Supporting Information

Unravelling the limits of the transfer of asymmetry in supramolecular polymers

Elisa E. Greciano, ${ }^{a}$ Manuel A. Martínez, ${ }^{a}$ Silvia Alsina, ${ }^{a}$ Andrés Laguna, ${ }^{a}$ and Luis Sáncheza*
${ }^{a}$ Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain).

Contents:

1. Experimental section S-2
2. Synthetic details and characterization S-2
3. Collection of spectra S-8
4. Supplementary Figures and Tables S-22
Concentration-dependent ${ }^{1} H$ NMR spectra S-22
FTIR in solution S-23
VT-UV-Vis experiments for $\mathbf{1}$ and $\mathbf{3}$ S-23
$V T-{ }^{1} H$ NMR spectra S-24
VT-UV-Vis experiments for $\mathbf{4}$ S-25
AFM images in MCH/Tol 8/2 S-26
VT-UV-Vis experiments for 2-4 at different cooling rates S-26

1. Experimental section

General. All solvents were dried according to standard procedures. Reagents were used as purchased. All air-sensitive reactions were carried out under argon atmosphere. Flash chromatography was performed using silica gel (Merck, Kieselgel 60, 230-240 mesh or Scharlau 60, 230-240 mesh). Analytical thin layer chromatography (TLC) was performed using aluminium-coated Merck Kieselgel 60 F254 plates. NMR spectra were recorded on a Bruker Avance $300\left({ }^{1} \mathrm{H}: 300 \mathrm{MHz} ;{ }^{13} \mathrm{C}: 75 \mathrm{MHz}\right)$ and on a Bruker Avance $700\left({ }^{1} \mathrm{H}: 700 \mathrm{MHz} ;{ }^{13} \mathrm{C}: 175\right.$ MHz) spectrometer using partially deuterated solvents as internal standards. Coupling constants (J) are denoted in Hz and chemical shifts (δ) in ppm. Multiplicities are denoted as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quadruplet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. FT-IR spectra in film were recorded on a Bruker Tensor 27 (ATR device) spectrometer. FT- IR spectra in solution were recorded on a JASCO-FT-IR-6800 equipped with a CaF_{2} cell with a path length of 0.1 mm . UV-Vis spectra were registered on a Jasco-V630 spectrophotometer equipped with a Peltier thermoelectric temperature controller. The spectra were recorded in the continuous mode between 220 and 500 nm , with a wavelength increment of 1 nm , a response time of 4 s , and a bandwidth of 1 nm , by using a quartz cuvette (Hellma). Thermal experiments were performed at constant heating rates of $1{ }^{\circ} \mathrm{C} / \mathrm{min}$ from 10 to $90^{\circ} \mathrm{C}$ in methylcyclohexane (MCH). Circular dichroism (CD) measurements were performed on a JASCO-1500 dichrograph equipped with a Peltier thermoelectric temperature controller. The spectra were recorded in the continuous mode between 220 and 500 nm , with a wavelength increment of 0.2 nm , a response time of 1 s , and a bandwidth of 2 nm using a quartz cuvette (Hellma). Matrix Assisted Laser Desorption Ionization (coupled to a Time-Of-Flight analyzer) experiments (MALDI-TOF) were recorded on a Bruker REFLEX spectrometer. AFM measurements were performed under ambient conditions using a MultiMode 8HR SPM from Bruker operating in tapping mode in air. Silicon cantilevers with a resonance frequency of 300 kHz were used. Solutions of compounds 2-4 were heated up to $90{ }^{\circ} \mathrm{C}$ and cooled down to $20^{\circ} \mathrm{C}$ prior to be spin-coated onto mica.

2. Synthetic details and characterization

Scheme S1. Synthesis of chiral N-annulated perylenetetracarboxamides 2-4.

Compounds $5{ }^{[51]}$ and $6{ }^{[52]}$ were prepared according to previously reported synthetic procedures and showed identical spectroscopic properties to those reported therein.
[S1] F. García, J. Buendía, S. Ghosh, A. Ajayaghosh, L. Sánchez. Luminescent and conductive supramolecular polymers obtained from an N-annulated perylenedicarboxamide. Chem. Comm. 2013, 49, 9278-9280.
[S2] S. Ghosh, X-Q. Li, V. Stepanenko, F. Würthner. Control of H- and J-Type p Stacking by Peripheral Alkyl Chains and Self-Sorting Phenomena in Perylene Bisimide Homo- and Heteroaggregates. Chem. Eur. J. 2008, 14, 11343-11357.

Synthesis of benzamides 7-9. General procedure.

