Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Table of Contents

General methods and general procedure for synthesis of substrates				
Optimization of the Reaction Conditions	S3-S4			
General procedure for dual arylation reactions of α -	S5 S14			
ethylcinnamaldehyde (3a-k , 4a-l)				
Transformations of 3i	S15-S17			
X-Ray crystal structure of 3f	S18			
References	S19			
Copies of NMR spectra	S20-S49			

General Methods. Unless otherwise noted, all solvents were used directly without further purification. Palladium catalyst, Ag salt, and Aryl iodides were obtained from Aladdin, and TCI and used directly without further purification. ¹H and ¹³C NMR spectra were recorded on a Bruker instrument (400 MHz and 100 MHz, respectively) and internally referenced to tetramethylsilane signal or residual protic solvent signals. Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, br = broad singlet, coupling constant (s) in Hz, integration). Data for ¹³C NMR and ¹⁹F NMR are reported in terms of chemical shift (δ , ppm).

General procedure for the synthesis of substrates $(1a-h)^1$

Solutions of substituted benzaldehyde (10 mmol) in benzene (5 mL) and then, dropwise, of propionaldehyde (12 mmol) or 3-pentanone (10 mmol) in benzene (5 mL) were added successively at 20 °C to vigorously stirred suspensions of the appropriate amounts of powdery KOH (15 mmol) and tetrabutylammonium hexafluorophosphate in benzene (5 mL). The reaction mixture was vigorously stirred at the same temperature until the condensation was complete (TLC monitoring). The organic solution was decanted from the wet PTC/KOH solid phase, and the residue was extracted with benzene (10 mL). The combined benzene extracts were washed with water(2×5 mL) and dried over anhydrous MgSO₄. The solvent was evaporated under reduced pressure, and the residue was distilled in vacuo or crystallized from hexane.

Optimization of the Reaction Conditions

Table S1 Screening of solvent using Pd(OAc)₂ as catalyst

H H + CHO H + 2a	(10 mol%) Pd(OAc)2 AgTFA (1.5 equiv) solvent 80 °C, 12 h	COOMe CHO 3a COOMe
Entry	Solvent	Yield (%)
1	HFIP	7
2	MeOH	20
3	EtOH	22
4	DMF	23
5	DMSO	NR
6	MeCN	10
7	DCE	35
8	toluene	34
9	1,4-dioxane	46

Table S2 Screening of catalyst using 1,4-dioxane as solvent^{*a,b*}

Entry	Catalyst	Yield
1	(PPh ₃) ₄ Pd	34
2	PdCl ₂ (PPh ₃) ₂	32
3	Pd(OAc) ₂	46
4	PdCl ₂	44
5	$Cu(OAc)_2$	NR
6	Fe(OAc) ₂	NR
7	$Co(OAc)_2$	NR
8	Pd(OAc)2	55 ^c
9	Pd(OAc) ₂	53^d

^a Reaction conditions: 1a (0.2 mmol), 2a (0.5 mmol), 1,4-dioxane (2 mL), air, 12 h. ^b Yields are based on 1a,

determined by ¹H NMR using 1,3,5-trimethoxybenzene as the internal. c 70 °C. d 60 °C.

H H H ta 2a	(10 mol%) Pd(OAc) ₂ <u>Ag Salt (1.5 equiv)</u> 1,4-dioxane 70 [°] C, 12 h	COOMe CHO CHO 3a COOMe
Entry	Ag Salt	Yield(%)
1	AgTFA	55
2	AgOAc	40
3	Ag_2CO_3	17
4	Ag ₃ PO ₄	23
5	AgOTf	Trace
6	AgTFA	54 ^c
7	AgTFA	55 ^d

Table S3 Screening of Ag salts using 1,4-dioxane as solvent^{*a,b*}

8	AgTFA	75 ^e (74) ^f
9	-	Trace
10	Na ₂ CO ₃	Trace
11	K ₃ PO ₄	Trace

^{*a*} Reaction conditions: 1a (0.2 mmol), 2a (0.5 mmol), Pd(OAc)₂ (10% mol), Ag. salt(1.5 equiv), 1,4-dioxane (2 mL), air, 70 °C, 12 h. ^{*b*} Yields are based on 1a, determined by ¹H NMR using 1,3,5-trimethoxybenzene as the internal. ^{*c*} Pd(OAc)₂ (20 mol%). ^{*d*} AgTFA (2.5 equiv). ^{*e*} Pd(OAc)₂ (15 mol%), AgTFA(2.5 equiv). ^{*f*} isolated yield.

