Supporting Information

The C_{sp}-C_{sp} Bond Cleavage and Fragments Coupling: Transition Metal-Free "Extrusion and Recombination" Approach towards Synthesis of 1,2-Diketones

Raghuram Gujjarappa,^a Nagaraju Vodnala,^{a,b} Ashish Kandpal,^c Lisa Roy,^c Sreya Gupta,^d and Chandi C. Malakar^{*a}

^a Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal 795004, Manipur, India. E-mail: chdeepm@gmail.com, cmalakar@nitmanipur.ac.in.

^b Department of Chemistry, Multi-storey building, HauzKhas, Indian Institute of Technology Delhi, New Delhi, 110016 India.

^c Institute of Chemical Technology Mumbai - IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India.

^d Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, India.

Contents:	Pages
1. General Information	S02
2. Computational Methods	S02
3. DFT calculations	S02
4. Detection of CO ₂	S 11
5. Investigation of the reaction mechanism via Mass Spectrometry	S 13
6. Kinetic monitoring of the reaction via gas chromatography	S16
7. Additional Optimization of the Reaction Conditions	S17
8. General Experimental Procedure for the Synthesis of Symmetrical/Unsymmetrical	
1,2-Diketones 2a-y from 1,3-diynes 1a-x	S17
9. Analytical Data of Synthesized Symmetrical/Unsymmetrical 1,2-Diketones 2a-y	S18
10. NMR Spectral Data	S24
11. References	S50

1. General Information

All starting materials were purchased from commercial suppliers (Sigma-Aldrich, Alfa-Aesar, SD fine chemicals, Merck, HI Media, Thermo Fisher Scientific) and were used without further purification unless otherwise indicated. All reactions were performed in a 10 mL reaction vial with magnetic stirring. Solvents used in extraction and purification were purchased from Merck, Thermo Fisher Scientific and used without further purification. Thin-layer chromatography (TLC) was performed on TLC plates purchased from Merck. Compounds were visualized with UV light ($\lambda = 254$ nm) and/or by immersion in KMnO₄ staining solution followed by heating. Products were purified by column chromatography on silica gel, 100 - 200 mesh. Melting points were determined in open capillary tubes on EZ-Melt automated melting point apparatus and are uncorrected. All the compounds were fully characterized by ¹H and ¹³C NMR and further confirmed by EI-HRMS analysis. All HRMS are recorded in EI-QTOF method in acetonitrile solvent and GC-MS are recorded in the EI method in ethyl acetate solvent. ¹H (¹³C) NMR spectra were recorded at 400 (100), 500 (125) and 600 (150) MHz on a Brucker spectrometer using CDCl₃ and DMSO- d_6 as a solvent. The ¹H and ¹³C chemical shifts were referenced to residual solvent signals at $\delta_{H/C}$ 7.26/77.28 (CDCl₃) and $\delta_{H/C}$ 3.28/39.99 (DMSO- d_6) relative to TMS as internal standards. Coupling constants J [Hz] were directly taken from the spectra and are not averaged. Splitting patterns are designated as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), overlapped and br (broad).

2. Computational Methods

All theoretical calculations have been carried out using the Gaussian09 quantum chemical package.¹ Geometries of all structures and transition states involved in this study were optimized and characterized using hybrid exchange correlation functional, B3LYP² together with Pople's $6-31G(d,p)^3$ basis set for all atoms in the solvent phase. Further single point energies were computed using the long-range dispersion corrected ω B97X-D⁴ and M06-2X⁵ with 6-31G(d,p) basis set for comparative studies. The solvent effect was characterized using a Conductor-like Polarizable Continuum Model (CPCM) using DMSO as solvent (ϵ =47.24).⁶

3. DFT calculations

Table S1 . Solvent-phase Gibbs free energy of the reactants, correspondingtransition state and product from DFT calculations at B3LYP/6-31G**					
State Gibbs free energy (in a.u)					
Reactant (1)	-615.4687				
Α	-661.0493				
В	-789.9308				
С	-789.9565				
D	-918.8135				
TS-1	-1151.72				

Da	-917.6223
TS-2	-1150.521
Ε	-916.3817
F	-1533.826
3a	-534.0574
G	-344.8595
CO_2	-188.5891
4a	-689.8032
Product (2a)	-420.7434
I_2	-22.79689
OH -	-75.86527
OH•	-75.73999
H_2O	-76.42141
′BuO•	-232.925
'BuOH	-233.5826
^t BuOOH	-308.7094

XYZ coordinates

1							
С	1.902668000	-0.000005000	-0.000006000	н	-5.974353000	1.522006000	1.521758000
С	-0.680462000	-0.000025000	-0.000004000	Н	-7.219470000	0.000020000	-0.000005000
С	0.680462000	-0.000011000	-0.000007000	С	3.326327000	0.000000000	-0.000002000
С	-1.902668000	-0.000018000	-0.000004000	С	4.041468000	-0.860407000	0.860290000
С	-3.326327000	-0.000004000	-0.000002000	С	4.041470000	0.860410000	-0.860281000
С	-4.041475000	-0.860413000	-0.860284000	С	5.433904000	-0.856030000	0.855923000
С	-4.041463000	0.860413000	0.860278000	С	5.433912000	0.856040000	-0.855903000
С	-5.433913000	-0.856031000	-0.855913000	С	6.133758000	0.000008000	0.000011000
С	-5.433903000	0.856048000	0.855904000	Н	3.495309000	-1.523560000	1.523346000
С	-6.133758000	0.000014000	-0.000004000	Н	3.495321000	1.523564000	-1.523344000
Н	-3.495323000	-1.523574000	-1.523339000	Н	5.974363000	-1.521977000	1.521780000
Н	-3.495307000	1.523567000	1.523335000	Н	5.974362000	1.521994000	-1.521758000
Н	-5.974372000	-1.521981000	-1.521766000	Н	7.219470000	0.000005000	0.000021000
A	0.00000000	0 (12 170000	0.000125000	C	0 (07700000	1 770 41 2000	0.00000000
С	0.289099000	-0.613478000	0.000135000	С	-0.687702000	1.779412000	0.00009000

С	0.687705000	-1.779403000	0.000055000	Ι	-3.357106000	0.063242000	0.000005000	
I	3.357106000	-0.063243000	-0.000004000	С	-1.059269000	3.146270000	0.000047000	
С	1.059268000	-3.146262000	0.000016000	С	-1.237697000	3.832207000	-1.221908000	
С	1.237695000	-3.832200000	1.221970000	С	-1.237585000	3.832238000	1.221983000	
С	1.237581000	-3.832231000	-1.221921000	Н	-1.100857000	3.301032000	-2.157640000	
Н	1.100858000	-3.301025000	2.157702000	н	-1.100663000	3.301102000	2.157726000	
Н	1.100659000	-3.301094000	-2.157663000	С	-1.586288000	5.178375000	-1.213598000	
С	1.586281000	-5.178370000	1.213660000	С	-1.586175000	5.178410000	1.213651000	
С	1.586165000	-5.178404000	-1.213589000	Н	-1.722666000	5.704279000	-2.153044000	
н	1.722659000	-5.704275000	2.153106000	н	-1.722466000	5.704343000	2.153093000	
Н	1.722454000	-5.704337000	-2.153032000	С	-1.761642000	5.852088000	0.000026000	
С	1.761631000	-5.852083000	0.000035000	Н	-2.035416000	6.902590000	0.000027000	
Н	2.035401000	-6.902586000	0.000034000	Ι	6.133258000	0.916632000	-0.000038000	
С	-0.289092000	0.613488000	-0.000071000	Ι	-6.133254000	-0.916638000	-0.000026000	
в								
С	0.035715000	-0.431576000	-0.652572000	С	-0.040751000	-0.066920000	0.722461000	
С	0.970843000	-0.046312000	-1.561003000	С	-0.991748000	0.648593000	1.387342000	
I	-1.336292000	-2.046187000	-1.302008000	Ι	1.485736000	-1.085015000	2.026654000	
С	2.020011000	0.971636000	-1.300800000	С	-2.139774000	1.347320000	0.749288000	
С	1.756869000	2.176647000	-0.628293000	С	-3.282767000	1.594610000	1.535846000	
С	3.323384000	0.725961000	-1.773966000	С	-2.138617000	1.786554000	-0.586284000	
н	0.757198000	2.390152000	-0.271135000	н	-3.299358000	1.266538000	2.567830000	
Н	3.550973000	-0.209844000	-2.275739000	Н	-1.273828000	1.619327000	-1.213634000	
С	2.773414000	3.110227000	-0.434935000	С	-4.389602000	2.247002000	0.997431000	
С	4.337878000	1.660366000	-1.570923000	С	-3.245800000	2.446993000	-1.117082000	
Н	2.553129000	4.042174000	0.076543000	Н	-5.263071000	2.419788000	1.619006000	
Н	5.340070000	1.451018000	-1.931862000	Н	-3.220072000	2.784142000	-2.148857000	
С	4.065552000	2.855899000	-0.902731000	С	-4.376666000	2.677641000	-0.331319000	
Н	4.854348000	3.585791000	-0.748328000	Н	-5.238235000	3.189471000	-0.749469000	
0	1.024477000	-0.659067000	-2.767216000	0	-1.024630000	0.793859000	2.729331000	
Н	1.583259000	-0.141591000	-3.366256000	Н	-0.331398000	0.250578000	3.143961000	
С								
С	-0.195809000	-0.101365000	0.743348000	С	1.723753000	-0.044616000	-0.960961000	
С	-1.723848000	-0.044371000	0.961019000	I	-0.698184000	-1.757781000	-1.900979000	
I	0.697834000	-1.757961000	1.901036000	С	2.408128000	1.247475000	-0.647041000	
С	-2.407910000	1.247851000	0.646925000	С	3.778084000	1.186076000	-0.332020000	
С	-1.770422000	2.499707000	0.690370000	С	1.770731000	2.499413000	-0.689432000	

