Supporting Information

Dirhodium(II)-Catalyzed Diamination Reaction via a Free Radical Pathway

Zhiying Fan, Zhifan Wang, Ruoyi Shi and Yuanhua Wang*
College of Chemistry, Sichuan University,
Chengdu, 610041, P.R. China

Table of Contents

1	General experimental details	S2
2	General procedure for the preparation of cyclopropane substrates 3	S2
3	General procedure for the Synthesis of 1,2-Diamine Derivatives 2	S3
4	General procedure for the synthesis of 1,3-Diamine Derivatives 4	S3
5	Mechanism Experiments	S4
6	Reaction Optimization	S5
7	Characterization Data of the Substrates and Isolated Products	S6
8	Reference	S27
9	NMR Spectrum of All Compounds	S28

1. General experimental details

All reactions requiring anhydrous conditions were conducted by standard procedures under argon atmosphere. Arylcyclopropanes 3 were prepared according to the previous literature. ${ }^{1}$ Substrates ($\mathbf{3 b} \mathbf{- 3 d}$, $\mathbf{3 f} \mathbf{- 3 0}$) was prepared as described and the NMR spectroscopy were consisted with the data reported. ${ }^{1} \quad \mathrm{Rh}_{2}(\mathrm{esp})_{2}$ was prepared as described. ${ }^{3}$ Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. Yields reported are for isolated yields. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained on a Bruker 400 spectrometer at 400 MHz and 100 MHz . ${ }^{19} \mathrm{~F}$ NMR spectra were obtained on a Bruker 400 spectrometer at 376 MHz . The ${ }^{1} \mathrm{H}$ NMR (400 MHz) chemical shifts were recorded relative to CDCl_{3} as the internal reference $\left(\mathrm{CDCl}_{3}: \delta \mathrm{H}=7.26 \mathrm{ppm}\right)$. The ${ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz})$ chemical shifts were given using CDCl_{3} as the internal standard $\left(\mathrm{CDCl}_{3}: \delta \mathrm{C}=77.00 \mathrm{ppm}\right) .{ }^{1} \mathrm{H}$ NMR data are reported as: chemical shift (ppm), multiplicity $(\mathrm{s}=\operatorname{singlet}, \mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet, hept $=$ heptet $)$, and coupling constant $(\mathrm{Hz}) . \quad$ IR spectra were recorded on a Shimadzu IR-Tracer 100. UV/visible spectroscopy spectra were carried out on Shimadzu UV-3600 and Shimadzu UV-2600i. High resolution mass spectrometric measurements were carried out using a Bruker autoflex MALDI-TOF mass spectrometer and Waters-Q-TOF Premier (ESI).
2. General procedure for the preparation of cyclopropane substrate $\mathbf{3}$ ($\mathbf{3 b}$ as the example) ${ }^{1}$

Tricyclohexylphosphine ($0.056 \mathrm{~g}, 0.25 \mathrm{mmol}$), palladium(II) acetate ($0.14 \mathrm{~g}, 0.5 \mathrm{mmol}$), cyclopropylboronic acid $(0.56 \mathrm{~g}, 6.5 \mathrm{mmol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(3.7 \mathrm{~g}, 17.5 \mathrm{mmol})$ were added
to a flame-dried three-neck flask equipped with a stir bar and a reflux condenser under N_{2}. Toluene $(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ were added to the reaction flask, and the mixture was stirred. 1-(tert-butyl)-4-iodobenzene ($1.1 \mathrm{~g}, 5 \mathrm{mmol}$) was then added via syringe. The reaction mixture was placed into an oil bath and stirred at $110{ }^{\circ} \mathrm{C}$ and left to stir for 24 h . Upon completion, the reaction mixture was poured into a separatory funnel, diluted with ethyl acetate and washed with water twice. The organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo and purified by column chromatography to give the pure product $\mathbf{3 b}$.

3. General procedure for 1,2-Diamine Derivatives (2a-t)

To a 25 mL tube equipped with a stir bar was charged with $\mathrm{Rh}_{2}(\mathrm{esp})_{2}(0.004 \mathrm{mmol})$ and NFSI (0.6 mmol). The tube was evacuated and backfilled with argon for three times. 1,2-Dichloorethaan (2 mL), $\mathbf{1}$ substrates (0.4 mmol) and $\mathrm{TMSN}_{3}(0.6 \mathrm{mmol})$ was added sequentially via syringe and the mixture was stirred at rt . The reaction was monitored by TCL. After the reaction was finished, the reaction mixture was quenched with water, extracted with dichloromethane. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuum. The resulting residue was purified by silica gel column chromatography to afford the desired products $\mathbf{2}$.

4. General procedure for 1,3-Diamine Derivatives (4a-o)

To a 25 mL tube equipped with a stir bar was charged with $\mathrm{Rh}_{2}(\mathrm{esp})_{2}(0.004 \mathrm{mmol})$ and NFSI (0.6 mmol). The tube was evacuated and backfilled with argon for three times. 1,2-Dichloorethaan (2 mL), $\mathbf{3}$ substrates (0.4 mmol) and $\mathrm{TMSN}_{3}(0.6 \mathrm{mmol})$ was added sequentially via syringe and the mixture was stirred at $70{ }^{\circ} \mathrm{C}$. The reaction was monitored by TCL. After the reaction was finished, the tube was then removed from
the oil bath and allowed to cool to room temperature. the reaction mixture was quenched with water, extracted with dichloromethane. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuum. The resulting residue was purified by silica gel column chromatography to afford the desired products 4.

5. Mechanism Experiments

To a 25 mL tube equipped with a stir bar was charged with $\mathrm{Rh}_{2}(\mathrm{esp})_{2}(0.004 \mathrm{mmol})$, NFSI (0.6 mmol), 2,2,6,6-Tetramethyl-1-piperinedinyloxy ($62 \mathrm{mg}, 0.4 \mathrm{mmol}$) or 2,6-di-tert-butyl-4-methylphenol (BHT) ($87.5 \mathrm{mg}, 0.4 \mathrm{mmol}$). The tube was evacuated and backfilled with argon for three times. 1,2-Dichloorethaan (2 mL), $\mathbf{1}$ a substrates $(0.4 \mathrm{mmol})$ and $\mathrm{TMSN}_{3}(0.6 \mathrm{mmol})$ was added sequentially via syringe and the mixture was stirred at $25^{\circ} \mathrm{C}$. The reaction was monitored by TCL. After the reaction was finished, the reaction mixture was quenched with water, extracted with dichloromethane. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuum. The resulting residue was purified by silica gel column chromatography to afford the desired products $\mathbf{2 a}$.

To a 25 mL tube equipped with a stir bar was charged with $\mathrm{Rh}_{2}(\mathrm{esp})_{2}(0.004 \mathrm{mmol})$, NFSI (0.6 mmol), 2,2,6,6-Tetramethyl-1-piperinedinyloxy ($62 \mathrm{mg}, 0.4 \mathrm{mmol}$) or 2,6-
di-tert-butyl-4-methylphenol (BHT) ($87.5 \mathrm{mg}, 0.4 \mathrm{mmol}$). The tube was evacuated and backfilled with argon for three times. 1,2-Dichloorethaan (2 mL), 3a substrates (0.4 mmol) and $\mathrm{TMSN}_{3}(0.6 \mathrm{mmol})$ was added sequentially via syringe and the mixture was stirred at $70{ }^{\circ} \mathrm{C}$. The reaction was monitored by TCL. After the reaction was finished, the reaction mixture was quenched with water, extracted with dichloromethane. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuum. The resulting residue was purified by silica gel column chromatography to afford the desired products $\mathbf{4 a}$.

