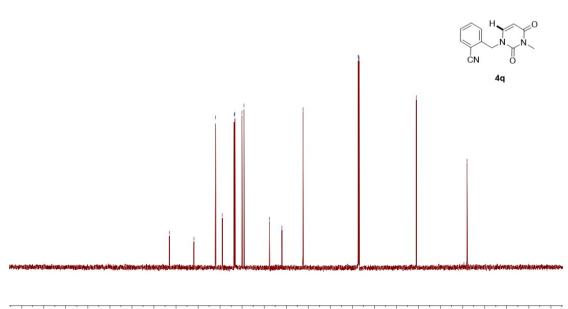




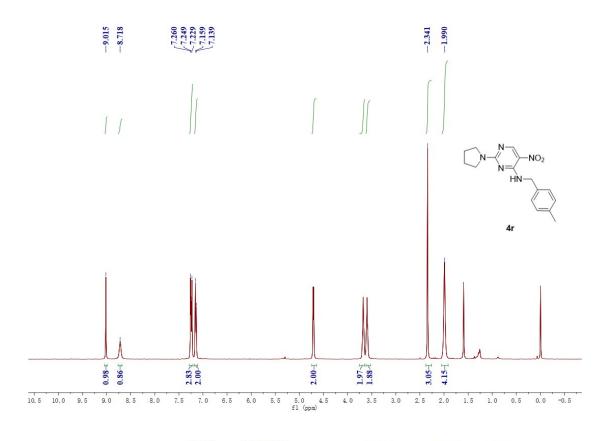


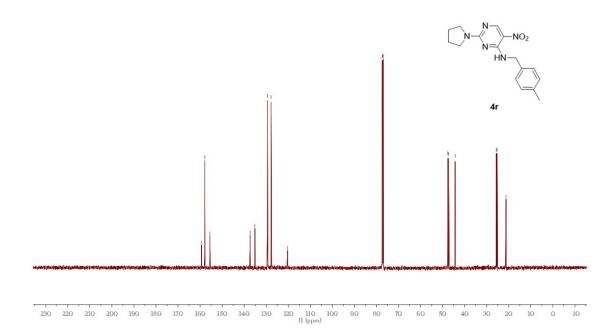


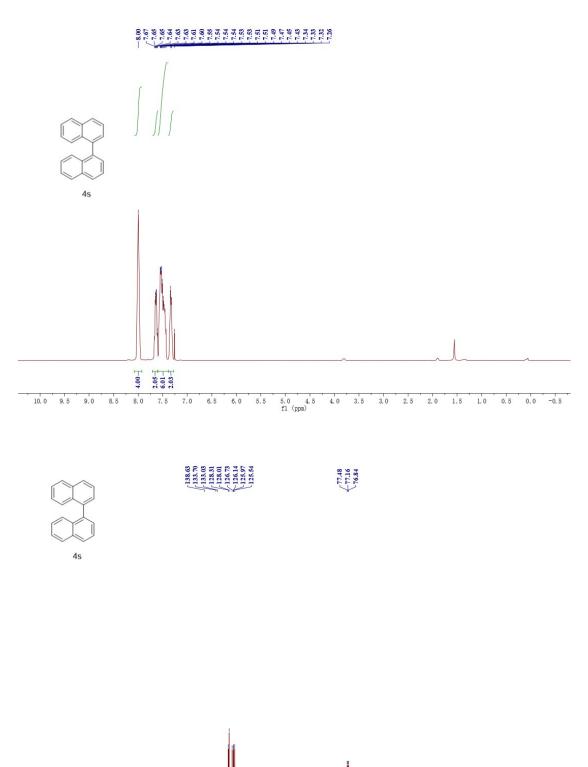


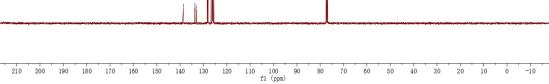


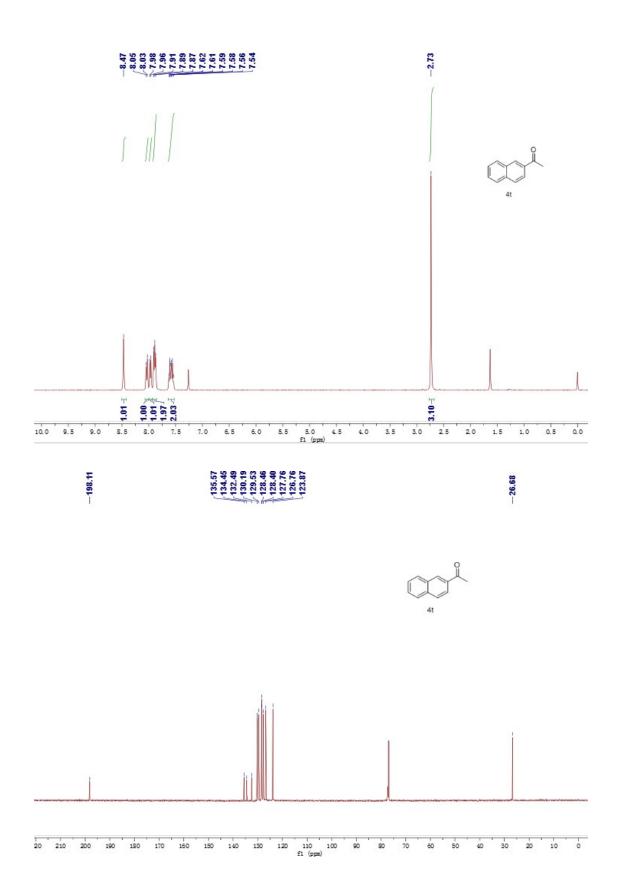
25.85 25.85 25.81 25.81 25.85 25

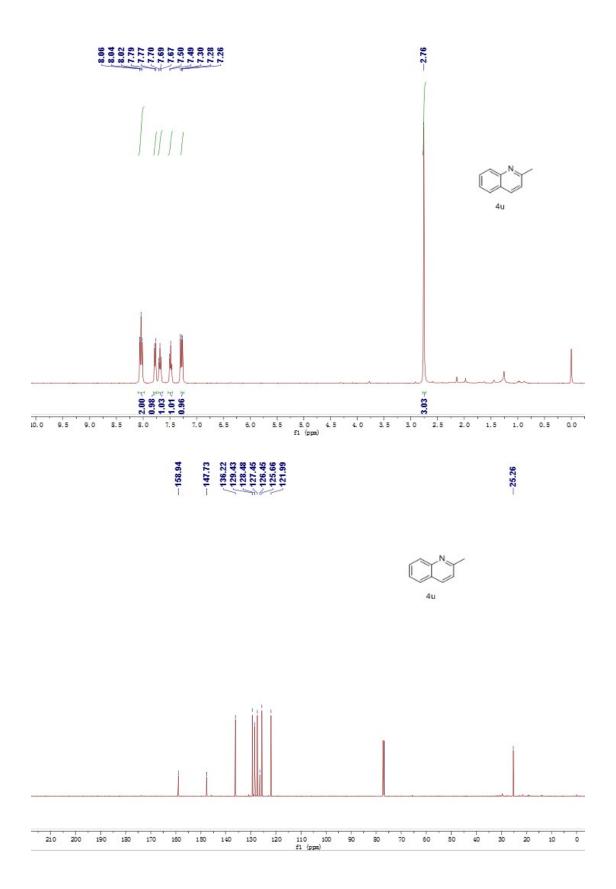


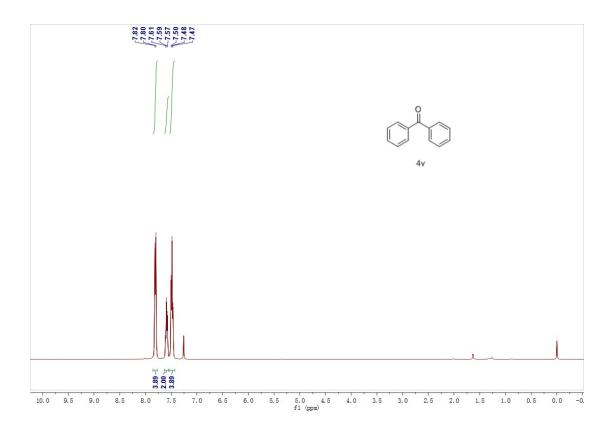

-162.97-151.89133.02133.362133.362123.109123.109123.109-117.65-111.99-102.41-102.41-102.41-50.98-50.98

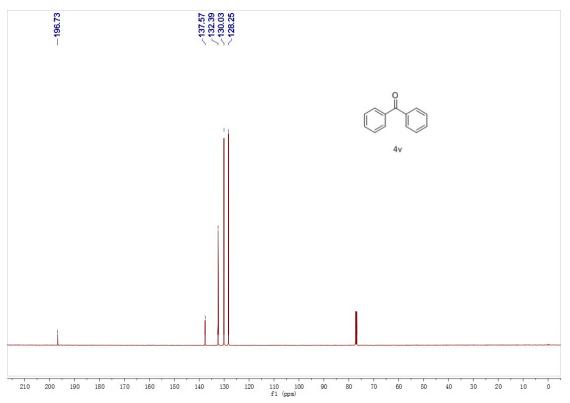


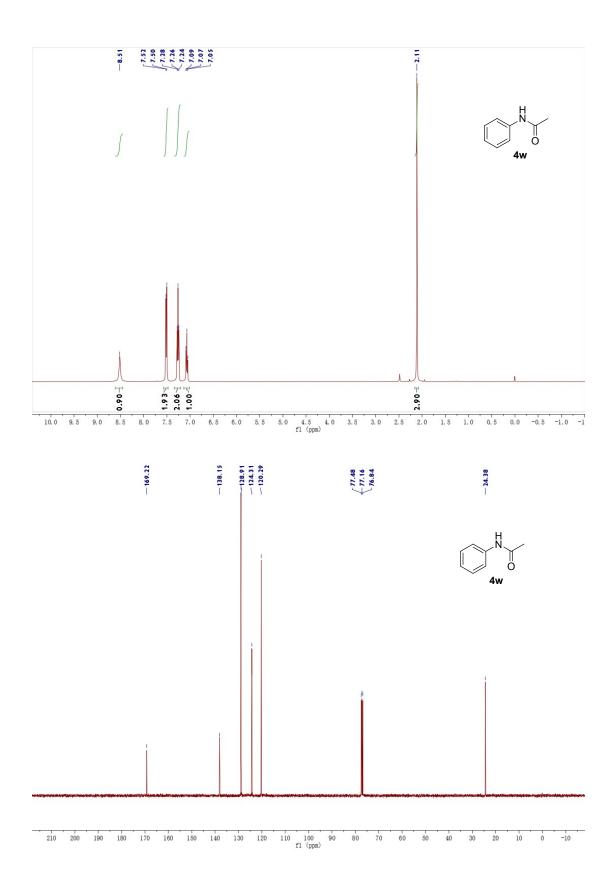

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 10 fl (ppm)