Compound 6 ($1.00 \mathrm{~g}, 1.69 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ under Argon atmosphere. Then, HBTU ($0.57 \mathrm{~g}, 2.03 \mathrm{mmol}$) and the corresponding diamine (propane-1,3diamine for 7 , putrescine for 8 or cadaverine for 9$)(2.40 \mathrm{~mL}, 23.69 \mathrm{mmol})$ were added. The reaction mixture was stirred at room temperature overnight. The organic layer was washed with brine, dried over MgSO_{4} and the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (silica gel, chloroform/methanol 10/0.2).

3,4,5-tris((S)-3,7-dimethyloctyloxy)- N -(3-aminopropyl)benzamide (7).

$\mathrm{C}_{40} \mathrm{H}_{74} \mathrm{~N}_{2} \mathrm{O}_{4}$
Exact Mass: 646.5649
Mol. Wt.: 647.0266
Compound 7 was obtained as a pale yellow oil ($0.42 \mathrm{~g}, 29 \%) .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}$) $\delta 7.31\left(1 \mathrm{H}, \mathrm{H}_{\mathrm{e}}, \mathrm{br}\right), 7.05\left(2 \mathrm{H}, \mathrm{H}_{1}, \mathrm{~s}\right), 4.00(6 \mathrm{H}, \mathrm{Hf}, \mathrm{m}), 3.51\left(2 \mathrm{H}, \mathrm{Hd}_{\mathrm{d}}, \mathrm{br}\right), 3.07(2 \mathrm{H}, \mathrm{Hb}, \mathrm{br}), 2.02(2 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{c}}, \mathrm{br}\right), 1.82\left(3 \mathrm{H}, \mathrm{Hh}\right.$, sept, J=6.4 Hz), $1.68(3 \mathrm{H}, \mathrm{Hm}, \mathrm{br}), 1.51(6 \mathrm{H}, \mathrm{Hg}, \mathrm{m}), 1.34-1.08\left(20 \mathrm{H}, \mathrm{H}_{\mathrm{ajj}+\mathrm{k}+\mathrm{l},}\right.$, $\mathrm{m}), 0.89\left(9 \mathrm{H}, \mathrm{H}_{\mathrm{i}}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}\right), 0.85(18 \mathrm{H}, \mathrm{Hn}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right) \delta$ 169.1, 153.3, 141.4, 128.1, 105.8, 77.4, 71.9, 67.7, 39.5, 39.4, 37.7, 37.6, 37.5, 36.5, 29.9, 29.8, 28.1, 24.9, 24.9, 22.9, 22.8, 19.7, 19.6; FTIR (neat) 737, 763, 846, 1112, 1230, 1334, 1382, 1429, 1465, 1495, 1542, 1579, 1634, 2870, 2925, $2953 \mathrm{~cm}^{-1}$. HRMS (MALDI-TOF) calcd. for $\mathrm{C}_{40} \mathrm{H}_{75} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$, 647.565; found, 647.447.

3,4,5-tris((S)-3,7-dimethyloctyloxy)- N -(4-aminobutyl)benzamide (8).

$\mathrm{C}_{41} \mathrm{H}_{76} \mathrm{~N}_{2} \mathrm{O}_{4}$
Exact Mass: 660.5805
Mol. Wt.: 661.0531
Compound 8 was obtained as a pale yellow oil ($0.77 \mathrm{~g}, 68 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right.$) $\delta 7.36\left(1 \mathrm{H}, \mathrm{Hf}_{\mathrm{f}}, \mathrm{br}\right), 7.04\left(2 \mathrm{H}, \mathrm{H}_{1}, \mathrm{~s}\right), 4.53\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{a}}, \mathrm{br}\right), 3.94\left(6 \mathrm{H}, \mathrm{H}_{\mathrm{g}}, \mathrm{m}\right), 3.33(2 \mathrm{H}, \mathrm{He}, \mathrm{br}), 2.73(2 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{b}}, \mathrm{br}\right), 1.77\left(3 \mathrm{H}, \mathrm{H}_{\mathrm{i}}, \mathrm{m}\right), 1.67-1.41\left(13 \mathrm{H}, \mathrm{H}_{\mathrm{c}+\mathrm{d}+\mathrm{h}+\mathrm{n}}, \mathrm{br}\right), 1.31-1.04\left(18 \mathrm{H}, \mathrm{H}_{\mathrm{k}+1+\mathrm{m}}, \mathrm{m}\right), 0.86\left(9 \mathrm{H}, \mathrm{H}_{\mathrm{j}}, \mathrm{d}\right.$, $\mathrm{J}=4.7 \mathrm{~Hz}), 0.81\left(18 \mathrm{H}, \mathrm{H}_{\mathrm{o}}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, 2{ }^{\circ}{ }^{\circ} \mathrm{C}\right) \delta 167.5,153.0,140.8$, 129.3, 105.6, 77.4, 71.7, 67.4, 40.6, 39.7, 39.3, 39.2, 37.5, 37.4, 37.3, 36.4, 29.7, 29.6, 28.4, 28.2, 28.0, 27.7, 26.8, 24.7, 24.7, 22.7, 22.6, 19.7, 19.5, 19.4; FTIR (neat) 671, 761, 848, 996, 1113, 1231, 1333, 1382, 1428, 1465, 1496, 1545, 1579, 1634, 2869, 2926, 2953, $3320 \mathrm{~cm}^{-1}$. HRMS (MALDI-TOF) calcd. for $\mathrm{C}_{41} \mathrm{H}_{77} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}, 661.588$; found, 661.312.

