Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Multigram synthesis of an orthogonally protected pentasaccharide for use as glycan precursor in a *Shigella flexneri* 3a conjugate vaccine: application to a ready-forconjugation decasaccharide

Johan Cornil,^{a, #} Zhaoyu Hu,^{a, #, ‡} Marion Bouchet,^a Laurence A. Mulard*^a

Unité de Chimie des Biomolécules, UMR3523 CNRS, Institut Pasteur, 28 rue du Dr Roux, 75 724 Paris Cedex 15, France

Supplementary Information

Content

I.	Supplementary schemes	p. S-2
II.	Experimental procedures	p. S-2
	a. General methods	p. S-2
	b. Monosaccharides B and C	p. S-3
	c. Disaccharides B _{Ac} C and trisaccharide B _{Ac} CD	p. S-8
	d. Disaccharides EA and pentasaccharide EAB _{Ac} CD	p. S-12
III.	References	p. S-18
IV.	NMR spectra for new compounds	p. S-19

I. Supplementary schemes

Scheme S1. Synthesis of diol 5 from L-rhamnose monohydrate

(i) AllOH, AcCl, reflux 2 h then 40 °C 20 h; (ii) 2,2-DMP, PTSA, Acetone, rt; (iii) BnBr, NaH, DMF, rt; (iv) 80% aq. AcOH, 60 °C; (v) *i*. AllOH, AcCl, 70 °C 2.5 h then 40 °C 15 h; *ii*. 2,2-DMP, PTSA, Acetone, rt; *iii*. BnBr, NaH, DMF, rt; *iv*. 80% aq. AcOH, 80 °C.

Scheme S2. Glycosylation of acceptor 14 from diol 5 with the 6-O-acetyl glucopyranosyl donors 28^1 and 29 and 6-O-tert-butyldiphenylsilyl glucopyranosyl donors 31^2 and 32.

Conditions: Reactions were run on 70-80 mg of diol **5**, α : β ratio based on NMR data of the crude. (i) MeC(OMe)₃, PTSA·H₂O, MeCN, rt then 80% aq. AcOH, 0 °C; (ii) Donor, 1.3 donor equiv., TMSOTf, toluene, -78 °C.

II. Experimental procedures

a. General methods

Anhydrous (Anhyd.) dichloromethane (DCM), toluene (Tol), tetrahydrofuran (THF), acetonitrile (MeCN), *N*,*N*-dimethylformamide (DMF) and 1,2-dichloroethane (1,2-DCE) were purchased over molecular sieves (MS) and used as received. Powdered 4 Å MS were activated before use by heating at 250 °C under vacuum. TLC was performed on precoated slides of silica gel 60 F_{254} (Merck) using solvent mixtures of appropriately adjusted polarity. Detection was effected, when applicable, with UV light and/or by charring with orcinol (1 g.L⁻¹) in 10% aq. H₂SO₄. Preparative chromatography was performed manually by elution from columns of Silica

Gel 60 (particle size 40-63 µm) or using an automated system equipped with pre-packed columns. RP-HPLC purification was performed by elution from a Kromasil® 5 µm C18 100 Å 10x250 mm column, using a 0-20 % linear gradient over 20 min of MeCN in 0.08% aq. TFA at 5.5 mL/min flow rate and detecting at 215 nm. Analytical RP-HPLC was performed by elution from a Kromasil[®] 3.5 µm C18 100 Å 2x150 mm column, using a 0-20 % linear gradient over 20 min of MeCN in 0.08% aq. TFA at 0.4 mL/min flow rate and detecting at 215 nm. NMR spectra were recorded at 30 °C (400 MHz for ¹H, 100 MHz for ¹³C). The external references were TMS (0.00 ppm for both ¹H and ¹³C) for solutions in CDCl₃, HOD and DMSO for solutions in DMSO-d6 (3.30 ppm for ¹H and 39.5 ppm for ¹³C) and DSS (sodium 4,4dimethyl-4-silapentane-1-sulfonate) for solutions in D_2O (0.00 ppm for both ¹H and ¹³C) respectively. Proton signal assignments were made by first-order analysis of the ¹H, ¹³C, and DEPT spectra as well as by analysis of two-dimensional ${}^{1}H{-}^{1}H$ (COSY) and ${}^{1}H{-}^{13}C$ (HSQC) correlation maps. Of the two magnetically nonequivalent germinal protons at C-6, the one resonating at lower field is denoted H-6a and the one at higher field is denoted H-6b. Signal multiplicity is listed as s: singlet, brs: broad singlet, d: doublet, t: triplet, q: quadruplet, m: multiplet, app: apparent. Sugar residues in oligosaccharides are serially lettered according to the lettering of the repeating unit of the SF3a O-Ag and are identified by a subscript in the listing of signal assignments. High resolution mass spectra (HRMS) were obtained in the positive ion mode using a Q-TOF mass spectrometer equipped with an electrospray ion source.

b. Monosaccharides B and C

Allyl *a*-L-rhamnopyranoside (S1).³ Acetyl chloride (48.8 mL, 686 mmol, 2.5 equiv.) was added dropwise to allyl alcohol (623 mL) at 0 °C. The solution was stirred for 25 min, and then L-rhamnose monohydrate (50 g, 274 mmol, 1.0 equiv.) was added. The mixture was heated for 2 h at reflux then for 20 h at 40 °C. Follow up by TLC (DCM/MeOH, 80:20) indicated the total conversion of the starting hemiacetal into a less polar product. The bath temperature was cooled to 0 °C and the solution was neutralized by addition of solid NaHCO₃ (103 g). The suspension was filtered over a pad of Celite[®] and the mixture was concentrated under reduced pressure. The crude was used as such in the next step. Purification by flash column chromatography (DCM/MeOH, 95:5 to 90:10) afforded a pure analytical sample of the triol **S1** as a translucent oil. The latter had R_f = 0.7 (DCM/MeOH, 80:20). ¹H NMR (400 MHz, CDCl₃) δ 5.90 (dddd, J = 17.2, 10.4, 6.0, 5.2 Hz, 1H, CH=CH₂), 5.30 (ddd, J = 17.2, 3.2, 1.3 Hz, 1H, CH=CH₂), 5.21

(ddd, J = 10.4, 2.6, 1.3 Hz, 1H, CH=C<u>H</u>₂), 4.81 (d, J = 1.2 Hz, 1H, H-1), 4.17 (ddt_{app}, J = 12.9, 5.2, 1.3 Hz, 1H, C<u>H</u>_{2AII}), 4.03 (brs, 3H, O<u>H</u>), 4.00 (ddt_{app}, J = 12.9, 6.0, 1.3 Hz, 1H, C<u>H</u>_{2AII}), 3.98 (dd, J = 3.2, 1.2 Hz, 1H, H-2), 3.82 (dd, J = 9.3, 3.2 Hz, 1H, H-3), 3.71 (dq, J = 9.3, 6.1 Hz, 1H, H-5), 3.48 (t_{app}, J = 9.3 Hz, 1H, H-4), 1.34 (d, J = 6.1 Hz, 3H, H-6). ¹³C NMR (100 MHz, CDCl₃) δ 133.8 (CH=CH₂), 117.4 (CH=CH₂), 98.9 (C-1, $J_{C,H} = 169.8$ Hz), 72.8 (C-4), 71.7 (C-3), 71.0 (C-2), 68.2 (C-5), 68.0 (CH_{2AII}), 17.6 (C-6). HRMS (ESI⁺): m/z 227.0895 (calcd for C₉H₁₆O₅Na [M+Na]⁺: m/z 227.0890).

Allyl 2,3-O-isopropylidene- α -L-rhamnopyranoside (S2).³ To a solution of crude triol S1 (274 mmol) in acetone (290 mL) were successively added at rt 2,2-dimethoxypropane (2,2-DMP, 101 mL, 822 mmol, 3.0 equiv.) and PTSA·H₂O (2.60 g, 13.7 mmol, 0.05 equiv.). The mixture was stirred for 3 h at rt. Follow up by TLC (DCM/MeOH, 90:10) indicated the total conversion of the starting material into a less polar product. The solution was neutralized by adding Et₃N (4 mL) and solvents were evaporated under reduced pressure. The residue was dissolved in DCM and washed with H₂O three times and then with brine. The organic layer was dried by passing through a phase separator filter and concentrated under reduced pressure. The residue was purified by flash column chromatography (Tol/EtOAc, 90:10 to 80:20) to give alcohol S2 (53.7 g, 80% over 2 steps) as a yellow oil. The latter had $R_f = 0.6$ (DCM/MeOH, 90:10). ¹H NMR (400 MHz, CDCl₃) δ 5.90 (dddd, J = 17.0, 10.4, 5.9, 5.5 Hz, 1H, C<u>H</u>=CH₂), 5.32 (dt_{app}, J = 17.0, 1.3 Hz, 1H, CH=CH₂), 5.22 (dt_{app}, J = 10.4, 1.3 Hz, 1H, CH=CH₂), 5.01 (brs, 1H, H-1), 4.19 (ddt_{app}, J = 12.8, 5.3, 1.4 Hz, 1H, CH_{2All}), 4.17 (d_{app}, J = 6.4 Hz, 1H, H-2), 4.10 (dd, J = 7.2, 5.8 Hz, 1H, H-3), 4.02 (ddt_{app}, J = 12.9, 5.1, 1.5 Hz, 1H, CH_{2All}), 3.69 (dq, J = 9.3, 6.3 Hz, 1H, H-5), 3.39 (dd, J = 9.3, 7.2 Hz, 1H, H-4), 3.05 (brs, 1H, O<u>H</u>), 1.53 (s, 3H, CH_{3iPr}), 1.36 (s, 3H, CH_{3iPr}), 1.31 (d, J = 6.3 Hz, 3H, H-6). ¹³C NMR (100 MHz, CDCl₃) δ 133.6 (CH=CH₂), 117.7 (CH=CH₂), 109.5 (C_{iPr}), 96.3 (C-1, J_{C,H} = 169.5 Hz), 78.5 (C-3), 75.9 (C-2), 74.5 (C-4), 68.0 (CH_{2All}), 65.9 (C-5), 27.9 (CH_{3iPr}), 26.1 (CH_{3iPr}), 17.4 (C-6). HRMS (ESI⁺): m/z 267.1206 (calcd for C₁₂H₁₉O₆Na [M+Na]⁺: m/z 267.1208).

