Supporting information

Copper-mediated [3+2] cycloaddition of trifluoroacetimidoyl chlorides and *N*-isocyanoiminotriphenylphosphorane for the synthesis of 3-trifluoromethyl-1,2,4-triazoles

Hefei Yang,^a Shu-Ning Lu,^a Yufei Song,^a Zhengkai Chen,^{*,a} and Xiao-Feng Wu^{*,b,c,}

^a Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of

Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China

^b Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese

Academy of Sciences, Dalian 116023, Liaoning, China

^c Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Straβe 29a, 18059

Rostock, Germany

E-mail: <u>zkchen@zstu.edu.cn</u>

xiao-feng.wu@catalysis.de

Contents

1. General Information	1
1.1 Preparation of Fluorinated Imidoyl Chlorides	1
2. Experimental Procedures	2
2.1 Optimization of the Reaction Conditions	2
2.2 General Procedure for the Synthesis of 3-Trifluoromethyl-1,2,4-triazoles	5
3 Control Experiments	5
4 Scale-up Reaction	8
5 The Crystal Structure of Product 3g	9
6 Characterization Data of the Corresponding Products	9
7 References	22
8 Copy of ¹ H, ¹³ C and ¹⁹ F NMR Spectra of Products	23

1. General Information

Unless otherwise noted, all reactions were carried out under N₂ atmosphere. All reagents were from commercial sources and used as received without further purification. All solvents were dried by standard techniques and distilled prior to use. Column chromatography was performed on silica gel (200-300 meshes) using petroleum ether (bp. 60~90 °C) and ethyl acetate as eluent. ¹NMR spectra were recorded on a Bruker Avance operating at for ¹H NMR at 400 MHz, ¹³C NMR at 100 MHz and ¹⁹F NMR at 377 MHz and spectral data were reported in ppm relative to tetramethylsilane (TMS) as internal standard and CDCl₃ (¹H NMR δ 7.26, ¹³C NMR δ 77.16) as solvent. All coupling constants (*J*) are reported in Hz. The following abbreviations were used to describe peak splitting patterns when appropriate: s = singlet, d = doublet, dd = double doublet, ddd = double doublet of doublets, t = triplet, dt = double triplet, q = quatriplet, m = multiplet, br = broad. Gas chromatography (GC) analyses were performed on a Shimadzu GC-2014C chromatograph equipped with a FID detector. Mass spectra (MS) were measured on spectrometer by direct inlet at 70 eV. Mass spectroscopy data of the products were collected on an HRMS-TOF instrument or Waters TOFMS GCT Premier using EI or ESI ionization. Melting points were measured with WRR digital point apparatus and not corrected.

1.1 Preparation of Fluorinated Imidoyl Chlorides¹

$$R-NH_2 + CF_3COOH \xrightarrow{PPh_3, Et_3N} F_{3C} \xrightarrow{CI} F_{3C} \xrightarrow{R}$$

A 200 mL two-necked flask equipped with a septum cap, a condenser, and a Tefloncoated magnetic stir bar was charged with PPh₃ (34.5 g, 132 mmol), Et₃N (7.3 mL, 53 mmol), CCl₄ (21.1 mL, 220 mmol), and TFA (3.4 mL, 44 mmol). After the solution was stirred for about 10 min (ice bath), amine (53 mmol) dissolved in CCl₄ (21.1 mL, 220 mmol) was added. The mixture was then refluxed under stirring for 3 h. After the reaction was completed, residual solid Ph₃PO, PPh₃ and Et₃N-HC1 were washed with hexane several times. Then the hexane was filtered and concentrated under vacuum. The crude product was purified by column chromatography on silica gel or neutral alumina to afford the corresponding product.

2. Experimental Procedures

2.1 Optimization of the Reaction Conditions

		Mo(CO) ₆ (5 mol %)	
		[M] (x equiv)	R
+		base (2.0 equiv)	
•		solvent, 80 °C, 24 h	
	2	(R = 4 <i>-t-</i> BuPh)	F ₃ C 3g
	+	+ Ph ₃ P=N-NC 2	+ $Ph_3P=N-NC$ 2 $Mo(CO)_6 (5 mol \%)$ [M] (x equiv) base (2.0 equiv) solvent, 80 °C, 24 h (R = 4-t-BuPh)

2.1.1 Screening of Solvent^a

Entry	Solvent	Yield (%) ^{b}
1	Dioxane	14
2	MeCN	25
3	DMF	13
4	DMSO	trace
5	THF	33
6	DCM	12

^{*a*}Reaction conditions: **1g** (0.2 mmol, 1.0 equiv.), **2** (1.5 equiv.), Mo(CO)₆ (5 mol %), CuO (1.5 equiv.), Na₂CO₃ (2.0 equiv.), Solvent (2 mL), 4 Å MS (40 mg), 80 °C, 24 h. ^{*b*}Yields determined by GC analysis using dodecane as an internal standard.

