Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Supporting Information

Dan-Yang Zhang, ^a Xiao-Xia Wang, ^a Ya-Nan Wang, ^d Min Wang, ^b Peng-Yu Zhuang, ^{*} ^a Yang Jin^{* c} and Hang Liu^{* b}

^aSchool of Pharmacy, North China University of Science and Technology, Tangshan 063210, People's Republic of China

^bDepartment of Pharmacy, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, People's Republic of China

^cSchool of Pharmacy, Nanjing Medical University, Nanjing 211166, People's Republic of China ^dState Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China

Email: <u>zhuangpengyu@ncst.edu.cn</u>; telephone: 0086-315-8805808

Email: vangjin@njmu.edu.cn; telephone: 0086-25-86868488

Email: liuhang831123@163.com; telephone: 0086-25-83106666-40332

Table of Contents

Figure S1. Key 2D NMR correlations for chlorahupetone C (3)	S5
Figure S2. Key 2D NMR correlations for chlorahupetone E (5)	S5
Figure S3. Key 2D NMR correlations for chlorahupetones H–I (8–9)	S5
ECD calculation details	S6
1. Results	S6
Table S1. Gibbs free energiesa and equilibrium populationsb of low-energy conformers of 1	R, 3S,
6 <i>R</i> , 7 <i>S</i> , 9 <i>R</i> , 10 <i>S</i> , 11 <i>R</i> , 1' <i>S</i> , 5' <i>R</i> , 6' <i>S</i> , 7' <i>S</i> , 9' <i>R</i> ,10' <i>R</i> - 3	S6
Figure S4. The low-energy reoptimized MMFF conformers of 1R, 3S, 6R, 7S, 9R, 10S, 11.	R, 1'S,
5'R, 6'S, 7'S, 9'R,10'R - 3 at B3LYP/6-31G (d, p) level of theory in gas	S6
Table S2. Cartesian coordinates for the low-energy reoptimized MMFF conformers of $1R$, 3	3 <i>S</i> , 6 <i>R</i> ,
7S, 9R, 10S, 11R, 1'S, 5'R, 6'S, 7'S, 9'R, 10'R - 3 at B3LYP/6-31G (d, p) level of theory in gas.	S6
Table S3. Gibbs free energiesa and equilibrium populationsb of low-energy conformers of 1	S, 3R,
6 <i>S</i> , 7 <i>R</i> , 9 <i>S</i> , 10 <i>R</i> , 11 <i>S</i> , 1' <i>R</i> , 5' <i>S</i> , 6' <i>R</i> , 7' <i>R</i> , 9' <i>S</i> ,10' <i>S</i> - 3	S16
Figure S5. The low-energy reoptimized MMFF conformers of 1S, 3R, 6S, 7R, 9S, 10R, 11	S, 1'R,
5'S, 6'R, 7'R, 9'S,10'S - 3 at B3LYP/6-31G(d,p) level of theory in gas	S16
Table S4. Cartesian coordinates for the low-energy reoptimized MMFF conformers of 1S, 3	R, 6S,
7R, 9S, 10R, 11S, 1'R, 5'S, 6'R, 7'R, 9'S,10'S – 3 at B3LYP/6-31G (d, p) level of theory in gas	S16
Figure S6. ¹ H NMR spectrum of chlorahupetone A (1) in CDCl ₃	S27
Figure S7. ¹³ C NMR and DEPT spectrum of chlorahupetone A (1) in CDCl ₃	S28
Figure S8. HSQC spectrum of chlorahupetone A (1) in CDCl ₃	S29
Figure S9. HMBC spectrum of chlorahupetone A (1) in CDCl ₃	S30
Figure S10. ¹ H- ¹ H COSY spectrum of chlorahupetone A (1) in CDCl ₃	S31
Figure S11. NOESY spectrum of chlorahupetone A (1) in CDCl ₃	S32
Figure S12. (-)-HRESIMS spectrum of chlorahupetone A (1)	S33
Figure S13. IR spectrum of chlorahupetone A (1)	S34
Figure S14. ¹ H NMR spectrum of chlorahupetone B (2) in pyridine- <i>d</i> ₅	S35
Figure S15. ¹³ C NMR spectrum of chlorahupetone B (2) in pyridine- <i>d</i> ₅	S36
Figure S16. HSQC spectrum of chlorahupetone B (2) in pyridine-d5	S37
Figure S17. HMBC spectrum of chlorahupetone B (2) in pyridine- <i>d</i> ₅	S38
Figure S18. ¹ H- ¹ H COSY spectrum of chlorahupetone B (2) in pyridine- <i>d</i> ₅	S39
Figure S19. NOESY spectrum of chlorahupetone B (2) in pyridine-d ₅	S40
Figure S20. (+)-HRESIMS spectrum of chlorahupetone B (2)	S41
Figure S21. IR spectrum of chlorahupetone B (2)	S42
Figure S22. ¹ H NMR spectrum of chlorahupetone C (3) in CDCl ₃	S43
Figure S23. ¹³ C NMR and DEPT spectrum of chlorahupetone C (3) in CDCl ₃	S44
Figure S24. HSQC spectrum of chlorahupetone C (3) in CDCl ₃	S45
Figure S25. HMBC spectrum of chlorahupetone C (3) in CDCl ₃	S46
Figure S26. ¹ H- ¹ H COSY spectrum of chlorahupetone C (3) in CDCl ₃	S47
Figure S27. NOESY spectrum of chlorahupetone C (3) in CDCl ₃	S48
Figure S28. (+)-HRESIMS spectrum of chlorahupetone C (3)	S49
Figure S29. IR spectrum of chlorahupetone C (3)	S50
Figure S30. ¹ H NMR spectrum of chlorahupetone D (4) in pyridine-d ₅	S51

Figure S31. ¹³ C NMR and DEPT spectrum of chlorahupetone D (4) in pyridine-d ₅	S52
Figure S32. HSQC spectrum of chlorahupetone D (4) in pyridine- <i>d</i> ₅	S53
Figure S33. HMBC spectrum of chlorahupetone D (4) in pyridine- <i>d</i> ₅	S54
Figure S34. ¹ H- ¹ H COSY spectrum of chlorahupetone D (4) in pyridine- <i>d</i> ₅	S55
Figure S35. NOESY spectrum of chlorahupetone D (4) in pyridine- <i>d</i> ₅	S56
Figure S36. (+)-HRESIMS spectrum of chlorahupetone D (4)	S57
Figure S37. IR spectrum of chlorahupetone D (4)	S58
Figure S38. ¹ H NMR spectrum of chlorahupetone E (5) in CDCl ₃	S59
Figure S39. ¹³ C NMR and DEPT spectrum of chlorahupetone E (5) in CDCl ₃	S60
Figure S40. HSQC spectrum of chlorahupetone E (5) in CDCl ₃	
Figure S41. HMBC spectrum of chlorahupetone E (5) in CDCl ₃	
Figure S42. ¹ H- ¹ H COSY spectrum of chlorahupetone E (5) in CDCl ₃	S63
Figure S43. NOESY spectrum of chlorahupetone E (5) in CDCl ₃	
Figure S44. (+)-HRESIMS spectrum of chlorahupetone E (5)	
Figure S45. IR spectrum of chlorahupetone E (5)	S66
Figure S46. ¹ H NMR spectrum of chlorahupetone F (6) in CDCl ₃	S67
Figure S47. ¹³ C NMR and DEPT spectrum of chlorahupetone F (6) in CDCl ₃	S68
Figure S48. HSQC spectrum of chlorahupetone F (6) in CDCl ₃	S69
Figure S49. HMBC spectrum of chlorahupetone F (6) in CDCl ₃	
Figure S50. ¹ H- ¹ H COSY spectrum of chlorahupetone F (6) in CDCl ₃	
Figure S51. NOESY spectrum of chlorahupetone F (6) in CDCl ₃	
Figure S52. (+)-HRESIMS spectrum of chlorahupetone F (6)	
Figure S53. IR spectrum of chlorahupetone F (6)	S74
Figure S54. ¹ H NMR spectrum of chlorahupetone G (7) in CDCl ₃	S75
Figure S55. ¹³ C NMR and DEPT spectrum of chlorahupetone G (7) in CDCl ₃	S76
Figure S56. HSQC spectrum of chlorahupetone G (7) in CDCl ₃	S77
Figure S57. HMBC spectrum of chlorahupetone G (7) in CDCl ₃	
Figure S58. ¹ H- ¹ H COSY spectrum of chlorahupetone G (7) in CDCl ₃	S79
Figure S59. NOESY spectrum of chlorahupetone G (7) in CDCl ₃	
Figure S60. (-)-HRESIMS spectrum of chlorahupetone G (7)	
Figure S61. IR spectrum of chlorahupetone G (7)	
Figure S62. ¹ H NMR spectrum of chlorahupetone H (8) in CDCl ₃	
Figure S63. ¹³ C NMR and DEPT spectrum of chlorahupetone H (8) in CDCl ₃	S84
Figure S64. HSQC spectrum of chlorahupetone H (8) in CDCl ₃	
Figure S65. HMBC spectrum of chlorahupetone H (8) in CDCl ₃	S86
Figure S66. ¹ H- ¹ H COSY spectrum of chlorahupetone H (8) in CDCl ₃	
Figure S67. NOESY spectrum of chlorahupetone H (8) in CDCl ₃	
Figure S68. (+)-HRESIMS spectrum of chlorahupetone H (8)	
Figure S69. IR spectrum of chlorahupetone H (8)	
Figure S70. ¹ H NMR spectrum of chlorahupetone I (9) in CDCl ₃	
Figure S71. ¹³ C NMR and DEPT spectrum of chlorahupetone I (9) in CDCl ₃	
Figure S72. HSQC spectrum of chlorahupetone I (9) in CDCl ₃	
Figure S73. HMBC spectrum of chlorahupetone I (9) in CDCl ₃	S94
Figure S74. ¹ H- ¹ H COSY spectrum of chlorahupetone I (9) in CDCl ₃	