3,4,5-tris((S)-3,7-dimethyloctyloxy)- N -(5-aminopentyl)benzamide (9).

$\mathrm{C}_{42} \mathrm{H}_{78} \mathrm{~N}_{2} \mathrm{O}_{4}$
Exact Mass: 674.5962
Mol. Wt.: 675.0797
Compound 9 was obtained as a pale yellow oil ($0.72 \mathrm{~g}, 65 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$ $\delta 6.98\left(2 \mathrm{H}, \mathrm{H}_{1}, \mathrm{~s}\right), 6.41\left(1 \mathrm{H}, \mathrm{Hg}_{\mathrm{g}}, \mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}\right), 4.01(6 \mathrm{H}, \mathrm{Hh}, \mathrm{m}), 3.55\left(2 \mathrm{H}, \mathrm{Ha}_{\mathrm{a}}, \mathrm{br}\right), 3.40(2 \mathrm{H}, \mathrm{Hf}, \mathrm{q}$, $\mathrm{J}=6.7 \mathrm{~Hz}), 2.78\left(2 \mathrm{H}, \mathrm{Hb}_{\mathrm{b}}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}\right), 1.83\left(3 \mathrm{H}, \mathrm{H}_{\mathrm{j}}, \mathrm{m}\right), 1.68\left(3 \mathrm{H}, \mathrm{H}_{\mathrm{o}}, \mathrm{br}\right), 1.63-1.41\left(12 \mathrm{H}, \mathrm{H}_{\mathrm{c}+\mathrm{d}+\mathrm{e} \mathrm{i}}, \mathrm{m}\right)$, 1.35-1.09 (18H, Hlm+n, br), $0.91\left(9 \mathrm{H}, \mathrm{H}_{\mathrm{k},} \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}\right), 0.85\left(18 \mathrm{H}, \mathrm{H}_{\mathrm{p}}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right) \delta 167.7,153.2,141.1,129.7,105.7,77.4,71.8,67.7,41.3,40.1,39.5,39.4$, 37.6, 37.5, 37.4, 36.5, 31.2, 29.9, 29.8, 29.4, 28.1, 24.9, 24.8, 24.1, 22.8, 22.7, 19.7; FTIR (neat) 762, 849, 996, 1114, 1230, 1334, 1382, 1428, 1466, 1496, 1545, 1579, 1634, 2869, 2926, 2953, $3303 \mathrm{~cm}^{-1}$. HRMS (MALDI-TOF) calcd. for $\mathrm{C}_{42} \mathrm{H}_{79} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}, 675.604$; found, 675.504.

Synthesis of phenylboronic acids 10-12. General procedure.

4-(Dihydroxyboryl)benzoic acid ($0.15 \mathrm{~g}, 0.90 \mathrm{mmol}$) was dissolved in dry DMSO (1 mL) and in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ under Argon atmosphere. The solution was cooled to $0^{\circ} \mathrm{C}$ and a mixture of 4-dimethylaminopyridine $(0.12 \mathrm{~g}, \quad 0.99 \mathrm{mmol})$ and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride ($0.19 \mathrm{~g}, 0.99 \mathrm{mmol}$) was slowly added. The mixture was stirred for 30 minutes. After that, the corresponding amine (compounds $7-9$) ($0.67 \mathrm{~g}, 0.99 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and added portionwise. The reaction mixture was stirred at room temperature overnight. The organic layer was washed with water, HCl 1 M , dried over MgSO_{4} and the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (silica gel, chloroform/methanol 10/0.5).

4-(3-(3,4,5-tris((S)-3-methyloctyloxy)benzamido)propylcarbamoyl)phenylboronic acid (10).