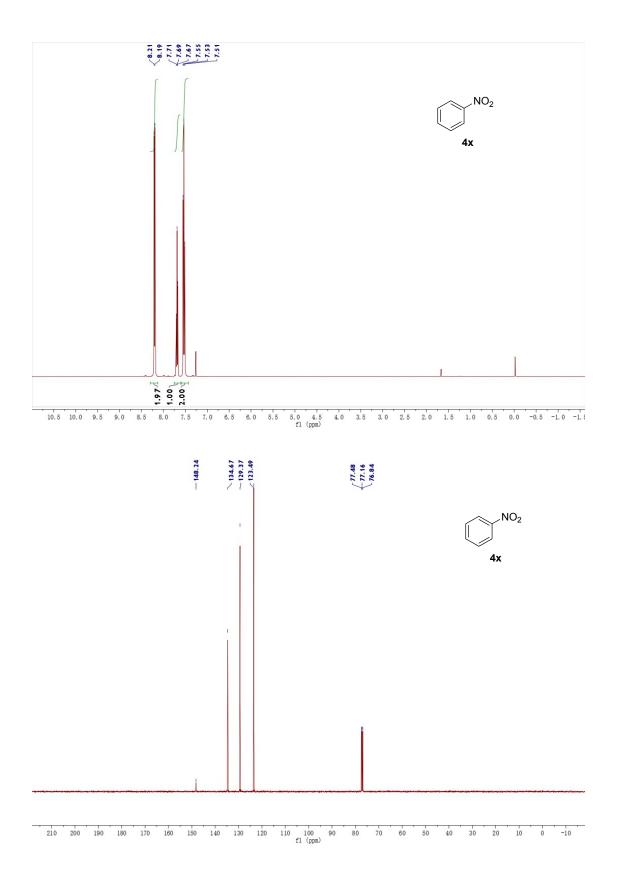


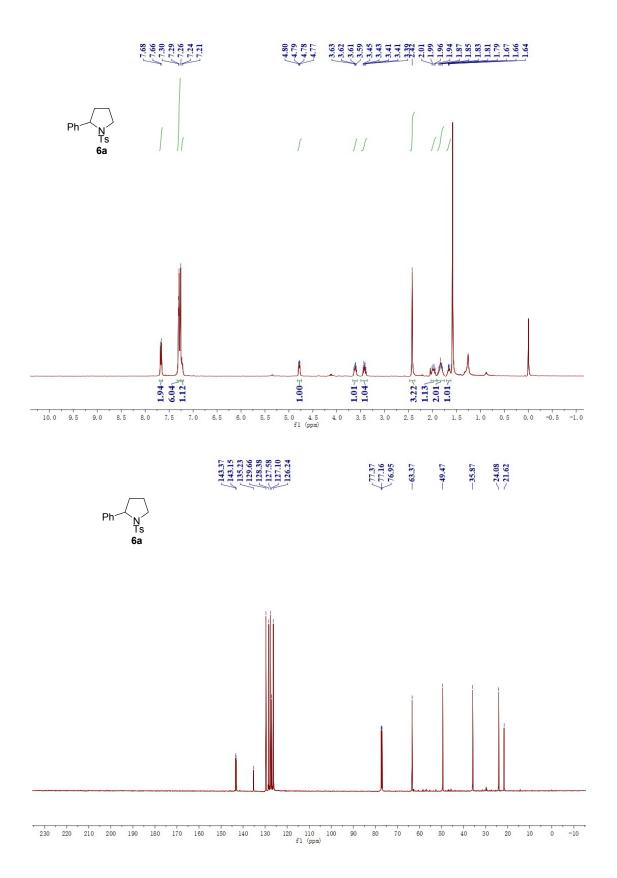


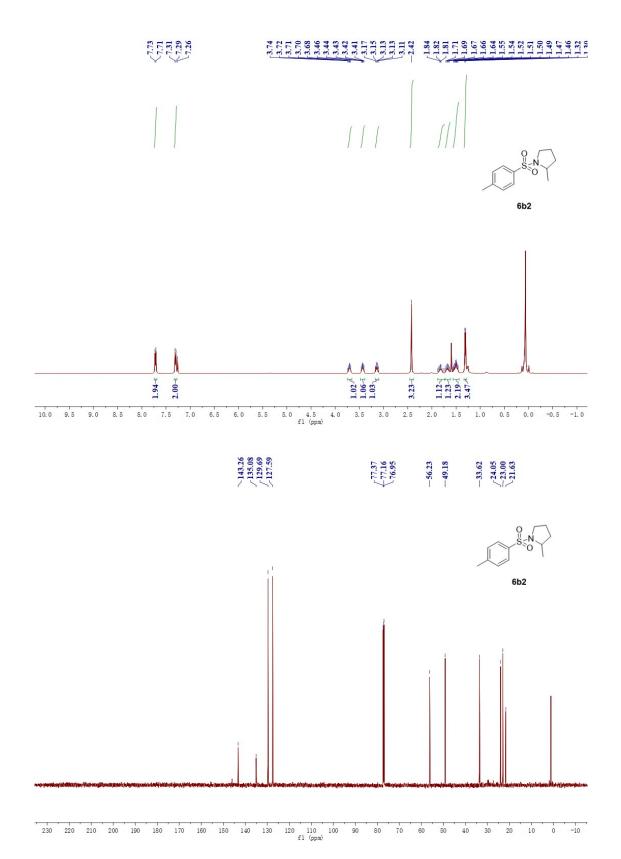


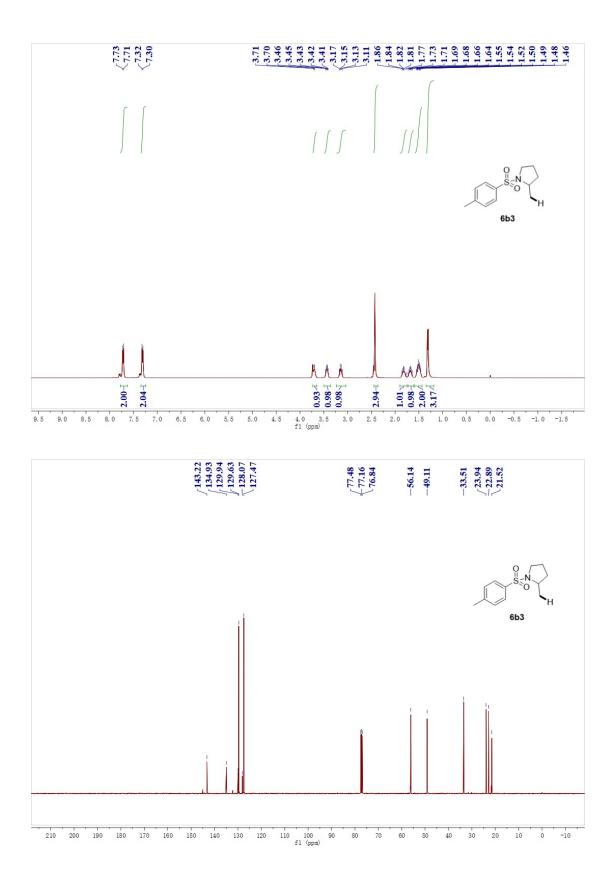


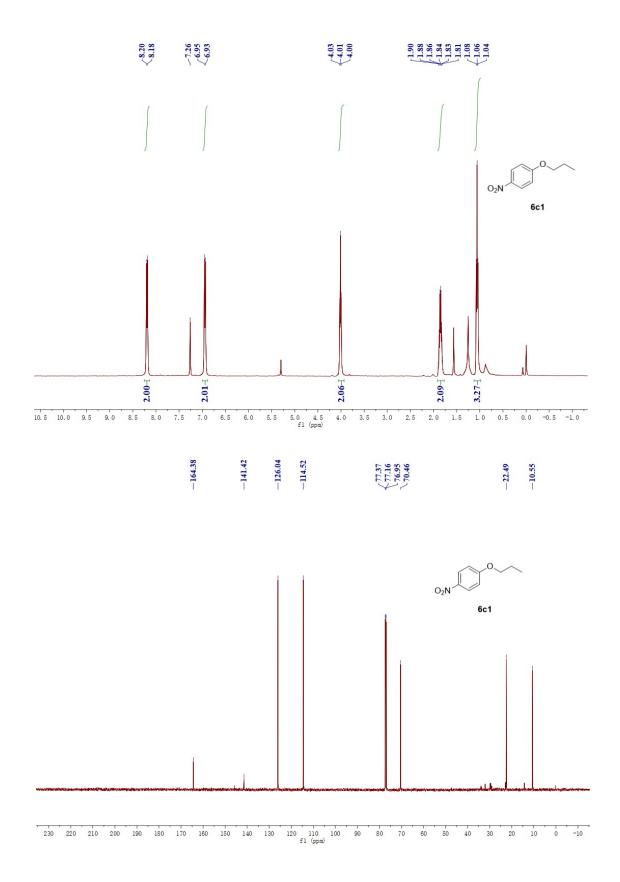


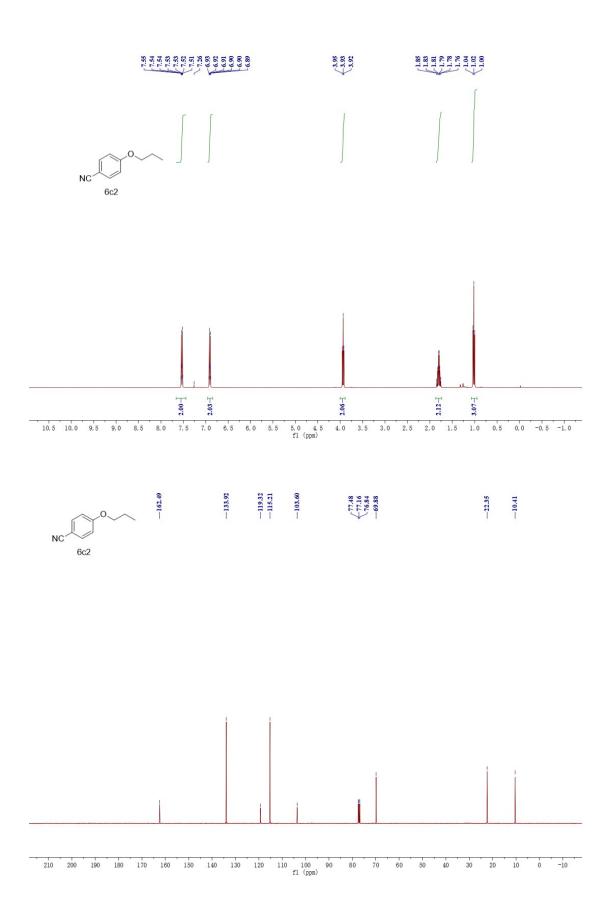


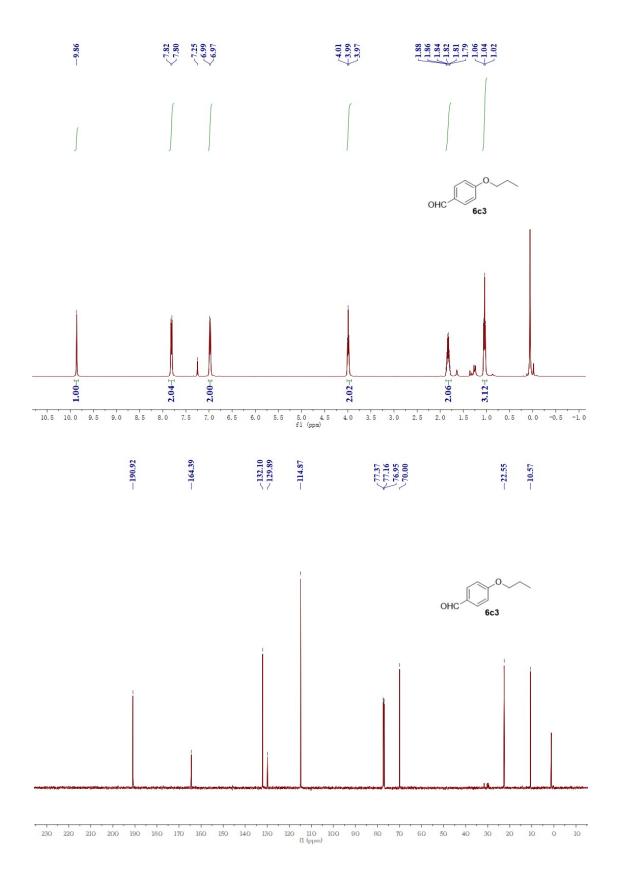


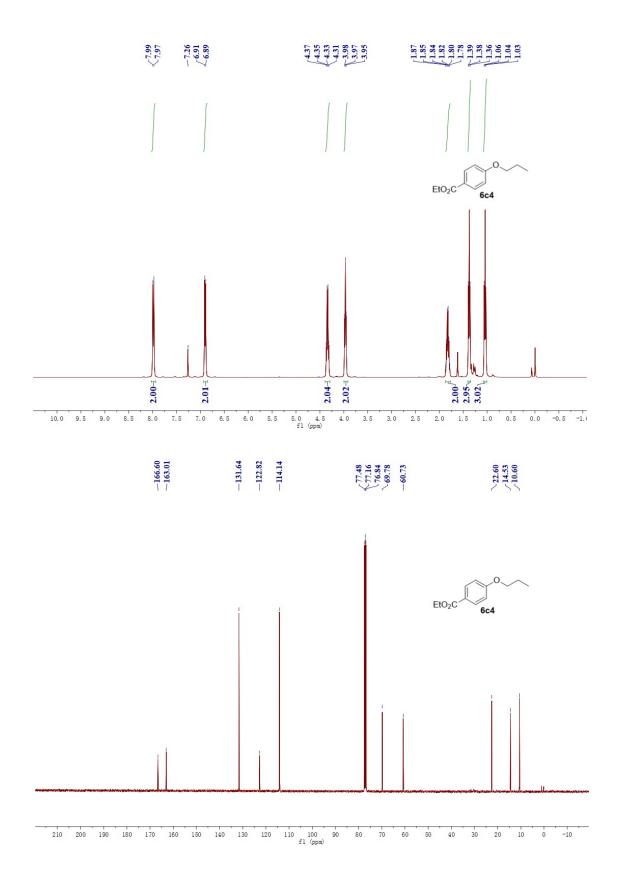


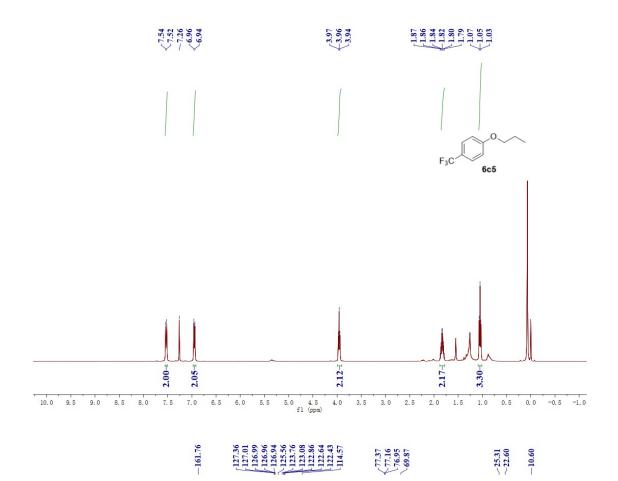


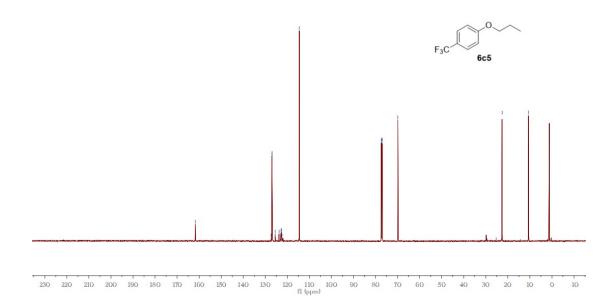


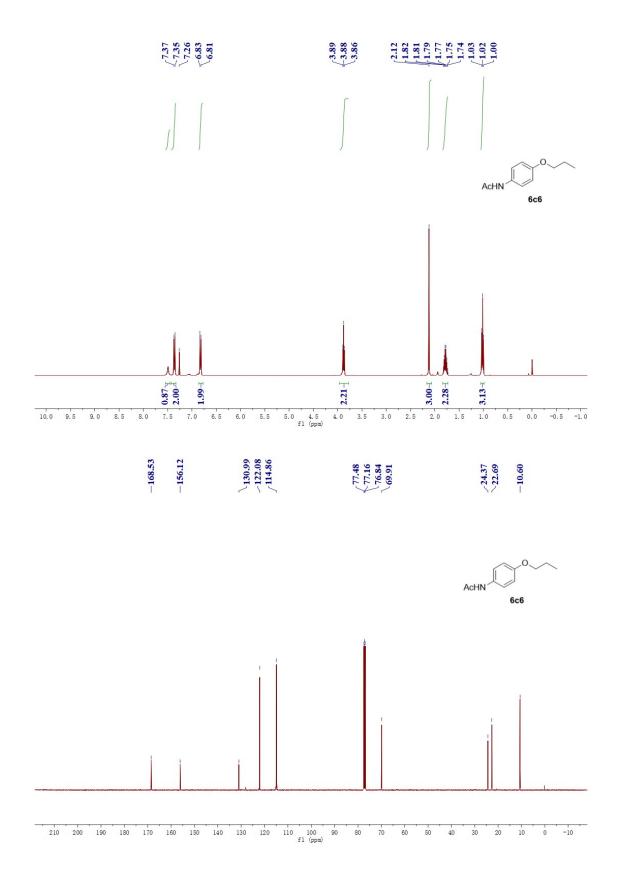


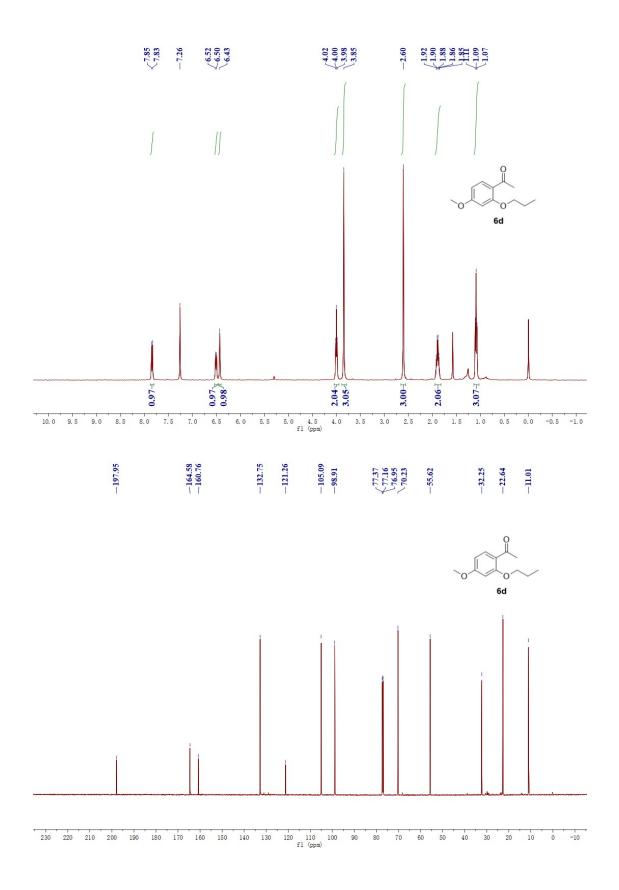


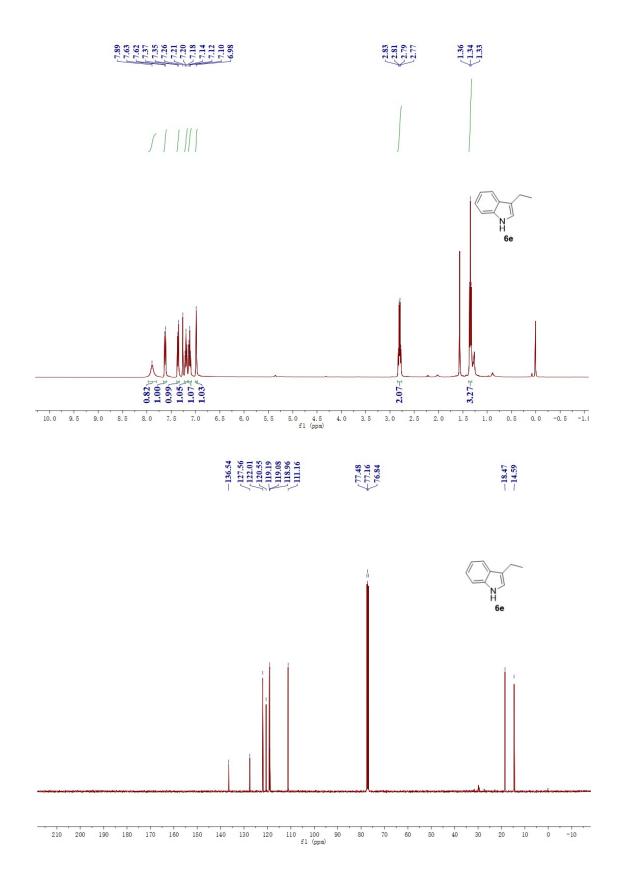


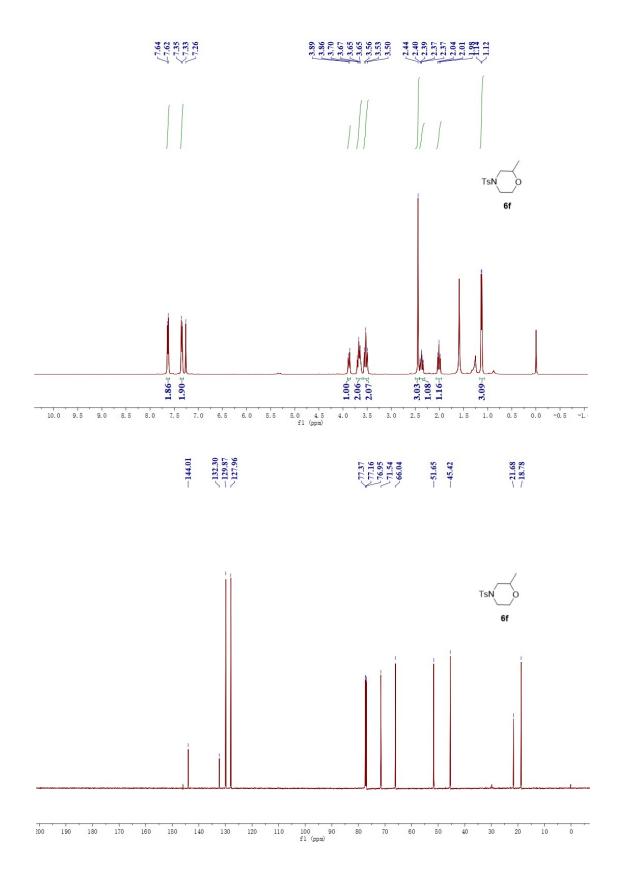


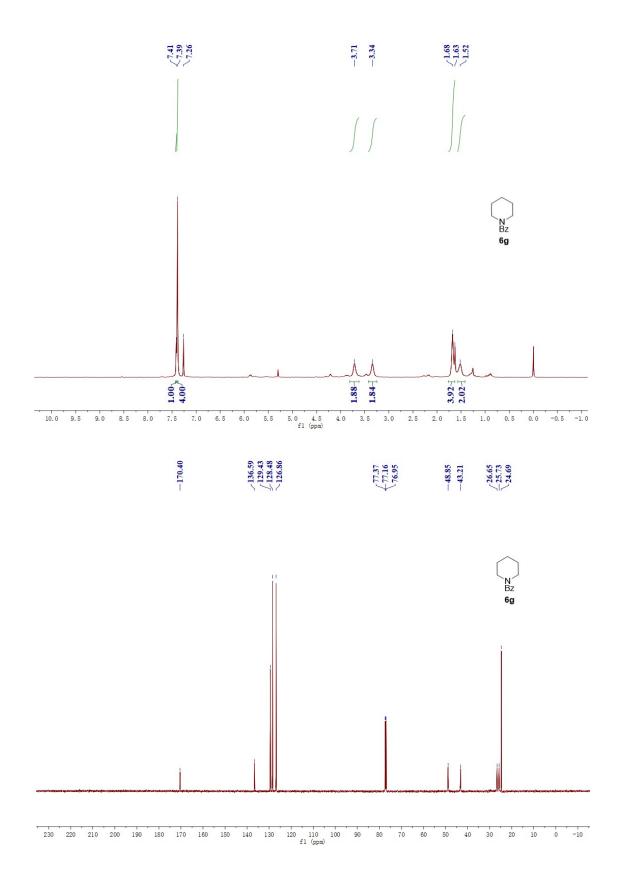


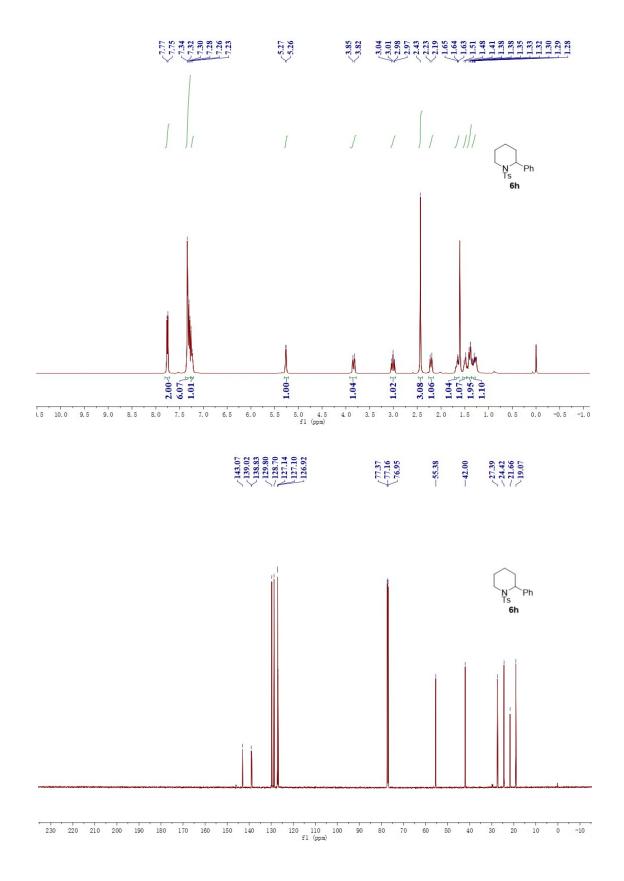


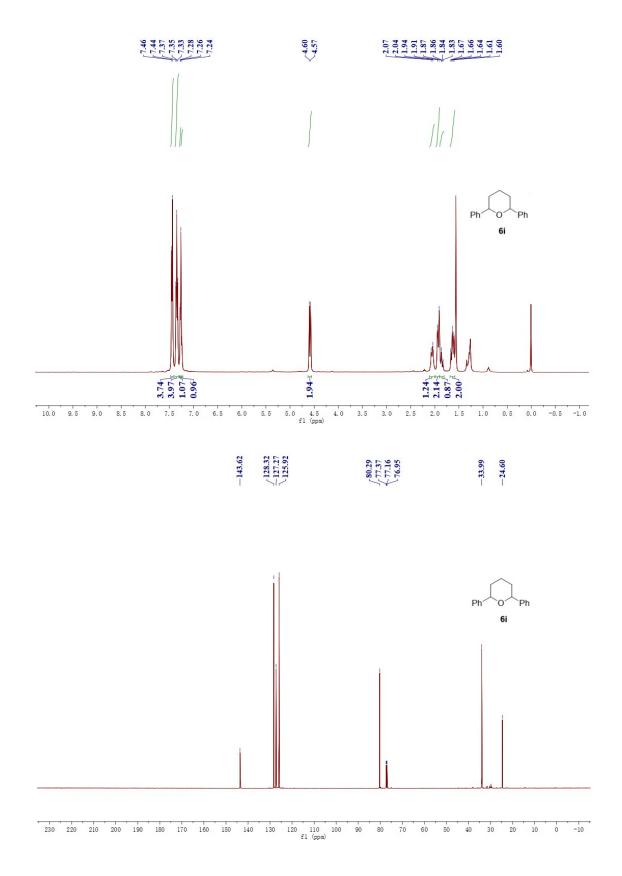


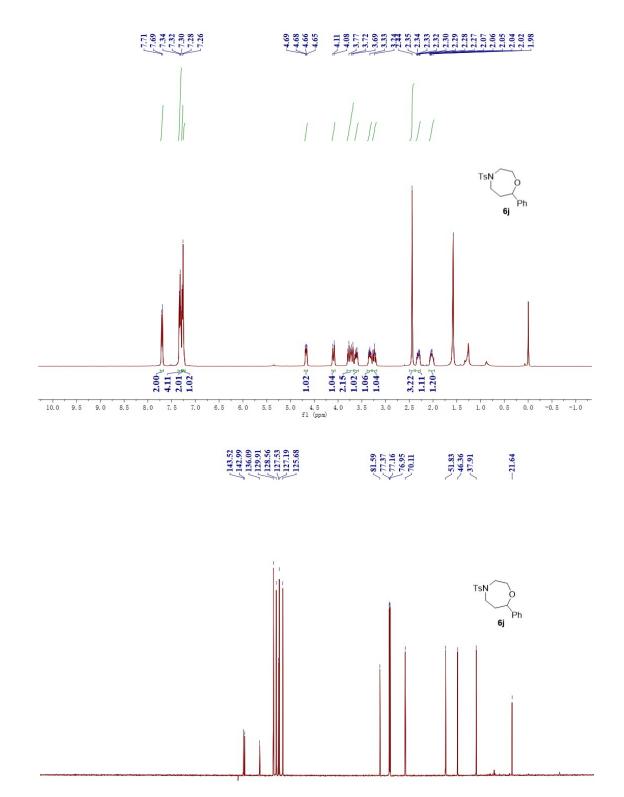


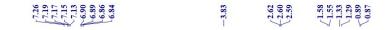