Figure S75. NOESY spectrum of chlorahupetone I (9) in CDCl ₃	
Figure S76. (+)-HRESIMS spectrum of chlorahupetone I (9)	S97
Figure S77. IR spectrum of chlorahupetone I (9)	S98

Figure S1. Key 2D NMR correlations for chlorahupetone C (3)

Figure S2. Key 2D NMR correlations for chlorahupetone E (5)

Figure S3. Key 2D NMR correlations for chlorahupetones H–I (8–9)

ECD calculation details

1. Results

Table S1. Gibbs free energiesa and equilibrium populationsb of low-energy conformers of 1*R*, 3*S*, 6*R*, 7*S*, 9*R*, 10*S*, 11*R*, 1'*S*, 5'*R*, 6'*S*, 7'*S*, 9'*R*,10'*R* - **3**.

Conformers	In gas					
Comonners	G^{a}	$P(\%)^{b}$				
3-а	-1084934.73980112	15.60				
3-b	-1084934.91299388	20.91				
3-с	-1084935.02782821	25.38				
3-d	-1084934.7448212	15.74				
3-е	-1084934.95315452	22.37				

^{*a*}B3LYP/6-31G(d, p), in kcal/mol. ^{*b*}From G values at 298.15K.

Figure S4. The low-energy reoptimized MMFF conformers of 1R, 3S, 6R, 7S, 9R, 10S, 11R, 1'S, 5'R, 6'S, 7'S, 9'R, 10'R - **3** at B3LYP/6-31G (d, p) level of theory in gas.

Table S2. Cartesian coordinates for the low-energy reoptimized MMFF conformers of 1R, 3S, 6R, 7S, 9R, 10S, 11R, 1'S, 5'R, 6'S, 7'S, 9'R, 10'R - 3 at B3LYP/6-31G (d, p) level of theory in gas.

Conformer 3a		Standard Orientation (Ångstroms)			
Center number	Atom	Туре	Х	Y	Z
1.	6.	0.	-0.808171	2.729111	0.164053

2.	6.	0.	0.258743	1.749431	-0.340100
3.	6.	0.	1.508003	2.141718	-0.013441
4.	6.	0.	-1.551175	1.948177	1.265955
5.	6.	0.	-2.151833	0.632579	0.735180
6.	6.	0.	-0.214531	0.512516	-1.041858
7.	6.	0.	-1.499584	-0.136586	-0.399873
8.	6.	0.	2.862742	1.513995	-0.209593
9.	6.	0.	2.981177	0.135913	-0.899284
10.	6.	0.	1.996743	-0.918989	-0.292548
11.	6.	0.	0.554286	-0.825630	-0.823064
12.	6.	0.	-0.601114	-1.359712	0.095736
13.	6.	0.	-0.268774	-1.663077	1.572990
14.	6.	0.	-2.540006	-0.812081	-1.448422
15.	6.	0.	-1.293154	-2.606036	-0.364714
16.	6.	0.	-2.113632	-2.319478	-1.576748
17.	6.	0.	-1.078981	-3.635476	0.457429
18.	6.	0.	-0.187780	-3.223166	1.610477
19.	6.	0.	0.950972	-0.911162	2.137327
20.	6.	0.	2.171595	-1.001491	1.231853
21.	8.	0.	3.295979	-1.123507	1.690936
22.	6.	0.	2.788398	0.261467	-2.431680
23.	6.	0.	1.278109	-1.278617	3.586773
24.	8.	0.	-2.560178	2.713656	1.880770
25.	6.	0.	1.474982	3.472612	0.681485
26.	6.	0.	0.017305	3.872867	0.763540
27.	6.	0.	0.949167	4.633106	-0.142640
28.	6.	0.	-1.817178	3.228242	-0.888520
29.	8.	0.	-3.131873	0.197088	1.327014
30.	6.	0.	-2.537877	-0.153975	-2.844226
31.	6.	0.	-3.988590	-0.660553	-0.939479
32.	8.	0.	-4.474788	-1.772929	-0.360435
33.	8.	0.	-4.642023	0.348728	-1.103841
34.	6.	0.	-5.788792	-1.638033	0.206408
35.	1.	0.	-1.143814	-1.384781	2.172856
36.	6.	0.	4.437758	-0.335095	-0.708467
37.	8.	0.	4.605094	-1.619622	-1.098565
38.	8.	0.	5.354063	0.371753	-0.352166
39.	6.	0.	5.936875	-2.135649	-0.941791
40.	1.	0.	-0.352823	0.747408	-2.101362
41.	1.	0.	2.370525	-1.895737	-0.624678
42.	1.	0.	0.533590	-1.375515	-1.769134
43.	1.	0.	-0.795999	1.652170	2.018296
44.	1.	0.	3.496456	2.226489	-0.753229

15	1	0	2 240719	1 442241	0 775045
45.	1.	0.	3.340/18	1.442241	0.775045
46.	1.	0.	-1.503124	-2.428903	-2.483149
47.	1.	0.	-2.973719	-2.980477	-1.687352
48.	1.	0.	-1.477811	-4.638747	0.343188
49.	1.	0.	0.844914	-3.577981	1.467667
50.	1.	0.	-0.519832	-3.629049	2.572406
51.	1.	0.	0.699236	0.160638	2.103033
52.	1.	0.	1.833108	0.728646	-2.678426
53.	1.	0.	2.840150	-0.715796	-2.919248
54.	1.	0.	3.578869	0.891064	-2.852427
55.	1.	0.	1.571970	-2.328730	3.672728
56.	1.	0.	2.108938	-0.677534	3.960629
57.	1.	0.	0.406569	-1.112412	4.227717
58.	1.	0.	-3.253465	2.076689	2.126502
59.	1.	0.	2.190494	3.670918	1.475314
60.	1.	0.	-0.387475	4.383885	1.630913
61.	1.	0.	0.881946	4.499688	-1.218664
62.	1.	0.	1.224047	5.636255	0.170749
63.	1.	0.	-1.306972	3.694096	-1.735595
64.	1.	0.	-2.478493	3.967126	-0.430393
65.	1.	0.	-2.455551	2.425323	-1.269452
66.	1.	0.	-3.280939	-0.650088	-3.476999
67.	1.	0.	-1.569897	-0.264469	-3.338426
68.	1.	0.	-2.803407	0.902555	-2.799440
69.	1.	0.	-5.775970	-0.878968	0.991179
70.	1.	0.	-6.512707	-1.351900	-0.559999
71.	1.	0.	-6.031595	-2.616536	0.620248
72.	1.	0.	5.903383	-3.157633	-1.319258
73.	1.	0.	6.652881	-1.537823	-1.510396
74.	1.	0.	6.221496	-2.125021	0.112900

Confor	mer 3b	Standard Orientation (Ångstroms)			
Center number	Atom	Туре	Х	Y	Z
1.	6.	0.	-1.100344	2.519802	0.197922
2.	6.	0.	0.055670	1.655581	-0.321573
3.	6.	0.	1.261424	2.190722	-0.039205
4.	6.	0.	-1.738388	1.677221	1.320743
5.	6.	0.	-2.198176	0.294211	0.823591
6.	6.	0.	-0.294991	0.363239	-0.995262
7.	6.	0.	-1.479562	-0.412095	-0.306672
8.	6.	0.	2.669800	1.716169	-0.279155