Allyl 2,3-*O*-isopropylidene-4-*O*-benzyl- α -L-rhamnopyranoside (S3).³ To a cooled solution of alcohol S2 (43.7 g, 179 mmol) in anhydrous DMF (300 mL) at 0 °C under an Ar atmosphere was added NaH (60% oil dispersion, 21.5 g, 537 mmol, 3.0 equiv.) portionwise. The mixture was stirred for 30 min at 0 °C. Benzyl bromide (42.6 mL, 358 mmol, 2.0 equiv.) was added dropwise at 0 °C and the mixture was stirred at 0 °C for 1 h. Follow up by TLC (Tol/EtOAc, 80:20) indicated the total conversion of the starting material into a less polar product. The reaction was quenched at 0 °C by addition of MeOH. Solvents were eliminated under reduced

pressure. The residue was taken up in EtOAc and washed with aq. 10% HCl and brine. The organic layer was dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude was used as such in the next step. Purification by flash column chromatography on silica gel (cHex/EtOAc, 100:0 to 95:5) afforded a pure analytical sample of allyl glycoside **S3** as a colorless oil. The latter had $R_f = 0.8$ (cHex/EtOAc, 80:20). ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.35 (m, 5H, H_{Ar}), 5.92 (dddd, J = 17.3, 10.3, 6.2, 5.2 Hz, 1H, CH=CH₂), 5.32 (dq, J = 17.2, 1.6 Hz, 1H, CH=CH₂), 5.23 (dq, J = 10.4, 1.3 Hz, 1H, CH=CH₂), 5.03 (s_{app}, 1H, H-1), 4.93 (d, 1H, J = 11.6 Hz, H_{Bn}), 4.65 (d, 1H, J = 11.6 Hz, H_{Bn}), 4.59 (s_{app}, 1H, H-1), 4.30 (t_{app}, J = 7.0, 6.3 Hz, 1H, H-3), 4.19 (m, 1H, CH₂All), 4.19 (m, 1H, H-2), 4.02 (ddt_{app}, J = 12.8, 6.2, 1.3 Hz, 1H, CH₂All), 3.74 (dq, J = 9.9, 6.2 Hz, 1H, H-5), 3.24 (dd, J = 9.8, 7.1 Hz, 1H, H-4), 1.53 (s, 3H, CH_{3iPr}), 1.40 (s, 3H, CH_{3iPr}), 1.31 (d, J = 6.3 Hz, 3H, H-6). ¹³C NMR (100 MHz, CDCl₃) δ 138.5 (CAr), 133.7 (CH=CH₂), 128.4 – 127.6 (5CHAr), 117.6 (CH=CH₂), 109.1 (C_{iPr}), 96.2 (C-1, $J_{C,H} = 169.4$ Hz), 81.2 (C-4), 78.7 (C-3), 76.2 (C-2), 72.9 (CH_{2Bn}), 67.9 (CH_{2All}), 64.6 (C-5), 28.0 (CH_{3iPr}), 26.3 (CH_{3iPr}), 1.78 (C-6). HRMS (ESI⁺): m/z 352.2124 (calcd for C₁₉H₂₆O₅Na [M+Na]⁺: m/z 352.2116).

Allyl 4-*O***-benzyl-α-L-rhamnopyranoside** (5).³ *Route 1*. The fully protected crude **S3** (179 mmol) was dissolved in 80% aq. AcOH (448 mL) and the solution was stirred for 3 h at 60 °C. Follow up by TLC (cHex/EtOAc, 70:30) indicated conversion of acetal **S3** into a more polar product. Solvents were removed under vacuum and traces of AcOH were eliminated by co-evaporation with toluene three times to give a white solid. Filtration over a pad of silica (cHex/EtOAc, 80:20) and crystallization of the material from hot diisopropyl ether gave diol **5** as a white solid. The mother liquor was purified by flash column chromatography on silica gel (Tol/EtOAc, 80:20 to 50:50) to afford in total 51.95 g of white solid (89% over 2 steps).

Route 2. Acetyl chloride (50 mL, 693 mmol, 2.5 equiv.) was added dropwise to allyl alcohol (610 mL) at 0 °C, the solution was stirred for 25 min, and L-rhamnose monohydrate (50 g, 277 mmol) was added. The mixture was heated for 2 h at 70 °C then for 15 h at 40 °C. Follow up by TLC (DCM/MeOH, 80:20) indicated the total conversion of the starting hemiacetal into a less polar product. The bath temperature was cooled to 0 °C and the solution was neutralized by addition of solid NaHCO₃ (103 g). The suspension was filtered over a pad of Celite[®] and solvents were evaporated and co-evaporated three times with toluene. The crude material was dissolved in acetone (300 mL), 2,2-DMP (100 mL, 810 mmol, 3.0 equiv.) and PTSA·H₂O (3.04 g, 16 mmol, 0.05 equiv.) were successively added. After stirring at rt for 3 h, TLC (DCM/MeOH, 90:10) indicated the total conversion of the intermediate **S1** into a less polar

product. The solution was neutralized by adding Et₃N (4 mL) and solvents were evaporated under reduced pressure. The residue was dissolved in DCM and washed with H₂O three times and brine. The organic layer was dried by passing through a phase separator filter and concentrated to dryness. The crude S2 was dissolved in DMF (800 mL) under an Ar atmosphere, the bath temperature was cooled to -5 °C and NaH (60% oil dispersion, 29.1 g, 730 mmol, 2.4 equiv.) was added portionwise to this suspension. The mixture was stirred at rt for 2 h under inert atmosphere and then benzyl bromide (65 mL, 330 mmol, 1.2 equiv.) was added dropwise while maintaining the bath temperature at -5 °C. After stirring the reaction mixture for 2 h at rt, a TLC control (cHex/EtOAc, 80:20) indicated the total conversion of the intermediate alcohol into a less polar product. The reaction was quenched at 0 °C by addition of MeOH (50 mL). Solvents were eliminated under reduced pressure and volatiles were coevaporated with toluene. The residue was taken in EtOAc and washed with H₂O three times and with brine. The organic phase was dried over Na₂SO₄, filtered, and concentrated to dryness. The crude S3 was dissolved in 80% aq. AcOH (500 mL) and the solution was stirred for 16 h at 80 °C. A TLC control (cHex/EtOAc, 50:50) indicated the total conversion of the intermediate S3 into a more polar product. Solvents were removed under vacuum and traces of AcOH were eliminated by co-evaporation with toluene three times. The crude material was crystallized twice from *i*Pr₂O/petroleum ether (4:1, 300 mL) and the mother liquor was further purified by flash column chromatography on silica gel (CHex/EtOAc, 100:0 to 50:50) to give diol 5 (66.3 g, 82% over 4 steps) as a beige solid. The expected diol 5 had $R_f = 0.2$ (CHex/EtOAc, 60:40). ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.31 (m, 5H, H_{Ar}), 5.90 (dddd, J = 17.3, 10.5, 6.0, 5.1 Hz, 1H, CH=CH₂), 5.30 (dq, J = 17.2, 1.7 Hz, 1H, CH=CH₂), 5.21 (dq, J = 10.4, 1.4 Hz, 1H, CH=CH₂), 4.83 (s_{app}, 1H, H-1), 4.77 (s, 2H, H_{Bn}), 4.19 (ddt_{app}, J = 13.0, 5.1, 1.6 Hz, 1H, CH_{2All}), 4.00 (ddt, J = 13.0, 6.0, 1.4 Hz, 1H, CH_{2All}), 3.98 – 3.93 (m, 2H, H-2, H-3), 3.77 (dq, J = 9.6, 6.3 Hz, 1H, H-5), 3.37 (t_{app} , J = 9.2 Hz, 1H, H-4), 2.33 (d, J = 3.4 Hz, 1H, OH-2), 2.30 (d, J =5.0 Hz, 1H, OH-3), 1.38 (d, J = 6.3 Hz, 3H, H-6). ¹³C NMR (100 MHz, CDCl₃) δ 138.3 (C_{Ar}), 133.8 (<u>C</u>H=CH₂), 128.6 – 128.0 (5<u>C</u>H_{Ar}), 117.3 (CH=<u>C</u>H₂), 98.5 (C-1, J_{C,H} = 168.7 Hz), 81.8 (C-4), 75.1 (<u>C</u>H_{2Bn}), 71.5 (C-2), 71.2 (C-3), 67.9 (<u>C</u>H_{2All}), 67.3 (C-5), 18.0 (C-6). HRMS (ESI⁺): m/z 317.1365 (calcd for C₁₆H₂₂O₅Na [M+Na]⁺: m/z 317.1355).

Allyl 3,4-di-*O*-benzyl-2-*O*-levulinoyl-α-L-rhamnopyranoside (8).⁴ To a solution of alcohol 7 (22.7 g, 59.0 mmol) in DCM (210 mL) stirred at rt were successively added levulinic acid (13.7 g, 118 mmol, 2.0 equiv), DMAP (1.44 g, 11.8 mmol, 0.2 equiv) and EDC (23.2 mL, 106.2 mmol, 1.8 equiv) under an Ar atmosphere. The mixture was stirred at rt for 1.5 h. TLC

(Tol/EtOAc, 90:10) showed the complete disappearance of the starting 7 and the presence of a less polar product. The reaction mixture was diluted with DCM and washed with sat. aq. NaHCO₃ twice, 10% aq. NaOH twice and finally with brine. The organic layer was passed through a phase separator filter and concentrated under reduced pressure. Purification of the residue by flash column chromatography (cHex/EtOAc, 90:10 to 80:20) gave the known 8 (25.5 g, 90%) as a colourless syrup. The fully protected 8 had $R_f = 0.25$ (Tol/EtOAc, 90:10). ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.30 (m, 10H, H_{Ar}), 5.91 (m, 1H, CH=CH₂), 5.43 (m, 1H, H-2), 5.28 (m, *J* = 15.8 Hz, 1H, CH=C<u>H</u>₂), 5.22 (m, *J* = 10.4 Hz, 1H, CH=C<u>H</u>₂), 4.95 (d, *J* = 10.8 Hz, 1H, H_{Bn}), 4.81 (d, J = 1.5 Hz, 1H, H-1), 4.72 (d, J = 11.2 Hz, 1H, H_{Bn}), 4.65 (d, J = 10.8 Hz, 1H, H_{Bn}), 4.55 (d, J = 11.2 Hz, 1H, H_{Bn}), 4.16 (m, 1H, CH_{2All}), 4.05 – 3.95 (m, 2H, CH_{2All}, H-3), 3.81 (m, 1H, H-5), 3.46 (t_{app} , J = 9.4 Hz, 1H, H-4), 2.74 (m, 4H, CH_{2Lev}), 2.19 (s, 3H, CH_{3Lev}), 1.37 (d, J = 6.2 Hz, 3H, H-6). ¹³C NMR (100 MHz, CDCl₃) δ 206.6 (CO_{Lev}), 172.5 (CO_{2Lev}), 138.9 (C_{Ar}), 138.5 (C_{Ar}), 133.9 (CH=CH₂), 128.9 – 128.1 (10CH_{Ar}), 118.0 (CH=CH₂), 97.1 (C-1, J_{C,H} = 169.8 Hz), 80.5 (C-4), 78.5 (C-3), 75.8 (<u>CH</u>_{2Bn}), 72.0 (<u>CH</u>_{2Bn}), 69.5 (C-2), 68.4 (<u>CH_{2All}</u>), 68.1 (C-5), 38.4 (<u>CH_{2Lev}</u>), 30.2 (<u>CH_{3Lev}</u>), 28.6 (CH_{2Lev}), 18.4 (C-6). HRMS (ESI⁺): *m/z* 505.2201 (calcd for C₂₈H₃₄O₇Na [M+Na]⁺: *m/z* 505.2202).