2.1.2 Screening of Catalyst^a

Entry	[M]	Yield (%) ^{b}
1	\	trace
2	CuCl ₂	12
3	CuO	33
4	$Cu(CF_3COO)_2$	trace
5	$Cu(OAc)_2$	10
6	CuOAc	64
7	CuBr	trace
8	$Cu(CF_3SO_3)_2$	trace

9	Ag ₂ CO ₃	9
^a Reaction condi	tions: 1g (0.2 mmol, 1.0 equiv.), 2	(1.5 equiv.), Mo(CO) ₆ (5 mol %), [M]
(1.5 equiv.), Na	a ₂ CO ₃ (2.0 equiv.), THF (2 mL), 4	Å MS (40 mg), 80 °C, 24 h. ^b Yields
determined by (GC analysis using dodecane as an in	ternal standard.

2.1.3 Screening of CuOAc^a

Entry	CuOAc	Yield (%) ^{b}
1	1 equiv.	63
2	0.5 equiv.	68
^a Reaction condit	ions: 1g (0.2 mmol, 1.0 equi	v.), 2 (1.5 equiv.), Mo(CO) ₆ (5 mol %),
CuOAc (1.5 equ	iv.), Na ₂ CO ₃ (2.0 equiv.), THI	F (2 mL), 4 Å MS (40 mg), 80 °C, 24 h.
^b Yields determin	ed by GC analysis using dodec	ane as an internal standard.

2.1.4 Screening of Base^a

Entry	Base	Yield (%) ^{b}
1	DBU	trace
2	Et3N	97 ^b , 89 ^c
3	Cs ₂ CO ₃	39
4	K ₂ CO ₃	37
5	NaHCO ₃	38
6	NaPO ₄	46
7	DIPEA	76

^{*a*}Reaction conditions: **1g** (0.2 mmol, 1.0 equiv.), **2** (1.5 equiv.), Mo(CO)₆ (5 mol %), CuOAc (0.5 equiv.), Base (2.0 equiv.), THF (2 mL), 4 Å MS (40 mg), 80 °C, 24 h. ^{*b*}Yields determined by GC analysis using dodecane as an internal standard. ^{*c*} Isolated Yield.

2.1.5 Screening of Additive^a

Entry	X(CO) ₆	Yield (%) ^{b}
1	/	trace
2	Cr(CO) ₆	11
3	W(CO) ₆	66

^{*a*}Reaction conditions: **1g** (0.2 mmol, 1.0 equiv.), **2** (1.5 equiv.), X(CO)₆ (5 mol %), CuOAc (0.5 equiv.), Et₃N (2.0 equiv.), THF (2 mL), 4 Å MS (40 mg), 80 °C, 24 h. ^{*b*}Yields determined by GC analysis using dodecane as an internal standard. ^{*c*}Yield by Isolated.

2.1.6 Screening of Temperature^a

Entry	T/°C	Yield (%) ^{b}
1	30	78
2	60	90
3	100	78

^{*a*}Reaction conditions: **1g** (0.2 mmol, 1.0 equiv.), **2** (1.5 equiv.), Mo(CO)₆ (5 mol %), CuOAc (0.5 equiv.), Et₃N (2.0 equiv.), THF (2 mL), 4 Å MS (40 mg), T °C, 24 h. ^{*b*}Yields determined by GC analysis using dodecane as an internal standard.

2.1.7 Screening of Time^a

Entry	Time (h)	Yield (%) ^b
1	12	80
2	24	97 ^b ,89 ^c

^{*a*}Reaction conditions: **1g** (0.2 mmol, 1.0 equiv.), **2** (1.5 equiv.), Mo(CO)₆ (5 mol %), CuOAc (0.5 equiv.), Et₃N (2.0 equiv.), THF (2 mL), 4 Å MS (40 mg), 80 °C, Time. ^{*b*}Yields determined by GC analysis using dodecane as an internal standard. Isolated Yield.

2.2 General Procedure for the Synthesis of 3-Trifluoromethyl-1,2,4-triazoles

Under nitrogen atmosphere, 1 (0.2 mmol, 1.0 equiv.), 2 (0.3 mmol, 1.5 equiv.), 4 Å MS (40 mg), Mo(CO)₆ (5 mol %, 2.7 mg), CuOAc (0.1 mmol, 0.5 equiv, 12.3 mg), NEt₃ (0.4 mmol, 2.0 equiv, 40.5 mg), THF (2 mL) (extra dry) were added to an oven-dried 15 mL In-Ex tube. Then the tube was sealed and the mixture was stirred at 80 °C (oil bath) for 24 h. After the reaction was completed, the mixture was slowly cooled to room temperature, and extracted with EtOAc for three times (3×10) mL). The extract was combined and concentrated under vacuum. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc) yield the to 3-trifluoromethyl-1,2,4-triazole product 3.

3 Control Experiments

Eq a: Under nitrogen atmosphere, 1g (0.2 mmol, 1.0 equiv, 52.6 mg), 2 (0.3 mmol, 1.5 equiv, 90.7 mg), 4 Å MS (40 mg), Mo(CO)₆ (5 mol %, 2.7 mg), CuOAc (0.1 mmol, 0.5 equiv, 12.3 mg), NEt₃ (0.4 mmol, 2.0 equiv, 40.5 mg), TEMPO (0.4 mmol, 2.0 equiv, 62.5 mg) or BHT (0.4 mmol, 2.0 equiv, 88.1 mg) and THF (2 mL) (extra dry) were added to an oven-dried 15 mL *In-Ex* tube. Then

the tube was sealed and the mixture was stirred at 80 °C (oil bath) for 24 h. After the reaction was completed, the mixture was slowly cooled to room temperature, and extracted with EtOAc for three times (3×10 mL). The extract was combined and concentrated under vacuum. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc) to yield the product **3g** as a white solid in 76% or 76% yield, respectively.

