Miharadienes A–D with Unique Cyclic Skeletons from a Marine-Derived *Streptomyces miharaensis*

Byeoung-Kyu Choi,^a Duk-Yeon Cho,^b Dong-Kug Choi,^b and Hee Jae Shin ^{a,c,*}

^aMarine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385, Haeyang-ro, Yeongdo-gu, Busan 49111, Republic of Korea
^bDepartment of Applied Life Science, Graduate school, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
^cDepartment of Marine Biotechnology, University of Science and Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon 34113, Republic of Korea

Supporting Information

List of Contents

1. Spectral information of compounds 1-4.	
Figure S1. HRESIMS data of miharadiene A (1)	S4
Figure S2. ¹ H NMR spectrum of miharadiene (1) in CD ₃ OD	S5
Figure S3. ¹³ C NMR spectrum of miharadiene (1) in CD ₃ OD	S6
Figure S4. ¹ H- ¹ H COSY spectrum of miharadiene A (1) in CD ₃ OD	S7
Figure S5. HSQC spectrum of miharadiene A (1) in CD ₃ OD	S8
Figure S6. HMBC spectrum of miharadiene A (1) in CD ₃ OD	S9
Figure S7. NOESY spectrum of miharadiene A (1) in CD ₃ OD	S10
Figure S8. HRESIMS spectrum of miharadiene B (2)	S11
Figure S9. ¹ H NMR spectrum of miharadiene B (2) in CDCl ₃	S12
Figure S10. ¹³ C NMR spectrum of miharadiene B (2) in CDCl ₃	S13
Figure S11. ¹ H- ¹ H COSY spectrum of miharadiene B (2) in CDCl ₃	S14
Figure S12. HSQC spectrum of miharadiene B (2) in CDCl ₃	S15
Figure S13. HMBC spectrum of miharadiene B (2) in CDCl ₃	S16
Scheme S1. Determination of absolute configuration for 2	S17
Figure S14. ¹ H NMR spectrum of compound 2a in CD ₃ OD	S18
Figure S15. ¹³ C NMR spectrum of compound 2a in CD ₃ OD	S19
Figure S16. HSQC spectrum of compound 2a in CD ₃ OD	S20
Figure S17. Selected regions of ¹ H spectrum of Mosher's ester analysis of	
hydrolysate of 2a	S21
Figure S18. NOESY spectrum of compound 2a in CD ₃ OD	S22
Figure S19. HRESIMS spectrum of miharadiene C (3)	S23
Figure S20. ¹ H NMR spectrum of miharadiene C (3) in CDCl ₃	S24
Figure S21. ¹³ C NMR spectrum of miharadiene C (3) in CDCl ₃	S25
Figure S22. ¹ H- ¹ H COSY spectrum of miharadiene C (3) in CDCl ₃	S26
Figure S23. HSQC spectrum of miharadiene C (3) in CDCl ₃	S27
Figure S24. HMBC spectrum of miharadiene C (3) in CDCl ₃	S28
Figure S25. ¹ H NMR spectrum of miharadiene C (3) in DMSO- <i>d</i> ₆ .	S29
Figure S26. ¹ H- ¹ H COSY spectrum of miharadiene C (3) in DMSO- <i>d</i> ₆	S30
Figure S27. HMBC spectrum of miharadiene C (3) in DMSO- d_6 .	S31
Figure S28. HRESIMS spectrum of miharadiene D (4)	S32
Figure S29. ¹ H NMR spectrum of miharadiene D (4) in CD ₃ OD	S33
Figure S30. ¹³ C NMR spectrum of miharadiene D (4) in CD ₃ OD	S34
Figure S31. ¹ H- ¹ H COSY spectrum of miharadiene D (4) in CD ₃ OD	S35
Figure S32. HSQC spectrum of miharadiene D (4) in CD ₃ OD	S36
Figure S33. HMBC spectrum of miharadiene D (4) in CD ₃ OD	S37
2. X-ray Crystallographic analysis.	
Table S1. Crystal data and structural refinement	S38
3. Computational methods	
Figure S34. DFT optimized conformers and populations of miharadiene A	
(3 <i>S</i> , 5 <i>S</i>) above 5% population.	\$39
Figure S35. DFT optimized conformers and populations of miharadiene D	

(3 <i>R</i>) above 5% population	S40
Table S2. Gibbs free energies and Boltzmann distribution of	
conformers of compound 1	S41
Table S3. Gibbs free energies and Boltzmann distribution of	
conformers of compound 4	S41

Figure S1. HRESIMS data of 1.

Figure S2. ¹H NMR spectrum of miharadiene (1) in CD₃OD.

Figure S3. ¹³C NMR spectrum of miharadiene A (1) in CD₃OD.

Figure S4. ¹H-¹H COSY spectrum of miharadiene A (1) in CD₃OD.

Figure S5. HSQC spectrum of miharadiene A (1) in CD₃OD.

Figure S6. HMBC spectrum of miharadiene A (1) in CD₃OD.

Figure S7. NOESY spectrum of miharadiene A (1) in CD₃OD.

Figure S8. HRESIMS spectrum of miharadiene B (2).

Figure S9. ¹H NMR spectrum of miharadiene B (2) in CDCl₃.

Figure S10. ¹³C NMR spectrum of miharadiene B (2) in CDCl₃.

Figure S11. ¹H-¹H COSY spectrum of miharadiene B (**2**) in CDCl₃.

Figure S12. HSQC spectrum of miharadiene B (2) in CDCl₃.

Figure S13. HMBC spectrum of miharadiene B (2) in CDCl₃.

Scheme S1. Determination of absolute configuration for 2.

Figure S14. ¹H NMR spectrum of compound 2a in CD₃OD.