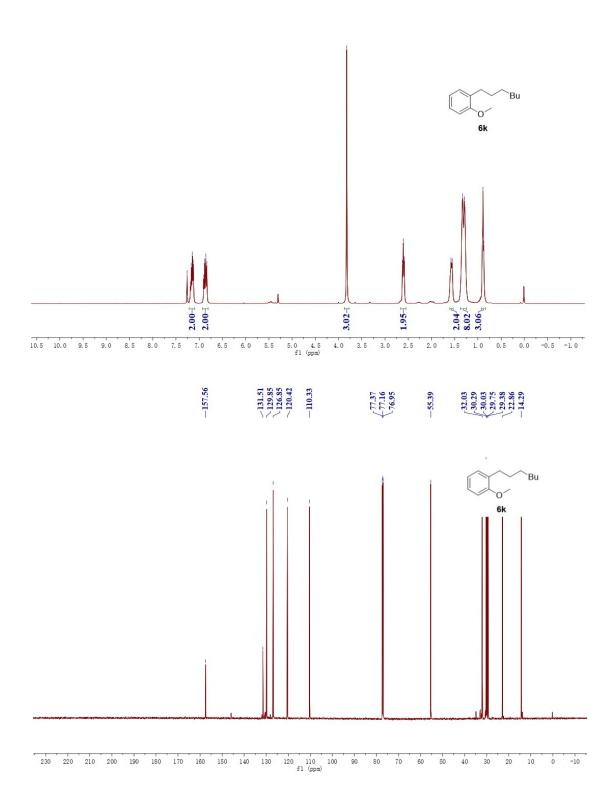


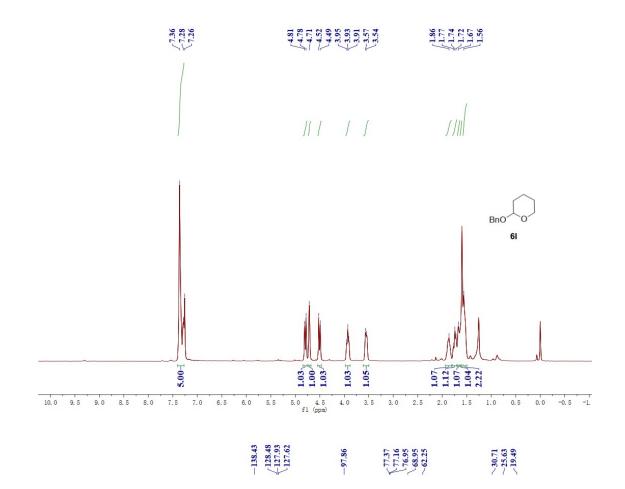


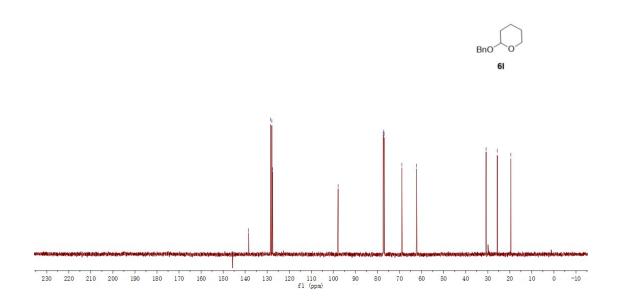


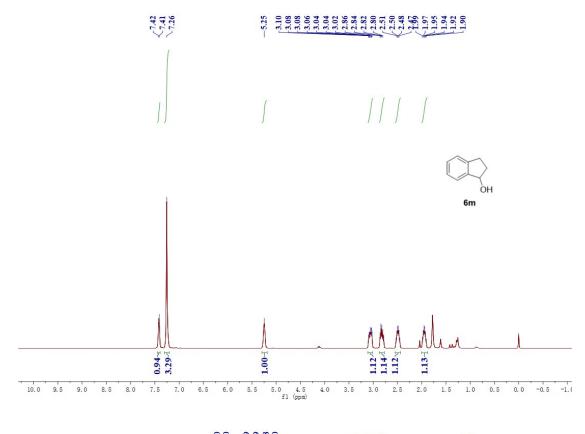


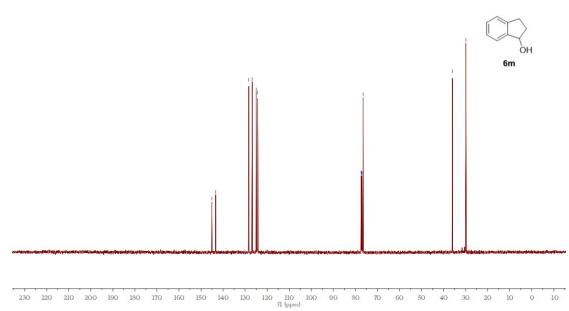


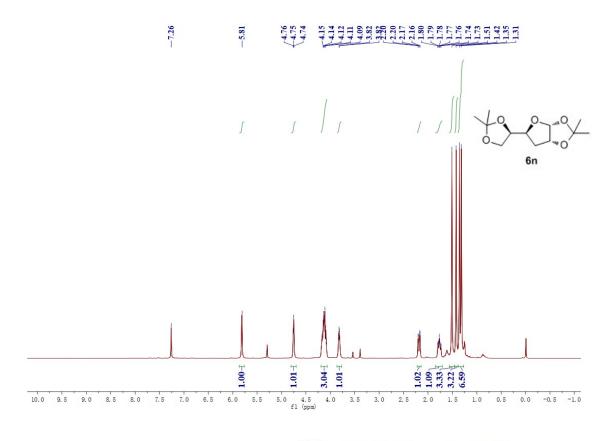


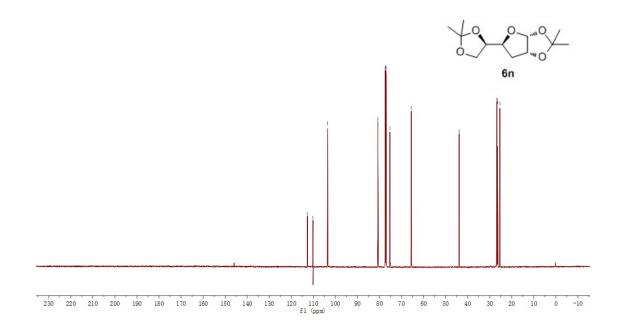


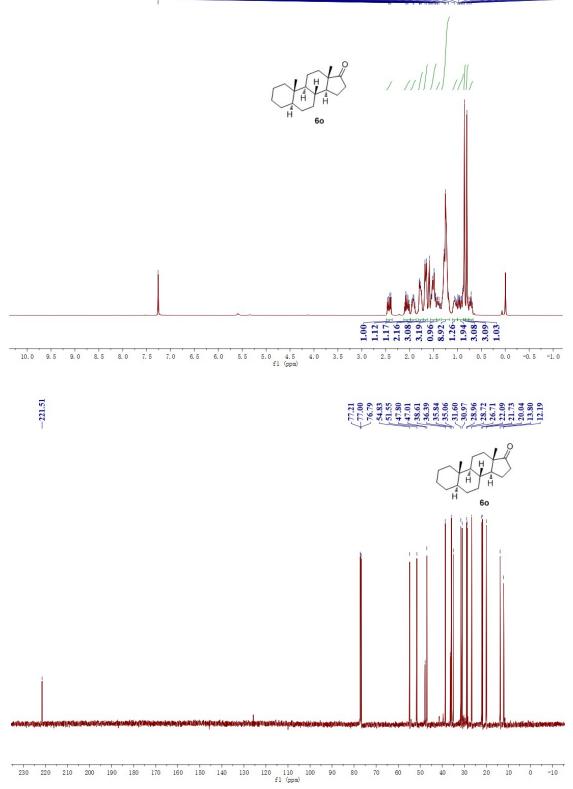


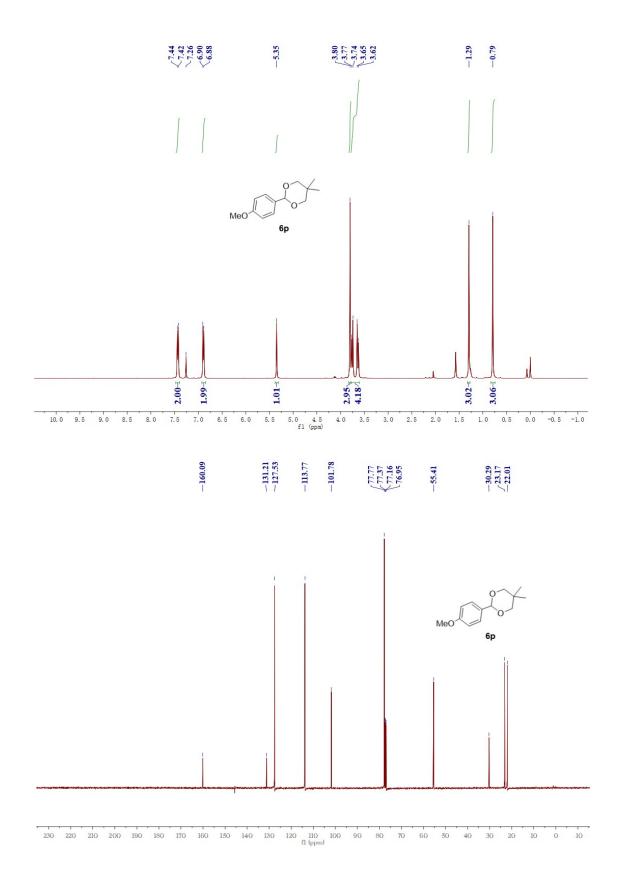

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

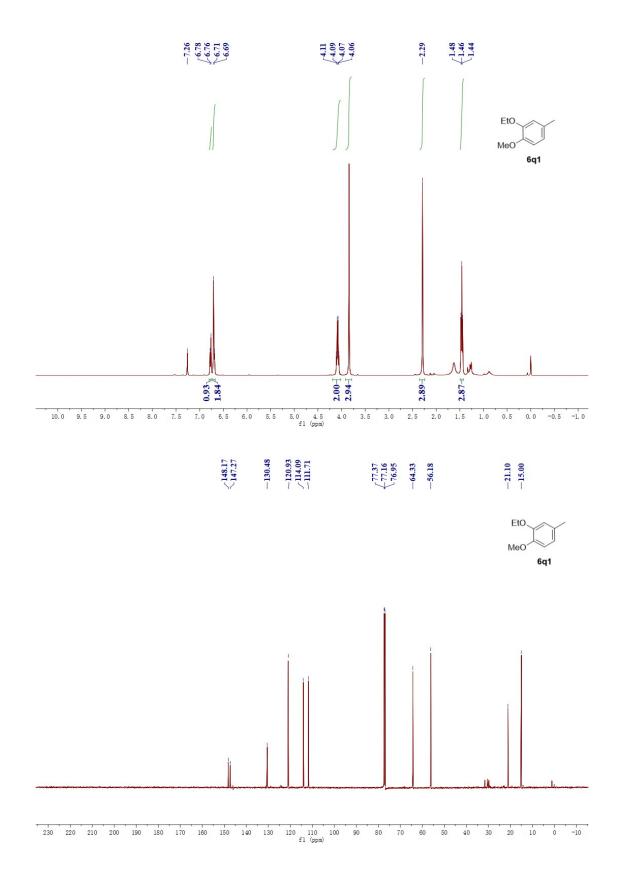


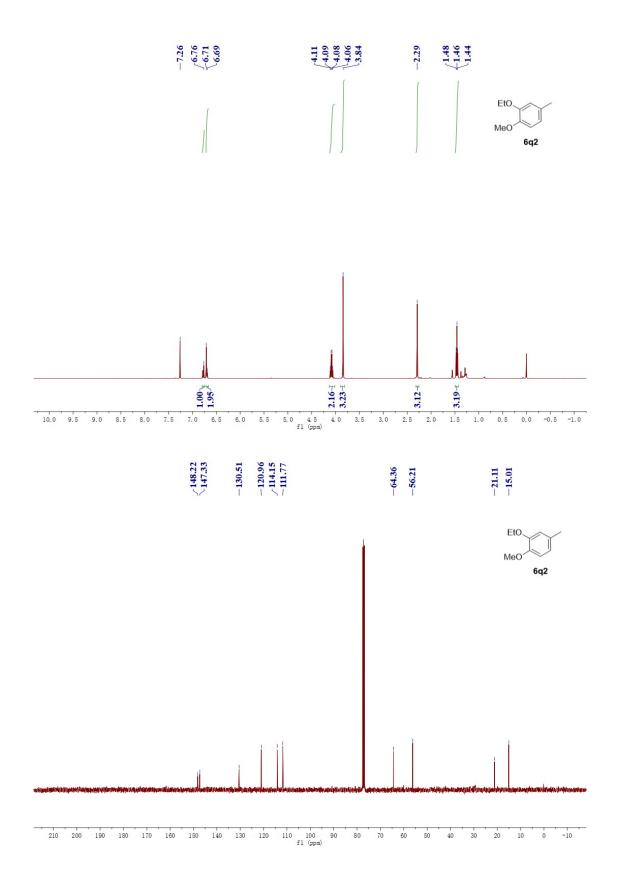


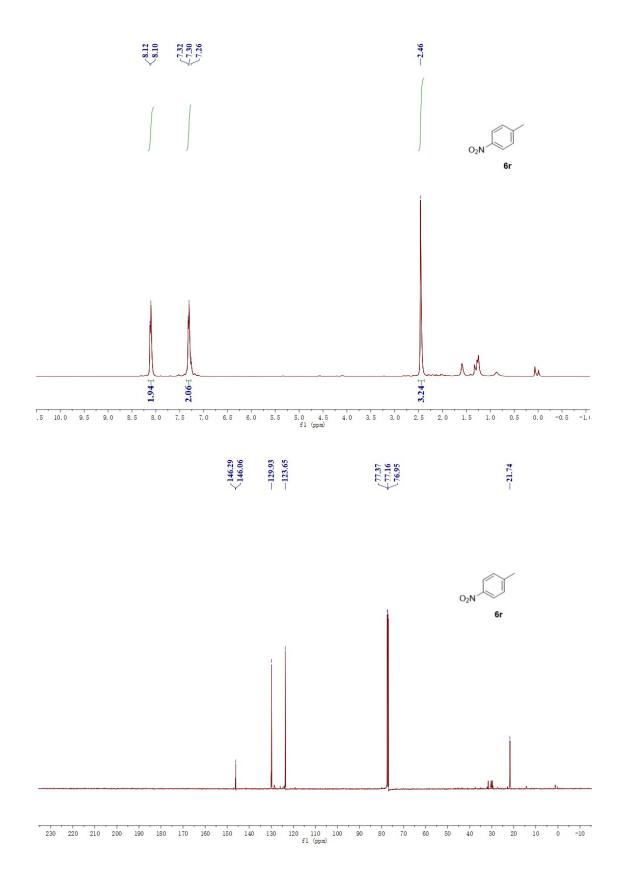


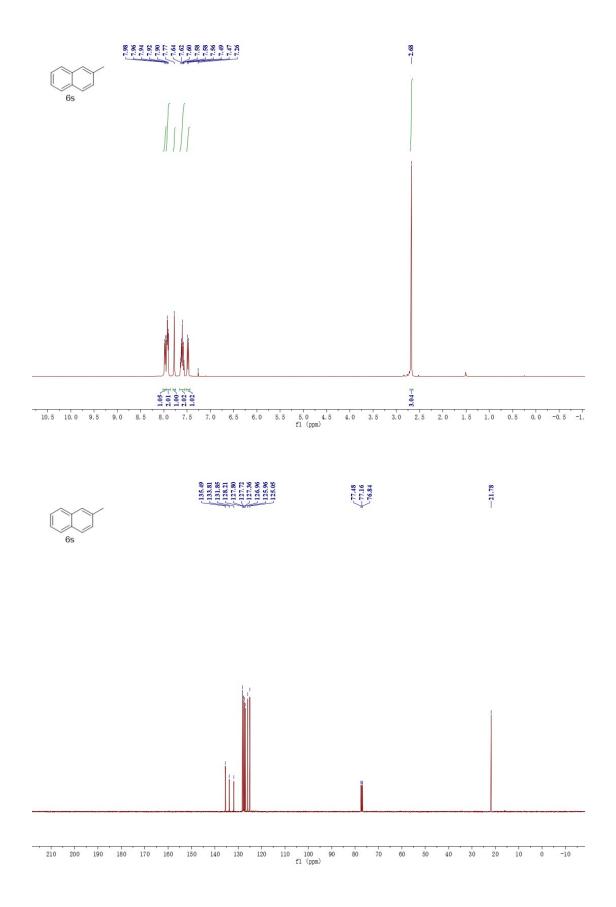


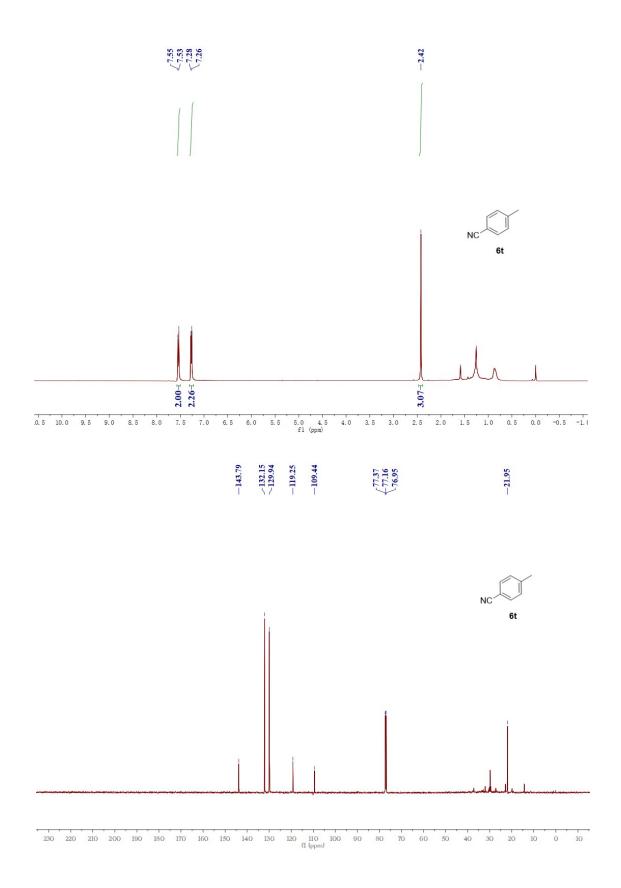


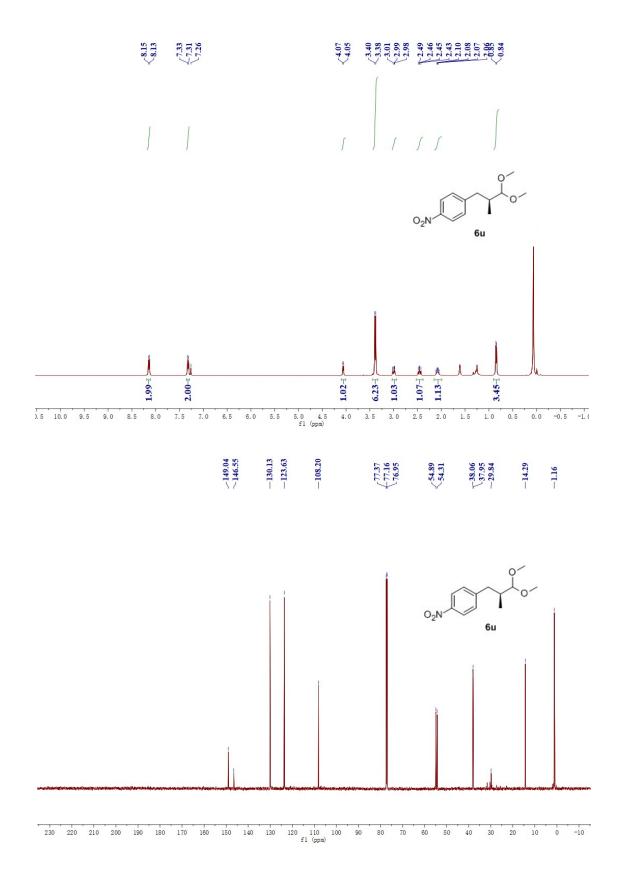

-112.70 -112.70 -103.54 -103.54 -103.54 -103.54 -13.85 -65.60 -43.85 -65.67 -65.67 -55.37 -55.37 -55.37