Eq b: Under nitrogen atmosphere, 1g (0.2 mmol, 1.0 equiv, 52.6 mg), 2 (0.3 mmol, 1.5 equiv, 90.7 mg), Mo(CO)₆ (5 mol %, 2.7 mg), CuOAc (0.1 mmol, 0.5 equiv, 12.3 mg), NEt₃ (0.4 mmol, 2.0 equiv, 40.5 mg), and THF (2 mL) (extra dry) were added to an oven-dried 15 mL *In-Ex* tube. Four parallel experiments were conducted using the following additional conditions: 1) 4 Å MS (40 mg) without H₂O; 2) without 4 Å MS and H₂O; 3) H₂O (2.0 equiv, 7.2 mg) without 4 Å MS; 4) 4 Å MS (40 mg) and H₂O (2.0 equiv, 7.2 mg). Then these tubes were sealed and the mixture was stirred at 80 °C (oil bath) for 24 h. After the reactions were completed, the mixtures were tested by GC analysis using dodecane as an internal standard. The corresponding GC yield of the product 3g was 97%, 42%, 73% or 79% yield, respectively.

Eq c: Under nitrogen atmosphere, 1g (0.2 mmol, 1.0 equiv, 52.6 mg), 2 (0.3 mmol, 1.5 equiv, 90.7 mg), Mo(CO)₆ (5 mol %, 2.7 mg), CuOAc (0.1 mmol, 0.5 equiv, 12.3 mg), NEt₃ (0.4 mmol, 2 equiv, 40.5 mg), D₂O (0.4 mmol, 2.0 equiv, 8 mg), THF (2 mL) (extra dry) were added to an oven-dried 15 mL *In-Ex* tube. Then the tube was sealed and the mixture was stirred at 80 °C (oil bath) for 24 h. After the reaction was completed, the mixture was slowly cooled to room temperature, and extracted with EtOAc for three times (3×10 mL). The extract was combined and concentrated under vacuum. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc) to yield the product **3**. The sample of the reaction was tested by ¹H NMR and the H/D ratio of the product **3g** was successfully determined by ¹H NMR.

Note (the detection of byproduct $Ph_3P=O$): Under nitrogen atmosphere, 1g (0.2 mmol, 1.0 equiv, 52.6 mg), 2 (0.3 mmol, 1.5 equiv, 90.7 mg), 4 Å MS (40 mg), Mo(CO)₆ (5 mol %, 2.7 mg), CuOAc (0.1 mmol, 0.5 equiv, 12.3 mg), NEt₃ (0.4 mmol, 2 equiv, 40.5 mg), THF (2 mL) (extra dry) were added to an oven-dried 15 mL *In-Ex* tube. Then the tube was sealed and the mixture was stirred at 80 °C (oil bath) for 24 h. The sample of the reaction was tested by GC-MS and the byproduct triphenylphosphine oxide generated in the reaction was successfully detected.

4 Scale-up Reaction

Under nitrogen atmosphere, **1g** (3 mmol, 1.0 equiv, 789 mg), **2** (4.5 mmol, 1.5 equiv, 1.36 g), 4 Å MS (600 mg), Mo(CO)₆ (5 mol %, 40.5 mg), CuOAc (1.5 mmol, 0.5 equiv, 184.5 mg), NEt₃ (6 mmol, 2.0 equiv, 608 mg), and THF (20 mL) (extra dry) were added to an oven-dried 100 mL *In-Ex* tube. Then the tube was sealed and the mixture was stirred at 80 °C (oil bath) for 24 h. Another experiment was conducted by the addition of 2.0 equiv. of H₂O (6 mmol, 108 mg). After the reactions were completed, the mixtures were slowly cooled to room temperature, and extracted with EtOAc for three times (3×10 mL). The extract was combined and concentrated under vacuum. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc) to yield the product **3g** as a white solid in 58% (468 mg) or 73% (589 mg) yield, respectively.

5 The Crystal Structure of Product 3g

6 Characterization Data of the Corresponding Products

4-phenyl-3-(trifluoromethyl)-4*H*-1,2,4-triazole (**3a**)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 5:1, Rf = 0.2) to give the titled product **3a** as a yellow solid (26.9 mg, 64%).

¹**H NMR** (**400 MHz, CDCl**₃) δ 8.35 (s, 1H), 7.64 – 7.51 (m, 3H), 7.37 (d, *J* = 6.8 Hz, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 146.2, 144.6 (C-F, q, ²*J*_(*C*-*F*) = 34.6 Hz), 132.3, 130.8, 130.0, 125.9, 118.2 (C-F, q, ¹*J*_(*C*-*F*) = 271.2 Hz).

¹⁹F NMR (377 MHz, CDCl₃) δ -60.5.

M.p. 67.4 - 69.8 °C

HRMS (**ESI**): [M+H]⁺ calcd. for C₉H₇F₃N₃ 214.0587, found 214.0595.