6. Reaction Optimization

Supplementary Table 1: Reaction temperature screening of the 1,3 -amination of phenylcyclopropane ${ }^{a}$

Entry	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	Time(h)	Yield ${ }^{\text {b }}$ (\%)
1	25	1	46
2	50	0.5	69
3	70	0.25	80(78)

${ }^{a}$ All reactions were performed with $\mathbf{3 a}(0.4 \mathrm{mmol}), \mathrm{Rh}_{2}(\mathrm{esp})_{2}(0.004 \mathrm{mmol})$, NFSI (1.5 equiv, 0.6 mmol), TMSN $_{3}$ (1.5 equiv, 0.6 mmol) and DCE (2 mL) under argon. ${ }^{b}$ Yield of $\mathbf{4 a}$, determined by ${ }^{1} \mathrm{H}$ NMR yield with $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as the internal standard. Parentheses indicate the isolated yield.

7. Characterization data of the substrates and isolated products

(a) Characterization data of selected substrates 3

3b
1-cyclopropyl-4-(tert-butyl)benzene (3b) ${ }^{1 \mathbf{a}}$: The general procedure was followed. Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.05-7.01$ (m, $2 H), 1.91-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}), 0.96-0.91(\mathrm{~m}, 2 \mathrm{H}), 0.71-0.67(\mathrm{~m}, 2 \mathrm{H})$.

1-cyclopropyl-4-isopropylbenzene (3c) ${ }^{\text {1c }}$: The general procedure was followed. Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.17-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.06-6.96(\mathrm{~m}, 2 \mathrm{H})$, $2.90-2.84(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{dd}, J=8.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{dd}, J=6.9,1.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.96$ $-0.86(\mathrm{~m}, 2 \mathrm{H}), 0.68-0.65(\mathrm{~m}, 2 \mathrm{H})$.

4-cyclopropyl-1, ${ }^{\prime}$-biphenyl (3d) ${ }^{\text {1a }}$: The general procedure was followed. White solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.45$ - $7.40(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.03-$ $0.98(\mathrm{~m}, 2 \mathrm{H}), 0.77-0.73(\mathrm{~m}, 2 \mathrm{H})$.

1-cyclopropyl-4-trifluoromethylbenzene (3f) ${ }^{\mathbf{1 a}}$: The general procedure was followed.

Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 1.98-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.07-1.01(\mathrm{~m}, 2 \mathrm{H}), 0.75(\mathrm{dt}, J=6.6,4.8 \mathrm{~Hz}, 2 \mathrm{H})$.

$3 g$
1-cyclopropyl-3-methylbenzene (3g) ${ }^{\mathbf{2 a}}$: The general procedure was followed. Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.15(\mathrm{dt}, J=10.8,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}$, $J=31.9,9.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.35-2.23(\mathrm{~m}, 3 \mathrm{H}), 1.58-1.48(\mathrm{~m}, 1 \mathrm{H}), 0.99-0.88(\mathrm{~m}, 2 \mathrm{H})$, $0.77-0.62(\mathrm{~m}, 2 \mathrm{H})$.

1-cyclopropyl-3-fluorobenzene (3h) ${ }^{\mathbf{1 b}}$: The general procedure was followed. Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23$ - 7.13 (m, 1H), 6.83 (dd, $J=19.7$, $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.83(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{dt}, J=6.3,5.5 \mathrm{~Hz}$, $2 \mathrm{H}), 0.78-0.64(\mathrm{~m}, 2 \mathrm{H})$.

$3 i$
1-chloro-3-cyclopropylbenzene (3i) ${ }^{\text {2a }}$: The general procedure was followed. Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.17(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.09(\mathrm{~m}$, $1 \mathrm{H}), 7.04(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{dt}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.01$ $-0.93(\mathrm{~m}, 2 \mathrm{H}), 0.72-0.66(\mathrm{~m}, 2 \mathrm{H})$.

3j
1-cyclopropyl-2-isopropylbenzene $(\mathbf{3 j})^{\mathbf{1 b}}$: The general procedure was followed.

Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{td}, J=7.5$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{td}, J=7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.99(\mathrm{~m}, 1 \mathrm{H}), 3.58$ (hept, $J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.02-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.95-0.90(\mathrm{~m}, 2 \mathrm{H}), 0.67-0.64(\mathrm{~m}$, $2 \mathrm{H})$.

3k
1-cyclopropyl-2-ethylbenzene (3k) ${ }^{\mathbf{1 b}}$: The general procedure was followed. Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.19-7.09(\mathrm{~m}, 3 \mathrm{H}), 6.99-6.95(\mathrm{~m}, 1 \mathrm{H})$, $2.84(\mathrm{q}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.99-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.96-0.90(\mathrm{~m}$, $2 \mathrm{H}), 0.69-0.64(\mathrm{~m}, 2 \mathrm{H})$.

31
1-cyclopropyl-2-methylbenzene (3I) ${ }^{2 a}$: The general procedure was followed. Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.16-7.07(\mathrm{~m}, 3 \mathrm{H}), 7.00-6.97(\mathrm{~m}, 1 \mathrm{H})$, $2.43(\mathrm{~s}, 3 \mathrm{H}), 1.93-1.86(\mathrm{~m}, 1 \mathrm{H}), 0.95-0.90(\mathrm{~m}, 2 \mathrm{H}), 0.66-0.62(\mathrm{~m}, 2 \mathrm{H})$.

3m
2-cyclopropyl-1,1'-biphenyl (3m) ${ }^{\mathbf{2 b}}$: The general procedure was followed. Light yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 1 \mathrm{H})$, $7.30-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.86(\mathrm{~m}, 1 \mathrm{H})$, $0.86-0.81(\mathrm{~m}, 2 \mathrm{H}), 0.72-0.67(\mathrm{~m}, 2 \mathrm{H})$.

3n
1-chloro-2-cyclopropylbenzene (3n) ${ }^{\mathbf{2 c}}$: The general procedure was followed.

Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{td}$, $J=7.6,1.4, \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{td}, J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{dd}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.2$ $-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.04-0.98(\mathrm{~m}, 2 \mathrm{H}), 0.71-0.66(\mathrm{~m}, 2 \mathrm{H})$.

30
2-cyclopropyl-1,3-dimethylbenzene (30) ${ }^{\text {2d }}$: The general procedure was followed. Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.06-6.97(\mathrm{~m}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 6 \mathrm{H}), 1.75$ $-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.04-0.98(\mathrm{~m}, 2 \mathrm{H}), 0.57-0.51(\mathrm{~m}, 2 \mathrm{H})$.

(b) Characterization data of products

2a
\mathbf{N}-(2-azido-2-phenylethyl)-N-(phenylsulfonyl)benzenesulfonamide (2a) ${ }^{\text {4a }}$: The general procedure was followed, and flash chromatography (petroleum ether/ethyl acetate $=20 / 1-$ petroleum ether/ethyl acetate $=10 / 1)$ afforded $123.7 \mathrm{mg}(71 \%$ yield $)$. Colorless oil. TCL: $\mathrm{R}_{\mathrm{f}}=0.23$ (petroleum ether/ethyl acetate $=10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07(\mathrm{dd}, J=8.5,1.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.68-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.53(\mathrm{~m}$, $4 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 5 \mathrm{H}), 5.01(\mathrm{dd}, J=9.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=15.6,9.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.72 (dd, $J=15.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 139.27, 136.50, 134.08, $129.18,129.08,129.04,128.64,127.26,65.63,53.24$. IR (neat): 3068, 2927, 2106, 1448, 13, 80, 1169, 1084, 1049, 887, 826, 738, $686 \mathrm{~cm}^{-1}$. HRMS m/z (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 465.0662$, found 465.0661 .

