Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Table of Contents

1. General remarks	S2
2. Experimental section	
3. NMR spectra	S10
4. Fluorescence spectra	S23
5. Fluorescence decay curves	S32
6. UV/vis absorption spectra	S37
7. Lippert–Mataga plots	S39
8. CV spectra	S41
9. Chiral resolution and CD spectra	S42
10. Thermal racemization	S50
11. X-ray crystallographic structure determination	S52
12. Theoretical calculations	S56
13. References	

1. General remarks

All reagents and solvents were commercially available and were used without further purification unless otherwise noted. For thin layer chromatography Silica gel 60 F254 plates from Merck were used and examined under UV-light irradiation (254 nm and 365 nm). Flash column chromatography was performed on silica gel (particle size: 200-300 mesh). Melting points were measured with a MPA100 OptiMelt. IR-Spectra were recorded as KBr-pellets on a Bruker VERTEX 80V spectrometer. NMR spectra were taken on Bruker AVANCE III HD (600 MHz) and Bruker AVANCE NEO (400 MHz). Chemical shifts (δ) are reported in parts per million (ppm) relative to traces of CHCl₃ in the corresponding deuterated solvent. HRMS experiments were carried out on a ThermoFisher LTQ Orbitrap XL. Absorption spectra were recorded on a Shimadzu UV2600. Emission spectra, absolute quantum yields, as well as fluorescence lifetimes were measured on FluoroMax-4 spectrometer equipped with an integral sphere and a time-correlated single photon counting system with a NanoLED laser. The chiral resolutions of aza[7]helicenes were performed on a Shimadzu LC-20AD equipped with a chiral column (Chiralpak IE-3). Circular Dichromism spectra were recorded on a Bio-Logic MOS-500. Crystal structure analysis was accomplished with a SuperNova, Dual, Cu at zero, AtlasS2 diffractometer. Cyclic voltammagrams were obtained using a glassy carbon working electrode, a platinum counter electrode, and a Ag reference electrode tested on CHI660E station. The mean-planedeviation (MPD) values are average deviations of the core atoms from their mean-planes. The mean planes are defined by core carbon and nitrogen atoms (33 atoms for 2, 34 atoms for 3 and 38 atoms for 4). Acridone was synthesized according to the reported method. [S1]

2. Experimental section

2,7-di-*tert*-**butylacridone (5)**. The synthesis of acridone was carried out by a modified method.^[S2] A 250 mL two-necked flask was charged with the powder of acridone (2.93 g, 15 mmol) and anhydrous dichloromethane (75 mL) under the protection of argon. The flask was cooled in an ice-bath and aluminum trichloride (4.00 g, 30 mmol) was added to the flask. 'BuCl (7.25 mL) was added dropwise to the suspension and the mixture was stirred at 0 °C for 0.5 h. The reaction mixture was quenched with water and diluted with dichloromethane (500 mL), then washed with water and dried over Na₂SO₄. The solvent was removed by rotatory evaporation and the crude product was purified by silica gel column chromatography (dichloromethane) to give the product **5** as yellow solid (3.92 g, 85%). ¹H NMR (600 MHz, CDCl₃) δ (ppm) = 8.86 (br s, 1H), 8.49 (d, *J* = 2.3 Hz, 2H), 7.72 (dd, *J* = 8.7, 2.3 Hz, 2H), 7.36 (d, *J* = 8.7 Hz, 2H), 1.38 (s, 18H). Analytical data are in agreement with those published before.^[S2]

4-bromo-2,7-di-*tert***-butylacridone (6)**. Acridone **5** (922 mg, 3 mmol), *N*-bromosuccinimide (588 mg, 3.3 mmol) and DMF (15 mL) were stirred at room temperature for 16 h. The reaction mixture was quenched with water and diluted with dichloromethane (200 mL), then washed with water (5×200 mL) and dried over Na₂SO₄. The solvent was removed by rotatory evaporation and the crude product was purified by silica gel column chromatography (dichloromethane) to give compound **6** as yellow solid (1.01 g, 86%). m.p. 206-209 °C. ¹H NMR (600 MHz, CDCl₃) δ (ppm) = 8.46 (d, *J* = 2.1 Hz, 1H), 8.45 (d, *J* = 2.3 Hz, 1H), 8.40 (br s, 1H), 7.94 (d, *J* = 2.1 Hz, 1H), 7.77 (dd, *J* = 8.7, 2.3 Hz, 1H), 7.36 (d, *J* = 8.6 Hz, 1H), 1.41 (s, 9H), 1.40 (s, 9H). ¹³CNMR (150 MHz, CDCl₃) δ (ppm) = 178.2, 145.5, 145.5, 138.1, 135.8, 134.4, 132.2, 123.1, 123.0, 122.3, 120.7, 116.7, 110.4, 35.0, 34.9, 31.5, 31.5. IR (KBr) \tilde{v} (cm⁻¹) = 3409, 3278, 2962, 2863, 1627, 1587, 1508, 1363, 1261, 1153, 894, 835, 647. HRMS(ESI) (*m*/*z*) : [M+K]⁺ calcd. for C₂₁H₂₄NOBrK, 424.0673; found, 424.0694.

2,7-di-*tert***-butyl-4-trimethylsilylethynylacridone (7)**. A 120 mL screw capped glass vial was charged with **6** (733 mg, 2 mmol), CuI (4 mg, 0.02 mmol) and Pd(PPh₃)₂Cl₂ (30 mg, 0.04 mmol). Anhydrous triethylamine (10 mL) was added to the vial and the mixture was bubbled with argon for 3 minutes, followed by adding trimethylsilylacetylene (393 mg, 4 mmol). The vial was quickly sealed and heated at 80 °C for 36 hours. After cooling down to room temperature, the reaction mixture was diluted with dichloromethane (250 mL) and washed with water (200 mL) and dried over Na₂SO₄. The solvent was removed by rotatory evaporation and the crude product was purified by silica gel column chromatography (dichloromethane) to give the product **7** as light yellow solid (710 mg, 88%). m.p. 240-242 °C. ¹H NMR (600 MHz, CDCl₃) δ (ppm) = 8.52 (br s, 1H), 8.46 (d, *J* = 2.3 Hz, 1H), 8.45 (d, *J* = 2.2 Hz, 1H), 7.86 (d, *J* = 2.3 Hz, 1H), 7.75 (dd, *J* = 8.6, 2.3 Hz, 1H), 7.27-7.25 (m, 1H), 1.41 (s, 9H), 1.40 (s, 9H), 0.39 (s, 9H).¹³CNMR (150 MHz, CDCl₃) δ (ppm) = 178.52, 145.22, 143.94, 138.82, 137.92, 134.36, 131.94, 124.36, 123.00, 121.14, 120.79, 116.52, 110.08, 103.02, 99.86, 34.88, 34.83, 31.54, 31.49, 0.22. IR (KBr) $\tilde{\nu}$ (cm⁻¹) = 3401, 3264, 3181, 2962, 2871, 2154, 1627, 1581, 1504, 1459, 1315, 1261, 1172, 842, 761, 651. HRMS(ESI) (*m*/*z*) : [M+H]⁺ calcd. for C₂₃H₃₃NOSi, 404.2404; found, 404.2424.

2,7-di-*tert***-butyl-4-ethynylacridone (8) and quinolone-fused indole (9)**. Compound 7 (2.26 g, 5.6 mmol), K₂CO₃ (3.10 g, 22.4 mmol), methanol (20 mL) and tetrahydrofuran (20 mL) was stirred at room temperature for 16 h. The reaction mixture was quenched with water and diluted with dichloromethane (200 mL), then washed with water (3×200 mL) and dried over Na₂SO₄. The solvent was removed by rotatory evaporation and the crude product was purified by silica gel column chromatography (dichloromethane) to give compound **8** (1.66 g, 89%) and **9** (181 mg, 10%) as yellow solids. Compound **8**: m.p. 130-132 °C. ¹H NMR (600 MHz, CDCl₃) δ (ppm) = 8.60 (br s, 1H), 8.50 (d, J = 2.3 Hz, 1H), 8.45 (d, J = 2.2 Hz, 1H), 7.90 (d, J = 2.3 Hz, 1H), 7.74 (dd, J = 8.7, 2.3 Hz, 1H), 7.34 (d, J = 8.6 Hz, 1H), 3.66 (s, 1H), 1.40 (s, 9H), 1.39 (s, 9H). ¹³CNMR (150 MHz, CDCl₃) δ (ppm) = 178.4, 145.3, 143.9, 139.1, 138.1, 135.0, 132.0, 124.7, 122.9, 121.1, 120.9, 116.6, 108.9, 85.0, 79.0, 34.9, 34.8, 31.5, 31.4. IR (KBr) \tilde{v} (cm⁻¹) = 3409, 3295, 2962, 2900, 2863, 1627, 1581, 1513, 1448, 1365, 1261, 1176, 896, 825, 603. HRMS(ESI) (*m*/*z*) : [M+K]⁺ calcd. for C₂₃H₂₅NOK, 370.1568; found, 370.1585.

Compound **9**: m.p. 186-188 °C. ¹H NMR (600 MHz, CDCl₃) δ (ppm) = 8.56 (d, J = 2.3 Hz, 1H), 8.39 (d, J = 1.5 Hz, 1H), 8.10 (d, J = 1.6 Hz, 1H), 7.88 (d, J = 3.4 Hz, 1H), 7.81 (dd, J = 8.6, 2.3 Hz, 1H), 7.70 (d, J = 8.6 Hz, 1H), 6.90 (d, J = 3.4 Hz, 1H), 1.49 (s, 9H), 1.44 (s, 9H). ¹³CNMR (150 MHz, CDCl₃) δ (ppm) = 179.9, 146.9, 146.9, 135.8, 133.1, 131.6, 128.9, 125.0, 124.8, 124.6, 122.7, 119.7, 119.0, 114.1, 108.1, 35.5, 35.0, 32.2, 31.5. IR (KBr) \tilde{v} (cm⁻¹) = 2954, 2903, 2865, 1647, 1628, 1605, 1566, 1517, 1498, 1360, 1327, 1284, 1246, 1218, 1168, 1103, 886, 810, 719. HRMS(ESI) (*m/z*) : [M+H]⁺ calcd. for C₂₃H₂₆, 332.2009; found, 332.2007.

Synthesis of **9** from **7**: The mixture of **7**, K_2CO_3 (83 mg, 0.6 mmol), methanol (0.6 mL), tetrahydrofuran (0.6 mL) was stirred at 70 °C for 16 h. After cooling down to room temperature, the reaction mixture was diluted with dichloromethane (100 mL) and washed with water (100 mL). The solvent was removed by rotatory evaporation and the crude product was purified by silica gel column chromatography (dichloromethane) to give product **9** as yellow solid (50 mg, 99%).

Synthesis of **9** from **8**: The mixture of **8** (33 mg, 0.1 mmol), K_2CO_3 (55 mg, 0.4 mmol), methanol (0.4 mL) and tetrahydrofuran (0.4 mL) was stirred at 70 °C for 16 h. After cooling down to room temperature, the reaction mixture was diluted with dichloromethane (100 mL) and washed with water (100 mL). The solvent was removed by rotatory evaporation and the crude product was purified by silica gel column chromatography (dichloromethane) to give product **9** as yellow solid (32 mg, 97%).

4,4'-(buta-1,3-diyne-1,4-diyl)bis(2,7-di-*tert***-butylacridone) (10)**. The mixture of **8** (994 mg, 3 mmol) and Cu(OAc)₂ (5.45 g, 30 mmol) in toluene (120 mL) and pyridine (12 mL) was stirred in air at room temperature for 16 h. The reaction mixture was washed with water (5x200 mL) and dried over Na₂SO₄. The solvent was removed by rotatory evaporation and the crude product was purified by silica gel column chromatography (dichloromethane / ethyl acetate 100:1) to give the product **10** as yellow solid (720 mg, 72%). m.p. 390 °C (dec.). ¹H NMR (600 MHz, CDCl₃) δ (ppm) = 9.04 (br s, 2H), 8.61 (d, *J* = 2.3 Hz, 2H), 8.50 (d, *J* = 2.2 Hz, 2H), 7.86 (d, *J* = 2.3 Hz, 2H), 7.72 (dd, *J* = 8.7, 2.3 Hz, 2H), 7.46 (d, *J* = 8.7 Hz, 2H), 1.43 (s, 18H), 1.39 (s, 18H). ¹³CNMR(150 MHz, CDCl₃) δ (ppm) = 178.4, 145.6, 144.2, 139.9, 138.2, 136.0, 132.2, 126.0, 123.0, 121.3, 121.1, 116.8, 108.3, 80.7, 79.1, 34.9, 34.9, 31.5, 31.5. IR (KBr) \tilde{v} (cm⁻¹) = 3417, 3251, 3151, 2954, 2861, 1583, 1509, 1446, 1317, 1266, 1172, 914, 831, 748. HRMS(ESI) (*m*/*z*) : [M+H]⁺ calcd. for C4₆H₄₉N₂O₂, 661.3789; found, 661.3774.

4,4',8,8'-tetra-*tert*-**butyl-[1,1'-bipyrrolo]3,2,1-de]acridone-6,6'-dione (11)**. A 120 mL screw capped glass vial was charged with **10** (660 mg, 1 mmol), K₂CO₃ (550 mg, 4 mmol), methanol (4 mL) and tetrahydrofuran (4 mL). The vial was sealed and heated in an oil-bath at 70 °C for 16 hours. After cooling down to room temperature, the reaction mixture was diluted with dichloromethane (250 mL), then washed with water (3x200 mL) and dried over Na₂SO₄. The solvent was removed by rotatory evaporation and the crude product was purified by silica gel column chromatography (dichloromethane / petroleum ether 1:1) to give the dimer **11** as yellow solid (624 mg, 94%).m.p. 355-358 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 8.56 (d, *J* = 1.7 Hz, 2H), 8.54 (d, *J* = 2.5 Hz, 2H), 8.20 (d, *J* = 1.7 Hz, 2H), 7.27 - 7.24 (m, 2H), 7.15 (s, 2H), 6.84 (d, *J* = 8.9 Hz, 2H), 1.56 (s, 18H), 1.26 (s, 18H). ¹³CNMR (100 MHz, CDCl₃) δ (ppm) = 179.7, 147.7, 147.2, 136.5, 134.4, 132.1, 129.9, 127.6, 125.2, 124.9, 121.2, 119.7, 114.5, 113.5, 35.6, 34.8, 32.2, 31.3. IR (KBr) \tilde{v} (cm⁻¹) = 3116, 2956, 2913, 2873, 1656, 1606, 1565, 1481, 1359, 1311, 1276, 1249, 1199, 1147, 894, 825, 601. HRMS(ESI) (*m/z*) : [M+H]⁺ calcd. for C4₆H₄₉N₂O₂, 661.3788; found, 661.3789.

2,2'-dibromo-4,4',8,8'-tetra-*tert***-butyl-[1,1'-bipyrrolo[3,2,1-de]acridone-6,6'-dione (12)**. The mixture of **11** (390 mg, 0.59 mmol), *N*-bromosuccinimide (221 mg, 1.24 mmol) and DMF (6 mL) was stirred at room temperature for 16 h. The reaction mixture was quenched with water and diluted with dichloromethane (100 mL), then washed with water (3×100 mL) and dried over Na₂SO₄. The solvent was removed by rotatory evaporation and the crude product was purified by silica gel column chromatography (dichloromethane) to give the product **12** as yellow solid (396 mg, 82%). m.p. 327-329 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 8.63 (d, *J* = 1.6 Hz, 2H), 8.55 (d, *J* = 2.4 Hz, 2H), 8.16 (d, *J* = 1.6 Hz, 2H), 7.33 (dd, *J* = 8.9, 2.4 Hz, 2H), 6.88 (d, *J* = 8.9 Hz, 2H), 1.59 (s, 18H), 1.28 (s, 18H). ¹³CNMR (100 MHz, CDCl₃) δ (ppm) = 179.0, 148.4, 147.8, 136.3, 133.5, 132.6, 127.0, 125.7, 125.5, 125.2, 123.6, 123.0, 119.9, 113.8, 105.8, 35.8, 34.9, 32.1, 31.3. IR (KBr) \hat{v} (cm⁻¹) = 3060, 2960, 2910, 2865, 1662, 1608, 1562, 1486, 1367, 1257, 1193, 1110, 1027, 892, 815, 661. HRMS(ESI) (*m*/*z*) : [M+H]⁺ calcd. for C4₆H₄₇N₂O₂Br₂, 819.1978; found, 819.1971.

triaza[7]**helicene (2).** A 8 mL screw capped glass vial was charged with **12** (163 mg, 0.2 mmol), aniline (20 mg, 0.21 mmol) and KO'Bu (54 mg, 0.48 mmol). Anhydrous toluene (0.3 mL) was added to the vial and the mixture was bubbled with argon for 3 minutes, followed by adding Pd₂(dba)₃ (9 mg, 0.01 mmol) and dppf (11 mg, 0.02 mmol). The vial was quickly sealed and heated at 120 °C for 16 hours. After cooling down to room temperature, the reaction mixture was diluted with dichloromethane (150 mL), washed with water (100 mL) and dried over Na₂SO₄. The solvent was removed by rotatory evaporation and the crude product was purified by silica gel column chromatography (dichloromethane) to give the product **2** as light yellow solid (67 mg, 45%). m.p. > 400 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 8.54 (d, *J* = 2.2 Hz, 2H), 8.36 (s, 2H), 8.01 (d, *J* = 7.9 Hz, 2H), 7.98 (d, *J* = 1.7 Hz, 2H), 7.92 (d, *J* = 8.6 Hz, 2H), 7.77 (t, *J* = 7.8 Hz, 2H), 7.62 (t, *J* = 7.5 Hz, 1H), 7.42 (dd, *J* = 8.6, 2.3 Hz, 2H), 1.45 (s, 18H), 1.40 (s, 18H). ¹³CNMR (100 MHz, CDCl₃) δ (ppm) = 180.0, 146.9, 146.7, 139.1, 138.2, 136.8, 130.3, 130.1, 129.1, 128.3, 124.7, 124.0, 124.0, 120.4, 119.8, 119.4, 119.3, 118.2, 117.8, 35.5, 34.9, 32.0, 31.5. IR (KBr) \tilde{v} (cm⁻¹) = 3058, 2958, 2900, 2865, 1650, 1606, 1498, 1369, 1320, 1286, 1257, 1209, 1170, 921, 825, 750. HRMS(ESI) (*m*/*z*) : [M+Na]⁺ calcd. for C₅₂H₅₁N₃O₂Na, 772.3873; found, 772.3852.