2-Oxopropyl 3,4-di-O-benzyl-2-O-levulinoyl-α-L-rhamnopyranoside (12a) and 3-Oxopropyl 3,4-di-O-benzyl-2-O-levulinoyl-α-L-rhamnopyranoside (12b). To a solution of allyl glycoside 8 (60 mg, 0.12 mmol, 1.0 equiv.) in DMF/H₂O (3:1, 2.0 mL) was added PdCl₂ (8.8 mg, 0.05 mmol, 0.4 equiv., 60% purity). After stirring at rt for 7 h, TLC (Tol/EtOAc, 80:20) revealed the absence of starting 8 and the presence of more polar products. The reaction mixture was diluted with sat. aq. NH₄Cl and EtOAc. The two layers were separated. The aq. phase was extracted with EtOAc and the combined organic phases were extrated with sat. aq. NaHCO₃, water and brine. The organic phase was dried on Na₂SO₄, filtered, and concentrated under reduced pressure. Purification by flash column chromatography (Tol/EtOAc, 100:0 to 80:20) led to a 4:1 mixture of the Wacker-type products **12a** and **12b** as a colourless oil (46 mg, 74%). The latter had $R_f = 0.4$ (Tol/EtOAc, 70:30). ¹H NMR (400 MHz, CDCl₃) δ 9.79 (t, J = 1.6 Hz, $0.2H, CHO_b, 7.40 - 7.29$ (m, 10H, H_{Ar}), 5.47 (dd, J = 3.4, 1.8 Hz, 0.8H, H-2a), 5.34 (dd, J = 3.4, 1.8 Hz, 0.8H, 1.8H, 1.8H 3.4, 1.8 Hz, 0.2H, H-2_b), 4.94 (d, J = 10.9 Hz, 0.8H, H_{Bna}), 4.92 (d, J = 10.8 Hz, 0.2H, H_{Bnb}), 4.79 (d, J = 1.8 Hz, 0.8H, H-1_a), 4.76 (d, J = 1.8 Hz, 0.2H, H-1_b), 4.72 (d, J = 11.2 Hz, 1H, H_{Bn}), 4.64 (d, J = 10.9 Hz, 1H, H_{Bn}), 4.57 (d, J = 11.2 Hz, 0.8H, H_{Bna}), 4.52 (d, J = 11.2 Hz, 0.2H, H_{Bnb}), 4.17 (AB, J = 17.0 Hz, 0.8H, OCH₂CO_a), 4.07 (AB, J = 17.1 Hz, 0.8H, OCH₂CO_a), $3.98 (dd, J = 9.3, 3.4 Hz, 0.8H, H-3_a), 3.88 (dd, J = 9.3, 3.4 Hz, 0.2H, H-3_b), 3.76 (dq, J = 9.9, 3.98 (dd, J = 9.3, 3.4 Hz, 0.2H, H-3_b), 3.76 (dq, J = 9.9, 3.98 (dd, J = 9.3, 3.4 Hz, 0.2H, H-3_b), 3.76 (dq, J = 9.9, 3.98 (dd, J = 9.3, 3.4 Hz, 0.2H, H-3_b), 3.76 (dq, J = 9.9, 3.98 (dd, J = 9.3, 3.4 Hz, 0.2H, H-3_b), 3.76 (dq, J = 9.9, 3.98 (dd, J = 9.3, 3.4 Hz, 0.2H, H-3_b), 3.76 (dq, J = 9.9, 3.98 (dd, J = 9.3, 3.4 Hz, 0.2H, H-3_b), 3.76 (dq, J = 9.9, 3.98 (dd, J = 9.3, 3.4 Hz, 0.2H, H-3_b), 3.76 (dq, J = 9.9, 3.98 (dd, J = 9.3, 3.4 Hz, 0.2H, H-3_b), 3.76 (dq, J = 9.9, 3.98 (dd, J = 9.3, 3.4 Hz, 0.2H, H-3_b), 3.76 (dq, J = 9.9, 3.98 (dd, J = 9.3, 3.4 Hz, 0.2H, H-3_b), 3.76 (dq, J = 9.9, 3.98 (dd, J = 9.3, 3.4 Hz, 0.2H, H-3_b), 3.76 (dq, J = 9.9, 3.98 (dd, J = 9.8, 3.88 (dd,$

6.1 Hz, 1H, H-5), 3.45 (t, J = 9.4 Hz, 1H, H-4), 2.83 – 2.65 (m, 4H, CH_{2Lev}), 2.19 (s, 3H, CH_{3Lev}), 2.16 (s, 2.4H, COCH_{3a}), 1.33 (d, J = 6.2 Hz, 3H, H-6). ¹³C NMR (100 MHz, CDCl₃) δ 206.1 (CO_a), 205.1 (CO_{Lev}), 200.1 (CHO_b), 172.0 (CO_{2Levb}), 171.9 (CO_{2Leva}), 138.4 (CAr), 138.0 (CAr), 128.4 – 127.7 (10CHAr), 97.8 (C-1_b), 97.6 (C-1_a), 79.9 (C-4_b), 79.7 (C-4_a), 77.9 (C-3_b), 77.6 (C-3_a), 75.4 (CH_{2Bn}), 72.0 (OCH₂CO_a), 71.7 (CH_{2Bn}), 69.0 (C-2_b), 68.9 (C-2_a), 68.3 (C-5_a), 67.9 (C-5_b), 43.4 (CH_{2Levb}), 38.0 (CH_{2Leva}), 29.8 (CH_{3Lev}), 28.1 (CH_{2Lev}), 26.4 (COCH_{3a}), 18.0 (C-6). HRMS (ESI⁺): m/z 516.2595 (calcd for C₂₈H₃₈NO₇ [M+NH₄]⁺: m/z 516.2598).

3,4-Di-O-benzyl-2-O-levulinoyl-α-L-rhamnopyranosyl trichloroacetimidate (13).⁴ *Route* 2. Hemiacetal 9 (17.3 g, 39.1 mmol) was dissolved in anhydrous 1,2-DCE (130 mL), placed under Ar, and the solution was cooled to 0 °C. Trichloroacetonitrile (19.6 mL, 195 mmol, 5.0 equiv.) and DBU (1.64 mL, 10.9 mmol, 0.28 equiv.) were added. The solution was stirred at 0 °C for 1 h. TLC (cHex/EtOAc, 70:30, + 0.5% Et₃N) showed the conversion of hemiacetal 9 into less polar products. The mixture was carefully concentrated to around 20 mL and directly purified by column chromatography on silica gel (cHex/EtOAc, 80:20, +0.5% Et₃N) to give the known trichloroacetimidate 13 (19.8 g, 87%) as a yellow syrup. Donor 13 had $R_f = 0.65$ (cHex/EtOAc, 70:30). ¹H NMR (400 MHz, CDCl₃) δ 8.68 (s, 1H, NH), 7.37 – 7.28 (m, 10H, H_{Ar}), 6.20 (d, J = 1.9 Hz, 1H, H-1), 5.50 (m, 1H, H-2), 4.97 (d, J = 10.8 Hz, 1H, H_{Bn}), 4.74 (d, J = 11.3 Hz, 1H, H_{Bn}), 4.67 (d, J = 10.8 Hz, 1H, H_{Bn}), 4.58 (d, J = 11.3 Hz, 1H, H_{Bn}), 4.03 – 3.94 (m, 2H, H-3, H-5), 3.53 (t_{app} , J = 9.5 Hz, 1H, H-4), 2.78 (m, 4H, CH_{2Lev}), 2.19 (s, 3H, CH_{3Lev}), 1.37 (d, J =6.2 Hz, 3H, H-6). ¹³C NMR (100 MHz, CDCl₃) δ 206.4 (CO_{Lev}), 172.2 (CO_{2Lev}), 160.7 (C=NH), $138.5 (\underline{C}_{Ar}), 138.0 (\underline{C}_{Ar}), 128.8 - 128.2 (10\underline{C}_{Har}), 95.5 (C-1, J_{C,H} = 178.6 \text{ Hz}), 91.3 (\underline{C}_{Cl_3}), 79.7$ (C-4), 77.6 (C-3), 76.0 (CH_{2Bn}), 72.3 (CH_{2Bn}), 71.1 (C-5), 68.2 (C-2), 38.4 (CH_{2Lev}), 30.2 (CH_{3Lev}), 28.5 (CH_{2Lev}), 18.4 (C-6). HRMS (ESI⁺): m/z 608.0986 (calcd for C₂₇H₃₀NO₇Na $[M+Na]^+$: m/z 608.0986).

c. Disaccharides B_{Ac}C and trisaccharide B_{Ac}CD

Allyl (3,4-di-*O*-benzyl-2-*O*-levulinoyl- α -L-rhamnopyranosyl)-(1 \rightarrow 3)-2-*O*-acetyl-4-*O*-benzyl- α -L-rhamnopyranoside (15).^{4, 5} To a solution of trichloroacetimidate 13 (43.5 g, 74 mmol, 1.2 equiv.) and freshly prepared acceptor 14 (20.7 g, 61.7 mmol, 1.0 equiv.) in toluene (617 mL) containing activated 4 Å MS (20.7 g) was slowly added TMSOTf (3.35 mL, 18.5

mmol, 0.3 equiv) dropwise at -78 °C. The reaction mixture was stirred for 2.5 h while slowly coming back to rt. TLC (Tol/EtOAc, 80:20) showed the absence of acceptor 14 and the presence of a major less polar product. Et₃N (3 mL) was added, the mixture was filtered over a pad of Celite[®]. Solids were generously washed with DCM and the filtrate was concentrated to dryness. Filtration on silica gel of the residue (Tol/EtOAc, 100:0 to 85:15) gave a yellow oil with solids. Toluene (150 mL) was added and the mixture was left at 4 °C overnight. After filtration and concentration to dryness, the known disaccharide 15 was obtained as a yellow oil (43.7 g) containing traces of contaminants, albeit could be used as such in the next step. The coupling product had $R_f = 0.5$ (Tol/EtOAc, 80:20). ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.27 (m, 15H, H_{Ar}), 5.89 (m, 1H, C<u>H</u>=CH₂), 5.46 (m, 1H, H-2_B), 5.29 (m, *J* = 17.2 Hz, 1H, CH=C<u>H</u>₂), 5.21 $(m, J = 10.4 \text{ Hz}, 1\text{H}, \text{CH}=\text{CH}_2), 5.17 (m, 1\text{H}, \text{H}-2_{\text{C}}), 5.05 (d, J = 1.5 \text{ Hz}, 1\text{H}, \text{H}-1_{\text{B}}), 4.91 (d, J = 1.5 \text{ Hz}), 4.91 (d, J = 1.5 \text{ Hz$ = 11.0 Hz, 1H, H_{Bn}), 4.87 (d, J = 10.9 Hz, 1H, H_{Bn}), 4.80 (d, J = 1.5 Hz, 1H, H-1_C), 4.67 – 4.60 $(m, 3H, H_{Bn}), 4.45 (d, J = 11.3 Hz, 1H, H_{Bn}), 4.20 - 4.13 (m, 2H, H-3_C, CH_{2All}), 3.98 (m, 1H, H_{Bn}), 4.20 - 4.13 (m, 2H, H-3_C, CH_{2All}), 3.98 (m, 1H, H_{Bn}), 4.20 - 4.13 (m, 2H, H-3_C, CH_{2All}), 3.98 (m, 1H, H_{Bn}), 4.20 - 4.13 (m, 2H, H-3_C, CH_{2All}), 3.98 (m, 1H, H_{Bn}), 4.20 - 4.13 (m, 2H, H-3_C, CH_{2All}), 3.98 (m, 1H, H_{Bn}), 4.20 - 4.13 (m, 2H, H-3_C, CH_{2All}), 3.98 (m, 1H, H_{Bn}), 4.20 - 4.13 (m, 2H, H-3_C, CH_{2All}), 3.98 (m, 1H, H_{Bn}), 4.20 - 4.13 (m, 2H, H-3_C, CH_{2All}), 3.98 (m, 1H, H_{Bn}), 4.20 - 4.13 (m, 2H, H-3_C, CH_{2All}), 3.98 (m, 1H, H_{Bn}), 4.20 - 4.13 (m, 2H, H-3_C, CH_{2All}), 3.98 (m, 1H, H_{Bn}), 4.20 - 4.13 (m, 2H, H-3_C, CH_{2All}), 3.98 (m, 1H, H_{Bn}), 4.20 - 4.13 (m, 2H, H-3_C, CH_{2All}), 3.98 (m, 1H, H_{Bn}), 4.20 - 4.13 (m, 2H, H_{Bn}), 4.20 - 4.13 ($ $C_{H_{2A11}}$, 3.90 (dd, J = 9.3, 3.3 Hz, 1H, H-3_B), 3.83 – 3.74 (m, 2H, H-5_B, H-5_C), 3.47 (t_{app}, J = 9.5Hz, 1H, H-4_C), 3.43 (t_{app} , J = 9.4 Hz, 1H, H-4_B), 2.71 (m, 4H, CH_{2Lev}), 2.18 (s, 3H, CH_{3Lev}), 2.14 (s, 3H, OCOCH₃), 1.31 (m, 6H, H-6_C, H-6_B). ¹³C NMR (100 MHz, CDCl₃) δ 206.4 (<u>CO_{Lev}</u>), 172.2 (<u>CO_{2Lev}</u>), 170.6 (<u>OCOCH</u>₃), 138.9 - 138.4 (3<u>C</u>_{Ar}), 133.9 (<u>C</u>H=CH₂), 128.9 - $128.0 (15 \underline{CH}_{Ar}), 117.8 (CH = \underline{CH}_2), 100.0 (C-1_B, J_{C,H} = 169.5 \text{ Hz}), 96.6 (C-1_C, J_{C,H} = 170.0 \text{ Hz}),$ 80.7 (C-4_c), 80.2 (C-4_B), 78.1 (C-3_c), 78.0 (C-3_B), 75.9 (<u>C</u>H_{2Bn}), 75.6 (<u>C</u>H_{2Bn}), 72.7 (C-2_c), 71.9 (<u>CH</u>_{2Bn}), 69.7 (C-2_B), 69.0 (C-5_B), 68.6 (<u>C</u>H_{2All}), 68.2 (C-5_C), 38.4 (<u>C</u>H_{2Lev}), 30.2 (<u>C</u>H_{3Lev}), 28.6 (<u>CH_{2Lev}</u>), 21.4 (OCO<u>C</u>H₃), 18.3 (2C, C-6_B, C-6_C). HRMS (ESI⁺): *m/z* 783.3364 (calcd for $C_{43}H_{52}O_{12}Na[M+Na]^+: m/z$ 783.3356).