2b
\mathbf{N}-(2-Azido-2-(p-tolyl)ethyl)-N-(phenylsulfonyl)benzenesulfonamide (2b) ${ }^{\mathbf{4 a} \text { : The }}$ general procedure was followed, and flash chromatography (petroleum ether/ethyl acetate $=20 / 1)$ afforded $79.5 \mathrm{mg}\left(44 \%\right.$ yield). white solid. \quad TCL: $\mathrm{R}_{\mathrm{f}}=0.23$ (petroleum ether/ethyl acetate $=10 / 1) . \quad{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{dd}, J=$ $7.5,1.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.68-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.52(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 4 \mathrm{H}), 4.98$ $(\mathrm{dd}, J=9.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=15.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=15.6,4.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.25,138.98,133.99,133.36$, $129.78,128.97,128.60,127.18,65.36,53.13,21.19 . \quad$ IR (neat): 3068, 2927, 2106, 1449, 1377, 1169, 1085, 1048, 720, $686 \mathrm{~cm}^{-1} . \quad$ HRMS m/z (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 479.0818$, found 479.0814 .

2c
\mathbf{N}-(2-Azido-2-(4-(tert-butyl)phenyl)ethyl)-N-(phenylsulfonyl)benzenesulfonamide $(2 \mathbf{c})^{4 \mathrm{a}}$: The general procedure was followed, and flash chromatography (petroleum ether/ethyl acetate $=20 / 1)$ afforded $104.9 \mathrm{mg}(53 \%$ yield $) . \quad$ light yellow oil. TCL: $\mathrm{R}_{\mathrm{f}}=0.42$ (petroleum ether/ethyl acetate $\left.=5 / 1\right) . \quad{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08$ $(\mathrm{dd}, J=8.5,1.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.68-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.41(\mathrm{~m}, 2 \mathrm{H})$, $7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 4.98(\mathrm{dd}, J=9.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{dd}, J=15.6,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.70$ $(\mathrm{dd}, J=15.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 152.14,139.30$, $134.02,133.40,128.98,128.61,126.89,126.01,65.37,53.16,34.68,31.26 . \quad$ IR (neat): 3071, 2966, 2104, 1448, 1380, 1085, 1048, $911,820,721,685 \mathrm{~cm}^{-1} . \quad H R M S ~ m / z(E S I)$ calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 521.1288 , found 521.1288.

2d

N -(2-([1,1'-biphenyl]-4-yl)-2-azidoethyl)-N-(phenylsulfonyl)benzenesulfonamide
$(\mathbf{2 d})^{\mathbf{4 a}}$: The general procedure was followed, and flash chromatography (petroleum ether/ethyl acetate $=20 / 1)$ afforded $89 \mathrm{mg}(44 \%$ yield $) . \quad$ white solid. \quad TCL: $\mathrm{R}_{\mathrm{f}}=0.21$ (petroleum ether/ethyl acetate $=10 / 1) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{dt}, J=$ 8.7, 1.7 Hz, 4H), $7.68-7.58(\mathrm{~m}, 6 \mathrm{H}), 7.57-7.52(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.41-$ $7.36(\mathrm{~m}, 1 \mathrm{H}), 5.07(\mathrm{dd}, J=9.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=15.6,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}$, $J=15.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}) . \quad{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.00,140.19,139.19,135.35$, $134.04,128.95,128.60,127.80,127.74,127.70,127.07,65.36,53.09$. IR (neat): $3055,2927,2107,1449,1380,1266,1171,909,739,688 \mathrm{~cm}^{-1} . \quad H R M S \mathrm{~m} / \mathrm{z}(E S I)$ calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 541.0975$, found 541.0974.

N -(2-azido-2-(4-bromophenyl)ethyl)-N-(phenylsulfonyl)benzenesulfonamide
$(\mathbf{2 e})^{\mathbf{4 a}}$: The general procedure was followed, and flash chromatography (petroleum ether/ethyl acetate $=40 / 1-$ petroleum ether/ethyl acetate $=30 / 1)$ afforded $96.2 \mathrm{mg}(47 \%$ yield). white solid. TCL: $\mathrm{R}_{\mathrm{f}}=0.36$ (petroleum ether/ethyl acetate $=5 / \mathrm{x} 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{dt}, J=8.7,1.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.69-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{dt}$, $J=7.4,1.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 5.00(\mathrm{dd}, J=9.0,4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=15.6,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J=15.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.05,135.50,134.12,132.32,129.05,128.96,128.57,123.16$, 65.02, 52.97. IR (neat): $3072,2957,2106,1488,1448,1169,1079,907,684 \mathrm{~cm}^{-1}$. HRMS m/z (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{BrN}_{4} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 542.9767, found 542.9766.

$2 f$

N -(2-azido-2-(4-chlorophenyl)ethyl)-N-(phenylsulfonyl)benzenesulfonamide (2f) ${ }^{\text {4a }}$: The general procedure was followed, and flash chromatography (petroleum ether/ethyl acetate $=30 / 1-$ petroleum ether/ethyl acetate $=20 / 1)$ afforded $98.4 \mathrm{mg}(54 \%$ yield $)$. white solid. $\quad \mathrm{TCL}: \mathrm{R}_{\mathrm{f}}=0.23$ (petroleum ether/ethyl acetate $\left.=10 / 1\right) . \quad{ }^{1} \mathrm{H} \operatorname{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{dt}, J=8.7,1.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.70-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 4 \mathrm{H})$, $7.36-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.25(\mathrm{dd}, J=3.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{dd}, J=9.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.02$ $(\mathrm{dd}, J=15.6,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=15.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 139.07,135.00,134.98,134.11,129.36,129.04,128.65,128.57,64.96,53.06$. IR (neat): $3072,2957,2106,1448,1376,1169,1090,1049,912,819,723,685 \mathrm{~cm}^{-1}$. HRMS m/z (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{ClN}_{4} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 499.0272$, found 499.0274 .

2g
N-(2-azido-2-(4-fluorophenyl)ethyl)-N-(phenylsulfonyl)benzenesulfonamide
$\mathbf{(2 g)})^{\mathbf{4 a}}$: The general procedure was followed, and flash chromatography (petroleum ether/ethyl acetate $=30 / 1$) afforded $98.4 \mathrm{mg}(54 \%)$. white solid. \quad TCL: $\mathrm{R}_{\mathrm{f}}=0.20$ (petroleum ether/ethyl acetate $=10 / \mathrm{x} 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{dt}, J=$ 8.7, 1.7 Hz, 4H), $7.69-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.12-$ $7.04(\mathrm{~m}, 2 \mathrm{H}), 5.01(\mathrm{dd}, J=9.3,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=15.6,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{dd}$, $J=15.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}) . \quad{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.96(\mathrm{~d}, J=246.9 \mathrm{~Hz}), 139.15$, $134.10,132.31(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 129.10,129.03,128.57,116.15(\mathrm{~d}, J=21.5 \mathrm{~Hz}), 64.92$, 53.20. ${ }^{19}$ F NMR (376 MHz, CDCl_{3}) $\delta-112.19(\mathrm{~s}, 1 \mathrm{~F}) . \quad$ IR (neat): $3068,2957,2107$, $1511,1449,1380,1227,1169,1085,1049,889,838,720,685 \mathrm{~cm}^{-1} . \quad H R M S ~ m / z(E S I)$ calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{FN}_{4} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 483.0567 , found 483.0567 .