General procedure for dual arylation reactions of *a* -Methylcinnamaldehyde (3a-k,4a-i)

A 10 mL sealed tube equipped with a stir bar was charged with $Pd(OAc)_2$ (6.7 mg, 0.03 mmol, 0.15 equiv), AgTFA (110.4 mg, 0.5 mmol, 2.5 equiv) and Iodobenzene **2** (0.5 mmol, 2.5 equiv), followed by the addition of 1,4-dioxane (2.0 mL) and Cinnamaldehyde **1** (0.2 mmol, 1.0 equiv). The flask was then sealed and the mixture was stirred at 70 °C for 12 hours. After the reaction was complete (monitored by TLC), the reaction mixture was cooled to room temperature, filtrated via celite and the filtrate concentrated under reduced pressure. After the solvent was removed, the residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether = 1/60 to 1/5, v/v,) to afford desired product **3** and **4**.

3a. Colorless oil (61.0 mg, 74% yield). Analytical data for **3a**: ¹H NMR (400 MHz, CDCl₃) δ 9.91 (s, 1H), 8.05 (d, *J* = 8.3 Hz, 2H), 8.00 (d, *J* = 8.4Hz, 2H), 7.37-7.32 (m, 4H), 7.28 – 7.26 (m, 3H), 7.23 (s, 1H), 7.16 (d, *J* = 7.1 Hz, 2H), 5.67 (s, 1H), 3.93 (s, 3H), 3.90 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.1, 167.0, 166.5,

147.4, 146.9, 145.3, 140.7, 138.2, 131.0, 130.9, 130.1, 129.9, 129.8, 129.8, 129.3, 128.9, 127.2, 52.5, 52.2, 50.5. IR (film): 2952, 1717, 1674, 1434, 1274, 1102, 1018, 763, 701 cm⁻¹. HRMS (ESI) calcd for C₂₆H₂₃O₅ [M+H]⁺: 415.1540, Found: 415.1537.

3b. Colorless oil (57.6 mg, 76% yield). Analytical data for **3b**: ¹H NMR (400 MHz, CDCl₃) δ 9.92 (s, 1H), 7.97 (d, *J* = 8.3 Hz, 2H), 7.93 (d, *J* = 8.4 Hz, 2H), 7.40 (d, *J* = 8.1 Hz, 2H), 7.35 – 7.26 (m, 5H), 7.24 (s, 1H), 7.16 (d, *J* = 7.2 Hz, 2H), 5.67 (s, 1H), 2.62 (s, 3H), 2.58 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.8, 197.3,

191.1, 147.2, 147.1, 145.3, 140.5, 138.3, 137.4, 135.9, 130.1, 129.4, 129.2, 128.9, 128.8, 128.5, 127.3, 50.5, 26.8, 26.7. IR (film): 3000, 2855, 1733, 1675, 1601, 1356, 1264, 957, 700, 593 cm⁻¹. HRMS (ESI) calcd for $C_{26}H_{23}O_3$ [M+H]⁺: 405.1462, Found: 405.1458.

3c. Light yellow solid (51.0 mg, 66% yield). Analytical data for **3c**: m.p. = 167.2-167-9 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.91 (s, 1H), 8.27 (d, *J* = 8.3 Hz, 2H), 8.20 (d, *J* = 8.4 Hz, 2H), 7.48 (d, *J* = 8.4 Hz, 2H), 7.39-7.36 (m, 4H), 7.31 (t, *J* = 7.1 Hz, 1H), 7.23 (s, 1H), 7.15 (d, *J* = 7.5 Hz, 2H), 5.71 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ

190.2, 148.9, 148.3, 147.1, 146.0, 145.9, 139.9, 139.5, 130.7, 130.0, 129.3, 129.2, 127.8, 124.1, 123.9, 50.5. IR (film): 2349, 1667, 1516, 1342, 1107, 851, 701 cm⁻¹. HRMS (ESI) calcd for C₂₂H₁₆N₂NaO₅ [M+Na]⁺: 411.0952, Found: 411.0953.

3d. Colorless oil (56.7 mg, 85% yield). Analytical data for **3d**: ¹H NMR (400 MHz, CDCl₃) δ 9.90 (s, 1H), 7.34 – 7.24 (m, 5H), 7.16 – 7.06 (m, 7H), 7.02-6.98 (m, 2H), 5.59 (s, 1H).¹³C NMR (100 MHz, CDCl₃) δ 191.5, 163.5(d, J = 249.3), 161.8 (d, J = 244.0), 147.3, 144.6, 141.6, 137.2 (d, J = 3.2), 131.9 (d, J =8.3), 130.7 (d, *J* = 7.7), 129.9 (d, *J* = 3.3), 129.2, 128.8, 127.0, 115.8 (d, J = 21.7), 115.6 (d, J = 21.3), 49.7. ¹⁹F NMR (376 MHz, CDCl3) δ -110.9, -

116.2. IR (film): 3020, 2330, 1670, 1480, 1080, 1009, 800, 680cm⁻¹. HRMS (ESI) calcd for C₂₂H₁₆F₂NaO [M+Na]⁺: 357.1061, Found: 357.1032.