(3,4-Di-*O*-benzyl-2-*O*-levulinoyl- α -L-rhamnopyranosyl)-(1 \rightarrow 3)-2-*O*-acetyl-4-*O*-benzyl- α -L-rhamnopyranose (16).⁵ 1,5-Cyclooctadiene-bis(methyldiphenylphosphine)-iridium hexafluorophosphate ([Ir(COD){PCH₃(C₆H₅)₂}₂]⁺PF₆⁻, 422 mg, 0.50 mmol, 0.02 equiv.) was dissolved in THF (10 mL) and the resulting red solution was degassed, then stirred under an hydrogen atmosphere, causing the colour to change to yellow. The solution was degassed again and a solution of allyl glycoside **15** (19 g, 25.0 mmol) in THF (123 mL) was added. The mixture was stirred overnight at rt. TLC (Tol/EtOAc, 80:20) showed the complete disappearance of the starting **15** and the presence of a less polar product. Iodine (12.7 g, 50.0 mmol, 2.0 equiv.) in THF/water (1:1, 32 mL) was added and the mixture was stirred for 1 h at rt. TLC (Tol/EtOAc, 80:20 and DCM/MeOH, 98:2) showed the conversion of the intermediate into more polar products. An additionnal amount of iodine (2.0 equiv.) in THF (16 mL) were added and the mixture was stirred at rt for 30 minutes. Excess iodine was destroyed by adding a solution of freshly prepared 5% aq. Na₂S₂O₃. DCM was added and the organic phase was washed with brine three times, dried on Na₂SO₄, filtered, and concentrated to dryness. Purification of the crude by flash column chromatography on silica gel (cHex/EtOAc, 100:0 to 60:40) gave the known hemiacetal 16 (17.4 g, 90%) as a yellow syrup, which had $R_f = 0.15$ (cHex/EtOAc, 60:40). ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.28 (m, 15H, H_{Ar}), 5.41 (dd, J = 3.3, 1.9 Hz, 1H, H-2_B), 5.15 - 5.11 (m, 2H, H-2_C, H-1_C), 5.05 (d, J = 1.7 Hz, 1H, H-1_B), 4.92 (d, J = 11.0 Hz, 1H, H_{Bn}), 4.83 (d, J = 10.9 Hz, 1H, H_{Bn}), 4.66 (d, J = 11.1 Hz, 1H, H_{Bn}), 4.63 – 4.60 (m, 2H, H_{Bn}), 4.45 (d, J = 11.3 Hz, 1H, H_{Bn}), 4.20 (dd, J = 9.4, 3.0 Hz, 1H, H-3_C), 3.98 (dq, J = 9.5, 6.2 Hz, 1H, H-5_C), 3.89 (dd, *J* = 9.3, 3.3 Hz, 1H, H-3_B), 3.83 (dq, *J* = 9.3, 6.2 Hz, 1H, H-5_B), 3.47 (t_{app}, 1H, H-4_C), 3.43 (t_{app}, 1H, H-4_B), 2.70 (m, 4H, CH_{2Lev}), 2.18 (s, 3H, CH_{3Lev}), 2.14 (s, 3H, OCOCH₃), 1.29 (d, J = 6.3 Hz, 3H, H-6_B), 1.30 (d, J = 6.2 Hz, 3H, H-6_C). ¹³C NMR (100 MHz, CDCl₃) δ 206.8 (CO_{Lev}), 172.6 (CO_{2Lev}), 171.6 (OCOCH₃), 138.8 - 138.4 (3C_{Ar}), 128.9 - 128.1 $(15\underline{CH}_{Ar})$, 99.9 (C-1_B, $J_{C,H} = 173.3 \text{ Hz}$), 92.0 (C-1_C, $J_{C,H} = 170.0 \text{ Hz}$), 80.7 (C-4_C), 80.2 (C-4_B), 78.0 (C-3_B), 77.7 (C-3_C), 75.8 (<u>C</u>H_{2Bn}), 75.6 (<u>C</u>H_{2Bn}), 73.2 (C-2_C), 72.0 (<u>C</u>H_{2Bn}), 69.7 (C-2_B), 69.0 (C-5_B), 68.0 (C-5_C), 38.4 (CH_{2Lev}), 30.2 (CH_{3Lev}), 28.5 (CH_{2Lev}), 21.5 (OCOCH₃), 18.5 (C-6_B), 18.4 (C-6_C). HRMS (ESI⁺): m/z 743.3173 (calcd for C₄₀H₄₈O₁₂Na [M+Na]⁺: m/z743.3043).

$(3,4-\text{Di-}O-\text{benzyl-}2-O-\text{levulinoyl-}\alpha-\text{L-rhamnopyranosyl})-(1\rightarrow 3)-2-O-\text{acetyl-}4-O-$

benzyl-α/β-L-rhamnopyranosyl trichloroacetimidate (17).⁵ *Route 3.* Hemiacetal 16 (8.7 g, 12.1 mmol) was dissolved in anhydrous 1,2-DCE (50 mL) under Ar, and cooled to 0 °C. Trichloroacetonitrile (6.1 mL, 60.7 mmol, 5.0 equiv.) and DBU (508 µL, 3.3 mmol, 0.28 equiv.) were added. The mixture was stirred at 0 °C for 10 min. TLC (cHex/EtOAc, 70:30, + 1% Et₃N) showed the complete disappearance of hemiacetal 16 and the presence of less polar products. The mixture was concentrated to a minimum of solvent and purified by column chromatography (cHex/EtOAc + 5% Et₃N, 70:30 to 50:50) on pre-neutralized silica gel to give the known donor 17 (8.7 g, 84%) as a yellow syrup.

Route 4. 1,5-Cyclooctadiene-bis(methyldiphenylphosphine)-iridium hexafluorophosphate $([Ir(COD){PCH_3(C_6H_5)_2}_2]^+PF_6^-, 630 \text{ mg}, 0.74 \text{ mmol. } 0.03 \text{ equiv.})$ was dissolved in THF (75 mL) and the resulting red solution was degassed repeatedly. Hydrogen was bubbled through the solution, causing the colour to change to yellow. The solution was again degassed and disaccharide **15** (18.8 g, 24.6 mmol) in anhydrous THF (125 mL) was added. The mixture was stirred for 2 h at rt. TLC (Tol/EtOAc, 80:20) showed the complete

disappearance of allyl glycoside 15 and the presence of a less polar product. The mixture was treated with iodine (25.0 g, 98.6 mmol, 4.0 equiv.) in THF/water (4:1, 165 mL), and stirred for 1 h at rt. TLC (cHex/EtOAc, 60:40) showed the conversion of the intermediate into more polar products. Excess iodine was destroyed by adding sat. aq. Na₂S₂O₃. DCM was added and the organic phase was washed with water and brine, dried on Na₂SO₄, filtered, and concentrated to dryness. Trichloroacetonitrile (11.8 mL, 118 mmol, 5.0 equiv.) and DBU (1.1 mL, 6.6 mmol, 0.28 equiv.) were added dropwise to the crude 16 in anhydrous 1,2-DCE (120 mL) under Ar, at 0 °C. After stirring at 0 °C for 3 h, TLC (cHex/EtOAc + 1% Et₃N, 80:20) showed the complete disappearance of hemiacetal 16 and the presence of less polar products. The solution was concentrated to a minimum of solvent under reduced pressure, and the residue was purified by chromatography on neutralized silica gel (cHex/EtOAc + 1% Et₃N, 100:0 to 80:20 to 40:60). Donor **17** (19.1 g, 89%) was isolated as an orange syrup along with recovered hemiacetal 16 (1.6 g, 9%). Donor 17 had $R_f = 0.6$ (Tol/EtOAc, 80:20). ¹H NMR (400 MHz, CDCl₃) δ 8.72 (s, 1H, NH), 7.42 – 7.29 (m, 15H, H_{Ar}), 6.22 (d, J = 1.9 Hz, 1H, H-1_C), 5.48 (dd, J = 3.3, 1.8 Hz, 1H, H-2_B), 5.31 (dd, J = 3.3, 2.1 Hz, 1H, H-2_C), 5.10 (d, J = 1.6 Hz, 1H, H-1_B), 4.92 (d, 1H, J = 11.0 Hz, H_{Bn}), 4.85 (d, 1H, J = 10.8 Hz, H_{Bn}), 4.68 - 4.62 (m, 3H, H_{Bn}), 4.51 (d, J = 11.3 Hz, 1H, H_{Bn}), 4.26 (dd, J= 9.5, 3.4 Hz, 1H, H-3_C), 3.96 (dq, *J* = 9.7, 6.2 Hz, 1H, H-5_C), 3.89 (dd, *J* = 9.3, 3.3 Hz, 1H, H-3_B), 3.82 (dq, 1H, J = 9.6, 6.2 Hz, 1H, H-5_B), 3.58 (t_{app}, J = 9.4 Hz, 1H, H-4_C), 3.44 (t_{app}, J = 9.5 Hz, 1H, H-4_B), 2.72 (m, 4H, CH_{2Lev}), 2.18 (s, 3H, CH_{3Lev}), 2.17 (s, 3H, OCOC<u>H</u>₃), 1.36 (d, J = 6.2 Hz, 3H, H-6_C), 1.29 (d, J = 6.2 Hz, 3H, H-6_B). ¹³C NMR (100 MHz, CDCl₃) δ 206.5 (<u>COLev</u>), 172.3 (<u>CO2Lev</u>), 170.3 (<u>OCOCH</u>₃), 160.5 (<u>C</u>=NH), 138.8 - 138.0 (3<u>C</u>Ar), 129.2 – 127.9 (15CH_{Ar}), 99.9 (C-1_B, J_{C,H} = 168.1 Hz), 94.5 (C-1_C, J_{C,H} = 178.7 Hz), 91.2 (CCl₃), 80.2 (C-4_C), 80.1 (C-4_B), 77.9 (C-3_B), 76.5 (C-3_C), 76.1 (CH_{2Bn}), 75.7 (CH_{2Bn}), 72.0 (CH_{2Bn}), 71.2 (C-2_C), 71.1 (C-5_C), 69.6 (C-2_B), 69.1 (C-5_B), 38.4 (CH_{2Lev}), 30.2 (CH_{3Lev}), 28.5 (<u>CH_{2Lev}</u>), 21.3 (OCO<u>C</u>H₃), 18.4 (C-6_B), 18.3 (C-6_C).