С	-3.777617000	1.186682000	0.330840000	Н	4.265268000	0.217541000	-0.309010000
Н	-0.725502000	2.586781000	0.966826000	Н	0.725611000	2.586745000	-0.965042000
Н	-4.264869000	0.218196000	0.307062000	С	4.488412000	2.347367000	-0.046170000
С	-2.489351000	3.663678000	0.417082000	С	2.489955000	3.663203000	-0.416132000
С	-4.487630000	2.348164000	0.044942000	Н	5.542198000	2.287936000	0.207535000
Н	-1.990958000	4.626510000	0.466126000	Н	1.991576000	4.626085000	-0.464318000
Н	-5.541222000	2.288939000	-0.209613000	С	3.845152000	3.588999000	-0.087832000
С	-3.844302000	3.589722000	0.087696000	Н	4.400403000	4.495923000	0.131361000
Н	-4.399311000	4.496796000	-0.131485000	0	2.355679000	-1.018869000	-1.325078000
0	-2.356019000	-1.018431000	1.325197000	Н	-0.276025000	0.770788000	-1.199110000
С	0.195698000	-0.101350000	-0.743238000	Н	0.275981000	0.770696000	1.199302000
D							
С	-4.857449000	0.985514000	0.334867000	С	2.814514000	1.449930000	0.866018000
С	-4.388222000	-0.292076000	0.647690000	С	4.388056000	-0.291792000	-0.648120000
С	-4.067016000	1.858406000	-0.422293000	н	2.769838000	-1.691169000	-0.472696000
Н	-5.837615000	1.302255000	0.678922000	С	4.066978000	1.858237000	0.422813000
С	-3.131027000	-0.705564000	0.207000000	Н	2.190597000	2.110964000	1.457378000
Н	-5.002021000	-0.968993000	1.233623000	С	4.857306000	0.985678000	-0.334838000
С	-2.814472000	1.450309000	-0.865467000	Н	5.001774000	-0.968450000	-1.234438000
Н	-4.431389000	2.851947000	-0.664493000	Н	4.431370000	2.851685000	0.665368000
С	-2.330078000	0.165289000	-0.553007000	Н	5.837411000	1.302583000	-0.678920000
Н	-2.769947000	-1.691348000	0.471941000	0	0.669962000	-1.821539000	-1.691294000
Н	-2.190473000	2.111602000	-1.456451000	0	-0.669937000	-1.822210000	1.690791000
С	-1.001195000	-0.218435000	-1.083618000	С	-0.314722000	-1.551340000	-0.725107000
0	-0.375877000	0.520145000	-1.846376000	С	0.314755000	-1.551660000	0.724708000
С	1.001307000	-0.218943000	1.083763000	Н	0.825018000	-0.966322000	-2.136882000
С	2.330097000	0.165030000	0.553101000	Н	-0.824922000	-0.967173000	2.136747000
0	0.376069000	0.519336000	1.846877000	Н	-1.041013000	-2.370823000	-0.716831000
С	3.130940000	-0.705488000	-0.207402000	Н	1.040997000	-2.371182000	0.716085000
TS-1	l						
C	5.394283000	-1.177643000	-0.651016000	н	-0.886141000	5.104843000	-1.499209000
с	4.368585000	-2.069768000	-0.330581000	н	-2.588822000	5.250765000	0.307213000
с	5.239614000	0.190664000	-0.399439000	о	-0.289018000	0.157593000	2.277653000
н	6.314288000	-1.546545000	-1.094716000	о	0.300730000	-1.728095000	-0.744781000
С	3.183465000	-1.602260000	0.236609000	С	0.504105000	-0.482775000	1.318088000
Н	4.491178000	-3.131302000	-0.521059000	С	-0.245396000	-0.667974000	-0.045358000
С	4.063618000	0.660491000	0.173620000	Н	0.076406000	1.060941000	2.344083000

Н	6.036576000	0.884227000	-0.648922000	Н	0.433043000	-1.391717000	-1.657978000
С	3.019264000	-0.229422000	0.492281000	Н	0.731766000	-1.498798000	1.657225000
Н	2.393632000	-2.304042000	0.470468000	Н	-1.376002000	-0.961129000	0.315554000
Н	3.929616000	1.716322000	0.381708000	0	-2.621235000	-1.325135000	0.741900000
С	1.808767000	0.333165000	1.133418000	С	-3.220238000	-2.297152000	-0.092108000
0	1.776249000	1.492145000	1.545418000	С	-3.273785000	-1.813880000	-1.552359000
С	-0.363923000	0.544516000	-0.979259000	Н	-3.762242000	-0.836600000	-1.610638000
С	-0.983108000	1.824327000	-0.569487000	Н	-2.264712000	-1.724085000	-1.966203000
0	0.093269000	0.386727000	-2.114677000	Н	-3.830487000	-2.519591000	-2.177030000
С	-1.949186000	1.909884000	0.448728000	С	-4.656418000	-2.411557000	0.478029000
С	-0.617064000	2.983650000	-1.280026000	Н	-5.178979000	-1.454329000	0.400752000
С	-2.526424000	3.143140000	0.752874000	Н	-4.629069000	-2.715505000	1.527970000
Н	-2.265982000	1.017219000	0.972477000	Н	-5.211108000	-3.164339000	-0.091231000
С	-1.184017000	4.211816000	-0.958601000	Н	-2.476855000	-3.972758000	1.075275000
Н	0.119507000	2.902932000	-2.072180000	С	-2.489627000	-3.645383000	0.030887000
С	-2.141282000	4.292735000	0.059554000	Н	-2.984583000	-4.417178000	-0.567886000
Н	-3.281406000	3.205116000	1.530552000	Н	-1.456985000	-3.549751000	-0.315446000
Da							
С	4.935643000	-1.358475000	-0.853893000	С	-3.308080000	-0.861598000	0.661646000
С	3.970547000	-1.910953000	-0.008417000	С	-3.541058000	0.472516000	-1.359031000
С	4.853808000	-0.013010000	-1.230873000	С	-4.680456000	-1.105107000	0.651433000
Н	5.752245000	-1.974374000	-1.218649000	Н	-2.692332000	-1.287471000	1.445559000
С	2.920022000	-1.125123000	0.463612000	С	-4.908828000	0.224254000	-1.365844000
Н	4.036415000	-2.953704000	0.285354000	Н	-3.079289000	1.084054000	-2.126943000
С	3.810188000	0.776206000	-0.760964000	С	-5.479512000	-0.565269000	-0.359882000
Н	5.604039000	0.414997000	-1.888346000	Н	-5.126179000	-1.715713000	1.430156000
С	2.830971000	0.226992000	0.088186000	Н	-5.533308000	0.642839000	-2.148861000
Н	2.174709000	-1.569909000	1.112586000	Н	-6.548175000	-0.757958000	-0.365129000
Н	3.731977000	1.820940000	-1.041207000	0	-0.232486000	1.657638000	1.816392000
С	1.753777000	1.117536000	0.569602000	0	-0.248285000	-1.618958000	0.750067000
0	1.754846000	2.327834000	0.365688000	С	0.567641000	0.578696000	1.412143000
С	-1.286892000	0.239847000	-0.364503000	С	-0.322646000	-0.411420000	0.643414000
С	-2.729490000	-0.070425000	-0.346096000	Н	0.161330000	2.433671000	1.366010000
0	-0.744371000	0.950382000	-1.203962000	Н	0.967123000	0.039442000	2.280793000
TS-2	2						
С	-1.893649000	3.359291000	-1.401515000	н	-4.766818000	-1.320421000	1.944604000
C	-0 932084000	2.458933000	-1.865155000	Н	-4.820613000	-1.775353000	-2.336448000
C	0.952001000						