2-bromo-4,4',8,8'-tetra-tert-butyl-[1,1'-bipyrrolo[3,2,1-de]acridone-6,6'-dione (13). The mixture of 11 (661 mg, 1 mmol), N-bromosuccinimide (196 mg, 1.1 mmol) and DMF (10 mL) was stirred at room temperature for 16 h. The reaction mixture was dichloromethane (100 mL), washed with water (3×50 mL) and dried over Na₂SO₄. The solvent was removed by rotatory evaporation and the crude product was purified by silica gel column chromatography (dichloromethane) to give compound **13** (382 mg, 52%) and **12** (240 mg, 29%) as yellow solids. m.p. 245-249 °C. ¹H NMR (600 MHz, CDCl₃) δ (ppm) = 8.60 (s, 1H), 8.58 (s, 1H), 8.56 (d, J = 2.4 Hz, 1H), 8.53 (d, J = 2.5 Hz, 1H), 8.24 (d, J = 1.7 Hz, 1H), 8.13 (d, J = 1.7 Hz, 1H), 7.31 (dd, J = 8.9, 2.5 Hz, 1H), 7.27 (dd, J = 9.0, 2.4 Hz, 1H), 7.20 (s, 1H), 6.90 (d, J = 8.9 Hz, 1H), 6.83 (d, J = 8.9 Hz, 1H), 1.58 (s, 9H), 1.57 (s, 9H), 1.28 (s, 9H), 1.27 (s, 9H). ¹³CNMR (150 MHz, CDCl₃) δ (ppm) = 179.9, 179.1, 148.4, 147.7, 147.6, 147.3, 136.5, 136.3, 134.4, 133.2, 132.4, 132.3, 127.7, 127.6, 127.5, 127.0, 125.4, 125.3, 125.3, 125.2, 125.1, 123.5, 122.6, 121.6, 119.8, 119.7, 114.5, 114.4, 114.0, 104.7, 35.8, 35.7, 34.8, 34.8, 32.2, 32.1, 31.3, 31.3. IR (KBr) \tilde{v} (cm⁻¹) = 2962, 2869, 1657, 1608, 1563, 1490, 1474, 1364, 1313, 1275, 1256, 1199, 1150, 1110, 1061, 814. HRMS(ESI) (*m*/*z*) : [M+H]⁺ calcd. for C₄₆H₄₈N₂O₂Br, 739.2894; found, 739.2887.

4,4',8,8'-tetra-*tert*-**butyl-2-(trimethylsilylethynyl)-[1,1'-bipyrrolo[3,2,1-de]acridone-6,6'dione (14)**. A 38 mL screw capped glass vial was charged with **13** (400 mg, 0.54 mmol), CuI (1.9 mg, 0.01 mmol) and Pd(PPh₃)₂Cl₂ (15 mg, 0.02 mmol). Anhydrous triethylamine (5 mL) was added to the vial and the mixture was bubbled with argon for 3 minutes, followed by adding trimethylsilylacetylene (158 mg, 1.1 mmol). The vial was quickly sealed and heated in an oil-bath at 80 °C for 36 hours. After cooling down to room temperature, the reaction mixture was diluted with dichloromethane (150 mL), washed with water (200 mL) and dried over Na₂SO₄. The solvent was removed by rotatory evaporation and the crude product was purified by silica gel column chromatography (dichloromethane) to give the product **14** as yellow solid (335 mg, 82%). m.p. 328-330 °C. ¹H NMR (600 MHz, CDCl₃) δ (ppm) = 8.57 (d, *J* = 1.7 Hz, 1H), 8.55 (d, *J* = 1.8 Hz, 1H), 8.54 (d, *J* = 2.4 Hz, 1H), 8.52 (d, *J* = 2.5 Hz, 1H), 8.23 (d, *J* = 1.7 Hz, 1H), 6.91 (d, *J* = 3.2 Hz, 1H), 1.57 (s, 9H), 1.57 (s, 9H), 1.28 (s, 9H), 7.22 (s, 1H), 6.93 (d, *J* = 3.1 Hz, 1H), 6.91 (d, *J* = 3.2 Hz, 1H), 1.57 (s, 9H), 1.57 (s, 9H), 1.28 (s, 9H), 1.26 (s, 9H), 0.03 (s, 9H). ¹³CNMR (150 MHz, CDCl₃) δ (ppm) = 179.8, 179.4, 148.4, 147.8, 147.6, 147.2, 136.6, 136.0, 134.5, 133.3, 132.6, 132.2, 132.1, 128.1, 128.0, 127.8, 125.4, 125.3, 125.2, 125.1, 124.9, 124.0, 122.0, 121.3, 119.7, 119.7, 114.8, 114.5, 114.1, 109.2, 103.3, 96.0, 35.7, 35.6, 34.8, 34.8, 32.2, 32.1, 31.3, 31.3, 0.1. IR (KBr) \tilde{v} (cm⁻¹) = 2962, 2904, 2869, 2151, 1657, 1608, 1563, 1490, 1474, 1364, 1313, 1275, 1256, 1199, 1150, 1110, 1061, 813, 793, 738. HRMS(ESI) (*m/z*) : [M+H]⁺ calcd. for C₅₁H₅₇N₂O₂Si, 757.4184; found, 757.4179.

4,4',8,8'-tetra-*tert***-butyl-2-ethynyl-[1,1'-bipyrrolo[3,2,1-de]acridone-6,6'-dione (15).** A 8 mL screw capped glass vial was charged with **14** (190 mg, 0.25 mmol), K₂CO₃ (70 mg, 0.5 mmol), methanol (2 mL) and tetrahydrofuran (2 mL). The mixture was stirred at room temperature for 16 h. The reaction mixture was diluted with dichloromethane (50 mL), washed with water (3×100 mL) and dried over Na₂SO₄. The solvent was removed by rotatory evaporation and the crude product was purified by silica gel column chromatography (dichloromethane) to give the product **15** as yellow solid (168 mg, 98%). m.p. 323°C (dec.). ¹H NMR (600 MHz, CDCl₃) δ (ppm) = 8.57 (s, 1H), 8.57 (s, 1H), 8.54 (d, *J* = 2.4 Hz, 1H), 8.52 (d, *J* = 2.4 Hz, 1H), 8.28 (d, *J* = 1.7 Hz, 1H), 8.23 (d, *J* = 1.7 Hz, 1H), 7.29 (dd, *J* = 8.9, 2.5 Hz, 1H), 7.26-7.24 (m, 1H), 7.24 (s, 1H), 6.84 (d, *J* = 8.9 Hz, 1H), 6.79 (d, *J* = 9.0 Hz, 1H), 3.27 (s, 1H), 1.58 (s, 9H), 1.56 (s, 9H), 1.27 (s, 9H), 1.26 (s, 9H). ¹³CNMR (150 MHz, CDCl₃) δ (ppm) = 179.7, 179.4, 148.5, 147.9, 147.7, 147.3, 136.5, 136.0, 134.5, 133.2, 132.9, 132.3, 132.2, 128.1, 127.7, 127.7, 125.4, 125.4, 125.3, 125.2, 125.1, 124.0, 122.2, 121.5, 119.8, 119.8, 114.6, 114.1, 114.1, 107.9, 84.7, 75.1, 35.8, 35.6, 34.8, 34.8, 32.2, 32.1, 31.3, 31.3. IR (KBr) $\tilde{\nu}$ (cm⁻¹) = 3117, 3048, 2961, 2868, 1656, 1607, 1490, 1472, 1364, 1313, 1275, 1256, 1199, 1150, 1110, 1061, 813, 793, 738. HRMS(ESI) (*m/z*) : [M+H]⁺ calcd. for C4₈H₄₉N₂O₂, 685.3789; found, 685.3779.

diaza[7]helicene (3). A 8 mL screw capped glass vial was charged with **15** (116 mg, 0.17 mmol) and PtCl₂ (2.27 mg, 5% mmol). Anhydrous toluene (5 mL) was added to the vial and the mixture was bubbled with argon for 3 minutes. The vial was quickly sealed and heated in a heating mantle at 110 °C for 16 hours. After cooling down to room temperature, the reaction mixture was diluted with dichloromethane (50 mL), washed with water (100 mL) and dried over Na₂SO₄. The solvent was

removed by rotatory evaporation and the crude product was purified by silica gel column chromatography (dichloromethane / petroleum ether 1:1) to give the product **3** as yellow solid (76 mg, 65%). m.p. > 400 °C (dec.). ¹H NMR (600 MHz, CDCl₃) δ (ppm) = 8.53 (s, 2H), 8.52 (s, 2H), 8.46 (d, J = 2.3 Hz, 2H), 8.26 (s, 2H), 7.54 (d, J = 8.7 Hz, 2H), 7.02 (dd, J = 8.7, 2.3 Hz, 2H), 1.58 (s, 18H), 1.24 (s, 18H). ¹³CNMR (150 MHz, CDCl₃) δ (ppm) = 180.4, 147.8, 147.0, 138.5, 138.4, 129.6, 128.5, 126.7, 125.2, 124.6, 124.3, 122.6, 121.7, 119.9, 118.6, 116.8, 35.7, 34.7, 32.2, 31.4. IR (KBr) \tilde{v} (cm⁻¹) = 2959, 2867, 1657, 1609, 1486, 1462, 1418, 1394, 1363, 1344, 1310, 1279, 1247, 1192, 1160, 1133, 828, 811, 699. HRMS(ESI) (*m*/*z*) : [M+H]⁺ calcd. for C4₈H49N₂O₂, 685.3789; found, 685.3787.

diaza[7]helicene (4). A 8 mL screw capped glass vial was charged with 10 (264 mg, 0.4 mmol), 1,2-diiodobenzene (158 mg, 0.48 mmol) and NaO'Bu (85 mg, 0.88 mmol). Anhydrous toluene (1 mL) was added to the vial and the mixture was bubbled with argon for 3 minutes, followed by adding Pd₂(dba)₃ (8 mg, 0.0087 mmol) and Pd(PPh₃)₄ (24 mg, 0.02 mmol). The vial was quickly sealed and heated at 120 °C for 16 hours. After cooling down to room temperature, the reaction mixture was diluted with dichloromethane (150 mL), washed with water (100 mL) and dried over Na₂SO₄. The solvent was removed by rotatory evaporation and the crude product was purified by silica gel column chromatography (dichloromethane) to give the product 4 (167 mg, 57%) and 11 (61 mg, 23%) as yellow solids. m.p. 300-302 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 9.07 - 9.05 (m, 2H), 9.04 (br s, 2H), 8.61 (d, *J* = 1.5 Hz, 2H), 8.45 (d, *J* = 2.3 Hz, 2H), 7.90 - 7.88 (m, 2H), 7.52 (d, *J* = 8.8 Hz, 2H), 7.03 (dd, *J* = 8.8, 2.3 Hz, 2H), 1.67 (s, 18H), 1.23 (s, 18H). ¹³CNMR (100 MHz, CDCl₃) δ (ppm) = 180.5, 148.1, 147.4, 137.8, 137.8, 129.8, 127.7, 126.6, 126.1, 125.6, 124.9, 124.8, 124.6, 124.4, 122.8, 121.3, 120.1, 118.2, 35.9, 34.7, 32.3, 31.4. IR (KBr) $\tilde{\nu}$ (cm⁻¹) = 3091, 2962, 2904, 2873, 1660, 1602, 1536, 1481, 1367, 1268, 1209, 1070, 831, 744. HRMS(ESI) (*m/z*) : [M+H]⁺ calcd. for C₅₂H₅₁N₂O₂, 735.3945; found, 735.3952.

3. NMR Spectra

S10

Figure S4. ¹³C NMR spectrum (CDCl₃, 150 MHz) of 7

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 chemical shift (ppm)

Figure S6. ¹³C NMR spectrum (CDCl₃, 150 MHz) of 8

Figure S8. ¹³C NMR spectrum (CDCl₃, 150 MHz) of 9

S14

Figure S12. ¹³C NMR spectrum (CDCl₃, 100 MHz) of 11

Figure S14. ¹³C NMR spectrum (CDCl₃, 100 MHz) of 12

S16

Figure S16. ¹³C NMR spectrum (CDCl₃, 100 MHz) of 2.

S18

Figure S20. ¹³C NMR spectrum (CDCl₃, 150 MHz) of 13

Figure S22. ¹³C NMR spectrum (CDCl₃, 150 MHz) of 14

Figure S24. ¹³C NMR spectrum (CDCl₃, 150 MHz) of 15

Figure S26. ¹³C NMR spectrum (CDCl₃, 150 MHz) of 3

4. Fluorescence spectra

Figure S27. Normalized emission spectra of 9 in dichloromethane (concentration: $5 \mu M$).

Figure S28. Normalized emission spectra of 9 in solid state.

Figure S29. Normalized emission spectra of 11 in dichloromethane (concentration: $5 \mu M$).

Figure S30. Normalized emission spectra of 11 in solid state.

Figure S31. Normalized emission spectra of 2 in dichloromethane (concentration: $5 \mu M$).

Figure S32. Normalized emission spectra of 2 in solid state.

Figure S33. Normalized emission spectra of 3 in dichloromethane (concentration: $5 \mu M$).

Figure S34. Normalized emission spectra of 3 in solid state.

Figure S35. Normalized emission spectra of 4 in dichloromethane (concentration: $5 \mu M$).

Figure S36 Normalized emission spectra of 4 in solid state.

Figure S37. Normalized emission spectra of 2 in different solvents at room temperature, concentration: 5 μ M and the photographs of 2 in different solvents under 365 nm UV light.

Figure S38. Normalized emission spectra of 3 in different solvents at room temperature, concentration: 5 μ M and the photographs of 3 in different solvents under 365 nm UV light.

Figure S39. Normalized emission spectra of 4 in different solvents at room temperature, concentration: 5 μ M and the photographs of 4 in different solvents under 365 nm UV light.

Figure S40. Fluorescence emission spectra of 9 in the mixture of water/THF with different water contents. Solutions concentration: $10 \mu M$.

5. Fluorescence decay curves

Figure S41. Fluorescence decay curve of 9 in dichloromethane at room temperature (concentration: 5 μ M).

Figure S42. Fluorescence decay curve of 9 in solid state at room temperature .

Figure S43. Fluorescence decay curve of 11 in dichloromethane at room temperature (concentration: $5 \mu M$).

Figure S44. Fluorescence decay curve of 11 in solid state at room temperature.

Figure S45. Fluorescence decay curve of 2 in dichloromethane at room temperature (concentration: 5 μ M).

Figure S46. Fluorescence decay curve of 2 in solid state at room temperature.

Figure S47. Fluorescence decay curve of 3 in dichloromethane at room temperature (concentration: 5 μ M).

Figure S48. Fluorescence decay curve of 3 in solid state at room temperature.

Figure S49. Fluorescence decay curve of 4 in dichloromethane at room temperature (concentration: 5 μ M).

Figure S50. Fluorescence decay curve of 4 in solid state at room temperature.
6. UV/vis absorption spectra

Figure S51. Normalized absorption spectra of 2 in different solvents at room temperature. Solutions concentration: $5 \mu M$.

Figure S52. Normalized absorption spectra of 3 in different solvents at room temperature. Solutions concentration: $5 \mu M$.

Figure S53. Normalized absorption spectra of 4 in different solvents at room temperature. Solutions concentration: $5 \mu M$.

Figure S54. UV/vis absorption spectra of 9 in the mixture of water/THF with different water contenes. Solutions concentration: $10 \mu M$.

7. Lippert-Mataga plots

Figure S55. Lippert–Mataga plots, Onsager cavity radius and the calculated difference of dipole moments of **2**.

Figure S56. Lippert–Mataga plots, Onsager cavity radius and the calculated difference of dipole moments of **3**.

Figure S57. Lippert-Mataga plots, Onsager cavity radius and the calculated difference of dipole moments of 4.

Figure S58. CV curves of key intermediates 9, 11 and aza[7]helcenes 2, 3, and 4.

Figure S59. DPV curves of key intermediates 9, 11 and aza[7]helcenes 2, 3, and 4.

S41

9. Chiral resolution and CD spectra

Column	: CHIRALPAK IE-3(IE30CE-UL006)				
Column size	: 0.46 cm I.D. × 15 cm L				
Injection	: 4 ul				
Mobile phase	: Hexane/EtOAc= $50/50(V/V)$				
Flow rate	: 1.0 ml/min				
Wave length	: UV 254 nm				
Temperature	: 35 °C				
HPLC equipment	: Shimadzu LC-20AD CP-HPLC-08				
Sample name	: Raw Material				

<Chromatogram>

<Peak Table>

Peak#	Ret. Time	Area	Area%	T.Plate#	Tailing F.	Resolution
1	2.866	5069019	53.829	4514	0.967	
2	3.431	4347856	46.171	5971	1.242	3.243

Figure S60. Chiral chromatography report of aza[7]helicene 3.