Allyl (3,4-di-*O*-benzyl-2-*O*-levulinoyl- α -L-rhamnopyranosyl)-(1 \rightarrow 3)-(2-*O*-acetyl-4-*O*-benzyl- α -L-rhamnopyranosyl)-(1 \rightarrow 3)-4,6-*O*-benzylidene-2-deoxy-2-trichloroacetamido**β-D-glucopyranoside** (2).⁶ A solution of donor 17 (45 g, 52.0 mmol, 1.15 equiv.) and the known acceptor⁷ 18 (20.4 g, 45.2 mmol, 1.0 equiv.) in anhydrous DCM (520 mL) containing 4 Å MS

acceptor⁷ **18** (20.4 g, 45.2 mmol, 1.0 equiv.) in anhydrous DCM (520 mL) containing 4 Å MS (20.4 g) was stirred at rt under Ar for 30 min. The suspension was cooled at 0 °C and stirred for 15 min. TMSOTf (0.4 mL, 2.26 mmol, 0.05 equiv.) was added dropwise, very slowly. After stirring for 3 h, while slowly warming up to rt, TLC (Tol/EtOAc, 80:20) revealed the

disappearance of acceptor 18 and the presence of less polar products. The reaction mixture was neutralized with Et₃N. Solids were filtered over a pad of Celite[®] and washed generously with DCM. The filtrate was evaporated to dryness and the residue was crystallized from *i*Pr₂O and a minimum amount of EtOAc to give the known crystalline 2 (39.3 g). The mother liquor was further purified by flash column chromatography (Tol/Acetone, 100:0 to 95:5) to give an additional amount of trisaccharide 2 as a white solid (44.5 g, 86%). The coupling product 2 had $R_f = 0.3$ (Tol/Acetone, 19:1). ¹H NMR (400 MHz, CDCl₃) δ 7.54 – 7.24 (m, 20H, H_{Ar}), 7.09 (d, J = 7.3 Hz, 1H, NH), 5.87 (m, 1H, CH=CH₂), 5.55 (s, 1H, H_{Bzl}), 5.39 (dd, J = 3.1, 1.9 Hz, 1H, H-2_B), 5.32 - 5.21 (m, 2H, CH=C<u>H</u>₂), 5.16 (dd, J = 3.3, 1.8 Hz, 1H, H-2_C), 5.09 (d, J = 8.3 Hz, 1H, H-1_D), 5.00 (d, *J* = 1.7 Hz, 1H, H-1_B), 4.89 (d, *J* = 11.0 Hz, 1H, H_{Bn}), 4.83 (d, *J* = 1.5 Hz, 1H, H-1_C), 4.72 (d, J = 11.0 Hz, 1H, H_{Bn}), 4.63 (d, J = 11.0 Hz, 1H, H_{Bn}), 4.57 (d, J = 11.3 Hz, 1H, H_{Bn}), 4.53 (t_{app} , J = 8.7 Hz, 1H, H-3_D), 4.47 (d, J = 11.0 Hz, 1H, H_{Bn}), 4.41 (d, J = 11.3 Hz, 1H, H_{Bn}), 4.41 - 4.33 (m, 2H, H-6a_D, CH_{2All}), 4.13 - 4.07 (m, 2H, H-3_C, CH_{2All}), 3.97 (dq, J =9.6, 6.2 Hz, 1H, H-5_C), 3.85 – 3.75 (m, 3H, H-3_B, H-5_B, H-6b_D), 3.61 – 3.58 (m, 2H, H-4_D, H- $5_{\rm D}$), 3.45 (m, 1H, H-2_D), 3.39 (t_{app}, J = 9.4 Hz, 1H, H-4_B), 3.31 (t_{app}, J = 9.6 Hz, 1H, H-4_C), 2.73 -2.63 (m, 4H, CH_{2Lev}), 2.17 (s, 3H, CH_{3Lev}), 2.04 (s, 3H, OCOCH₃), 1.27 (d, J = 6.2 Hz, 3H, H-6_B), 0.76 (d, J = 6.2 Hz, 3H, H-6_C); ¹³C NMR (100 MHz, CDCl₃) δ 206.4 (CO_{Lev}), 172.0 (<u>CO_{2Lev}</u>), 170.0 (<u>OCOCH</u>₃), 162.4 (<u>CONH</u>), 138.7 – 137.1 (<u>4C</u>_{Ar}), 133.4 (<u>CH</u>=CH₂), 129.3 – 126.7 (20<u>C</u>H_{Ar}), 118.6 (CH=<u>C</u>H₂), 102.3 (C_{Bzl}), 99.5 (C-1_B, J_{C,H} = 171.3 Hz), 98.4 (C-1_D, J_{C,H} = 164.6 Hz), 97.7 (C-1_C, *J*_{C,H} = 172.4 Hz), 92.3 (<u>C</u>Cl₃), 80.4 (2C, C-4_B, C-4_D), 80.0 (C-4_C), 77.8 (C-3_B), 77.4 (C-3_C), 75.3 <u>CH</u>_{2Bn}), 75.2 (<u>CH</u>_{2Bn}), 74.1 (C-3_D), 71.9 (C-2_C), 71.7 (<u>C</u>H_{2Bn}), 71.0 (C-6_D), 69.5 (C-2_B), 68.8 (C-5_B), 68.2 (C-5_C), 66.4 (C-5_D), 60.4 (C-2_D), 38.2 (CH_{2Lev}), 30.0 (CH_{3Lev}), 28.3 (CH_{2Lev}), 21.1 (OCOCH₃), 18.1 (C-6_B), 17.3 (C-6_C). HRMS (ESI⁺): m/z 1176.3236 (calcd for C₅₈H₆₆Cl₃NO₁₇Na [M+Na]⁺: *m/z*, 1176.3293).

d. Disaccharide EA and pentasaccharide EABAcCD

Allyl (2,3,4,6-tetra-*O*-benzyl- α -D-glucopyranosyl)-(1 \rightarrow 3)-4-*O*-benzyl- α -Lrhamnopyranoside (24)⁸ and Allyl (2,3,4,6-tetra-*O*-benzyl- β -D-glucopyranosyl)-(1 \rightarrow 3)-4-*O*-benzyl- α -L-rhamnopyranoside (25).⁸ *Route 1 (11.5 g scale)*. Trimethyl orthoacetate (9.45 mL, 74.2 mmol, 1.9 equiv.) and monohydrated PTSA (111 mg, 0.59 mmol, 0.015 equiv.) were added to diol 5 (11.5 g, 39.1 mmol, 1.0 equiv.) in anhydrous MeCN (26 mL) at rt. After stirring at rt for 2 h, 80% aq. AcOH (26 mL) was added at 0 °C and the mixture was stirred at this temperature for 1 h. TLC (Tol/EtOAc, 70:30) showed total consumption of the intermediate orthoester. DCM was added along with water and the two layers were separated. The aq. phase was extracted repeatedly with DCM and the combined organic phases were washed successively with sat. aq. NaHCO₃ and brine, dried over Na₂SO₄, filtered and concentrated to dryness to give crude acceptor 14. TfOH (3.45 mL, 39.1 mmol, 1.0 equiv.) was slowly added to a solution of the latter and trichloroacetimidate⁹ 21 (30.8 g, 44.9 mmol, 1.15 equiv.) in DCM (450 mL) containing DMF (60.5 mL, 78.1 mmol, 20 equiv.) and activated 4 Å MS (5.1 g) at -78 °C. The suspension was stirred overnight while the temperature reached rt. TLC (Tol/EtOAc, 70:30) indicated the presence of a main less polar product together with some unreacted acceptor 14. Et₃N (5.45 mL) was added and after 1 h, the suspension was filtered over a pad of Celite[®]. Solids were washed thoroughly with DCM and the organic phase was washed with sat. aq. NaHCO₃, water and brine. The combined organic phases were concentrated to dryness and the crude was solubilized in DCM/MeOH (11:8, 560 mL). 25% Methanolic MeONa (13.4 mL, 58.6 mmol, 1.5 equiv.) was added and the solution was stirred overnight. Dowex H⁺ resin was added to the solution under gentle stirring until neutralisation. Filtration, concentration of the filtrate to dryness, and purification of the crude by flash chromatography (Tol/EtOAc, 90:10) gave the glucosylated products 24 and 25 as a 95:5 α/β mixture (25.73 g, 81%), corresponding to the target 24 (77%) and the β anomer 25 (4%). The undesired disaccharide 25 had R_f = 0.35 (cHex/EtOAc, 73:27). ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.15 (m, 25H, H_{Ar}), 5.90 (m, 1H, CH=CH₂), 5.29 (dq, J = 17.3 Hz, 1.8 Hz, 1H, CH=CH₂), 5.20 (dq, J = 10.3 J = 1.5 Hz, 1H, $CH=CH_2$, 4.96 (d, J=11.2 Hz, 1H, H_{Bn}), 4.90 (d, J=11.1 Hz, 2H, $2H_{Bn}$), 4.84 (bs, 1H, H-1_A), 4.84 (d, J = 10.9 Hz, 1H, H_{Bn}), 4.80 (d, J = 11.1 Hz, 1H, H_{Bn}), 4.72 (d, J = 7.5 Hz, 1H, H-1_E), 4.71 (d, J = 11.1 Hz, 1H, H_{Bn}), 4.62 - 4.52 (m, 4H, 4H_{Bn}), 4.17 (ddt, J = 12.9 Hz, 5.1 Hz, 1.5Hz, 1H, CH_{2All}), 4.14 - 4.09 (m, 2H, H-3_A, H-2_A), 3.98 (ddt, J = 12.9 J = 6.0 Hz, 1.3 Hz, 1H, CH_{2All}), 3.80 (dq, J=9.6 Hz, 6.2 Hz, 1H, H-5_A), 3.71 (dd, J=10.6 Hz, 2.1 Hz, 1H, H-6a_E), 3.70 -3.50 (m, 6H, H-3_E, H-4_E, H-4_A, H-6b_E, H-2_E, H-5_E), 3.21 (d, J = 2.8 Hz, 1H, OH-2_A), 1.33 (d, J = 6.2 Hz, 3H, H-6A). ¹³C NMR (100 MHz, CDCl₃) δ 138.4 – 137.9 (5C_{Ar}), 133.9 (CH=CH), $128.4 - 127.5 (25CH_{Ar}), 117.3 (CH=CH_2), 102.6 (C-1_E, J_{C,H} = 160.4 Hz), 98.3 (C-1_A, J_{C,H} = 160.$ 170.3 Hz), 84.8 (C-3_E), 82.1 (C-2_E), 80.9 (C-3_A), 80.0 (C-4_A), 77.7 (C-4_E), 75.6 (CH_{2Bn}), 75.0 (<u>CH</u>_{2Bn}), 75.0 (<u>C</u>H_{2Bn}), 74.7 (<u>C</u>H_{2Bn}), 74.5 (C-5_E), 76.6 (<u>C</u>H_{2Bn}), 70.0 (C-2_A), 68.9 (C-6_E), 67.8 (CH_{2All}), 67.5 (C-5_A), 17.9 (C-6_A). HRMS (ESI⁺): *m/z* 834.4189 (calcd for C₅₀H₅₆O₁₀NH₄ $[M+NH_4]^+$: m/z 834.4212).