3e. Yellow solid (58.6 mg, 80% yield). Analytical data for **3e**: m.p. = $95.2 - 96.1^{\circ}$ C. ¹H NMR (400 MHz, CDCl₃) δ 9.89 (s, 1H), 7.37 – 7.27 (m, 6H), 7.24-7.20 (m, 3H), 7.15 – 7.09 (m, 5H), 5.57 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 191.2, 147.1, 144.7, 141.1, 140.2, 135.7, 132.7, 132.2, 131.3, 130.6, 129.2, 128.9, 128.9, 128.8, 127.1, 49.8. IR (film): 3019,

2872, 2336, 1668, 1485, 1089, 1013, 695 cm⁻¹. HRMS (ESI) calcd for C₂₂H₁₆Cl₂NaO [M+Na]⁺: 389.0471, Found: 389.0460.

3f. White solid (74.0 mg, 82% yield). Analytical data for **3f**: ¹H NMR (400 MHz, CDCl₃) δ 9.89 (s, 1H), 7.52 (d, J = 8.4Hz, 2H), 7.44 (d, J = 8.4 Hz, 2H), 7.34-7.30 (m, 2H), 7.27-7.25 (m, 1H), 7.16 (s, 1H), 7.14-7.12 (m, 4H), 7.05-7.03 (m, 2H), 5.55 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 191.2, 147.2, 144.7, 141.0, 140.8, 132.7, 131.9, 131.8, 131.5, 131.0, 129.2, 128.7,

127.1, 124.0, 120.9, 50.0. IR (film): 3018, 1670, 1481, 1161, 1009, 805, 695 cm⁻¹. HRMS (ESI) calcd for C₂₂H₁₆Br₂NaO [M+Na]⁺: 478.9440, Found: 478.9445.

3g. White solid (54.4 mg, 92% yield). Analytical data for **3g**: m.p. = 111.1-111.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.94 (s, 1H), 7.39-7.36 (m, 4H), 7.34 – 7.27 (m, 6H), 7.23 (s, 1H), 7.22 – 7.18 (m, 3H), 7.17 (s, 2H), 5.63 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 192.0, 148.7, 144.6, 141.9, 134.1, 131.3, 130.1, 129.4, 128.7,

128.6, 126.8, 50.4. IR (film): 3009, 2332, 1657, 1480, 1011, 755, 699, cm⁻¹. HRMS (ESI) calcd for C₂₂H₁₈NaO [M+Na]⁺: 321.1250, Found: 321.1251.

3h. Light yellow solid (37.1 mg, 52% yield).
Analytical data for 3h: m.p. = 117.5-118.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.94 (s, 1H), 7.31-7.28 (m, 2H), 7.26 – 7.20 (m, 3H), 7.19 – 7.12 (m, 3H), 7.08 (d, J = 8.6 Hz, 2H), 6.89 (d, J = 8.8 Hz, 2H), 6.84 (d, J = 8.7 Hz, 2H), 5.56 (s, 1H), 3.82 (s, 3H), 3.78 (s, 3H). ¹³C NMR (100 MHz,

CDCl₃) δ 192.0, 160.8, 158.3, 148.3, 143.4, 142.5, 134.1, 131.8, 130.30, 129.2, 128.6, 126.6, 126.6, 114.0, 114.0, 55.5, 55.3, 49.6. IR (film): 2840, 2315, 1669, 1601, 1508, 1243, 1025, 750, 539 cm⁻¹. HRMS (ESI) calcd for C₂₄H₂₂NaO₃ [M+Na]⁺: 381.1461, Found: 381.1458.

3i. White solid (62.4 mg, 90% yield). Analytical data for **3i**: m.p. = 108.1-109.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.94 (s, 1H), 7.31 – 7.21 (m, 4H), 7.18-7.13 (s, 6H), 7.12 – 7.05 (m, 4H), 5.58 (s, 1H), 2.36 (s, 3H), 2.31 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 192.1, 148.6, 144.1, 142.3, 139.6, 139.0, 136.3, 131.2, 130.1, 129.3, 129.3, 129.2, 129.2, 128.6,

126.6, 50.0, 21.4, 21.2. IR (film): 2889, 1677, 1450, 1166, 788, 699 cm⁻¹. HRMS (ESI) calcd for C₂₄H₂₂NaO [M+Na]⁺: 349.1563, Found: 349.1571.

3j. White solid (47.0 mg, 72% yield). Analytical data for **3j**: m.p. = 97.9-99.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.94 (s, 1H), 7.31-7027 (m, 2H), 7.23-7.21 (m, 2H), 7.17-7.16 (m, 5H), 7.12-7.10 (m, 2H), 7.06-7.04 (m, 3H), 5.58 (s, 1H), 2.36 (s, 3H), 2.32 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 192.1,

148.6, 144.1, 142.3, 139.6, 139.0, 136.2, 131.2, 130.1, 129.3, 129.84, 129.3, 129.2, 129.2, 129.11, 129.01, 128.90, 128.6, 126.6, 50.0, 21.4, 21.2. IR (film): 2854, 2229, 1657, 1449, 1160, 782, 700 cm⁻¹. HRMS (ESI) calcd for C₂₄H₂₂NaO [M+Na]⁺: 349.1563, Found: 349.1564.