4-(p-tolyl)-3-(trifluoromethyl)-4H-1,2,4-triazole (3b)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 5:1, Rf = 0.3) to give the titled product **3b** as a yellow oily liquid (41.1 mg, 91%).

¹**H NMR (400 MHz, CDCl**₃) δ 8.31 (s, 1H), 7.34 (d, *J* = 8.1 Hz, 2H), 7.23 (d, *J* = 8.3 Hz, 2H), 2.45 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 146.4, 144.6 (C-F, q, ²*J*_(*C*-*F*) = 39.1 Hz), 141.2, 130.5, 129.7, 125.6, 118.2 (C-F, q, ¹*J*_(*C*-*F*) = 271.2 Hz), 21.2 (C-F, q, ¹*J*_(*C*-*F*) = 9.8 Hz).

¹⁹F NMR (377 MHz, CDCl₃) δ -60.6.

HRMS (ESI): $[M+H]^+$ calcd. for $C_{10}H_9F_3N_3$ 228.0743, found 228.0744.

4-(*m*-tolyl)-3-(trifluoromethyl)-4*H*-1,2,4-triazole (**3c**)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 5:1, Rf = 0.3) to give the titled product **3c** as a yellow solid (40.2 mg, 89%).

¹H NMR (400 MHz, CDCl₃) δ 8.32 (s, 1H), 7.46 – 7.36 (m, 2H), 7.16 (s, 2H), 2.44 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 146.2, 144.5 (C-F, q, ²*J*_(*C*-*F*) = 41.1 Hz), 140.4, 132.2, 131.5,

129.7, 126.3, 122.9, 118.2 (C-F, q, ${}^{1}J_{(C-F)} = 271.1$ Hz), 21.2.

¹⁹F NMR (377 MHz, CDCl₃) δ -60.5.

М.р. 70.4 - 72.8 °С

HRMS (**ESI**): [M+H]⁺ calcd. for C₁₀H₉F₃N₃ 228.0743, found 228.0751.

4-(*o*-tolyl)-3-(trifluoromethyl)-4*H*-1,2,4-triazole (3d)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 5:1, Rf = 0.4) to give the titled product **3d** as a white solid (38.9 mg, 86%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.27 (s, 1H), 7.48 (t, J = 7.6 Hz, 1H), 7.41 – 7.31 (m, 2H), 7.24 (d, J = 7.8 Hz, 1H), 2.06 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 146.2, 144.7 (C-F, q, ²*J*_(*C*-*F*) 38.2 Hz), 135.2, 131.5, 131.2, 131.2, 127.4, 127.2, 118.1 (C-F, q, ¹*J*_(*C*-*F*) = 271.2 Hz), 16.9 (C-F, q, ¹*J*_(*C*-*F*) = 14.8 Hz).

¹⁹F NMR (377 MHz, CDCl₃) δ -61.8.

M.p. 76.4 - 77.8 °C

HRMS (ESI): $[M+H]^+$ calcd. for $C_{10}H_9F_3N_3$ 228.0743, found 228.0750.

4-(4-ethylphenyl)-3-(trifluoromethyl)-4*H*-1,2,4-triazole (3e)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 5:1, Rf = 0.3) to give the titled product **3e** as a yellow oily liquid (47.7 mg, 99%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.34 (s, 1H), 7.38 (d, *J* = 8.3 Hz, 2H), 7.28 (d, *J* = 8.3 Hz, 2H), 2.76 (q, *J* = 7.6 Hz, 2H), 1.30 (t, *J* = 7.6 Hz, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 147.4, 146.4, 144.6 (C-F, q, ²*J*_(*C*-*F*) 40.2 Hz), 129.8, 129.3, 125.7, 118.2 (C-F, q, ¹*J*_(*C*-*F*) = 271.1 Hz), 28.5, 15.2.

¹⁹F NMR (377 MHz, CDCl₃) δ -60.6.

HRMS (ESI): $[M+H]^+$ calcd. for $C_{11}H_{11}F_3N_3$ 242.0900, found 242.0906.

4-(4-isopropylphenyl)-3-(trifluoromethyl)-4*H*-1,2,4-triazole (**3f**)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 5:1, Rf = 0.3) to give the titled product **3f** as a yellow solid (35.7 mg, 70%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.34 (s, 1H), 7.41 (d, J = 8.3 Hz, 2H), 7.29 (d, J = 8.4 Hz, 2H), 3.08 – 2.97 (m, 1H), 1.31 (d, J = 6.9 Hz, 6H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 152.0, 146.4, 144.6 (C-F, q, ²*J*_(*C*-*F*) = 39.0 Hz), 129.9, 127.9, 125.7, 118.2 (C-F, q, ¹*J*_(*C*-*F*) = 271.1 Hz), 34.0, 23.8.

¹⁹F NMR (377 MHz, CDCl₃) δ -60.6.

M.p. 67.4 - 69.8 °C

HRMS (ESI): $[M+H]^+$ calcd. for $C_{12}H_{13}F_3N_3$ 256.1056, found 256.1063.

4-(4-(*tert*-butyl)phenyl)-3-(trifluoromethyl)-4*H*-1,2,4-triazole (**3g**)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 5:1, Rf = 0.3) to give the titled product **3g** as a white solid (47.9 mg, 89%).