Allyl (2,3,4,6-tetra-O-benzyl- α -D-glucopyranosyl)-(1 \rightarrow 3)-4-O-benzyl-2-O-levulinoyl- α -Lrhamnopyranoside (3).⁴ Levulinic acid (6.34 g, 54.6 mmol, 1.5 equiv), EDC (9.62 mL, 54.6 mmol, 1.5 equiv) and DMAP (0.22 g, 1.80 mmol, 0.05 equiv) were added to alcohol 23 (29.3 g, 35.9 mmol, 1.0 equiv.) in anhydrous DCM (130 mL) were added successively. The mixture was stirred at rt for 3.5 h, and more levulinic acid (4.17 g, 35.9 mmol, 1.0) and EDC (6.35 mL, 35.9 mmol, 1.0 equiv.) were added. After stirring overnight at rt, TLC (cHex/EtOAc, 70:30) showed the absence of the starting 24 and the presence of a less polar product. Volatiles were evaporated and the residue solubilized in EtOAc, was washed with 1 M aq. HCl, 10% aq. CuSO₄, water, sat. aq. NaHCO₃ and brine. The organic phase was dried over Na₂SO₄, filtered, and the filtrate was concentrated to dryness. Purification by flash column chromatography on silica gel (CHex/EtOAc, 80:20 to 60:40) afforded the fully protected 3 (29.4 g, 90%), which had $R_f = 0.3$ (cHex/EtOAc, 70:30). ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.10 (m, 25H, H_{Ar}), 5.87 (m, 1H, CH=CH₂), 5.39 (m, 1H, H-2_A), 5.28 (m, J_{trans} = 17.2 Hz, 1H, CH=CH₂), 5.19 (d, J = 5.6 Hz, 1H, H-1_E), 5.28 (m, $J_{cis} = 10.3$ Hz, 1H, CH=CH₂), 5.02 (d, J = 11.0 Hz, 1H, H_{Bn}), 4.96 - 4.85 (m, 3H, H_{Bn}), 4.78 (d, J = 1.8 Hz, 1H, H-1_A), 4.78 - 4.59 (m, 4H, H_{Bn}), 4.50 (d, J = 1.8 Hz, 1H, H-1_A), 4.78 - 4.59 (m, 4H, H_{Bn}), 4.50 (d, J = 1.8 Hz, 1H, H-1_A), 4.78 - 4.59 (m, 4H, H_{Bn}), 4.50 (d, J = 1.8 Hz, 1H, H-1_A), 4.78 - 4.59 (m, 4H, H_{Bn}), 4.50 (d, J = 1.8 Hz, 1H, H-1_A), 4.78 - 4.59 (m, 4H, H_{Bn}), 4.50 (d, J = 1.8 Hz, 1H, H-1_A), 4.78 - 4.59 (m, 4H, H_{Bn}), 4.50 (d, J = 1.8 Hz, 1H, H-1_A), 4.78 - 4.59 (m, 4H, H_{Bn}), 4.50 (d, J = 1.8 Hz, 1H, H-1_A), 4.78 - 4.59 (m, 4H, H_{Bn}), 4.50 (d, J = 1.8 Hz, 1H, H-1_A), 4.78 - 4.59 (m, 4H, H_{Bn}), 4.50 (d, J = 1.8 Hz, 1H, H-1_A), 4.78 - 4.59 (m, 4H, H_{Bn}), 4.50 (m, 4H, H_{Bn}), 11.0 Hz, 1H, H_{Bn}), 4.36 (d, J = 12.0 Hz, 1H, H_{Bn}), 4.26 (dd, J = 9.6, 3.2 Hz, 1H, H-3_A), 4.18 – 4.04 (m, 3H, <u>CH</u>_{2All}, H-3_E, H-5_E), 3.97 (m, 1H, <u>C</u>H_{2All}), 3.80 (m, 1H, H-5_A), 3.77 (t_{app} , J = 9.2Hz, 1H, H-4_E), 3.64 – 3.52 (m, 4H, H-2_E, H-6a_E, H-4_A, H-6b_E), 2.60 – 2.45 (m, 4H, C<u>H</u>_{2Lev}), 2.09 (s, 3H, C<u>H</u>_{3Lev}), 1.40 (d, J = 6.2 Hz, 3H, H-6_A). ¹³C NMR (100 MHz, CDCl₃) δ 206.5 (<u>C</u>O_{Lev}), 172.5 (CO_{2Lev}), 139.2 - 138.1 (5C_{Ar}), 134.0 (CH=CH₂), 129.0 - 127.8 (25CH_{Ar}), 117.8 (CH=CH₂), 97.0 (C-1_E, J_{C,H} = 170.2 Hz), 93.3 (C-1_A, J_{C,H} = 167.5 Hz), 82.5 (C-3_E), 80.3 (C-4_A), 80.0 (C-2_E), 78.3 (C-4_E), 76.5 – 72.8 (5<u>C</u>H_{2Bn}), 72.8 (C-3_A), 70.6 (C-5_E), 68.7 (C-6_E), 68.6 (C-2_A), 68.5 (CH_{2All}), 68.4 (C-5_A), 38.2 (CH_{2Lev}), 30.0 (CH_{3Lev}), 28.4 (CH_{2Lev}), 18.3 (C-6_A). HRMS (ESI⁺): m/z 937.4109 (calcd for C₅₅H₆₂O₁₂Na [M+Na]⁺: m/z 937.4139).

(2,3,4,6-Tetra-*O*-benzyl-α-D-glucopyranosyl)-(1→3)-4-*O*-benzyl-2-*O*-levulinoyl-α-L-

rhamnopyranose (33).⁴ 1,5-Cyclooctadiene-bis(methyldiphenylphosphine)-iridium hexafluorophosphate (0.36 g, 0.42 mmol, 0.02 equiv.) was dissolved in THF (8.4 mL) and the resulting red solution was degassed repeatedly. Hydrogen was bubbled through the solution, causing the colour to change to yellow. The solution was then degassed again under Ar. A solution of disaccharide **3** (29.2 g, 21.0 mmol, 1.0 equiv.) in anhydrous THF (105 mL) was added. The solution was stirred at rt for 1 h, at which time TLC (Tol/EtOAc, 90:10) showed the complete disappearance of allyl glycoside **3** and the presence of a less polar product. Iodine (5.33 g, 42.0 mmol, 2.0 equiv.) in THF/water (4:1, 140 mL) was added, and the biphasic mixture was stirred at rt for 3 h. TLC (cHex/EtOAc, 60:40) showed the conversion of the intermediate into more polar products. Excess iodine was destroyed by adding 10% aq. NaHSO₃. Volatiles were evaporated, EtOAc was added and the organic phase was washed with 10% aq. NaHSO₃, sat. aq. NaHCO₃ and brine, dried on Na₂SO₄, filtered, and concentrated to dryness. Purification by flash column chromatography on silica gel (cHex/EtOAc, 60:40 to 40:60) afforded hemiacetal 33 (23.6 g, 85%) as a 85:15 α/β mix. Hemiacetal 33 had R_f = 0.2 (DCM/MeOH, 98:2). ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.14 (m, 25H, H_{Ar}), 5.43 (m, 1H, H-2_A), 5.25 (d, J = 3.4 Hz, 1H, H-1_E), 5.15 (d, J = 1.7 Hz, 1H, H-1_A), 5.07 – 4.87 (m, 3H, H_{Bn}), 4.80 (d, J = 12.2Hz, 1H, H_{Bn}), 4.74 - 4.59 (m, 3H, H_{Bn}), 4.52 (d, J = 11.0 Hz, 1H, H_{Bn}), 4.46 - 4.36 (m, 2H, H_{Bn}), 4.34 (m, 1H, H-3_A), 4.20 – 4.10 (m, 2H, H-3_E, H-5_E), 4.05 (m, 1H, H-5_A), 3.78 – 3.73 (m, 2H, O<u>H</u>, H-4_E), 3.70 - 3.55 (m, 4H, H-2_E, H-6a_E, H-4_A, H-6b_E), 2.55 (m, 4H, C<u>H</u>_{2Lev}), 2.11 (s, 3H, CH_{3Lev}), 1.41 (d, J = 6.2 Hz, 3H, H-6_A). ¹³C NMR (100 MHz, CDCl₃) δ 206.9 (CO_{Lev}), 172.6 (CO_{2Lev}), 139.2 - 138.9 (5C_{Ar}), 129.0 - 127.8 (25CH_{Ar}), 93.0 (C-1_E, $J_{C,H} = 169.0$ Hz), 92.4 (C-1_A, $J_{C,H} = 170.7$ Hz), 82.5 (C-3_E), 80.3 (C-4_A), 79.9 (C-2_E), 78.3 (C-4_E), 76.5 - 73.2 (5CH_{2Bn}), 72.3 (C-3_A), 70.5 (C-5_E), 69.0 (C-2_A), 68.7 (C-6_E), 68.3 (C-5_A), 38.3 (CH_{2Lev}), 30.1 (CH_{3Lev}), 28.6 (CH_{2Lev}), 18.5 (C-6_A). HRMS (ESI⁺): m/z 897.3777 (calcd for C₅₂H₅₈O₁₂Na $[M+Na]^+$: *m/z* 897.3826).

(2,3,4,6-Tetra-*O*-benzyl- α -D-glucopyranosyl)- $(1 \rightarrow 3)$ -4-*O*-benzyl-2-*O*-levulinoyl- α -L-

rhamnopyranosyl trichloroacetimidate (34).⁴ *Route 1.* Trichloroacetonitrile (5.40 mL, 53.8 mmol, 2.0 equiv.) and DBU (0.80 mL, 5.35 mmol, 0.2 equiv.) were added to hemiacetal **33** (23.4 g, 26.7 mmol, 1.0 equiv.) in DCM (67 mL) under Ar, at 0 °C. After stirring at 0 °C for 1 h, TLC (cHex/EtOAc, 70:30) showed conversion of the starting **33** into less polar products. The mixture was concentrated to one third of its volume and directly purified by flash column chromatography on silica gel (cHex/EtOAc, 100:0 to 60:40) to give the known trichloroacetimidate **34** (25.8 g, 93%).