$\mathrm{C}_{47} \mathrm{H}_{79} \mathrm{BN}_{2} \mathrm{O}_{7}$
Exact Mass: 794.598
Mol. Wt.: 794.9504
Compound 10 was obtained as a pale, yellow, viscous oil ($161 \mathrm{mg}, 44 \%$). ${ }^{1} \mathrm{H}$ NMR (MeOD-d4, $\left.300 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right) \delta 7.76\left(4 \mathrm{H}, \mathrm{H}_{1+2}, \mathrm{br}\right), 7.18\left(2 \mathrm{H}, \mathrm{H}_{3}, \mathrm{~s}\right), 4.04\left(6 \mathrm{H}, \mathrm{H}_{\mathrm{g}}, \mathrm{m}\right), 3.47\left(4 \mathrm{H}, \mathrm{H}_{\mathrm{c}+\mathrm{e},} \mathrm{br}\right)$, 1.92-1.69 ($8 \mathrm{H}, \mathrm{H}_{\mathrm{d}+i+n,}$ br), $1.53(6 \mathrm{H}, \mathrm{Hh}, \mathrm{m}), 1.40-1.12\left(18 \mathrm{H}, \mathrm{H}_{\mathrm{k}+1+\mathrm{m}}, \mathrm{br}\right), 0.94\left(9 \mathrm{H}, \mathrm{Hj}_{\mathrm{j}}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}\right)$, 0.87 (18H, Ho, d, J=6.7 Hz); ${ }^{13} \mathrm{C}$ NMR (MeOD-d $\left.4,75 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right) \delta 168.3,152.8,140.4,133.3,129.1$, $125.9,105.4,71.2,66.9,48.5,48.2,47.9,47.6,47.3,47.1,46.8,39.2,39.1,37.3,37.1,37.0,36.9,36.2$, 29.6, 29.4, 29.0, 27.8, 24.6, 24.5, 21.8, 21.7, 21.6, 18.9, 18.6; FTIR (neat) 672, 714, 763, 993, 1018, 1111, 1229, 1331, 1376, 1430, 1463, 1497, 1544, 1579, 1637, 1712, 2094, 2868, 2925, 2953, $3332 \mathrm{~cm}^{-1}$. HRMS (MALDI-TOF) calcd. for $\mathrm{C}_{47} \mathrm{H}_{80} \mathrm{BN}_{2} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}, 795.598$; found, 795.433.

4-(4-(3,4,5-tris((S)-3-methyloctyloxy)benzamido)butylcarbamoyl)phenylboronic acid (11).

$\mathrm{C}_{48} \mathrm{H}_{81} \mathrm{BN}_{2} \mathrm{O}_{7}$
Exact Mass: 808.6137
Mol. Wt.: 808.9769
Compound 11 was obtained as a pale, yellow, viscous oil ($0.38 \mathrm{~g}, 71 \%$). ${ }^{1} \mathrm{H}$ NMR (MeOD-d4, $\left.300 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right) \delta 7.76\left(4 \mathrm{H}, \mathrm{H}_{1+2}, \mathrm{br}\right), 7.15\left(2 \mathrm{H}, \mathrm{H}_{3}, \mathrm{~s}\right), 4.02(6 \mathrm{H}, \mathrm{Hh}, \mathrm{br}), 3.41\left(4 \mathrm{H}, \mathrm{H}_{\mathrm{c}+\mathrm{f}}, \mathrm{br}\right)$, 1.88-1.65 (10H, Hd+e+j+o, br), $1.52\left(6 \mathrm{H}, \mathrm{H}_{\mathrm{i}}, \mathrm{m}\right), 1.39-1.11\left(18 \mathrm{H}, \mathrm{H}_{1+\mathrm{m}+\mathrm{n}}, \mathrm{br}\right), 0.93\left(9 \mathrm{H}, \mathrm{H}_{\mathrm{k}}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}\right)$, 0.87 (18H, Hp, d, J=6.6 Hz); ${ }^{13} \mathrm{C}$ NMR (MeOD-d $4,75 \mathrm{MHz}, 2{ }^{\circ} \mathrm{C}$) δ 169.5, 154.1, 141.7, 135.0, 130.6, $127.2,106.7,79.5,72.5,68.2,40.8,40.6,40.5,40.4,38.6,38.5,38.5,37.6,30.9,30.8,29.2,28.1,27.9$, 26.0, 25.9, 23.2, 23.1, 23.1, 20.3, 20.0; FTIR (neat) 653, 714, 762, 857, 997, 1016, 1046, 1114, 1196, 1232, 1332, 1366, 1379, 1402, 1425, 1466, 1497, 1543, 1579, 1634, 2869, 2926, 2953, $3314 \mathrm{~cm}^{-1}$. HRMS (MALDI-TOF) calcd. for $\mathrm{C}_{48} \mathrm{H}_{81} \mathrm{BN}_{2} \mathrm{O}_{7}$ [M], 808.614; found, 808.449.

4-(5-(3,4,5-tris((S)-3-methyloctyloxy)benzamido)pentylcarbamoyl)phenylboronic acid (12).