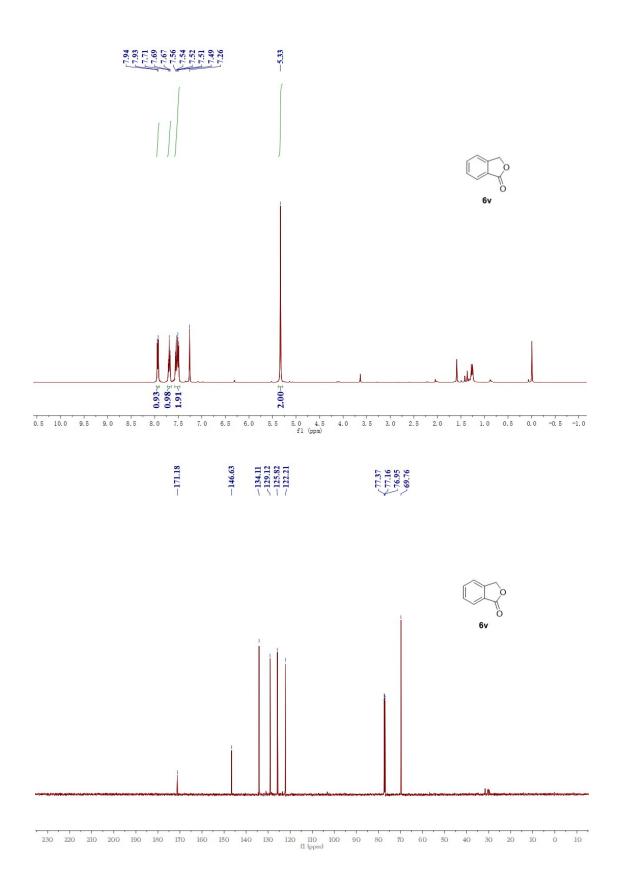


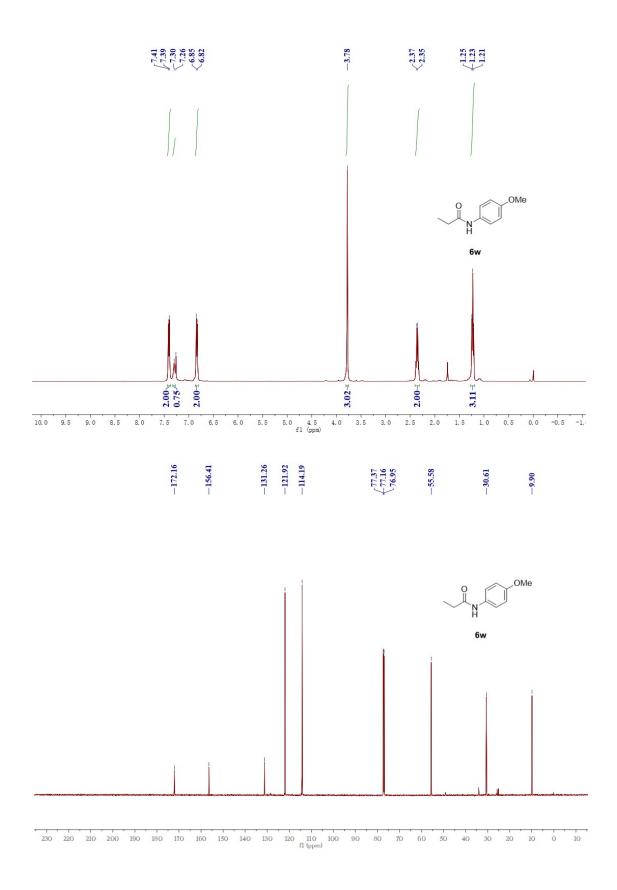


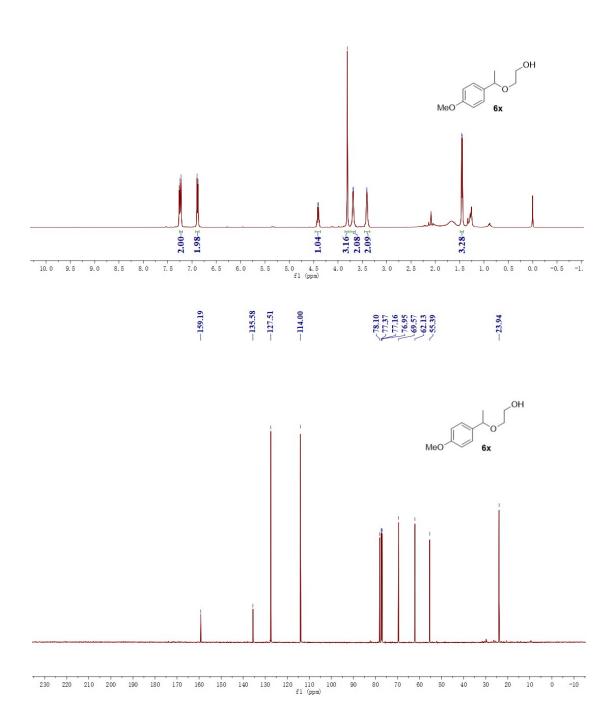


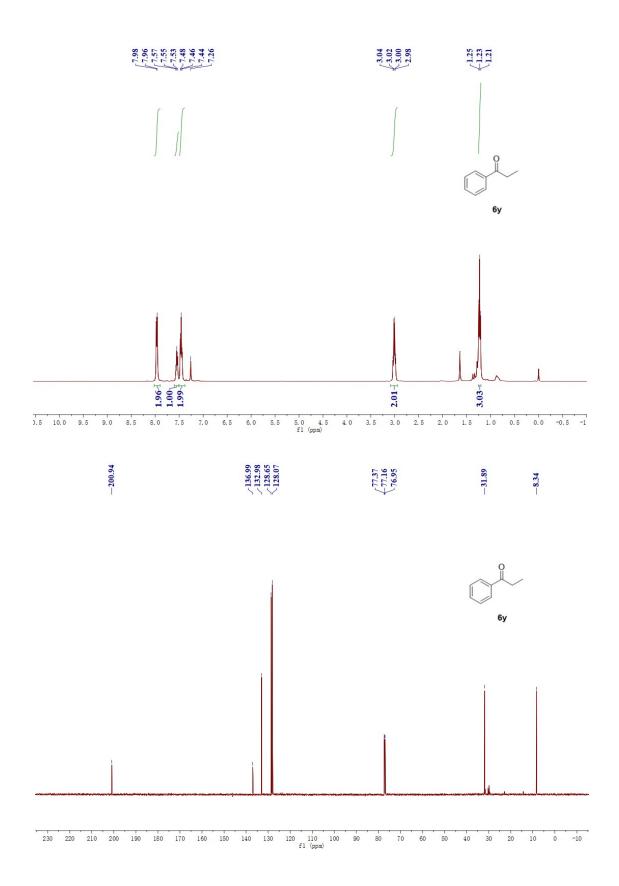


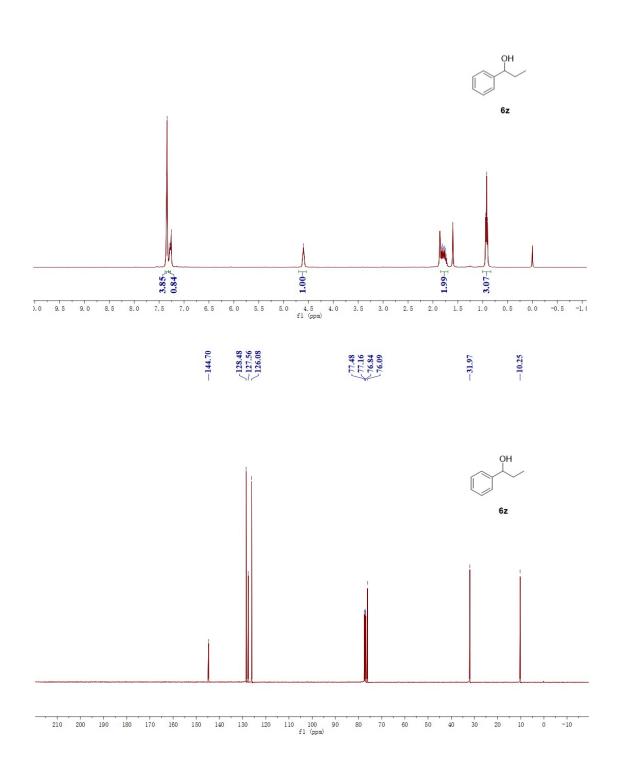


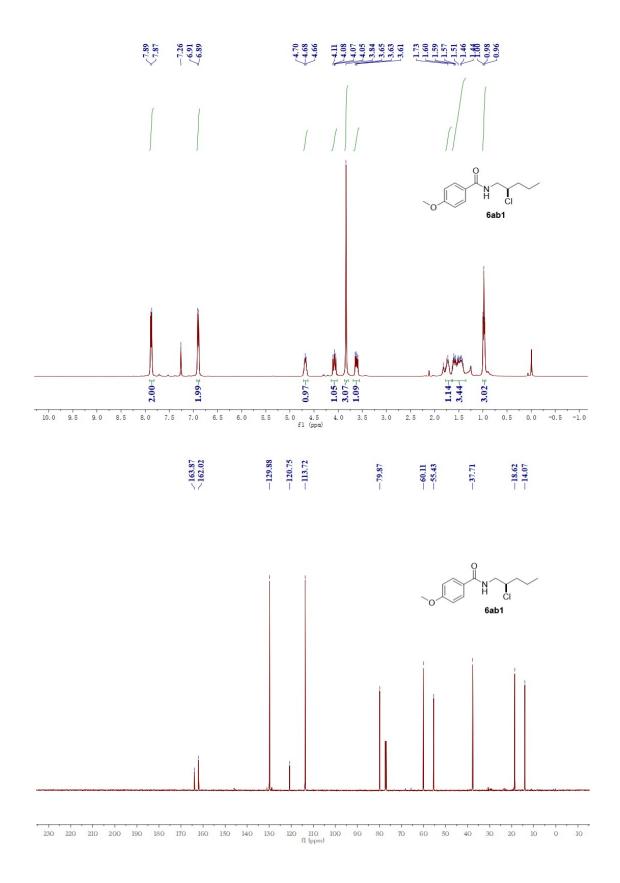


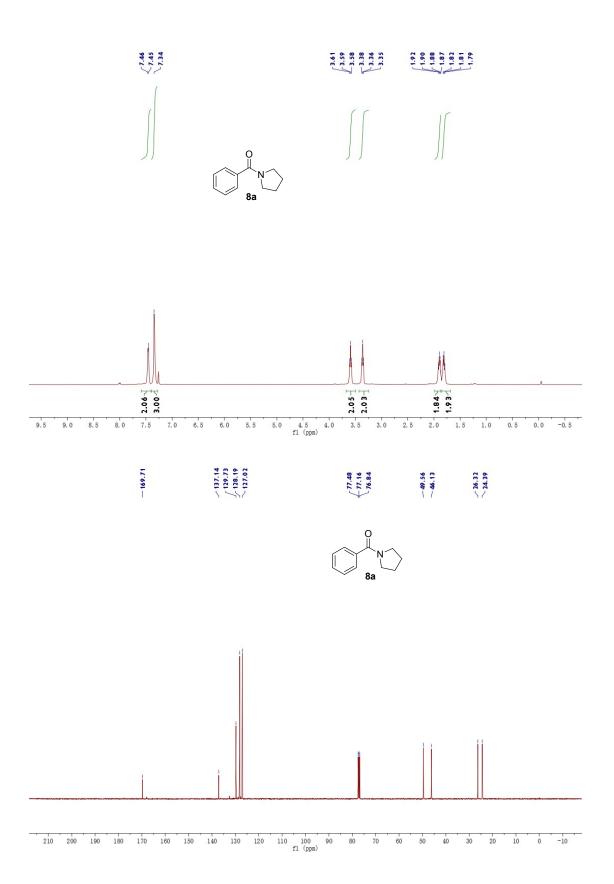


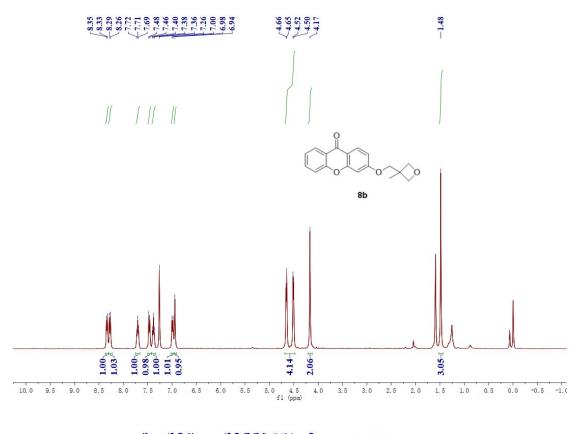


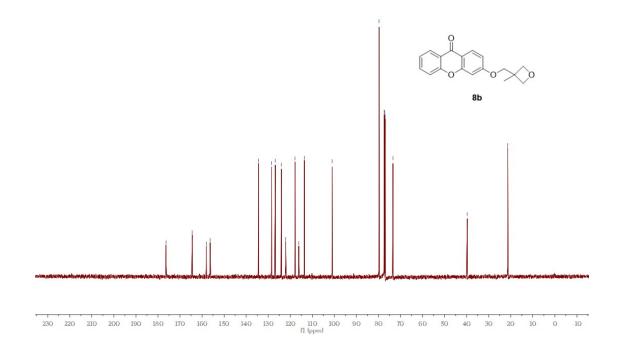


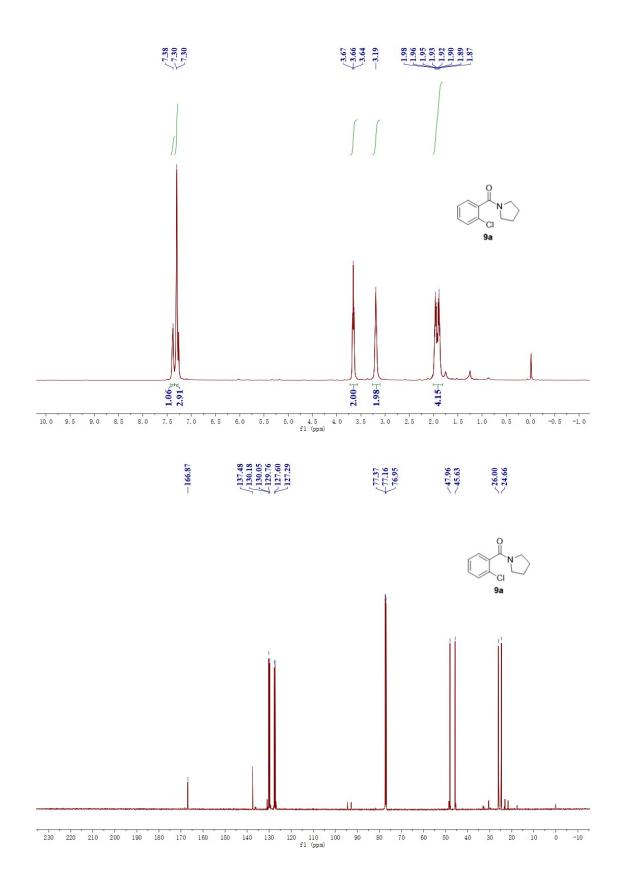


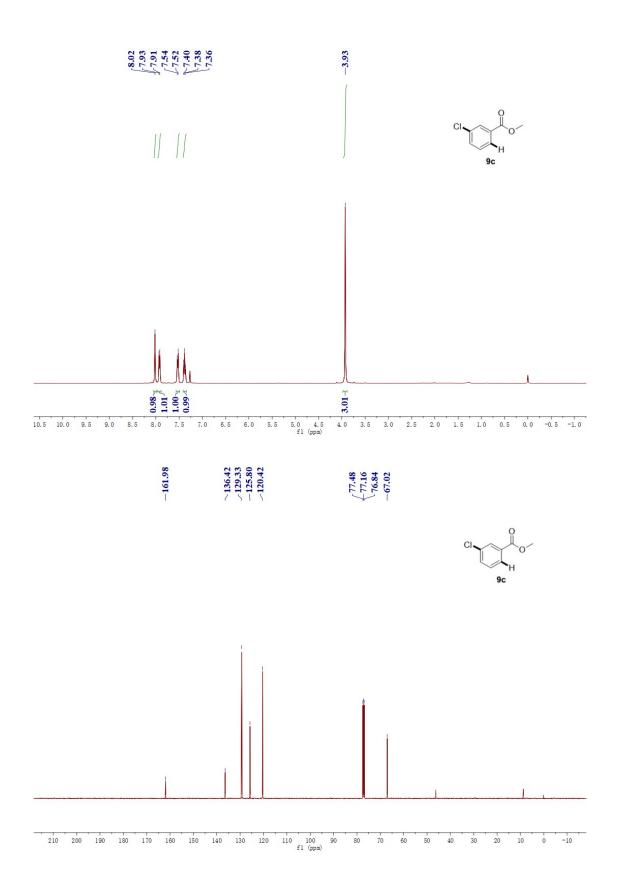


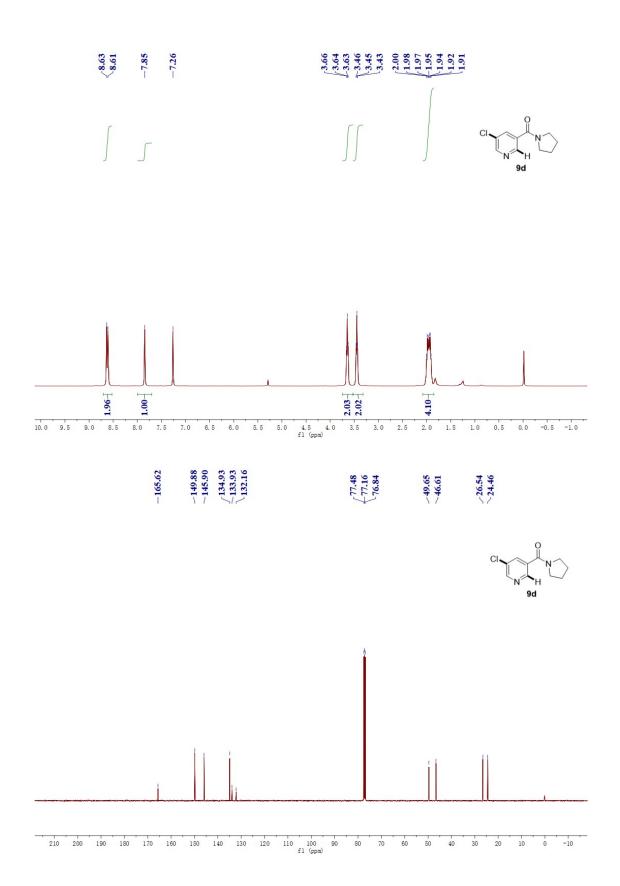


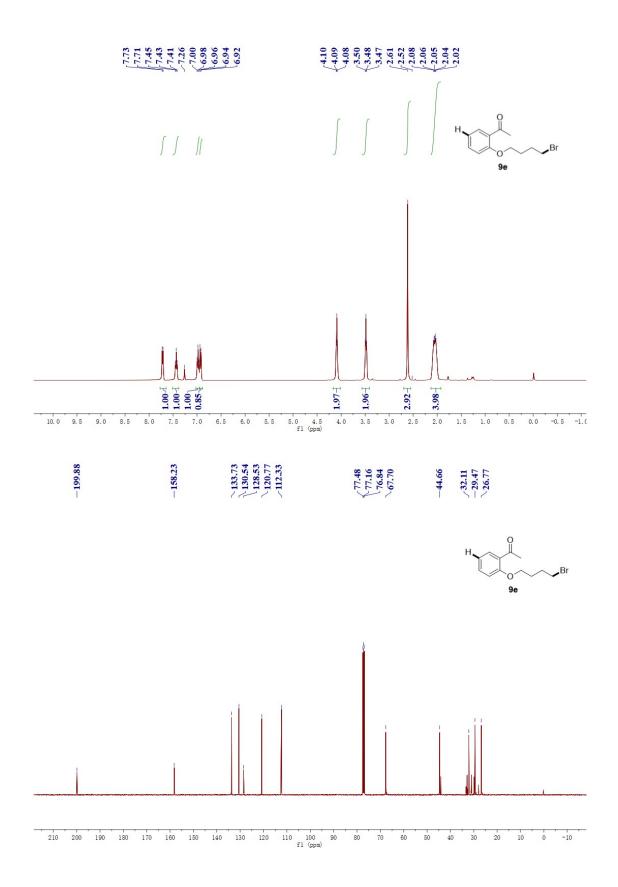


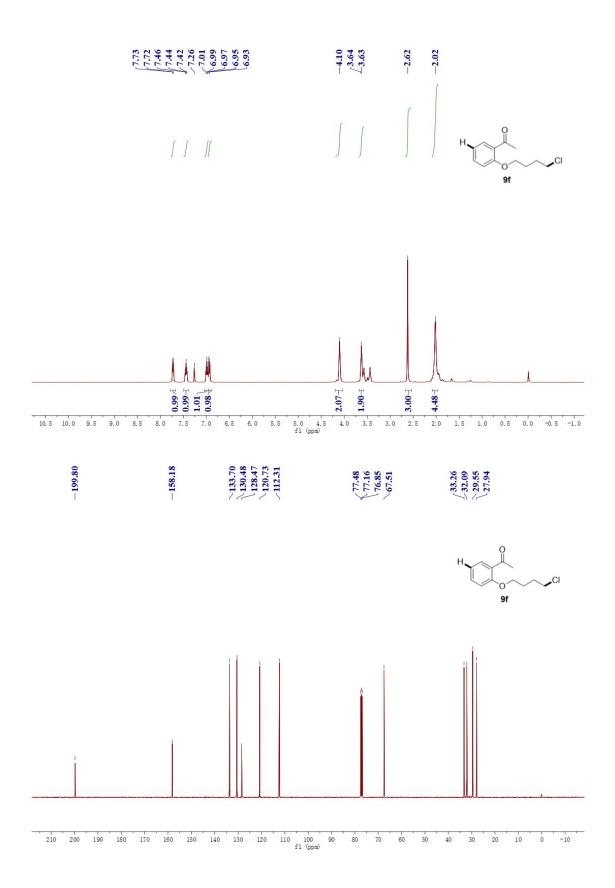


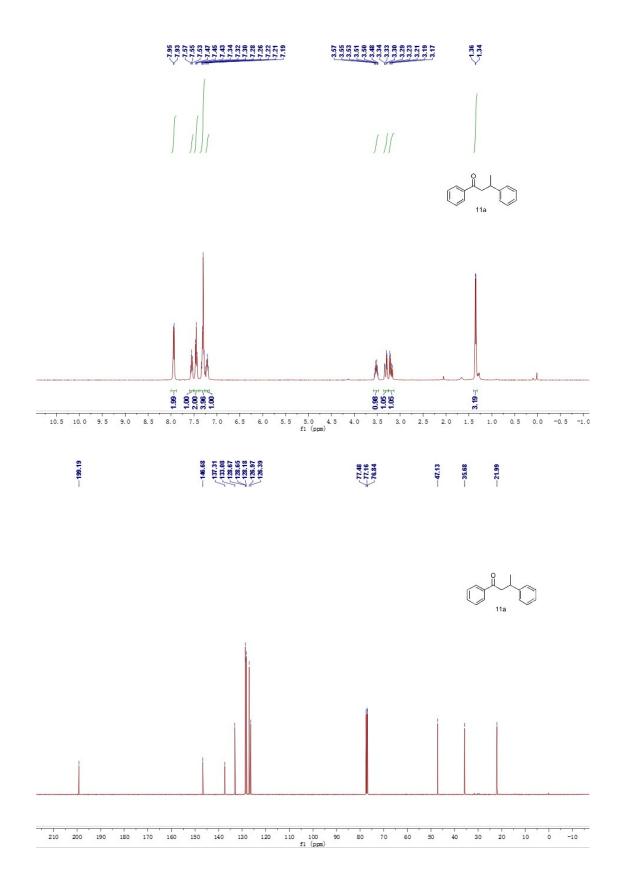


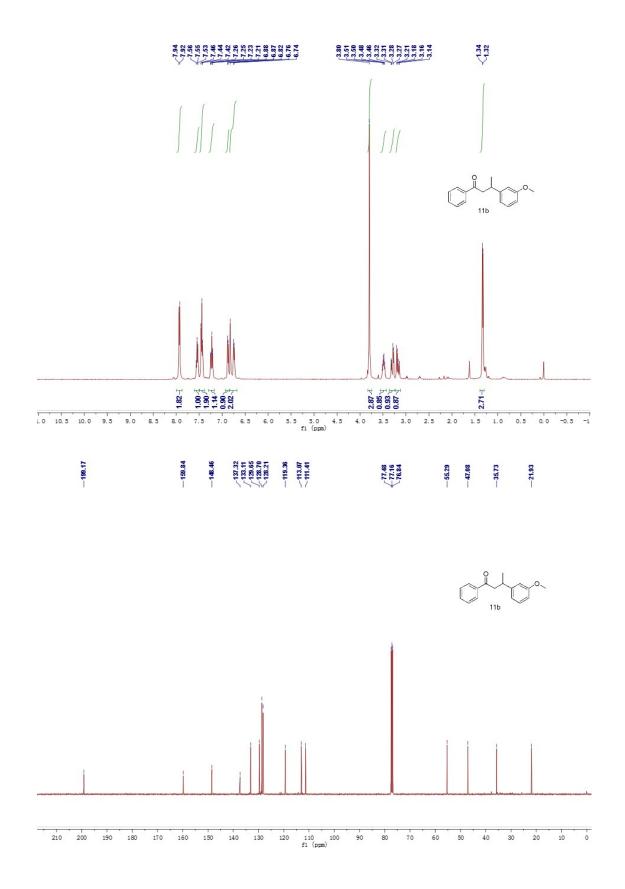


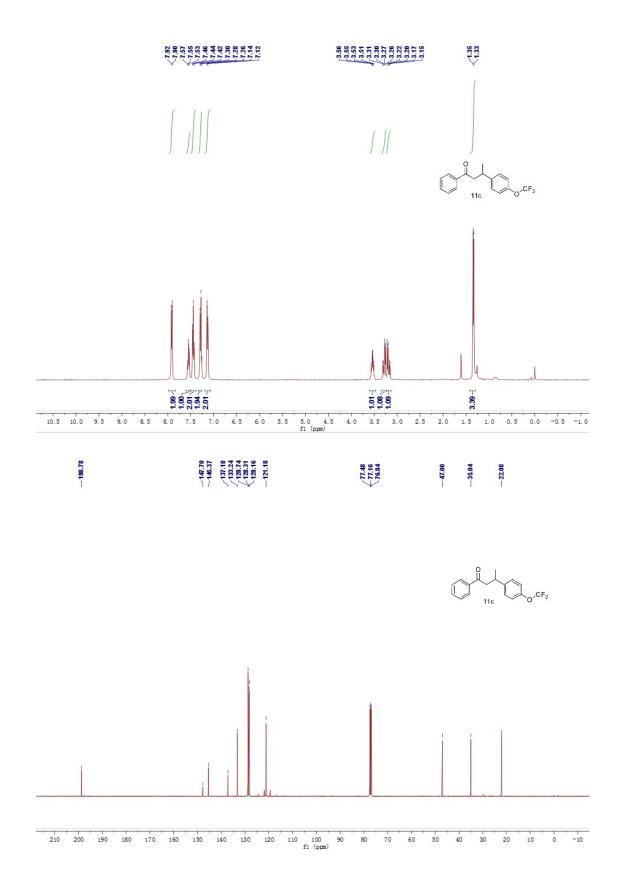


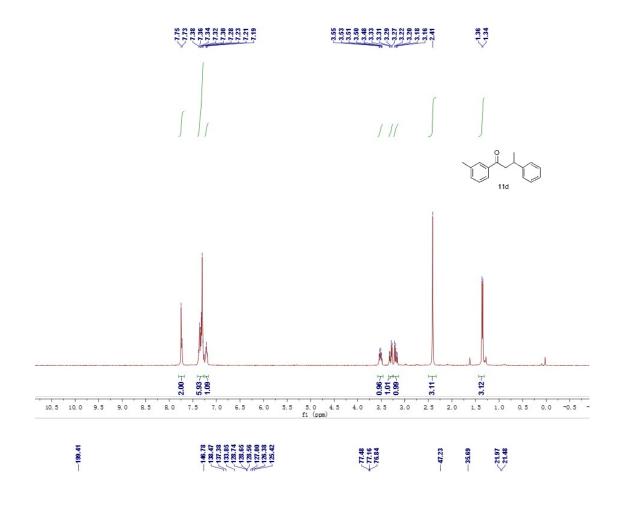


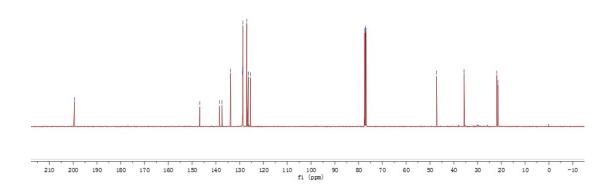


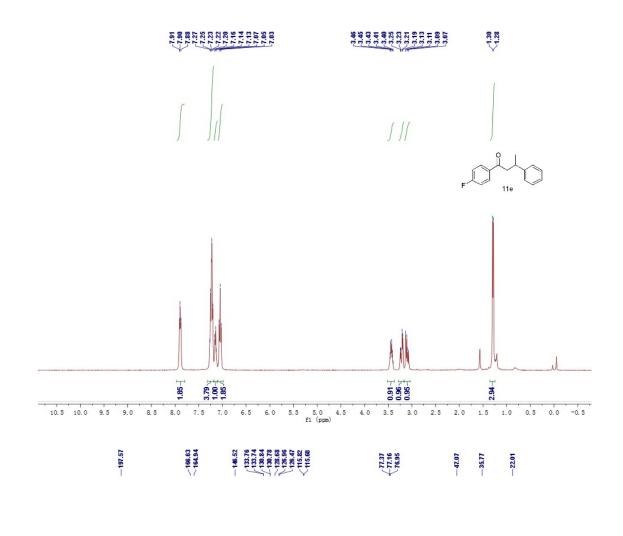


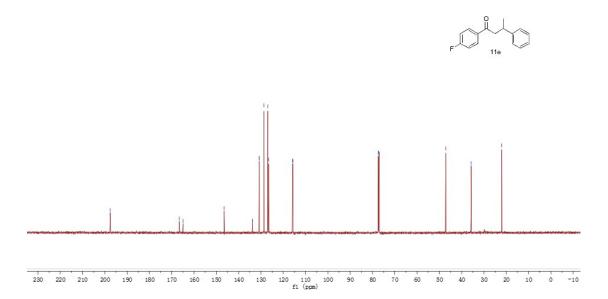


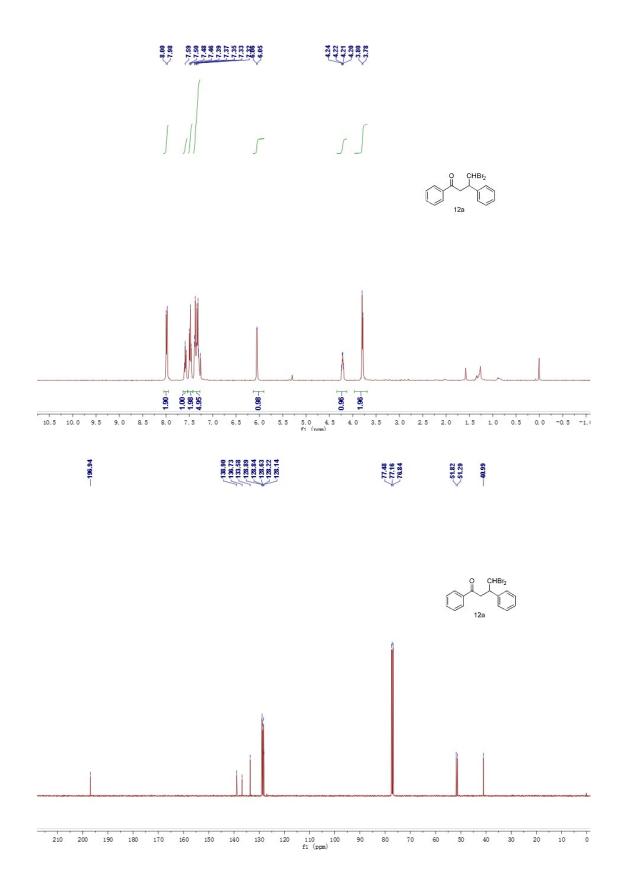


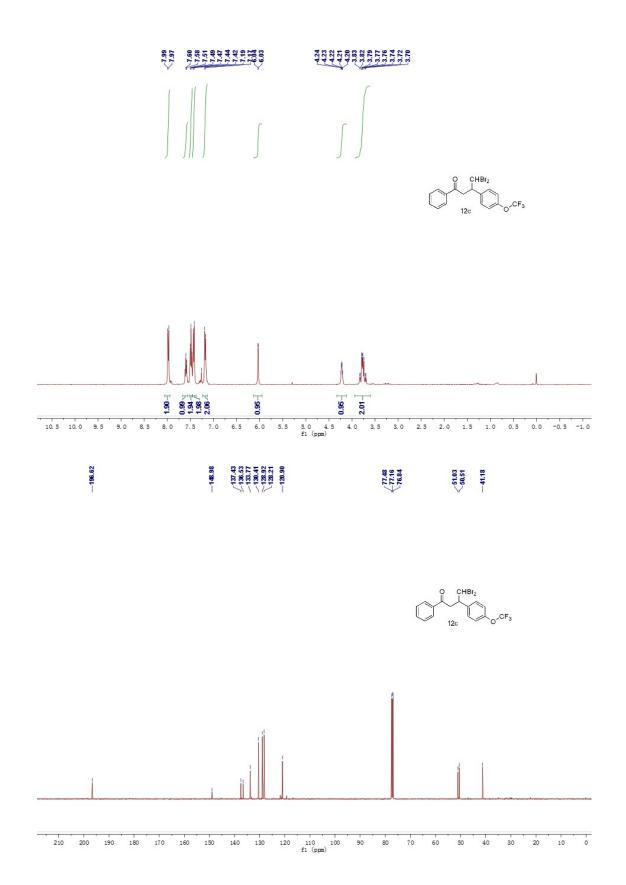