Column	: CHIRALPAK IE-3(IE30CE-UL006)
Column size	: 0.46 cm I.D. × 15 cm L
Injection	: 4 ul
Mobile phase	: $EtOAc/MeOH=90/10(V/V)$
Flow rate	: 1.0 ml/min
Wave length	: UV 254 nm
Temperature	: 35 °C
HPLC equipment	: Shimadzu LC-20AD CP-HPLC-08
Sample name	: Raw Material

<Peak Table>

Peak#	Ret. Time	Area	Area%	T.Plate#	Tailing F.	Resolution
1	2.323	6984060	48.682	3788	1.152	
2	2.855	7362231	51.318	4579	0.749	3.331

Figure S61. Chiral chromatography report of aza[7]helicene 4.

Column	:	CHIRALPAK IE-3(IE30CE-UL006)				
Column size	:	0.46 cm I.D. × 15 cm L				
Injection	:	4 ul				
Mobile phase	:	Hexane/EtOAc=50/50(V/V)				
Flow rate	:	1.0 ml/min				
Wave length	:	UV 254 nm				
Temperature	:	35 °C				
HPLC equipment	:	Shimadzu LC-20AD CP-	-HPLC-08			
Sample name	:	Peak 1				

<Peak Table>

Peak#	Ret. Time	Area	Area%	T.Plate#	Tailing F.	Resolution
1	2.855	9269877	99.735	4356	0.951	
2	3.404	24663	0.265	4040		2.835

Figure S62. Chiral chromatography report of the first peak of aza[7]helicene 3.

Column	: CHIRALPAK IE-3(IE30CE-UL006)				
Column size	$: 0.46 \text{ cm I.D.} \times 15 \text{ cm L}$				
Injection	: 4 ul				
Mobile phase	: Hexane/EtOAc=50/50(V/V)				
Flow rate	: 1.0 ml/min				
Wave length	: UV 254 nm				
Temperature	: 35 °C				
HPLC equipment	: Shimadzu LC-20AD CP-HPLC-08				
Sample name	: Peak 2				

<Peak Table>

Peak#	Ret. Time	Area	Area%	T.Plate#	Tailing F.	Resolution
1	2.858	8595	0.586	5412	1.126	
2	3.409	1458897	99.414	6010	1.237	3.326

Figure S63. Chiral chromatography report of the second peak of aza[7]helicene 3.

Column	: CHIRALPAK IE-3(IE30CE-UL006)				
Column size	$0.46 \text{ cm I.D.} \times 15 \text{ cm L}$				
Injection	: 4 ul				
Mobile phase	: EtOAc/MeOH=90/10(V/V)				
Flow rate	: 1.0 ml/min				
Wave length	: UV 254 nm				
Temperature	: 35 °C				
HPLC equipment	: Shimadzu LC-20AD CP-HPLC-08				
Sample name	: Peak 1				

<Peak Table>

Peak#	Ret. Time	Area	Area%	T.Plate#	Tailing F.	Resolution
1	2.324	1015925	99.730	3112	1.173	
2	2.873	27550	0.270	1405		2.316

Figure S64. Chiral chromatography report of the first peak of aza[7]helicene 4.

Column	:	: CHIRALPAK IE-3(IE30CE-UL006)			
Column size	:	$0.46 \text{ cm I.D.} \times 15 \text{ cm L}$			
Injection	:	4 ul			
Mobile phase	:	EtOAc/MeOH=90/10(V/V)			
Flow rate	:	1.0 ml/min			
Wave length	:	UV 254 nm			
Temperature	:	35 °C			
HPLC equipment	:	Shimadzu LC-20AD C	CP-HPLC-08		
Sample name	:	Peak 2			

<Peak Table>

Peak#	Ret. Time	Area	Area%	T.Plate#	Tailing F.	Resolution
1	2.322	15234	0.148	4150	1.750	
2	2.855	10288555	99.852	4134	0.890	3.313

Figure S65. Chiral chromatography report of the second peak of aza[7]helicene 4.

Figure S66. CD spectra of the enantiomers of aza[7]helicene 3 in dichloromethane.

Figure S67. Asymmetric factors of the enantiomers of aza[7]helicene 3 in dichloromethane.

Figure S68. CD spectra of the enantiomers of aza[7]helicene 4 in dichloromethane.

Figure S69. Asymmetric factors of the enantiomers of aza[7]helicene 4 in dichloromethane.

10. Thermal racemization

The thermal racemizations of *P*-**3** and *P*-**4** were performed in 1,2-dichlorobenzene at 180 °C. The ratio of *P/M* isomers were monitored by measuring the optical rotation values. The transformation of *P*-isomer to *M*-isomer follows a reversible first order reaction.^[S3] The rate constant *k* can obtained by fitting the experimental data (α , mole ratio of *P*-**3** or **4** at time *t*) using the following equation:

 $\ln(2\alpha - 1) = -2kt$

The racemization barriers (ΔG^{\ddagger}) of **3** and **4** were calculated from the following equation:

 $\Delta G^{\ddagger}(\mathbf{T}) = -RT \ln(kh/k_B T)$

Here *R* is the gas constant (8.31441 J·K⁻¹), *h* is the Planck constant (6.626176 × 10⁻³⁴ J·s), k_B is the Boltzmann constant (1.380662 × 10⁻²³ J·K⁻¹) and T is temperature (K).

Figure S70. Fitting plot of thermal racemization of P-3 in 1,2-dichlorobenzene at 180 °C.

Figure S71. Fitting plot of thermal racemization of *P*-4 in 1,2-dichlorobenzene at 180 °C.

11. X-ray crystallographic structure determination

Empirical formula	C46H48N2O2
Formula weight	660.86
Temperature/K	150.00(10)
Crystal system	monoclinic
Space group	C2/c
a/Å	15.8874(7)
b/Å	24.6931(11)
c/Å	40.961(2)
α/°	90
β/°	94.789(5)
$\gamma/^{\circ}$	90
Volume/Å ³	16013.4(13)
Z	16
$\rho_{calc}g/cm^3$	1.096
μ/mm^{-1}	0.512
F(000)	5664.0
Crystal size/mm ³	$0.12 \times 0.11 \times 0.1$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	4.33 to 133.2
Index ranges	$-18 \le h \le 17, -29 \le k \le 28, -48 \le l \le 40$
Reflections collected	29054
Independent reflections	13990 [$R_{int} = 0.0426$, $R_{sigma} = 0.0582$]
Data/restraints/parameters	13990/91/956
Goodness-of-fit on F ²	1.037
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0999, wR_2 = 0.2848$
Final R indexes [all data]	$R_1 = 0.1389, wR_2 = 0.3233$
Largest diff. peak/hole / e Å ⁻³	0.59/-0.64

 Table S1. Crystal data and structure refinement for 11

Figure S72. Crystal structure of 11 with an ellipsoid contour at the 50% probability level.

Empirical formula	C ₅₂ H ₅₁ N ₃ O ₂
Formula weight	749.95
Temperature/K	99.9(4)
Crystal system	monoclinic
Space group	P21/n
a/Å	17.0401(3)
b/Å	16.9978(3)
c/Å	33.2623(6)
α/°	90
β/°	90.342(2)
$\gamma/^{\circ}$	90
Volume/Å ³	9634.1(3)
Z	8
$\rho_{calc}g/cm^3$	1.034
μ/mm^{-1}	0.485
F(000)	3200.0
Crystal size/mm ³	$0.13 \times 0.12 \times 0.11$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	5.314 to 147.532
Index ranges	$-21 \le h \le 20, -20 \le k \le 17, -41 \le l \le 40$
Reflections collected	44345
Independent reflections	18865 [$R_{int} = 0.0369, R_{sigma} = 0.0413$]
Data/restraints/parameters	18865/14/1051
Goodness-of-fit on F ²	1.063
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0649, wR_2 = 0.1769$
Final R indexes [all data]	$R_1 = 0.0751, wR_2 = 0.1863$
Largest diff. peak/hole / e Å ⁻³	0.55/-0.53

 Table S2. Crystal data and structure refinement for 2

Figure S73. Crystal structure of 2 with an ellipsoid contour at the 50% probability level.

Empirical formula	C48H48N2O2
Formula weight	684.88
Temperature/K	150.00(10)
Crystal system	triclinic
Space group	P-1
a/Å	10.9969(6)
b/Å	11.4966(4)
c/Å	15.0565(5)
α/°	92.345(3)
β/°	97.135(4)
$\gamma/^{\circ}$	93.016(4)
Volume/Å ³	1884.03(14)
Z	2
$\rho_{calc}g/cm^3$	1.207
μ/mm^{-1}	0.563
F(000)	732.0
Crystal size/mm ³	0.13 imes 0.11 imes 0.09
Radiation	Cu Ka ($\lambda = 1.54184$)
20 range for data collection/°	5.922 to 147.778
Index ranges	$-13 \le h \le 13, -14 \le k \le 14, -18 \le l \le 12$
Reflections collected	12954
Independent reflections	7325 [$R_{int} = 0.0534$, $R_{sigma} = 0.0673$]
Data/restraints/parameters	7325/0/512
Goodness-of-fit on F ²	1.144
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0762, wR_2 = 0.1882$
Final R indexes [all data]	$R_1 = 0.1105, wR_2 = 0.1972$
Largest diff. peak/hole / e Å ⁻³	0.32/-0.32

 Table S3. Crystal data and structure refinement for 3

Figure S74. Crystal structure of **3** with an ellipsoid contour at the 50% probability level.

$_{0}N_{2}O_{2}$
01 12 02
4
(3)
elinic
31(6)
47(4)
40(8)
7(3)
9(3)
)
< 0.1 × 0.08
$\alpha \ (\lambda = 1.54184)$
to 147.622
$h \le 19, -13 \le k \le 7, -30 \le 1 \le 30$
$[R_{int} = 0.0621, R_{sigma} = 0.0751]$
0/560
$0.0795, wR_2 = 0.2015$
$0.1038, wR_2 = 0.2187$
0.46

 Table S4. Crystal data and structure refinement for 4

Figure S75. Crystal structure of 4 with an ellipsoid contour at the 50% probability level.

12. Theoretical calculations

All the theoretical calculations were carried out using a *Gaussian 16* software. ^[S4] All the calculations were based on the optimized geometries at B3LYP/6-31G(d,p) level of theory. The frontier molecular orbitals are calculated at the B3LYP/6-311+G(d,p) level of theory. The calculations of excited state properties and ECD spectra were performed using time-depended DFT methods at B3LYP/6-311G+(d,p) level of theory in the solvent dichloromethane.

Figure S76. Calculated frontier molecular orbitals and energy levels.

Figure S78. Energy diagram of racemization process of triaza[7]helicene 4.

Figure S79. Energy diagram of racemization process of carbo[7]helicene.

Figure S80. UV/Vis absorption spectrum of compound **9** and TD-DFT calculated oscillator strength (blue column) in dichloromethane solvent at B3LYP/6-311G+(d,p) level.

Figure S81. UV/Vis absorption spectrum of compound **11** and TD-DFT calculated oscillator strength (blue column) in dichloromethane solvent at B3LYP/6-311G+(d,p) level.

Figure S82. UV/Vis absorption spectrum of compound **2** and TD-DFT calculated oscillator strength (blue column) in dichloromethane solvent at B3LYP/6-311G+(d,p) level.

Figure S83. UV/Vis absorption spectrum of compound **3** and TD-DFT calculated oscillator strength (blue column) in dichloromethane solvent at B3LYP/6-311G+(d,p) level.

Figure S84. UV/Vis absorption spectrum of compound **4** and TD-DFT calculated oscillator strength (blue column) in dichloromethane solvent at B3LYP/6-311G+(d,p) level.

Figure S85. CD spectra (solid line) of compound **3** and TD-DFT calculated rotational strength (bar) in dichloromethane solvent at B3LYP/6-311G+(d,p) level.

Figure S86. CD spectra (solid line) of compound **4** and TD-DFT calculated rotational strength (bar) in dichloromethane solvent at B3LYP/6-311G+(d,p) level.

Table S5. TD-DFT calculated first-ten electron transitions of 9 in dichloromethane at B3LYP / 6-311+G(d,p) level

Excited State 1:	Singlet-A	3.2065 eV	386.67 nm	f=0.1297	<s**2>=0.000</s**2>
89 -> 90	0.69286				
Excited State 2:	Singlet-A	3.5791 eV	346.41 nm	f=0.0665	<s**2>=0.000</s**2>
88 -> 90	0.69149				
Excited State 3:	Singlet-A	3.5900 eV	345.36 nm	f=0.0000	<s**2>=0.000</s**2>
86 -> 90	0.69815				
Excited State 4:	Singlet-A	4.2081 eV	294.63 nm	f=0.1169	<s**2>=0.000</s**2>
87 -> 90	0.63732				
88 -> 92	0.10543				
89 -> 91	0.23915				
Excited State 5:	Singlet-A	4.4037 eV	281.55 nm	f=0.1487	<s**2>=0.000</s**2>
85 -> 90	-0.40393				
87 -> 90	-0.20324				
88 -> 92	-0.13609				
89 -> 91	0.50107				
Excited State 6:	Singlet-A	4.5416 eV	273.00 nm	f=0.0214	<s**2>=0.000</s**2>
85 -> 90	-0.36796				

89 -> 91	-0.30250				
89 -> 92	0.50632				
Excited State 7:	Singlet-A	4.6315 eV	267.70 nm	f=0.4057	<s**2>=0.000</s**2>
85 -> 90	0.41269				
87 -> 91	-0.11998				
88 -> 91	0.12495				
88 -> 92	-0.10241				
89 -> 91	0.26303				
89 -> 92	0.44613				
Excited State 8:	Singlet-A	4.9357 eV	251.20 nm	f=0.0242	<s**2>=0.000</s**2>
88 -> 91	0.66934				
88 -> 92	0.16910				
89 -> 92	-0.10005				
Excited State 9:	Singlet-A	5.0653 eV	244.77 nm	f=0.7713	<s**2>=0.000</s**2>
87 -> 90	-0.16020				
88 -> 91	-0.13239				
88 -> 92	0.62404				
89 -> 91	0.12527				
89 -> 95	-0.14690				
Excited State 10:	Singlet-A	5.3611 eV	231.27 nm	f=0.0549	<s**2>=0.000</s**2>
84 -> 90	0.66523				
XX0. 40 00 XXD (0. 00					

HOMO: 89, LUMO: 90

Table S6. TD-DFT calculated first-ten electron transitions of 11 in dichloromethane at B3LYP / 6-311+G(d,p) level

Excited State 1:	Singlet-A	3.1673 eV	391.45 nm	f=0.0646	<s**2>=0.000</s**2>
177 -> 178	0.69206				
Excited State 2:	Singlet-A	3.2034 eV	387.04 nm	f=0.1393	<s**2>=0.000</s**2>
176 -> 178	0.65116				
177 -> 179	-0.24562				
Excited State 3:	Singlet-A	3.2605 eV	380.26 nm	f=0.0164	<s**2>=0.000</s**2>
176 -> 178	0.25591				
177 -> 179	0.65080				
Excited State 4:	Singlet-A	3.2991 eV	375.81 nm	f=0.1153	<s**2>=0.000</s**2>
175 -> 178	0.19371				
176 -> 179	0.66906				
Excited State 5:	Singlet-A	3.3862 eV	366.14 nm	f=0.1773	<s**2>=0.000</s**2>
175 -> 178	0.66366				
176 -> 179	-0.18675				
Excited State 6:	Singlet-A	3.5317 eV	351.06 nm	f=0.0239	<s**2>=0.000</s**2>
175 -> 179	0.68577				
Excited State 7:	Singlet-A	3.5527 eV	348.98 nm	f=0.0001	<s**2>=0.000</s**2>
170 -> 179	-0.46129				
171 -> 178	0.50428				

172 -> 179	-0.10580				
Excited State 8:	Singlet-A	3.5530 eV	348.96 nm	f=0.0000	<s**2>=0.000</s**2>
170 -> 178	0.49504				
171 -> 179	-0.46587				
172 -> 178	0.11031				
Excited State 9:	Singlet-A	3.7685 eV	329.00 nm	f=0.0058	<s**2>=0.000</s**2>
174 -> 178	0.68751				
Excited State 10:	Singlet-A	3.8442 eV	322.52 nm	f=0.0111	<s**2>=0.000</s**2>
174 -> 179	0.68798				
175 -> 178	0.10602				

HOMO: 177, LUMO: 178

Table S7. TD-DFT calculated first-ten electron transitions of 2 in dichloromethane at B3LYP / 6-311+G(d,p) level