3k. White solid (61.4 mg, 84% yield). Analytical data for **3k**: m.p. = 104.2-105.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.91 (s, 1H), 7.39 – 7.27 (m, 6H), 7.25 – 7.20 (m, 2H), 7.19 – 7.12 (m, 5H), 7.09 – 7.03 (m, 1H), 5.58 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 191.2, 147.0, 145.0, 143.7, 140.7,

135.5, 134.8, 134.7, 130.0, 129.9, 129.7, 129.5, 129.3, 129.3, 128.9, 128.2, 127.5, 127.2, 127.2, 50.1. IR (film): 2883, 1677, 1077, 892, 794, 693 cm⁻¹. HRMS (ESI) calcd for C₂₂H₁₆Cl₂NaO [M+Na]⁺: 389.0470, Found: 389.0470.

4a. Colorless oil (62.2 mg, 73% yield). Analytical data for **4a**: ¹H NMR (400 MHz, CDCl₃) δ 9.91 (s, 1H), 8.05 (d, J = 8.2 Hz, 2H), 7.99 (d, J =8.4 Hz, 2H), 7.36 (d, J = 8.1 Hz, 2H), 7.26 (d, J =8.2 Hz, 2H), 7.22 (s, 1H), 7.14 (d, J = 8.0 Hz, 2H), 7.04 (d, J = 8.0 Hz, 2H), 5.63 (s, 1H), 3.94 (s, 3H),

3.90 (s, 3H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.3, 167.0, 166.5, 147.3, 147.2, 145.5, 138.3, 137.6, 136.9, 130.8, 130.0, 129.9, 129.8, 129.6, 129.2, 129.2, 128.8, 52.5, 52.2, 50.1, 21.2. IR (film): 2951, 1716, 1674, 1434, 1274, 1103, 1018, 733 cm⁻¹. HRMS (ESI) calcd for C₂₇H₂₅O₅ [M+H]⁺: 429.1697, Found: 429.1699.

4b. Yellow oil (65.3 mg, 77% yield). Analytical data for **4b**: ¹H NMR (400 MHz, CDCl₃) δ 9.91 (s, 1H), 8.05 (d, J = 8.3 Hz, 2H), 8.00 (d, J = 8.3 Hz, 2H), 7.37 (d, J = 8.3 Hz, 2H), 7.27 – 7.20 (m, 4H), 7.07 (d, J = 7.6 Hz, 1H), 6.95 (d, J = 8.3 Hz, 2H), 5.63 (s, 1H), 3.93 (s, 3H), 3.90 (s, 3H), 2.32 (s, 3H). ¹³C NMR (100 MHz,

CDCl₃) δ 191.2, 167.0, 166.5, 147.3, 147.1, 145.4, 140.6, 138.6, 138.3, 130.8, 130.1, 130.0, 129.9, 129.8, 129.3, 128.9, 128.7, 128.0, 126.3, 52.5, 52.2, 50.5, 21.6. IR (film): 2951, 1717, 1434, 1274, 1103, 764, 707 cm⁻¹. HRMS (ESI) calcd for C₂₇H₂₄NaO₅ [M+Na]⁺: 451.1516, Found: 451.1515.

4c. Yellow oil (56.8 mg, 58% yield). Analytical data for **4c**: ¹H NMR (400 MHz, CDCl₃) δ 9.91 (s, 1H), 8.07 (d, *J* = 8.2 Hz, 2H), 8.01 (d, *J* = 8.4 Hz, 2H), 7.43 – 7.35 (m, 3H), 7.31 (s, 1H), 7.27 – 7.19 (m, 4H), 7.11-7.09 (m, 1H), 5.64 (s, 1H), 3.94 (s, 3H), 3.91 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 190.8, 166.8, 166.4, 147.6, 146.0,

144.6, 143.1, 137.9, 132.2, 131.0, 130.4, 130.4, 130.2, 129.9, 129.8, 129.2, 129.2, 127.9, 123.1, 52.5, 52.3, 50.1. IR (film): 2951, 1717, 1434, 1273, 1103, 1018, 768, 705 cm⁻¹. HRMS (ESI) calcd for C₂₆H₂₁BrNaO₅ [M+Na]⁺: 515.0465, Found: 515.0470.

4d. White solid (57.6 mg, 65% yield). Analytical data for 4d: m.p. = 97.2-99.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.91 (s, 1H), 8.06 (d, *J* = 8.3 Hz, 2H), 8.00 (d, *J* = 8.3 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.31 (d, *J* = 8.5 Hz, 2H), 7.24 (d, *J* = 8.3 Hz, 2H), 7.20 (s, 1H), 7.10 (d, *J* = 8.5 Hz, 2H), 5.63

(s, 1H), 3.94 (s, 3H), 3.91 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.0, 166.9, 147.5, 146.4, 144.9, 139.26, 137.9, 133.2, 131.1, 130.6, 130.2, 130.0, 129.8, 129.2, 129.2,

129.1, 52.5, 52.3, 49.9. IR (film): 2952, 1716, 1434, 1274, 1103, 1015, 766, 707 cm⁻¹. HRMS (ESI) calcd for C₂₆H₂₁ClNaO₅ [M+Na]⁺: 471.0970, Found: 471.0967.