Compound 11 was obtained as a pale, yellow, viscous oil ($0.61 \mathrm{~g}, 82 \%$). ${ }^{1} \mathrm{H}$ NMR (MeOD- $\mathrm{d}_{4}, 300$ $\left.\mathrm{MHz}, 2{ }^{\circ} \mathrm{C}\right) \delta 7.69\left(4 \mathrm{H}, \mathrm{H}_{1+2}, \mathrm{br}\right), 7.15\left(2 \mathrm{H}, \mathrm{H}_{3}, \mathrm{~s}\right), 4.02(6 \mathrm{H}, \mathrm{Hi}, \mathrm{br}), 3.38\left(4 \mathrm{H}, \mathrm{H}_{\mathrm{c}+\mathrm{g}, \mathrm{t}}, \mathrm{J}=6.9 \mathrm{~Hz}\right)$,
 $\mathrm{J}=6.5 \mathrm{~Hz}), 0.87\left(18 \mathrm{H}, \mathrm{H}_{\mathrm{q}}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C}$ NMR (MeOD-d4, $75 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}$) $\delta 169.5,154.1,141.7$, 136.6, 134.6, 130.6, 127.3, 106.8, 72.5, 68.2, 40.9, 40.8, 40.6, 40.5, 38.6, 38.5, 37.6, 30.9, 30.8, 30.1, 26.0, 25.9, 25.4, 23.2, 23.1, 23.1, 20.3, 20.0; FTIR (neat) 649, 715, 760, 858, 1014, 1046, 1111, 1231, 1325, 1374, 1435, 1501, 1550, 1578, 1628, 2473, 2869, 2926, 2953, $3323 \mathrm{~cm}^{-1}$. HRMS (MALDI-TOF) calcd. for $\mathrm{C}_{49} \mathrm{H}_{83} \mathrm{BN}_{2} \mathrm{O}_{7}$ [M], 822.629; found, 822.578.

Synthesis of N-annulated perylene tetracarboxamides 2-4. General procedure.

Compound 5 ($51 \mathrm{mg}, 0.09 \mathrm{mmol}$), the corresponding boronic acid (compound $\mathbf{1 0 - 1 2)}$ (160 mg , $0.21 \mathrm{mmol})$, tetrakis(triphenylphosphine) palladium(0) ($10 \mathrm{mg}, 0.01 \mathrm{mmol}$) were dissolved in dry THF (20 mL). $\mathrm{K}_{2} \mathrm{CO}_{3}(63 \mathrm{mg}, 0.46 \mathrm{mmol})$ was dissolved in water $(1.1 \mathrm{~mL})$ and added to the solution under Argon atmosphere. The reaction mixture was heated at reflux overnight. After evaporation of the solvent under reduced pressure, the residue was washed with water, extracted with chloroform, dried over MgSO_{4} and the solvent was evaporated under reduced pressure. After that, the residue was purified by column chromatography.
$N, N^{\prime}-\left(\left(\left(4,4{ }^{\prime}-(1-\mathrm{decyl}-1 H-p h e n a n t h r o[1,10,9,8-c d e f g]\right.\right.\right.$ carbazole-3,10-diyl)bis(benzoyl))bis-(azanediyl))-bis(propane-3,1-diyl))bis(3,4,5-tris(((S)-3,7-dimethyloctyl)oxy)benzamide) (2).