9.	6.	0.	2.917446	0.356695	-0.971849
10.	6.	0.	2.089929	-0.803025	-0.319921
11.	6.	0.	0.620897	-0.880052	-0.777805
12.	6.	0.	-0.430162	-1.499195	0.213025
13.	6.	0.	-0.006407	-1.675529	1.690961
14.	6.	0.	-2.442772	-1.243157	-1.308069
15.	6.	0.	-1.008596	-2.835557	-0.137859
16.	6.	0.	-1.932189	-2.727052	-1.304715
17.	6.	0.	-0.658557	-3.783595	0.734319
18.	6.	0.	0.232003	-3.214860	1.817404
19.	6.	0.	1.161740	-0.784208	2.153965
20.	6.	0.	2.342160	-0.841329	1.196253
21.	8.	0.	3.492316	-0.898890	1.600522
22.	6.	0.	2.648388	0.448052	-2.494735
23.	6.	0.	1.582052	-1.032825	3.604646
24.	8.	0.	-2.818936	2.336821	1.939626
25.	6.	0.	1.100360	3.514241	0.652396
26.	6.	0.	-0.390196	3.751589	0.772572
27.	6.	0.	0.429340	4.607033	-0.157797
28.	6.	0.	-2.165854	2.897998	-0.848711
29.	8.	0.	-3.108944	-0.243638	1.442017
30.	6.	0.	-2.447196	-0.705700	-2.759705
31.	6.	0.	-3.918217	-1.222425	-0.855293
32.	8.	0.	-4.443747	0.017829	-0.988349
33.	8.	0.	-4.572844	-2.185914	-0.529088
34.	6.	0.	-5.801604	0.160043	-0.538944
35.	1.	0.	-0.877601	-1.446750	2.316626
36.	6.	0.	4.425488	0.057947	-0.837833
37.	8.	0.	4.729213	-1.189562	-1.262297
38.	8.	0.	5.263191	0.860612	-0.490821
39.	6.	0.	6.116106	-1.549446	-1.153749
40.	1.	0.	-0.488191	0.564785	-2.052850
41.	1.	0.	2.561323	-1.730886	-0.665117
42.	1.	0.	0.611457	-1.460461	-1.706219
43.	1.	0.	-0.944760	1.476906	2.065026
44.	1.	0.	3.202165	2.492140	-0.844288
45.	1.	0.	3.186350	1.703093	0.688585
46.	1.	0.	-1.402099	-2.925316	-2.245220
47.	1.	0.	-2.771443	-3.421917	-1.245328
48.	1.	0.	-0.966850	-4.824028	0.703178
49.	1.	0.	1.288909	-3.476601	1.652035
50.	1.	0.	-0.022012	-3.587743	2.815719
51.	1.	0.	0.816824	0.257757	2.068264

52.	1.	0.	1.635747	0.798252	-2.702463
53.	1.	0.	2.794728	-0.519939	-2.981104
54.	1.	0.	3.341283	1.162936	-2.950098
55.	1.	0.	1.980534	-2.042769	3.735694
56.	1.	0.	2.365458	-0.334714	3.905982
57.	1.	0.	0.725901	-0.910945	4.275677
58.	1.	0.	-3.400753	1.624880	2.258207
59.	1.	0.	1.809519	3.792783	1.427750
60.	1.	0.	-0.824717	4.218947	1.650224
61.	1.	0.	0.350371	4.466252	-1.232191
62.	1.	0.	0.599887	5.635078	0.149135
63.	1.	0.	-1.718524	3.448622	-1.680130
64.	1.	0.	-2.923182	3.531133	-0.379991
65.	1.	0.	-2.682953	2.023124	-1.253131
66.	1.	0.	-3.161682	-1.284146	-3.355129
67.	1.	0.	-1.468367	-0.827258	-3.230631
68.	1.	0.	-2.741332	0.343304	-2.816203
69.	1.	0.	-6.067627	1.199135	-0.731314
70.	1.	0.	-6.461171	-0.516213	-1.087044
71.	1.	0.	-5.865576	-0.062619	0.528510
72.	1.	0.	6.190367	-2.560527	-1.553975
73.	1.	0.	6.740267	-0.860634	-1.727604
74.	1.	0.	6.428217	-1.526685	-0.107136

Conformer 3c Standard Orientation (Ångstroms)					
Center number	Atom	Туре	Х	Y	Z
1.	6.	0.	-0.839936	2.543284	0.286714
2.	6.	0.	0.210837	1.591287	-0.299869
3.	6.	0.	1.472026	1.999950	-0.043888
4.	6.	0.	-1.532523	1.725396	1.393862
5.	6.	0.	-2.142701	0.415076	0.856647
6.	6.	0.	-0.286093	0.365642	-1.006557
7.	6.	0.	-1.535206	-0.310745	-0.326581
8.	6.	0.	2.825724	1.413459	-0.359347
9.	6.	0.	2.910402	0.024664	-1.035564
10.	6.	0.	1.963248	-1.017137	-0.355621
11.	6.	0.	0.507786	-0.965493	-0.843368
12.	6.	0.	-0.602508	-1.535054	0.107476
13.	6.	0.	-0.202259	-1.873382	1.560667
14.	6.	0.	-2.605527	-0.972840	-1.346254
15.	6.	0.	-1.303762	-2.779081	-0.345908

16.	6.	0.	-2.215517	-2.485941	-1.489171
17.	6.	0.	-1.022135	-3.827655	0.430631
18.	6.	0.	-0.071774	-3.429940	1.539631
19.	6.	0.	1.005567	-1.101339	2.116804
20.	6.	0.	2.192566	-1.030368	1.162043
21.	8.	0.	3.334148	-0.958569	1.590060
22.	6.	0.	2.629608	0.132531	-2.555887
23.	6.	0.	1.423540	-1.549565	3.521066
24.	8.	0.	-2.528335	2.464656	2.063596
25.	6.	0.	1.459442	3.306017	0.698036
26.	6.	0.	0.003466	3.678057	0.880469
27.	6.	0.	0.869933	4.487494	-0.048642
28.	6.	0.	-1.892913	3.065560	-0.710734
29.	8.	0.	-3.085043	-0.053171	1.483989
30.	6.	0.	-2.628195	-0.315772	-2.747192
31.	6.	0.	-4.052035	-0.885517	-0.813759
32.	8.	0.	-4.507874	0.387847	-0.862600
33.	8.	0.	-4.745177	-1.823490	-0.492475
34.	6.	0.	-5.831528	0.584538	-0.338266
35.	1.	0.	-1.066553	-1.650294	2.198254
36.	6.	0.	4.336774	-0.558448	-0.957327
37.	8.	0.	5.271461	0.361700	-0.653332
38.	8.	0.	4.603797	-1.707852	-1.241333
39.	6.	0.	6.619120	-0.135860	-0.588444
40.	1.	0.	-0.470520	0.619989	-2.054430
41.	1.	0.	2.351553	-1.998894	-0.663556
42.	1.	0.	0.470261	-1.501894	-1.796589
43.	1.	0.	-0.747554	1.421148	2.111216
44.	1.	0.	3.374806	2.139147	-0.974118
45.	1.	0.	3.388067	1.374711	0.579569
46.	1.	0.	-1.698690	-2.631250	-2.446704
47.	1.	0.	-3.106369	-3.115865	-1.494205
48.	1.	0.	-1.412244	-4.833646	0.312104
49.	1.	0.	0.959712	-3.748277	1.321383
50.	1.	0.	-0.332521	-3.876341	2.505481
51.	1.	0.	0.697511	-0.045862	2.182134
52.	1.	0.	1.660779	0.593916	-2.755643
53.	1.	0.	2.661669	-0.852045	-3.029976
54.	1.	0.	3.393577	0.758695	-3.028171
55.	1.	0.	1.777822	-2.584516	3.517049
56.	1.	0.	2.237046	-0.927283	3.897237
57.	1.	0.	0.576756	-1.480566	4.211088
58.	1.	0.	-3.170476	1.801588	2.371538

59.	1.	0.	2.216104	3.486528	1.457312
60.	1.	0.	-0.356256	4.149969	1.788933
61.	1.	0.	0.742284	4.394320	-1.123421
62.	1.	0.	1.147427	5.482886	0.286677
63.	1.	0.	-1.418467	3.568768	-1.557105
64.	1.	0.	-2.546006	3.779224	-0.202921
65.	1.	0.	-2.531529	2.266694	-1.098175
66.	1.	0.	-3.417956	-0.777839	-3.349098
67.	1.	0.	-1.687033	-0.481993	-3.277373
68.	1.	0.	-2.828068	0.755592	-2.705570
69.	1.	0.	-6.044884	1.645222	-0.468757
70.	1.	0.	-6.555583	-0.025295	-0.883039
71.	1.	0.	-5.857764	0.313056	0.719435
72.	1.	0.	7.239044	0.726920	-0.345641
73.	1.	0.	6.700686	-0.899655	0.188041
74.	1.	0.	6.916985	-0.568731	-1.546213