2h
\mathbf{N}-(2-azido-2-(4-(trifluoromethyl)phenyl)ethyl)-N-
(phenylsulfonyl)benzenesulfonAmide (2h) ${ }^{\text {4a }}$: The general procedure was followed, and flash chromatography (petroleum ether/ethyl acetate $=20 / 1$) afforded $105 \mathrm{mg}(52 \%$ yield). white solid. TCL: $\mathrm{R}_{\mathrm{f}}=0.38$ (petroleum ether/ethyl acetate $=5 / 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04$ (dt, $J=8.7,1.7 \mathrm{~Hz}, 4 \mathrm{H}$), $7.69-7.64$ (m, 4H), $7.58-7.53$ (m, $4 \mathrm{H}), 7.49$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 5.10 (dd, $J=9.1,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.02$ (dd, $J=15.6,9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.75$ (dd, $J=15.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.54,138.99$, $134.20,131.23(\mathrm{~d}, J=32.4 \mathrm{~Hz}), 129.07,128.56,127.68,126.12(\mathrm{q}, J=3.7 \mathrm{~Hz}), 123.76$ (d, $J=270.6 \mathrm{~Hz}$), 65.17, 53.08. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.70(\mathrm{~s}, 3 \mathrm{~F}) . \quad \mathrm{IR}$ (neat): 3072, 2957, 2107, 1449, 1380, 1320, 1169, 1123, 723, $685 \mathrm{~cm}^{-1}$. HRMS m/z (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 533.0536$, found 533.0538 .

$2 i$
N-(2-azido-2-(4-(1-(chloromethyl)phenyl)ethyl)-N-
(phenylsulfonyl)benzenesulfonamide (2i) ${ }^{\mathbf{4 c}}$: The general procedure was followed, and flash chromatography (petroleum ether/ethyl acetate $=20 / 1)$ afforded $81.3 \mathrm{mg}(42 \%$ yield). white solid. TCL: $\mathrm{Rf}_{\mathrm{f}}=0.18$ (petroleum ether/ethyl acetate $=10 / 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{dd}, J=8.5,1.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.69-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.59-$ $7.53(\mathrm{~m}, 4 \mathrm{H}), 7.43(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.03(\mathrm{dd}, J=9.4,4.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}), 4.03(\mathrm{dd}, J=15.6,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J=15.6,4.4 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.12,138.37,136.70,134.09,129.33,129.03,128.59$, $127.66,65.29,53.05,45.54$. IR (neat): $3067,2957,2106,1449,1372,1265,1169$, 1084, 1049, 916, 735, $688 \mathrm{~cm}^{-1}$. $\mathrm{HRMS} \mathrm{m} / \mathrm{z}$ (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{ClN}_{4} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 513.0428$, found 513.0431.

2j
\mathbf{N}-(2-azido-2-(m-tolyl)ethyl)-N-(phenylsulfonyl)benzenesulfonamide (2j) ${ }^{\text {4a }}$: The general procedure was followed, and flash chromatography (petroleum ether/ethyl acetate $=30 / 1-$ petroleum ether/ethyl acetate $=20 / 1)$ afforded $95.7 \mathrm{mg}(53 \%$ yield $)$. Colorless oil. TCL: $\mathrm{R}_{\mathrm{f}}=0.25$ (petroleum ether/ethyl acetate $=10 / 1$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{dt}, J=8.7,1.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.68-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.53(\mathrm{~m}, 4 \mathrm{H})$, 7.29 (t, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.20-7.14(\mathrm{~m}, 3 \mathrm{H}), 4.97$ (dd, $J=9.7,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.06$ (dd, J $=15.6,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{dd}, J=15.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.28,138.96,136.36,134.01,129.80,129.02,128.99,128.60,127.88$, 124.24, 65.60, 53.22, 21.40. IR (neat): 3071, 2925, 2104, 1448, 1378, 1169, 1084, 1048, 867, 720, $686 \mathrm{~cm}^{-1}$. HRMS m/z (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 479.0818, found 479.0816.

2k
\mathbf{N}-(2-azido-2-(3-fluorophenyl)ethyl)-N-(phenylsulfonyl)benzenesulfonamide
$(\mathbf{2 k})^{4 \mathrm{a}}$: The general procedure was followed, and flash chromatography (petroleum ether/ethyl acetate $=30 / 1)$ afforded $135 \mathrm{mg}(74 \%$ yield $)$. White solid. TCL: $\mathrm{R}_{\mathrm{f}}=$ 0.19 (petroleum ether/ethyl acetate $=10 / 1) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08(\mathrm{dt}$, $J=8.7,1.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.70-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 1 \mathrm{H})$, 7.15 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.03(\mathrm{~m}, 2 \mathrm{H}), 5.01(\mathrm{dd}, J=9.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{dd}$, $J=15.6,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=15.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.01(\mathrm{~d}, J=246.5 \mathrm{~Hz}), 139.15,139.03(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 134.13,130.79(\mathrm{~d}, J=8.1 \mathrm{~Hz})$, 129.06, 128.58, 122.79(d, $J=3.0 \mathrm{~Hz}), 116.03(\mathrm{~d}, J=20.9 \mathrm{~Hz}), 114.22(\mathrm{~d}, J=22.3 \mathrm{~Hz})$, 65.12, 53.23. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-111.16$ (s,1F). IR (neat): 3071, 2966, $2105,1592,1449,1379,1169,1084,909,869,738,685 \mathrm{~cm}^{-1} . \quad H R M S ~ m / z ~(E S I) ~ c a l c d ~$
for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{FN}_{4} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 483.0567$, found 483.0564 .

21
\mathbf{N}-(2-azido-2-(3-chlorophenyl)ethyl)-N-(phenylsulfonyl)benzenesulfonamide (21) ${ }^{\mathbf{4 b}}$: The general procedure was followed, and flash chromatography (petroleum ether/ethyl acetate $=20 / 1$) afforded $119 \mathrm{mg}\left(63 \%\right.$ yield). Colorless oil. \quad TCL: $\mathrm{R}_{\mathrm{f}}=0.31$ (petroleum ether/ethyl acetate $=5 / 1$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{dt}, J=8.7$, $1.7 \mathrm{~Hz}, 4 \mathrm{H}$), $7.70-7.65$ (m, 2H), $7.59-7.54$ (m, 4H), 7.36 - 7.31 (m, 3H), 7.25 (dd, J $=3.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{dd}, J=9.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=15.6,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.70$ (dd, $J=15.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.13,138.58,135.06$, $134.14,130.44,129.24,129.06,128.57,127.37,125.30,65.09,53.21$. IR (neat): 3071, 2928, 2107, 1448, 1378, 1169, 1085, 909, 860, 785, 718, $685 \mathrm{~cm}^{-1} . \quad$ HRMS m/z (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{ClN}_{4} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 499.0272$, found 499.0272.