С	-2.056997000	3.568389000	-0.027119000	Н	-6.030999000	-1.608538000	-0.172504000
Н	-2.513704000	3.901658000	-2.108981000	0	1.960035000	-0.444231000	2.277799000
С	-0.139544000	1.748561000	-0.963325000	0	0.089531000	-2.209497000	1.728649000
Н	-0.795258000	2.310757000	-2.931658000	С	1.155479000	-0.125693000	1.209719000
С	-1.258291000	2.879144000	0.878304000	С	0.151436000	-1.266185000	0.964077000
Н	-2.803154000	4.269641000	0.332981000	Н	1.926719000	0.341418000	2.864994000
С	-0.303735000	1.951524000	0.418251000	Н	1.838597000	-0.014204000	0.194807000
Н	0.616757000	1.067315000	-1.334460000	0	2.724317000	0.290290000	-0.790625000
Н	-1.366472000	3.037228000	1.945909000	С	3.877695000	-0.523642000	-0.773774000
С	0.533455000	1.272960000	1.430618000	С	3.503901000	-2.010664000	-0.641512000
0	0.780817000	1.786947000	2.519428000	Н	3.103945000	-2.217885000	0.356222000
С	-0.681713000	-1.334849000	-0.325174000	Н	2.744692000	-2.276940000	-1.381454000
С	-2.155215000	-1.421584000	-0.240936000	Н	4.383430000	-2.644857000	-0.789185000
0	-0.051198000	-1.419658000	-1.372694000	С	4.841199000	-0.077857000	0.339048000
С	-2.844609000	-1.325767000	0.980681000	Н	4.363848000	-0.189180000	1.316239000
С	-2.877481000	-1.582189000	-1.437417000	Н	5.116417000	0.972728000	0.203849000
С	-4.236537000	-1.393273000	1.000482000	Н	5.755648000	-0.679907000	0.329972000
Н	-2.301005000	-1.207063000	1.911238000	Н	4.723317000	0.802559000	-2.297877000
С	-4.265796000	-1.650334000	-1.411892000	С	4.505576000	-0.260908000	-2.168999000
				**	5 440750000	0.00.00.0000	0.047070000
Н	-2.331075000	-1.650608000	-2.371980000	н	5.440759000	-0.824243000	-2.247279000
H C	-2.331075000 -4.946560000	-1.650608000 -1.556040000	-2.371980000 -0.192056000	н Н	5.440759000 3.827767000	-0.824243000 -0.583815000	-2.247279000 -2.963263000
H C	-2.331075000 -4.946560000	-1.650608000 -1.556040000	-2.371980000 -0.192056000	н Н	5.440759000 3.827767000	-0.824243000 -0.583815000	-2.963263000
H C E	-2.331075000 -4.946560000	-1.650608000 -1.556040000	-2.371980000 -0.192056000	Н	3.827767000	-0.583815000	-2.963263000
H C E C	-2.331075000 -4.946560000 0.000000000	-1.650608000 -1.556040000 6.083616000	-2.371980000 -0.192056000 -0.108570000	H H C	3.827767000 0.000000000	-0.824243000 -0.583815000 -0.815568000	-2.963263000 0.830100000
H C E C C	-2.331075000 -4.946560000 0.000000000 0.000000000	-1.650608000 -1.556040000 6.083616000 5.343907000	-2.371980000 -0.192056000 -0.108570000 1.074953000	H H C C	 5.440759000 3.827767000 0.000000000 0.000000000 	-0.824243000 -0.583815000 -0.815568000 -1.782541000	-2.247279000 -2.963263000 0.830100000 -0.394999000
H C E C C C	-2.331075000 -4.946560000 0.000000000 0.000000000 0.00000000	-1.650608000 -1.556040000 6.083616000 5.343907000 5.420912000	-2.371980000 -0.192056000 -0.108570000 1.074953000 -1.340464000	H H C C O	3.827767000 0.000000000 0.000000000 0.000000000	-0.824243000 -0.583815000 -0.815568000 -1.782541000 -1.258586000	-2.247279000 -2.963263000 0.830100000 -0.394999000 1.954109000
H C E C C C H	-2.331075000 -4.946560000 0.000000000 0.000000000 0.00000000	-1.650608000 -1.556040000 6.083616000 5.343907000 5.420912000 7.169074000	-2.371980000 -0.192056000 -0.198570000 1.074953000 -1.340464000 -0.073267000	H H C C O C	5.440759000 3.827767000 0.000000000 0.000000000 0.000000000	-0.824243000 -0.583815000 -0.815568000 -1.782541000 -1.258586000 -3.269475000	-2.247279000 -2.963263000 0.830100000 -0.394999000 1.954109000 -0.192277000
Н С С С С С Н С	-2.331075000 -4.946560000 0.000000000 0.000000000 0.00000000	-1.650608000 -1.556040000 6.083616000 5.343907000 5.420912000 7.169074000 3.949045000	-2.371980000 -0.192056000 -0.108570000 1.074953000 -1.340464000 -0.073267000 1.041631000	H H C C O C O C	 3.827767000 3.827767000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 	-0.824243000 -0.583815000 -0.815568000 -1.782541000 -1.258586000 -3.269475000 -1.313156000	-2.247279000 -2.963263000 0.830100000 -0.394999000 1.954109000 -0.192277000 -1.518640000
H C E C C C H C H	-2.331075000 -4.946560000 0.000000000 0.000000000 0.00000000	-1.650608000 -1.556040000 6.083616000 5.343907000 5.420912000 7.169074000 3.949045000 5.852709000	-2.371980000 -0.192056000 -0.108570000 1.074953000 -1.340464000 -0.073267000 1.041631000 2.034072000	H H C C C O C O C	3.827767000 3.827767000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000	-0.824243000 -0.583815000 -0.815568000 -1.782541000 -1.258586000 -3.269475000 -1.313156000 -3.949045000	-2.247279000 -2.963263000 0.830100000 -0.394999000 1.954109000 -0.192277000 -1.518640000 1.041631000
н С С С С С Н С Н С	-2.331075000 -4.946560000 0.000000000 0.000000000 0.00000000	-1.650608000 -1.556040000 6.083616000 5.343907000 5.420912000 7.169074000 3.949045000 5.852709000 4.031936000	-2.371980000 -0.192056000 -0.192056000 1.074953000 -1.340464000 -0.073267000 1.041631000 2.034072000 -1.379887000	H H C C C O C O C C C	5.440759000 3.827767000 0.000000000 0.000000000 0.000000000	-0.824243000 -0.583815000 -0.815568000 -1.782541000 -1.258586000 -3.269475000 -1.313156000 -3.949045000 -4.031936000	-2.247279000 -2.963263000 0.830100000 -0.394999000 1.954109000 -0.192277000 -1.518640000 1.041631000 -1.379887000
H C C C C H C H C H C H	-2.331075000 -4.946560000 0.000000000 0.000000000 0.00000000	-1.650608000 -1.556040000 6.083616000 5.343907000 5.420912000 7.169074000 3.949045000 5.852709000 4.031936000 5.988050000	-2.371980000 -0.192056000 -0.192056000 1.074953000 -1.340464000 -0.073267000 1.041631000 2.034072000 -1.379887000 -2.266256000	H H C C C C C C C C C C C C	3.827767000 3.827767000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000	-0.824243000 -0.583815000 -0.583815000 -1.782541000 -1.258586000 -3.269475000 -1.313156000 -3.949045000 -4.031936000 -5.343907000	-2.247279000 -2.963263000 0.830100000 -0.394999000 1.954109000 -0.192277000 -1.518640000 1.041631000 -1.379887000 1.074953000
H C C C C C H C H C H C H	-2.331075000 -4.946560000 0.000000000 0.000000000 0.00000000	-1.650608000 -1.556040000 6.083616000 5.343907000 5.420912000 7.169074000 3.949045000 5.852709000 4.031936000 5.988050000 3.269475000	-2.371980000 -0.192056000 -0.192056000 1.074953000 -1.340464000 -0.073267000 1.041631000 2.034072000 -1.379887000 -2.266256000 -0.192277000	H H C C C O C C C C C H	5.440759000 3.827767000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000	-0.824243000 -0.583815000 -0.583815000 -1.782541000 -1.258586000 -3.269475000 -1.313156000 -3.949045000 -4.031936000 -5.343907000 -3.396696000	-2.247279000 -2.963263000 0.830100000 -0.394999000 1.954109000 -0.192277000 -1.518640000 1.041631000 -1.379887000 1.074953000 1.968482000
H C C C C H C H C H C H C H	-2.331075000 -4.946560000 0.000000000 0.000000000 0.00000000	-1.650608000 -1.556040000 6.083616000 5.343907000 5.420912000 7.169074000 3.949045000 5.852709000 4.031936000 5.988050000 3.269475000 3.396696000	-2.371980000 -0.192056000 -0.192056000 1.074953000 -1.340464000 -0.073267000 1.041631000 2.034072000 -1.379887000 -2.266256000 -0.192277000 1.968482000	H H C C C O C C C C C H C	5.440759000 3.827767000 0.000000000 0.000000000 0.000000000	-0.824243000 -0.583815000 -0.583815000 -1.782541000 -1.258586000 -3.269475000 -1.313156000 -3.949045000 -4.031936000 -5.343907000 -3.396696000 -5.420912000	-2.247279000 -2.963263000 -0.830100000 -0.394999000 1.954109000 -0.192277000 -1.518640000 1.041631000 -1.379887000 1.074953000 1.968482000 -1.340464000
H C C C C H C H C H C H C H H H	-2.331075000 -4.946560000 0.000000000 0.000000000 0.00000000	-1.650608000 -1.556040000 6.083616000 5.343907000 5.420912000 7.169074000 3.949045000 5.852709000 4.031936000 5.988050000 3.269475000 3.396696000 3.509783000	-2.371980000 -0.192056000 1.074953000 1.074953000 -1.340464000 -0.073267000 1.041631000 2.034072000 -1.379887000 -2.266256000 -0.192277000 1.968482000 -2.329701000	н Н С С С С С С С С С С С С С С С С С С	3.440759000 3.827767000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000	-0.824243000 -0.583815000 -0.583815000 -1.782541000 -1.258586000 -3.269475000 -1.313156000 -3.949045000 -4.031936000 -5.343907000 -3.396696000 -5.420912000 -3.509783000	-2.247279000 -2.963263000 -0.830100000 -0.394999000 1.954109000 -0.192277000 -1.518640000 1.041631000 -1.379887000 1.074953000 1.968482000 -1.340464000 -2.329701000
H C C C C H C H C H C H H C H H C	-2.331075000 -4.946560000 0.000000000 0.000000000 0.00000000	-1.650608000 -1.556040000 6.083616000 5.343907000 5.420912000 7.169074000 3.949045000 5.852709000 4.031936000 5.988050000 3.269475000 3.396696000 3.509783000 1.782541000	-2.371980000 -0.192056000 1.074953000 1.074953000 -1.340464000 -0.073267000 1.041631000 2.034072000 -1.379887000 -2.266256000 -0.192277000 1.968482000 -2.329701000 -0.394999000	н Н С С С О С С С С С С Н С Н С Н	5.440759000 3.827767000 0.000000000 0.000000000 0.000000000	-0.824243000 -0.583815000 -0.583815000 -1.782541000 -1.258586000 -3.269475000 -1.313156000 -3.949045000 -4.031936000 -5.343907000 -5.343907000 -5.420912000 -3.509783000 -6.083616000	-2.247279000 -2.963263000 -0.830100000 -0.394999000 1.954109000 -0.192277000 -1.518640000 1.041631000 -1.379887000 1.074953000 1.968482000 -1.340464000 -2.329701000 -0.108570000
H C C C C H C H C H C H C H C H C C C C	-2.331075000 -4.946560000 0.000000000 0.000000000 0.00000000	-1.650608000 -1.556040000 6.083616000 5.343907000 5.420912000 7.169074000 3.949045000 5.852709000 4.031936000 5.988050000 3.269475000 3.396696000 3.509783000 1.782541000 0.815568000	-2.371980000 -0.192056000 1.074953000 1.074953000 -1.340464000 -0.073267000 1.041631000 2.034072000 -1.379887000 -2.266256000 -0.192277000 1.968482000 -2.329701000 -0.394999000 0.830100000	н Н С С С С С С С С С С С С С С С С С С	3.440759000 3.827767000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000	-0.824243000 -0.583815000 -0.583815000 -1.782541000 -1.258586000 -3.269475000 -1.313156000 -3.949045000 -3.949045000 -5.343907000 -3.396696000 -5.420912000 -3.509783000 -6.083616000 -5.852709000	-2.247279000 -2.963263000 -0.830100000 -0.394999000 1.954109000 -0.192277000 -1.518640000 1.041631000 -1.379887000 1.074953000 1.968482000 -1.340464000 -2.329701000 -0.108570000 2.034072000
H C C C C H C H C H C H C H C H C C C O C	-2.331075000 -4.946560000 0.000000000 0.000000000 0.00000000	-1.650608000 -1.556040000 -1.556040000 5.343907000 5.420912000 7.169074000 3.949045000 5.852709000 4.031936000 3.269475000 3.269475000 3.396696000 3.509783000 1.782541000 0.815568000 1.313156000	-2.371980000 -0.192056000 1.074953000 1.074953000 -1.340464000 -0.073267000 1.041631000 2.034072000 -1.379887000 -2.266256000 -0.192277000 1.968482000 -2.329701000 -0.394999000 0.830100000 -1.518640000	н Н С С С О С С С С С С С С С С С С С С С	5.440759000 3.827767000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000	-0.824243000 -0.583815000 -1.782541000 -1.782541000 -1.258586000 -3.269475000 -3.269475000 -3.949045000 -3.949045000 -4.031936000 -5.343907000 -5.343907000 -5.420912000 -5.420912000 -5.852709000 -5.988050000	-2.247279000 -2.963263000 -0.394999000 1.954109000 -0.192277000 -1.518640000 1.041631000 -1.379887000 1.074953000 1.968482000 -1.340464000 -2.329701000 -0.108570000 2.034072000 -2.266256000
H C C C C H C H C H C H H C C H C C O O O	-2.331075000 -4.946560000 0.000000000 0.000000000 0.00000000	-1.650608000 -1.556040000 -1.556040000 5.343907000 5.420912000 7.169074000 3.949045000 5.852709000 4.031936000 5.988050000 3.269475000 3.269475000 3.396696000 3.509783000 1.782541000 0.815568000 1.313156000 1.258586000	-2.371980000 -0.192056000 -0.192056000 1.074953000 -1.340464000 -0.073267000 1.041631000 2.034072000 -1.379887000 -2.266256000 -0.192277000 1.968482000 -2.329701000 -0.394999000 0.830100000 -1.518640000 1.954109000	н Н С С С С С С С С С С С С С С С С С С	3.440759000 3.827767000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000	-0.824243000 -0.583815000 -1.782541000 -1.782541000 -1.258586000 -3.269475000 -3.269475000 -3.949045000 -3.949045000 -5.343907000 -5.343907000 -5.420912000 -3.509783000 -6.083616000 -5.852709000 -5.988050000 -7.169074000	-2.247279000 -2.963263000 -0.394999000 1.954109000 -0.192277000 -1.518640000 1.041631000 -1.379887000 1.074953000 1.968482000 -1.340464000 -2.329701000 -0.108570000 2.034072000 -2.266256000 -0.073267000