Column chromatography (silica gel, chloroform/methanol 10/0.05) affords compound 2 as a yellow solid ($62 \mathrm{mg}, 36 \%) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 700 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right) \delta 8.69(2 \mathrm{H}, \mathrm{H} 1, \mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}), 8.11$ ($6 \mathrm{H}, \mathrm{H}_{6}+3, \mathrm{~m}$), $7.82\left(4 \mathrm{H}, \mathrm{H}_{5}, \mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}\right), 7.78\left(2 \mathrm{H}, \mathrm{H}_{2}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}\right), 7.75\left(2 \mathrm{H}, \mathrm{H}_{4}, \mathrm{~s}\right), 7.48\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right.$, br), $7.18\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{e}}, \mathrm{br}\right), 7.16(4 \mathrm{H}, \mathrm{H} 7, \mathrm{~s}), 4.64\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{o}}, \mathrm{br}\right), 4.11\left(8 \mathrm{H}, \mathrm{H}_{\mathrm{f}}, \mathrm{m}\right), 4.04\left(4 \mathrm{H}, \mathrm{Hf}^{\prime}, \mathrm{m}\right), 3.65$ ($8 \mathrm{H}, \mathrm{H}_{\mathrm{b}+\mathrm{d}}, \mathrm{br}$), $2.07\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{p}}\right.$, quin, J=6.8 Hz), 1.92-1.81 (10H, Hh+c, br), $1.72(6 \mathrm{H}, \mathrm{Hm}, \mathrm{br}), 1.62(4 \mathrm{H}$, $\left.\mathrm{Hg}^{\prime}, \mathrm{m}\right), 1.51\left(8 \mathrm{H}, \mathrm{Hg}_{\mathrm{g}}, \mathrm{m}\right), 1.36-1.12\left(50 \mathrm{H}, \mathrm{H}_{\mathrm{j}+\mathrm{k}+\mathrm{l}+\mathrm{q}+\mathrm{r}+\mathrm{t}+\mathrm{tu+v}+\mathrm{w},} \mathrm{m}\right), 0.95\left(12 \mathrm{H}, \mathrm{Hi}_{\mathrm{i}}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}\right), 0.92(6 \mathrm{H}$, $\left.\mathrm{H}^{\prime}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}\right), 0.86\left(12 \mathrm{H}, \mathrm{Hn}^{\prime}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}\right), 0.84\left(24 \mathrm{H}, \mathrm{H}_{\mathrm{n}}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}\right), 0.81\left(3 \mathrm{H}, \mathrm{H}_{\mathrm{x}}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 175 \mathrm{MHz}, 2{ }^{\circ}{ }^{\circ} \mathrm{C}\right) \delta 168.4,167.9,153.3,145.5,141.2,136.7,133.0,132.0,130.8$, $130.7,129.3,127.6,127.4,125.0,125.0,124.1,121.3,117.3,114.3,105.7,77.4,71.9,67.7,45.9,39.5$, $39.4,37.7,37.5,37.5,36.5,36.4,36.3,32.1,31.9,31.4,30.1,30.0,29.8,29.8,29.6,29.5,29.4,29.4,28.1$, 27.3, 24.9, 24.9, 22.8, 22.8, 22.7, 19.7, 19.7, 14.3, 14.2; FTIR (neat) $609,668,719,741,759,803,848$, $954,1019,1117,1237,1261,1339,1366,1381,1426,1467,1500,1538,1581,1609,1633,1735,2853$, 2869, 2924, 2954, 3047, $3291 \mathrm{~cm}^{-1}$. HRMS (MALDI-TOF, exact mass) calcd. for $\mathrm{C}_{124} \mathrm{H}_{183} \mathrm{~N}_{5} \mathrm{O}_{10}$ [M], 1902.3965; found, 1902.4022.
$N, N^{\prime}-\left(\left(\left(4,4{ }^{\prime}-(1-d e c y l-1 H-p h e n a n t h r o[1,10,9,8-c d e f g] c a r b a z o l e-3,10-d i y l) b i s(b e n z o y l)\right) b i s-~\right.\right.$ (azanediyl))-bis(buthane-4,1-diyl))bis(3,4,5-tris(((S)-3,7-dimethyloctyl)oxy)benzamide) (3).

Column chromatography (silica gel, chloroform/methanol 10/0.1) affords compound 3 as a yellow solid ($98 \mathrm{mg}, 32 \%$). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right) \delta 8.60\left(2 \mathrm{H}, \mathrm{H}_{1}, \mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}\right), 8.06$ $\left(2 \mathrm{H}, \mathrm{H}_{3}, \mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}\right), 8.00\left(4 \mathrm{H}, \mathrm{H}_{6}, \mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}\right), 7.72\left(6 \mathrm{H}, \mathrm{H}_{2}+5, \mathrm{~m}\right), 7.63\left(2 \mathrm{H}, \mathrm{H}_{4}, \mathrm{~s}\right), 7.11(4 \mathrm{H}, \mathrm{H} 7$, s), $6.85\left(4 \mathrm{H}, \mathrm{H}_{\mathrm{a}+\mathrm{f}, ~} \mathrm{~m}\right), 4.45\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{p}}, \mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}\right), 4.04\left(12 \mathrm{H}, \mathrm{H}_{\mathrm{g}}, \mathrm{m}\right), 3.61\left(8 \mathrm{H}, \mathrm{H}_{\mathrm{b}+\mathrm{e}}, \mathrm{m}\right), 1.97\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{q}}\right.$, quin, J=6.7 Hz), 1.89-1.77 (14H, Hc+dti, br), 1.69 (6H, Hn, br), 1.52 ($12 \mathrm{H}, \mathrm{Hh}, \mathrm{m}$), 1.33-1.09 (50 H , $H_{k+l+m+r+s+t+u+v+w+x}$, br), $0.90\left(18 \mathrm{H}, \mathrm{H}_{\mathrm{j}}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}\right), 0.87\left(39 \mathrm{H}, \mathrm{H}_{\mathrm{o}+\mathrm{y}}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}$, $75 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}$) $\delta 167.9,167.8,153.2,145.3,141.1,136.5,133.2,131.9,130.6,130.6,129.6,127.4$, $127.4,124.8,124.0,121.2,117.1,114.1,105.8,77.4,71.8,67.7,45.6,40.0,39.9,39.5,39.4,37.7,37.5$, $37.5,36.5,31.9,31.2,29.9,29.8,29.6,29.3,29.3,28.1,28.1,27.5,27.2,27.0,24.9,22.8,22.7,22.7,19.7$, 14.2; FTIR (neat) $668,734,759,803,850,1114,1195,1234,1314,1334,1366,1382,1427,1467,1500$, 1541, 1580, 1609, 1633, 2870, 2925, 2954, $3290 \mathrm{~cm}^{-1}$. HRMS (MALDI-TOF, exact mass) calcd. for $\mathrm{C}_{126} \mathrm{H}_{187} \mathrm{~N}_{5} \mathrm{O}_{10}$ [M], 1930.4278; found, 1930.4347.
$N, N^{\prime}-\left(\left(\left(4,4{ }^{\prime}-(1\right.\right.\right.$-decyl-1H-phenanthro[1,10,9,8-cdefg]carbazole-3,10-diyl)bis(benzoyl))bis-(azanediyl))-bis(penthane-5,1-diyl))bis(3,4,5-tris(((S)-3,7-dimethyloctyl)oxy)benzamide) (4).