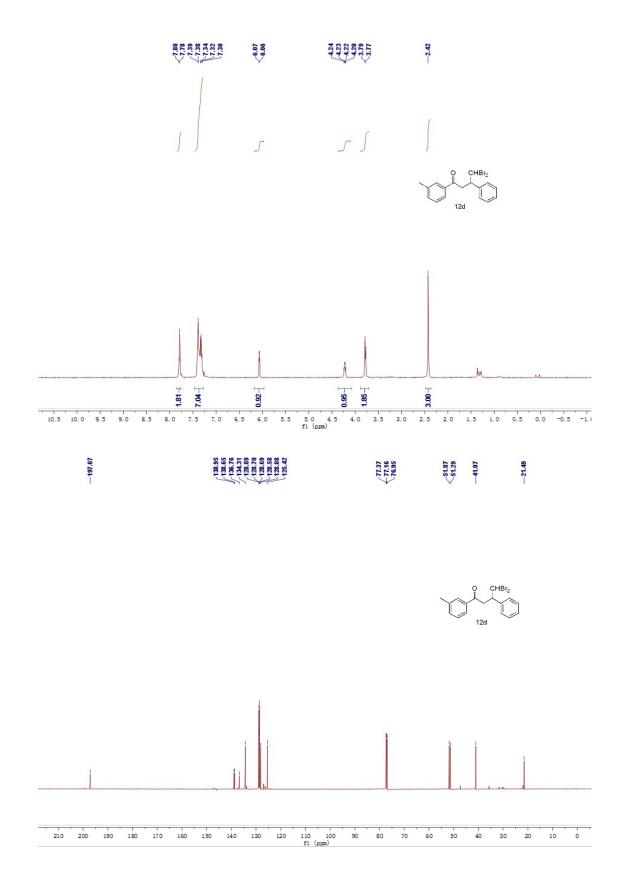


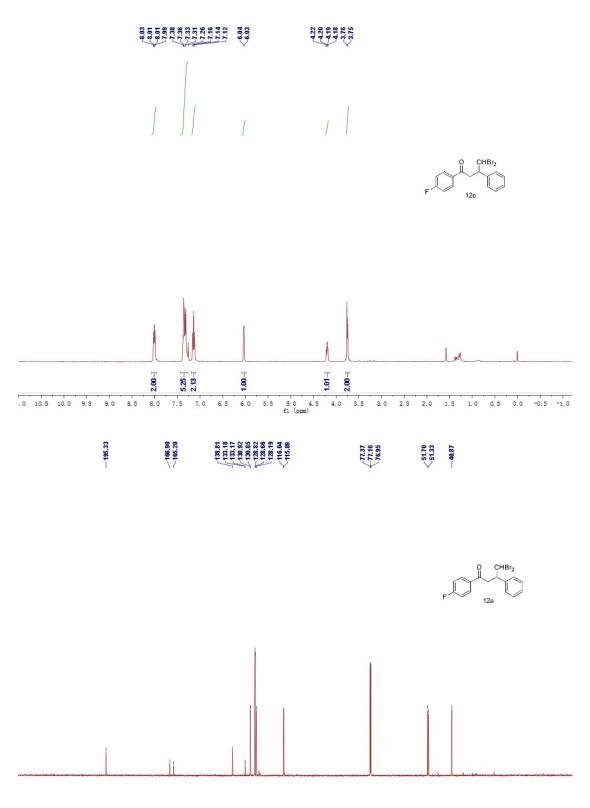


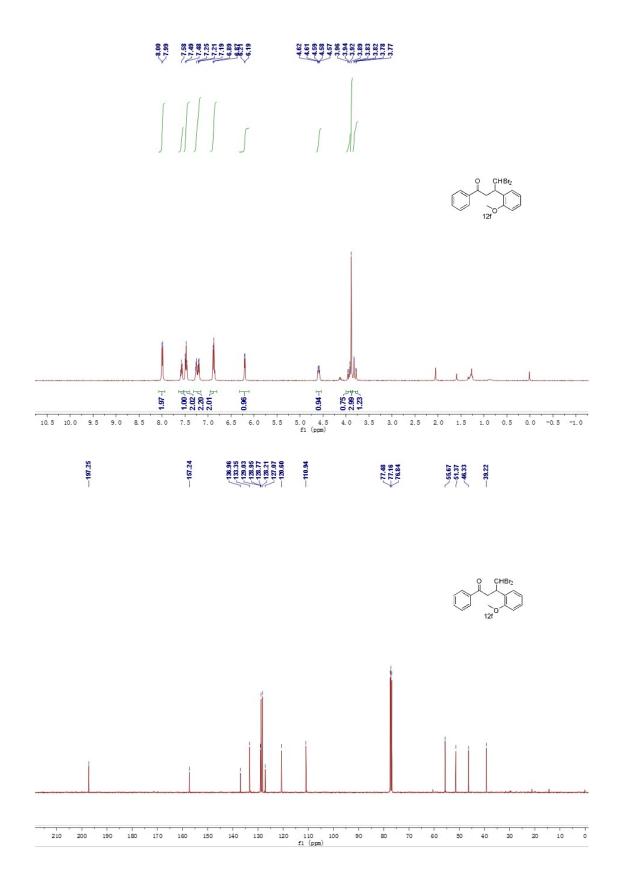


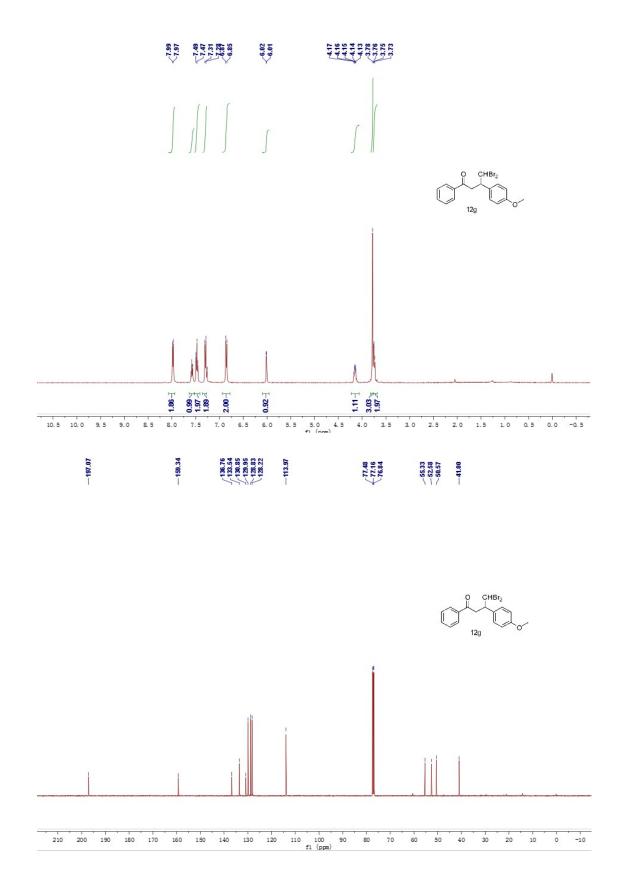


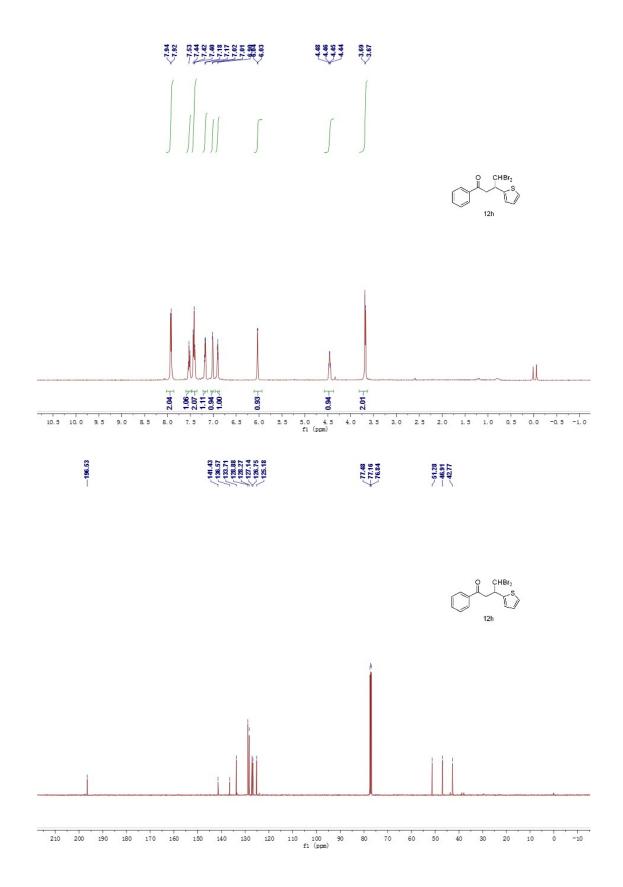


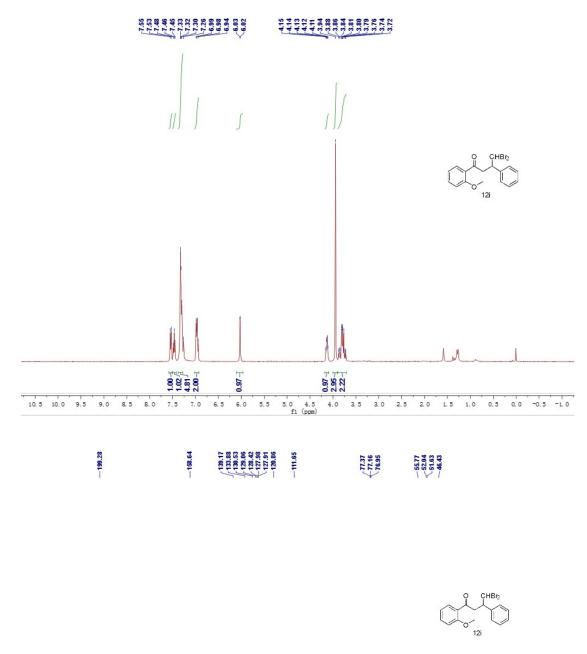


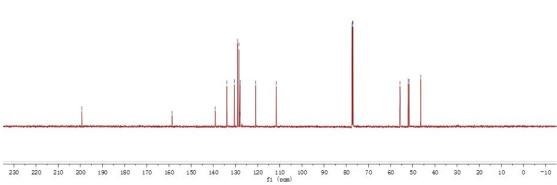


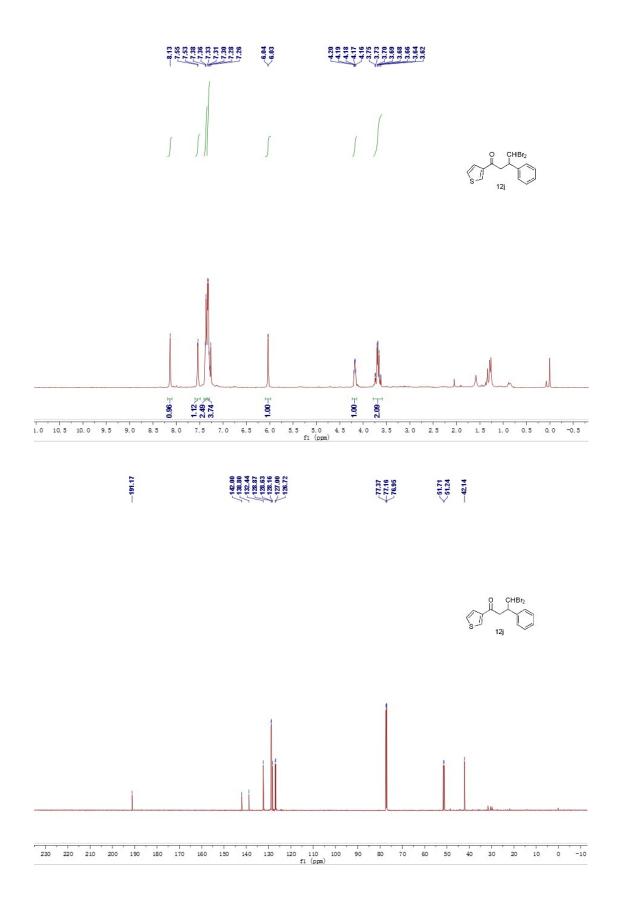


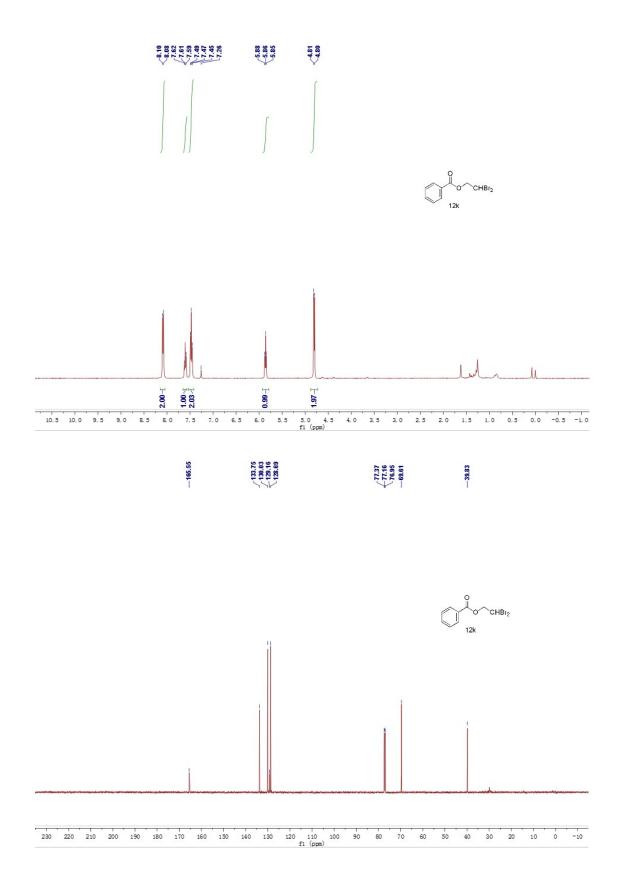


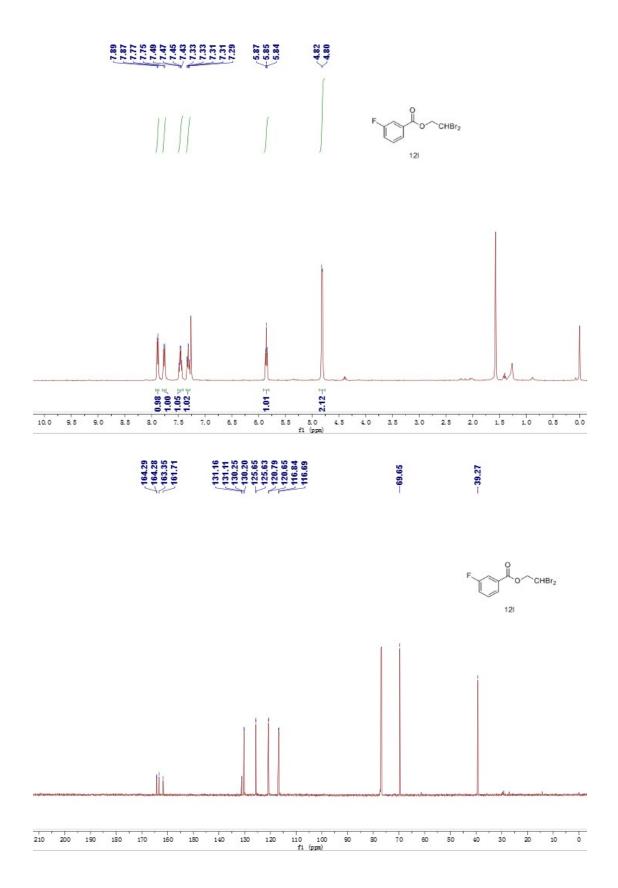


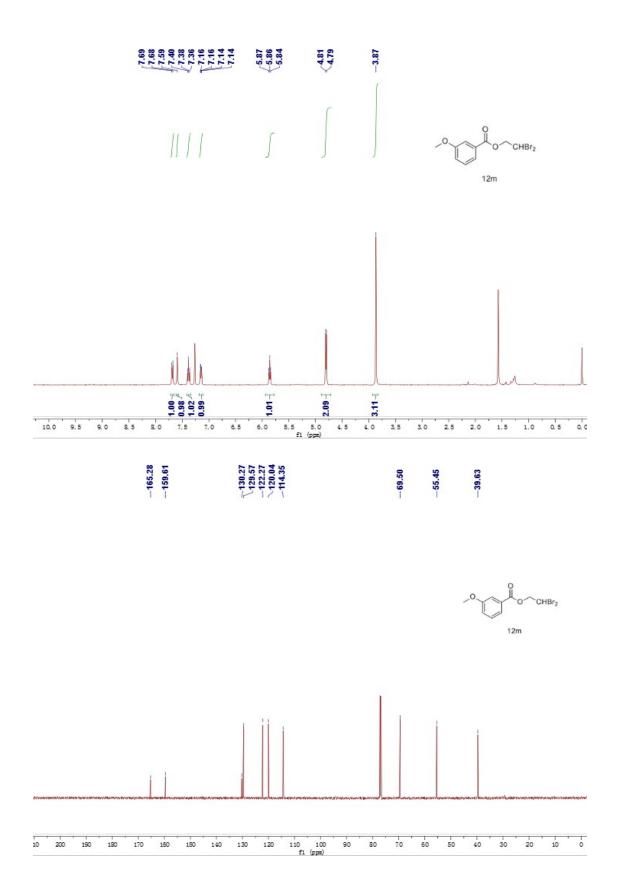


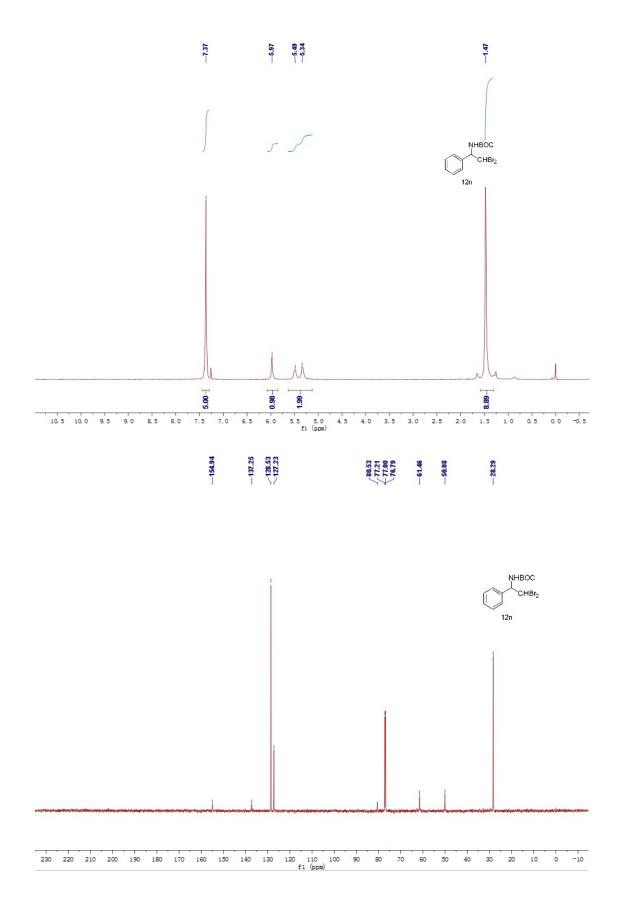

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

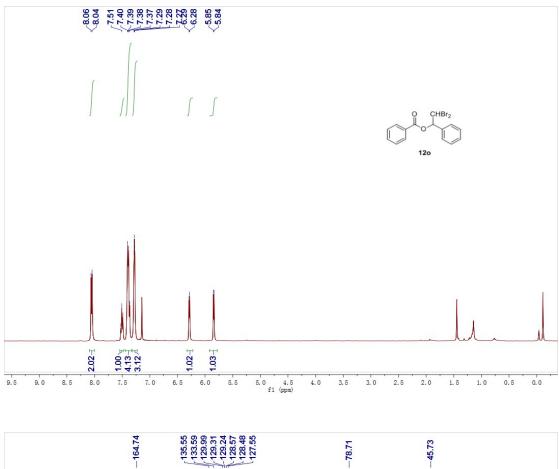


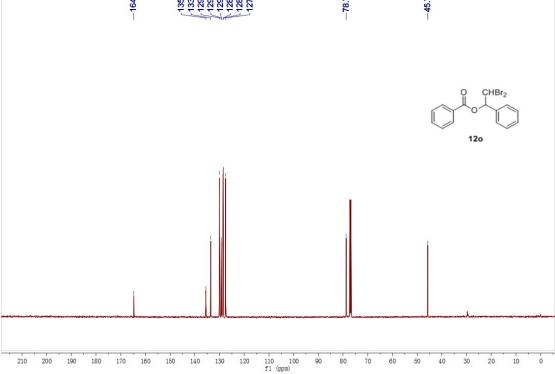


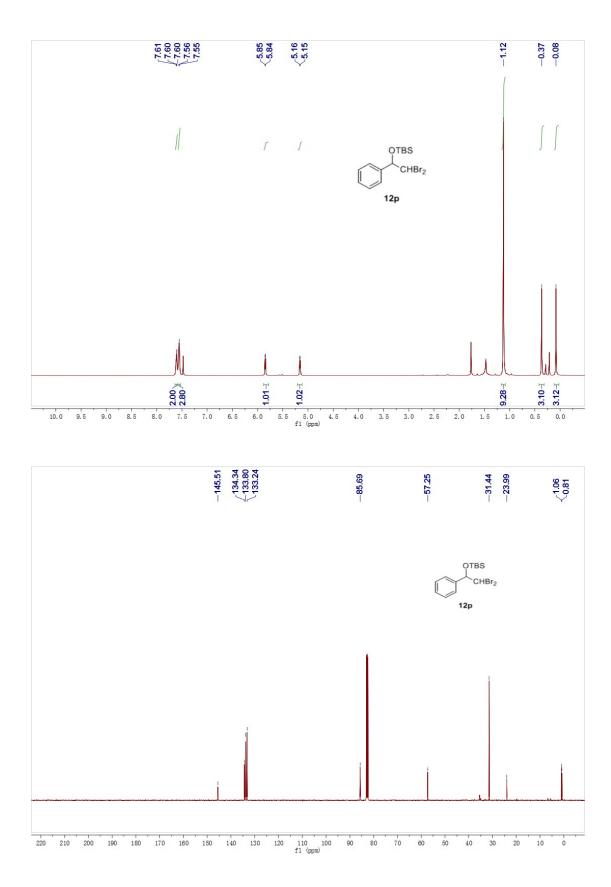


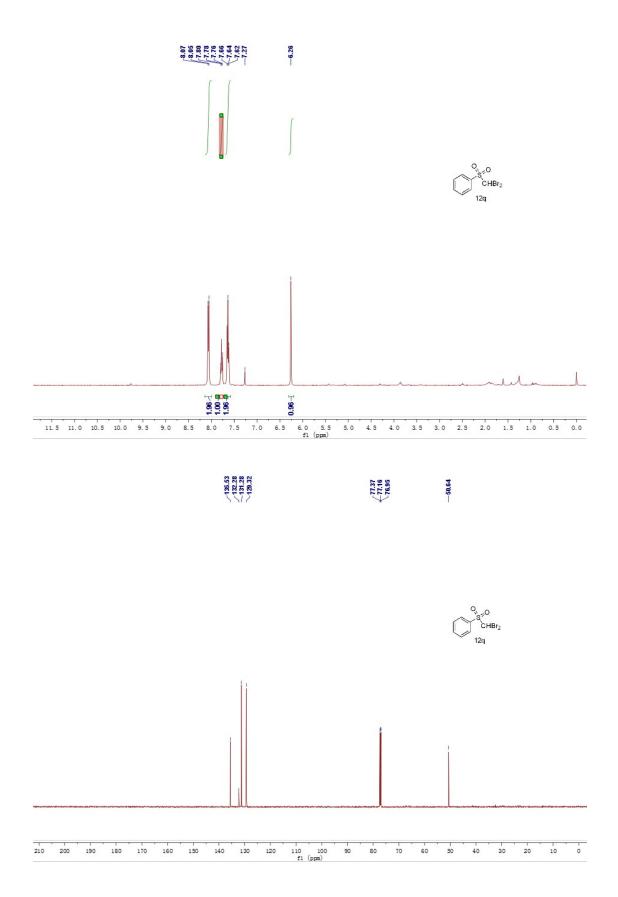


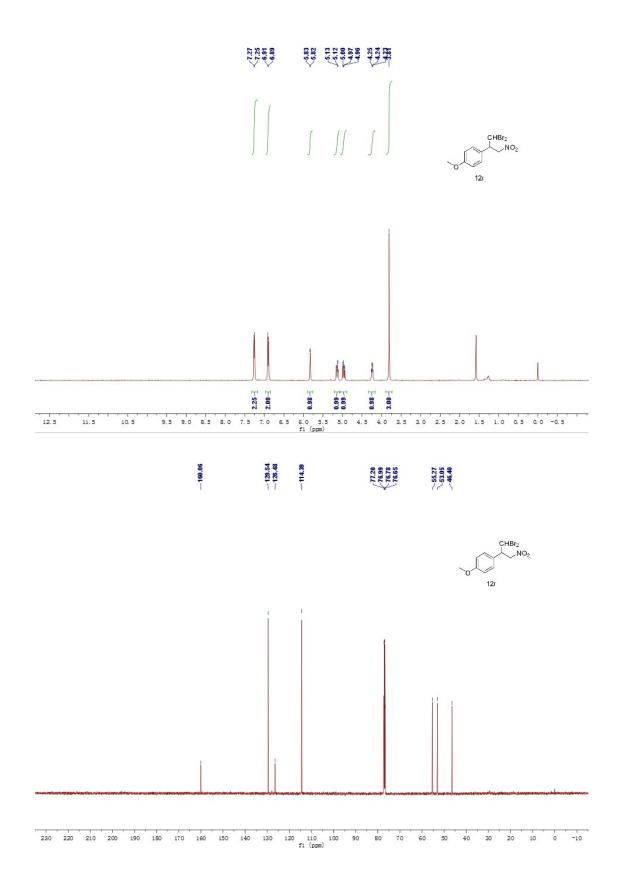


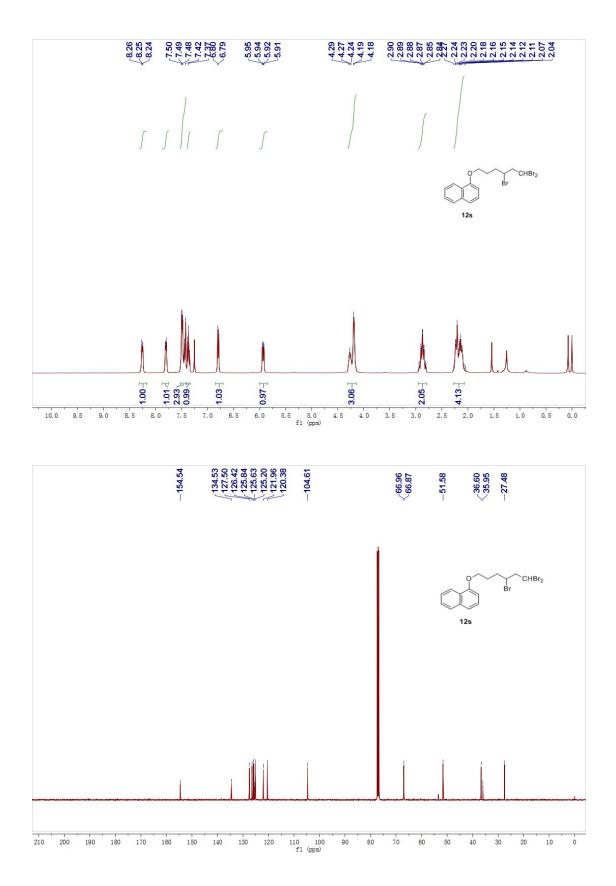


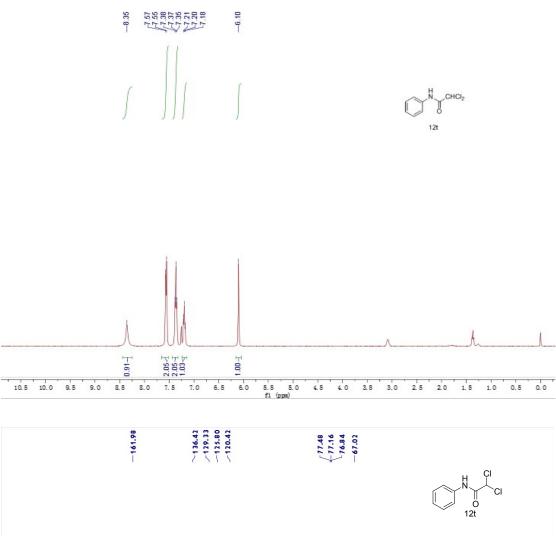


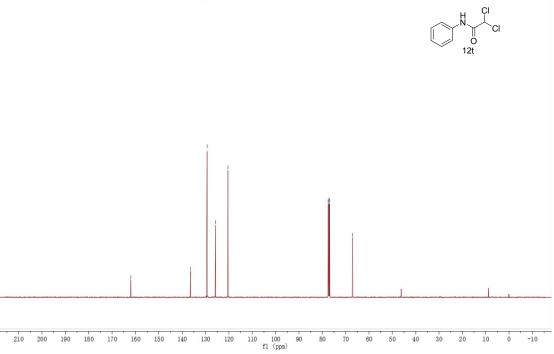


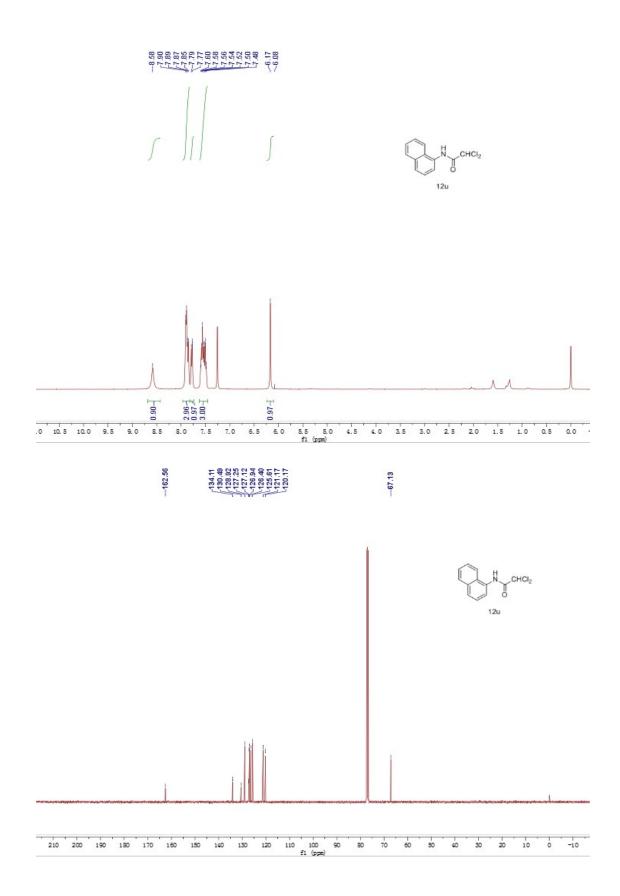


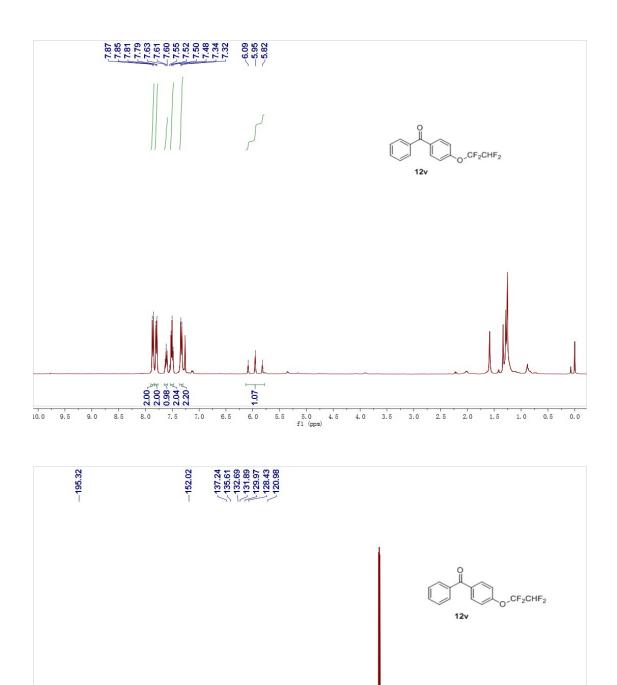