¹**H NMR** (**400 MHz**, **CDCl**₃) δ 8.34 (s, 1H), 7.56 (d, *J* = 8.6 Hz, 2H), 7.30 (d, *J* = 8.5 Hz, 2H), 1.38 (s, 9H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 154.3, 146.4 (C-F, q, ²*J*_(C-F) = 35.6 Hz), 129.6, 126.9, 125.4, 118.2 (C-F, q, ¹*J*_(C-F) = 271.2 Hz), 35.0, 31.2.

¹⁹F NMR (377 MHz, CDCl₃) δ -60.6.

M.p. 130.4 - 131.8 °C

HRMS (ESI): [M+H]⁺ calcd. for C₁₃H₁₅F₃N₃ 270.1213, found 270.1219.

4-(4-methoxyphenyl)-3-(trifluoromethyl)-4H-1,2,4-triazole (3h)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 5:1, Rf = 0.3) to give the titled product **3h** as a yellow solid (47.4 mg, 98%).

¹**H NMR (400 MHz, CDCl₃)** δ 8.32 (s, 1H), 7.29 (d, *J* = 8.9 Hz, 2H), 7.04 (d, *J* = 9.0 Hz, 2H), 3.89 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 161.1, 146.6, 144.8 (C-F, q, ²*J*_(*C*-*F*) = 39.3 Hz), 127.2, 124.7, 118.2 (C-F, q, ¹*J*_(*C*-*F*) = 271.1 Hz), 115.0, 55.7.

¹⁹F NMR (**377** MHz, CDCl₃) δ -60.7.

М.р. 75.1 - 77.8 °С

HRMS (ESI): $[M+H]^+$ calcd. for $C_{10}H_9F_3N_3O$ 244.0692, found 244.0699.

4-(4-(methylthio)phenyl)-3-(trifluoromethyl)-4H-1,2,4-triazole (3i)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 5:1, Rf = 0.3) to give the titled product **3i** as a yellow solid (37.2 mg, 72%).

¹**H NMR (400 MHz, CDCl₃)** δ 8.33 (s, 1H), 7.37 (d, *J* = 8.7 Hz, 2H), 7.28 (d, *J* = 8.6 Hz, 2H), 2.55 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 146.3, 144.6 (C-F, q, ²*J*_(C-F) = 41.2 Hz), 143.1, 128.6, 126.6, 126.1, 118.2 (C-F, q, ¹*J*_(C-F) = 271.2 Hz), 15.2.

¹⁹F NMR (377 MHz, CDCl₃) δ -60.6.

M.p. 94.8 - 96.8 °C

HRMS (**ESI**): [M+H]⁺ calcd. for C₁₀H₉F₃N₃S 260.0464, found 260.0470.

S13

4-(4-fluorophenyl)-3-(trifluoromethyl)-4*H*-1,2,4-triazole (**3j**)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 5:1, Rf = 0.3) to give the titled product **3j** as a yellow solid (35.5 mg, 77%).

¹H NMR (400 MHz, CDCl₃) δ 8.35 (s, 1H), 7.43 – 7.37 (m, 2H), 7.31 – 7.24 (m, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 163.6 (C-F, d, ³*J*_(*C*-*F*) = 252.7 Hz), 146.3, 144.7 (C-F, q, ²*J*_(*C*-*F*) = 39.5 Hz), 128.1 (C-F, d, ²*J*_(*C*-*F*) = 9.2 Hz), 118.1 (C-F, q, ¹*J*_(*C*-*F*) = 271.2 Hz), 117.2 (C-F, d, ¹*J*_(*C*-*F*) = 23.4 Hz), 117.2.

¹⁹F NMR (377 MHz, CDCl₃) δ -60.6, -108.3.

M.p. 91.6 - 93.8 °C

HRMS (**ESI**): [M+H]⁺ calcd. for C₉H₆F₄N₃ 232.0492, found 232.0499.

4-(4-nitrophenyl)-3-(trifluoromethyl)-4*H*-1,2,4-triazole (**3**k)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 5:1, Rf = 0.3) to give the titled product **3k** as a yellow solid (22.6 mg, 44%).

¹**H NMR** (**400 MHz, CDCl**₃) δ 8.46 (d, *J* = 8.9 Hz, 2H), 8.42 (s, 1H), 7.63 (d, *J* = 8.9 Hz, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 149.0, 145.7 (C-F, q, ²*J*_(*C*-*F*) = 39.5 Hz), 137.2, 127.1, 125.5, 118.0 (C-F, q, ¹*J*_(*C*-*F*) = 271.3 Hz).

¹⁹F NMR (377 MHz, CDCl₃) δ -60.1.

М.р. 143.9 - 145.8 °С

HRMS (ESI): [M+H]⁺ calcd. for C₉H₆F₃N₄O₂ 259.0437, found 259.0446.

4-(2-chlorophenyl)-3-(trifluoromethyl)-4*H*-1,2,4-triazole (**3**I)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 5:1, Rf = 0.2) to give the titled product **31** as a yellow solid (27.2 mg, 55%).