2m

\mathbf{N}-(2-azido-2-(3-bromophenyl)ethyl)-N-(phenylsulfonyl)benzenesulfonamide

$(2 m)^{4 \mathrm{c}}$: The general procedure was followed, and flash chromatography (petroleum ether/ethyl acetate $=20 / 1)$ afforded $132 \mathrm{mg}(64 \%$ yield $) . \quad$ Colorless oil. TCL: $\mathrm{R}_{\mathrm{f}}=$ 0.21 (petroleum ether/ethyl acetate $=10 / 1) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{dt}$, $J=8.7,1.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.70-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 2 \mathrm{H})$, 7.32 - 7.26 (m, 2H), 4.98 (dd, $J=9.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=15.6,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.70$ (dd, $J=15.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 139.12, 138.82, 134.14, $132.18,130.70,130.25,129.07,128.56,125.77,123.15,65.03,53.21$. IR (neat): 3071, 2928, 2107, 1477, 1449, 1378, 1169, 1084, 1049, 908, 833, 780, $685 \mathrm{~cm}^{-1}$. HRMS m / z (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{BrN}_{4} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 542.9767$, found 542.9768 .

2n
\mathbf{N}-(2-azido-2-(3-(trifluoromethyl)phenyl)ethyl)-N-
(phenylsulfonyl)benzenesulfonamide (2n) ${ }^{\text {4a }}$: The general procedure was followed, and flash chromatography (petroleum ether/ethyl acetate $=20 / 1)$ afforded $141.5 \mathrm{mg}(70 \%$ yield). Colorless oil. TCL: $\mathrm{R}_{\mathrm{f}}=0.21$ (petroleum ether/ethyl acetate $=10 / 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07$ (dt, $J=8.7,1.7 \mathrm{~Hz}, 4 \mathrm{H}$), 7.70 - 7.65 (m, 2H), 7.64 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.51(\mathrm{~m}, 7 \mathrm{H}), 5.09(\mathrm{dd}, J=9.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=15.6$, $9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.73$ (dd, $J=15.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.09$, 137.72, 134.19, 131.56 (q, $J=32.4 \mathrm{~Hz}$), 130.54, 129.72, 129.10, 128.56, 125.90 (q, J $=3.6 \mathrm{~Hz}), 123.97(\mathrm{q}, J=3.8 \mathrm{~Hz}), 123.67(\mathrm{~d}, J=270.9 \mathrm{~Hz}), 65.21(\mathrm{~s}), 53.27(\mathrm{~s}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.64 (s,3F). IR (neat): 3067, 2943, 2107, 1449, 1379, 1168, 1128, 863, 739, 720, $685 \mathrm{~cm}^{-1}$. HRMS m/z (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 533.0536$, found 533.0535

20
\mathbf{N}-(2-azido-2-(o-tolyl)ethyl)-N-(phenylsulfonyl)benzenesulfonamide (20) ${ }^{4 \mathrm{a}}$: The general procedure was followed, and flash chromatography (petroleum ether/ethyl acetate $=30 / 1-$ petroleum ether/ethyl acetate $=20 / 1$) afforded 101mg (56\%). Colorless oil. TCL: $\mathrm{R}_{\mathrm{f}}=0.43$ (petroleum ether/ethyl acetate $=5 / 1$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11(\mathrm{dt}, J=8.7,1.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.69-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.7 \mathrm{~Hz}$, 4H), 7.40 (dt, $J=5.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.26$ (m, 1H), $7.26-7.23$ (m, 1H), $7.22-$ 7.18 (m, 1H), 5.26 (dd, $J=10.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=15.6,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.64$ (dd, $J=15.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 139.33, 135.97, $134.73,134.03,131.03,129.00,128.77,128.59,126.92,126.82,62.10,52.43,19.28$. IR (neat): 3068, 2951, 2106, 1449, 1377, 1169, 1085, 1044, 831, $686 \mathrm{~cm}^{-1}$. HRMS
m / z (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 479.0818, found 479.0816.

\mathbf{N}-(2-azido-2-(2-chlorophenyl)ethyl)-N-(phenylsulfonyl)benzenesulfonamide

$(\mathbf{2 p})^{\mathbf{4 b}}$: The general procedure was followed, and flash chromatography (petroleum ether/ethyl acetate $=30 / 1-$ petroleum ether/ethyl acetate $=20 / 1)$ afforded $107.4 \mathrm{mg}(57 \%$ yield). white solid. TCL: $\mathrm{R}_{\mathrm{f}}=0.29$ (petroleum ether/ethyl acetate $=5 / 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.16$ (dd, $J=8.5,1.2 \mathrm{~Hz}, 4 \mathrm{H}$), $7.70-7.65$ (m, 2H), $7.61-7.55$ (m, 4H), $7.51(\mathrm{dd}, J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dt}, J=7.6$, $3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 1 \mathrm{H}), 5.51(\mathrm{dd}, J=10.5,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=15.6$, $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=15.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.21$, $134.57,134.07,132.95,130.04,129.98,129.03,128.67,128.35,127.71,61.84,51.59$. IR (neat): 3068, 2931, 2107, 1448, 1379, 1170, 1085, 1058, 908, 744, $685 \mathrm{~cm}^{-1}$. HRMS m/z (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{ClN}_{4} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 499.0272$, found 499.0272.

\mathbf{N}-(2-azido-2-(2-bromophenyl)ethyl)-N-(phenylsulfonyl)benzenesulfonamide
$(2 q)^{4 a}$: The general procedure was followed, and flash chromatography (petroleum ether/ethyl acetate $=20 / 1)$ afforded $115.1 \mathrm{mg}(56 \%$ yield $)$. white solid. TCL: $\mathrm{R}_{\mathrm{f}}=$ 0.36 (petroleum ether/ethyl acetate $=5 / 1$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.19-8.16$ $(\mathrm{m}, 4 \mathrm{H}), 7.70-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.57(\mathrm{~m}, 4 \mathrm{H}), 7.56(\mathrm{dd}, J=2.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50$ (dd, $J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 1 \mathrm{H}), 5.49(\mathrm{dd}$, $J=10.6,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=15.6,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=15.6,4.0 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.22,136.38,134.07,133.27,130.35,129.03,128.70$, 128.62, 128.34, 123.01, 63.91, 51.64. IR (neat): 3068, 2948, 2105, 1449, 1376, 1182,

1092, 1058, 890, 834, 757, $688 \mathrm{~cm}^{-1}$. HRMS m/z (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{BrN}_{4} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 542.9767$, found 542.9768 .

$2 r$
\mathbf{N}-(2-azido-2-phenylpropyl)-N-(phenylsulfonyl)benzenesulfonamide (2r) ${ }^{4 \mathrm{a}}$: The general procedure was followed, and flash chromatography (petroleum ether/ethyl acetate $=30 / 1$) afforded $96 \mathrm{mg}\left(53 \%\right.$ yield). white solid. TCL: $\mathrm{R}_{\mathrm{f}}=0.26$ (petroleum ether/ethyl acetate $=10 / 1) . \quad{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H})$, $7.67-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 1 \mathrm{H})$, 4.17 (d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.44,140.59,133.75,128.91,128.87,128.29,125.84,66.94,58.87$, 21.54. IR (neat): $3068,2931,2103,1448,1380,1169,1084,1050,909,857,736,685$ cm^{-1}. HRMS m/z (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 479.0818, found 479.0810 .

trans-2s
\mathbf{N}-1-azido-1-phenylpropan-2-yl)-N-(phenylsulfonyl)benzenesulfonami de (trans$\mathbf{2 s})^{\mathbf{4 b}}$: The general procedure was followed, and flash chromatography (petroleum ether/ethyl acetate $=30 / 1-$ petroleum ether/ethyl acetate $=20 / 1)$ afforded $103 \mathrm{mg}(57 \%$ yield). Colorless oil. TCL: $\mathrm{R}_{\mathrm{f}}=0.39$ (petroleum ether/ethyl acetate $=5: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65-7.56(\mathrm{~m}, 6 \mathrm{H}), 7.41(\mathrm{dd}, J=8.2,7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.37-$ $7.31(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 5.21(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dd}, J=9.7,6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.50(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 135.93,133.74,129.19$, $128.88,128.74,128.57,128.49,127.63,69.77,61.52,17.99$. IR (neat): 3068, 2957, 2104, 1449, 1376, 1167, 1083, 908, 860, 723, $685 \mathrm{~cm}^{-1} . \quad$ HRMS m/z (ESI) calcd for
$\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 479.0818$, found 479.0819.