4e. Yellow oil (55.4 mg, 62% yield). Analytical data for **4e**: ¹H NMR (400 MHz, CDCl₃) δ 9.91 (s, 1H), 8.07 (d, *J* = 8.1 Hz, 2H), 8.01 (d, *J* = 8.2 Hz, 2H), 7.38 (d, *J* = 8.0 Hz, 2H), 7.29 – 7.22 (m, 5H), 7.15 (s, 1H), 7.06 (m, 1H), 5.64 (s, 1H), 3.94 (s, 3H), 3.91 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 190.9, 166.8, 166.4, 147.6, 146.0,

144.6, 142.8, 137.9, 134.8, 131.0, 130.2, 130.1, 130.0, 129.8, 129.3, 129.2, 129.2, 127.5, 127.5, 52.5, 52.3, 50.11. IR (film): 2952, 1717, 1434, 1274, 1103, 768, 706 cm⁻¹. HRMS (ESI) calcd for C₂₆H₂₁ClNaO₅ [M+Na]⁺: 471.0970, Found: 471.0972.

4f. Yellow solid (54.7 mg, 57% yield). Analytical data for **4f**: m.p. = 120.2-121.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.92 (s, 1H), 8.07 (d, J = 8.3 Hz, 2H), 8.02 (d, J = 8.3 Hz, 2H), 7.60 (d, J = 8.0 Hz, 2H), 7.37 (d, J = 8.1 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 7.26-7.23 (m, 3H), 5.73 (s, 1H), 3.94 (s, 3H),

3.91 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 190.8, 166.8, 166.4, 147.7, 145.8, 144.9, 144.6, 137.8, 131.1, 130.2, 130.0, 129.9 (q, J = 32.7 Hz), 129.8, 129.6, 129.3, 129.3, 126.8 (q, J = 270.5 Hz), 125.9 (q, J = 3.31 Hz), 52.5, 52.3, 50.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.5. IR (film): 2988, 1722, 1670, 1434, 1275, 1104, 709 cm⁻¹. HRMS (ESI) calcd for C₂₇H₂₁F₃NaO₅ [M+Na]⁺: 505.1233, Found: 505.1233.

4g. Light yellow solid (71.3 mg, 76% yield). Analytical data for **4g**: m.p. = 61.2-62.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.92 (s, 1H), 8.06 (d, *J* = 8.0 Hz, 2H), 8.01 (d, *J* = 8.1 Hz, 4H), 7.37 (d, *J* = 8.1 Hz, 2H), 7.25 (d, *J* = 8.1 Hz, 4H), 7.21 (s, 1H), 5.72 (s, 1H), 3.94 (s, 3H),

3.91 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 190.9, 166.8, 166.4, 147.7, 146.0, 144.7, 137.9, 131.0, 130.2, 129.9, 129.8, 129.3, 129.2, 52.5, 52.3, 50.4. IR (film): 2329, 1719, 1434, 1276, 1104, 753, 666 cm⁻¹. HRMS (ESI) calcd for C₂₈H₂₄NaO₇ [M+Na]⁺: 495.1414, Found: 495.1413.

4h. Yellow solid (44.0 mg, 48% yield).
Analytical data for 4h: m.p. = 57.2-58.5 °C. ¹H
NMR (400 MHz, CDCl₃) δ 9.93 (s, 1H), 8.21 (d, J
= 8.8 Hz, 2H), 8.08 (d, J = 8.3 Hz, 2H), 8.04 (d, J
= 8.4 Hz, 2H), 7.39-7.36 (m, 4H), 7.25 (s, 1H),

7.23 (s, 2H), 5.75 (s, 1H), 3.94 (s, 3H), 3.92 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 190.6, 166.7, 166.3, 148.4, 148.0, 147.2, 145.2, 144.1, 137.5, 131.3, 130.4, 130.1, 130.0, 129.9, 129.6, 129.3, 124.1, 52.5, 52.4, 50.4. IR (film): 2952, 1717, 1518, 1344, 1275, 1104, 847, 703 cm⁻¹. HRMS (ESI) calcd for C₂₆H₂₁NNaO₇ [M+Na]⁺: 482.1210, Found: 482.1208.