¹**H NMR (400 MHz, CDCl**₃) δ 8.31 (s, 1H), 7.63 (d, *J* = 6.8 Hz, 1H), 7.57 (t, *J* = 6.8 Hz, 1H), 7.48 (t, *J* = 6.8 Hz, 1H), 7.43 (d, *J* = 9.1 Hz, 1H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 146.1, 141.7 (C-F, q, ²*J*_(*C*-*F*) = 37.1 Hz), 132.4, 131.9, 130.8, 130.0, 128.8, 128.1, 117.9 (C-F, q, ¹*J*_(*C*-*F*) = 271.4 Hz).

¹⁹F NMR (377 MHz, CDCl₃) δ -61.6.

M.p. 86.9 - 88.8 °C

HRMS (ESI): [M+H]⁺ calcd. for C₉H₆ClF₃N₃ 248.0197, found 248.0206.

4-(2-isopropylphenyl)-3-(trifluoromethyl)-4*H*-1,2,4-triazole (**3m**)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 5:1, Rf = 0.3) to give the titled product **3m** as a yellow oily liquid (39.1 mg, 77%).

¹**H NMR (400 MHz, CDCl₃)** δ 8.25 (s, 1H), 7.56 (t, *J* = 8.1 Hz, 1H), 7.49 (d, *J* = 6.6 Hz, 1H), 7.33 (t, *J* = 6.8 Hz, 1H), 7.20 (d, *J* = 7.9 Hz, 1H), 2.48 - 2.29 (m, 1H), 1.18 - 1.13 (m, 6H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 146.7, 145.9, 145.1 (C-F, q, ²*J*_(*C*-*F*) = 38.6 Hz), 131.6, 129.6, 127.4, 127.3, 126.9, 118.1 (C-F, q, ¹*J*_(*C*-*F*) = 271.4 Hz), 28.0, 25.0, 22.5.

¹⁹F NMR (377 MHz, CDCl₃) δ -61.3.

HRMS (ESI): [M+H]⁺ calcd. for C₁₂H₁₃F₃N₃ 256.1056, found 256.1065.

4-(2-methoxyphenyl)-3-(trifluoromethyl)-4*H*-1,2,4-triazole (**3n**)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 5:1, Rf = 0.3) to give the titled product **3n** as a yellow oily liquid (33.5 mg, 69%).

¹**H NMR (400 MHz, CDCl₃)** δ 8.24 (s, 1H), 7.53 (t, *J* = 7.2 Hz, 1H), 7.28 (d, *J* = 7.7 Hz, 1H), 7.11 – 7.04 (m, 2H), 3.79 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 154.3, 146.7, 145.0 (C-F, q, ²*J*_(*C*-*F*) = 40.2 Hz), 132.3, 127.8, 121.0, 120.8, 118.2 (C-F, q, ¹*J*_(*C*-*F*) = 271.3 Hz), 112.1, 55.8.

¹⁹F NMR (377 MHz, CDCl₃) δ -61.9.

HRMS (ESI): $[M+Na]^+$ calcd. for $C_{10}H_8F_3N_3NaO$ 266.0512, found 266.0515.

4-([1,1'-biphenyl]-2-yl)-3-(trifluoromethyl)-4*H*-1,2,4-triazole (**3o**)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 5:1, Rf = 0.3) to give the titled product **30** as a yellow solid (47.9 mg, 83%).

¹H NMR (400 MHz, CDCl₃) δ 7.97 (s, 1H), 7.65 (t, *J* = 7.0 Hz, 1H), 7.59 – 7.51 (m, 2H), 7.42 (d, *J* = 7.8 Hz, 1H), 7.33 – 7.28 (m, 3H), 7.08 – 7.02 (m, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 146.7, 144.8 (C-F, q, ²*J*_(*C*-*F*) = 36.2 Hz), 139.5, 136.2, 131.5, 131.1, 130.0, 128.9, 128.7, 128.5, 128.1, 127.4, 118.2 (C-F, q, ¹*J*_(*C*-*F*) = 271.3 Hz).

¹⁹F NMR (377 MHz, CDCl₃) δ -60.4.

М.р. 125.9 - 127.8 °С

HRMS (**ESI**): [M+H]⁺ calcd. for C₁₅H₁₁F₃N₃ 290.0900, found 290.0908.

4-(3,4-dimethylphenyl)-3-(trifluoromethyl)-4*H*-1,2,4-triazole (**3p**)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 5:1, Rf = 0.3) to give the titled product **3p** as a white solid (46.5 mg, 96%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.31 (s, 1H), 7.29 (d, *J* = 7.9 Hz, 1H), 7.14 – 7.06 (m, 2H), 2.36 (s, 3H), 2.34 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 146.4, 144.6 (C-F, q, ²*J*_(*C*-*F*) = 39.3 Hz), 139.9, 138.8, 130.8, 129.9, 126.6, 123.1, 118.3 (C-F, q, ¹*J*_(*C*-*F*) = 271.1 Hz), 19.8, 19.7.

¹⁹F NMR (377 MHz, CDCl₃) δ -60.6.

M.p. 104.2 - 106.6 °C

HRMS (ESI): $[M+H]^+$ calcd. for $C_{11}H_{11}F_3N_3$ 242.0900, found 242.0908.