- ()])					
Excited State 1:	Singlet-A	2.6705 eV	464.27 nm	f=0.2077	<s**2>=0.000</s**2>
199 -> 202	-0.11701				
200 -> 201	0.69012				
Excited State 2:	Singlet-A	2.7159 eV	456.52 nm	f=0.1306	<s**2>=0.000</s**2>
199 -> 201	0.66478				
200 -> 202	-0.22133				
Excited State 3:	Singlet-A	2.7754 eV	446.72 nm	f=0.0011	<s**2>=0.000</s**2>
199 -> 201	0.22046				
200 -> 202	0.66761				
Excited State 4:	Singlet-A	2.8716 eV	431.76 nm	f=0.2609	<s**2>=0.000</s**2>
199 -> 202	0.69039				
200 -> 201	0.11364				
Excited State 5:	Singlet-A	3.4159 eV	362.96 nm	f=0.0749	<s**2>=0.000</s**2>
198 -> 201	0.69616				
Excited State 6:	Singlet-A	3.5938 eV	345.00 nm	f=0.0385	<s**2>=0.000</s**2>
198 -> 202	0.67702				
Excited State 7:	Singlet-A	3.6140 eV	343.06 nm	f=0.0044	<s**2>=0.000</s**2>
192 -> 201	-0.15177				
192 -> 202	0.14197				
193 -> 201	0.38125				
193 -> 202	-0.29079				
194 -> 201	0.24461				
194 -> 202	-0.23798				
195 -> 201	0.19435				
195 -> 202	-0.13057				
198 -> 202	-0.12745				
Excited State 8:	Singlet-A	3.6218 eV	342.33 nm	f=0.0035	<s**2>=0.000</s**2>
192 -> 201	-0.11262				
192 -> 202	-0.11593				

193 -> 201	-0.20634				
193 -> 202	-0.25587				
194 -> 201	0.34116				
194 -> 202	0.35473				
195 -> 201	-0.16573				
195 -> 202	-0.18697				
197 -> 201	-0.11394				
197 -> 202	-0.11282				
Excited State 9:	Singlet-A	3.8500 eV	322.04 nm	f=0.1642	<s**2>=0.000</s**2>
200 -> 203	0.68010				
200 -> 206	-0.12217				
Excited State 10:	Singlet-A	3.9502 eV	313.87 nm	f=0.0761	<s**2>=0.000</s**2>
199 -> 203	0.68395				

HOMO: 200, LUMO: 201

Table S8. TD-DFT calculated first-ten electron transitions of 3 in dichloromethane at B3LYP / 6-311+G(d,p) level

Excited State 1:	Singlet-A	2.7422 eV	452.14 nm	f=0.1025	<s**2>=0.000</s**2>
183 -> 184	0.70127				
Excited State 2:	Singlet-A	2.9419 eV	421.44 nm	f=0.1098	<s**2>=0.000</s**2>
183 -> 185	0.70149				
Excited State 3:	Singlet-A	3.0845 eV	401.96 nm	f=0.3910	<s**2>=0.000</s**2>
182 -> 184	0.69449				
Excited State 4:	Singlet-A	3.2820 eV	377.77 nm	f=0.0000	<s**2>=0.000</s**2>
182 -> 185	0.70068				
Excited State 5:	Singlet-A	3.4439 eV	360.01 nm	f=0.0027	<s**2>=0.000</s**2>
181 -> 184	0.69369				
Excited State 6:	Singlet-A	3.5960 eV	344.78 nm	f=0.0061	<s**2>=0.000</s**2>
175 -> 184	0.11834				
176 -> 185	0.39672				
177 -> 184	0.44297				
178 -> 184	-0.21680				
179 -> 185	0.22605				
181 -> 185	0.10318				
Excited State 7:	Singlet-A	3.5966 eV	344.73 nm	f=0.0010	<s**2>=0.000</s**2>
175 -> 185	0.10787				
176 -> 184	0.43630				
177 -> 185	0.40512				
178 -> 185	-0.18630				
179 -> 184	0.27195				
Excited State 8:	Singlet-A	3.6543 eV	339.28 nm	f=0.0567	<s**2>=0.000</s**2>
181 -> 185	0.68810				
Excited State 9:	Singlet-A	3.8830 eV	319.30 nm	f=0.0210	<s**2>=0.000</s**2>
178 -> 184	0.12019				

182 -> 187	-0.14535				
183 -> 186	0.66129				
Excited State 10:	Singlet-A	4.0219 eV	308.27 nm	f=0.1125	<s**2>=0.000</s**2>
179 -> 184	-0.13905				
182 -> 186	0.12322				
183 -> 187	0.66106				

HOMO: 183, LUMO: 184

Table S9. TD-DFT calculated first-ten electron transitions of **4** in dichloromethane at B3LYP / 6-311+G(d,p) level

Excited State1:Singlet-A 0.69942 2.7326 eV 453.72 nm $f=0.2013$ $< S^{**}2>=0.000$ $195 > 197$ 0.69942 2.7379 eV 452.85 nm $f=0.2902$ $< S^{**}2>=0.000$ $196 > 197$ 0.69878 3.0023 eV 412.97 nm $f=0.0014$ $< S^{**}2>=0.000$ $196 > 198$ 0.70294 3.0023 eV 412.97 nm $f=0.0014$ $< S^{**}2>=0.000$ $196 > 198$ 0.70294 3.0023 eV 412.97 nm $f=0.0114$ $< S^{**}2>=0.000$ $194 > 197$ 0.13955 3.0467 eV 406.94 nm $f=0.1578$ $< S^{**}2>=0.000$ $194 > 197$ 0.68673 $S^{**}2>=0.000$ $194 > 197$ 0.68673 $= 523.233.233.233.233.233.233.233.233.233.$	511 · O(u,p) ie vei					
195 > 197 0.69942 Excited State2:Singlet-A $2.7379 eV$ $452.85 nm$ $f=0.2902$ $<8**2>=0.000$ $196 -> 197$ 0.69878 $3.0023 eV$ $412.97 nm$ $f=0.0014$ $<8**2>=0.000$ $196 -> 198$ 0.70294 $3.0467 eV$ $406.94 nm$ $f=0.1578$ $<8**2>=0.000$ $194 -> 197$ 0.13955 $3.0467 eV$ $406.94 nm$ $f=0.1578$ $<8**2>=0.000$ $194 -> 197$ 0.68673 $3.1892 eV$ $388.77 nm$ $f=0.0654$ $<8**2>=0.000$ $194 -> 197$ 0.686590 $3.1892 eV$ $349.76 nm$ $f=0.0728$ $<8**2>=0.000$ $189 -> 198$ 0.14366 6.1229 $8.5749 eV$ $349.76 nm$ $f=0.0017$ $<8**2>=0.000$ $187 -> 198$ 0.10826 $3.5548 eV$ $348.78 nm$ $f=0.0017$ $<8**2>=0.000$ $187 -> 198$ 0.01229 $8.5548 eV$ $348.78 nm$ $f=0.0017$ $<8**2>=0.000$ $187 -> 198$ 0.01255 9.1252 9.1252 9.1252 9.1252 $190 -> 198$ 0.012152 9.1252 9.12579 $8.5602 eV$ $348.25 nm$ $f=0.0096$ $<8**2>=0.000$ $187 -> 197$ 0.11323 9.1323 $189 -> 198$ 0.04312 9.197 0.42363 $190 -> 199$ 0.01121 9.197 0.42363 9.197 0.14270 $191 -> 197$ 0.14270 9.33258 $9.328.53 nm$ $f=0.0067$ $<8**2>=0.000$ $191 -> 197$ 0.13644 </td <td>Excited State 1:</td> <td>Singlet-A</td> <td>2.7326 eV</td> <td>453.72 nm</td> <td>f=0.2013</td> <td><s**2>=0.000</s**2></td>	Excited State 1:	Singlet-A	2.7326 eV	453.72 nm	f=0.2013	<s**2>=0.000</s**2>
Excited State2:Singlet-A 2.7379 eV 452.85 nm $f=0.2902$ $<8**2>=0.000$ $196 \rightarrow 197$ 0.69878 3.0023 eV 412.97 nm $f=0.0114$ $<8**2>=0.000$ $196 \rightarrow 198$ 0.70294 3.0023 eV 412.97 nm $f=0.1578$ $<8**2>=0.000$ $194 \rightarrow 197$ 0.13955 3.0467 eV 406.94 nm $f=0.1578$ $<8**2>=0.000$ $194 \rightarrow 197$ 0.13955 3.0467 eV 406.94 nm $f=0.0654$ $<8**2>=0.000$ $194 \rightarrow 197$ 0.68590 3.1892 eV 388.77 nm $f=0.0654$ $<8**2>=0.000$ $195 \rightarrow 198$ 0.14366 3.5449 eV 349.76 nm $f=0.0728$ $<8**2>=0.000$ $189 \rightarrow 198$ 0.14834 3.5548 eV 348.78 nm $f=0.0017$ $<8**2>=0.000$ $187 \rightarrow 198$ 0.61229 3.5548 eV 348.78 nm $f=0.0017$ $<8**2>=0.000$ $187 \rightarrow 198$ 0.01252 3.5602 eV 348.25 nm $f=0.0096$ $<8**2>=0.000$ $187 \rightarrow 197$ 0.11323 3.5602 eV 348.25 nm $f=0.0096$ $<8**2>=0.000$ $187 \rightarrow 197$ 0.11323 3.5602 eV 348.25 nm $f=0.0096$ $<8**2>=0.000$ $187 \rightarrow 197$ 0.11323 3.5602 eV 348.25 nm $f=0.0096$ $<8**2>=0.000$ $187 \rightarrow 197$ 0.11221 $191 \rightarrow 197$ 0.14270 $192 \rightarrow 198$ 0.33258 $190 \rightarrow 199$ 0.01221 $191 \rightarrow 197$ 0.13644 3.7739 eV $328.53 n$	195 -> 197	0.69942				
$196 -> 197$ 0.69878 Excited State3:Singlet-A 3.0023 eV 412.97 nm $f=0.0014$ $=0.000$ $196 -> 198$ 0.70294 3.0467 eV 406.94 nm $f=0.1578$ $=0.000$ $194 -> 197$ 0.13955 $195 -> 198$ 0.68673 S S Excited State 5 :Singlet-A 3.1892 eV 388.77 nm $f=0.0654$ $=0.000$ $194 -> 197$ 0.688590 S S S S $S^{**2}>=0.000$ $194 -> 197$ 0.688590 S S S S $195 -> 198$ -0.14366 S S S S Excited State 6 :Singlet-A 3.5449 eV 349.76 nm $f=0.0728$ $=0.000$ $189 -> 198$ 0.18834 0.61229 S S S S S Excited State 7 :Singlet-A 3.5548 eV 348.78 nm $f=0.0017$ $=0.000$ $187 -> 198$ -0.10826 S S S S S S $190 -> 198$ -0.38906 $191 -> 198$ 0.14153 S	Excited State 2:	Singlet-A	2.7379 eV	452.85 nm	f=0.2902	<s**2>=0.000</s**2>
Excited State3:Singlet-A 0.70294 3.0023 eV 412.97 nm $f=0.0014$ $<8**2>=0.000$ $196 -> 198$ 0.70294 Excited State4:Singlet-A 3.0467 eV 406.94 nm $f=0.1578$ $<8**2>=0.000$ $194 -> 197$ 0.13955 0.13955 $195 -> 198$ 0.68673 $=$	196 -> 197	0.69878				
$196 -> 198$ 0.70294 Excited State4:Singlet-A 3.0467 eV 406.94 nm $f=0.1578 < S^{**}2>=0.000$ $194 -> 197$ 0.13955 0.68673 0.68673 0.68673 Excited State5:Singlet-A 3.1892 eV 388.77 nm $f=0.0654 < S^{**}2>=0.000$ $194 -> 197$ 0.68590 $0.95 -> 198$ -0.14366 0.14366 Excited State6:Singlet-A 3.5449 eV 349.76 nm $f=0.0728 < S^{**}2>=0.000$ $189 -> 198$ 0.18834 0.61229 0.61229 0.61229 Excited State7:Singlet-A 3.5548 eV 348.78 nm $f=0.0017 < S^{**}2>=0.000$ $187 -> 198$ -0.10826 0.61229 0.61229 0.61229 Excited State7:Singlet-A 3.5548 eV 348.78 nm $f=0.0017 < S^{**}2>=0.000$ $187 -> 198$ -0.10826 0.61229 0.61229 0.61229 0.61229 Excited State8:Singlet-A 3.5548 eV 348.78 nm $f=0.0017 < S^{**}2>=0.000$ $187 -> 198$ -0.10826 0.12152 $0.92 - 197$ 0.25079 0.25079 Excited State8:Singlet-A 3.5602 eV 348.25 nm $f=0.0096 < S^{**}2>=0.000$ $187 -> 197$ 0.11323 $0.92 - 197$ 0.42363 $0.92 - 198$ 0.93258 $190 -> 199$ 0.11221 $0.192 - 198$ 0.16401 $0.92 - 198$ 0.16401 $194 -> 198$ 0.33258 0.13644 3.7	Excited State 3:	Singlet-A	3.0023 eV	412.97 nm	f=0.0014	<s**2>=0.000</s**2>
Excited State4:Singlet-A 3.0467 eV 406.94 nm $f=0.1578$ $=0.000$ $194 \rightarrow 197$ 0.13955 $195 \rightarrow 198$ 0.68673 Excited State $5:$ Singlet-A 3.1892 eV 388.77 nm $f=0.0654$ $=0.000$ $194 \rightarrow 197$ 0.68590 $195 \rightarrow 198$ 0.14366 Excited State $6:$ Singlet-A 3.5449 eV 349.76 nm $f=0.0728$ $=0.000$ $189 \rightarrow 198$ 0.18834 $190 \rightarrow 197$ -0.21555 $191 \rightarrow 197$ 0.11264 $194 \rightarrow 198$ 0.61229 Excited State $7:$ Singlet-A 3.5548 eV 348.78 nm $f=0.0017$ $=0.000$ $187 \rightarrow 198$ -0.10826 $189 \rightarrow 199$ -0.12152 -0.38906 -0.38906 -0.38906 $191 \rightarrow 198$ 0.14153 -0.25079 -0.5079 -0.11323 Excited State $8:$ Singlet-A 3.5602 eV 348.25 nm $f=0.0096$ $=0.000$ $187 \rightarrow 197$ 0.11323 -0.34132 -0.34132 -0.34132 -0.34132 -0.14270 $192 \rightarrow 198$ -0.16401 -0.3258 -0.3263 -0.3258 -0.3664 Excited State $9:$ Singlet-A 3.7739 eV 328.53 nm $f=0.0067$ $=0.000$ $191 \rightarrow 197$ -0.13644 -0.13644 -0.3265 -0.3666 -0.3666	196 -> 198	0.70294				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Excited State 4:	Singlet-A	3.0467 eV	406.94 nm	f=0.1578	<s**2>=0.000</s**2>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	194 -> 197	0.13955				
Excited State 5: Singlet-A 3.1892 eV 388.77 nm f=0.0654 <s**2>=0.000 194 -> 197 0.68590 195 -> 198 -0.14366 Excited State 6: Singlet-A 3.5449 eV 349.76 nm f=0.0728 <s**2>=0.000 189 -> 197 -0.21555 191 -> 197 0.11264 194 -> 198 0.61229 Excited State 7: Singlet-A 3.5548 eV 348.78 nm f=0.0017 <s**2>=0.000 187 -> 198 -0.10826 189 -> 197 0.46342 189 -> 199 -0.12152 190 -> 198 0.14153 192 -> 197 0.25079 Excited State 8: Singlet-A 3.5602 eV 348.25 nm f=0.0096 <s**2>=0.000 187 -> 198 -0.34132 190 -> 197 0.42363 190 -> 197 0.42363 190 -> 199 -0.11221 191 -> 197 0.14270 192 -> 198 0.33258 Excited State 9: Singlet-A 3.7739 eV 328.53 nm f=0.0067 <s**2>=0.000</s**2></s**2></s**2></s**2></s**2>	195 -> 198	0.68673				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Excited State 5:	Singlet-A	3.1892 eV	388.77 nm	f=0.0654	<s**2>=0.000</s**2>
$195 -> 198$ -0.14366 Excited State6:Singlet-A 3.5449 eV 349.76 nm $f=0.0728 < S^{**2} >= 0.000$ $189 -> 198$ 0.18834 $190 -> 197$ -0.21555 $191 -> 197$ 0.11264 $194 -> 198$ 0.61229 0.61229 0.61229 0.10826 Excited State7:Singlet-A 3.5548 eV 348.78 nm $f=0.0017 < S^{**2} >= 0.000$ $187 -> 198$ -0.10826 0.61229 0.61229 0.61229 0.61229 Excited State7:Singlet-A 3.5548 eV 348.78 nm $f=0.0017 < S^{**2} >= 0.000$ $187 -> 198$ -0.10826 0.38906 0.14153 0.25079 0.25079 Excited State8:Singlet-A 3.5602 eV 348.25 nm $f=0.0096 < S^{**2} >= 0.000$ $187 -> 197$ 0.11323 0.34132 $0.90 -> 197$ 0.42363 $190 -> 197$ 0.42363 0.34132 0.3258 0.33258 Excited State9:Singlet-A 3.7739 eV 328.53 nm $f=0.0067 < S^{**2} >= 0.000$ $191 -> 197$ -0.13644	194 -> 197	0.68590				
Excited State 6: Singlet-A 3.5449 eV 349.76 nm f=0.0728 <s**2>=0.000 189 > 198 0.18834 190 > 197 -0.21555 191 > 197 0.11264 194 > 198 0.61229 Excited State 7: Singlet-A 3.5548 eV 348.78 nm f=0.0017 <s**2>=0.000 187 > 198 -0.10826 189 > 197 0.46342 189 > 199 -0.12152 190 > 198 -0.38906 191 > 198 0.14153 192 > 197 0.25079 Excited State 8: Singlet-A 3.5602 eV 348.25 nm f=0.0096 <s**2>=0.000 187 - 197 0.11323 189 - 198 -0.34132 190 - 197 0.42363 190 - 197 0.42363 190 - 199 -0.11221 191 - 197 -0.14270 192 - 198 0.33258 Excited State 9: Singlet-A 3.7739 eV 328.53 nm f=0.0067 <s**2>=0.000 191 - 197 -0.13644</s**2></s**2></s**2></s**2>	195 -> 198	-0.14366				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Excited State 6:	Singlet-A	3.5449 eV	349.76 nm	f=0.0728	<s**2>=0.000</s**2>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	189 -> 198	0.18834				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	190 -> 197	-0.21555				
$194 \rightarrow 198$ 0.61229 Excited State7:Singlet-A 3.5548 eV 348.78 nm $f=0.0017$ $187 \rightarrow 198-0.10826189 \rightarrow 1970.46342189 \rightarrow 199-0.12152190 \rightarrow 198-0.38906191 \rightarrow 1980.14153192 \rightarrow 1970.25079Excited State8:Singlet-A3.5602 \text{ eV}348.25 \text{ nm}f=0.0096187 \rightarrow 1970.113233.5602 \text{ eV}348.25 \text{ nm}f=0.0096187 \rightarrow 1970.113233.5602 \text{ eV}348.25 \text{ nm}f=0.0096187 \rightarrow 1970.113230.423630.423630.423630.14270190 \rightarrow 199-0.11221191 \rightarrow 197-0.14270192 \rightarrow 1980.33258Excited State9:Singlet-A3.7739 \text{ eV}328.53 \text{ nm}f=0.0067191 \rightarrow 197-0.13644$	191 -> 197	0.11264				
Excited State 7: Singlet-A 3.5548 eV 348.78 nm f=0.0017 <s**2>=0.000 187 -> 198 -0.10826 189 -> 197 0.46342 189 -> 199 -0.12152 190 -> 198 -0.38906 191 -> 198 0.14153 192 -> 197 0.25079 Excited State 8: Singlet-A 3.5602 eV 348.25 nm f=0.0096 <s**2>=0.000 187 -> 197 0.11323 189 -> 198 -0.34132 190 -> 197 0.42363 190 -> 197 0.42363 190 -> 199 -0.11221 191 -> 197 -0.14270 192 -> 198 -0.16401 194 -> 198 0.33258 Excited State 9: Singlet-A 3.7739 eV 328.53 nm f=0.0067 <s**2>=0.000 191 -> 197 -0.13644</s**2></s**2></s**2>	194 -> 198	0.61229				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Excited State 7:	Singlet-A	3.5548 eV	348.78 nm	f=0.0017	<s**2>=0.000</s**2>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	187 -> 198	-0.10826				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	189 -> 197	0.46342				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	189 -> 199	-0.12152				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	190 -> 198	-0.38906				
$192 \rightarrow 197$ 0.25079 Excited State8:Singlet-A 3.5602 eV 348.25 nm $f=0.0096$ $(S^{**2})=0.000$ $187 \rightarrow 197$ 0.11323 0.11323 $189 \rightarrow 198$ -0.34132 0.11323 $190 \rightarrow 197$ 0.42363 $190 \rightarrow 197$ 0.42363 0.11221 $191 \rightarrow 197$ -0.14270 $192 \rightarrow 198$ -0.16401 $194 \rightarrow 198$ 0.33258 3.7739 eV 328.53 nm $f=0.0067$ $(S^{**2})=0.000$ $191 \rightarrow 197$ -0.13644	191 -> 198	0.14153				
Excited State 8: Singlet-A 3.5602 eV 348.25 nm f=0.0096 $<$ S**2>=0.000 187 -> 197 0.11323 189 -> 198 -0.34132 190 -> 197 0.42363 190 -> 199 -0.11221 191 -> 197 -0.14270 192 -> 198 -0.16401 194 -> 198 0.33258 Excited State 9: Singlet-A 3.7739 eV 328.53 nm f=0.0067 $<$ S**2>=0.000 191 -> 197 -0.13644	192 -> 197	0.25079				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Excited State 8:	Singlet-A	3.5602 eV	348.25 nm	f=0.0096	<s**2>=0.000</s**2>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	187 -> 197	0.11323				
$190 \rightarrow 197$ 0.42363 $190 \rightarrow 199$ -0.11221 $191 \rightarrow 197$ -0.14270 $192 \rightarrow 198$ -0.16401 $194 \rightarrow 198$ 0.33258 Excited State9:Singlet-A 3.7739 eV $191 \rightarrow 197$ -0.13644	189 -> 198	-0.34132				
$190 \rightarrow 199$ -0.11221 $191 \rightarrow 197$ -0.14270 $192 \rightarrow 198$ -0.16401 $194 \rightarrow 198$ 0.33258 Excited State9:Singlet-A 3.7739 eV $191 \rightarrow 197$ -0.13644	190 -> 197	0.42363				
$191 \rightarrow 197$ -0.14270 $192 \rightarrow 198$ -0.16401 $194 \rightarrow 198$ 0.33258 Excited State9: $191 \rightarrow 197$ -0.13644	190 -> 199	-0.11221				
$192 \rightarrow 198$ -0.16401 $194 \rightarrow 198$ 0.33258Excited State9:Singlet-A3.7739 eV $191 \rightarrow 197$ -0.13644	191 -> 197	-0.14270				
$194 \rightarrow 198$ 0.33258 Excited State9:Singlet-A $191 \rightarrow 197$ -0.13644	192 -> 198	-0.16401				
Excited State 9: Singlet-A 3.7739 eV 328.53 nm f=0.0067 <s**2>=0.000 $191 \rightarrow 197$ -0.13644</s**2>	194 -> 198	0.33258				
191 -> 197 -0.13644	Excited State 9:	Singlet-A	3.7739 eV	328.53 nm	f=0.0067	<s**2>=0.000</s**2>
	191 -> 197	-0.13644				