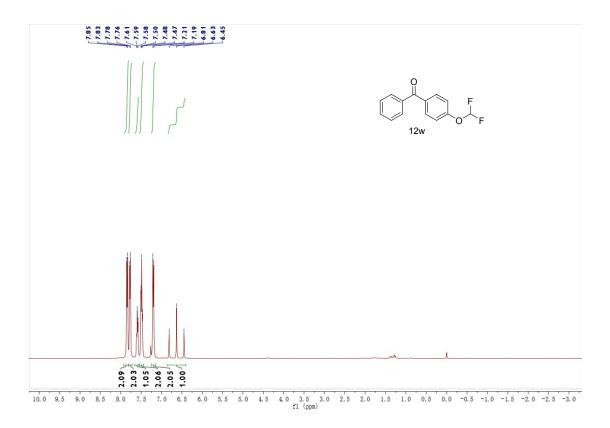


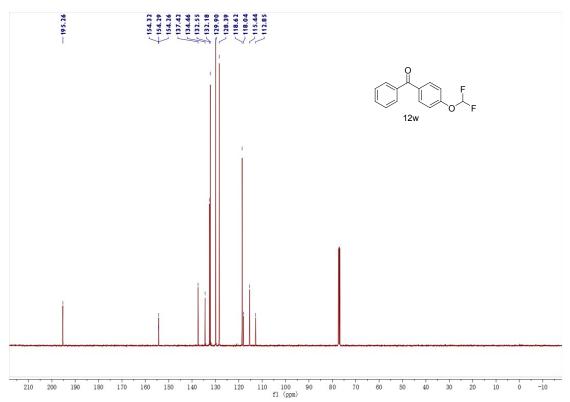


80

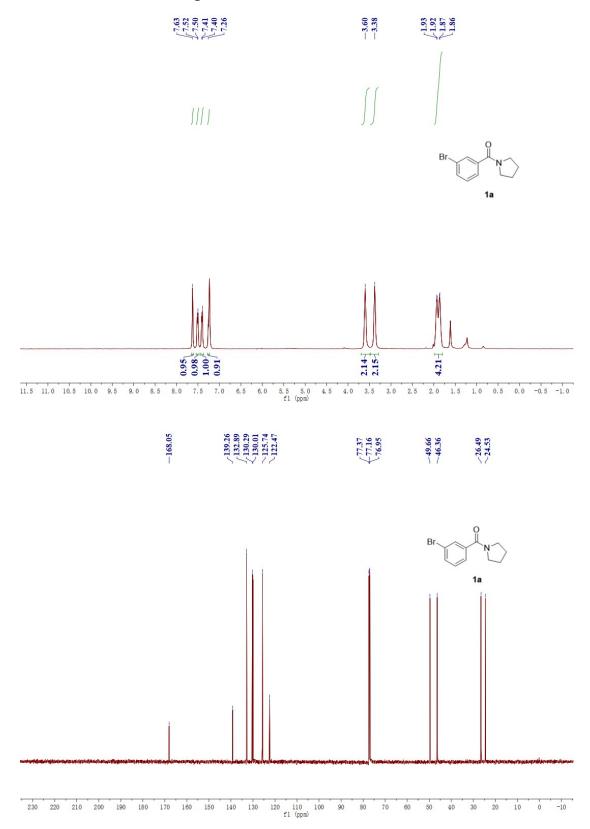
70 60 50

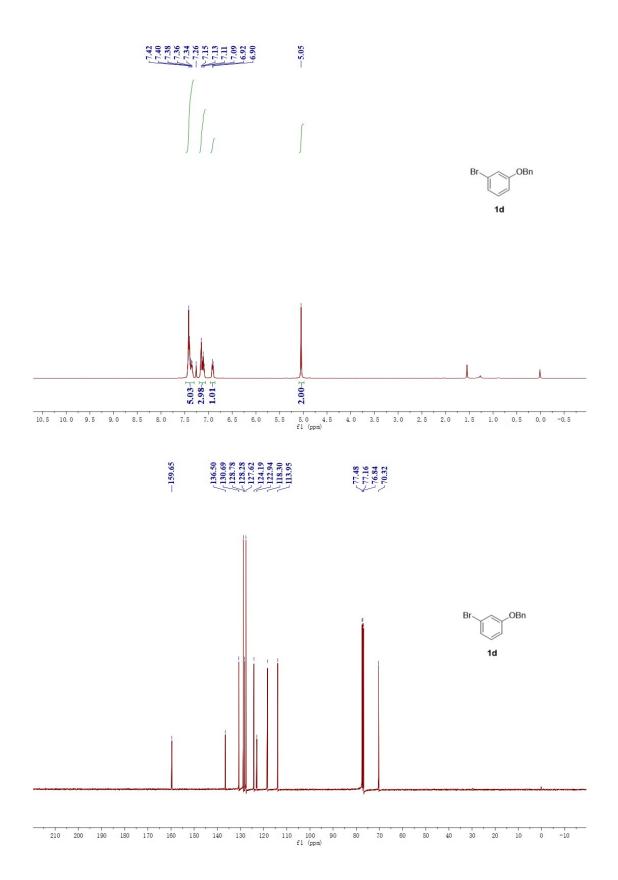
30

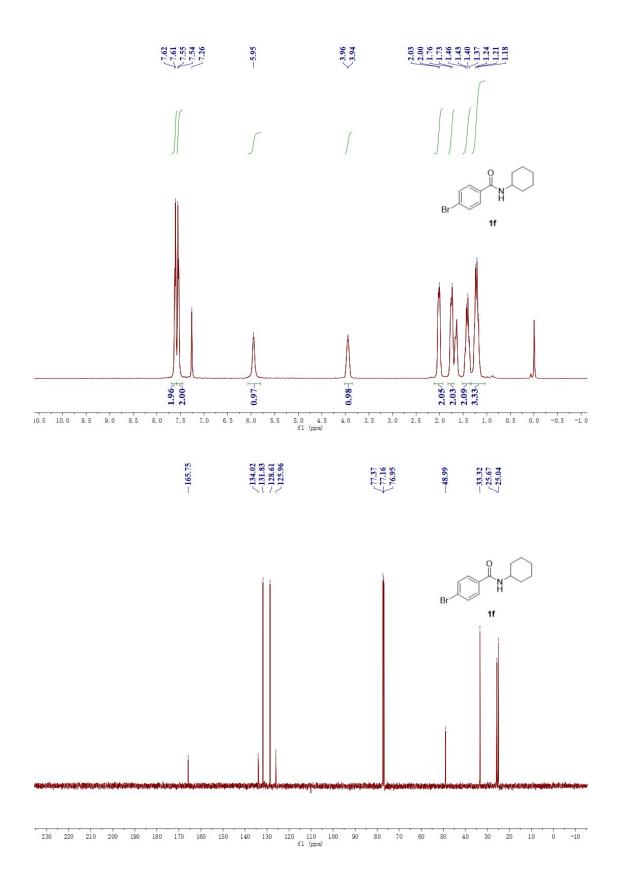

40

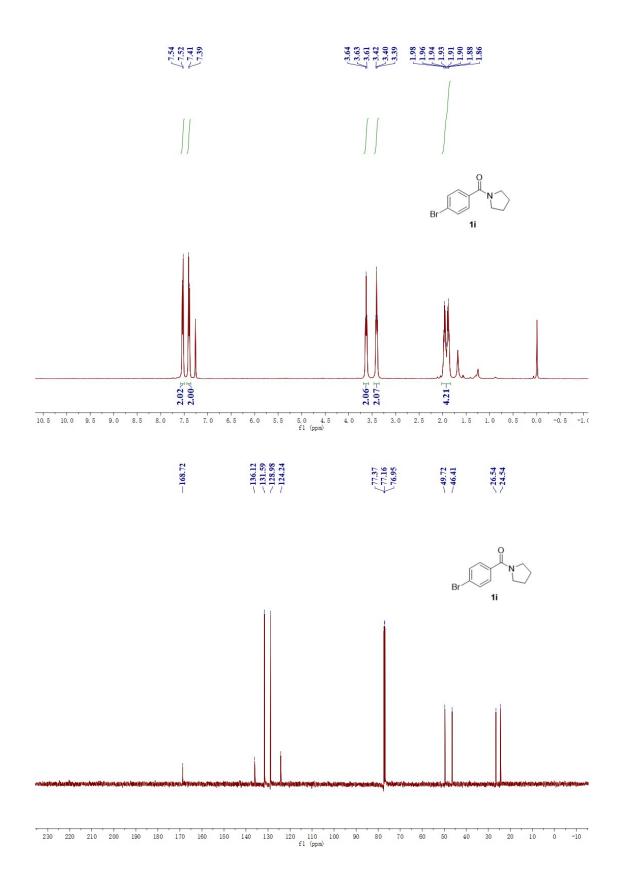

20 10

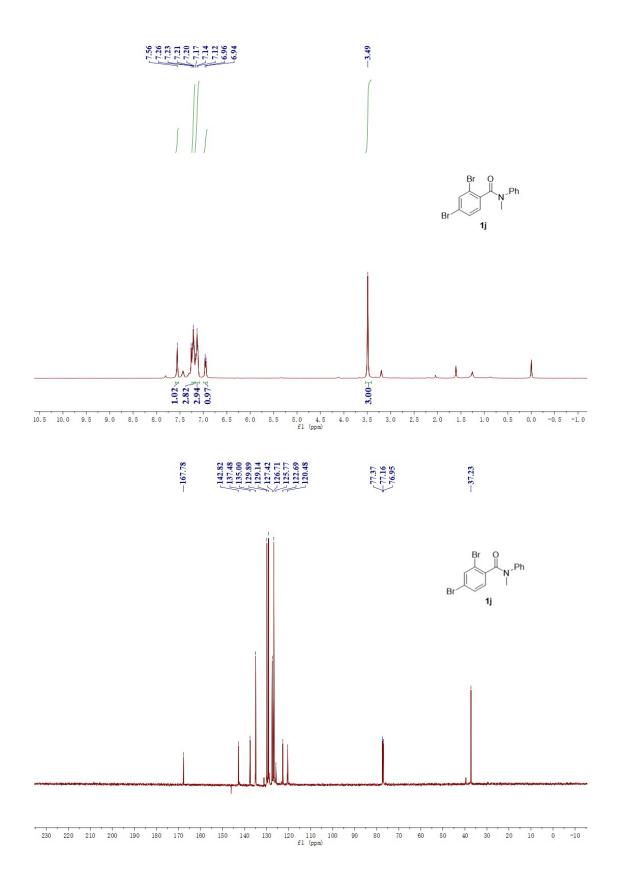
0

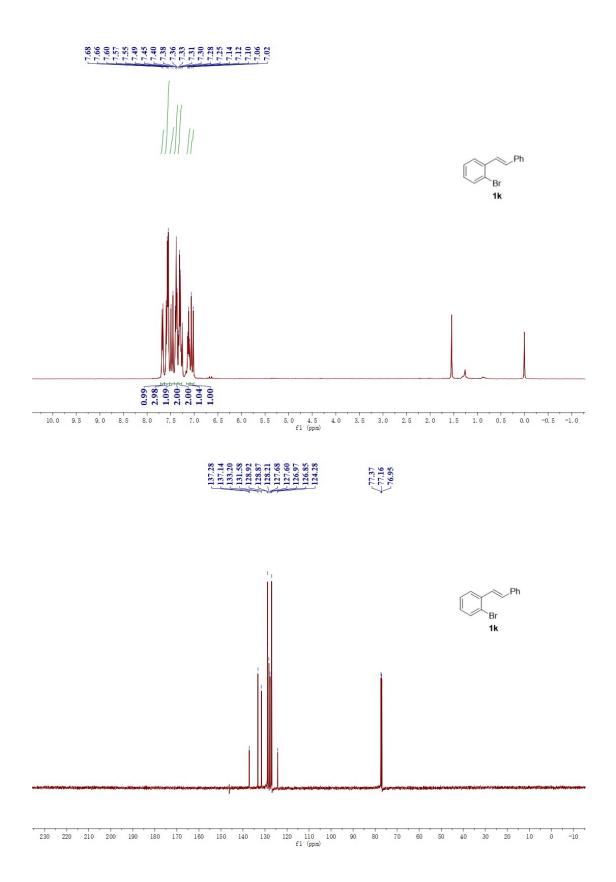

170 160 150 140 130 120 110 100 fl (ppm)

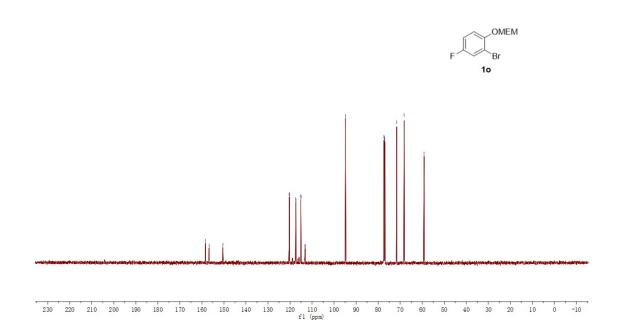

210 200 190 180

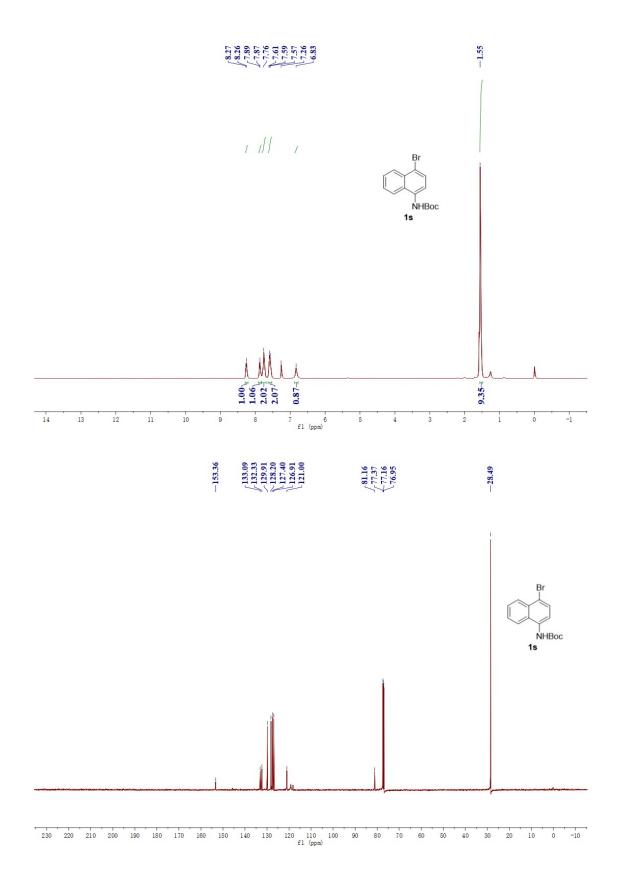


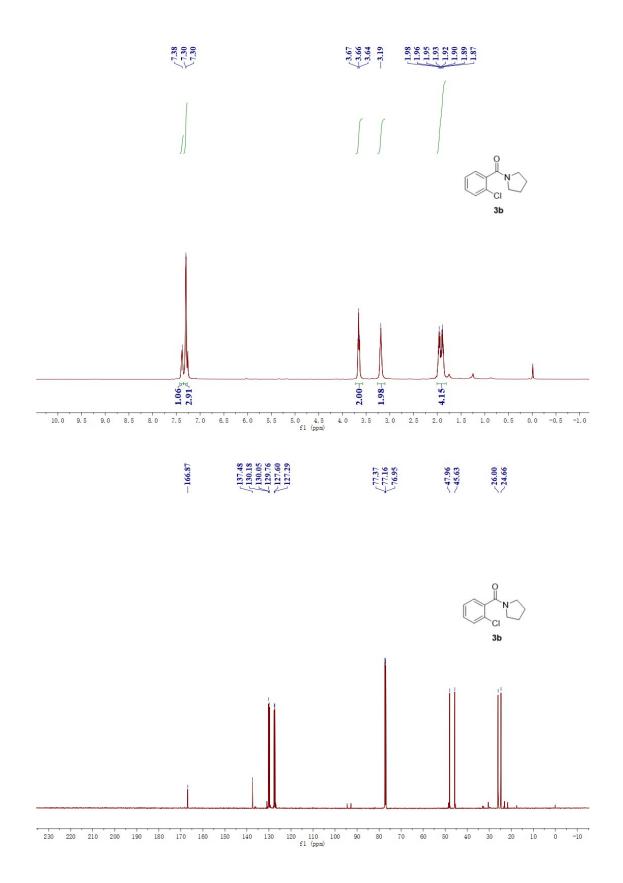


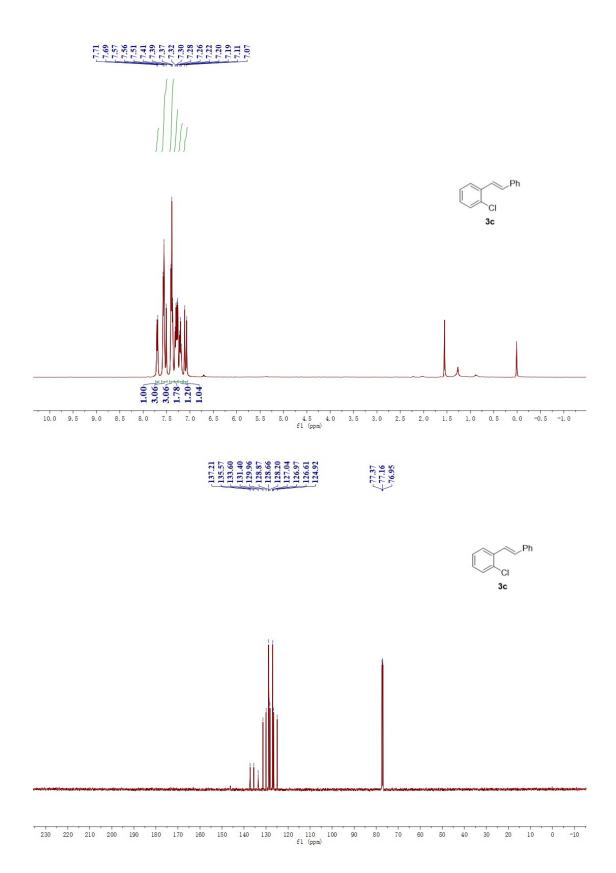

11. ¹H and ¹³C NMR spectra of some substrates

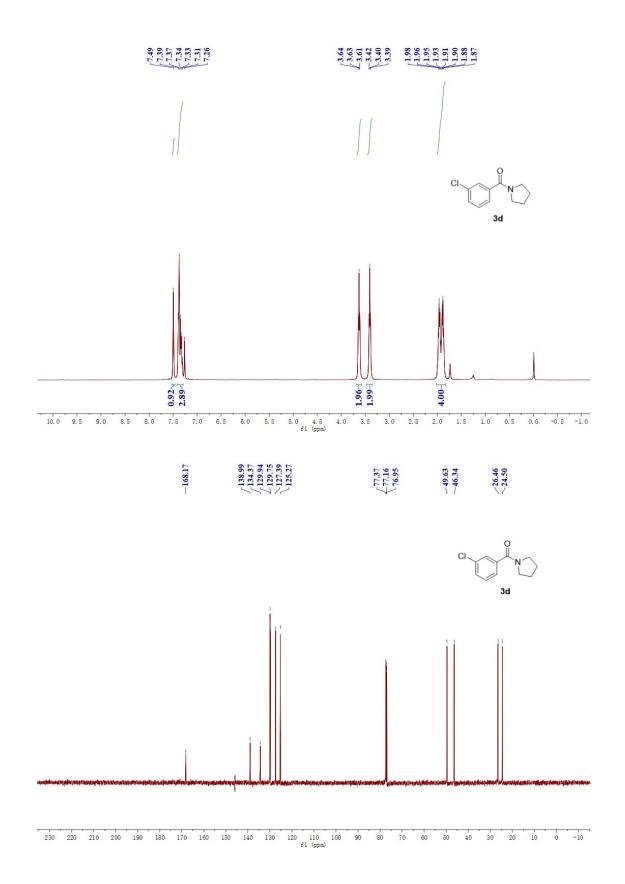


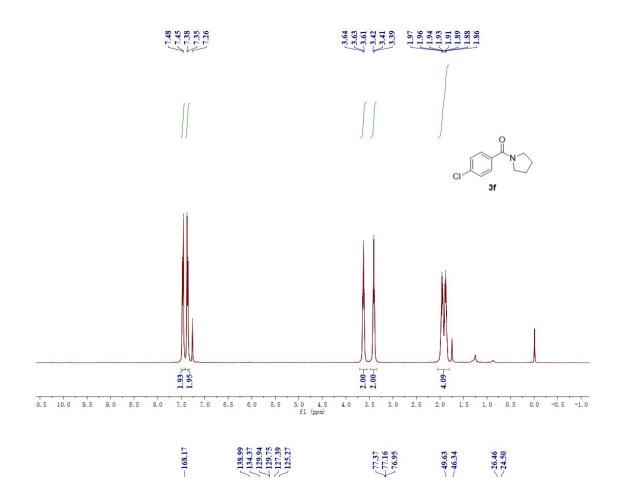


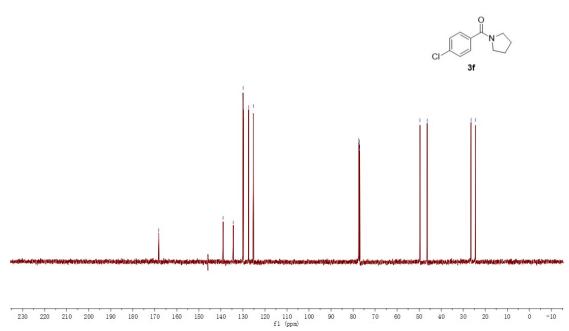


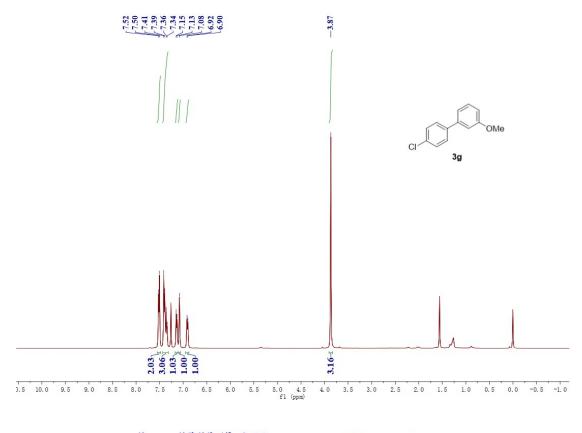


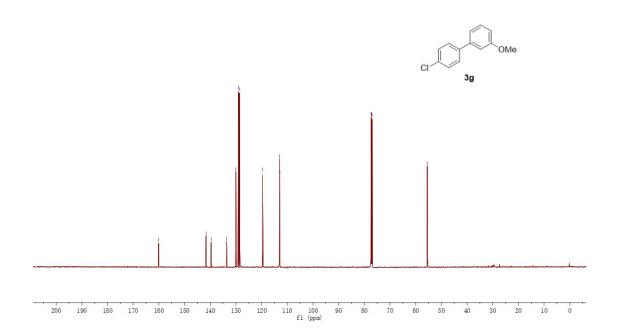


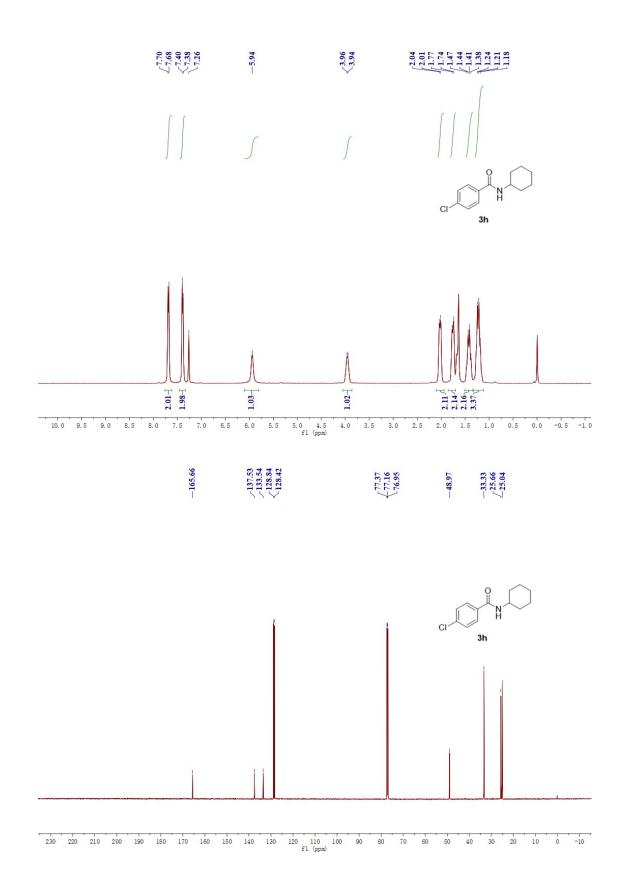

-158.35-156.73-156.73-156.73-156.73-117.31-117.31-117.31-112.0.27-117.31-113.11-113.11-113.11-113.12-1