4a
\mathbf{N}-(3-azido-3-phenylpropyl)-N-(phenylsulfonyl)benzenesulfonamide (4a) ${ }^{\text {c }}$: The general procedure was followed, and flash chromatography (petroleum ether/ethyl acetate $=15 / 1-$ petroleum ether/ethyl acetate $=10 / 1)$ afforded $141 \mathrm{mg}(71 \%$ yield $)$. Colorless oil. TCL: $\mathrm{R}_{\mathrm{f}}=0.31$ (petroleum ether/ethyl acetate $=5 / 1$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99-7.95(\mathrm{~m}, 4 \mathrm{H}), 7.69-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.42-$ 7.35 (m, 3H), 7.23 (dd, $J=7.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.44$ (dd, $J=8.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.77$ $(\mathrm{m}, 1 \mathrm{H}), 3.73-3.65(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.06(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $139.55,138.29,133.96,129.16,128.97,128.65,128.17,126.82,63.37,46.21,35.99$. IR (neat): $3068,2961,2101,1448,1375,1169,1088,908,736,685 \mathrm{~cm}^{-1} . \quad$ HRMS m/z (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 479.0818$, found 479.0816 .

N-(3-azido-3-(4-(tert-butyl)phenyl)propyl)-N-

(phenylsulfonyl)benzenesulfonamide (4b) ${ }^{\text {1c }}$: The general procedure was followed, and flash chromatography (petroleum ether/ethyl acetate $=20 / 1$) afforded $168.8 \mathrm{mg}(83 \%$ yield). Colorless oil. TCL: $\mathrm{R}_{\mathrm{f}}=0.30$ (petroleum ether/ethyl acetate $=5 / 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97$ (dd, $J=8.5,1.2 \mathrm{~Hz}, 4 \mathrm{H}$), 7.66 (t, $\left.J=7.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.55$ $(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.41(\mathrm{dd}, J=8.6$, $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.71-3.64(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{~s}$, 9H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.66,139.57,135.21,133.94,129.15,128.19$, $126.53,125.83,63.13,46.28,35.88,34.63,31.29$. IR (neat): 3071, 2970, 2102, 1449 , 1379, 1169, 1087, 738, $686 \mathrm{~cm}^{-1}$. HRMS m/z (ESI) calcd for

\mathbf{N}-(3-azido-3-(4-isopropylphenyl)propyl)-N-(phenylsulfonyl)benzenesulfonamide $(4 c)^{1 \mathbf{c}}$: The general procedure was followed, and flash chromatography (petroleum ether/ethyl acetate $=25: 1)$ afforded $152.1 \mathrm{mg}(77 \%$ yield $)$. White solid. TCL: $\mathrm{R}_{\mathrm{f}}=$ 0.38 (petroleum ether/ethyl acetate $=5: 1$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{dd}, J$ $=8.5,1.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.66(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.52(\mathrm{~m}, 4 \mathrm{H}), 7.24(\mathrm{~s}, 2 \mathrm{H}), 7.15(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.41(\mathrm{dd}, J=8.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.71-3.64(\mathrm{~m}$, $1 \mathrm{H}), 2.96-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 149.38,139.57,135.58,133.94,129.15,128.18,126.97,126.81$, 63.21, 46.28, 35.91, 33.83, 23.90. IR (neat): 3068, 2961, 2102, 1448, 1376, 1085, 909 , $735,685 \mathrm{~cm}^{-1}$. HRMS m/z (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 521.1288$, found 521.1288.

N-(3-([1,1'-biphenyl]-4-yl)-3-azidopropyl)-N-

(phenylsulfonyl)benzenesulfonamide (4d) ${ }^{\mathbf{1}}$: The general procedure was followed, and flash chromatography (petroleum ether/ethyl acetate $=20 / 1-$ petroleum ether/ethyl acetate $=5 / 1)$ afforded $114 \mathrm{mg}\left(89 \%\right.$ yield). White solid. TCL: $\mathrm{R}_{\mathrm{f}}=0.12$ (petroleum ether/ethyl acetate $=10 / 1) . \quad{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H})$, $7.68-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.47(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.40-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.50(\mathrm{dd}, J=8.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-3.80$ $(\mathrm{m}, 1 \mathrm{H}), 3.76-3.69(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.07(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 141.56, 140.31, 139.54, 137.26, 133.98, 129.18, 128.86, 128.18, 127.64, 127.27,
127.07, 63.11, 46.20, 35.99. IR (neat): 3068, 2961, 2102, 1448, 1375, 1169, 1085, $739,685 \mathrm{~cm}^{-1}$. HRMS m/z (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 555.1131, found 555.1131.

$4 e$

N-(3-azido-3-(4-bromophenyl)propyl)-N-(phenylsulfonyl)benzenesulfonamide

$(4 e)^{1 c}$: The general procedure was followed, and flash chromatography (petroleum ether/ethyl acetate $=20 / 1-$ petroleum ether/ethyl acetate $=10 / 1)$ afforded 112.6 mg (58% yield). Light yellow oil. TCL: $\mathrm{R}_{\mathrm{f}}=0.12$ (petroleum ether/ethyl acetate $=10 / 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.99-7.95(\mathrm{~m}, 4 \mathrm{H}), 7.69-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.51$ (m, 6H), 7.12 - 7.08 (m, 2H), 4.42 (dd, $J=8.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.63$ (m, 2H), 2.16 - $2.02(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.51,137.50,134.07,132.18$, 129.24, 128.50, 128.19, 122.63, 62.73, 46.04, 36.03. IR (neat): 3068, 2961, 2102, 1448, 1374, 1168, 1088, 739, $686 \mathrm{~cm}^{-1}$. HRMS m / z (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{BrN}_{4} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 556.9923$, found 556.9923.

$4 g$
\mathbf{N}-(3-azido-3-(m-tolyl)propyl)-N-(phenylsulfonyl)benzenesulfonamide (4g) ${ }^{1 \mathrm{c}}$: The general procedure was followed, and flash chromatography (petroleum ether/ethyl acetate $=20 / 1-$ petroleum ether/ethyl acetate $=10 / 1)$ afforded $137.8 \mathrm{mg}(74 \%$ yield $)$. Colorless oil. TCL: $\mathrm{R}_{\mathrm{f}}=0.14$ (petroleum ether/ethyl acetate $=10 / 1$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{dt}, J=8.6,1.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.69-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $4 \mathrm{H}), 7.29$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.40$ (dd, $J=8.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.73-3.65(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.19$ - $2.05(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.58,138.69,138.23,133.94$,
$129.38,129.15,128.82,128.17,127.49,123.84,63.39,46.26,35.99,21.43$. IR (neat): 3071, 2925, 2103, 1449, 1375, 1169, 1085, 910, 736, $686 \mathrm{~cm}^{-1}$. HRMS m/z (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 493.0975$, found 493.0974.