4-(2,5-dimethylphenyl)-3-(trifluoromethyl)-4*H*-1,2,4-triazole (**3q**)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 5:1, Rf = 0.3) to give the titled product **3q** as a white solid (37.3 mg, 78%).

¹H NMR (400 MHz, CDCl₃) δ 8.26 (s, 1H), 7.28 (s, 2H), 7.06 (s, 1H), 2.39 (s, 3H), 2.02 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 146.3, 144.8 (C-F, q, ²*J*_(*C*-*F*) = 36.1 Hz), 137.4, 131.9, 131.2, 131.1, 127.7, 118.1 (C-F, q, ¹*J*_(*C*-*F*) = 271.6 Hz), 20.6, 16.5.

¹⁹F NMR (377 MHz, CDCl₃) δ -61.8.

M.p. 95.4 - 97.8 °C

HRMS (ESI): $[M+H]^+$ calcd. for $C_{11}H_{11}F_3N_3$ 242.0900, found 242.0909.

4-(benzo[d][1,3]dioxol-5-yl)-3-(trifluoromethyl)-4H-1,2,4-triazole(3r)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 5:1, Rf = 0.4) to give the titled product **3r** as a yellow solid (44.1 mg, 86%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.31 (s, 1H), 6.92 (d, J = 8.1 Hz, 1H), 6.87 – 6.80 (m, 2H), 6.13 (s, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 149.6, 148.6, 146.5, 144.7 (C-F, q, ²*J*_(*C*-*F*) = 37.8 Hz), 125.6, 120.0, 118.2 (C-F, q, ¹*J*_(*C*-*F*) = 271.2 Hz), 108.6, 106.9, 102.6.

¹⁹F NMR (377 MHz, CDCl₃) δ -60.7.

M.p. 111.3 - 113.6 °C

HRMS (**ESI**): [M+H]⁺ calcd. for C₁₀H₇F₃N₃O₂ 258.0485, found 258.0493.

4-(2-chloro-5-methylphenyl)-3-(trifluoromethyl)-4*H*-1,2,4-triazole (3s)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 5:1, Rf = 0.4) to give the titled product **3s** as a white solid (31.9 mg, 62%).

¹**H NMR** (**400 MHz**, **CDCl**₃) δ 8.28 (s, 1H), 7.48 (d, *J* = 8.3 Hz, 1H), 7.35 (d, *J* = 9.7 Hz, 1H), 7.22 (s, 1H), 2.42 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 146.1, 144.5 (C-F, q, ²*J*_(*C*-*F*) = 39.4 Hz), 138.7, 133.1, 130.3, 129.6, 129.2, 128.6, 118.0 (C-F, q, ¹*J*_(*C*-*F*) = 271.4 Hz), 20.7.

¹⁹F NMR (**377** MHz, CDCl₃) δ -61.6.

M.p. 78.6 - 80.2 °C

HRMS (**ESI**): [M+H]⁺ calcd. for C₁₀H₈ClF₃N₃ 262.0353, found 262.0361.

4-(naphthalen-1-yl)-3-(trifluoromethyl)-4*H*-1,2,4-triazole (**3**t)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 5:1, Rf = 0.3) to give the titled product **3t** as a yellow solid (32.3 mg, 62%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.41 (s, 1H), 8.10 (d, J = 8.3 Hz, 1H), 8.00 (d, J = 8.0 Hz, 1H), 7.66 -7.55 (m, 3H), 7.53 (d, J = 7.2 Hz, 1H), 7.17 (d, J = 8.3 Hz, 1H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 147.1, 145.6 (C-F, q, ²*J*_(*C*-*F*) = 39.5 Hz), 134.0, 131.6, 129.5, 128.6, 128.6, 128.3, 127.6, 125.4, 124.9, 120.9, 118.1 (C-F, q, ¹*J*_(*C*-*F*) = 271.6 Hz).

¹⁹F NMR (377 MHz, CDCl₃) δ -61.4.

M.p. 132.4 - 134.6 °C

HRMS (**ESI**): [M+H]⁺ calcd. for C₁₃H₉F₃N₃ 264.0743, found 264.0748.

4-phenethyl-3-(trifluoromethyl)-4*H*-1,2,4-triazole (**3u**)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 5:1, Rf = 0.3) to give the titled product **3u** as a yellow oily liquid (17.4 mg, 36%).

¹**H** NMR (400 MHz, CDCl₃) δ 7.82 (s, 1H), 7.36 – 7.27 (m, 3H), 7.06 (d, *J* = 6.3 Hz, 2H), 4.36 (t, *J* = 7.1 Hz, 2H), 3.10 (t, *J* = 7.1 Hz, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 146.0 (C-F, q, ²*J*_(*C*-*F*) = 41.5 Hz), 135.6, 129.2, 128.6, 127.7, 118.6 (C-F, q, ¹*J*_(*C*-*F*) = 270.1 Hz), 47.4, 36.8.

¹⁹F NMR (377 MHz, CDCl₃) δ -61.9.

HRMS (ESI): $[M+H]^+$ calcd. for $C_{11}H_{11}F_3N_3$ 242.0900, found 242.0905.

3-(chlorodifluoromethyl)-4-phenyl-4*H*-1,2,4-triazole (**3v**)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 5:1, Rf = 0.3) to give the titled product **3v** as a white solid (42.0 mg, 92%).