Figure S15. ¹³C NMR spectrum of compound 2a in CD₃OD.

Figure S16. HSQC spectrum of compound 2a in CD₃OD.

Figure S17. Selected regions of ¹H spectrum of Mosher's ester analysis of hydrolysate of 2a.

Figure S18. NOESY spectrum of compound 2a in CD₃OD.

Mass	Calc. Mass	mDa	PPM	DBE	Formula
368.1837	368.1838	-0.1	-0.3	7.5	C20 H27 N O4 Na

Figure S19. HRESIMS spectrum of miharadiene C (3).

Figure S20. ¹H NMR spectrum of miharadiene C (3) in CDCl₃.

Figure S21. ¹³C NMR spectrum of miharadiene C (3) in CDCl₃.

Figure S22. ¹H-¹H COSY spectrum of miharadiene C (3) in CDCl₃.

Figure S23. HSQC spectrum of miharadiene C (3) in CDCl₃.

Figure S24. HMBC spectrum of miharadiene C (3) in CDCl₃.

Figure S25. ¹H NMR spectrum of miharadiene C (3) in DMSO-*d*₆.

Figure S26. ¹H-¹H COSY spectrum of miharadiene C (3) in DMSO- d_6 .

Figure S27. HMBC spectrum of miharadiene C (3) in DMSO- d_6 .

Figure S28. HRESIMS spectrum of miharadiene D (4).

Figure S29. ¹H NMR spectrum of miharadiene D (4) in CD₃OD.

Figure S30. ¹³C NMR spectrum of miharadiene D (4) in CD₃OD.

Figure S31. ¹H-¹H COSY spectrum of miharadiene D (4) in CD₃OD.

Figure S32. HSQC spectrum of miharadiene D (4) in CD₃OD.

Figure S33. HMBC spectrum of miharadiene D (4) in CD₃OD.

X-ray Crystallographic analysis. Single-crystal X-ray diffraction data were collected using an Bruker SMART APEX2 ULTRA and a APEX II CCD area detector with a multilayer-monochromated Mo K α radiation ($\lambda = 0.71073$ Å) generated by a rotating anode. Data collection, data reduction, and semiempirical absorption correction were carried out using the software package APEX2.(1) All of the calculations for the structure determination were carried out using the SHELXTL package. (2) All non-H atoms were refined anisotropically. All hydrogen atoms were included in calculated positions with isotropic thermal parameters 1.2 times those of attached atoms.

(1) APEX2 (Version 2009.1–0) Data Collection and Processing Software; Bruker AXS Inc.: Madison, Wisconsin, U.S.A., 2008.
(2) SHELXTL-PC (Version 6.22) Program for Solution and Refinement of Crystal Structures; Bruker AXS Inc.: Madison, Wisconsin, U.S.A., 2001.

Crystal data for **3.** Formula= $C_{22}H_{39}CuN_5O_6$, crystal size = $0.30 \times 0.24 \times 0.13$ mm, Monoclinic, space group $P2_1/n$, a = 16.5612(2) Å, b = 9.2100(1) Å, c = 16.7191(2) Å, $\beta = 115.463(1)^\circ$, V = 2303.4(1) Å³, Z = 4, $D_c = 1.538$ g cm⁻³, $\mu = 0.669$ mm⁻¹, T = 173(2) K, F(000) = 1132, $T_{max}/T_{min} = 0.89/0.80$, $2\theta_{max} = 27.54^\circ$; 5297 reflections collected, 307 independent reflections, $R_{int} = 0.0317$, R1 = 0.03 and R2 = 0.08 for I $\ge 2\sigma(I)$, R1 = 0.39 and R2 = 0.08 for all data, GoF = 1.044.

	3
Formula	$C_{13}H_{12}BrCuN_4S_2$
M	431.84
T/K	173(2)
Crystal system	Triclinic
Space group	<i>P</i> -1
a/Å	8.6303(13)
b/Å	9.8063(12)
$c/\text{\AA}$	9.9415(14)
$lpha/^{\circ}$	69.229(8)
$\beta/^{\circ}$	71.497(6)
$\gamma/^{\circ}$	81.910(8)
$V/Å^3$	745.6(2)
Ζ	2
μ (Mo-K α)/mm ⁻¹	4.420
Crystal size/mm	$0.08 \times 0.05 \times 0.02$
Absorption correction	Multi-scan SADABS
Reflections collected	11391
Independent reflections	2898
Goodness-of-fit on F^2	1.064
Final R1, wR2 $[I > 2\sigma(I)]$	0.1134, 0.3054
(all data)	0.1456, 0.3367

Table S1. (Crystal	data	and	structural	refinement
-------------	---------	------	-----	------------	------------

Figure S34. DFT optimized conformers and populations of miharadiene A (3*S*, 5*S*) above 5% population.

Figure S35. DFT optimized conformers and populations of miharadiene D (3*R*) above 2% population.

B3LYP/6-311+G(d,p) Gibbs free energy (298.15K)				
	G (Hartree)	Population (%)		
Conformer 1	-1152.483640	20.77		
Conformer 2	-1152.486823	13.53		
Conformer 3	-1152.487408	13.17		
Conformer 4	-1152.487148	9.44		
Conformer 5	-1152.485161	6.21		

Table S2. Gibbs free energies and Boltzmann distribution of conformers of 1

Table S3. Gibbs free energies and Boltzmann distribution of conformers of 4

B3LYP/6-311+G(d,p) Gibbs free energy (298.15K)				
	G (Hartree)	Population (%)		
Conformer 1	-808.849283	8.17		
Conformer 2	-808.850206	5.50		
Conformer 3	-808.848945	4.01		
Conformer 4	-808.849516	3.85		
Conformer 5	-809.274794	3.17		