Route 2. Levulinic acid (11.9 g, 103 mmol, 2.0 equiv.), EDC (19.1 g, 93 mmol, 1.8 equiv.) and DMAP (4.2 g, 21 mmol, 0.4 equiv.) were added to alcohol **24** (42 g, 51 mmol, 1.0 equiv.) in anhydrous DCM (250 mL). After stirring at rt for 2 days, TLC (Tol/EtOAc, 80:20) showed conversion of the starting alcohol **24** into a more polar product. The suspension was filtered over a pad of Celite[®], and solids were washed thoroughly with DCM. The filtrate was washed with sat. aq. NaHCO₃, sat. aq. CuSO₄ twice, and brine. The organic layer was dried on Na₂SO₄, filtered, and concentrated to dryness. 1,5-Cyclooctadiene-bis(methyldiphenylphosphine)-iridium hexafluorophosphate (1.29 g, 1.53 mmol, 0.03 equiv.) was dissolved in anhydrous THF

(38 mL) and the red solution was degassed repeatedly. Hydrogen was bubbled through the solution, causing the colour to change to yellow. The solution was degassed and the crude 3 (51 mmol, 1.0 equiv.) in anhydrous THF (255 mL) was added and the solution was stirred at rt for 3 h. TLC (Tol/EtOAc, 80:20) revealed the conversion of allyl glycoside **3** in a less polar product. Iodine (51.8 g, 204 mmol, 4.0 equiv.) in THF/water (4:1, 340 mL) was added and the biphasic mixture was stirred at rt for 2 h. TLC (Tol/EtOAc, 80:20) indicated the conversion of the intermediate into more polar products. Sat. aq. Na₂S₂O₃ was added and volatiles were evaporated. EtOAc was added to the residual aq. phase and the organic phase was washed with sat. aq. NaHCO₃ and brine, dried on Na₂SO₄, filtered, and concentrated to dryness. Trichloroacetonitrile (25.6 mL, 255 mmol, 5.0 equiv.) and DBU (2.2 mL, 14.3 mmol, 0.28 equiv.) were added dropwise to the crude hemiacetal 33 (51 mmol) in anhydrous 1,2-DCE (340 mL) under Ar, at 0 °C. After stirring at rt for 3 h, TLC (cHex/EtOAc, 70:30, +1% Et₃N) showed the complete disappearance of hemiacetal 33 and the presence of less polar products. The mixture was concentrated to about one third of the original volume and purified by flash column chromatography on neutralized silica gel (cHex/EtOAc, 100:0 to 90:10 to 50:50, + 1% Et₃N) to give trichloroacetimidate 34 (35.0 g, 67% over 3 steps) as a brown oil along with the recovered hemiacetal 33 (13.6 g, 30%). The desired donor 34 had $R_f = 0.35$ (CHex/EtOAc, 70:30). ¹H NMR (400 MHz, CDCl₃) δ 8.72 (s, 1H, N<u>H</u>), 7.42 – 7.14 (m, 25H, H_{Ar}), 6.24 (d, J = 2.0 Hz, 1H, H-1_A), 5.61 (m, 1H, H-2_A), 5.27 (d, J = 3.4 Hz, 1H, H-1_E), 5.05 – 4.99 (m, 2H, H_{Bn}), 4.92 – 4.88 (m, 2H, H_{Bn}), 4.80 (d, J = 12.0 Hz, 1H, H_{Bn}), 4.74 – 4.53 (m, 4H, H_{Bn}), 4.42 $(d, J = 12.2 \text{ Hz}, 1\text{H}, \text{H}_{Bn}), 4.34 (dd, J = 9.7, 3.1 \text{ Hz}, 1\text{H}, \text{H}-3_{A}), 4.16 - 4.06 (m, 2\text{H}, \text{H}-3_{\text{E}}, \text{H}-3_{\text{E}})$ $5_{\rm E}$), 4.02 (m, 1H, H- $5_{\rm A}$), 3.79 (t_{app}, $J_{3,4} = 9.3$ Hz, 1H, H- $4_{\rm E}$), 3.71 – 3.62 (m, 3H, H- $4_{\rm A}$, H- $6a_{\rm E}$, $H-2_{E}$), 3.52 (m, 1H, H-6b_E), 2.59 (m, 4H, CH_{2Lev}), 2.11 (s, 3H, CH_{3Lev}), 1.45 (d, J = 6.2 Hz, 3H, H-6_A). ¹³C NMR (100 MHz, CDCl₃) δ 206.3 (CO_{Lev}), 172.5 (CO_{2Lev}), 160.5 (C=NH), 139.1 – 137.9 (5C_{Ar}), 129.2 – 127.8 (25CH_{Ar}), 95.4 (C-1_A, $J_{C,H}$ = 178.9 Hz), 93.4 (C-1_E, $J_{C,H}$ = 168.3 Hz), 91.3 (<u>C</u>Cl₃), 82.4 (C-3_E), 79.8 (C-2_E), 79.5 (C-4_A), 78.2 (C-4_E), 76.8 – 73.2 (<u>C</u>H_{2Bn}), 72.5 (C-3_A), 71.4 (C-5_A), 70.8 (C-5_E), 68.4 (C-6_E), 66.9 (C-2_A), 38.2 (<u>C</u>H_{2Lev}), 30.0 (<u>C</u>H_{3Lev}), 28.4 (<u>CH_{2Lev}</u>), 18.4 (C-6_A). HRMS (ESI⁺): m/z 897.3777 (calcd for C₅₄H₆₂Cl₃N₂O₁₃Na [M+NH₄]⁺: *m/z* 897.3826).

Allyl (2,3,4,6-Tetra-*O*-benzyl- α -D-glucopyranosyl)-(1 \rightarrow 3)-(4-*O*-benzyl-2-*O*-levulinoyl- α -L-rhamnopyranosyl)-(1 \rightarrow 2)-(3,4-di-*O*-benzyl- α -L-rhamnopyranosyl)-(1 \rightarrow 3)-(2-*O*-acetyl-4-*O*-benzyl- α -L-rhamnopyranosyl)-(1 \rightarrow 3)-4,6-*O*-benzylidene-2-deoxy-2-trichloroacetamido- β -D-glucopyranoside (1).⁶ *Route* 2. Hydrazine hydrate (60% in water, 6.3)

mL, 130 mmol, 5.0 equiv.) was added dropwise to a solution of the fully protected B_{Ac}CD 2 (30.0 g, 26.0 mmol, 1.0 equiv.) in pyridine/AcOH (3:2, 550 mL) at 0 °C. The reaction mixture was stirred at rt for 4 h. TLC (Tol/EtOAc, 80:20) showed the complete disappearance of the starting material and the presence of a more polar product. The reaction mixture was diluted with water and EtOAc. The two layers were separated, the aq. phase was extracted with EtOAc and the combined organic phases were washed with sat. aq. NaHCO₃, water and brine, dried over Na₂SO₄, filtered and evaporated to dryness. Filtration on a pad of silica (Tol/EtOAc, 80:20) afforded the desired compound as a white foam. Activated 4 Å MS (17.0 g) was added to the crude acceptor 36 (26.0 mmol, 1.0 equiv.) and donor 34 (27.5 g, 29.9 mmol, 1.15 equiv.) in anhydrous toluene (260 mL) and the suspension was stirred at rt, under Ar, for 30 min. TMSOTf (940 µL, 5.20 mmol, 0.2 equiv.) was added very slowly at rt. After stirring at rt for 1 h, TLC (Tol/Acetone, 80:20) showed the complete disappearance of acceptor 36 and the presence of less polar products. Et₃N was added and after stirring for 10 min at rt, solids were filtered over a pad of Celite[®] and washed generously with DCM. Successive purifications by flash column chromatography on silica gel (Tol/EtOAc, 100:0 to 90:10 then Tol/EtOAc, 100:0 to 90:10) afforded the desired pentasaccharide 1 as a white foam (39.6 g, 80% over 2 steps) along with recovered starting material 36 (4.2 g, 15%) and contaminated Chapman-rearranged disaccharide (4.5 g, 15% from 34). The fully protected target 1 had $R_f = 0.35$ (Tol/EtOAc, 80:20). ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.10 (m, 45H, H_{Ar}), 5.95 – 5.85 (m, 1H, C<u>H</u>=CH₂), 5.57 - 5.53 (m, 2H, H_{Bzl}, H-2_A), 5.34 - 5.22 (m, 3H, H-1_E, CH=C<u>H</u>₂), 5.17 (m, 1H, H-2_C), 5.13 $(d, J = 8.2 \text{ Hz}, 1\text{H}, \text{H}-1_{\text{D}}), 5.03 - 4.85 \text{ (m}, 8\text{H}, \text{H}-1_{\text{A}}, \text{H}-1_{\text{B}}, \text{H}-1_{\text{C}}, 5\text{H}_{\text{Bn}}), 4.78 \text{ (d}, J = 13.1 \text{ Hz},$ 1H, H_{Bn}), 4.67 (d, J = 13.1 Hz, 1H, H_{Bn}), 4.70 – 4.34 (m, 12H, H-3_D, H-6b_D, C<u>H</u>_{2All}, 9H_{Bn}), 4.24 $(dt, J = 9.7, 2.6 Hz, 1H, H-3_A), 4.15 - 3.94 (m, 6H, H-2_B, H-3_C, H-3_E, H-5_C, H-5_E, CH_{2All}), 3.87$ - 3.77 (m, 4H, H-3_B, H-4_E, H-5_A, H-6a_D), 3.70 - 3.41 (m, 9H, H-2_D, H-2_E, H-4_A, H-4_B, H-4_D, H-5_B, H-5_D, H-6a_E, H-6b_E), 3.29 (t_{app} , J = 9.5 Hz, 1H, H-4_C), 2.58 – 2.41 (m, 4H, CH_{2Lev}), 2.08 (s, 3H, CH_{3Lev}), 2.06 (s, 3H, OCOCH₃), 1.28 (d, J = 6.2 Hz, 3H, H-6_A), 1.25 (d, J = 6.2 Hz, 3H, H-6_B), 0.74 (d, J = 6.2 Hz, 3H, H-6_C). ¹³C NMR (100 MHz, CDCl₃) δ 206.2 (<u>C</u>O_{Lev}), 171.8 (<u>CO_{2Lev}</u>), 169.9 (<u>OCOCH</u>₃), 162.3 (<u>CONH</u>), 138.9 – 137.1 (<u>9C</u>_{Ar}), 133.4 (<u>CH</u>=CH₂), 129.2 – 126.5 (45C<u>H</u>_{Ar}), 118.4 (CH=<u>C</u>H₂), 102.1 (C_{Bzl}), 101.2 (C-1_B, J_{C,H} = 170.7 Hz), 99.1 (C-1_A, J_{C,H} = 173.8 Hz), 98.3 (C-1_D, J_{C,H} = 168.9 Hz), 97.5 (C-1_C, J_{C,H} = 173.5 Hz), 92.9 (C-1_E, J_{C,H} = 170.2 Hz), 92.3 (<u>CCl</u>₃), 82.2 (C-3_E), 80.4 (C-4_D), 80.3 (C-4_B), 80.0 (C-4_C), 79.9 (C-4_A), 79.5 (C-2_E), 79.4 (C-3_B), 78.5 (C-3_C), 77.9 (C-4_E), 76.4 (<u>C</u>H_{2Bn}), 75.7 (<u>C</u>H_{2Bn}), 75.4 (<u>C</u>H_{2Bn}), 75.3 (C-2_B), 75.2 (CH_{2Bn}), 75.1 (CH_{2Bn}), 74.0 (C-3_D), 73.5 (CH_{2Bn}), 72.9 (CH_{2Bn}), 72.3 (C-3_A), 72.2 (2C, C-2_C, <u>C</u>H_{2Bn}), 71.0 (<u>C</u>H_{2All}), 70.4 (C-5_E), 69.1 (C-5_B), 68.8 (C-6_D), 68.7 (C-5_A), 68.4 (C-

6_E), 68.1 (2C, C-2_A, C-5_C), 66.3 (C-5_D), 60.4 (C-2_D), 38.0 (<u>C</u>H_{2Lev}), 29.8 (<u>C</u>H_{3Lev}), 28.8 (<u>C</u>H_{2Lev}), 21.1 (OCO<u>C</u>H₃), 18.0 (2C, C-6_A, C-6_B), 17.3 (C-6_C). HRMS (ESI⁺): m/z 1934.6736 (calcd for C₁₀₅H₁₁₆Cl₃NO₂₆Na [M+Na]⁺: m/z 1934.6749).