195 -> 199	0.62237				
196 -> 200	0.26180				
Excited State 10:	Singlet-A	3.7751 eV	328.43 nm	f=0.0632	<s**2>=0.000</s**2>
195 -> 200	-0.10627				
196 -> 199	0.68237				

HOMO: 196, LUMO: 197

Cartesian coordinates for theoretically optimized structures

9 opt B3LYP/6-31G(d,p) Imaginary Frequency 0 HF = -1021.5626969 hartree

1		1 2	
С	0.43549000	3.12887700	-0.00002600
С	1.80248300	3.18551000	0.00001400
С	2.29561000	1.82617900	0.00001500
С	1.15062200	1.00961600	-0.00001000
Ν	0.02216200	1.79133900	-0.00003300
С	-1.24343000	1.19538400	-0.00003600
С	-2.42514800	1.94865600	-0.00002500
С	-1.32014600	-0.21794600	-0.00004700
С	-3.65449900	1.30675300	-0.00002000
Н	-2.38370600	3.03254400	-0.00001500
С	-2.58466500	-0.82805800	-0.00004100
С	-3.77109000	-0.09916500	-0.00002300
Н	-4.54971700	1.92123800	-0.00001400
Н	-2.58062400	-1.91125800	-0.00006000
С	-0.10863700	-1.10005400	-0.00005700
0	-0.19594800	-2.32675700	-0.00007900
С	3.54485400	1.19109600	0.00001000
Н	4.44575900	1.79329900	0.00002400
С	3.63200500	-0.21372200	-0.00001900
С	2.44476100	-0.97785000	-0.00003200
Н	2.48107700	-2.06195700	-0.00004100
С	1.18083300	-0.38225900	-0.00002800
С	-5.16259300	-0.75561300	0.00002500
С	-5.94044000	-0.31346300	1.26230500
Н	-6.93714600	-0.76832400	1.27388300
Н	-5.41629100	-0.62096100	2.17289400
Н	-6.07185000	0.77220900	1.30273400
С	-5.07667000	-2.29312900	-0.00019300
Н	-6.08555300	-2.71792000	-0.00015700
Н	-4.55800900	-2.67209700	-0.88642900
Н	-4.55785700	-2.67237600	0.88583300
С	-5.94075600	-0.31316500	-1.26194500
Н	-6.07213200	0.77252000	-1.30215000

Н	-5.41688000	-0.62051900	-2.17274100	
Н	-6.93748900	-0.76797000	-1.27333500	
С	4.98861800	-0.94888400	0.00002100	
С	5.09254800	-1.83736000	1.26242700	
Н	5.03110800	-1.23235400	2.17296700	
Н	4.29350900	-2.58293800	1.30302900	
Н	6.04863100	-2.37270900	1.27388500	
С	5.09240500	-1.83786500	-1.26203300	
Н	5.03093400	-1.23322100	-2.17281300	
Н	6.04845800	-2.37327100	-1.27335400	
Н	4.29333500	-2.58342800	-1.30230400	
С	6.18472100	0.02181000	-0.00026900	
Н	6.19106400	0.66301500	-0.88795000	
Н	6.19137200	0.66321800	0.88726200	
Н	7.11938800	-0.54784200	-0.00035100	
Н	-0.28593200	3.93098100	-0.00003400	
Н	2.38975400	4.09271500	0.00001900	

11 opt B3LYP/6-31G(d,p) Imaginary Frequency 0 HF = -2041.9245919 hartree

1		1 2		
С	-0.73044000	-1.77475200	-0.05492500	
С	-1.48434700	-2.68060200	-0.76244900	
С	-2.87171700	-2.33876900	-0.60513900	
С	-2.88758200	-1.20530900	0.22690000	
Ν	-1.60485200	-0.85373700	0.58107000	
С	-1.40581200	0.22212000	1.46988000	
С	-0.14166600	0.59249200	1.95159000	
С	-2.54081900	0.95298800	1.90383800	
С	-0.01317800	1.66836100	2.81820400	
Н	0.73970000	0.03746300	1.66468800	
С	-2.36539700	2.03658100	2.77940200	
С	-1.11718400	2.42738600	3.25385500	
Н	0.98468900	1.91906200	3.16504900	
Н	-3.27320400	2.55178600	3.06865100	
С	-3.93944800	0.61955600	1.49358500	
Ο	-4.90901600	1.27480400	1.87181800	
С	-4.09738400	-2.84013600	-1.06664300	
Н	-4.10290200	-3.71351200	-1.70806200	
С	-5.30345900	-2.21839300	-0.70242100	
С	-5.25992700	-1.08333000	0.13634200	
Н	-6.17152600	-0.57804400	0.43701800	
С	-4.05866300	-0.55806200	0.61644100	
С	-0.91147300	3.61476000	4.20943800	
С	-0.25697600	3.11465600	5.51915200	
Н	-0.09868300	3.95146500	6.20839800	

Н	-0.89459800	2.37869900	6.01951500
Η	0.71551900	2.64681700	5.33815200
С	-2.24012500	4.30641400	4.56640200
Η	-2.04809000	5.14434600	5.24405600
Η	-2.74232500	4.70614700	3.67976600
Η	-2.93193600	3.62458400	5.07104600
С	0.01489500	4.65736900	3.53959100
Η	0.99456600	4.23634200	3.29405800
Η	-0.42773400	5.03632500	2.61280800
Η	0.17801000	5.50779200	4.21084800
С	-6.67310700	-2.73467700	-1.18831800
С	-7.54103700	-3.11837100	0.03369100
Η	-7.06446800	-3.91153100	0.61902100
Η	-7.70772600	-2.26669700	0.69923000
Η	-8.52140400	-3.48092700	-0.29496800
С	-7.38557700	-1.62225700	-1.99380500
Η	-6.79723600	-1.33640500	-2.87190900
Η	-8.36486700	-1.97109600	-2.34004400
Η	-7.54675700	-0.72293000	-1.39269800
С	-6.54620500	-3.97446100	-2.09349600
Η	-5.96591800	-3.76314700	-2.99781900
Η	-6.07674000	-4.81531500	-1.57221500
Η	-7.54159000	-4.30023100	-2.41126000
Η	-1.06734500	-3.48386300	-1.35296400
С	0.73044200	-1.77475100	0.05494400
С	1.48435000	-2.68059400	0.76247500
Ν	1.60485300	-0.85374000	-0.58105900
С	2.87172000	-2.33876200	0.60516000
Η	1.06735000	-3.48385200	1.35299600
С	2.88758300	-1.20530700	-0.22688600
С	1.40581200	0.22210900	-1.46987800
С	4.09738700	-2.84012500	1.06666700
С	4.05866300	-0.55806300	-0.61643400
С	0.14166500	0.59247400	-1.95159200
С	2.54081700	0.95297400	-1.90384300
Η	4.10290800	-3.71349600	1.70809300
С	5.30346300	-2.21838400	0.70243800
С	3.93944700	0.61954800	-1.49358700
С	5.25992900	-1.08332600	-0.13633300
С	0.01317500	1.66833500	-2.81821600
Η	-0.73970000	0.03744700	-1.66468500
С	2.36539400	2.03655800	-2.77941800
С	6.67311100	-2.73466300	1.18833700
Ο	4.90901400	1.27478800	-1.87183300

Н	6.17152600	-0.57804300	-0.43701400	
С	1.11718000	2.42735700	-3.25387500	
Н	-0.98469200	1.91903100	-3.16506500	
Н	3.27320000	2.55176200	-3.06867200	
С	7.54103800	-3.11837300	-0.03366900	
С	7.38558500	-1.62223400	1.99380900	
С	6.54621100	-3.97443600	2.09353100	
С	0.91146800	3.61472200	-4.20946900	
Η	7.06446500	-3.91153900	-0.61898900	
Η	7.70772600	-2.26670700	-0.69921800	
Η	8.52140500	-3.48092800	0.29499100	
Н	6.79724600	-1.33637200	2.87191200	
Η	8.36487600	-1.97106900	2.34004900	
Н	7.54676300	-0.72291400	1.39269100	
Η	5.96592900	-3.76311000	2.99785500	
Н	6.07674000	-4.81529500	1.57226300	
Н	7.54159600	-4.30020600	2.41129300	
С	0.25697200	3.11460400	-5.51917900	
С	2.24011900	4.30637400	-4.56644000	
С	-0.01490100	4.65733600	-3.53963300	
Η	0.09867800	3.95140600	-6.20843300	
Н	0.89459500	2.37864300	-6.01953500	
Η	-0.71552300	2.64676500	-5.33817400	
Н	2.04808300	5.14430000	-5.24410200	
Н	2.74231900	4.70611600	-3.67980800	
Н	2.93193100	3.62454000	-5.07107800	
Н	-0.99457200	4.23631000	-3.29409600	
Н	0.42772700	5.03630200	-2.61285300	
Н	-0.17801700	5.50775200	-4.21089800	

2 opt B3LYP/6-31G(d,p) Imaginary Frequency 0 HF = -2327.108323 hartree

		<u> </u>	
С	-1.56488600	-1.55445500	-0.08582600
С	-0.83604600	-0.35530600	-0.00429200
С	0.53564800	-0.71989600	0.01100800
С	0.57313900	-2.12333500	0.09488200
Ν	-0.70920900	-2.64059400	0.00523700
С	1.93270600	-2.55822500	0.26653800
С	2.67663900	-1.35348500	0.22874900
С	-2.96123200	-1.25766700	-0.26010500
С	-3.00908600	0.16051500	-0.22617500
Ν	-1.75166300	0.71950800	-0.03607300
Ν	1.86390500	-0.24284600	0.03996600
С	2.45750100	0.94449100	-0.41615300

С	1.73019300	1.95848300	-1.04548600
С	3.86224800	1.09202800	-0.27908900
С	2.36431900	3.12784200	-1.45346200
Η	0.67149400	1.83213800	-1.23176500
С	4.46161800	2.28787800	-0.69183500
С	3.74216400	3.33652200	-1.26846000
Η	1.75728900	3.88558600	-1.93474000
Η	5.53691300	2.34576600	-0.55715200
С	-1.67690900	2.04544600	0.41733100
С	-0.54306700	2.56524000	1.04814500
С	-2.82252800	2.87076500	0.27610900
С	-0.51366000	3.89566700	1.45410900
Η	0.31244800	1.92978700	1.23764700
С	-2.74952000	4.20712300	0.68653000
С	-1.60564100	4.76075000	1.26506600
Η	0.38819700	4.25269100	1.93729500
Η	-3.65370400	4.79117300	0.54837300
С	4.74541000	-0.01798400	0.18624000
Ο	5.95238500	0.12997600	0.36821900
С	-4.13954400	2.34486900	-0.19111400
Ο	-5.11288200	3.07334300	-0.37654400
С	-1.07591000	-4.01631100	0.00107300
С	-0.66181100	-4.85145400	1.04400100
С	-1.84947700	-4.52770300	-1.04629500
С	-1.01613300	-6.20044300	1.02998400
Η	-0.07996900	-4.43797400	1.86102900
С	-2.21468100	-5.87382800	-1.04103200
Η	-2.14642800	-3.87432200	-1.85992200
С	-1.79619400	-6.71416500	-0.00764300
Η	-0.69398400	-6.84640800	1.84101000
Η	-2.81417000	-6.26851100	-1.85572800
Η	-2.07610200	-7.76292800	-0.01101500
С	2.63121700	-3.76110100	0.43102600
Η	2.08139600	-4.69283500	0.44690700
С	4.03261300	-3.76370900	0.56574500
С	4.72538900	-2.54058400	0.50933100
Η	5.80581300	-2.50350200	0.59691400
С	4.06448400	-1.32114300	0.32355000
С	-4.16307100	-1.94917800	-0.42320400
Η	-4.15586300	-3.03310000	-0.43530900
С	-5.38510700	-1.25446400	-0.56373300
С	-5.38029900	0.14653800	-0.51222400
Η	-6.29379900	0.72020900	-0.60350200
С	-4.19543700	0.87616300	-0.32486900