Conformer 3d		Standard Orientation					
Collion	illei Ju	(Ångstroms)					
Center	Atom	Туре	X	Y	Z		
1.	6.	0.	-0.808292	2.729011	0.164016		
2.	6.	0.	0.258660	1.749361	-0.340107		
3.	6.	0.	1.507906	2.141697	-0.013464		
4.	6.	0.	-1.551302	1.948078	1.265935		
5.	6.	0.	-2.151922	0.632472	0.735158		
6.	6.	0.	-0.214567	0.512403	-1.041831		
7.	6.	0.	-1.499581	-0.136716	-0.399817		
8.	6.	0.	2.862670	1.514036	-0.209670		
9.	6.	0.	2.981139	0.135961	-0.899371		
10.	6.	0.	1.996796	-0.919001	-0.292582		
11.	6.	0.	0.554290	-0.825713	-0.822980		
12.	6.	0.	-0.601053	-1.359727	0.095960		
13.	6.	0.	-0.268604	-1.662834	1.573243		
14.	6.	0.	-2.539916	-0.812384	-1.448327		
15.	6.	0.	-1.293090	-2.606150	-0.364238		
16.	6.	0.	-2.113640	-2.319847	-1.576280		
17.	6.	0.	-1.078853	-3.635445	0.458070		
18.	6.	0.	-0.187603	-3.222923	1.611001		
19.	6.	0.	0.951221	-0.910875	2.137373		
20.	6.	0.	2.171755	-1.001457	1.231812		
21.	8.	0.	3.296156	-1.123618	1.690812		
22.	6.	0.	2.788279	0.261502	-2.431757		

23.	6.	0.	1.278444	-1.278131	3.586850
24.	8.	0.	-2.560315	2.713521	1.880764
25.	6.	0.	1.474843	3.472594	0.681456
26.	6.	0.	0.017143	3.872797	0.763501
27.	6.	0.	0.948978	4.633066	-0.142675
28.	6.	0.	-1.817291	3.228077	-0.888587
29.	8.	0.	-3.131991	0.196981	1.326930
30.	6.	0.	-2.537566	-0.154608	-2.844297
31.	6.	0.	-3.988558	-0.660568	-0.939630
32.	8.	0.	-4.475082	-1.772822	-0.360622
33.	8.	0.	-4.641754	0.348843	-1.104125
34.	6.	0.	-5.789167	-1.637645	0.205968
35.	1.	0.	-1.143586	-1.384429	2.173143
36.	6.	0.	4.437743	-0.334985	-0.708614
37.	8.	0.	4.605148	-1.619463	-1.098841
38.	8.	0.	5.354008	0.371873	-0.352233
39.	6.	0.	5.936944	-2.135445	-0.942024
40.	1.	0.	-0.352880	0.747256	-2.101343
41.	1.	0.	2.370623	-1.895720	-0.624737
42.	1.	0.	0.533503	-1.375686	-1.768997
43.	1.	0.	-0.796115	1.652084	2.018274
44.	1.	0.	3.496320	2.226560	-0.753341
45.	1.	0.	3.340702	1.442308	0.774941
46.	1.	0.	-1.503219	-2.429560	-2.482707
47.	1.	0.	-2.973784	-2.980810	-1.686625
48.	1.	0.	-1.477667	-4.638745	0.344019
49.	1.	0.	0.845088	-3.577754	1.468222
50.	1.	0.	-0.519615	-3.628630	2.573019
51.	1.	0.	0.699541	0.160930	2.102935
52.	1.	0.	1.832964	0.728655	-2.678453
53.	1.	0.	2.840031	-0.715761	-2.919325
54.	1.	0.	3.578711	0.891118	-2.852550
55.	1.	0.	1.572358	-2.328217	3.672936
56.	1.	0.	2.109266	-0.676964	3.960591
57.	1.	0.	0.406932	-1.111869	4.227819
58.	1.	0.	-3.253665	2.076568	2.126359
59.	1.	0.	2.190326	3.670937	1.475301
60.	1.	0.	-0.387648	4.383803	1.630877
61.	1.	0.	0.881772	4.499618	-1.218698
62.	1.	0.	1.223812	5.636237	0.170684
63.	1.	0.	-1.307085	3.694142	-1.735548
64.	1.	0.	-2.478790	3.966771	-0.430420
65.	1.	0.	-2.455459	2.425081	-1.269691

66.	1.	0.	-3.280566	-0.650849	-3.477045
67.	1.	0.	-1.569528	-0.265277	-3.338346
68.	1.	0.	-2.803047	0.901945	-2.799807
69.	1.	0.	-5.776381	-0.878462	0.990622
70.	1.	0.	-6.512902	-1.351527	-0.560615
71.	1.	0.	-6.032185	-2.616051	0.619912
72.	1.	0.	5.903294	-3.157700	-1.318745
73.	1.	0.	6.652827	-1.538088	-1.511283
74.	1.	0.	6.221853	-2.124046	0.112574

Conformer 3e		Standard Orientation					
Contor		(Ångstroms)					
Center number	Atom	Туре	Х	Y	Z		
1.	6.	0.	-0.557746	2.723271	0.248256		
2.	6.	0.	0.398011	1.665116	-0.316663		
3.	6.	0.	1.687919	1.930381	-0.017651		
4.	6.	0.	-1.355366	1.978473	1.335639		
5.	6.	0.	-2.094639	0.748366	0.771025		
6.	6.	0.	-0.209764	0.505092	-1.047102		
7.	6.	0.	-1.543692	-0.039570	-0.405156		
8.	6.	0.	2.979219	1.198929	-0.287631		
9.	6.	0.	2.935559	-0.185381	-0.975854		
10.	6.	0.	1.855708	-1.120795	-0.342844		
11.	6.	0.	0.434117	-0.903715	-0.880775		
12.	6.	0.	-0.763936	-1.369479	0.016958		
13.	6.	0.	-0.459298	-1.792971	1.468554		
14.	6.	0.	-2.663742	-0.561721	-1.460287		
15.	6.	0.	-1.561889	-2.520055	-0.515767		
16.	6.	0.	-2.356784	-2.084168	-1.699466		
17.	6.	0.	-1.420491	-3.617362	0.230534		
18.	6.	0.	-0.489408	-3.353510	1.396734		
19.	6.	0.	0.797261	-1.160677	2.088633		
20.	6.	0.	2.023690	-1.180095	1.181105		
21.	8.	0.	3.148525	-1.219135	1.655112		
22.	6.	0.	2.723523	-0.034837	-2.503744		
23.	6.	0.	1.114829	-1.680660	3.494853		
24.	8.	0.	-2.272372	2.816521	1.997864		
25.	6.	0.	1.796742	3.230074	0.727294		
26.	6.	0.	0.385840	3.759763	0.868090		
27.	6.	0.	1.361655	4.468508	-0.033784		
28.	6.	0.	-1.531037	3.356952	-0.765085		
29.	8.	0.	-3.103181	0.394388	1.369111		

30.	6.	0.	-2.656677	0.184914	-2.809903
31.	6.	0.	-4.081391	-0.350097	-0.888915
32.	8.	0.	-4.596617	-1.453398	-0.316541
33.	8.	0.	-4.690641	0.693122	-1.000493
34.	6.	0.	-5.875033	-1.270216	0.313759
35.	1.	0.	-1.320525	-1.498875	2.081189
36.	6.	0.	4.285402	-0.922221	-0.853705
37.	8.	0.	5.305333	-0.110192	-0.517600
38.	8.	0.	4.433479	-2.094494	-1.131605
39.	6.	0.	6.587842	-0.751979	-0.412484
40.	1.	0.	-0.340792	0.786300	-2.096292
41.	1.	0.	2.143845	-2.136498	-0.651955
42.	1.	0.	0.378024	-1.418448	-1.844574
43.	1.	0.	-0.621522	1.581075	2.061985
44.	1.	0.	3.628510	1.863627	-0.872925
45.	1.	0.	3.496180	1.091580	0.671846
46.	1.	0.	-1.755242	-2.174539	-2.614097
47.	1.	0.	-3.266351	-2.665625	-1.854361
48.	1.	0.	-1.893235	-4.578248	0.052339
49.	1.	0.	0.512858	-3.770248	1.211173
50.	1.	0.	-0.838862	-3.801440	2.333550
51.	1.	0.	0.592537	-0.081490	2.172286
52.	1.	0.	1.817458	0.529832	-2.731328
53.	1.	0.	2.667181	-1.012951	-2.988866
54.	1.	0.	3.566892	0.510113	-2.940133
55.	1.	0.	1.365205	-2.745554	3.476767
56.	1.	0.	1.970449	-1.151076	3.916649
57.	1.	0.	0.252912	-1.543214	4.155261
58.	1.	0.	-3.020788	2.242017	2.236223
59.	1.	0.	2.546774	3.327341	1.508078
60.	1.	0.	0.052309	4.268942	1.766308
61.	1.	0.	1.254656	4.389310	-1.111945
62.	1.	0.	1.736864	5.427665	0.311828
63.	1.	0.	-0.992878	3.800063	-1.606957
64.	1.	0.	-2.108346	4.139982	-0.268368
65.	1.	0.	-2.250829	2.634009	-1.159971
66.	1.	0.	-3.449587	-0.218622	-3.447805
67.	1.	0.	-1.713239	0.043733	-3.342073
68.	1.	0.	-2.849604	1.251216	-2.691252
69.	1.	0.	-6.148615	-2.247175	0.711853
70.	1.	0.	-5.788158	-0.536040	1.117342
71.	1.	0.	-6.617222	-0.926298	-0.410285
72.	1.	0.	7.290445	0.038005	-0.148067