F							
С	5.701146000	-1.650456000	-1.056214000	0	-0.384915000	-2.268759000	-0.679908000
С	5.110970000	-1.389858000	0.182814000	0	-1.595315000	-0.877265000	0.744108000
С	4.974692000	-1.446393000	-2.234352000	0	1.090507000	-1.241794000	1.248531000
Н	6.725128000	-2.009106000	-1.105206000	С	-4.805555000	-2.612789000	0.572365000
С	3.792354000	-0.941394000	0.256220000	Н	-5.409602000	-1.720763000	0.383762000
Н	5.678815000	-1.536781000	1.096509000	Н	-4.630129000	-3.127473000	-0.376588000
С	3.665203000	-0.982262000	-2.168637000	Н	-5.370899000	-3.280548000	1.228308000
Н	5.431209000	-1.646721000	-3.198815000	С	-3.713028000	-1.473187000	2.550566000
С	3.054681000	-0.734928000	-0.923669000	Н	-2.765194000	-1.160148000	2.995382000
Н	3.338696000	-0.735261000	1.215309000	Н	-4.323566000	-0.584192000	2.365749000
Н	3.092905000	-0.810590000	-3.073987000	Н	-4.235584000	-2.107604000	3.272977000
С	1.661932000	-0.213036000	-0.956695000	0	-2.897430000	-1.353373000	0.250631000
0	1.220959000	0.348079000	-1.951203000	Н	1.049042000	-2.140276000	0.881793000
С	-1.306232000	-0.278101000	-1.625271000	С	1.581110000	2.199150000	2.371168000
С	-1.867291000	1.094790000	-1.649417000	С	0.539785000	3.317257000	2.261327000
0	-1.355980000	-1.003080000	-2.616231000	Н	0.772133000	3.975183000	1.418783000
С	-2.191228000	1.831035000	-0.496926000	Н	-0.462566000	2.906827000	2.118077000
С	-2.123061000	1.654136000	-2.915921000	Н	0.534570000	3.915817000	3.177274000
С	-2.753179000	3.102003000	-0.616452000	С	2.997989000	2.773545000	2.505550000
Н	-2.019425000	1.405583000	0.481449000	Н	3.742119000	1.973097000	2.541717000
С	-2.671695000	2.927191000	-3.029292000	Н	3.232126000	3.435143000	1.666775000
Н	-1.877236000	1.077253000	-3.800626000	Н	3.066197000	3.351646000	3.431253000
С	-2.989538000	3.654528000	-1.877168000	С	1.261708000	1.226997000	3.508746000
Н	-3.008897000	3.660642000	0.278697000	Н	0.281300000	0.768772000	3.363683000
Н	-2.854064000	3.352897000	-4.011263000	Н	2.010702000	0.432392000	3.559271000
Н	-3.422118000	4.647015000	-1.963228000	Н	1.256076000	1.762404000	4.463137000
0	0.380416000	0.879477000	0.788296000	0	1.686951000	1.495510000	1.101844000
3a							
c	2.115583000	-0.383835000	0.090997000	с	-3.126284000	-0.439721000	-0.095388000
с	0.999786000	0.680759000	0.043690000	н	-0.048530000	-1.874241000	-0.249853000
0	2.063885000	-1.395293000	0.759933000	н	-1.092982000	2.268928000	0.256294000
0	1.341144000	1.854276000	0.079677000	н	-2.444403000	-2.468871000	-0.356002000
С	-0.414643000	0.242865000	0.013738000	н	-3.509319000	1.668660000	0.172268000
С	-0.799095000	-1.098631000	-0.162153000	н	-4.178385000	-0.705700000	-0.136206000
С	-1.404021000	1.237828000	0.127728000	0	3.170064000	-0.011541000	-0.642046000
С	-2.151408000	-1.432869000	-0.218073000	Н	3.858076000	-0.693648000	-0.539916000
С	-2.750786000	0.897827000	0.078280000				

G				4a			
С	2.012230000	-0.517366000	0.000010000	С	-1.727003000	-0.118506000	-0.029027000
0	2.930421000	0.253564000	0.000006000	0	-2.330294000	-1.142527000	-0.285192000
С	0.564895000	-0.232885000	-0.000041000	С	-0.235824000	-0.023570000	-0.009820000
С	-0.338278000	-1.305509000	0.000021000	С	0.449686000	1.194505000	-0.136851000
С	0.092555000	1.093331000	-0.000005000	С	0.492313000	-1.216897000	0.110464000
С	-1.709620000	-1.056739000	-0.000012000	С	1.844330000	1.217339000	-0.126204000
С	-1.277089000	1.334662000	0.000015000	С	1.884471000	-1.190322000	0.130962000
С	-2.175961000	0.260596000	-0.000013000	С	2.562272000	0.027332000	0.014024000
Н	0.044871000	-2.321098000	0.000023000	Н	-0.087668000	2.128199000	-0.279834000
Н	0.805917000	1.911193000	-0.000008000	Н	-0.048867000	-2.153024000	0.194339000
Н	-2.412617000	-1.883417000	0.000004000	Н	2.368033000	2.161997000	-0.233077000
Н	-1.649516000	2.354344000	0.000014000	Н	2.441744000	-2.116008000	0.236297000
Н	-3.244415000	0.453930000	0.000064000	Н	3.647837000	0.047962000	0.026687000
				0	-2.431094000	1.002798000	0.255006000
				Н	-1.851447000	1.709422000	0.575788000
2a							
С	0.565738000	-0.522459000	0.782653000	с	-3.363726000	-1.293267000	-1.037206000
С	-0.565734000	0.522516000	0.782622000	С	-4.178620000	0.840482000	-0.221605000
0	0.339189000	-1.592088000	1.339430000	С	-4.396241000	-0.360790000	-0.906860000
0	-0.339229000	1.592125000	1.339455000	Н	1.317466000	1.763034000	-0.580039000
С	1.886674000	-0.171663000	0.207823000	н	2.738943000	-2.033577000	0.860365000
С	2.111789000	1.032191000	-0.482213000	Н	3.534542000	2.223475000	-1.569874000
С	2.930306000	-1.106645000	0.330201000	Н	4.982031000	-1.563931000	-0.122867000
С	3.363755000	1.293243000	-1.037217000	Н	5.370462000	0.568074000	-1.339662000
С	4.178606000	-0.840520000	-0.221609000	Н	-1.317422000	-1.763008000	-0.580039000
С	4.396249000	0.360743000	-0.906874000	Н	-2.738975000	2.033581000	0.860349000
С	-1.886668000	0.171683000	0.207810000	Н	-3.534496000	-2.223507000	-1.569855000
С	-2.111761000	-1.032182000	-0.482213000	Н	-4.982061000	1.563875000	-0.122860000
С	-2.930321000	1.106640000	0.330193000	Н	-5.370452000	-0.568147000	-1.339638000
_							
I ₂				OH.			
1	0.000000000	0.000000000	1.433073000	0	0.000000000	0.000000000	0.108510000
1	0.000000000	0.000000000	-1.433073000	Н	0.000000000	0.000000000	-0.868077000
он	radical			H ₂ O	1		
0	0.000000000	0.000000000	0.108882000	0	0.000000000	0.000000000	0.119856000

Н	0.000000000	0.000000000	-0.871059000	Н	0.000000000	0.757281000	-0.479425000
				Н	0.000000000	-0.757281000	-0.479425000
'Bu() radical			'Bu(ЭН		
C	-0.067555000	0.055418000	0.00000000	C	0.000905000	0.015128000	0.00000000
c	0.515222000	0.680356000	1 277026000	c	0.487556000	0.705750000	1 265181000
U U	-0.313232000	-0.080330000	2.166122000	U U	-0.487550000	-0.703730000	2.1(0248000
н	-0.182308000	-0.135862000	2.100132000	н	-0.160897000	-0.16/015000	2.160248000
Н	-1.606928000	-0.754534000	1.306065000	н	-1.582368000	-0.762604000	1.280118000
Н	-0.103639000	-1.693926000	1.311334000	Н	-0.099253000	-1.728313000	1.315911000
С	1.488389000	0.224767000	0.000000000	С	1.526475000	0.143335000	0.000000000
Н	1.815187000	0.764682000	-0.891331000	Н	1.863724000	0.688514000	-0.887336000
Н	1.815187000	0.764682000	0.891331000	Н	1.863724000	0.688514000	0.887336000
Н	1.935132000	-0.773906000	0.000000000	Н	1.998691000	-0.843307000	0.000000000
С	-0.515232000	-0.680356000	-1.277926000	С	-0.487556000	-0.705750000	-1.265181000
н	-1.606928000	-0.754534000	-1.306065000	н	-1.582368000	-0.762604000	-1.280118000
Н	-0.182368000	-0.135862000	-2.166132000	Н	-0.160897000	-0.167015000	-2.160248000
Н	-0.103639000	-1.693926000	-1.311334000	Н	-0.099253000	-1.728313000	-1.315911000
0	-0.515232000	1.362043000	0.000000000	0	-0.487556000	1.371451000	0.00000000
				Н	-1.454265000	1.328760000	0.000000000
'Bu(DOH						
С	0.387742000	0.000001000	0.029811000	Н	2.508459000	-0.000030000	-0.390055000
С	0.383934000	1.269987000	0.889601000	С	0.383925000	-1.269878000	0.889758000
Н	0.370774000	2.160348000	0.253299000	Н	-0.492866000	-1.295657000	1.540774000
Н	-0.492858000	1.295853000	1.540613000	Н	0.370759000	-2.160317000	0.253566000
Н	1.279979000	1.306364000	1.516547000	Н	1.279970000	-1.306184000	1.516707000
С	1.568920000	-0.000063000	-0.949430000	0	-0.739991000	-0.000050000	-0.872300000
Н	1.546004000	-0.888960000	-1.586778000	0	-1.966474000	0.000006000	-0.057011000
Н	1.546008000	0.888753000	-1.586891000	Н	-2.611636000	-0.000097000	-0.781739000

4. Detection of CO₂:

The formation of CO₂ in the reaction mixture was detected in a typical reaction with lime water.

Principle

The liberated carbon dioxide is used to produce a precipitate of calcium carbonate with the lime water.

The following reagents were prepared for the analysis.

Lime water solution: In a 50 mL volumetric flask, 1.0 g of Ca(OH)₂ was dissolved in 10 mL Milli-Q water, stoppered and stored in a cool place.

Procedure:

Reaction set up A: A 25 mL reaction vial fitted with a cork having an inlet was charged with a mixture of 1,4-diphenylbuta-1,3-diyne (**1a**) (0.5 mmol, 101 mg), tetra-*n*-butylammonium iodide (0.15 mmol, 55.4 mg), *tert*-butyl hydroperoxide (1.5 mmol, 135 mg, 0.145 mL) and DMSO (2 mL) and then heated at 140 °C.

Reaction set up B: In another, a 25 mL test tube fitted with a cork having an inlet is loaded with 5 mL of lime water solution.

The reaction set up A and B are interconnected through a needle which is being immersed in lime water at one end and the other end being inserted from the top. Upon progression of

reaction, the lime water solution slowly turns cloudy which is indicating the liberation of carbon dioxide (Figure S2).

Figure S2.Detection of CO₂ though lime water experiment.

Results:

The above experimental results showed the liberation of carbon dioxide during the reaction of **1a** under the standard reaction conditions.

5. Investigation of the reaction mechanism via Mass Spectrometry

6. Kinetic monitoring of the reaction via gas chromatography

A 10 mL reaction vial was charged with a mixture of 1,4-diphenylbuta-1,3-diyne (**1a**) (0.5 mmol, 101 mg), tetra-*n*-butylammonium iodide (0.15 mmol, 55.4 mg), *tert*-butyl hydroperoxide (1.5 mmol, 135 mg, 0.145 mL), mesitylene (0.5 mmol, 60 mg) and DMSO (2 mL) and then the reaction vial was then closed and heated at 140 °C. The reaction was monitored by taking an aliquot of the reaction mixture and analysing the distribution of the products *via* gas chromatography at specified time interval (Table S2).