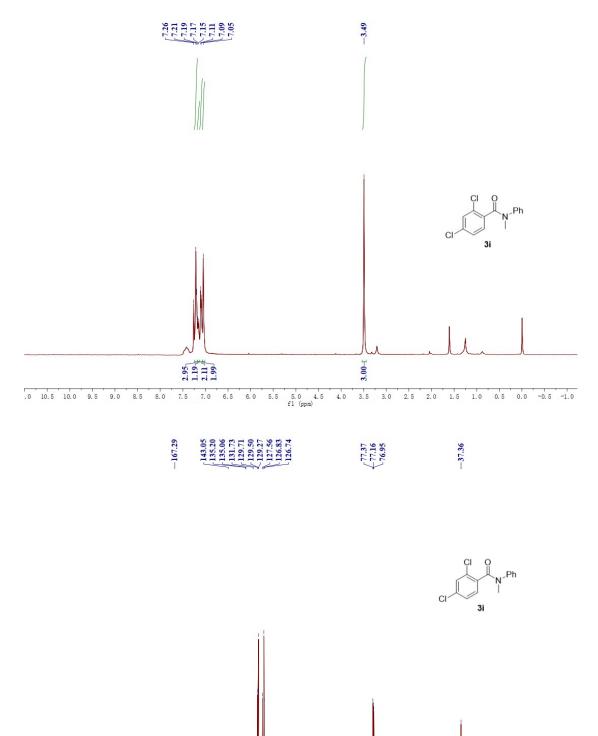


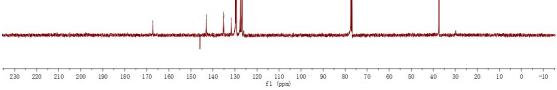


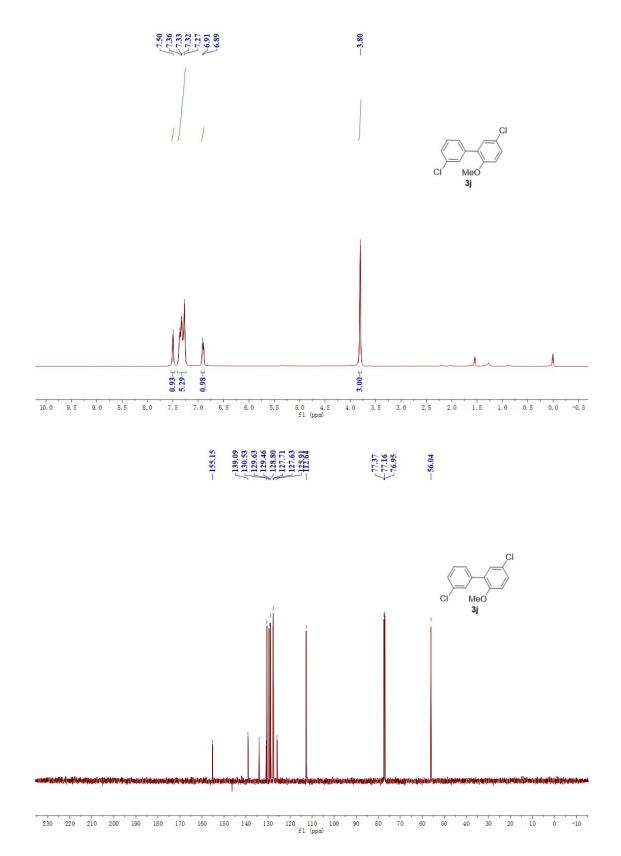


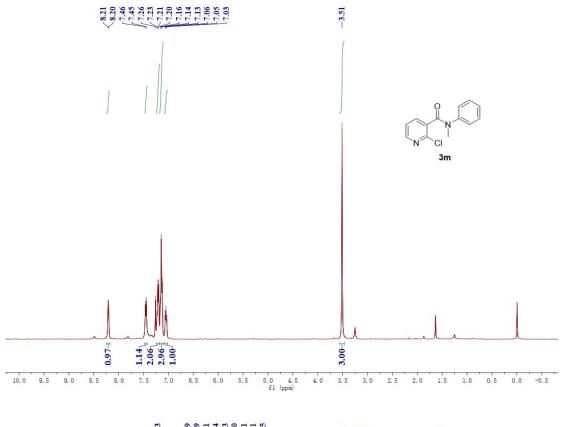


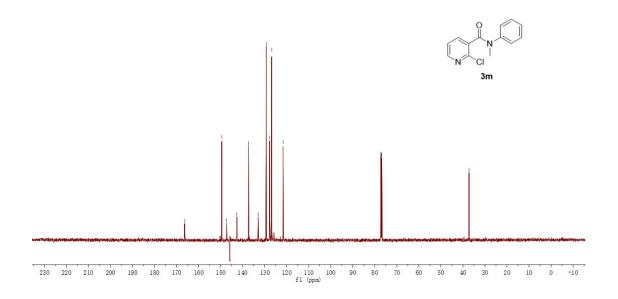


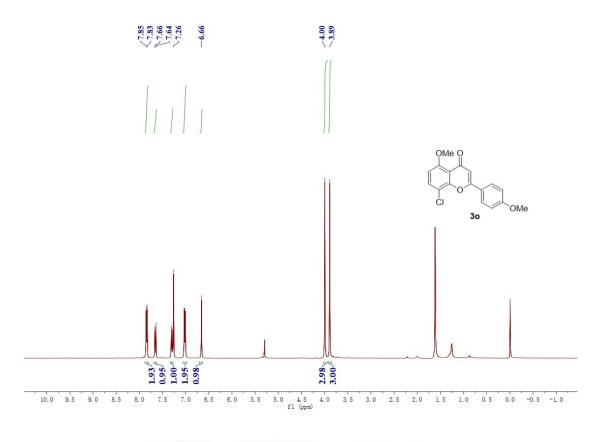


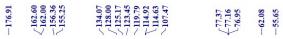


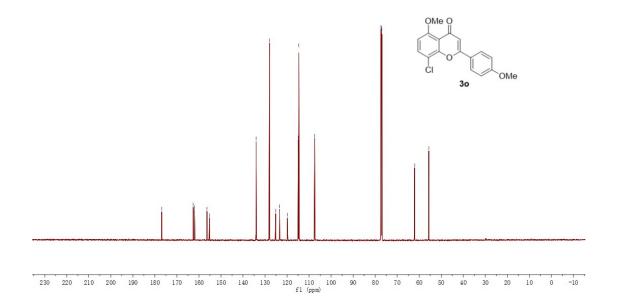

-160.12 -160.12 139.64 133.64 133.64 123.01 123.02 123.02 123.02 123.64 77.37 7.695-55.46

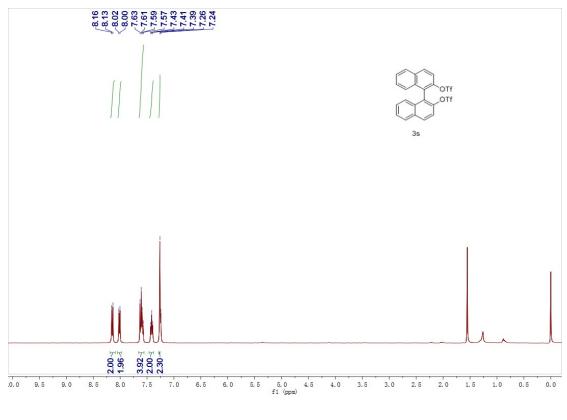


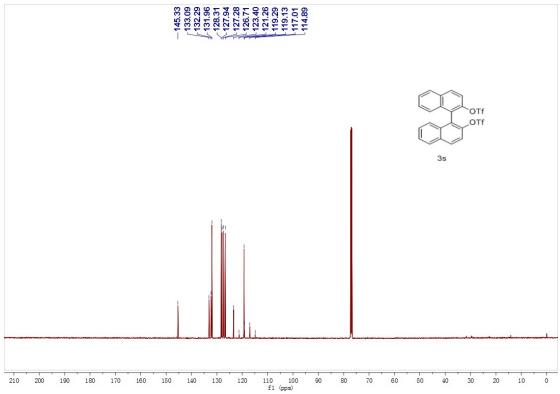


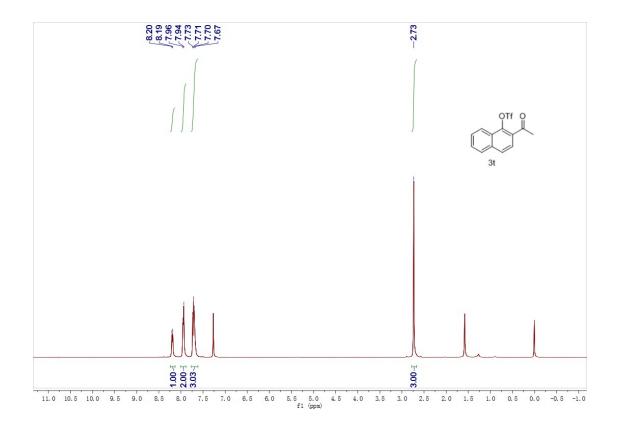


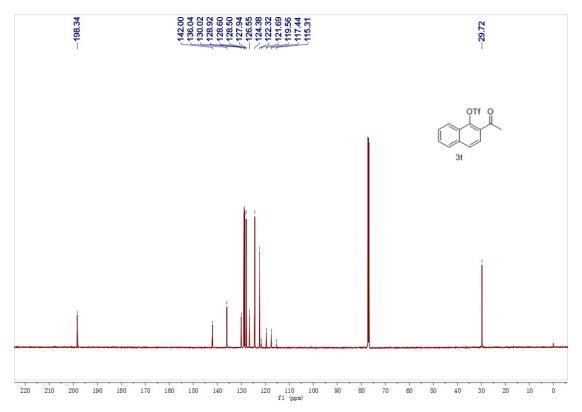


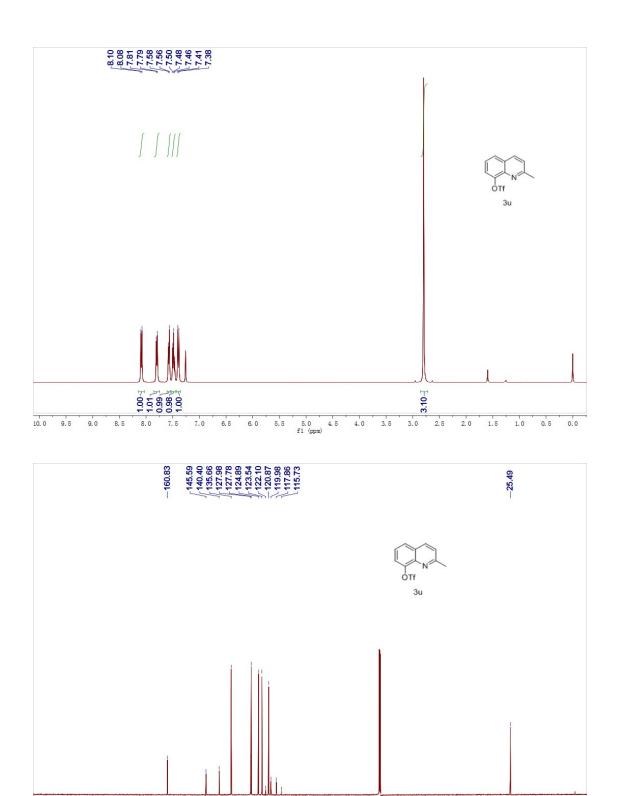






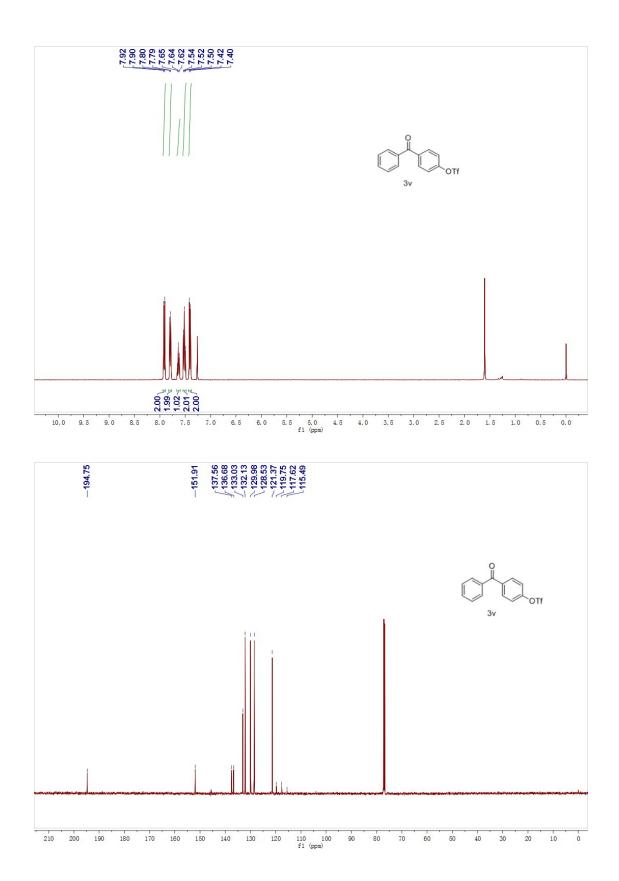


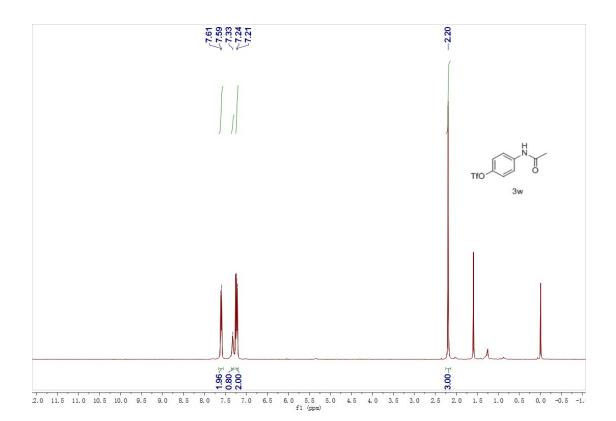


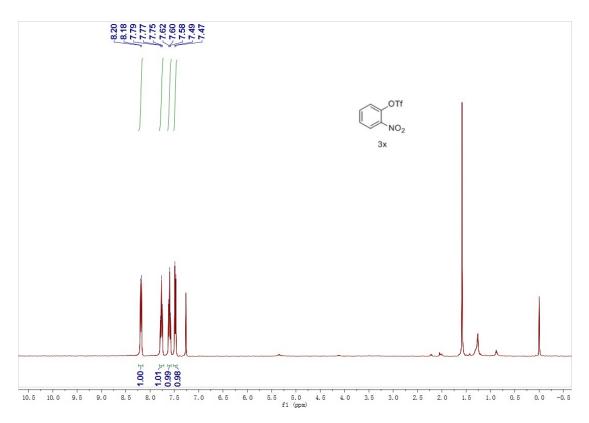


70 60 50

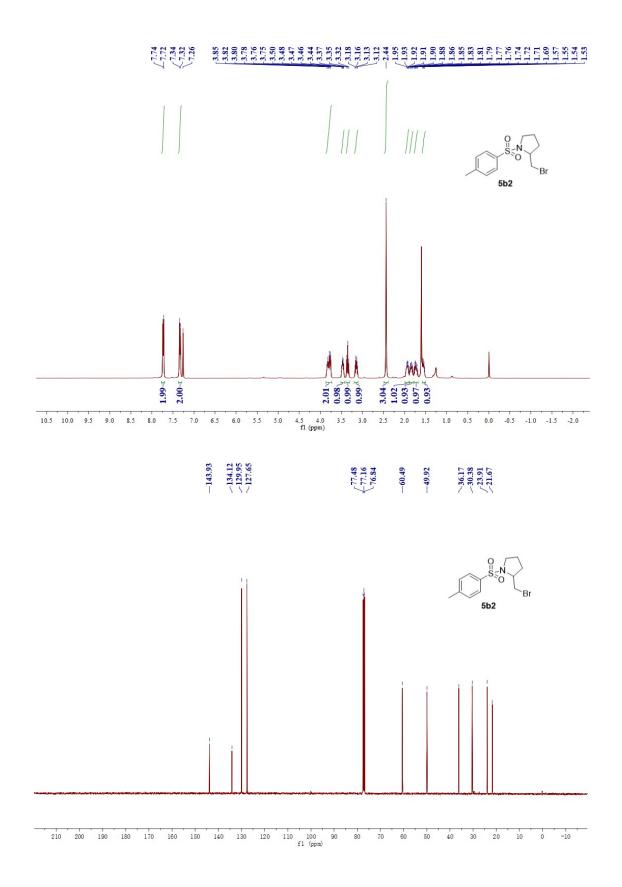
40

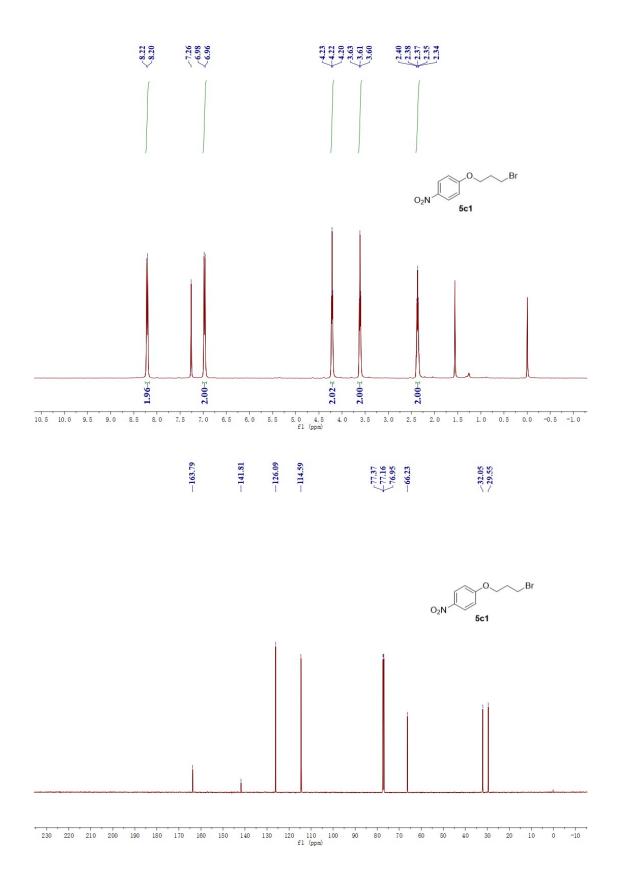

30 20

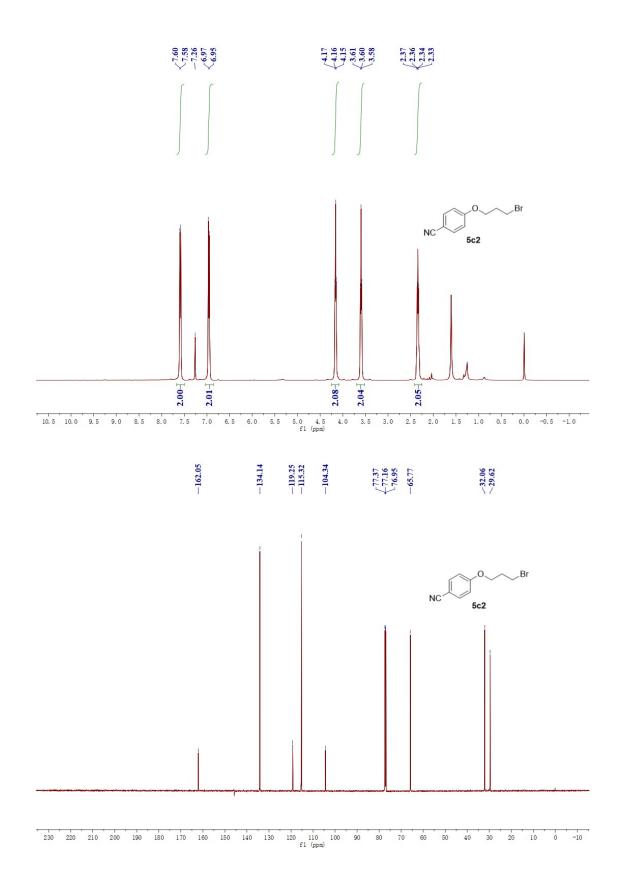

10

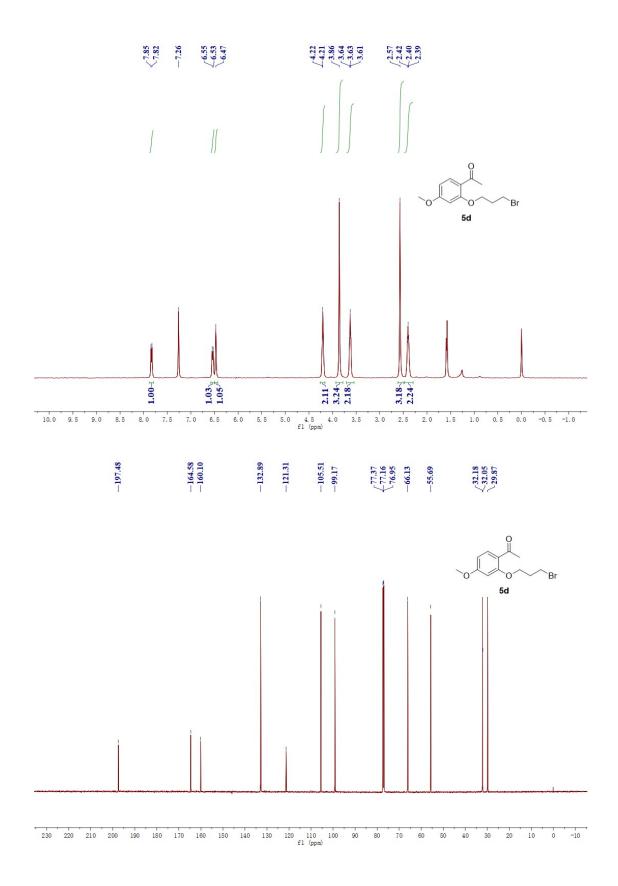

0

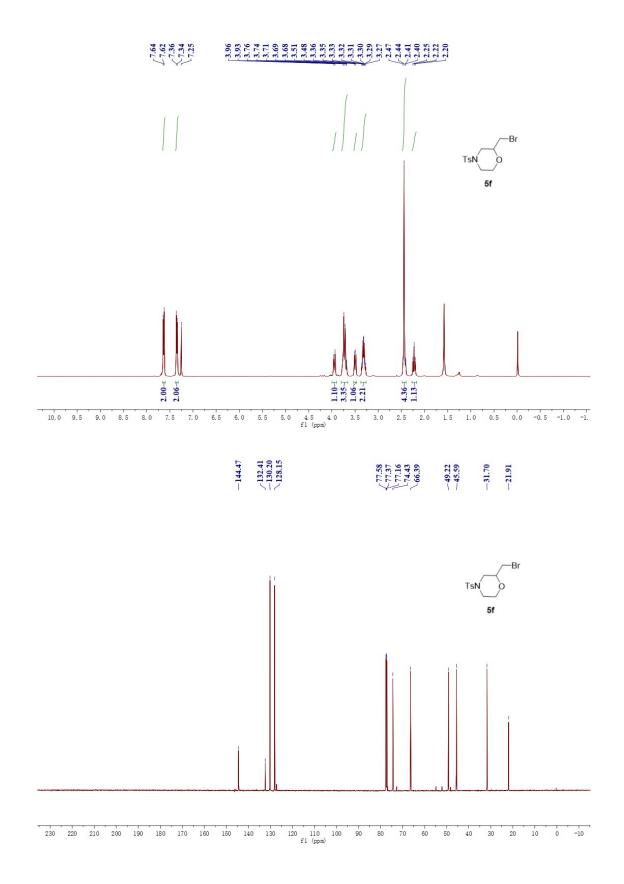
180 170 160 150 140 130 120 110 100 90 80 f1 (ppm)