С	4.46213700	4.62821600	-1.69562900
С	5.53364200	4.29300200	-2.75996900
Н	6.06147700	5.20228000	-3.06872500
Н	6.27821900	3.58873000	-2.37811500
Н	5.07658300	3.84709000	-3.64938100
С	5.14791500	5.26261100	-0.46259500
Н	5.67597200	6.17876300	-0.74975300
Н	4.41190000	5.52191600	0.30561000
Н	5.87767500	4.58487100	-0.01055700
С	3.49299400	5.66456300	-2.29482400
Н	3.00359100	5.29188900	-3.20075000
Н	2.71553300	5.95699000	-1.58102600
Н	4.04483100	6.56908900	-2.56933800
С	4.83133400	-5.06849300	0.76309700
С	5.83414200	-5.23978500	-0.40259500
Н	5.31162100	-5.30039800	-1.36286500
Н	6.53952200	-4.40601300	-0.45862700
Н	6.41521800	-6.15975500	-0.27304000
С	5.60734900	-4.99747500	2.09970300
Н	4.92121500	-4.88558200	2.94570600
Н	6.18820700	-5.91406800	2.25218400
Н	6.30373700	-4.15458100	2.12180300
С	3.92571300	-6.31390100	0.80123800
Н	3.20595300	-6.27086800	1.62553900
Н	3.37004600	-6.44534500	-0.13309700
Н	4.53874700	-7.20885100	0.94726200
С	-1.58998000	6.24030600	1.68939400
С	-0.23739600	6.65857600	2.29583600
Н	-0.00340600	6.09312100	3.20391900
Н	0.58677600	6.52484000	1.58708800
Н	-0.26819000	7.71814000	2.56864600
С	-1.86212100	7.12903300	0.45273300
Н	-2.82946800	6.90250100	-0.00459300
Н	-1.86668300	8.18713700	0.73747300
Н	-1.08992800	6.98647500	-0.31050400
С	-2.69255300	6.48503600	2.74664900
Н	-3.68655300	6.24363200	2.35952100
Н	-2.52315600	5.87290700	3.63850600
Н	-2.69996000	7.53712800	3.05290000
С	-6.68300200	-2.06508700	-0.75703500
С	-6.90392200	-2.98679200	0.46588800
Н	-7.82211000	-3.57168800	0.34108700
Н	-6.07818500	-3.69154900	0.60259000
Н	-6.99765100	-2.40005700	1.38535900

С	-6.56714200	-2.92902200	-2.03535900	
Н	-6.41502200	-2.30135500	-2.91940700	
Н	-5.73224500	-3.63410100	-1.97804600	
Н	-7.48287000	-3.51162300	-2.18592400	
С	-7.92001000	-1.15914600	-0.90360000	
Н	-8.08146800	-0.54210600	-0.01412600	
Н	-7.83867100	-0.49467900	-1.76962400	
Н	-8.81293400	-1.77681400	-1.04317500	

2 transition state opt B3LYP/6-31G(d,p) Imaginary Frequency 1 HF = -2327.084404 hartree

С	1.78043300	-1.06953800	-0.68455800
С	0.42230600	-0.70016900	-0.56839300
С	0.42394500	0.74815600	-0.50796300
С	1.77932900	1.13333200	-0.59081700
Ν	2.59929100	0.03646600	-0.72128900
С	1.94178000	2.52265600	-0.28333100
С	0.62750200	2.95132900	0.00649500
С	1.97011700	-2.44923800	-0.35041800
С	0.66963300	-2.89985700	-0.05086400
Ν	-0.28756000	-1.90580400	-0.24006100
Ν	-0.30969600	1.94221600	-0.19717300
С	-1.65658300	2.34294100	-0.22627100
С	-2.63853200	1.64196300	-0.92786800
С	-2.02928200	3.56801500	0.38393800
С	-3.96601300	2.04106900	-0.89518300
Н	-2.33307400	0.82732500	-1.55962900
С	-3.38385300	3.93614000	0.41788600
С	-4.38747900	3.17883300	-0.17946400
Н	-4.68731800	1.46072400	-1.46281800
Н	-3.59593300	4.87578900	0.91373300
С	-1.62986500	-2.32691400	-0.24306500
С	-2.64019400	-1.64106000	-0.91241300
С	-1.96998600	-3.56181300	0.37499200
С	-3.96555100	-2.05835600	-0.84678700
Н	-2.36957800	-0.81534900	-1.54485000
С	-3.31368600	-3.94802000	0.43819000
С	-4.34867700	-3.20307800	-0.13010200
Н	-4.70504000	-1.48005200	-1.38867000
Н	-3.50361100	-4.89479200	0.93370800
С	-1.02893900	4.56750300	0.84616300
0	-1.34179700	5.61171400	1.41643800
С	-0.94525300	-4.54584000	0.81833800
0	-1.23186000	-5.59518100	1.39239500
С	4.02545600	0.01289600	-0.73824700
---	-------------	-------------	-------------
С	4.75111500	0.54781500	0.33107300
С	4.68977100	-0.56897000	-1.82247000
С	6.14532500	0.51044500	0.30372300
Н	4.22293000	0.97770800	1.17517800
С	6.08390600	-0.61703800	-1.83283500
Н	4.11091200	-0.97107600	-2.64753700
С	6.81398700	-0.07346800	-0.77418800
Н	6.70809100	0.92460900	1.13472600
Н	6.59851400	-1.06942000	-2.67497300
Н	7.89896400	-0.10619300	-0.78807100
С	2.98894100	3.43758400	-0.15740800
Н	3.99802400	3.12954700	-0.40516300
С	2.74756400	4.75117900	0.29787800
С	1.43593400	5.11764700	0.62775300
Н	1.20128600	6.10158500	1.01366800
С	0.35769300	4.23124300	0.48161000
С	3.04845500	-3.32894500	-0.19816500
Н	4.04666700	-2.98747700	-0.43807300
С	2.83904800	-4.63659400	0.27529500
С	1.52984700	-5.03403700	0.59824900
Н	1.32523000	-6.02123300	0.99839800
С	0.43034200	-4.18367600	0.43805900
С	-5.87647700	3.55982800	-0.13286000
С	-6.39719700	3.80510900	-1.56888600
Η	-7.45935400	4.07318000	-1.54776300
Н	-5.85012200	4.62262300	-2.04927300
Η	-6.29363500	2.91702600	-2.19995500
С	-6.12005100	4.83557100	0.69447800
Η	-7.19130400	5.05944000	0.71960100
Η	-5.78039100	4.72000200	1.72858100
Н	-5.61133500	5.70404900	0.26439800
С	-6.67706000	2.40317500	0.51138500
Η	-6.57120500	1.47112500	-0.05270000
Н	-6.33750300	2.21416800	1.53477300
Η	-7.74377400	2.65092800	0.54694200
С	3.93412800	5.72734800	0.42600500
С	4.58574100	5.92794000	-0.96288400
Н	4.95844200	4.98713800	-1.37921400
Н	3.86715800	6.34660500	-1.67480800
Н	5.43362000	6.61829800	-0.89027700
С	3.49895300	7.10649200	0.95586900
Н	3.05299800	7.03830500	1.95315400
Н	4.37100700	7.76427200	1.02783700

Н	2.77535500	7.58863000	0.29109100	
С	4.98270900	5.14610000	1.40405900	
Н	4.54944000	4.99672400	2.39840400	
Н	5.37364200	4.18349300	1.06029400	
Н	5.83192100	5.83138400	1.50338000	
С	-5.80788600	-3.67403800	-0.00525400	
С	-6.79156200	-2.70612200	-0.68916500	
Н	-6.73657000	-1.69968300	-0.26041900	
Н	-6.61046700	-2.63142500	-1.76671300	
Н	-7.81645300	-3.06592700	-0.55445000	
С	-5.96063700	-5.06683600	-0.66099400	
Н	-5.31316200	-5.81082200	-0.18835000	
Н	-6.99442300	-5.41889500	-0.57113400	
Н	-5.70585500	-5.02943300	-1.72523700	
С	-6.18398700	-3.76974400	1.49220200	
Н	-5.53752000	-4.47081200	2.02772600	
Н	-6.09707900	-2.79424500	1.98171000	
Н	-7.21767300	-4.11566900	1.60399700	
С	3.99847900	-5.63473300	0.46699500	
С	4.08177600	-6.04682300	1.95593800	
Н	4.89630500	-6.76401600	2.10772100	
Н	4.27202500	-5.17677900	2.59283900	
Н	3.15626700	-6.51640300	2.30074700	
С	5.35926300	-5.04092400	0.05688400	
Н	5.37617600	-4.74889700	-0.99846200	
Н	5.62235600	-4.16501300	0.65896500	
Н	6.14520100	-5.78851000	0.20384800	
С	3.74183200	-6.89143900	-0.39809700	
Н	2.80523100	-7.38710100	-0.12775800	
Н	3.68743900	-6.63150800	-1.46041800	
Н	4.55282200	-7.61658800	-0.26675300	
				· · · · · · · · · · · · · · · · · · ·

3 opt B3LYP/6-31G(d,p) Imaginary Frequency 0 HF = -2118.154953 hartree

		1 0	
С	-1.37757100	-2.89325900	-0.12678100
С	-0.70143400	-1.64425600	0.03173400
С	0.70144200	-1.64425400	-0.03170200
С	1.37758900	-2.89324900	0.12681300
С	2.79309400	-2.59545000	0.26362100
С	2.91441600	-1.21118200	0.08605300
С	-2.79307800	-2.59547400	-0.26357100
С	-2.91441400	-1.21121600	-0.08597300
Ν	-1.67830000	-0.62272900	0.14546700
Ν	1.67829600	-0.62270700	-0.14538900
С	1.66703500	0.63395000	-0.78562200

С	0.56351200	1.11775100	-1.49385700
С	2.85324300	1.41282200	-0.75181500
С	0.60502600	2.37678000	-2.08450900
Н	-0.32606500	0.51094700	-1.59713300
С	2.84978700	2.68082800	-1.34557400
С	1.73797600	3.20462500	-2.00745500
Н	-0.27622600	2.70775400	-2.62124000
Н	3.78260800	3.23181300	-1.28234900
С	-1.66704500	0.63394300	0.78566600
С	-0.56352100	1.11776800	1.49388400
С	-2.85325800	1.41280600	0.75184500
С	-0.60503900	2.37681300	2.08450300
Н	0.32606200	0.51097300	1.59716600
С	-2.84980600	2.68082800	1.34557300
С	-1.73799500	3.20464800	2.00743500
Н	0.27621600	2.70780800	2.62121700
Н	-3.78263100	3.23180500	1.28233900
С	4.14691400	0.89603100	-0.21190500
0	5.15058500	1.59826400	-0.11046900
С	-4.14692500	0.89599900	0.21194200
0	-5.15059500	1.59822800	0.11047800
С	3.95112400	-3.34137600	0.49883000
Н	3.87340600	-4.41391300	0.63190300
С	5.20783600	-2.70864500	0.56261600
С	5.27580900	-1.31787200	0.35508200
Н	6.22640200	-0.79571200	0.37812800
С	4.13714100	-0.54709700	0.09542700
С	-3.95109800	-3.34140400	-0.49883800
Н	-3.87335900	-4.41393400	-0.63194800
С	-5.20781100	-2.70868400	-0.56262400
С	-5.27580100	-1.31791400	-0.35504900
Н	-6.22640000	-0.79576500	-0.37811600
С	-4.13714500	-0.54713400	-0.09536700
С	1.79827500	4.60933600	-2.63353300
С	2.91864600	4.65123500	-3.69959300
Н	2.97926700	5.64875000	-4.14894700
Н	3.89729300	4.41942400	-3.26974400
Н	2.72519700	3.92959900	-4.49998100
С	2.10603900	5.64676700	-1.52808600
Н	2.16290400	6.65390000	-1.95583300
Н	1.32310500	5.64707200	-0.76224800
Н	3.05875300	5.44058500	-1.03191100
С	0.47185300	5.00342400	-3.30984100
Н	0.21615400	4.32861300	-4.13348100

Н	-0.36234400	5.00988300	-2.60045500
Н	0.55704400	6.01164600	-3.72726900
С	6.50783600	-3.49051000	0.84023000
С	7.47726000	-3.31929500	-0.35335200
Н	7.03482700	-3.70783000	-1.27646100
Н	7.73447400	-2.26987700	-0.52242900
Н	8.40931800	-3.86454000	-0.16750700
С	7.17303000	-2.93934300	2.12382400
Н	6.51192700	-3.05583000	2.98881600
Н	8.10350400	-3.47917200	2.33211200
Н	7.41800400	-1.87744000	2.03169800
С	6.25613700	-4.99692900	1.04023500
Н	5.59592400	-5.19195500	1.89189400
Н	5.81667300	-5.46024600	0.15056200
Н	7.20548000	-5.50423500	1.23831300
С	-1.79830300	4.60936900	2.63348900
С	-0.47186500	5.00349700	3.30974200
Н	-0.21612300	4.32871000	4.13338900
Н	0.36230600	5.00995400	2.60032500
Н	-0.55706000	6.01172700	3.72715000
С	-2.10613000	5.64678100	1.52804300
Н	-3.05885500	5.44057700	1.03190100
Н	-2.16300300	6.65391600	1.95578400
Н	-1.32322100	5.64709900	0.76217800
С	-2.91863800	4.65125200	3.69959100
Н	-3.89729300	4.41941300	3.26977300
Н	-2.72514300	3.92962700	4.49997600
Н	-2.97926800	5.64877000	4.14893900
С	-6.50780700	-3.49054300	-0.84027900
С	-7.47728400	-3.31923100	0.35325400
Н	-8.40933000	-3.86449400	0.16741000
Н	-7.03487900	-3.70768800	1.27640800
Н	-7.73449800	-2.26979600	0.52222800
С	-6.25613400	-4.99698600	-1.04018400
Н	-5.59594400	-5.19208500	-1.89184300
Н	-5.81665700	-5.46024600	-0.15048800
Н	-7.20548700	-5.50429400	-1.23820900
С	-7.17292800	-2.93943000	-2.12392100
Н	-7.41785500	-1.87750600	-2.03189000
Н	-6.51181400	-3.05601600	-2.98889200
Н	-8.10342700	-3.47922000	-2.33219900
С	-0.68685800	-4.11173700	-0.09885100
Н	-1.23197100	-5.04539100	-0.19307400
С	0.68688600	-4.11173300	0.09889700

3 transition state opt B3LYP/6-31G(d,p) Imaginary Frequency 1 HF = -2118.105102 hartree

Н

		<u>, , , , , , , , , , , , , , , , , , , </u>	
С	-1.33058800	-2.56251500	-1.25903500
С	-0.69192300	-1.31459700	-0.94323800
С	0.73866300	-1.30642800	-0.93624900
С	1.39477100	-2.54789800	-1.23731100
С	2.73269000	-2.50307100	-0.68175000
С	2.85200400	-1.24795800	-0.08231300
С	-2.67686400	-2.53394900	-0.72580100
С	-2.81712700	-1.28695700	-0.12061600
Ν	-1.70449600	-0.48086400	-0.35284300
Ν	1.73510800	-0.45577500	-0.34045600
С	2.00997500	0.93257700	-0.29887800
С	1.51356500	1.84011400	-1.23571600
С	3.00071000	1.39393500	0.60582100
С	1.84719100	3.18763000	-1.16838600
Н	0.93519400	1.46713600	-2.06666200
С	3.28828200	2.76440800	0.67538900
С	2.70638100	3.69917400	-0.17851100
Н	1.44771500	3.84924900	-1.93113100
Н	4.04630500	3.04534100	1.39666400
С	-1.99226600	0.90539900	-0.29472300
С	-1.49317600	1.83066600	-1.20666100
С	-2.99916400	1.34492400	0.60821600
С	-1.83870800	3.17903200	-1.12544900
Н	-0.89675800	1.47815600	-2.03289700
С	-3.29869300	2.70758400	0.69067900
С	-2.71615600	3.66459900	-0.14530000
Н	-1.42873600	3.85083900	-1.87057800
Н	-4.07074000	2.97610100	1.40455300
С	3.95245600	0.46532400	1.28623200
0	4.74279100	0.82611100	2.15374100
С	-3.95090800	0.39748500	1.26271700
0	-4.75319900	0.73664300	2.12740100
С	3.77252900	-3.41942200	-0.53020800
Н	3.69937100	-4.39579300	-0.99938600
С	4.90861600	-3.09611200	0.24260200
С	4.96639900	-1.83455700	0.85504300
Н	5.80473000	-1.54705900	1.47715900
С	3.94741700	-0.88449400	0.69281700
С	-3.70926600	-3.46902800	-0.59704800
Н	-3.61250500	-4.43695000	-1.07445400
С	-4.85435400	-3.16488300	0.16078000