4h

N-(3-azido-3-(3-fluorophenyl)propyl)-N-(phenylsulfonyl)benzenesulfonamide

$(\mathbf{4 h})^{1 \mathbf{c}}$: The general procedure was followed, and flash chromatography (petroleum ether/ethyl acetate $=20 / 1$) afforded $71.6 \mathrm{mg}(38 \%)$. Colorless oil. \quad TCL: $\mathrm{R}_{\mathrm{f}}=0.30$ (petroleum ether/ethyl acetate $=5 / 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{dd}, J=8.5$, $1.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.70-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.05$ (td, $J=8.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.01$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.89(\mathrm{~m}, 1 \mathrm{H}), 4.45$ (dd, $J=$ 8.8, 5.2 Hz, 1H), $3.85-3.67(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.00(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 162.98(\mathrm{~d}, J=246.2 \mathrm{~Hz}), 141.03(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 139.53,134.04,130.61(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}), 129.21,128.17,122.43(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 115.60(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 113.76(\mathrm{~d}, J=$ 22.1 Hz), $62.71,46.04,36.05 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-111.60(\mathrm{~s}, 1 \mathrm{~F})$. IR (neat): $3068,2927,2106,1448,1376,1085,1048,890,795,720,685 \mathrm{~cm}^{-1}$. HRMS $\mathrm{m} / \mathrm{z}(\mathrm{ESI})$ calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{FN}_{4} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 497.0724$, found 497.0725.

$4 i$

N-(3-azido-3-(3-chlorophenyl)propyl)-N-(phenylsulfonyl)benzenesulfonamide

$(4 i)^{1 c}$: The general procedure was followed, and flash chromatography (petroleum ether/ethyl acetate $=20 / 1-$ petroleum ether/ethyl acetate $=10 / 1)$ afforded $73.2 \mathrm{mg}(38 \%$ yield). Colorless oil. TCL: $\mathrm{R}_{\mathrm{f}}=0.32$ (petroleum ether/ethyl acetate $=5 / 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{dt}, J=8.6,1.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.70-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{t}$, $J=7.8 \mathrm{~Hz} 4 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 7.13-7.10(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{dd}, J=$
8.8, 5.2 Hz, 1H), $3.84-3.68(\mathrm{~m}, 2 \mathrm{H}), 2.15-1.99(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 140.62,139.52,134.87,134.06,130.30,129.22,128.79,128.17,126.93$, 124.90, 62.69, 46.01, 36.08. IR (neat): 3071, 2929, 2104, 1478, 1448, 1085, 909, 825, $739,685,651 \mathrm{~cm}^{-1}$. HRMS m/z (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{ClN}_{4} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 513.0428, found 513.0430.

N-(3-azido-3-(2-isopropylphenyl)propyl)-N-(phenylsulfonyl)benzenesulfonamide

$(4 j)^{1 \mathbf{c}}$: The general procedure was followed, and flash chromatography (petroleum ether/ethyl acetate $=25 / 1)$ afforded $161.4 \mathrm{mg}(82 \%$ yield $) . \quad$ Colorless oil. TCL: $\mathrm{R}_{\mathrm{f}}=$ 0.36 (petroleum ether/ethyl acetate $=5 / 1$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{dd}, J$ $=8.5,1.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.68-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.35-7.26(\mathrm{~m}, 3 \mathrm{H})$, $7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 4.83-4.78(\mathrm{~m}, 1 \mathrm{H}), 3.89-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.77-3.70(\mathrm{~m}, 1 \mathrm{H})$, $3.15-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.23(\mathrm{dd}, J=10.0,6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.46,139.52,134.76,133.96,129.16,128.70,128.18,126.49$, 126.32, 125.99, 59.16, 46.53, 36.03, 28.49, 24.40, 23.96. IR (neat): 3068, 2965, 2102, 1448, 1376, 1268, 1174, 1088, 811, 744, $686 \mathrm{~cm}^{-1}$. HRMS m/z (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 521.1288$, found 521.1271.

\mathbf{N}-(3-azido-3-(2-ethylphenyl)propyl)-N-(phenylsulfonyl)benzenesulfonamide
$(\mathbf{4 k})^{1 \mathbf{c}}$: The general procedure was followed, and flash chromatography (petroleum ether/ethyl acetate $=25 / 1)$ afforded $161.4 \mathrm{mg}(82 \%) . \quad$ Colorless oil. \quad TCL: $\mathrm{R}_{\mathrm{f}}=0.31$ (petroleum ether/ethyl acetate $=5 / 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{dd}, J=8.5$, $1.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.66(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.24$
$-7.21(\mathrm{~m}, 1 \mathrm{H}), 4.74(\mathrm{dd}, J=8.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.77-3.69(\mathrm{~m}, 1 \mathrm{H})$, $2.62(\mathrm{dd}, J=14.9,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.20-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 141.67,139.53,135.68,133.96,129.20,129.15,128.54$, $128.18,126.60,126.37,59.04,46.52,35.88,25.36,15.79$. IR (neat): 3069, 2965, 2102, 1448, 1375, 1169, 1085, 909, 735, $685 \mathrm{~cm}^{-1}$. HRMS m/z (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 507.1131$, found 507.1131.

N-(3-azido-3-(o-tolyl)propyl)-N-(phenylsulfonyl)benzenesulfonamide (4l) ${ }^{1 \mathrm{c}}$: The general procedure was followed, and flash chromatography (petroleum ether/ethyl acetate $=20 / 1$) afforded $137.5 \mathrm{mg}\left(74 \%\right.$ yield). Colorless oil. \quad TCL: $\mathrm{R}_{\mathrm{f}}=0.34$ (petroleum ether/ethyl acetate $=5 / 1) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99-7.95(\mathrm{~m}$, 4H), $7.68-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.18(\mathrm{~m}$, $3 \mathrm{H}), 4.70(\mathrm{dd}, J=9.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.78-3.70(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~s}$, 3H), 2.22 - $2.04(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 139.53, 136.28, 135.51, 133.97, 131.01, 129.16, 128.30, 128.17, 126.59, 126.15, 59.81, 46.45, 35.10, 19.14. IR (neat): 3067, 2958, 2103, 1448, 1375, 1170, 1087, $686 \mathrm{~cm}^{-1} . \quad$ HRMS m/z (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 493.0975$, found 493.0972.

4m
N-(3-([1,1'-biphenyl]-2-yl)-3-azidopropyl)-N-
(phenylsulfonyl)benzenesulfonamide (4m) ${ }^{1 \text { c }}$: The general procedure was followed, and flash chromatography (petroleum ether/ethyl acetate $=25 / 1$) afforded $179.9 \mathrm{mg}(85 \%$ yield). Light yellow oil. TCL: $\mathrm{R}_{\mathrm{f}}=0.35$ (petroleum ether/ethyl acetate $=5 / 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92(\mathrm{dd}, J=8.3,1.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.67-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{t}$,
$J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.47-7.37(\mathrm{~m}, 6 \mathrm{H}), 7.28(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}$, 2H), $4.54(\mathrm{dd}, J=8.4,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.49-3.40(\mathrm{~m}, 1 \mathrm{H}), 2.19-$ $2.05(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.81,139.98,139.46,135.76,133.93$, 130.36, 129.31, 129.12, 128.50, 128.28, 128.14, 127.54, 126.44, 59.32, 46.16, 36.14. IR (neat): 3068, 2961, 2101, 1449, 1377, 1174, 1088, $908,736,685 \mathrm{~cm}^{-1} . \quad$ HRMS m/z (ESI) calcd for $\mathrm{C}_{2} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 555.1131, found 555.1132.