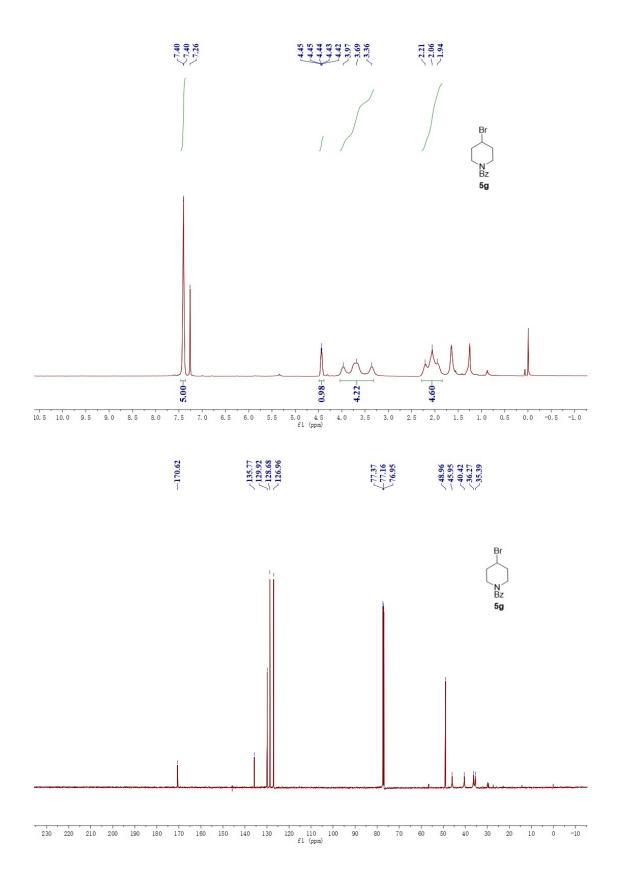

210

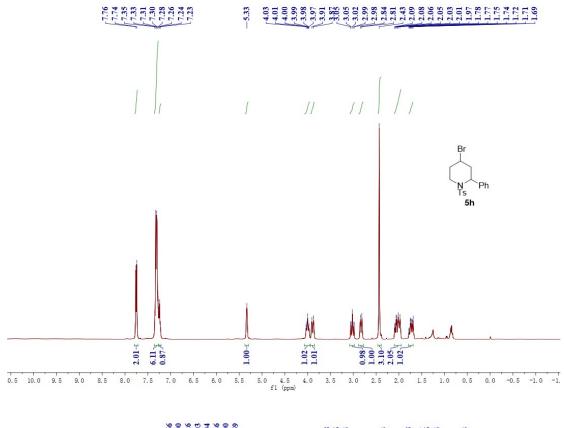


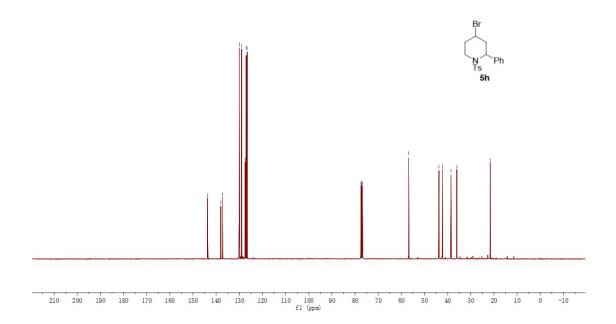


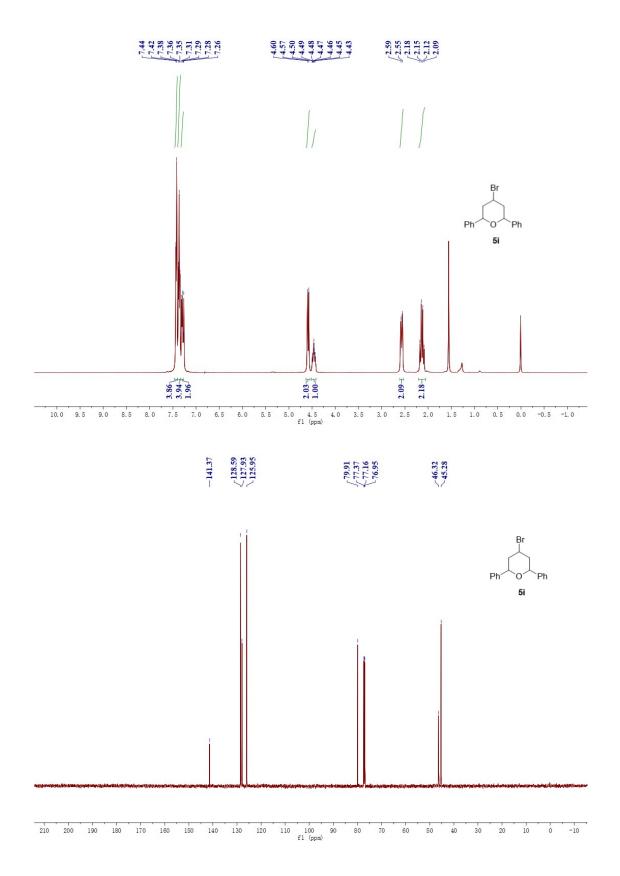


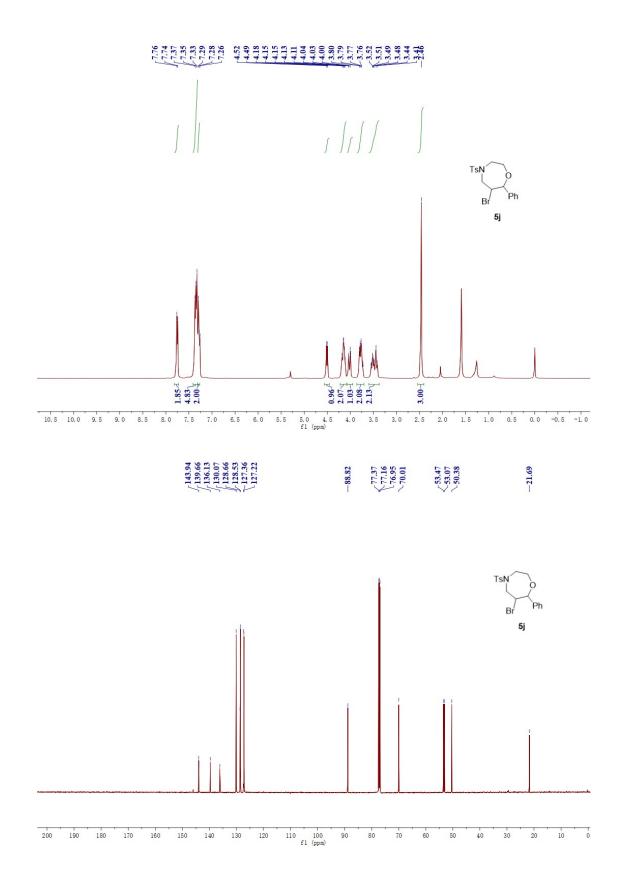


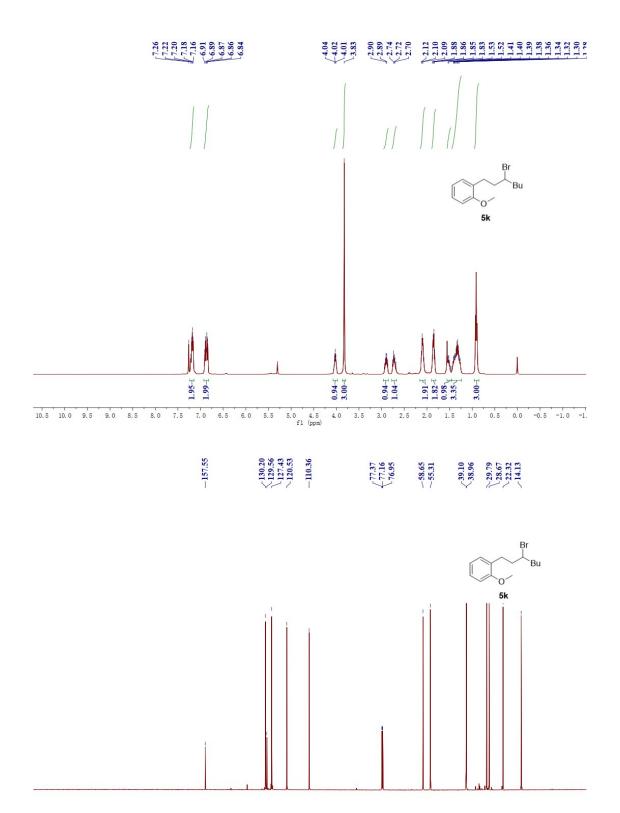


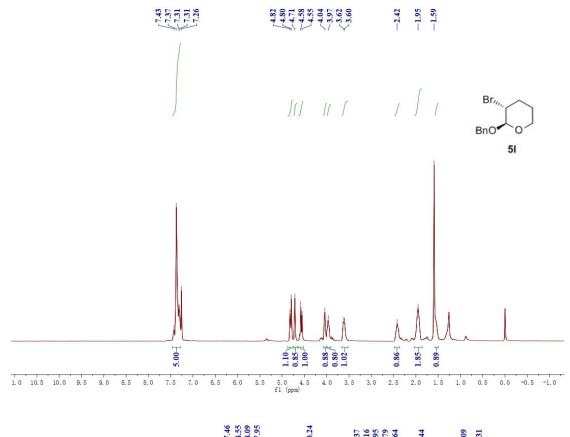


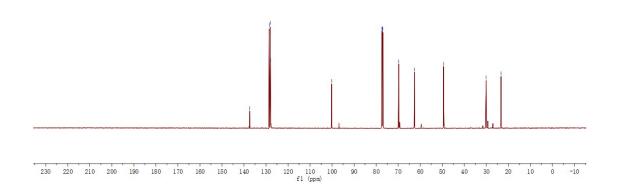


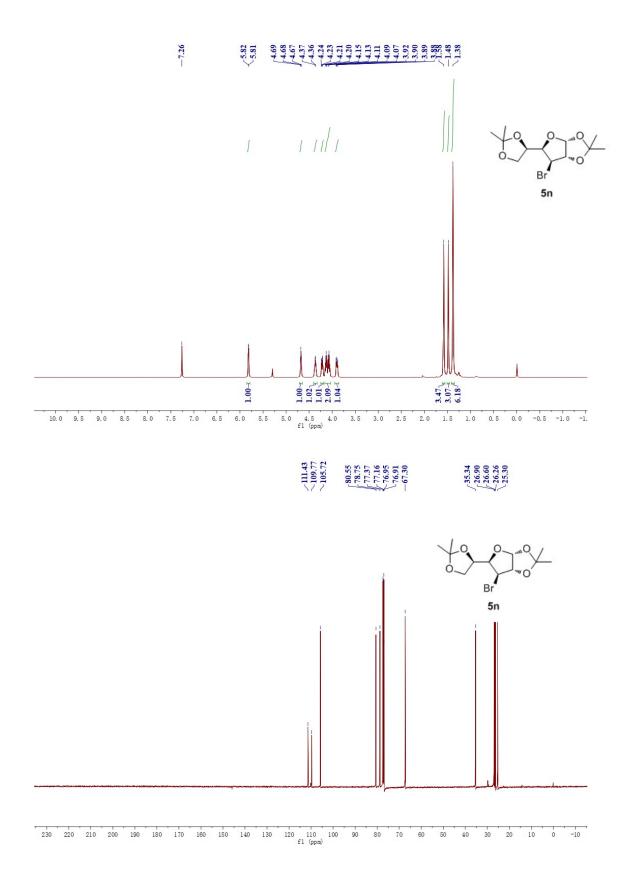


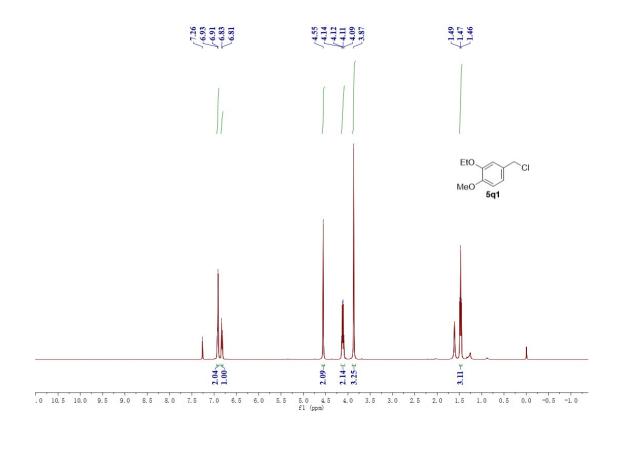


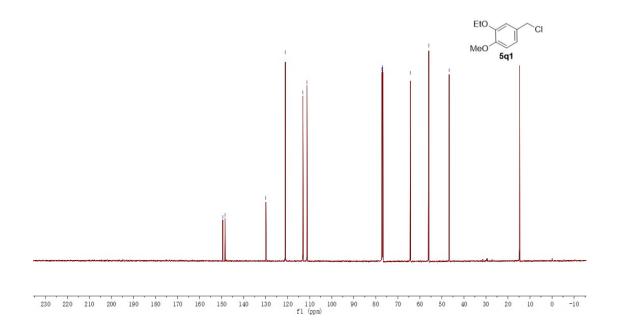


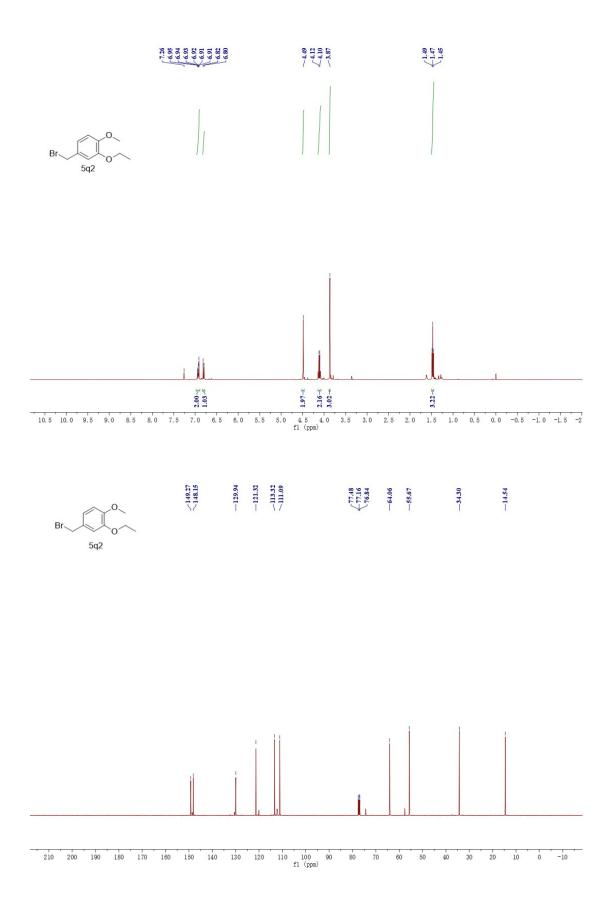


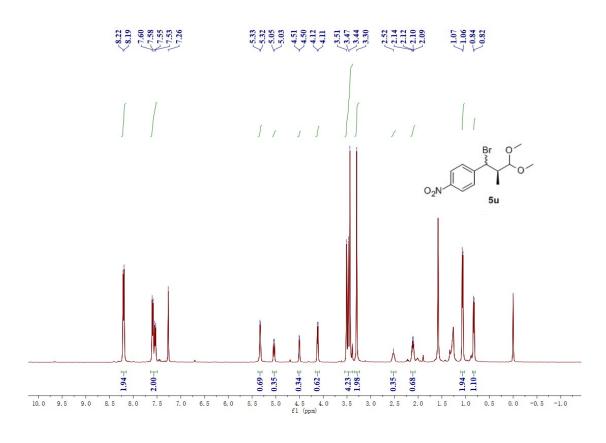


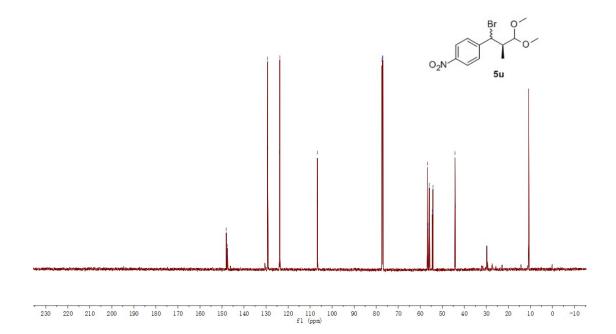

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

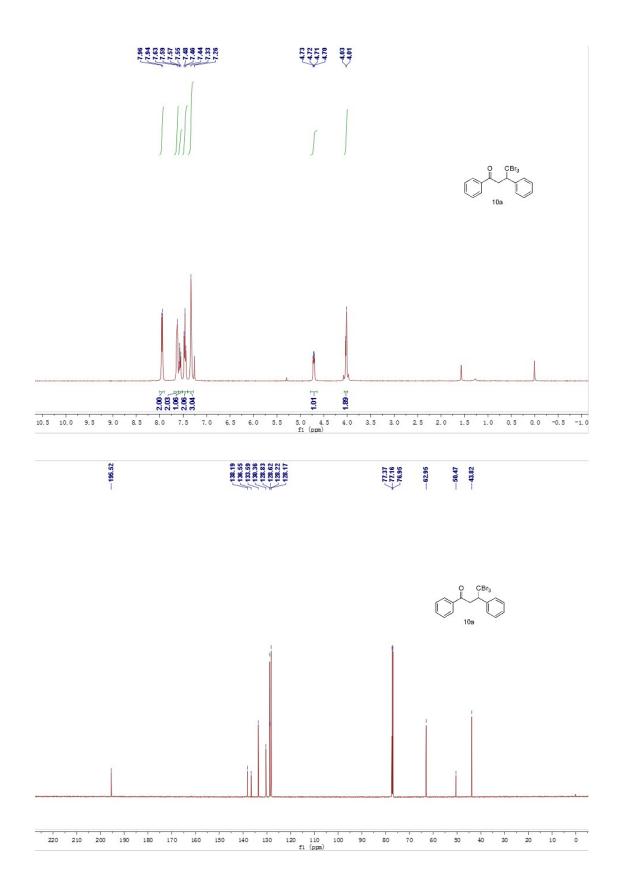


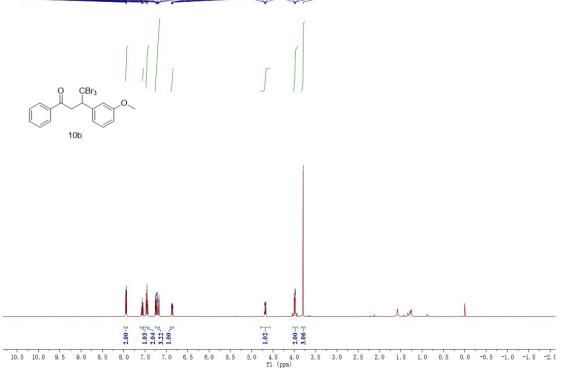


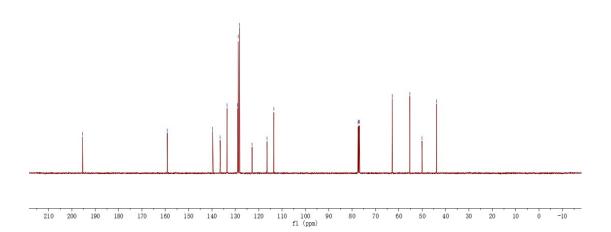


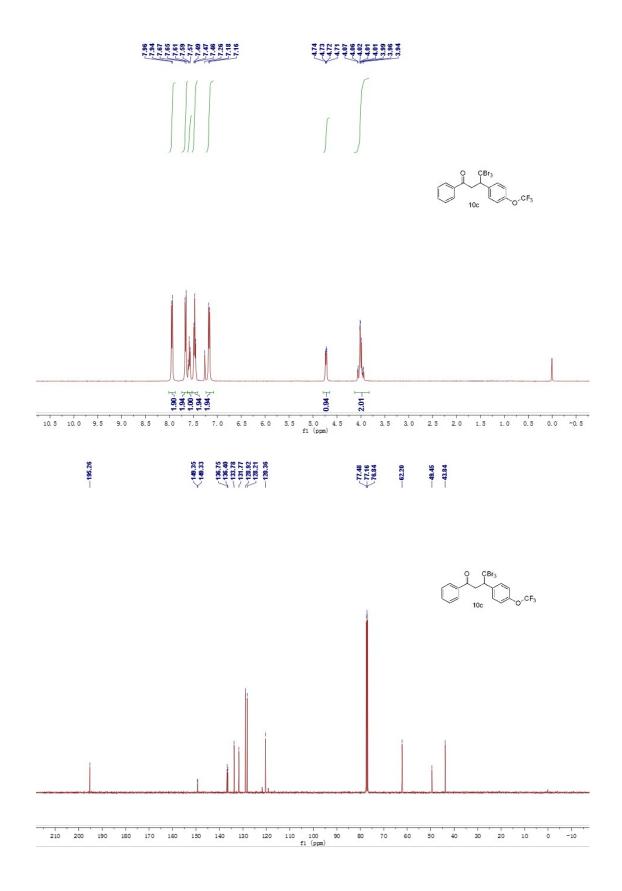


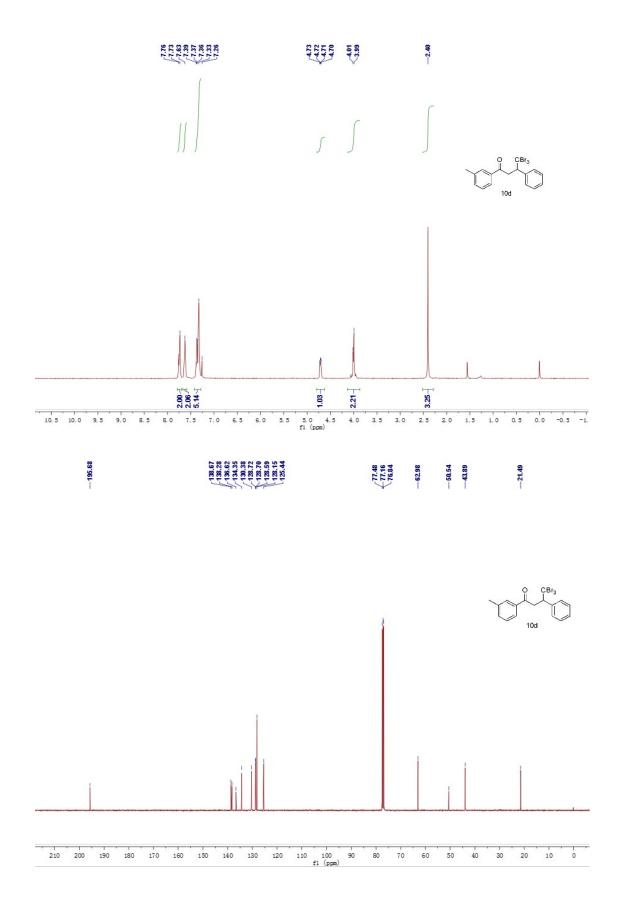











2333888 (2017) 22312 (2017) 2232 (2017) 22