73.	1.	0.	6.561519	-1.519746	0.363926
74.	1.	0.	6.866407	-1.215203	-1.361832

Table S3. Gibbs free energiesa and equilibrium populationsb of low-energy conformers of 1*S*, 3*R*, 6*S*, 7*R*, 9*S*, 10*R*, 11*S*, 1'*R*, 5'*S*, 6'*R*, 7'*R*, 9'*S*,10'*S* - **3**.

<u>a</u>	
G^{a}	P (%) ^b
-1084934.73980112	15.60
-1084934.91299388	20.91
-1084935.02782821	25.38
-1084934.7448212	15.74
-1084934.95315452	22.37
	-1084934.73980112 -1084934.91299388 -1084935.02782821 -1084934.7448212 -1084934.95315452

^{*a*}B3LYP/6-31G(d,p), in kcal/mol. ^{*b*}From *G* values at 298.15K.

Figure S5. The low-energy reoptimized MMFF conformers of 1*S*, 3*R*, 6*S*, 7*R*, 9*S*, 10*R*, 11*S*, 1'*R*, 5'*S*, 6'*R*, 7'*R*, 9'*S*, 10'*S* - **3** at B3LYP/6-31G(d,p) level of theory in gas.

Table S4. Cartesian coordinates for the low-energy reoptimized MMFF conformers of 1*S*, 3*R*, 6*S*, 7*R*, 9*S*, 10*R*, 11*S*, 1'*R*, 5'*S*, 6'*R*, 7'*R*, 9'*S*,10'*S* – **3** at B3LYP/6-31G (d, p) level of theory in gas.

Conformer 3f		Standard Orientation (Ångstroms)			
Center number	Atom	Туре	Х	Y	Z
1.	6.	0.	-0.808171	2.729111	-0.164050

2	6	0	0 258743	1 749431	0 340100
3	6	0.	1 508003	2 141718	0.013441
4	6	0.	-1 551175	1 948177	-1 265960
5	6	0.	-2 151833	0.632579	-0.735180
6	6	0.	-0.214531	0.512516	1.041858
0. 7	6	0.	1 /0058/	0.136586	0.300873
/. 0	6	0.	-1.433304	-0.130380	0.399873
0. 0	0. 6	0.	2.002/42	0.125012	0.209393
9. 10	0. 6	0.	2.9011//	0.133913	0.099204
10.	0.	0.	1.990/43	-0.918989	0.292348
11.	0.	0.	0.554286	-0.825030	0.823064
12.	6.	0.	-0.601114	-1.359/12	-0.095740
13.	6.	0.	-0.268//4	-1.6630//	-1.5/2990
14.	6.	0.	-2.540006	-0.812081	1.448422
15.	6.	0.	-1.293154	-2.606036	0.364714
16.	6.	0.	-2.113632	-2.319478	1.576748
17.	6.	0.	-1.078981	-3.635476	-0.457430
18.	6.	0.	-0.187780	-3.223166	-1.610480
19.	6.	0.	0.950972	-0.911162	-2.137330
20.	6.	0.	2.171595	-1.001491	-1.231850
21.	8.	0.	3.295979	-1.123507	-1.690940
22.	6.	0.	2.788398	0.261467	2.431680
23.	6.	0.	1.278109	-1.278617	-3.586770
24.	8.	0.	-2.560178	2.713656	-1.880770
25.	6.	0.	1.474982	3.472612	-0.681490
26.	6.	0.	0.017305	3.872867	-0.763540
27.	6.	0.	0.949167	4.633106	0.142640
28.	6.	0.	-1.817178	3.228242	0.888520
29.	8.	0.	-3.131873	0.197088	-1.327010
30.	6.	0.	-2.537877	-0.153975	2.844226
31.	6.	0.	-3.988590	-0.660553	0.939479
32.	8.	0.	-4.474788	-1.772929	0.360435
33.	8.	0.	-4.642023	0.348728	1.103841
34.	6.	0.	-5.788792	-1.638033	-0.206410
35.	1.	0.	-1.143814	-1.384781	-2.172860
36.	6.	0.	4.437758	-0.335095	0.708467
37.	8.	0.	4.605094	-1.619622	1.098565
38.	8.	0.	5.354063	0.371753	0.352166
39.	6.	0.	5.936875	-2.135649	0.941791
40.	1.	0.	-0.352823	0.747408	2.101362
41.	1.	0.	2.370525	-1.895737	0.624678
42.	1.	0.	0.533590	-1.375515	1.769134
43.	1.	0.	-0.795999	1.652170	-2.018300
44.	1.	0.	3.496456	2.226489	0.753229

45.	1.	0.	3.340718	1.442241	-0.775050
46.	1.	0.	-1.503124	-2.428903	2.483149
47.	1.	0.	-2.973719	-2.980477	1.687352
48.	1.	0.	-1.477811	-4.638747	-0.343190
49.	1.	0.	0.844914	-3.577981	-1.467670
50.	1.	0.	-0.519832	-3.629049	-2.572410
51.	1.	0.	0.699236	0.160638	-2.103030
52.	1.	0.	1.833108	0.728646	2.678426
53.	1.	0.	2.840150	-0.715796	2.919248
54.	1.	0.	3.578869	0.891064	2.852427
55.	1.	0.	1.571970	-2.328730	-3.672730
56.	1.	0.	2.108938	-0.677534	-3.960630
57.	1.	0.	0.406569	-1.112412	-4.227720
58.	1.	0.	-3.253465	2.076689	-2.126500
59.	1.	0.	2.190494	3.670918	-1.475310
60.	1.	0.	-0.387475	4.383885	-1.630910
61.	1.	0.	0.881946	4.499688	1.218664
62.	1.	0.	1.224047	5.636255	-0.170750
63.	1.	0.	-1.306972	3.694096	1.735595
64.	1.	0.	-2.478493	3.967126	0.430393
65.	1.	0.	-2.455551	2.425323	1.269452
66.	1.	0.	-3.280939	-0.650088	3.476999
67.	1.	0.	-1.569897	-0.264469	3.338426
68.	1.	0.	-2.803407	0.902555	2.799440
69.	1.	0.	-5.775970	-0.878968	-0.991180
70.	1.	0.	-6.512707	-1.351900	0.559999
71.	1.	0.	-6.031595	-2.616536	-0.620250
72.	1.	0.	5.903383	-3.157633	1.319258
73.	1.	0.	6.652881	-1.537823	1.510396
74.	1.	0.	6.221496	-2.125021	-0.112900

Conformer 3g		Standard Orientation (Ångstroms)			
Center number	Atom	Туре	X	Y	Z
1.	6.	0.	-1.100344	2.519802	-0.19792
2.	6.	0.	0.055670	1.655581	0.321573
3.	6.	0.	1.261424	2.190722	0.039205
4.	6.	0.	-1.738388	1.677221	-1.32074
5.	6.	0.	-2.198176	0.294211	-0.82359
6.	6.	0.	-0.294991	0.363239	0.995262
7.	6.	0.	-1.479562	-0.412095	0.306672
8.	6.	0.	2.669800	1.716169	0.279155