Table S2. Product distribution for thremetal-free C-C bond activation of 1a.						
Time (h)	[1a] %	[2a] %				
0	100	0				
2	85	5				
4	70	13				
6	52	19				
8	41	27				
10	30	34				
12	21	42				
14	11	51				
16	6	59				
18	0	68				
20	0	76				

Figure S4. Kinetic analysis of the reaction of 1a to produce 2a.

7. Additional Optimization of the Reaction Conditions

Table S3. Optimization of conditions for the reaction of 1a. ^a				
$\frac{Ph}{Ph} \xrightarrow{Ph} Ph \xrightarrow{Ph} Ph \xrightarrow{O} Ph $				
S.N.	Catalyst (mol %)	Reagents (equiv.)	Conditions	yields ^b , of 2a/3a/4a
1	-	TBHP (3.0)	DMSO, 140 °C, 20 h	NR/0/0 ^c
2	TBAI (30)	-	DMSO, 140 °C, 20 h	<10/0/0 ^c
3	TBAI (30)	TBHP (3.0)	140 °C, 20 h	<10/0/0 ^c
4	TBAI (30)	TBHP (3.0)	DMA, 140 °C, 20 h	44/0/0
5	TBAI (30)	TBHP (3.0)	dioxane, 140 °C, 20 h	21/<10/13
6	TBAI (30)	TBHP (3.0)	Toluene, 140 °C, 20 h	15/0/<10
7	TBAI (30)	$K_2S_2O_8$ (3.0)	DMSO, 140 °C, 20 h	27/0/10
8	TBAI (30)	Ph-Se-Se-Ph (3.0)	DMSO, 140 °C, 20 h	13/0/<10
9	TBAI (30)	mCPBA (3.0)	DMSO, 140 °C, 20 h	39/<10/16
10	TBAI (30)	pyridine <i>N</i> -oxide (3.0)	DMSO, 140 °C, 20 h	16/<10/<10
^{<i>a</i>} All reactions were performed using 0.5 mmol 1a in 2 mL solvent. ^{<i>b</i>} Isolated yields. ^{<i>c</i>} Complex reaction mixture.				

8. General Experimental Procedure for the Synthesis of Symmetrical/Unsymmetrical 1,2-Diketones2a-y from 1,3-diynes 1a-x

A 10 mL reaction vial was charged with a mixture of symmetrical/unsymmetrical 1,3-diynes **1a-x** (0.5 mmol), tetra-*n*-butylammonium iodide (0.15 mmol, 55.4 mg), *tert*-butyl hydroperoxide (1.5 mmol, 135 mg, 0.145 mL) and DMSO (2 mL). The reaction vial was then closed and heated at 140 °C for 20 h. After completion of the reaction (progress was monitored by TLC; SiO₂, Hexane/EtOAc = 9:1), the mixture was diluted with ethyl acetate (15 mL) and water (20 mL) and extracted with ethyl acetate (3×10 mL). The combined organic layers were washed with brine (3×10 mL) and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the crude products were purified by column chromatography using silica gel (100-200 mesh) with hexane/EtOAc (9:1) as the eluent to obtain the desired products **2a-y**.

9. Analytical Data of Synthesized Symmetrical/Unsymmetrical 1,2-Diketones 2a-y

Benzil (2a)⁷; Yellow solid, Yield: 80 mg (76%); R_f = 0.60 (SiO₂, Hexane/EtOAc = 9:1); Purification system: Column chromatography (SiO₂, 100-200) (Hexane/EtOAc = 97:3); m.p = 100-101 °C (Lit⁷ 101-102 °C); ¹H NMR (400 MHz, CDCl₃): δ = 7.98 (d, ³*J* = 8.0 Hz, 4H; 2-H), 7.67 (t, ³*J* = 8.2 Hz, 2H; 4-H), 7.52 (t, ³*J* = 7.9 Hz, 4H; 3-H) ppm; ¹³CNMR (100 MHz, CDCl₃) δ = 194.5 (C-5), 134.9 (C-4), 133.0 (C-1), 129.9 (C-3), 129.0 (C-2) ppm; HRMS (EI-QTOF, [M + H]⁺): calculated for C₁₄H₁₁O₂: 211.0754; found: 211.0754.

1,2-Di-*o*-tolylethane-1,2-dione (2b)⁷; Yellow solid, Yield: 88 mg (74%); R_f = 0.60 (SiO₂, Hexane/EtOAc = 9:1); Purification system: Column chromatography (SiO₂, 100-200) (Hexane/EtOAc = 96:4); m.p = 80-81 °C (Lit⁷ 81-82 °C); ¹H NMR (400 MHz, CDCl₃): δ = 7.67 (dd, ³*J* = 8.0 Hz, 2H; 6-H), 7.49 (td, ³*J* = 7.6 Hz, 2H; 4-H), 7.34 (d, ³*J* = 6.8 Hz, 2H; 3-H), 7.28 (t, ³*J* = 7.6 Hz, 2H; 5-H), 2.71 (s, 6H; 8-H) ppm; ¹³CNMR (100 MHz, CDCl₃) δ = 197.0 (C-7), 141.6 (C-2), 133.7 (C-4), 133.1 (C-6), 132.7 (C-3), 131.9 (C-1), 126.1 (C-5), 22.0 (C-8) ppm; HRMS (EI-QTOF, [M + H]⁺): calculated for C₁₆H₁₅O₂: 239.1067; found: 239.1067.

1,2-Di-*m*-tolylethane-1,2-dione (2c)⁷; Yellow solid, Yield: 84 mg (71%); R_f = 0.60 (SiO₂, Hexane/EtOAc = 9:1); Purification system: Column chromatography (SiO₂, 100-200) (Hexane/EtOAc = 97:3); m.p = 91-93 °C (Lit⁷ 92-94 °C); ¹H NMR (400 MHz, CDCl₃): δ = 7.78-7.76 (m, 4H; 2-H and 6-H), 7.47 (d, ³J = 3.6 Hz, 2H; 4-H), 7.40 (t, ³J = 7.2 Hz, 2H; 5-H), 2.41 (s, 6H; 8-H) ppm; ¹³CNMR (100 MHz, CDCl₃) δ = 195.0 (C-7), 139.1 (C-3), 135.8 (C-2), 133.2 (C-1), 130.3 (C-5), 129.0 (C-4), 127.3 (C-6), 21.4 (C-8) ppm; HRMS (EI-QTOF, [M + H]⁺): calculated for C₁₆H₁₅O₂: 239.1067; found: 239.1064.

1,2-Bis(2-methoxyphenyl)ethane-1,2-dione $(2d)^8$; **Pale white solid**, **Yield**: 92 mg (68%); R_{f} = 0.30 (SiO₂, Hexane/EtOAc = 9:1); **Purification system**: Column chromatography (SiO₂, 100-200) (Hexane/EtOAc = 92:8); **m.p** = 128-130°C (Lit⁸ 130-131 °C); ¹**H NMR** (400 MHz, CDCl₃): δ = 8.09 (dd, ³*J* = 8.0 Hz, 2H; 6-H), 7.57 (td, ³*J* = 8.0Hz, 2H; 4-H), 7.12 (td, ³*J* = 7.8 Hz, 2H; 5-H), 6.96 (d, ³*J* = 8.0 Hz, 2H; 3-H), 3.59 (s, 6H; 8-H) ppm; ¹³CNMR (100 MHz, CDCl₃) δ = 192.5 (C-7), 160.4 (C-2), 135.6 (C-4), 130.5 (C-6), 123.5 (C-1), 121.4 (C-5), 112.5 (C-3), 55.9 (C-8) ppm; **HRMS** (EI-QTOF, [M + H]⁺): calculated for C₁₆H₁₅O₄: 271.0965; found: 271.0962.

1,2-Bis(4-methoxyphenyl)ethane-1,2-dione (**2e**)⁸; **Yellow solid**, **Yield**: 101 mg (75%); R_{f} = 0.20 (SiO₂, Hexane/EtOAc = 9:1); **Purification system**: Column chromatography (SiO₂, 100-200) (Hexane/EtOAc = 88:12); **m.p** = 133-134°C (Lit⁸ 134-135 °C); ¹**H NMR** (500 MHz, CDCl₃): δ = 7.94 (d, ³*J* = 8.0 Hz, 4H; 2-H), 6.96 (d, ³*J* = 8.0 Hz, 4H; 3-H), 3.88 (s, 6H; 6-H) ppm; ¹³CNMR (125 MHz, CDCl₃) δ = 193.4 (C-5), 164.8 (C-4), 132.3 (C-2), 126.3 (C-1), 114.3 (C-3), 55.6 (C-6) ppm; **HRMS** (EI-QTOF, [M + H]⁺): calculated for C₁₆H₁₅O₄: 271.0965; found: 271.0965.

1,2-Bis(4-chlorophenyl)ethane-1,2-dione (**2f**)⁷; **Yellow solid**, **Yield**: 97 mg (70%); R_f = 0.65 (SiO₂, Hexane/EtOAc = 9:1); **Purification system**: Column chromatography (SiO₂, 100-200) (Hexane/EtOAc = 95:5); **m.p** = 195-196 °C (Lit⁷ 194-195 °C); ¹**H NMR** (400 MHz, CDCl₃): δ

= 7.92 (d, ${}^{3}J$ = 8.0 Hz, 4H; 2-H), 7.51 (d, ${}^{3}J$ = 8.0 Hz, 4H; 3-H) ppm; 13 CNMR (100 MHz, CDCl₃) δ = 192.3 (C-5), 141.8 (C-4), 131.2 (C-1), 131.1 (C-2), 129.5 (C-3) ppm; HRMS (EI-QTOF, [M + H]⁺): calculated for C₁₄H₉Cl₂O₂: 278.9974; found: 278.9976.

1,2-Bis(4-bromophenyl)ethane-1,2-dione (**2g**)⁸; **White solid**, **Yield**: 126 mg (69%); R_f = 0.55 (SiO₂, Hexane/EtOAc = 9:1); **Purification system**: Column chromatography (SiO₂, 100-200) (Hexane/EtOAc = 94:6); **m.p** = 227-228 °C (Lit⁸ 229-230 °C); ¹**H NMR** (500 MHz, CDCl₃): δ = 7.95 (dd, ³*J* = 8.0 Hz, 4H; 2-H), 7.62 (dd, ³*J* = 8.0 Hz, 4H; 3-H) ppm; ¹³**CNMR** (100 MHz, CDCl₃) δ = 192.53 (C-5), 132.51 (C-3), 131.53 (C-1), 131.28 (C-2), 130.75 (C-4) ppm; **HRMS** (EI-QTOF, [M + H]⁺): calculated for C₁₄H₉Br₂O₂: 366.8964; found: 366.8964.