4i. Yellow oil (46.2 mg, 64% yield). Analytical data for 4i: ¹H NMR (400 MHz, CDCl₃)δ 9.80 (s, 1H), 8.05 (d, J = 8.4 Hz, 2H), 7.99 (d, J = 8.4 Hz, 2H), 7.59 (s, 1H), 7.36 (d, J = 8.4 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 4.03 (t, J=7.2, 1H), 3.93 (s, 3H), 3.90 (s, 3H), 2.03 – 1.89 (m, 2H), 0.92 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ

191.7, 167.1, 166.5, 148.1, 145.5, 144.2, 138.5, 130.7, 130.0, 129.9, 129.7, 128.6, 128.3,

52.4, 52.1, 46.0, 27.1, 12.5. IR (film): 2954, 1717, 1435, 1274, 1104, 766, 704cm⁻¹. HRMS (ESI) calcd for C₂₂H₂₃O₅ [M+H]⁺: 367.1540, Found: 367.1541.

4j. Yellow oil (29.7mg, 36% yield). Analytical data for 4j: ¹H NMR (400 MHz, CDCl₃) δ 9.90 (s, 1H), 8.06 (d, J = 8.3 Hz, 2H), 8.01 (d, J = 8.3 Hz, 2H), 7.38 – 7.30 (m, 6H), 6.91 (dd, J = 5.0, 1.3 Hz, 1H), 6.83 (dt, J = 2.9, 1.1 Hz, 1H), 5.68 (s, 1H), 3.93 (s, 3H), 3.90 (s, 3H). ¹³C NMR (100 MHz, CDCl3) δ 191.0, 167.0, 166.4, 146.8, 145.0,

141.7, 138.1, 130.8, 130.0, 129.9, 129.8, 129.0, 128.8, 128.3, 126.6, 123.4, 52.5, 52.2,
4. IR (film): 2951, 1716, 1672, 1607, 1434, 1274, 1179, 1101, 1018, 761, 644 cm⁻¹.
HRMS (ESI) calcd for C₂₄H₂₁O₅S [M+H]⁺: 421.1104, Found: 421.1110.

4k. Yellow oil (61.0 mg, 65% yield).
Analytical data for 4k: ¹H NMR (400 MHz, CDCl₃)
δ 8.00 (d, J = 8.0 Hz, 2H), 7.92 (d, J = 8.1 Hz, 2H),
7.73 (s, 1H), 7.28-7.24 (m, 4H), 7.15 (d, J = 8.1 Hz,
2H), 7.03 (d, J = 8.2 Hz, 2H), 5.44 (s, 1H), 3.92 (s,
3H), 3.90 (s, 3H), 2.73 (q, J = 7.2 Hz, 2H), 0.99 (t,

 $J = 7.2 \text{ Hz}, 3\text{H}.^{13}\text{C NMR} (100 \text{ MHz}, \text{CDCl}_3) \delta 202.2, 167.1, 166.6, 147.2, 143.9, 139.9, 139.5, 139.4, 132.7, 132.0, 130.8, 130.5, 130.0, 129.7, 129.1, 128.8, 128.6, 128.6, 52.4, 52.2, 50.1, 32.9, 8.5. IR (film): 2952, 1719, 1435, 1275, 1103, 1016, 761, 517 cm⁻¹. HRMS (ESI) calcd for C₂₈H₂₆ClO₅ <math>[M+H]^+: 477.1463$, Found: 477.1462.

41. Colorless oil (66.7 mg, 66% yield). Analytical data for **41**: ¹H NMR (400 MHz, CDCl₃) δ 8.00-7.93 (m, 5H), 7.32 – 7.24 (m, 5H), 7.22 (d, *J* = 8.3 Hz, 2H), 7.15 (d, *J* = 7.1 Hz, 2H), 5.55 (s, 1H), 3.91 (s, 3H), 3.90 (s, 3H), 3.60 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 167.1, 166.6, 147.6, 141.1, 140.6, 139.6, 135.8, 130.3,

129.9, 129.6, 129.3, 129.2, 128.9, 128.5, 128.5, 127.0, 52.4, 52.2, 52.0, 50.0. IR (film): 2951, 1714, 1608, 1434, 1274, 1104, 699cm⁻¹. HRMS (ESI) calcd for C₂₇H₂₅O₆ [M+H]⁺: 445.1646, Found: 445.1651.

6a. Yellow solid (52.1 mg, 65% yield). Analytical data for **6a**: m.p. = 134.2-135.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.46 (s, 1H),

8.11 (d, J = 8.3 Hz, 2H), 7.97 (d, J = 8.3 Hz, 2H), 7.43 (d, J = 8.3 Hz, 2H), 7.25 (d, J = 8.3 Hz, 2H), 4.18 (dr, 1H), 3.96 (s, 3H), 3.90 (s, 3H), 2.69 – 2.63 (m, 1H), 2.01 (m, 1H), 1.88 (m, 1H), 1.77 – 1.67 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 192.1, 167.2, 166.6, 160.5, 150.2, 143.9, 137.2, 130.5, 129.8, 128.8, 128.3, 128.0, 52.5, 52.2, 37.9, 34.0, 30.6, 17.7. IR (film): 2952, 1710, 1600, 1433, 1270, 1104, 701 cm⁻¹. HRMS (ESI) calcd for C₂₃H₂₂NaO₅ [M+H]⁺: 401.1359, Found: 401.1358.