¹**H NMR** (400 MHz, CDCl₃) δ 8.31 (s, 1H), 7.63 – 7.52 (m, 3H), 7.38 (d, *J* = 7.3 Hz, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 148.1 (C-F, t, ²*J*_(*C*-*F*) = 32.6 Hz), 146.5, 132.6, 130.8, 129.8, 126.4, 119.5 (C-F, t, ¹*J*_(*C*-*F*) = 287.4 Hz).

¹⁹F NMR (377 MHz, CDCl₃) δ -48.0.

M.p. 74.5 - 76.5 °C

HRMS (ESI): [M+H]⁺ calcd. for C₈H₇ClF₂N₃ 230.0291, found 230.0300.

3-(bromodifluoromethyl)-4-phenyl-4*H*-1,2,4-triazole (**3**w)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 5:1, Rf = 0.3) to give the titled product 3w as a yellow oily liquid (44.7 mg, 82%).

¹**H NMR** (400 MHz, CDCl₃) δ 8.31 (s, 1H), 7.56 (d, J = 8.7 Hz, 3H), 7.39 (d, J = 6.8 Hz, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 148.9 (C-F, t, ²*J*_(C-F) = 29.2 Hz), 146.5, 132.7, 130.8, 129.8,

126.6, 109.8 (C-F, t, ${}^{1}J_{(C-F)}$ = 301.0 Hz).

¹⁹F NMR (**377** MHz, CDCl₃) δ -44.5.

HRMS (**ESI**): [M+H]⁺ calcd. for C₈H₇BrF₂N₃ 273.9786, found 273.9790.

3-(perfluoroethyl)-4-phenyl-4*H*-1,2,4-triazole (**3x**)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 5:1, Rf = 0.4) to give the titled product **3x** as a white solid (47.6 mg, 90%).

¹**H NMR** (400 MHz, CDCl₃) δ 8.36 (s, 1H), 7.63 – 7.51 (m, 3H), 7.37 (d, J = 7.3 Hz, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 146.7, 143.5 (C-F, t, ³ $J_{(C-F)} = 27.4$ Hz), 132.6, 130.8, 129.8, 126.2, 118.0 (C-F, qt, ² $J_{(C-F)} = 286.6$, 34.7 Hz), 108.9 (C-F, tq, ¹ $J_{(C-F)} = 255.4$, 40.7 Hz).

¹⁹F NMR (377 MHz, CDCl₃) δ -108.6, -82.4.

М.р. 101.4 - 103.5 °С

HRMS (ESI): $[M+H]^+$ calcd. for $C_{10}H_7F_5N_3$ 264.0555, found 264.0564.

3-(perfluoropropyl)-1-phenyl-1*H*-1,2,4-triazole (**3**y)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 5:1, Rf = 0.3) to give the titled product 3y as a white solid (44.3 mg, 71%).

¹**H NMR** (400 MHz, CDCl₃) δ 8.35 (s, 1H), 7.62 – 7.52 (m, 3H), 7.35 (d, J = 7.5 Hz, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 147.0, 143.6 (C-F, t, ${}^{4}_{(C-F)}$ = 23.6 Hz), 132.7, 130.8, 129.7, 126.5, 117.5 (C-F, qt, ${}^{3}J_{(C-F)}$ = 288.1, 33.2 Hz), 111.0 (C-F, tt, ${}^{2}J_{(C-F)}$ = 257.1, 32.8 Hz), 108.0 (C-F, tt, ${}^{1}J_{(C-F)}$ = 229.7 Hz).

¹⁹F NMR (**377** MHz, CDCl₃) δ -124.9, -106.8, -79.9.

M.p. 86.4 - 88.5 °C

HRMS (ESI): [M+H]⁺ calcd. for C₁₁H₇F₇N₃ 314.0523, found 314.0534.

3-(perfluorobutyl)-1-phenyl-1*H*-1,2,4-triazole (**3z**)

Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate = 5:1, Rf = 0.4) to give the titled product 3z as a yellow solid (72.4 mg, 99%).

¹**H NMR (400 MHz, CDCl₃)** δ 8.35 (s, 1H), 7.62 – 7.51 (m, 3H), 7.35 (d, *J* = 7.5 Hz, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 147.0, 143.7 (C-F, t, ${}^{3}J_{(C-F)} = 28.7$ Hz), 132.7, 130.8, 129.7, 126.4, 117.2 (C-F, tq, ${}^{2}J_{(C-F)} = 288.5$, 32.8 Hz), 111.5 (C-F, tt, ${}^{1}J_{(C-F)} = 258.5$, 33.6 Hz).

¹⁹F NMR (**377** MHz, CDCl₃) δ -125.4, -121.3, -106.2, -80.9.

M.p. 78.4 - 80.5 °C

HRMS (ESI): $[M+Na]^+$ calcd. for $C_{12}H_6F_9N_3Na$ 386.0310, found 386.0304.

7 References

(1) K. Tamura, H. Mizukami, K. Maeda, H. Watanabe, K. Uneyama, J. Org. Chem. 1993, 58, 32-35.

8 Copy of ¹H, ¹³C and ¹⁹F NMR Spectra of Products