С	-4.93175600	-1.90550900	0.78681500
Н	-5.78411200	-1.63966700	1.40305100
С	-3.92690900	-0.94360100	0.64864000
С	3.03766500	5.20049700	-0.12885300
С	3.72791300	5.62153100	-1.44805900
Н	3.96570700	6.69093800	-1.42902200
Н	4.66118700	5.06861700	-1.59497200
Н	3.09063200	5.43956000	-2.31897000
С	3.97698200	5.54639500	1.04168500
Н	4.16084000	6.62533400	1.05918400
Н	3.54269700	5.26698500	2.00685200
Н	4.94734400	5.04900900	0.94813600
С	1.73164500	6.00965300	0.04409500
Н	1.03947100	5.84190100	-0.78651300
Н	1.21814800	5.73297300	0.97059900
Н	1.94926400	7.08269600	0.08251000
С	6.03298200	-4.13964300	0.39892400
С	6.60182800	-4.49631000	-0.99492700
Н	5.83582700	-4.91397400	-1.65535300
Н	7.01907300	-3.61106700	-1.48567200
Н	7.40017800	-5.24087300	-0.90131100
С	7.19206700	-3.62145200	1.27094200
Н	6.86290600	-3.38083900	2.28673800
Н	7.96558900	-4.39203100	1.34878800
Н	7.65757900	-2.72834200	0.84207400
С	5.46514200	-5.41640400	1.06320900
Н	5.05942900	-5.19386400	2.05530000
Н	4.66429100	-5.86603900	0.46844800
Н	6.25367300	-6.16828000	1.17911900
С	-3.10543500	5.14727500	-0.01241000
С	-2.41885400	6.02752700	-1.07277400
Н	-1.32795900	5.98399000	-0.99467500
Н	-2.70350200	5.73817400	-2.09004100
Н	-2.71622000	7.07162400	-0.93353800
С	-4.63598700	5.30253400	-0.17800400
Н	-5.18903500	4.74072200	0.57964700
Н	-4.92161000	6.35606900	-0.08373300
Н	-4.96211000	4.94918200	-1.16168400
С	-2.68945700	5.65245700	1.38926100
Н	-3.17534400	5.07924900	2.18427400
Н	-1.60701800	5.56902900	1.53118600
Н	-2.96926100	6.70443000	1.51477900
С	-6.01280100	-4.16622800	0.34119700
С	-6.18459500	-4.48967200	1.84436500

H -7.01022200 -5.19525600 1.98972700 H -5.27540400 -4.94136800 2.25429200 H -6.40574400 -3.59395100 2.43160100 C -5.76758100 -5.48899700 -0.40890300 H -5.66276700 -5.33388100 -1.48793500 H -4.87222800 -6.00500000 -0.04652900 H -6.61755500 -6.16115400 -0.25511800 C -7.32013300 -3.54132100 -0.20117400 H -7.57629100 -2.61552300 0.32174700 H -7.23073900 -3.30907200 -1.26747900
H -5.27540400 -4.94136800 2.25429200 H -6.40574400 -3.59395100 2.43160100 C -5.76758100 -5.48899700 -0.40890300 H -5.66276700 -5.33388100 -1.48793500 H -4.87222800 -6.00500000 -0.04652900 H -6.61755500 -6.16115400 -0.25511800 C -7.32013300 -3.54132100 -0.20117400 H -7.57629100 -2.61552300 0.32174700 H -7.23073900 -3.30907200 -1.26747900
H-6.40574400-3.593951002.43160100C-5.76758100-5.48899700-0.40890300H-5.66276700-5.33388100-1.48793500H-4.87222800-6.00500000-0.04652900H-6.61755500-6.16115400-0.25511800C-7.32013300-3.54132100-0.20117400H-7.57629100-2.615523000.32174700H-7.23073900-3.30907200-1.26747900
C -5.76758100 -5.48899700 -0.40890300 H -5.66276700 -5.33388100 -1.48793500 H -4.87222800 -6.00500000 -0.04652900 H -6.61755500 -6.16115400 -0.25511800 C -7.32013300 -3.54132100 -0.20117400 H -7.57629100 -2.61552300 0.32174700 H -7.23073900 -3.30907200 -1.26747900
H-5.66276700-5.33388100-1.48793500H-4.87222800-6.00500000-0.04652900H-6.61755500-6.16115400-0.25511800C-7.32013300-3.54132100-0.20117400H-7.57629100-2.615523000.32174700H-7.23073900-3.30907200-1.26747900
H-4.87222800-6.00500000-0.04652900H-6.61755500-6.16115400-0.25511800C-7.32013300-3.54132100-0.20117400H-7.57629100-2.615523000.32174700H-7.23073900-3.30907200-1.26747900
H-6.61755500-6.16115400-0.25511800C-7.32013300-3.54132100-0.20117400H-7.57629100-2.615523000.32174700H-7.23073900-3.30907200-1.26747900
C -7.32013300 -3.54132100 -0.20117400 H -7.57629100 -2.61552300 0.32174700 H -7.23073900 -3.30907200 -1.26747900
H -7.57629100 -2.61552300 0.32174700 H -7.23073900 -3.30907200 -1.26747900
Н -7.23073900 -3.30907200 -1.26747900
Н -8.15635200 -4.23786800 -0.07405200
C -0.64698600 -3.68501000 -1.74003400
Н -1.19984700 -4.58272600 -1.99716800
C 0.73121200 -3.67830400 -1.72713600
Н 1.29751700 -4.57069900 -1.97337400

4 opt B3LYP/6-31G(d,p) Imaginary Frequency 0 HF = -2271.797866 hartree

-				
С	-1.40423000	-2.52548400	-0.12048200	
С	-0.70700700	-1.30824900	0.04956400	
С	0.70686000	-1.30830000	-0.04955800	
С	1.40399000	-2.52559000	0.12046000	
С	2.81829800	-2.18773800	0.22439900	
С	2.89624100	-0.80256600	0.00000900	
С	-2.81851100	-2.18752400	-0.22440100	
С	-2.89635500	-0.80235700	0.00002500	
Ν	-1.64096300	-0.26132300	0.22091700	
Ν	1.64089000	-0.26143600	-0.22088300	
С	1.56731300	0.98100700	-0.88677100	
С	0.42721600	1.40852400	-1.57969500	
С	2.72195000	1.79988900	-0.90400100	
С	0.41680700	2.64561000	-2.20749600	
Н	-0.44369400	0.77070400	-1.64398500	
С	2.66680400	3.05191600	-1.53767700	
С	1.52699500	3.51366400	-2.18917700	
Н	-0.48637500	2.93581600	-2.73540400	
Н	3.58244300	3.62999300	-1.50934400	
С	-1.56727700	0.98112000	0.88679500	
С	-0.42709000	1.40856200	1.57964200	
С	-2.72183800	1.80008600	0.90405300	
С	-0.41654900	2.64564800	2.20741200	
Н	0.44376200	0.77065400	1.64387100	
С	-2.66655300	3.05213700	1.53769100	
С	-1.52668100	3.51380000	2.18911600	

Н	0.48667300	2.93582700	2.73526300
Η	-3.58214800	3.63028400	1.50940000
С	4.04089900	1.34471300	-0.37493800
0	5.02061300	2.08436100	-0.30997400
С	-4.04084700	1.34500200	0.37506600
0	-5.02052400	2.08471000	0.31020000
С	4.01999100	-2.86392800	0.48510800
Η	4.01038400	-3.92574500	0.68320100
С	5.24877000	-2.17878300	0.51150900
С	5.26316000	-0.79716000	0.24673300
Η	6.19099300	-0.23533500	0.24142200
С	4.09068700	-0.08865100	-0.02724500
С	-4.02026700	-2.86362600	-0.48508600
Η	-4.01073900	-3.92543500	-0.68322600
С	-5.24899300	-2.17839500	-0.51142100
С	-5.26327700	-0.79676700	-0.24663600
Η	-6.19107800	-0.23488800	-0.24128900
С	-4.09075100	-0.08835000	0.02733300
С	1.45257400	4.87936400	-2.89272100
С	2.76848900	5.66860100	-2.76345200
Η	2.66857500	6.63543300	-3.26690400
Η	3.02454400	5.86478500	-1.71740300
Η	3.60814200	5.14043300	-3.22622100
С	0.31778900	5.71995800	-2.26104200
Η	0.24285600	6.69322600	-2.75858900
Η	-0.65470800	5.22629500	-2.34879800
Η	0.50873700	5.89619200	-1.19743200
С	1.15769500	4.66992400	-4.39711500
Η	1.94831700	4.08075100	-4.87282100
Η	0.20875300	4.15009500	-4.56000200
Η	1.09808700	5.63595700	-4.91053500
С	6.58006700	-2.89683000	0.81428800
С	7.53585000	-2.73696200	-0.39191100
Η	7.10537600	-3.18228500	-1.29479300
Η	7.74889300	-1.68609500	-0.60702900
Η	8.49042200	-3.23514600	-0.18911400
С	7.22828500	-2.26515100	2.06918700
Η	6.57688700	-2.37232300	2.94271300
Η	8.18136200	-2.75690900	2.29366400
Η	7.42858500	-1.19891600	1.93104100
С	6.39291200	-4.40265300	1.07931800
Η	5.74883600	-4.58950600	1.94512000
Η	5.96693900	-4.92116400	0.21379000
Η	7.36431400	-4.86098100	1.28936300

$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	-1.45208000	4.87949000	2.89267400	
H -1.94835400 4.08096900 4.87266700 H -0.20872800 4.14994000 4.56015200 H -1.09780200 5.63598900 4.91055300 C -0.31699700 5.71984100 2.26117500 H -0.50777800 5.89613900 1.19755000 H -0.24194400 6.69306600 2.75878400 H 0.65538100 5.22597000 2.34905700 C -2.76777300 5.66904800 2.76311900 H -3.02352800 5.86530000 1.71701000 H -3.60768500 5.14110500 3.22568700 H -2.66774700 6.63584800 3.26661100 C -6.58032400 -2.73584300 0.39157800 H -8.49104200 -3.23397800 0.18866900 H -7.10634500 -3.18086200 1.29477300 H -7.10634500 -4.40232200 -1.07854400 H -5.96760000 -4.92045000 -0.21265400 H -7.36470000 -4.86063000 -1.28862800 C -7.22806300 -2.26512500 -2.06962700 H -7.36470000 -4.86063000 -1.93201000 H -7.42819100 -1.19878700 -1.93201000	С	-1.15752500	4.66998300	4.39709600	
H -0.20872800 4.14994000 4.56015200 H -1.09780200 5.63598900 4.91055300 C -0.31699700 5.71984100 2.26117500 H -0.50777800 5.89613900 1.19755000 H -0.24194400 6.69306600 2.75878400 H 0.65538100 5.22597000 2.34905700 C -2.76777300 5.66904800 2.76311900 H -3.02352800 5.86530000 1.71701000 H -3.60768500 5.14110500 3.22568700 H -2.66774700 6.63584800 3.26661100 C -6.58032400 -2.89635400 -0.81426800 C -7.53646900 -2.73584300 0.39157800 H -8.49104200 -3.23397800 0.18866900 H -7.10634500 -3.18086200 1.29477300 H -7.74944900 -1.68486500 0.60620600 C -6.39329600 -4.40232200 -1.07854400 H -5.74902000 -4.58966900 -1.94409400 H -7.36470000 -4.86063000 -1.28862800 C -7.22806300 -2.26512500 -2.06962700 H -7.42819100 -1.19878700 -1.93201000 H -6.57643600 -2.37279000 -2.94292700	Н	-1.94835400	4.08096900	4.87266700	
H -1.09780200 5.63598900 4.91055300 C -0.31699700 5.71984100 2.26117500 H -0.50777800 5.89613900 1.19755000 H -0.24194400 6.69306600 2.75878400 H 0.65538100 5.22597000 2.34905700 C -2.76777300 5.66904800 2.76311900 H -3.02352800 5.86530000 1.71701000 H -3.02352800 5.86530000 1.71701000 H -3.60768500 5.14110500 3.22568700 H -2.66774700 6.63584800 3.26661100 C -6.58032400 -2.89635400 -0.81426800 C -7.53646900 -2.73584300 0.39157800 H -8.49104200 -3.23397800 0.18866900 H -7.10634500 -3.18086200 1.29477300 H -5.74902000 -4.58966900 -1.07854400 H -5.96760000 -4.92045000 -0.21265400 H -7.32806300 -2.26512500 -2.06962700 H -7.42819100 -1.19878700 -1.93201000	Н	-0.20872800	4.14994000	4.56015200	
C -0.31699700 5.71984100 2.26117500 H -0.50777800 5.89613900 1.19755000 H -0.24194400 6.69306600 2.75878400 H 0.65538100 5.22597000 2.34905700 C -2.76777300 5.66904800 2.76311900 H -3.02352800 5.86530000 1.71701000 H -3.60768500 5.14110500 3.22568700 H -2.66774700 6.63584800 3.26661100 C -6.58032400 -2.89635400 -0.81426800 C -7.53646900 -2.73584300 0.39157800 H -8.49104200 -3.23397800 0.18866900 H -7.10634500 -3.18086200 1.29477300 H -7.74944900 -1.68486500 0.60620600 C -6.39329600 -4.40232200 -1.07854400 H -5.96760000 -4.92045000 -0.21265400 H -7.32806300 -2.26512500 -2.06962700 H -7.42819100 -1.19878700 -1.93201000	Н	-1.09780200	5.63598900	4.91055300	
H -0.50777800 5.89613900 1.19755000 H -0.24194400 6.69306600 2.75878400 H 0.65538100 5.22597000 2.34905700 C -2.76777300 5.66904800 2.76311900 H -3.02352800 5.86530000 1.71701000 H -3.60768500 5.14110500 3.22568700 H -2.66774700 6.63584800 3.26661100 C -6.58032400 -2.89635400 -0.81426800 C -7.53646900 -2.73584300 0.39157800 H -8.49104200 -3.23397800 0.18866900 H -7.10634500 -3.18086200 1.29477300 H -7.74944900 -1.68486500 0.60620600 C -6.39329600 -4.40232200 -1.07854400 H -5.74902000 -4.58966900 -1.28862800 H -7.36470000 -4.86063000 -1.28862800 C -7.22806300 -2.26512500 -2.06962700 H -7.42819100 -1.19878700 -1.93201000	С	-0.31699700	5.71984100	2.26117500	
H -0.24194400 6.69306600 2.75878400 H 0.65538100 5.22597000 2.34905700 C -2.76777300 5.66904800 2.76311900 H -3.02352800 5.86530000 1.71701000 H -3.60768500 5.14110500 3.22568700 H -2.66774700 6.63584800 3.26661100 C -6.58032400 -2.89635400 -0.81426800 C -7.53646900 -2.73584300 0.39157800 H -8.49104200 -3.23397800 0.18866900 H -7.10634500 -3.18086200 1.29477300 H -7.74944900 -1.68486500 0.60620600 C -6.39329600 -4.40232200 -1.07854400 H -5.74902000 -4.58966900 -1.28862800 C -7.22806300 -2.26512500 -2.06962700 H -7.42819100 -1.19878700 -1.93201000	Н	-0.50777800	5.89613900	1.19755000	
H 0.65538100 5.22597000 2.34905700 C -2.76777300 5.66904800 2.76311900 H -3.02352800 5.86530000 1.71701000 H -3.60768500 5.14110500 3.22568700 H -2.66774700 6.63584800 3.26661100 C -6.58032400 -2.89635400 -0.81426800 C -7.53646900 -2.73584300 0.39157800 H -8.49104200 -3.23397800 0.18866900 H -7.10634500 -3.18086200 1.29477300 H -7.74944900 -1.68486500 0.60620600 C -6.39329600 -4.40232200 -1.07854400 H -5.74902000 -4.58966900 -1.94409400 H -7.36470000 -4.86063000 -1.28862800 C -7.22806300 -2.26512500 -2.06962700 H -7.42819100 -1.19878700 -1.93201000	Н	-0.24194400	6.69306600	2.75878400	
C -2.76777300 5.66904800 2.76311900 H -3.02352800 5.86530000 1.71701000 H -3.60768500 5.14110500 3.22568700 H -2.66774700 6.63584800 3.26661100 C -6.58032400 -2.89635400 -0.81426800 C -7.53646900 -2.73584300 0.39157800 H -8.49104200 -3.23397800 0.18866900 H -7.10634500 -3.18086200 1.29477300 H -7.74944900 -1.68486500 0.60620600 C -6.39329600 -4.40232200 -1.07854400 H -5.74902000 -4.58966900 -1.94409400 H -7.36470000 -4.86063000 -1.28862800 C -7.22806300 -2.26512500 -2.06962700 H -7.42819100 -1.19878700 -1.93201000 H -7.42819100 -1.19878700 -1.93201000	Н	0.65538100	5.22597000	2.34905700	
H -3.02352800 5.86530000 1.71701000 H -3.60768500 5.14110500 3.22568700 H -2.66774700 6.63584800 3.26661100 C -6.58032400 -2.89635400 -0.81426800 C -7.53646900 -2.73584300 0.39157800 H -8.49104200 -3.23397800 0.18866900 H -7.10634500 -3.18086200 1.29477300 H -7.74944900 -1.68486500 0.60620600 C -6.39329600 -4.40232200 -1.07854400 H -5.74902000 -4.58966900 -1.94409400 H -7.36470000 -4.86063000 -1.28862800 C -7.22806300 -2.26512500 -2.06962700 H -7.42819100 -1.19878700 -1.93201000 H -6.57643600 -2.37279000 -2.94292700	С	-2.76777300	5.66904800	2.76311900	
H -3.60768500 5.14110500 3.22568700 H -2.66774700 6.63584800 3.26661100 C -6.58032400 -2.89635400 -0.81426800 C -7.53646900 -2.73584300 0.39157800 H -8.49104200 -3.23397800 0.18866900 H -7.10634500 -3.18086200 1.29477300 H -7.74944900 -1.68486500 0.60620600 C -6.39329600 -4.40232200 -1.07854400 H -5.74902000 -4.58966900 -1.94409400 H -5.96760000 -4.92045000 -0.21265400 H -7.36470000 -4.86063000 -1.28862800 C -7.22806300 -2.26512500 -2.06962700 H -7.42819100 -1.19878700 -1.93201000 H -6.57643600 -2.37279000 -2.94292700	Н	-3.02352800	5.86530000	1.71701000	
H -2.66774700 6.63584800 3.26661100 C -6.58032400 -2.89635400 -0.81426800 C -7.53646900 -2.73584300 0.39157800 H -8.49104200 -3.23397800 0.18866900 H -7.10634500 -3.18086200 1.29477300 H -7.74944900 -1.68486500 0.60620600 C -6.39329600 -4.40232200 -1.07854400 H -5.74902000 -4.58966900 -1.94409400 H -5.96760000 -4.92045000 -0.21265400 H -7.36470000 -4.86063000 -1.28862800 C -7.22806300 -2.26512500 -2.06962700 H -7.42819100 -1.19878700 -1.93201000 H -6.57643600 -2.37279000 -2.94292700	Н	-3.60768500	5.14110500	3.22568700	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Н	-2.66774700	6.63584800	3.26661100	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	-6.58032400	-2.89635400	-0.81426800	
H -8.49104200 -3.23397800 0.18866900 H -7.10634500 -3.18086200 1.29477300 H -7.74944900 -1.68486500 0.60620600 C -6.39329600 -4.40232200 -1.07854400 H -5.74902000 -4.58966900 -1.94409400 H -5.96760000 -4.92045000 -0.21265400 H -7.36470000 -4.86063000 -1.28862800 C -7.22806300 -2.26512500 -2.06962700 H -7.42819100 -1.19878700 -1.93201000 H -6.57643600 -2.37279000 -2.94292700	С	-7.53646900	-2.73584300	0.39157800	
H-7.10634500-3.180862001.29477300H-7.74944900-1.684865000.60620600C-6.39329600-4.40232200-1.07854400H-5.74902000-4.58966900-1.94409400H-5.96760000-4.92045000-0.21265400H-7.36470000-4.86063000-1.28862800C-7.22806300-2.26512500-2.06962700H-7.42819100-1.19878700-1.93201000H-6.57643600-2.37279000-2.94292700	Н	-8.49104200	-3.23397800	0.18866900	
H-7.74944900-1.684865000.60620600C-6.39329600-4.40232200-1.07854400H-5.74902000-4.58966900-1.94409400H-5.96760000-4.92045000-0.21265400H-7.36470000-4.86063000-1.28862800C-7.22806300-2.26512500-2.06962700H-7.42819100-1.19878700-1.93201000H-6 57643600-2 37279000-2 94292700	Н	-7.10634500	-3.18086200	1.29477300	
C-6.39329600-4.40232200-1.07854400H-5.74902000-4.58966900-1.94409400H-5.96760000-4.92045000-0.21265400H-7.36470000-4.86063000-1.28862800C-7.22806300-2.26512500-2.06962700H-7.42819100-1.19878700-1.93201000H-6.57643600-2.37279000-2.94292700	Н	-7.74944900	-1.68486500	0.60620600	
H-5.74902000-4.58966900-1.94409400H-5.96760000-4.92045000-0.21265400H-7.36470000-4.86063000-1.28862800C-7.22806300-2.26512500-2.06962700H-7.42819100-1.19878700-1.93201000H-6 57643600-2 37279000-2 94292700	С	-6.39329600	-4.40232200	-1.07854400	
H-5.96760000-4.92045000-0.21265400H-7.36470000-4.86063000-1.28862800C-7.22806300-2.26512500-2.06962700H-7.42819100-1.19878700-1.93201000H-6 57643600-2 37279000-2 94292700	Н	-5.74902000	-4.58966900	-1.94409400	
H-7.36470000-4.86063000-1.28862800C-7.22806300-2.26512500-2.06962700H-7.42819100-1.19878700-1.93201000H-6 57643600-2 37279000-2 94292700	Н	-5.96760000	-4.92045000	-0.21265400	
C-7.22806300-2.26512500-2.06962700H-7.42819100-1.19878700-1.93201000H-6 57643600-2 37279000-2 94292700	Н	-7.36470000	-4.86063000	-1.28862800	
H -7.42819100 -1.19878700 -1.93201000 H -6 57643600 -2 37279000 -2 94292700	С	-7.22806300	-2.26512500	-2.06962700	
Н _6 57643600 _2 37279000 _2 94292700	Н	-7.42819100	-1.19878700	-1.93201000	
	Н	-6.57643600	-2.37279000	-2.94292700	
Н -8.18116300 -2.75680400 -2.29418800	Н	-8.18116300	-2.75680400	-2.29418800	
C -0.71161200 -3.77883500 -0.10228500	С	-0.71161200	-3.77883500	-0.10228500	
C 0.71128100 -3.77888900 0.10223100	С	0.71128100	-3.77888900	0.10223100	
C 1.37952100 -5.02489700 0.20231200	С	1.37952100	-5.02489700	0.20231200	
Н 2.45210900 -5.04298100 0.34053900	Н	2.45210900	-5.04298100	0.34053900	
C -1.37994200 -5.02479200 -0.20239500	С	-1.37994200	-5.02479200	-0.20239500	
Н -2.45253200 -5.04279600 -0.34061400	Н	-2.45253200	-5.04279600	-0.34061400	
C -0.69705300 -6.21853600 -0.10183400	С	-0.69705300	-6.21853600	-0.10183400	
Н -1.23589600 -7.15821700 -0.17650800	Н	-1.23589600	-7.15821700	-0.17650800	
C 0.69654700 -6.21858900 0.10171700	С	0.69654700	-6.21858900	0.10171700	
Н 1.23532200 -7.15831100 0.17636400	Н	1.23532200	-7.15831100	0.17636400	