MeO CHO OMe

6b. Yellow solid (21.2 mg, 34% yield). Analytical data for **6b**: m.p. = 100.0-101.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.51 (s, 1H), 7.26 (d, *J*

= 8.5 Hz, 2H), 7.09 (d, J = 8.6 Hz, 2H), 6.94 (d, J = 8.6 Hz, 2H), 6.82 (d, J = 8.6 Hz, 2H), 4.10 (dr, 1H), 3.84 (s, 3H), 3.77 (s, 3H), 2.74 – 2.50 (m, 2H), 1.96 – 1.78 (m, 2H), 1.72-1.65 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 193.2, 160.5, 160.1, 157.9, 137.3, 137.2, 131.6, 130.3, 128.9, 113.8, 113.8, 55.5, 55.3, 37.1, 34.0, 30.9, 17.7. IR (film): 2935, 1735, 1683, 1508, 1238, 1175, 1030, 828, 701 cm⁻¹. HRMS (ESI) calcd for C₂₁H₂₂NaO₃ [M+Na]⁺: 345.1461, Found: 345.1460.

6c. Yellow oil (24.4 mg, 43% yield). Analytical data for **6c**: ¹H NMR (400 MHz, CDCl₃) δ 9.50 (s, 1H), 7.31-7.28 (m, 1H), 7.21 – 7.12 (m, 4H), 7.02 – 6.93 (m, 3H),

4.10 (dr, 1H), 2.73 – 2.51 (m, 2H), 2.40 (s, 3H), 2.33 (s, 3H), 1.99 – 1.81 (m, 2H), 1.77 – 1.62 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 193.2, 161.3, 144.9, 139.5, 138.2, 137.9, 137.1, 129.5, 129.4, 129.0, 128.3, 128.1, 127.0, 125.9, 124.9, 37.7, 34.2, 30.8, 21.7,

21.5, 17.7. IR (film): 2934, 1667, 1446, 1212, 1043, 781, 703 cm⁻¹. HRMS (ESI) calcd for C₂₁H₂₂NaO [M+Na]⁺: 313.1563, Found: 313.1564.

Br Gd. Yellow solid (55.2 mg, 67% yield). Analytical data for 6d: m.p. = 86.1-82.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.47 (s, 1H), 7.56 (d, J = 8.4 Hz, 2H), 7.40 (d, J = 8.5 Hz, 2H), 7.20 (d, J = 8.4 Hz, 2H), 7.03 (d, J = 8.4 Hz, 2H), 4.07 (dr, 1H), 2.65 – 2.55 (m, 2H), 1.96-1.90 (m, 1H), 1.84-1.78 (m, 1H), 1.73-1.65 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 192.2, 160.0, 143.8, 138.0, 137.3, 131.8, 131.5, 130.3, 129.7, 123.1, 120.1, 37.4, 34.0, 30.6, 17.6. IR (film): 2936, 1684, 1483, 1169, 1008, 814, 692 cm⁻¹. HRMS (ESI) calcd for C₁₉H₁₆Br₂NaO [M+Na]⁺: 442.9440, Found: 442.9440.

Transformation of 3i

Reduction of 3i²

(Z)-2-(phenyl(p-tolyl)methyl)-3-(p-tolyl)prop-2-en-1-ol(7)

To a solution of **3i** (32.6 mg, 0.1 mmol) in 2 mL of acetic acid was added sodium borohydride (7.6 mg, 0.2 mmol) in portions at 0°C. The reaction was continued for another hour (monitored by TLC). Water (5 mL) was added, and then the mixture was neutralized with a saturated solution of potassium bicarbonate (5 mL). The aqueous

solution was extracted twice with 10 mL of ethyl acetate. The combined organic phase was washed with brine and dried over sodium sulfate. The solvent was removed under reduced pressure to give a crude residue. Further purification by preparative TLC gave compound **5** as a white solid (32.6mg, 99% yield).

Analytical data for 7: m.p. = 87.9-88.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.27 (m, 2H), 7.23-7.22 (m, 3H), 7.16-7.10 (m, 8H), 6.17 (s, 1H), 5.22 (s, 1H), 4.28 (s, 2H), 2.32 (s, 3H), 2.32 (s, 3H), 1.38(s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 143.2, 142.4, 139.2, 136.9, 136.3, 134.1, 132.3, 129.6, 129.5,

129.3, 129.0, 128.8, 128.6, 126.6, 61.4, 55.6, 21.3, 21.2. IR (film): 3388, 2921, 1510, 1297, 1007, 697, 523 cm⁻¹. HRMS (ESI) calcd for $C_{24}H_{24}NaO$ [M+Na]⁺: 351.1719, Found: 351.1719.