1,2-Di(naphthalen-1-yl)ethane-1,2-dione (2h)⁹; Pale yellow solid, Yield: 105 mg (68%); R_{f} = 0.45 (SiO₂, Hexane/EtOAc = 9:1); Purification system: Column chromatography (SiO₂, 100-200) (Hexane/EtOAc = 96:4); m.p = 191-192°C (Lit⁹ 190-190.5 °C); ¹H NMR (400 MHz, CDCl₃): δ = 9.35 (d, ³*J* = 9.2 Hz, 2H; 9-H), 8.13 (d, ³*J* = 8.0 Hz, 2H; 4-H), 8.03 (dd, ³*J* = 8.0 Hz, 2H; 2-H), 7.96 (d, ³*J* = 8.0 Hz, 2H; 6-H), 7.76 (td, ³*J* = 8.0 Hz, 2H; 8-H), 7.64 (td, ³*J* = 8.0 Hz, 2H; 3-H), 7.49 (t, ³*J* = 8.0 Hz, 2H; 7-H) ppm; HRMS (EI-QTOF, [M + H]⁺): calculated for C₂₂H₁₅O₂: 311.1067; found: 311.1063.

1-Phenyl-2-(*p*-tolyl)ethane-1,2-dione (2i)⁷; Yellow solid, Yield: 83 mg (74%); R_f = 0.45 (SiO₂, Hexane/EtOAc = 9:1); Purification system: Column chromatography (SiO₂, 100-200) (Hexane/EtOAc = 96:4); m.p = 31-32 °C (Lit⁷ 30-32 °C); ¹H NMR (600 MHz, CDCl₃): δ = 7.97 (d, ³*J* = 8.0 Hz, 2H; 2-H), 7.87 (d, ³*J* = 8.0 Hz, 2H; 6-H), 7.64 (tt, ³*J* = 8.2 Hz, 1H; 8-H), 7.50 (td, ³*J* = 8.6 Hz, 2H; 7-H), 7.30 (d, ³*J* = 6.8 Hz, 2H; 3-H), 2.43 (s, 3H; 11-H) ppm; ¹³CNMR (150 MHz, CDCl₃) δ = 194.8 (C-10), 194.4 (C-9), 146.3 (C-4), 134.9 (C-8), 133.2 (C-5), 130.7 (C-1), 130.1 (C-2), 130.0 (C-3), 129.8 (C-9), 129.1 (C-6), 22.0 (C-11) ppm; HRMS (EI-QTOF, [M + H]⁺): calculated for C₁₅H₁₃O₂: 225.0910; found: 225.0912.

1-(4-Chlorophenyl)-2-phenylethane-1,2-dione (**2j**)⁷; **Yellow solid**, **Yield**: 85 mg (70%); R_{f} = 0.50 (SiO₂, Hexane/EtOAc = 9:1); **Purification system**: Column chromatography (SiO₂, 100-200) (Hexane/EtOAc = 97:3); **m.p** = 70-71 °C (Lit⁷ 69-71 °C); ¹**H NMR** (600 MHz, CDCl₃): δ = 7.97 (d, ³*J* = 8.0 Hz, 2H; 6-H), 7.93 (d, ³*J* = 8.0 Hz, 2H; 2-H), 7.67 (t, ³*J* = 8.0 Hz, 1H; 8-H), 7.54-7.48 (m,4H; 3-H and 7-H) ppm; ¹³CNMR (150 MHz, CDCl₃) δ = 194.0 (C-9), 193.2 (C-10), 141.7 (C-4), 135.2 (C-8), 132.9 (C-5), 131.5 (C-1), 131.3 (C-2), 130.1 (C-3), 129.6 (C-7), 129.2 (C-6) ppm; **HRMS** (EI-QTOF, [M + H]⁺): calculated for C₁₄H₁₀ClO₂: 245.0364; found: 245.0363.

1-(3-Bromophenyl)-2-phenylethane-1,2-dione $(2\mathbf{k})^7$; **Yellow solid**, **Yield**: 92 mg (64%); R_f = 0.56 (SiO₂, Hexane/EtOAc = 9:1); **Purification system**: Column chromatography (SiO₂, 100-200) (Hexane/EtOAc = 97:3); **m.p** = 79-80 °C (Lit¹⁰ 80-81 °C); ¹**H NMR** (500 MHz, CDCl₃:DMSO-*d*₆ (8:2)): δ = 8.13 (t, ⁴*J* = 1.8 Hz, 1H; 3-H), 7.96 (d, ³*J* = 8.0 Hz, 2H; 10-H), 7.88 (dt, ³*J* = 8.0 Hz, 1H; 5-H), 7.78 (ddd, ³*J* = 6.9 Hz, 1H; 7-H), 7.67 (td, ³*J* = 6.8 Hz, 1H; 4-H), 7.52 (d, ³*J* = 8.0 Hz, 2H; 11-H), 7.39 (t, ³*J* = 7.0 Hz, 1H; 6-H) ppm; ¹³CNMR (125 MHz, CDCl₃) δ = 193.55 (C-11), 192.85 (C-12), 137.69 (C-4), 137.17 (C-10), 134.71 (C-1), 132.67

(C-7), 132.46 (C-2), 130.61 (C-5), 129.97 (C-9), 129.13 (C-8), 128.59 (C-6), 123.54 (C-3) ppm; **HRMS** (EI-QTOF, $[M + H]^+$): calculated for C₁₄H₁₀BrO₂: 288.9859; found: 288.9859.

1-(4-Nitrophenyl)-2-phenylethane-1,2-dione (**2l**)⁷; **Yellow solid**, **Yield**: 78 mg (61%); R_{f} = 0.60 (SiO₂, Hexane/EtOAc = 9:1); **Purification system**: Column chromatography (SiO₂, 100-200) (Hexane/EtOAc = 97:3); **m.p** = 141-142°C (Lit⁷ 140-141 °C); ¹**H NMR** (400 MHz, CDCl₃): δ = 8.35 (d, ³*J* = 8.0 Hz, 2H; 3-H), 8.17 (d, ³*J* = 8.0 Hz, 2H; 2-H), 7.99 (dd, ³*J* = 8.0 Hz, 2H; 6-H), 7.71 (tt, ³*J* = 8.0 Hz, 1H; 8-H), 7.55 (tt, ³*J* = 8.0 Hz, 2H; 7-H) ppm; ¹³CNMR (100 MHz, CDCl₃) δ = 192.9 (C-9), 192.1 (C-10), 151.2 (C-4), 137.4 (C-1), 135.5 (C-8), 132.5 (C-5), 131.0 (C-2), 130.1 (C-7), 129.3 (C-6), 124.2 (C-3) ppm; **HRMS** (EI-QTOF, [M + H]⁺): calculated for C₁₄H₁₀NO₄: 256.0604; found: 256.0603.

1-Phenyl-2-(3-(trifluoromethyl)phenyl)ethane-1,2-dione $(2m)^7$; **Pale yellow solid**, **Yield**: 85 mg (64%); R_f = 0.60 (SiO₂, Hexane/EtOAc = 9:1); **Purification system**: Column chromatography (SiO₂, 100-200) (Hexane/EtOAc = 98:2); **m.p** = 69-70°C (Lit⁷ 68-69 °C); ¹**H NMR** (400 MHz, CDCl₃): δ = 8.29-8.27 (m, 1H; 2-H), 8.17-8.14 (m, 1H; 4-H), 8.01-7.98 (m, 2H; 8-H), 7.93-7.9 (m, 1H; 6-H), 7.73-7.65 (m, 2H; 5-H and 10-H), 7.57-7.52 (t, ³*J* = 8.0 Hz, 2H; 9-H) ppm; ¹³CNMR (100 MHz, CDCl₃) δ = 193.3 (C-11), 192.6 (C-12), 135.2 (C-10), 133.6 (C-1), 133.17 (C-6), 132.64 (C-7), 131.83 (q, *J* = 34.0 Hz, C-3), 131.11 (q, *J* = 4.0 Hz, C-4), 130.0 (C-9), 129.7 (C-5), 129.16 (C-8), 126.48 (q, *J* = 4.0 Hz, C-2), 124.76 (C-13) ppm; **HRMS** (EI-QTOF, [M + H]⁺): calculated for C₁₄H₁₀F₃O₂: 267.0627; found: 267.0633.

4-(2-Oxo-2-phenylacetyl)benzonitrile $(2n)^7$; **Yellow solid**, **Yield**: 69 mg (59%); R_f = 0.50 (SiO₂, Hexane/EtOAc = 9:1); **Purification system**: Column chromatography (SiO₂, 100-200) (Hexane/EtOAc = 98:2); **m.p** = 108-110 °C (Lit⁷ 109-110 °C); ¹**H NMR** (400 MHz, CDCl₃): δ = 8.09 (d, ³*J* = 8.0 Hz, 2H; 3-H), 7.98 (d, ³*J* = 8.0 Hz, 2H; 2-H), 7.82 (d, ³*J* = 8.0 Hz, 2H; 6-H), 7.70 (t, ³*J* = 8.0 Hz, 1H; 8-H), 7.54 (t, ³*J* = 8.0 Hz, 2H; 7-H) ppm; ¹³**CNMR** (100 MHz, CDCl₃) δ = 193.1 (C-9), 192.49 (C-10), 135.96 (C-1), 135.51 (C-8), 132.88 (C-3), 132.5 (C-5), 130.3 (C-2), 130.1 (C-7), 129.3 (C-6), 117.98 (C-11), 117.66 (C-4) ppm; **HRMS** (EI-QTOF, [M + H]⁺): calculated for C₁₅H₁₀NO₂: 236.0706; found: 236.0708.

Ethyl 4-(2-oxo-2-phenylacetyl)benzoate (2o)¹¹; Yellow solid, Yield: 51 mg (36%); R_f = 0.20 (SiO₂, Hexane/EtOAc = 9:1); Purification system: Column chromatography (SiO₂, 100-200) (Hexane/EtOAc = 90:10); m.p = 73-75 °C (Lit¹¹ 75-76 °C); ¹H NMR (400 MHz, CDCl₃): δ = 8.17 (d, ³J = 8.0 Hz, 2H; 2-H), 8.04 (d, ³J = 8.0 Hz, 2H; 3-H), 7.98 (d, ³J = 8.0 Hz, 2H; 6-H), 7.68 (t, ³J = 8.0 Hz, 1H; 8-H), 7.53 (t, ³J = 8.0 Hz, 2H; 7-H) ppm; ¹³CNMR (100 MHz, CDCl₃) δ = 193.9 (C-9), 193.8 (C-10), 165.48 (C-11), 136.07 (C-1), 135.8 (C-4), 135.19 (C-8), 132.84 (C-5), 130.13 (C-3), 130.05 (C-2), 129.82 (C-7), 129.19 (C-6), 61.75 (C-12), 14.33 (C-13) ppm; HRMS (EI-QTOF, [M + H]⁺): calculated for C₁₇H₁₅O₄: 283.0965; found: 283.0965.