4 transition state opt B3LYP/6-31G(d,p) Imaginary Frequency 1 HF = -2271.750008 hartree

	1	1/ 0 /	1 0
С	-1.05668100	-2.38293800	-1.10362900
С	-0.57590300	-1.06922200	-0.86782500
С	0.86104700	-0.87948500	-0.85865800
С	1.66898300	-2.02321200	-1.08015100
С	2.93784800	-1.81635600	-0.40964100

С	2.87020300	-0.52760600	0.13448000
С	-2.34525900	-2.51565200	-0.45453100
С	-2.62004100	-1.26016300	0.09510800
Ν	-1.63735900	-0.33792300	-0.24300700
Ν	1.68828900	0.10681700	-0.22828600
С	1.78596500	1.51962200	-0.26210800
С	1.22957900	2.30043300	-1.27631500
С	2.65974300	2.15107400	0.65817200
С	1.39856400	3.68002800	-1.28340100
Н	0.73329800	1.81197500	-2.10138400
С	2.78098200	3.54765000	0.64856400
С	2.14224500	4.35042500	-0.29472300
Н	0.96087000	4.24146700	-2.10335200
Н	3.45778200	3.96248700	1.38580200
С	-2.09557500	1.00338300	-0.26508000
С	-1.74981100	1.91375100	-1.25939900
С	-3.11265400	1.37705000	0.65387800
С	-2.26590100	3.20920700	-1.25526500
Н	-1.13438800	1.58302200	-2.08197500
С	-3.58596700	2.69178000	0.65471100
С	-3.16578100	3.64901300	-0.27379300
Н	-1.97141800	3.87213800	-2.06049600
Н	-4.35765800	2.91355100	1.38483500
С	3.66387400	1.38358700	1.45502400
0	4.34787200	1.88847100	2.34059700
С	-3.89463300	0.36565200	1.42762600
0	-4.69315500	0.66402700	2.31040300
С	4.05333400	-2.60011900	-0.09437600
Н	4.12478500	-3.61254300	-0.47285800
С	5.07253100	-2.10635500	0.74634900
С	4.95184500	-0.80740700	1.26438200
Н	5.70024800	-0.38991100	1.92613400
С	3.85381300	0.00749300	0.95825600
С	-3.22455400	-3.57037500	-0.16193400
Н	-3.02059600	-4.55887900	-0.54910100
С	-4.34339600	-3.36464900	0.66326400
С	-4.56793200	-2.07919200	1.19381100
Н	-5.40933900	-1.88287400	1.84970800
С	-3.71941900	-1.00633700	0.91222600
С	2.29853700	5.88027800	-0.33656100
С	3.01154700	6.28966200	-1.64742000
Н	3.12686500	7.37825900	-1.69433400
Н	4.00759600	5.83964300	-1.70787400
Н	2.44923000	5.97757500	-2.53294400

С	3.12488100	6.40939600	0.85061400
Н	3.18441000	7.50121000	0.79957900
Н	2.67088400	6.14524500	1.81100100
Н	4.14899000	6.02361800	0.84045900
С	0.90276800	6.54319300	-0.28702700
Н	0.28116500	6.24196100	-1.13560800
Н	0.37218500	6.27240100	0.63154100
Н	0.99710200	7.63426100	-0.31658500
С	6.27288200	-3.01575400	1.08011800
С	6.99795600	-3.41494800	-0.22699500
Н	6.33930000	-3.95851300	-0.91116300
Н	7.37050200	-2.53061600	-0.75408300
Н	7.85273600	-4.06361100	-0.00549300
С	7.29378100	-2.31887600	1.99922800
Н	6.85302200	-2.03959500	2.96139100
Н	8.12727900	-2.99843000	2.20331200
Н	7.70845600	-1.41656500	1.53852600
С	5.77114900	-4.29090900	1.79857100
Н	5.25871400	-4.03764600	2.73216600
Н	5.07303100	-4.86255000	1.17965800
Н	6.61400800	-4.94782900	2.04075100
С	-3.74529700	5.07378500	-0.23010600
С	-3.20533200	5.95821400	-1.36896100
Н	-2.11656000	6.06150900	-1.32364700
Н	-3.47345100	5.56371100	-2.35487100
Н	-3.63391400	6.96225300	-1.29036100
С	-5.28615000	5.01292700	-0.35802500
Н	-5.74139100	4.43753600	0.45272700
Н	-5.70874000	6.02328100	-0.32594200
Н	-5.58337400	4.55050900	-1.30494600
С	-3.37068300	5.72951400	1.11986400
Н	-3.75850300	5.15720500	1.96759300
Н	-2.28406100	5.80006500	1.23380200
Н	-3.78584100	6.74172100	1.18059100
С	-5.32129200	-4.50302000	1.01842300
С	-5.33618100	-4.70917600	2.55175800
Н	-6.03306300	-5.51072400	2.82104000
Н	-4.34251700	-4.98503700	2.91941500
Н	-5.64873800	-3.80512200	3.08190300
С	-4.93326600	-5.83997300	0.35925100
Н	-4.92939000	-5.77095400	-0.73376300
Н	-3.94743700	-6.18706500	0.68596800
Н	-5.66001000	-6.60993700	0.63658300
С	-6.74281800	-4.12545200	0.53817600

Н	-7.09856500	-3.20224800	1.00431800	
Н	-6.76471900	-3.98182200	-0.54711900	
Н	-7.45332700	-4.92062800	0.79008600	
С	-0.24735400	-3.41300300	-1.67930200	
С	1.16470500	-3.22742100	-1.66498400	
С	-0.77736900	-4.60307500	-2.22995500	
С	1.99540800	-4.23886300	-2.20114700	
С	0.05638000	-5.57667000	-2.74721800	
С	1.45219300	-5.39340600	-2.73258500	
Н	-1.85231900	-4.72634000	-2.29397600	
Н	3.06675700	-4.07962500	-2.24323400	
Н	2.10254700	-6.15023000	-3.16063700	
Н	-0.36763700	-6.47453800	-3.18652600	

Carbo[7]helicene opt B3LYP/6-31G(d,p) Imaginary Frequency 0 HF = -1154.105822 hartree

			1 2	
С	-1.68543500	3.43866500	-0.85855700	
С	-0.47320000	2.90719700	-0.32878000	
С	-0.44175700	1.59263800	0.21142200	
С	-1.58481400	0.72872500	-0.03510700	
С	-2.82413100	1.36244200	-0.35153400	
С	-2.84299600	2.72168100	-0.78024500	
С	0.70138000	1.24247300	1.04496500	
С	-1.58487100	-0.72860300	0.03510800	
С	-0.44188300	-1.59260600	-0.21142400	
С	0.70128100	-1.24252800	-1.04496500	
С	-0.47342900	-2.90716400	0.32877500	
С	-1.68570500	-3.43853600	0.85855300	
С	-2.84321000	-2.72146100	0.78024400	
С	-2.82423800	-1.36222300	0.35153500	
С	-4.04916400	-0.64409500	0.22316100	
С	-4.04911300	0.64441100	-0.22315700	
Η	-4.97990900	1.16611800	-0.42747500	
Η	-4.98000100	-1.16572900	0.42747900	
Η	-1.68191800	4.45174700	-1.25109500	
Η	-3.79331300	3.15977800	-1.07244100	
Η	-1.68226800	-4.45161900	1.25108900	
Η	-3.79356000	-3.15948300	1.07244100	
С	0.70164700	3.72393800	-0.31310000	
С	1.84644900	3.30181800	0.28950100	
С	1.86038100	2.08177200	1.03345500	
Η	0.65619700	4.69470000	-0.79944900	
Н	2.74222600	3.91675000	0.27707100	
С	1.86021600	-2.08191800	-1.03345700	

С	0.70135300	-3.72399700	0.31309200	
Н	0.65582600	-4.69475700	0.79943900	
С	1.84618800	-3.30196600	-0.28950700	
Н	2.74191600	-3.91696900	-0.27707900	
С	0.69213500	0.16754100	1.96982500	
Н	-0.20496500	-0.42404300	2.08699800	
С	2.98610200	1.74150600	1.82254600	
Н	3.86275100	2.38235700	1.77510700	
С	1.78947000	-0.12331600	2.75614100	
С	2.96351600	0.64907100	2.66244500	
Н	1.73901700	-0.94927500	3.45938300	
Н	3.82902600	0.40502900	3.27127300	
С	0.69212300	-0.16759100	-1.96981900	
Н	-0.20493100	0.42406500	-2.08699000	
С	2.98596600	-1.74173700	-1.82254600	
С	2.96346600	-0.64929700	-2.66244000	
Н	3.82899600	-0.40532000	-3.27126600	
С	1.78948100	0.12318400	-2.75613300	
Н	1.73909300	0.94915000	-3.45937100	
Н	3.86256300	-2.38265700	-1.77510900	

Carbo[7]helicene transition state opt B3LYP/6-31G(d,p) Imaginary Frequency 1 HF = -1154.039185 hartree

С	-2.77434500	1.37772700	-0.72889100	
С	-1.52001400	0.74020200	-0.45957000	
С	-1.52058800	-0.73912900	-0.45958300	
С	-2.77531900	-1.37576700	-0.72901600	
С	-0.99634200	-2.65878900	1.00030200	
С	-0.99422200	2.65951300	1.00012500	
С	0.90015600	-1.71037300	-0.15485600	
С	1.39528800	-1.42507100	-1.44796900	
С	1.78571800	-2.37442500	0.75486100	
С	2.71291000	-1.66438500	-1.78734400	
Н	0.69706200	-1.08043100	-2.20106600	
С	3.15411100	-2.51037200	0.42324700	
С	3.61688100	-2.15885800	-0.82901800	
Н	3.05166200	-1.46889800	-2.80032500	
Н	3.82006200	-2.97460300	1.14604000	
С	0.90157900	1.70963200	-0.15498800	
С	1.39665500	1.42305300	-1.44782600	
С	1.78755800	2.37369100	0.75435900	
С	2.71439500	1.66145300	-1.78736600	
Н	0.69830800	1.07813900	-2.20065400	
С	3.15599100	2.50886800	0.42257600	

С	3.61858500	2.15631400	-0.82945000	
Н	3.05310200	1.46482800	-2.80013900	
Н	3.82216100	2.97327000	1.14505700	
С	1.23932300	-3.05694900	1.88586800	
С	1.24173100	3.05679300	1.88519000	
С	-0.10381300	-3.27931100	1.93480800	
С	-0.10129500	3.27974600	1.93437300	
С	-3.82363700	0.68122100	-1.39469700	
Н	-4.68397500	1.24279700	-1.74779300	
С	-3.82409100	-0.67845300	-1.39480800	
Н	-4.68473600	-1.23938400	-1.74817700	
Н	4.65961400	-2.31246300	-1.09068700	
Н	1.91122600	-3.51350700	2.60722800	
Н	4.66134200	2.30944200	-1.09130300	
Н	1.91399300	3.51323900	2.60628500	
С	-0.51855300	-1.63330900	0.14113000	
С	-0.51718500	1.63362700	0.14098800	
Н	-0.53107400	-3.94775000	2.67763000	
Н	-0.52817700	3.94850300	2.67713200	
С	-2.32552900	-3.14994100	0.84709800	
Н	-2.64907300	-3.99350700	1.45010700	
С	-3.11780400	-2.62817700	-0.13109200	
Н	-4.09116000	-3.05535000	-0.35405800	
С	-3.11595000	2.63031500	-0.13087100	
Н	-4.08902400	3.05820500	-0.35369300	
С	-2.32308600	3.15152000	0.84711300	
Н	-2.64595300	3.99526200	1.45025800	

13. References

[S1] C. F. H. Allen and G. H. W. McKee, Acridone, Org. Synth., 1943, 2, 15-17.

[S2] K. Yamamoto and S. Higashibayashi, Synthesis of three-dimensional bButterfly slitcyclobisazaanthracenes and hydrazinobisanthenes through one-step cyclodimerization and their properties, *Chem. Eur. J.*, **2016**, *22*, 663-671.

[S3] S. Ma, J. Gu, C. Lin, Z. Luo, Y. Zhu, J. Wang, Supertwistacene: a helical graphene nanoribbon, *J. Am. Chem. Soc.*, **2020**, *142*, 16887-16893.

[S4] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, *Gaussian 16, Revision A.03*, Gaussian, Inc., Wallingford CT, **2016**.