9.	6.	0.	2.917446	0.356695	0.971849
10.	6.	0.	2.089929	-0.803025	0.319921
11.	6.	0.	0.620897	-0.880052	0.777805
12.	6.	0.	-0.430162	-1.499195	-0.21303
13.	6.	0.	-0.006407	-1.675529	-1.69096
14.	6.	0.	-2.442772	-1.243157	1.308069
15.	6.	0.	-1.008596	-2.835557	0.137859
16.	6.	0.	-1.932189	-2.727052	1.304715
17.	6.	0.	-0.658557	-3.783595	-0.73432
18.	6.	0.	0.232003	-3.214860	-1.8174
19.	6.	0.	1.161740	-0.784208	-2.15397
20.	6.	0.	2.342160	-0.841329	-1.19625
21.	8.	0.	3.492316	-0.898890	-1.60052
22.	6.	0.	2.648388	0.448052	2.494735
23.	6.	0.	1.582052	-1.032825	-3.60465
24.	8.	0.	-2.818936	2.336821	-1.93963
25.	6.	0.	1.100360	3.514241	-0.6524
26.	6.	0.	-0.390196	3.751589	-0.77257
27.	6.	0.	0.429340	4.607033	0.157797
28.	6.	0.	-2.165854	2.897998	0.848711
29.	8.	0.	-3.108944	-0.243638	-1.44202
30.	6.	0.	-2.447196	-0.705700	2.759705
31.	6.	0.	-3.918217	-1.222425	0.855293
32.	8.	0.	-4.443747	0.017829	0.988349
33.	8.	0.	-4.572844	-2.185914	0.529088
34.	6.	0.	-5.801604	0.160043	0.538944
35.	1.	0.	-0.877601	-1.446750	-2.31663
36.	6.	0.	4.425488	0.057947	0.837833
37.	8.	0.	4.729213	-1.189562	1.262297
38.	8.	0.	5.263191	0.860612	0.490821
39.	6.	0.	6.116106	-1.549446	1.153749
40.	1.	0.	-0.488191	0.564785	2.05285
41.	1.	0.	2.561323	-1.730886	0.665117
42.	1.	0.	0.611457	-1.460461	1.706219
43.	1.	0.	-0.944760	1.476906	-2.06503
44.	1.	0.	3.202165	2.492140	0.844288
45.	1.	0.	3.186350	1.703093	-0.68859
46.	1.	0.	-1.402099	-2.925316	2.24522
47.	1.	0.	-2.771443	-3.421917	1.245328
48.	1.	0.	-0.966850	-4.824028	-0.70318
49.	1.	0.	1.288909	-3.476601	-1.65204
50.	1.	0.	-0.022012	-3.587743	-2.81572
51.	1.	0.	0.816824	0.257757	-2.06826

52.	1.	0.	1.635747	0.798252	2.702463
53.	1.	0.	2.794728	-0.519939	2.981104
54.	1.	0.	3.341283	1.162936	2.950098
55.	1.	0.	1.980534	-2.042769	-3.73569
56.	1.	0.	2.365458	-0.334714	-3.90598
57.	1.	0.	0.725901	-0.910945	-4.27568
58.	1.	0.	-3.400753	1.624880	-2.25821
59.	1.	0.	1.809519	3.792783	-1.42775
60.	1.	0.	-0.824717	4.218947	-1.65022
61.	1.	0.	0.350371	4.466252	1.232191
62.	1.	0.	0.599887	5.635078	-0.14914
63.	1.	0.	-1.718524	3.448622	1.68013
64.	1.	0.	-2.923182	3.531133	0.379991
65.	1.	0.	-2.682953	2.023124	1.253131
66.	1.	0.	-3.161682	-1.284146	3.355129
67.	1.	0.	-1.468367	-0.827258	3.230631
68.	1.	0.	-2.741332	0.343304	2.816203
69.	1.	0.	-6.067627	1.199135	0.731314
70.	1.	0.	-6.461171	-0.516213	1.087044
71.	1.	0.	-5.865576	-0.062619	-0.52851
72.	1.	0.	6.190367	-2.560527	1.553975
73.	1.	0.	6.740267	-0.860634	1.727604
74.	1.	0.	6.428217	-1.526685	0.107136

Conformer 3h		Standard Orientation (Ångstroms)			
Center number	Atom number	Туре	Х	Y	Z
1.	6.	0.	-0.839936	2.543284	-0.28671
2.	6.	0.	0.210837	1.591287	0.299869
3.	6.	0.	1.472026	1.999950	0.043888
4.	6.	0.	-1.532523	1.725396	-1.39386
5.	6.	0.	-2.142701	0.415076	-0.85665
6.	6.	0.	-0.286093	0.365642	1.006557
7.	6.	0.	-1.535206	-0.310745	0.326581
8.	6.	0.	2.825724	1.413459	0.359347
9.	6.	0.	2.910402	0.024664	1.035564
10.	6.	0.	1.963248	-1.017137	0.355621
11.	6.	0.	0.507786	-0.965493	0.843368
12.	6.	0.	-0.602508	-1.535054	-0.10748
13.	6.	0.	-0.202259	-1.873382	-1.56067
14.	6.	0.	-2.605527	-0.972840	1.346254
15.	6.	0.	-1.303762	-2.779081	0.345908

1.6	(0	0.01.5.1.5	0 40 50 41	1 4001 51
16.	6.	0.	-2.215517	-2.485941	1.489171
17.	6.	0.	-1.022135	-3.827655	-0.43063
18.	6.	0.	-0.071774	-3.429940	-1.53963
19.	6.	0.	1.005567	-1.101339	-2.1168
20.	6.	0.	2.192566	-1.030368	-1.16204
21.	8.	0.	3.334148	-0.958569	-1.59006
22.	6.	0.	2.629608	0.132531	2.555887
23.	6.	0.	1.423540	-1.549565	-3.52107
24.	8.	0.	-2.528335	2.464656	-2.0636
25.	6.	0.	1.459442	3.306017	-0.69804
26.	6.	0.	0.003466	3.678057	-0.88047
27.	6.	0.	0.869933	4.487494	0.048642
28.	6.	0.	-1.892913	3.065560	0.710734
29.	8.	0.	-3.085043	-0.053171	-1.48399
30.	6.	0.	-2.628195	-0.315772	2.747192
31.	6.	0.	-4.052035	-0.885517	0.813759
32.	8.	0.	-4.507874	0.387847	0.8626
33.	8.	0.	-4.745177	-1.823490	0.492475
34.	6.	0.	-5.831528	0.584538	0.338266
35.	1.	0.	-1.066553	-1.650294	-2.19825
36.	6.	0.	4.336774	-0.558448	0.957327
37.	8.	0.	5.271461	0.361700	0.653332
38.	8.	0.	4.603797	-1.707852	1.241333
39.	6.	0.	6.619120	-0.135860	0.588444
40.	1.	0.	-0.470520	0.619989	2.05443
41.	1.	0.	2.351553	-1.998894	0.663556
42.	1.	0.	0.470261	-1.501894	1.796589
43.	1.	0.	-0.747554	1.421148	-2.11122
44.	1.	0.	3.374806	2.139147	0.974118
45.	1.	0.	3.388067	1.374711	-0.57957
46.	1.	0.	-1.698690	-2.631250	2.446704
47.	1.	0.	-3.106369	-3.115865	1.494205
48.	1.	0.	-1.412244	-4.833646	-0.3121
49.	1.	0.	0.959712	-3.748277	-1.32138
50.	1.	0.	-0.332521	-3.876341	-2.50548
51.	1.	0.	0.697511	-0.045862	-2.18213
52.	1.	0.	1.660779	0.593916	2.755643
53.	1.	0.	2.661669	-0.852045	3.029976
54.	1.	0.	3.393577	0.758695	3.028171
55.	1.	0.	1.777822	-2.584516	-3.51705
56.	1.	0.	2,237046	-0.927283	-3.89724
57.	1.	0.	0.576756	-1.480566	-4.21109
58	1	0	-3.170476	1.801588	-2.37154
20.		5.	2.1,01,0	1.001000	=,

59.	1.	0.	2.216104	3.486528	-1.45731
60.	1.	0.	-0.356256	4.149969	-1.78893
61.	1.	0.	0.742284	4.394320	1.123421
62.	1.	0.	1.147427	5.482886	-0.28668
63.	1.	0.	-1.418467	3.568768	1.557105
64.	1.	0.	-2.546006	3.779224	0.202921
65.	1.	0.	-2.531529	2.266694	1.098175
66.	1.	0.	-3.417956	-0.777839	3.349098
67.	1.	0.	-1.687033	-0.481993	3.277373
68.	1.	0.	-2.828068	0.755592	2.70557
69.	1.	0.	-6.044884	1.645222	0.468757
70.	1.	0.	-6.555583	-0.025295	0.883039
71.	1.	0.	-5.857764	0.313056	-0.71944
72.	1.	0.	7.239044	0.726920	0.345641
73.	1.	0.	6.700686	-0.899655	-0.18804
74.	1.	0.	6.916985	-0.568731	1.546213