III. References

- 1. M. Hoch, E. Heinz and R. R. Schmidt, Synthesis of 6-deoxy-6-sulfo-α-D-glucopyranosyl phosphate, *Carbohydr. Res.*, 1989, **191**, 21-28.
- 2. W. Xu, S. A. Springfield and J. T. Koh, Highly efficient synthesis of 1-thioglycosides in solution and solid phase using iminophosphorane bases, *Carbohydr. Res.*, 2000, **325**, 169-176.
- R. Gigg, S. Payne and R. Conant, The Allyl Group for Protection in Carbohydrate-Chemistry. 14. Synthesis of 2,3-Di-O-Methyl-4-O-(3,6-Di-O-Methyl-Beta-D-Glucopyranosyl)-L-Rhamnopyranose (and Its Alpha-Propyl Glycoside) - a Haptenic Portion of the Major Glycolipid from *Mycobacterium-Leprae*, *J. Carbohydr. Chem.*, 1983, 2, 207-223.
- 4. J. Boutet and L. A. Mulard, Synthesis of two tetra- and four pentasaccharide fragments of *Shigella flexneri* serotypes 3a and X O-antigens from a common tetrasaccharide intermediate, *Eur. J. Org. Chem.*, 2008, 5526-5542.
- 5. J. Boutet, C. Guerreiro and L. A. Mulard, Efficient synthesis of six tri- to hexasaccharide Fragments of *Shigella flexneri* serotypes 3a and/or X O-antigen, including a study on acceptors containing *N*-trichloroacetylglucosamine versus *N*-acetylglucosamine, *J. Org. Chem.*, 2009, **74**, 2651-2670.
- 6. Z. Y. Hu, A. F. B. White and L. A. Mulard, Efficient iterative synthesis of O-acetylated trito pentadecasaccharides related to the lipopolysaccharide of *Shigella flexneri* type 3a through di- and trisaccharide glycosyl donors, *Chem. Asian J.*, 2017, **12**, 419-439.
- 7. Y. Le Guen, G. Le Heiget, D. Urban, P. Chassagne and L. A. Mulard, in *Carbohydrate Chemistry: Proven Synthetic Methods*, eds. C. Vogel and P. Murphy, Taylor & Francis, 2017, vol. 4, ch. 39, pp. 333-342.
- 8. L. A. Mulard, M. J. Clement, F. Segat-Dioury and M. Delepierre, Synthesis and NMR study of a linear pentasaccharide fragment of the *Shigella flexneri* 5a O-specific polysaccharide, *Tetrahedron*, 2002, **58**, 2593-2604.
- 9. R. R. Schmidt and J. Michel, Direct O-glycosyl trichloroacetimidate formation, nucleophilicity of the anomeric oxygen atom, *Tetrahedron Lett.*, 1984, **25**, 821-824.

IV. NMR spectra for compounds 10, 12a/12b, 27, 29, 30, 32, 35, 37, and 39-46

Prop-1-enyl 3,4-di-*O*-benzyl-2-*O*-levulinoyl-α-L-rhamnopyranoside (10)

Hold Sector 2014
Hold

2-Oxopropyl 3,4-di-*O*-benzyl-2-*O*-levulinoyl-α-L-rhamnopyranoside (12a) and 3-Oxopropyl 3,4-di-*O*-benzyl-2-*O*-levulinoyl-α-L-rhamnopyranoside (12b)

6-O-Acetyl-2,3,4-tri-O-benzyl-α/β-D-glucopyranose (27)

$6-O-Acetyl-2, 3, 4-tri-O-benzyl-\alpha/\beta-D-glucopyranosyl (N-phenyl) trifluoroacetimidate (29)$

2,3,4-Tri-O-benzyl-6-O-tert-butyldiphenylsilyl-α/β-D-glucopyranose (30)

2,3,4-Tri-O-benzyl-6-O-tert-butyldiphenylsilyl- α/β -D-glucopyranosyl (N-phenyl)trifluoroacetimidate (32)

 $(2,3,4,6-Tetra-O-benzyl-\alpha-D-glucopyranosyl)-(1\rightarrow 3)-4-O-benzyl-2-O-levulinoyl-\alpha-L-rhamnopyranosyl (N-phenyl)trifluoroacetimidate (35)$

Allyl (2,3,4,6-tetra-O-benzyl- α -D-glucopyranosyl)-(1 \rightarrow 3)-(4-O-benzyl- α -L-rhamnopyranosyl)-(1 \rightarrow 2)-(3,4-di-O-benzyl- α -L-rhamnopyranosyl)-(1 \rightarrow 3)-(2-O-acetyl-4-O-benzyl- α -L-rhamnopyranosyl)-(1 \rightarrow 3)-4,6-O-benzylidene-2-deoxy-2-trichloroacetamido- β -D-glucopyranoside (37)

 $\begin{array}{l} (2,3,4,6\text{-}Tetra\ensuremath{\cdot}O\text{-}benzyl\ensuremath{\cdot}a\text{-}D\text{-}glucopyranosyl)\ensuremath{\cdot}(1\rightarrow3)\ensuremath{\cdot}(4\ensuremath{\cdot}O\text{-}benzyl\ensuremath{\cdot}2\ensuremath{\cdot}O\text{-}benzyl\ensuremath{\cdot}a\text{-}L\ensuremath{\cdot}rhamnopyranosyl)\ensuremath{\cdot}(1\rightarrow2)\ensuremath{\cdot}(3,4\ensuremath{\cdot}di\ensuremath{\cdot}O\text{-}benzyl\ensuremath{\cdot}a\text{-}L\ensuremath{\cdot}rhamnopyranosyl)\ensuremath{\cdot}(1\rightarrow3)\ensuremath{\cdot}4,6\ensuremath{\cdot}O\text{-}benzyl\ensuremath{\cdot}a\text{-}L\ensuremath{\cdot}a\text{-}benzyl\ensuremath{\cdot}a\text{-}benzy$

Allyl (2,3,4,6-tetra-*O*-benzyl- α -D-glucopyranosyl)-(1 \rightarrow 3)-(4-*O*-benzyl-2-*O*-levulinoyl- α -L-rhamnopyranosyl)-(1 \rightarrow 2)-(3,4-di-*O*-benzyl- α -L-rhamnopyranosyl)-(1 \rightarrow 3)-(2-*O*-acetyl-4-*O*-benzyl- α -L-rhamnopyranosyl)-(1 \rightarrow 3)-(4,6-*O*-benzylidene-2-deoxy-2-trichloroacetamido- β -D-glucopyranosyl)-(1 \rightarrow 2)-[(2,3,4,6-tetra-*O*-benzyl- α -D-glucopyranosyl)-(1 \rightarrow 3)]-(4-*O*-benzyl- α -L-rhamnopyranosyl)-(1 \rightarrow 2)-(3,4-di-*O*-benzyl- α -L-rhamnopyranosyl)-(1 \rightarrow 3)-(2-*O*-acetyl-4-*O*-benzyl- α -L-rhamnopyranosyl)-(1 \rightarrow 3)-(2-*O*-acetyl-4-*O*-benzyl- α -L-rhamnopyranosyl)-(1 \rightarrow 3)-(4-*O*-benzyl- α -L-rhamnopyranosyl-(4-*O*-benzyl- α -L-rhamnopyranosyl)-(1 \rightarrow 3)-(4-*O*-benzyl- α -L-rhamnopyranos

2-Azidoethyl (2,3,4,6-tetra-O-benzyl- α -D-glucopyranosyl)-(1 \rightarrow 3)-(4-O-benzyl- α -L-rhamnopyranosyl)-(1 \rightarrow 2)-(3,4-di-O-benzyl- α -L-rhamnopyranosyl)-(1 \rightarrow 3)-(2-O-acetyl-4-O-benzyl- α -L-rhamnopyranosyl)-(1 \rightarrow 3)-4,6-O-benzylidene-2-deoxy-2-trichloroacetamido- β -D-glucopyranoside (42)

S-42

Azidoethyl (2,3,4,6-tetra-*O*-benzyl- α -D-glucopyranosyl)-(1 \rightarrow 3)-(4-*O*-benzyl-2-*O*-levulinoyl- α -L-rhamnopyranosyl)-(1 \rightarrow 2)-(3,4-di-*O*-benzyl- α -L-rhamnopyranosyl)-(1 \rightarrow 3)-(2-*O*-acetyl-4-*O*-benzyl- α -L-rhamnopyranosyl)-(1 \rightarrow 3)-(4,6-*O*-benzylidene-2-deoxy-2-trichloroacetamido- β -D-glucopyranosyl)-(1 \rightarrow 2)-[(2,3,4,6-tetra-*O*-benzyl- α -D-glucopyranosyl)-(1 \rightarrow 2)-(3,4-di-*O*-benzyl- α -L-rhamnopyranosyl)-(1 \rightarrow 2)-(3,4-di-*O*-benzyl- α -L-rhamnopyranosyl)-(1 \rightarrow 2)-(3,4-di-*O*-benzyl- α -L-rhamnopyranosyl)-(1 \rightarrow 3)-(2-*O*-acetyl-4-*O*-benzyl- α -L-rhamnopyranosyl)-(1 \rightarrow 3)-(4-*O*-benzyl- α -L-rhamnopyranosyl-(4-*O*-benzyl- α -L-rhamnopyranosyl)-(1 \rightarrow 3)-(4-*O*-benzyl- α -L-rhamnopyrano

Azidoethyl (2,3,4,6-tetra-*O*-benzyl- α -D-glucopyranosyl)-(1 \rightarrow 3)-(4-*O*-benzyl- α -L-rhamnopyranosyl)-(1 \rightarrow 2)-(3,4-di-*O*-benzyl- α -L-rhamnopyranosyl)-(1 \rightarrow 3)-(2-*O*-acetyl-4-*O*-benzyl- α -L-rhamnopyranosyl)-(1 \rightarrow 3)-(4,6-*O*-benzylidene-2-deoxy-2-trichloroacetamido- β -D-glucopyranosyl)-(1 \rightarrow 2)-[(2,3,4,6-tetra-*O*-benzyl- α -D-glucopyranosyl)-(1 \rightarrow 3)]-(4-*O*-benzyl- α -L-rhamnopyranosyl)-(1 \rightarrow 2)-(3,4-di-*O*-benzyl- α -L-rhamnopyranosyl)-(1 \rightarrow 3)-(2-*O*-acetyl-4-*O*-benzyl- α -L-rhamnopyranosyl)-(1 \rightarrow 3)-(2-*O*-acetyl-4-*O*-benzyl- α -L-rhamnopyranosyl)-(1 \rightarrow 3)-(4-*O*-benzyl- α -L-rhamnopyranosyl-(4-*O*-benzyl- α -L-rhamnopyranosyl-(4-*O*-benzyl- α -L-rhamnopyranosyl-(4-*O*-benzyl- α

2-Aminoethyl α -D-glucopyranosyl- $(1\rightarrow 3)-\alpha$ -L-rhamnopyranosyl- $(1\rightarrow 2)-\alpha$ -L-rhamnopyranosyl- $(1\rightarrow 3)-(2-\alpha$ -L-rhamnopyranosyl)- $(1\rightarrow 3)-(2-\alpha$ -L-rhamnopyranosyl)- $(1\rightarrow 2)-[\alpha$ -D-glucopyranosyl- $(1\rightarrow 3)]-\alpha$ -L-rhamnopyranosyl- $(1\rightarrow 2)-\alpha$ -L-rhamnopyranosyl- $(1\rightarrow 3)-(2-\alpha$ -L-rhamnopyranosyl)- $(1\rightarrow 3)-(2-\alpha$ -L-r