(E)-4,4'-(3-phenyl-2-vinylprop-1-ene-1,3-diyl)bis(methylbenzene)(8)³

To a suspension of methyltriphenylphosphonium bromide (0.13 mmol, 1.3 equiv) in THF(1 mL) at 0 °C was added dropwise *n*-butyllithium (2.5 M in hexane, 50 μ L, 0.125 mmol). The reaction mixture was stirred for 15 min and **3i** (32.6 mg, 0.1 mmol, 1 equiv) was added as solution in THF (1 mL). After 1 h the solution was warmed to room temperature and stirred for additional 6 hours. A saturated solution of NH₄Cl (5 mL) was added and the mixture was extracted with Et₂O (3 × 5 mL). The combined organic phases were washed with brine, dried over Na₂SO₄, and the solvents were removed under reduced pressure. The residue was applied to a plug of silica, eluted with hexane, and the solvent was removed carefully under reduced pressure to obtain the desired compound (56.4 mg, 88%) as a colorless oil.

Analytical data for 8: ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.28 (m, 2H), 7.20-7.18 (m, 3H), 7.11-7.09 (m, 8H), 6.88 (dd, J = 17.7, 11.2 Hz, 1H), 6.10 (s, 1H), 5.32 (s, 1H), 5.28 (d, J =17.5 Hz, 1H), 5.09 (d, J = 11.0 Hz, 1H), 2.32 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 143.5, 140.8, 140.1, 136.7, 135.9, 134.8, 134.6, 133.5, 129.6, 129.5, 129.2, 128.8, 128.4, 128.4, 126.4, 116.0, 53.7, 21.3, 21.2. IR (film): 3022, 1738, 1509, 1239, 905, 800, 699, 502 cm⁻¹. HRMS (ESI) calcd for C₂₅H₂₄Na [M+Na]⁺: 347.1770, Found: 347.1775.

X-Ray crystal structure of 3f (CCDC 2068405)

Bond precision: C-C = 0.0127 A Wavelength=0.71073 Cell: a=5.7279(9) b=9.0758(14) c=17.852(3) alpha=90 beta=94.135(5) gamma=90 Temperature: 296 K Calculated Reported Volume 925.6(3) 925.6(3) Space group P 21 P 21 Hall group P 2yb P 2yb Moiety formula C22 H16 Br2 O C22 H16 Br2 O C22 H16 Br2 O C22 H16 Br2 O Sum formula 456.15 456.17 Mr 1.637 Dx,g cm-3 1.637 z 2 2 4.385 Mu (mm-1) 4.385 F000 452.0 452.0 F000' 451.05 h,k,lmax 6,10,21 6,10,21 3365[1796] 3332 Nref 0.280,0.746 Tmin,Tmax 0.225,0.416 Tmin' 0.066 Correction method= # Reported T Limits: Tmin=0.280 Tmax=0.746 AbsCorr = MULTI-SCAN Data completeness= 1.86/0.99 Theta(max) = 25.348 R(reflections) = 0.0489(3101) wR2(reflections) = 0.1358(3332) S = 1.016Npar= 262

References

(1) Zlotin, S. G.; Kryshtal, G.V.; Zhdankina, G. M. Eur. J. Org. Chem. 2005, 13 2822–2827.

(2) L.-L. Ding, X.-W. Sui, Z.-H. Gu. ACS Catal. 2018, 8, 5630-5635.

(3) Liu, Q.; Wu, L. Z.; Wei, X. J.; Yang, D. T.; Wang, L.; Song, T. Org. Lett. 2013, 15, 6054–6057.

NMR Spectra of products

¹H NMR and ¹³C NMR spectra of 3a

¹H NMR and ¹³C NMR spectra of 3c

) 100 f1 (ppm)

¹H NMR, ¹³C NMR and ¹⁹F NMRspectra of 3d

-100 f1 (ppm)

¹H NMR and ¹³C NMR spectra of 3e

¹H NMR and ¹³C NMR spectra of 3f

o 20o 19o 18o 17o 16o 15o 14o 12o 11o 10o 9o 8o 7o 6o 5o 4o 3o 2o 10 6 fi (ppm)

¹H NMR and ¹³C NMR spectra of 3h

¹H NMR and ¹³C NMR spectra of 3i

¹H NMR and ¹³C NMR spectra of 3j

¹H NMR and ¹³C NMR spectra of 3k

¹H NMR and ¹³C NMR spectra of 4a

¹H NMR and ¹³C NMR spectra of 4c

200 190 180 170 160 150 140 130

210

120 110 100 f1 (ppm) -10

¹H NMR and ¹³C NMR spectra of 4d

¹H NMR and ¹³C NMR spectra of 4e

¹H NMR ,¹³C NMR and ¹⁹F spectra of 4f

¹H NMR and ¹³C NMR spectra of 4g

¹H NMR and ¹³C NMR spectra of 4h

¹H NMR and ¹³C NMR spectra of 4i

¹H NMR and ¹³C NMR spectra of 4k

¹H NMR and ¹³C NMR spectra of 6a

¹H NMR and ¹³C NMR spectra of 6b

¹H NMR and ¹³C NMR spectra of 6c

¹H NMR and ¹³C NMR spectra of 7

¹H NMR and ¹³C NMR spectra of 8