4-(2-Oxo-2-phenylacetyl)benzoic acid (**2p**)¹²; **Pale yellow solid**, **Yield**: 37 mg (29%); R_f = 0.10 (SiO₂, Hexane/EtOAc = 5:5); **Purification system**: Column chromatography (SiO₂, 100-200) (Hexane/EtOAc = 70:30); **m.p** = 218-220°C (Lit¹² 219-221 °C); ¹**H NMR** (400 MHz, CDCl₃:DMSO-*d*₆=8:2): δ = 8.11 (d, ³*J* = 8.0 Hz, 2H; 3-H), 7.96 (d, ³*J* = 8.0 Hz, 2H; 2-H), 7.90 (d, ³*J* = 8.0 Hz, 2H; 6-H), 7.62 (t, ³*J* = 8.0 Hz, 1H; 8-H), 7.47 (t, ³*J* = 8.0 Hz, 2H; 7-H) ppm;

¹³**CNMR** (100 MHz, CDCl₃:DMSO- d_6 =8:2) δ = 194.1 (C-9), 194.0 (C-10), 167.3 (C-11), 136.5 (C-1), 135.8 (C-4), 135.2 (C-8), 132.7 (C-5), 130.3 (C-3), 130.0 (C-2), 129.7 (C-7), 129.17 (C-6) ppm; **HRMS** (EI-QTOF, [M + H]⁺): calculated for C₁₅H₁₁O₄: 255.0652; found: 255.0651.

1-(*m*-Tolyl)-2-(*p*-tolyl)ethane-1,2-dione (2q)⁷; Yellow solid, Yield: 76 mg (64%); R_f = 0.40 (SiO₂, Hexane/EtOAc = 9:1); Purification system: Column chromatography (SiO₂, 100-200) (Hexane/EtOAc = 90:10); m.p = 60-61°C (Lit⁷61-62 °C); ¹H NMR (400 MHz, CDCl₃): δ = 7.86 (d, ³*J* = 8.0 Hz, 2H; 10-H), 7.78-7.74 (m, 2H; 3-H and 7-H), 7.45 (d, ³*J* = 8.0 Hz, 1H; 5-H), 7.38 (t, ³*J* = 8.0 Hz, 1H; 6-H), 7.30 (d, ⁴*J* = 3.6 Hz, 2H; 11-H), 2.43 (s, 3H; 13-H), 2.40 (s, 3H; 14-H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 195.02 (C-1), 194.42 (C-8), 146.12 (C-12), 138.95 (C-4), 135.62 (C-5), 133.18 (C-3), 130.71 (C-9), 130.2 (C-2), 130.0 (C-10), 129.73 (C-11), 128.88 (C-6), 127.21 (C-7), 21.91 (C-13), 21.25 (C-14) ppm; HRMS (EI-QTOF, [M + H]⁺): calculated for C₁₆H₁₅O₂: 239.1067; found: 239.1067.

1-(4-Methoxyphenyl)-2-*p*-tolylethane-1,2-dione $(2r)^{14}$; Yellow solid, Yield: 94 mg (74%); R_{f} = 0.10 (SiO₂, Hexane/EtOAc = 9:1); Purification system: Column chromatography (SiO₂, 100-200) (Hexane/EtOAc = 94:6); m.p = 105-106 °C (Lit¹⁴ 106-108 °C); ¹H NMR (400 MHz, CDCl₃): δ = 7.93 (d, ³*J* = 8.0 Hz, 2H; 2-H), 7.86 (d, ³*J* = 8.0 Hz, 2H; 6-H), 7.29 (d, ³*J* = 8.0 Hz, 2H; 7-H), 6.96 (d, ³*J* = 8.0 Hz, 2H; 3-H), 3.88 (s, 3H; 11-H), 2.43 (s, 3H; 12-H) ppm; ¹³CNMR (100 MHz, CDCl₃) δ = 194.7 (C-10), 193.5 (C-9), 165.0 (C-4), 146.1 (C-8), 132.4 (C-2), 130.9 (C-5), 130.1 (C-6), 129.7 (C-7), 126.3 (C-1), 114.4 (C-3), 55.7 (C-11), 22.0 (C-12) ppm; HRMS (EI-QTOF, [M + H]⁺): calculated for C₁₆H₁₅O₃: 255.1016; found: 255.1018.

1-(4-Bromophenyl)-2-(*p*-tolyl)ethane-1,2-dione (2s)⁷; Yellow solid, Yield: 100 mg (74%); R_{f} = 0.45 (SiO₂, Hexane/EtOAc = 9:1); Purification system: Column chromatography (SiO₂, 100-200) (Hexane/EtOAc = 95:5); m.p = 92-93 °C (Lit⁷ 93-95 °C); ¹H NMR (400 MHz, CDCl₃): δ = 7.87-7.82 (m, 4H; 2-H and 6-H), 7.66 (d, ³*J* = 8.6 Hz, 2H; 3-H), 7.31 (d, ³*J* = 7.6 Hz, 2H; 7-H), 2.44 (s, 3H; 11-H) ppm; ¹³CNMR (100 MHz, CDCl₃) δ = 193.6 (C-9), 193.5 (C-10), 146.4 (C-8), 132.4 (C-3), 131.9 (C-1), 131.2 (C-2), 130.5 (C-5), 130.4 (C-4), 130.1 (C-6), 129.8 (C-7), 22.0 (C-11) ppm; HRMS (EI-QTOF, [M + H]⁺): calculated for C₁₅H₁₂BrO₂: 303.0015; found: 303.0023.

1-(2-Methoxyphenyl)-2-(*m*-tolyl)ethane-1,2-dione (2t)⁷; Pale yellow solid, Yield: 77 mg (74%); R_f = 0.30 (SiO₂, Hexane/EtOAc = 9:1); Purification system: Column chromatography (SiO₂, 100-200) (Hexane/EtOAc = 90:10); ¹H NMR (400 MHz, CDCl₃): δ = 8.03 (d, ³*J* = 8.0 Hz, 1H; 6-H), 7.74-7.71 (m, 2H; 8-H and 12-H), 7.60 (td, ³*J* = 8.0 Hz, 1H; 4-H), 7.42 (d, ³*J* = 8.0 Hz, 1H; 10-H), 7.37 (t, ³*J* = 8.0 Hz, 1H; 11-H), 7.13 (t, ³*J* = 8.4 Hz, 1H; 5-H), 6.94 (d, ³*J* = 8.0 Hz, 1H; 3-H), 3.58 (s, 3H; 15-H), 2.41 (s, 3H; 16-H) ppm; ¹³CNMR (100 MHz, CDCl₃) δ = 194.8 (C-13), 193.8 (C-14), 160.6 (C-2), 138.7 (C-9), 136.5 (C-4), 134.7 (C-10), 133.0 (C-7), 130.7 (C-8), 129.9 (C-11), 128.7 (C-6), 126.8 (C-12), 124.1 (C-1), 121.7 (C-5), 112.6 (C-3), 55.9 (C-15), 21.4 (C-16) ppm; HRMS (EI-QTOF, [M + H]⁺): calculated for C₁₆H₁₅O₃: 255.1016; found: 255.1016.

1-(3-Bromophenyl)-2-(4-chlorophenyl)ethane-1,2-dione $(2u)^7$; Yellow solid, Yield: 111 mg (74%); R_f = 0.60 (SiO₂, Hexane/EtOAc = 9:1); Purification system: Column chromatography

(SiO₂, 100-200) (Hexane/EtOAc = 94:6); ¹**H** NMR (400 MHz, CDCl₃): $\delta = 8.12$ (td, ³*J* = 3.2 Hz, 1H; 2-H), 7.92 (d, ³*J* = 8.0 Hz, 2H; 8-H), 7.87 (dt, ³*J* = 8.0 Hz, 1H; 4-H), 7.79 (ddd, ³*J* = 6.9 Hz, 1H; 6-H), 7.51 (d, ³*J* = 8.0 Hz, 2H; 9-H), 7.40 (td, ³*J* = 8.0 Hz, 1H; 5-H) ppm; ¹³CNMR (100 MHz, CDCl₃) $\delta = 192.26$ (C-11), 192.14 (C-12), 142.01 (C-10), 137.94 (C-4), 134.57 (C-11), 132.66 (C-2), 131.38 (C-8), 131.11 (C-7), 130.7 (C-9), 129.62 (C-5), 128.68 (C-6), 123.67 (C-3) ppm; **HRMS** (EI-QTOF, [M + H]⁺): calculated for C₁₄H₉BrClO₂: 322.9469; found: 322.9469.

1-(Naphthalen-1-yl)-2-phenylethane-1,2-dione $(2v)^7$; Yellow solid, Yield: 93 mg (72%); R_{f} = 0.50 (SiO₂, Hexane/EtOAc = 9:1); Purification system: Column chromatography (SiO₂, 100-200) (Hexane/EtOAc = 96:4); m.p = 83-84°C (Lit⁷ 84-86 °C); ¹H NMR (400 MHz, CDCl₃): δ = 9.30 (d, ³*J* = 8.0 Hz, 1H; 9-H), 8.12 (d, ³*J* = 8.0 Hz, 1H; 4-H), 8.03 (d, ³*J* = 8.0 Hz, 2H; 14-H), 7.94-7.90 (m, 2H; 2-H and 6-H), 7.75 (t, 1H; 8-H), 7.66-7.64 (m, 2H; 3-H and 16-H), 7.51-7.48 (m, 3H; 7-H and 15-H) ppm; ¹³CNMR (100 MHz, CDCl₃) δ = 197.1 (C-11), 194.5 (C-12), 135.9 (C-1), 135.0 (C-16), 134.7 (C-8), 134.1 (C-4), 133.7 (C-13), 131.0 (C-5), 130.0 (C-15), 129.4 (C-6), 129.0 (C-14), 128.8 (C-10), 128.5, 127.1, 126.0 (C-7), 124.4 (C-9) ppm; HRMS (EI-QTOF, [M + H]⁺): calculated for C₁₈H₁₃O₂: 261.0910; found: 261.0913.

1-(4-Methylphenyl)-2-(1-naphthyl)ethane-1,2-dione $(2w)^{13}$; **Yellow solid**, **Yield**: 89 mg (65%); R_f = 0.50 (SiO₂, Hexane/EtOAc = 9:1); **Purification system**: Column chromatography (SiO₂, 100-200) (Hexane/EtOAc = 95:5); **m.p** = 92-93 °C (Lit¹³ 93-94 °C); ¹H NMR (400 MHz, CDCl₃): δ = 9.30 (d, ³*J* = 8.0 Hz, 1H; 9-H), 8.12 (d, ³*J* = 8.0 Hz, 1H; 4-H), 7.95-7.90 (m, 4H; 2-H, 6-H and 14-H), 7.74 (t, 1H; 8-H), 7.63 (t, ³*J* = 8.0 Hz, 1H; 3-H), 7.48 (d, ³*J* = 8.0 Hz, 1H; 7-H), 7.32 (d, ³*J* = 8.0 Hz, 2H; 15-H), 2.4 (s, 3H; 17-H) ppm; ¹³CNMR (100 MHz, CDCl₃) δ = 197.4 (C-11), 194.4 (C-12), 146.1 (C-16), 135.9 (C-1), 135.0 (C-8), 134.1 (C-4), 131.0, 130.27, 130.24, 130.2, 129.88, 129.85, 129.81, 128.8, 127.1, 126.0, 124.5, 22.0 (C-17) ppm; HRMS (EI-QTOF, [M + H]⁺): calculated for C₁₉H₁₅O₂: 275.1067; found: 275.1074.