Conformer 3 i		Standard Orientation				
Conto	IIIICI JI	(Ångstroms)				
Center number	Atom	Туре	Х	Y	Z	
1.	6.	0.	-0.808292	2.729011	-0.16402	
2.	6.	0.	0.258660	1.749361	0.340107	
3.	6.	0.	1.507906	2.141697	0.013464	
4.	6.	0.	-1.551302	1.948078	-1.26594	
5.	6.	0.	-2.151922	0.632472	-0.73516	
6.	6.	0.	-0.214567	0.512403	1.041831	
7.	6.	0.	-1.499581	-0.136716	0.399817	
8.	6.	0.	2.862670	1.514036	0.20967	
9.	6.	0.	2.981139	0.135961	0.899371	
10.	6.	0.	1.996796	-0.919001	0.292582	
11.	6.	0.	0.554290	-0.825713	0.82298	
12.	6.	0.	-0.601053	-1.359727	-0.09596	
13.	6.	0.	-0.268604	-1.662834	-1.57324	
14.	6.	0.	-2.539916	-0.812384	1.448327	
15.	6.	0.	-1.293090	-2.606150	0.364238	
16.	6.	0.	-2.113640	-2.319847	1.57628	
17.	6.	0.	-1.078853	-3.635445	-0.45807	
18.	6.	0.	-0.187603	-3.222923	-1.611	
19.	6.	0.	0.951221	-0.910875	-2.13737	
20.	6.	0.	2.171755	-1.001457	-1.23181	
21.	8.	0.	3.296156	-1.123618	-1.69081	
22.	6.	0.	2.788279	0.261502	2.431757	

23.	6.	0.	1.278444	-1.278131	-3.58685
24.	8.	0.	-2.560315	2.713521	-1.88076
25.	6.	0.	1.474843	3.472594	-0.68146
26.	6.	0.	0.017143	3.872797	-0.7635
27.	6.	0.	0.948978	4.633066	0.142675
28.	6.	0.	-1.817291	3.228077	0.888587
29.	8.	0.	-3.131991	0.196981	-1.32693
30.	6.	0.	-2.537566	-0.154608	2.844297
31.	6.	0.	-3.988558	-0.660568	0.93963
32.	8.	0.	-4.475082	-1.772822	0.360622
33.	8.	0.	-4.641754	0.348843	1.104125
34.	6.	0.	-5.789167	-1.637645	-0.20597
35.	1.	0.	-1.143586	-1.384429	-2.17314
36.	6.	0.	4.437743	-0.334985	0.708614
37.	8.	0.	4.605148	-1.619463	1.098841
38.	8.	0.	5.354008	0.371873	0.352233
39.	6.	0.	5.936944	-2.135445	0.942024
40.	1.	0.	-0.352880	0.747256	2.101343
41.	1.	0.	2.370623	-1.895720	0.624737
42.	1.	0.	0.533503	-1.375686	1.768997
43.	1.	0.	-0.796115	1.652084	-2.01827
44.	1.	0.	3.496320	2.226560	0.753341
45.	1.	0.	3.340702	1.442308	-0.77494
46.	1.	0.	-1.503219	-2.429560	2.482707
47.	1.	0.	-2.973784	-2.980810	1.686625
48.	1.	0.	-1.477667	-4.638745	-0.34402
49.	1.	0.	0.845088	-3.577754	-1.46822
50.	1.	0.	-0.519615	-3.628630	-2.57302
51.	1.	0.	0.699541	0.160930	-2.10294
52.	1.	0.	1.832964	0.728655	2.678453
53.	1.	0.	2.840031	-0.715761	2.919325
54.	1.	0.	3.578711	0.891118	2.85255
55.	1.	0.	1.572358	-2.328217	-3.67294
56.	1.	0.	2.109266	-0.676964	-3.96059
57.	1.	0.	0.406932	-1.111869	-4.22782
58.	1.	0.	-3.253665	2.076568	-2.12636
59.	1.	0.	2.190326	3.670937	-1.4753
60.	1.	0.	-0.387648	4.383803	-1.63088
61.	1.	0.	0.881772	4.499618	1.218698
62.	1.	0.	1.223812	5.636237	-0.17068
63.	1.	0.	-1.307085	3.694142	1.735548
64.	1.	0.	-2.478790	3.966771	0.43042
65.	1.	0.	-2.455459	2.425081	1.269691

66.	1.	0.	-3.280566	-0.650849	3.477045
67.	1.	0.	-1.569528	-0.265277	3.338346
68.	1.	0.	-2.803047	0.901945	2.799807
69.	1.	0.	-5.776381	-0.878462	-0.99062
70.	1.	0.	-6.512902	-1.351527	0.560615
71.	1.	0.	-6.032185	-2.616051	-0.61991
72.	1.	0.	5.903294	-3.157700	1.318745
73.	1.	0.	6.652827	-1.538088	1.511283
74.	1.	0.	6.221853	-2.124046	-0.11257

Conformer 3i		Standard Orientation				
		(Ångstroms)				
Center	Atom	Type	x	Y	Z	
number				-		
1.	6.	0.	-0.557746	2.723271	-0.24826	
2.	6.	0.	0.398011	1.665116	0.316663	
3.	6.	0.	1.687919	1.930381	0.017651	
4.	6.	0.	-1.355366	1.978473	-1.33564	
5.	6.	0.	-2.094639	0.748366	-0.77103	
6.	6.	0.	-0.209764	0.505092	1.047102	
7.	6.	0.	-1.543692	-0.039570	0.405156	
8.	6.	0.	2.979219	1.198929	0.287631	
9.	6.	0.	2.935559	-0.185381	0.975854	
10.	6.	0.	1.855708	-1.120795	0.342844	
11.	6.	0.	0.434117	-0.903715	0.880775	
12.	6.	0.	-0.763936	-1.369479	-0.01696	
13.	6.	0.	-0.459298	-1.792971	-1.46855	
14.	6.	0.	-2.663742	-0.561721	1.460287	
15.	6.	0.	-1.561889	-2.520055	0.515767	
16.	6.	0.	-2.356784	-2.084168	1.699466	
17.	6.	0.	-1.420491	-3.617362	-0.23053	
18.	6.	0.	-0.489408	-3.353510	-1.39673	
19.	6.	0.	0.797261	-1.160677	-2.08863	
20.	6.	0.	2.023690	-1.180095	-1.18111	
21.	8.	0.	3.148525	-1.219135	-1.65511	
22.	6.	0.	2.723523	-0.034837	2.503744	
23.	6.	0.	1.114829	-1.680660	-3.49485	
24.	8.	0.	-2.272372	2.816521	-1.99786	
25.	6.	0.	1.796742	3.230074	-0.72729	
26.	6.	0.	0.385840	3.759763	-0.86809	
27.	6.	0.	1.361655	4.468508	0.033784	
28.	6.	0.	-1.531037	3.356952	0.765085	
29.	8.	0.	-3.103181	0.394388	-1.36911	

30.	6.	0.	-2.656677	0.184914	2.809903
31.	6.	0.	-4.081391	-0.350097	0.888915
32.	8.	0.	-4.596617	-1.453398	0.316541
33.	8.	0.	-4.690641	0.693122	1.000493
34.	6.	0.	-5.875033	-1.270216	-0.31376
35.	1.	0.	-1.320525	-1.498875	-2.08119
36.	6.	0.	4.285402	-0.922221	0.853705
37.	8.	0.	5.305333	-0.110192	0.5176
38.	8.	0.	4.433479	-2.094494	1.131605
39.	6.	0.	6.587842	-0.751979	0.412484
40.	1.	0.	-0.340792	0.786300	2.096292
41.	1.	0.	2.143845	-2.136498	0.651955
42.	1.	0.	0.378024	-1.418448	1.844574
43.	1.	0.	-0.621522	1.581075	-2.06199
44.	1.	0.	3.628510	1.863627	0.872925
45.	1.	0.	3.496180	1.091580	-0.67185
46.	1.	0.	-1.755242	-2.174539	2.614097
47.	1.	0.	-3.266351	-2.665625	1.854361
48.	1.	0.	-1.893235	-4.578248	-0.05234
49.	1.	0.	0.512858	-3.770248	-1.21117
50.	1.	0.	-0.838862	-3.801440	-2.33355
51.	1.	0.	0.592537	-0.081490	-2.17229
52.	1.	0.	1.817458	0.529832	2.731328
53.	1.	0.	2.667181	-1.012951	2.988866
54.	1.	0.	3.566892	0.510113	2.940133
55.	1.	0.	1.365205	-2.745554	-3.47677
56.	1.	0.	1.970449	-1.151076	-3.91665
57.	1.	0.	0.252912	-1.543214	-4.15526
58.	1.	0.	-3.020788	2.242017	-2.23622
59.	1.	0.	2.546774	3.327341	-1.50808
60.	1.	0.	0.052309	4.268942	-1.76631
61.	1.	0.	1.254656	4.389310	1.111945
62.	1.	0.	1.736864	5.427665	-0.31183
63.	1.	0.	-0.992878	3.800063	1.606957
64.	1.	0.	-2.108346	4.139982	0.268368
65.	1.	0.	-2.250829	2.634009	1.159971
66.	1.	0.	-3.449587	-0.218622	3.447805
67.	1.	0.	-1.713239	0.043733	3.342073
68.	1.	0.	-2.849604	1.251216	2.691252
69.	1.	0.	-6.148615	-2.247175	-0.71185
70.	1.	0.	-5.788158	-0.536040	-1.11734
71.	1.	0.	-6.617222	-0.926298	0.410285
72.	1.	0.	7.290445	0.038005	0.148067