\mathbf{N}-(3-azido-3-(2-chlorophenyl)propyl)-N-(phenylsulfonyl)benzenesulfonamide
$(4 n)^{1 c}$: The general procedure was followed, and flash chromatography (petroleum ether/ethyl acetate $=20 / 1$) afforded $47.5 \mathrm{mg}(35 \%$ yield $)$. White solid. TCL: $\mathrm{R}_{\mathrm{f}}=$ 0.13 (petroleum ether/ethyl acetate $=10 / 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{dd}$, $J=8.5,1.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.68-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.40(\mathrm{dt}, J=7.6,1.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=7.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{dd}, J=8.8,4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.88-3.72(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.01(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.55$, $136.20,133.97,132.82,129.96,129.56,129.16,128.18,127.65,127.54,59.71,46.04$, 35.13. IR (neat): $3068,2957,2104,1448,1376,1169,1174,1088,1040,851,748$, $685 \mathrm{~cm}^{-1}$. HRMS m/z (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{ClN}_{4} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 513.0428$, found 513.0427.

N-(3-azido-3-(2,6-dimethylphenyl)propyl)-N-

(phenylsulfonyl)benzenesulfonamide (40): The general procedure was followed, and flash chromatography (pentane/EtOAc $=20 / 1-$ pentane $/ E t O A c=15 / 1$) afforded 99.8mg (52\%). Colorless oil. TCL: $\mathrm{R}_{\mathrm{f}}=0.33$ (pentane/EtOAc $=5 / 1$). ${ }^{1} \mathrm{H}$ NMR
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03-7.95(\mathrm{~m}, 4 \mathrm{H}), 7.68-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.52(\mathrm{~m}, 4 \mathrm{H})$, $7.13-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=12.6,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.07(\mathrm{dd}, J=10.3,4.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.96-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.63(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 6 \mathrm{H}), 2.27-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.02$ ($\mathrm{m}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.56,136.48,134.28,133.96,129.16$, $128.19,128.04,59.54,46.82,33.61,20.70$. IR (neat): 3067, 2958, 2101, 1448, $1383,1448,1085,909,846,811,738,686 \mathrm{~cm}^{-1}$. HRMS m/z (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{2} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 507.1131$, found 507.1131.

12
\mathbf{N}-(3-hydroxy-3-phenylpropyl)-N-(phenylsulfonyl)benzenesulfonamide (12): The general procedure was followed, and flash chromatography (pentane/EtOAc $=20: 1-$ pentane $/$ EtOAc $=5 / 1$) afforded $61.5 \mathrm{mg}(36 \%)$. Colorless oil. \quad TCL: $\mathrm{R}_{\mathrm{f}}=0.08$ (pentane/EtOAc $=5 / 1) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03-7.99(\mathrm{~m}, 4 \mathrm{H}), 7.69-$ $7.65(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 2 \mathrm{H}), 4.67(\mathrm{~d}, \mathrm{~J}$ $=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.83(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.08$ - $1.98(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.32,139.68,133.92,129.16$, $128.53,128.19,127.73,125.62,70.91,46.38,38.66 \mathrm{~cm}^{-1}$. HRMS m/z (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{2} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 454.0753$, found 454.0754 .

8. Reference

1. [a] D. Petzold, P. Singh, F. Almqvist and B. König, Visible-Light-Mediated Synthesis of β-Chloro Ketones from Aryl Cyclopropanes, Angew. Chem. Int. Ed,. 2019, 58,8577. [b] C. R. Pitts, B. Ling, J. A, Snyder, A. E. Bragg and T. Lectka, Aminofluorination of Cyclopropanes: A Multifold Approach through a Common, Catalytically Generated Intermediate, J. Am. Chem. Soc., 2016, 138, 6598. [c] L. H. Wang, X. M. Wang, G. Zhang, S. B. Yang, Y. Li and Q. Zhang, Copper-catalyzed 1,3aminoazidation of arylcyclopropanes: a facile access to 1,3-diamine derivatives, Org. Chem. Front., 2019, 6, 2934-2938.
2. [a] M. H. Gieuw, Z. H. Ke and Y. Y. Yeung, Lewis Base-Promoted Ring-Opening 1,3-Dioxygenation of Unactivated Cyclopropanes Using a Hypervalent Iodine Reagent, Angew.Chem.Int. Ed., 2018, 57, 3782 -3786. [b] W. Kurtz, F. Effenberger, Umsetzungen von Cyclopropyllithium mit Halogenbenzolen, Chem. Ber., 1973, 106, 560-569. [c] S. T. Keaveney, G. Kundu and F. Schoenebeck, Modular Functionalization of Arenes in a Triply Selective Sequence: Rapid C(sp2) and C(sp3) Coupling of C-Br, $\mathrm{C}-\mathrm{OTf}$, and $\mathrm{C}-\mathrm{Cl}$ Bonds Enabled by a Single Palladium(I) Dimer, Angew.Chem. Int.Ed., 2018, 57 , 12573 -12577. [d] L. M. Stock and P. E. Young, Partial rate factors for the nitration of cyclopropylbenzene derivatives. Influence of geometry on the stability of 3- and 4-cyclopropylbenzenonium ions, J. Am. Chem. Soc., 1972, 94, 12, 4247-4255.
3. C. G. Espino, K. W. Fiori, M. Kim, J. Du Bois, Expanding the Scope of C-H Amination through Catalyst Design, J. Am. Chem. Soc. 2004, 126, 15378.
4. [a] B. Zhang and A. Studer, Copper-Catalyzed Intermolecular Aminoazidation of Alkenes, Org. Lett., 2014, 16, 1790-1793. [b] B.W. Lei, X. J. Wang, L. F. Ma, Y. Li and Z. Y. Li, NFSI-participated intermolecular aminoazidation of alkene through iron catalysis, Org. Biomol. Chem., 2018, 16, 3109.
5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of compounds

 $\underbrace{\infty}$ 品

2a

2b

n

160	150	140	130	120	110	100	90		10	60	1	10	30	20	10	,
160			130	120				fl (ppm)					30	20	10	0


```\(\stackrel{\sim}{\square}\)
```


$\stackrel{\circ}{i}$

						1			1		1	1	1	1	1	1		
180	170	160	150	140	130	120	110	100	${ }_{91}^{90}$	80	70	60	50	40	30	20	10	0

| 10 | 10 | 1 | -10 | -20 | -30 | -40 | -50 | -60 | -70 | -80 | -90 | -100 | -110 | -120 | -130 | -140 | -150 | -160 | -170 | -180 | -190 | -200 | -210 | -22 |
| :--- |
| 1 | |

$\stackrel{\pi}{1}$

| 1 | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 150 | 140 | 130 | 120 | 110 | 100 | 90 | 100 | 1 |

4a

4h

4h

$4 i$

160	150	140	130	120	110	100	90	1	10	6	50	40	30	20	10	0
160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
160	150	140	130	120	110	100	90	$\begin{gathered} 80 \\ \text { fl (ppm) } \end{gathered}$	70	60	50	40	30	20	10	0

4k

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

150	140	130	120	110	100	90			60	50	40	30	20	10	0