Ethyl 4-(2-(naphthalen-1-yl)-2-oxoacetyl)benzoate (2**x**); **Pale yellow solid**, **Yield**: 81 mg (49%); R_f = 0.35 (SiO₂, Hexane/EtOAc = 9:1); **Purification system**: Column chromatography (SiO₂, 100-200) (Hexane/EtOAc = 97:3); ¹**H NMR** (400 MHz, CDCl₃): δ = 9.29 (d, ³*J* = 8.0 Hz, 1H; 9-H), 8.19-8.14 (m, 3H; 2-H, and 14-H), 8.09 (d, ³*J* = 8.0 Hz, 2H; 15-H), 7.96 (d, ³*J* = 8.0 Hz, 1H; 4-H), 7.89 (d, ³*J* = 8.0 Hz, 1H; 6-H), 7.76 (t, ³*J* = 8.0 Hz, 1H; 8-H), 7.65 (t, ³*J* = 8.0 Hz, 1H; 3-H), 7.51 (d, ³*J* = 8.0 Hz, 1H; 7-H), 7.51 (d, ³*J* = 8.0 Hz, 1H; 7-H), 4.4 (q, ³*J* = 9.0 Hz, 2H; 18-H), 1.4 (t, ³*J* = 8.0 Hz, 3H; 19-H) ppm; ¹³CNMR (100 MHz, CDCl₃) δ = 196.48 (C-12), 193.87 (C-11), 165.53 (C-17), 136.47 (C-13), 136.34 (C-1), 135.67 (C-16), 135.23 (C-8), 134.2 (C-4), 131.04 (C-10), 130.18 (C-15), 129.93 (C-14), 129.7, 128.95, 128.44, 127.33, 125.97 (C-7), 124.5 (C-9), 61.75 (C-18), 14.34 (C-19) ppm; **HRMS** (EI-QTOF, [M + H]⁺): calculated for C₂₁H₁₇O₄: 333.1121; found: 333.1122.

1-Phenyl-2-(thiophen-2-yl)ethane-1,2-dione (2y); Pale brown solid, Yield: 63 mg (58%); $R_f = 0.45$ (SiO₂, Hexane/EtOAc = 9:1); Purification system: Column chromatography (SiO₂, 100-200) (Hexane/EtOAc = 96:4); m.p = 62-63 °C (Lit¹⁵ 61.5-62.5 °C); ¹H NMR (400 MHz, CDCl₃): $\delta = 8.04$ (dd, ³*J* = 8.0 Hz, 2H; 6-H), 7.84 (dd, ³*J* = 8.0 Hz, 2H; 4-H), 7.80 (d, ³*J* = 8.0

Hz, 1H; 2-H), 7.65 (t, ${}^{3}J$ = 8.0 Hz, 1H; 8-H), 7.50 (t, ${}^{3}J$ = 8.0 Hz, 2H; 7-H), 7.18 (t, ${}^{3}J$ = 8.0 Hz, 1H; 3-H) ppm; 13 CNMR (100 MHz, CDCl₃) δ = 192.19 (C-10), 185.71 (C-9), 139.95 (C-1), 137.0 (C-2), 136.86 (C-8), 134.98 (C-5), 132.7 (C-2), 130.33 (C-7), 129.03 (C-6), 128.93 (C-3) ppm; HRMS (EI-QTOF, [M + H]⁺): calculated for C₁₂H₉O₂S: 217.0318; found: 217.0320.

Benzoic acid (4a)¹⁶; White solid, Yield: 13 mg (21%); R_f = 0.1 (SiO₂, Hexane/EtOAc = 9:1); Purification system: Column chromatography (SiO₂, 100-200) (Hexane/EtOAc = 85:15); m.p = 123-124°C (Lit¹⁶ 124-126 °C); ¹H NMR (400 MHz, CDCl₃): δ = 8.13 (d, ³*J* = 8.0 Hz, 2H; 2-H), 7.64 (t, ³*J* = 8.0 Hz, 1H; 4-H), 7.49 (t, ³*J* = 8.0 Hz, 2H; 3-H) ppm; ¹³CNMR (100 MHz, CDCl₃) δ = 172.2 (C-5), 133.8 (C-4), 130.2 (C-2), 129.3 (C-1), 128.5 (C-3) ppm; HRMS (EI-QTOF, [M + H]⁺): calculated for C₇H₇O₂: 123.0441; found: 123.0440.

10. NMR Spectral Data

S24

--- 0.08

- 2.71

Figure S6. 1 H (400 MHz), 13 C (100 MHz) NMR spectra of **2b** in CDCl₃.

S26

Figure S8. 1 H (400 MHz), 13 C (100 MHz) NMR spectra of 2d in CDCl₃.

150 140 130 120 110 100 f1 (ppm) 80 70

Figure S9. ¹H (500 MHz), ¹³C (125 MHz) NMR spectra of **2e** in CDCl₃.

Figure S11. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of 2g in CDCl₃.

Figure S12. ¹H (400 MHz) NMR spectra of 2h in CDCl₃.

Figure S13.¹H (600 MHz), ¹³C (150 MHz) NMR spectra of 2i in CDCl₃.

Figure S14. ¹H (600 MHz), ¹³C (150 MHz) NMR spectra of 2j in CDCl₃. S33

Figure S15. ¹H (500 MHz), ¹³C (125 MHz) NMR spectra of 2k in CDCl₃.

Figure S16. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of 2l in CDCl₃.

8.8.29 8.8.29 8.8.28 8.8.28 8.8.28 8.8.28 8.8.15 8.8.15 8.8.15 8.8.15 8.8.15 8.8.15 8.8.15 8.8.15 8.8.15 8.8.15 8.8.15 8.8.15 8.8.15 8.8.15 8.8.15 8.8.15 7.7.29 7.7.29 7.7.29 7.7.29 7.7.29 7.7.29 7.7.29 7.7.29 7.7.29 7.7.29 7.7.29 7.7.20 7.7.70 7.

Figure S17. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of 2m in CDCl₃.

Figure S18. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of 2n in CDCl₃.

Figure S19. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of 20 in CDCl₃.

Figure S20. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of 2p in CDCl₃:DMSO-*d*₆ (8:2).

Figure S21. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of 2q in CDCl₃.

Figure S22. 1 H (400 MHz), 13 C (100 MHz) NMR spectra of 2r in CDCl₃.

Figure S23. 1 H (400 MHz), 13 C (100 MHz) NMR spectra of 2s in CDCl₃.

Figure S24. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of 2t in CDCl₃.

Figure S25. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of 2u in CDCl₃.

Figure S26. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of 2v in CDCl₃.

Figure S27. 1 H (400 MHz), 13 C (100 MHz) NMR spectra of 2w in CDCl₃.

Figure S28. 1 H (400 MHz), 13 C (100 MHz) NMR spectra of 2x in CDCl₃.

8.8.05 8.8.05 8.8.05 8.8.05 8.8.05 8.8.05 8.8.05 8.8.05 8.8.05 8.8.05 8.8.05 7.7.88 8.8.05 7.7.88 8.8.05 7.7.88 8.8.05 7.7.88 8.8.05 7.7.88 8.8.05 7.7.88 8.8.05 7.7.88 7.7.88 7.7.7.85 7.7.7.85 7.7.7.85 7.7.7.85 7.7.7.55

Figure S29. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of 2y in CDCl₃.

Figure 30. 1 H (400 MHz), 13 C (100 MHz) NMR spectra of 4a in CDCl₃.

11. References

- Gaussian 09 (Revision A.02), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, et al, Gaussian, Inc., Wallingford CT, 2009.
- 2. A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, *J. Chem. Phys.*, 1993, **98**, 5648.
- 3. W. J. Hehre, R. Ditchfield and J. A. Pople, Self-Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules, *J. Chem. Phys.*, 1972, **56**, 2257.
- 4. J. D. Chai and M. Head-Gordon, Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections, *Phys. Chem. Chem. Phys.*, 2008, **10**, 6615.
- 5. Y. Zhao and D. G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, *Theor. Chem. Acc.*, 2008, **120**, 215.
- (a) M. Cossi, N. Rega, G. Scalmani and V. Barone, Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model, *J. Comput. Chem.* 2003, 24, 669; (b) V. Borane and M. Cossi, Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model, *J. Phys. Chem. A.*, 1998, 102, 1995.
- 7. R. Gujjarappa, N. Vodnala, V. P. R. K. Putta, V. G. Reddy and C. C. Malakar, Conversion of alkynes into 1,2-diketones using HFIP as sacrificial hydrogen donor and DMSO as dihydroxylating agent, *Tetrahedron Lett.*, 2020, **61**, 151588.
- P.-J. Zhou, C.-K. Li, S.-F. Zhou, A. Shoberu and J.-P. Zou, Copper-catalyzed TEMPO oxidative cleavage of 1,3-diketones and β-keto esters for synthesis of 1,2-diketones and α-keto esters, *Org. Biomol. Chem.*, 2017, **15**, 2629.
- E. Cho, A. Jayaraman, J. Lee, K. C. Ko and S. Lee, Substituent Effect in the Synthesis of α,α-Dibromoketones, 1,2-Dibromalkenes, and 1,2-Diketones from the Reaction of Alkynes and Dibromoisocyanuric Acid, *Adv. Synth. Catal.*, 2019, **361**, 1846.
- T.-Y. Fan, W.-Y. Wu, S.-P. Yu, Y.Zhong, C.Zhao, M. Chen, H.-M. Li, N.-G. Li, Z. Chen, S. Chen, Z.-H. Sun, J.-A. Duan and Z.-H. Shi, Design, synthesis and evaluation of 2-amino-imidazol-4-one derivatives as potent β-site amyloid precursor protein cleaving enzyme 1 (BACE-1) inhibitors, *Bioorg. Med. Chem. Lett.*, 2019, **29**, 126772.
- 11. X. Liu, T. Cong, P. Liu and P. Sun, Synthesis of 1,2-Diketones *via* A Metal-free, Visible-light Induced Aerobic Photooxidation of Alkynes, *J. Org. Chem.*, 2016, **81**, 7256.
- 12. S. W. Kim, T.-W. Um and S. Shin, Metal-Free Iodine-Catalyzed Oxidation of Ynamides and Diaryl Acetylenes into 1,2-Diketo Compounds, *J. Org. Chem.*, 2018, **83**, 4703.
- T. Matsuda and S. Oyama, Synthesis of unsymmetrical benzils *via* palladium-catalysed αarylation–oxidation of 2-hydroxyacetophenones with aryl bromides, *Org. Biomol. Chem.*, 2020, 18, 3679.
- 14. Y. Kumar, Y. Jaiswal and A. Kumar, Two-Step One-Pot Synthesis of Unsymmetrical (Hetero)Aryl 1,2-Diketones by Addition-Oxygenation of Potassium Aryltrifluoroborates to (Hetero)Arylacetonitriles, *Eur. J. Org. Chem.*, 2018, 494.
- 15. A. Y. Dubovtsev, D. V. Dar'in, M. Krasavin and V. YKukushkin, Gold-Catalyzed Oxidation of Internal Alkynes into Benzils and its Application for One-Pot Synthesis of Five-, Six-, and Seven-Membered Azaheterocycles, *Eur. J. Org. Chem.*, 2019, 1856.
- A. Maity, S.-M. Hyun, A. K. Wortman and D. C. Powers, Oxidation Catalysis via an Aerobically Generated Dess-Martin Periodinane Analogue, *Angew. Chem., Int. Ed.*, 2018, 57, 7205.