Column chromatography (silica gel, chloroform/methanol 10/0.1) affords compound 4 as a yellow solid ($96 \mathrm{mg}, 37 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right) \delta 8.60\left(2 \mathrm{H}, \mathrm{H}_{1}, \mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}\right), 8.05$ $\left(2 \mathrm{H}, \mathrm{H}_{3}, \mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}\right), 7.96\left(4 \mathrm{H}, \mathrm{H}_{6}, \mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}\right), 7.71\left(6 \mathrm{H}, \mathrm{H}_{5}+2, \mathrm{~m}\right), 7.64\left(2 \mathrm{H}, \mathrm{H}_{4}, \mathrm{~s}\right), 7.05(4 \mathrm{H}, \mathrm{H} 7$, s), $6.62\left(2 H, H_{\mathrm{a}}, \mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}\right), 6.48(2 \mathrm{H}, \mathrm{Hg}, \mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}), 4.48\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{q}}, \mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}\right), 4.01(12 \mathrm{H}, \mathrm{Hh}, \mathrm{m})$, $3.57\left(4 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right.$ or f, q, J=6.5 Hz$), 3.50\left(4 \mathrm{H}, \mathrm{Hf}_{\text {for }, ~ q, ~ J=6.5 ~ H z}\right), 1.98(2 \mathrm{H}, \mathrm{Hr}$, quin, J=6.7 Hz), $1.78(14 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{c}+\mathrm{e}+j}, \mathrm{~m}\right), 1.66\left(6 \mathrm{H}, \mathrm{H}_{\mathrm{o}}, \mathrm{br}\right), 1.52\left(16 \mathrm{H}, \mathrm{H}_{\mathrm{i}+\mathrm{d}}, \mathrm{m}\right), 1.33-1.07\left(50 \mathrm{H}, \mathrm{H}_{1+\mathrm{m}+\mathrm{n}+\mathrm{st+tu+v+w+x+y}}, \mathrm{~m}\right), 0.90\left(18 \mathrm{H}, \mathrm{H}_{\mathrm{k}}\right.$, d, J=6.6 Hz), $0.84\left(39 \mathrm{H}, \mathrm{H}_{\mathrm{p}+z}, \mathrm{~m}\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right) \delta 167.8,167.8,153.2,145.3$, 141.1, 136.5, 133.3, 131.9, 130.7, 130.6, 129.8, 127.5, 127.3, 124.9, 124.9, 124.0, 121.2, 117.2, 114.2, 105.7, 77.4, 71.8, 67.7, 45.7, 40.1, 40.0, 39.5, 39.4, 37.6, 37.5, 37.4, 36.5, 31.9, 31.3, 29.9, 29.7, 29.6, 29.5, 29.4, 29.3, 28.1, 27.2, 24.8, 24.8, 24.3, 22.8, 22.7, 19.6, 19.6, 14.2; FTIR (neat) 760, 849, 1116, $1236,1337,1378,1430,1466,1501,1543,1581,1634,1719,2855,2926,2955,3289,3337,3742,3803$ cm^{-1}. HRMS (MALDI-TOF, exact mass) calcd. for $\mathrm{C}_{128} \mathrm{H}_{191} \mathrm{~N}_{5} \mathrm{O}_{10}$ [M], 1958.4591; found, 1958.4548.
3. Collection of spectra

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$ of compound 7.

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right)$ of compound 7.

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$-HMQC spectrum $\left(\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right)$ of compound 7.

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$ of compound 8.

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right)$ of compound 8.

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$-HMQC spectrum $\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$ of compound 8 .

${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right)$ of compound 9.

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right)$ of compound 9.

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$-HMQC spectrum ($\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) of compound 9 .

${ }^{1} \mathrm{H}$ NMR (MeOD-d $4,300 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}$) of compound 10.

${ }^{13} \mathrm{C}$ NMR (MeOD-d $4,75 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}$) of compound 10.

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$-HMQC spectrum (MeOD-d $4,25{ }^{\circ} \mathrm{C}$) of compound 10.

${ }^{1} \mathrm{H}$ NMR (MeOD-d $4,300 \mathrm{MHz}, 25^{\circ} \mathrm{C}$) of compound 11.