73.	1.	0.	6.561519	-1.519746	-0.36393
74.	1.	0.	6.866407	-1.215203	1.361832

Figure S7. 13 C NMR and DEPT spectrum of chlorahupetone A (1) in CDCl₃

Figure S8. HSQC spectrum of chlorahupetone A (1) in CDCl₃

Figure S9. HMBC spectrum of chlorahupetone A (1) in CDCl₃

Figure S10. $^{1}H^{-1}H$ COSY spectrum of chlorahupetone A (1) in CDCl₃

Figure S11. NOESY spectrum of chlorahupetone A (1) in CDCl₃

Figure S12. (-)-HRESIMS spectrum of chlorahupetone A (1)

Figure S13. IR spectrum of chlorahupetone A (1)

cm-1

5.39 4.36 3.08 3.07 $\begin{array}{c} 2.62\\ 2.61\\ 2.61\\ 2.61\\ 2.61\\ 2.61\\ 2.61\\ 2.61\\ 2.61\\ 2.61\\ 2.61\\ 2.61\\ 2.61\\ 2.61\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 1.91\\ 1.91\\ 1.91\\ 1.91\\ 1.91\\ 1.91\\ 1.91\\ 1.91\\ 1.91\\ 1.91\\ 1.91\\ 1.91\\ 1.92\\ 1.92\\ 0.77\\ 0.77\\ 0.77\\ 0.77\\ 0.77\\ 0.77\\ 0.77\\ 0.77\\ 0.77\\ 0.75\\$ 76 69 3.02 3.00 8 66 12 O 14 15 12' 0 11' Ĥ 2' 13' 0.88 3.15_∀ 1.35√ **1.30**H 1.13H 4.85 1.20 3.10 3.18 3.09 -1.33₄ 1.234 2.35-[$1.20 \pm$ 1.28-[2.60 2.5 5.5 2.0 1.5 1.0 5.0 4.5 4.0 3.5 0.5 3.0 f1 (ppm)

Figure S14. ¹H NMR spectrum of chlorahupetone B (2) in pyridine- d_5

Figure S15. ¹³C NMR spectrum of chlorahupetone B (2) in pyridine- d_5

Figure S16. HSQC spectrum of chlorahupetone B (2) in pyridine- d_5

Figure S17. HMBC spectrum of chlorahupetone B (2) in pyridine- d_5

Figure S18. ¹H-¹H COSY spectrum of chlorahupetone B (2) in pyridine- d_5

Figure S19. NOESY spectrum of chlorahupetone B (2) in pyridine- d_5

Figure S20. (+)-HRESIMS spectrum of chlorahupetone B (2)

Figure S21. IR spectrum of chlorahupetone B (2)

cm-1

Figure S22. ¹H NMR spectrum of chlorahupetone C (3) in CDCl₃

Figure S23. ¹³C NMR and DEPT spectrum of chlorahupetone C (3) in CDCl₃

Figure S24. HSQC spectrum of chlorahupetone C (3) in CDCl₃

Figure S25. HMBC spectrum of chlorahupetone C (3) in CDCl₃

Figure S26. ¹H-¹H COSY spectrum of chlorahupetone C (3) in CDCl₃

Figure S27. NOESY spectrum of chlorahupetone C (3) in CDCl₃

Figure S28. (+)-HRESIMS spectrum of chlorahupetone C (3)

Figure S29. IR spectrum of chlorahupetone C (3)

cm-1

Figure S30. ¹H NMR spectrum of chlorahupetone D (4) in pyridine- d_5

Figure S31. ¹³C NMR and DEPT spectrum of chlorahupetone D (4) in pyridine- d_5

Figure S32. HSQC spectrum of chlorahupetone D (4) in pyridine- d_5

Figure S34. ¹H-¹H COSY spectrum of chlorahupetone D (4) in pyridine- d_5

Figure S35. NOESY spectrum of chlorahupetone D (4) in pyridine- d_5

Figure S36. (+)-HRESIMS spectrum of chlorahupetone D (4)

105-100-2923.5 2958.3 95-MM 3462.3_____ 3443.7 2854.7-90-1464.2 1455.8 1455.8 1434.3 1429.3 1402.3 Т% 85-1708.5 1737.8 1133.3 769.2 971.5-80-000 1012.3 1006.3 9 75-70-793.5-65 4000 3500 3000 2500 2000 1500 500

Figure S37. IR spectrum of chlorahupetone D (4)

cm-1

Figure S38. ¹H NMR spectrum of chlorahupetone E (**5**) in CDCl₃

Figure S39. 13 C NMR and DEPT spectrum of chlorahupetone E (5) in CDCl₃

Figure S40. HSQC spectrum of chlorahupetone E(5) in $CDCl_3$

Figure S41. HMBC spectrum of chlorahupetone E (5) in CDCl₃

Figure S42. ¹H-¹H COSY spectrum of chlorahupetone E (5) in CDCl₃

Figure S43. NOESY spectrum of chlorahupetone E(5) in $CDCl_3$

Figure S44. (+)-HRESIMS spectrum of chlorahupetone E (5)

Figure S45. IR spectrum of chlorahupetone E (5)

Figure S46. ¹H NMR spectrum of chlorahupetone F (6) in CDCl₃

Figure S47. ¹³C NMR and DEPT spectrum of chlorahupetone F (6) in CDCl₃

Figure S48. HSQC spectrum of chlorahupetone F (6) in CDCl₃

Figure S49. HMBC spectrum of chlorahupetone F (6) in CDCl₃

Figure S50. ¹H-¹H COSY spectrum of chlorahupetone F (6) in CDCl₃

Figure S51. NOESY spectrum of chlorahupetone F (6) in CDCl₃
Figure S52. (+)-HRESIMS spectrum of chlorahupetone F (6)

Figure S53. IR spectrum of chlorahupetone F (6)

cm-1

Figure S54. ¹H NMR spectrum of chlorahupetone G (7) in CDCl₃

Figure S55. ¹³C NMR and DEPT spectrum of chlorahupetone G (7) in CDCl₃

Figure S56. HSQC spectrum of chlorahupetone G (7) in CDCl₃

Figure S57. HMBC spectrum of chlorahupetone G (7) in CDCl₃

Figure S58. ¹H-¹H COSY spectrum of chlorahupetone G (7) in CDCl₃

Figure S59. NOESY spectrum of chlorahupetone G (7) in CDCl₃

Figure S60. (-)-HRESIMS spectrum of chlorahupetone G (7)

104 102 100 1591.2 2988.7~ 2930.7~ 2879.7[~] 98 1652.3 3438.5-1452.3 670.3 %L % 902.2 1380.3-94 1768.2 1134.3 1246.3 -92 10064 1134. 1048.21019.77 944.7 90- 1711.3^{-} 88 4000 3500 3000 2500 2000 1500 500 cm-1

Figure S61. IR spectrum of chlorahupetone G (7)

Figure S62. ¹H NMR spectrum of chlorahupetone H (8) in CDCl₃

Figure S63. ¹³C NMR and DEPT spectrum of chlorahupetone H (8) in CDCl₃

Figure S64. HSQC spectrum of chlorahupetone H (8) in CDCl₃

Figure S65. HMBC spectrum of chlorahupetone H (8) in CDCl₃

Figure S66. ¹H-¹H COSY spectrum of chlorahupetone H (8) in CDCl₃

Figure S67. NOESY spectrum of chlorahupetone H (8) in CDCl₃

Figure S68. (+)-HRESIMS spectrum of chlorahupetone H (8)

Figure S69. IR spectrum of chlorahupetone H (8)

cm-1

Figure S70. ¹H NMR spectrum of chlorahupetone I (9) in CDCl₃

Figure S71. ¹³C NMR and DEPT spectrum of chlorahupetone I (9) in CDCl₃

Figure S72. HSQC spectrum of chlorahupetone I (9) in CDCl₃

Figure S73. HMBC spectrum of chlorahupetone I (9) in CDCl₃

Figure S75. NOESY spectrum of chlorahupetone I (9) in CDCl₃

Figure S76. (+)-HRESIMS spectrum of chlorahupetone I (9)

Figure S77. IR spectrum of chlorahupetone I (9)