${ }^{13} \mathrm{C}$ NMR (MeOD-d $4,75 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}$) of compound 11.

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$-HMQC spectrum (MeOD-d $4,25{ }^{\circ} \mathrm{C}$) of compound 11.

${ }^{1} \mathrm{H}$ NMR (MeOD-d $4,300 \mathrm{MHz}, 25^{\circ} \mathrm{C}$) of compound 12.

${ }^{13} \mathrm{C}$ NMR (MeOD- $\mathrm{d}_{4}, 75 \mathrm{MHz}, 25^{\circ} \mathrm{C}$) of compound 12.

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$-HMQC spectrum (MeOD- $\mathrm{d}_{4}, 25{ }^{\circ} \mathrm{C}$) of compound 12.

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$ of compound 2.

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMQC}$ spectrum $\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$ of compound 2.

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right)$ of compound 3.

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right)$ of compound 3.

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$-HMQC spectrum $\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$ of compound 3 .

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$ of compound 4.

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$ of compound 4 .

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$-HMQC spectrum $\left(\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right)$ of compound 4 .

4. Supplementary Figures and Tables

Figure S1. Partial ${ }^{1} \mathrm{H}$ NMR spectra of 2 (a) and 3 (b) in CDCl_{3} at different concentrations (300 MHz, $25^{\circ} \mathrm{C}$).

Figure S2. Partial FTIR spectra of 3 in solution showing the region in which the stretching N-H and Amide I bands are observed.

Figure S3. UV-Vis spectra (a) and variation of the absorbance at $\lambda=449 \mathrm{~nm}$ (b) of a diluted solution of $1\left(\mathrm{MCH} / \mathrm{Tol}(8 / 2) ; c_{T}=10 \mu \mathrm{M}\right.$; cooling and heating rate $\left.=1^{\circ} \mathrm{C} / \mathrm{min}\right)$.

Figure S4. (a) UV-Vis spectra of 3; (b) Variation of the absorbance at $\lambda=449 \mathrm{~nm}$ of a diluted solution of 3 (experimental conditions: $\mathrm{MCH} / \mathrm{Tol}(8 / 2) ; c T=10 \mu \mathrm{M}$; cooling and heating rate $=$ $1^{\circ} \mathrm{C} / \mathrm{min}$).

Figure S5. Partial VT-1 H NMR spectra of $3(\mathrm{a})$ and $4(\mathrm{~b})\left(\mathcal{c}_{T}=2 \mathrm{mM} ; \mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$.

Table S1. Chemical shifts for the inner and outer amide protons at different temperatures $\left(\mathrm{CDCl}_{3} ; 300 \mathrm{MHz} ; 2 \mathrm{mM}\right)$.

Compound	T (${ }^{\circ} \mathbf{C}$)	$\boldsymbol{\delta}$ inner $\mathbf{N H}$	$\boldsymbol{\delta}$ outer $\mathbf{N H}$
$\mathbf{2}$	25	7.34	7.06
	30	7.31	7.04
	35	7.28	7.02
	40	$*$	7.01
	45	7.21	6.99
	50	7.18	6.97
	25	6.68	6.64
	30	6.64	6.61
	35	6.62	6.57
	40	6.60	6.54
	45	6.58	6.51
	50	6.56	6.48
	25	6.42	6.24
	30	6.40	6.22
	35	6.38	6.20
	40	6.36	6.18
	45	6.35	6.16
	50	6.34	6.15

*Coincides with the resonance corresponding to the solvent

Figure S6. UV-Vis spectra of 4 upon cooling (a) and heating (b) a solution at $c T=10 \mu \mathrm{M}$ in $\mathrm{MCH} / \mathrm{Tol} 8 / 2$ by applying a cooling or heating rate of $1^{\circ} \mathrm{C} / \mathrm{min}$. Arrows indicate the spectral changes observed upon decreasing (a) or increasing the (b) the temperature. (c) Variation of the degree of aggregation with the temperature upon cooling or heating at $1^{\circ} \mathrm{C} / \mathrm{min}$. Red lines in (c) correspond to the fitting to the EQ model to guide the eye.

Figure S7. AFM images of the fibrillar bundles formed by the supramolecular polymers of compounds 2-4. Experimental conditions: $\mathrm{MCH} / \mathrm{Tol} 8 / 2$ as solvent, $c_{T}=10 \mu \mathrm{M}$, mica as surface.

Figure S8. Plot of the variation of the degree of aggregation (α) versus temperature for compounds 2 (a), 3 (b) and 4 (c) at different cooling rates ($0.5,1$ or $2^{\circ} \mathrm{C} / \mathrm{min}$). The red lines depict the fitting to the one-component EQ model. Experimental conditions: $\mathrm{MCH} / \mathrm{Tol} 8 / 2$ as solvent, \boldsymbol{c}_{T} $=10 \mu \mathrm{M}$.

